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Overcoming attenuation bias in regressions
using polygenic indices

Hans van Kippersluis 1,2 , Pietro Biroli 3, Rita Dias Pereira1,2,
Titus J. Galama 1,2,4,5, Stephanie von Hinke 1,2,6, S. Fleur W. Meddens1,7,
Dilnoza Muslimova 1,2, Eric A. W. Slob 1,8,9, Ronald de Vlaming 2,4 &
Cornelius A. Rietveld 1,2,9

Measurement error in polygenic indices (PGIs) attenuates the estimation of
their effects in regression models. We analyze and compare two approaches
addressing this attenuation bias: Obviously Related Instrumental Variables
(ORIV) and the PGI Repository Correction (PGI-RC). Through simulations, we
show that the PGI-RC performs slightly better than ORIV, unless the prediction
sample is very small (N < 1000) or when there is considerable assortative
mating. Within families, ORIV is the best choice since the PGI-RC correction
factor is generally not available. We verify the empirical validity of the simu-
lations by predicting educational attainment and height in a sample of siblings
from the UK Biobank. We show that applying ORIV between families increases
the standardized effect of the PGI by 12% (height) and by 22% (educational
attainment) compared to a meta-analysis-based PGI, yet estimates remain
slightly below the PGI-RC estimates. Furthermore, within-family ORIV regres-
sion provides the tightest lower bound for the direct genetic effect, increasing
the lower bound for the standardized direct genetic effect on educational
attainment from 0.14 to 0.18 (+29%), and for height from 0.54 to 0.61 (+13%)
compared to a meta-analysis-based PGI.

Genome-wide association studies (GWASs) have firmly established
that, with few exceptions, most human (behavioral) traits are highly
“polygenic”—that is, influenced by many individual genetic variants,
each with a very small effect size1,2. A natural consequence of this has
been the widespread adoption of so-called polygenic indices (PGIs),
weighted sums aggregating the small effects of numerous genetic
variants (single-nucleotide polymorphisms (SNPs)), which enable out-
of-sample genetic prediction of complex traits3–5. It is common prac-
tice to meta-analyze GWAS summary statistics from as many samples
as possible to foster the identification of genome-wide significant
SNPs1. Through the law of large numbers, this strategy has also proven

to be very effective in reducingmeasurement error in the PGI and thus
to boost the power and accuracy for analyses involving PGIs4. PGIs are
now able to explain a non-negligible proportion of the variance in
health and behavioral traits6.

Empirically constructed PGIs arenonetheless a noisy proxy for the
true latent PGI (i.e., the “additive SNP factor,” defined as the best linear
predictor of the phenotype from the measured genetic variants6)
because, amongst other reasons, the GWAS underlying the construc-
tion of the PGI is based on a finite sample7,8. The noise in the GWAS
coefficients translates into noisymeasures of the PGI and leads towhat
is typically known as “attenuation bias” (i.e., a bias towards zero) in the
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coefficient of a PGI in a regression. As a result, the predictive power of
today’s PGIs is still substantially smaller than the SNP-based heritability
estimates, which constitute an upper bound for the predictive power
of PGIs9. For example, the current predictive power, or variance
explained in thephenotype (R2), of the educational attainment (EA) PGI
is about 12–16%10, whereas the SNP-based heritability is estimated to be
in the range 22–28%11–13. Importantly, the returns to increasing GWAS
sample size in terms of gaining predictive power of the PGI are rapidly
decreasing14,15. For example, for a trait with a SNP-heritability of 25%, it
takes a sample of ~1 million to construct a PGI explaining 20%, but it
would take a 7-fold increase indiscovery sample size to achieve anR2 of
24% (see Eq. (1) below with M ~ 70, 000). Hence, reducing measure-
ment error in the conventional way of meta-analyzing ever-larger dis-
covery samples has rapidly diminishing payoffs.

There is a burgeoning body of papers exploiting PGIs inmedicine,
biology, and the social sciences. In many applications, the goal is to
estimate the regression coefficient of the true latent PGI. Taking the EA
PGI as an example, a non-exhaustive list of applications includes (i)
studies estimating the pathways through which the EA PGI influences
lifetime outcomes including speech and reading skills16 or wealth
accumulation17; (ii) studies that estimate direct genetic effects using
within-family estimation to understand the mechanisms through
whichmolecular differences translate into education differences18; (iii)
studies that investigate gene-environment interplay in EA19,20, (iv) stu-
dies that investigate intergenerational persistence of education21–23;
and (v) studies including a PGI as a control variable to reduce omitted
variable bias or improve precision24. While there have been important
advances in our understanding of how functional priors and optimiz-
ing constructionmethods can enhance the predictive power of a given
PGI25–27, most existing applications still employ a (meta-analysis based)
PGI without applying a correction for measurement error.

Recent studies have laid out the advantages of a measurement
error correction and either suggested OLS estimates that have
undergone some reasonable correction for attenuation6,28 or IV
estimation29 to deal with measurement error in the PGI. First, DiPrete
et al.29 suggested an instrumental variables (IV) approach to reduce
measurement error in the PGI as a by-product of their Genetic
Instrumental Variable (GIV)method. The intuition of the IV approach is
simple: when we split the GWAS discovery sample into two, we can
obtain two PGIs that both proxy the same underlying “true” PGI. For
example, when splitting the UK Biobank (UKB) at random into two
discovery samples, both resulting PGIs approximate the same true
latent PGI. Hence, theoretically, their correlation shouldbe 1. However,
in practice, their correlation will be smaller than 1 since the GWAS
sample sizes used to construct these PGIs are finite and therefore each
PGIwill be subject tomeasurement error. In case (i) of polygenicity, (ii)
the sources of measurement error are independent, and (iii) the rela-
tive variance of measurement error in the PGI is the same across the
two discovery samples, then the correlation between the two PGIs
reveals the degree ofmeasurement error. The IV approach in turn uses
this information to correct (or “scale”) the observed association
between the PGI and the outcome. Second, Becker et al.6 developed an
approach to disattenuate estimated effects of the PGI on a trait, on the
basis of external information of the trait’s SNP-based heritability (see
also ref. 28). Intuitively, in this approach the SNP-based heritability is
estimated in a first step, after which the coefficient of the PGI is re-
scaled to match this SNP-based heritability in a second step. Since this
approach was proposed alongside the introduction of the PGI repo-
sitory project6, we will refer to this approach as the PGI repository
correction (PGI-RC).

In this study, we use simulations and empirical analyses to com-
pare the IV and PGI-RC approach to reduce attenuation bias in analyses
involving PGIs. Our goal is to estimate a coefficient that is free from
attenuationbias due tomeasurement error in a PGI. As such,wearenot
primarily interested in boosting the out-of-sample predictive power of

a given PGI (in terms of e.g., the R2) for which ever-increasing GWAS
discovery samples remain important. We are also not primarily inter-
ested in estimating the direct (or “causal”) effect of a PGI. In between-
family designs, PGIs typically capture not only effects of inherited
variation (direct effects), but also effects of population stratification,
demography, and relatives (so-called indirect genetic effects)30. In the
simulations, we compare theperformance of ameta-analysis basedPGI
(benchmark) to (1) results obtained using an IV approach29, which
relies on two PGIs constructed from two non-overlapping GWASs, and
(2) the PGI repository correction6. For the IV approach, we avoid the
arbitrary choice of selecting one PGI as the independent variable and
the other as IV by using the recently developed Obviously-Related
Instrumental Variables (ORIV) technique31. In our comparison of the
benchmark, ORIV, and PGI-RC we consider various degrees of (i)
genetic nurture (i.e., the effect of parental genotype on the child’s
outcomes), (ii) assortative mating, and (iii) genetic correlation across
discovery and prediction samples. In turn, in the empirical application,
we compare the benchmark, ORIV, and PGI-RC using data on height
and educational attainment from the sibling sample of the UK
Biobank32. We conclude that ORIV is preferred over the PGI-RC if the
prediction sample is very small (N < 1000), when there is assortative
mating, and in within-family designs. For small discovery samples, or
when there is imperfect genetic correlation between the discovery and
prediction sample, PGI-RC is the preferred choice.

Results
Simulation study
To compare the performance of meta-analysis, ORIV, and the PGI-RC
to estimate the standardized effect of the PGI on an outcome variable,
we developed a general-purpose Python tool called GNAMES (Genetic-
Nurture and Assortative-Mating-Effects Simulator). This tool allows
users to efficiently simulate multi-generational genotype and pheno-
type data under genetic nurture (GN) effects and assortative mating
(AM). TheGNAMES tool itself, a description of its technical details, and
a tutorial, are freely available on the following GitHub repository:
https://github.com/devlaming/gnames.

In the simulations, we partition simulated genotype and pheno-
type data into three sets: two sets with equal sample size to perform
non-overlapping GWASs (discovery) and one set to construct PGIs
(prediction). For both sets of GWAS results, we construct a separate
PGI. In addition, we also construct a PGI based on the meta-analysis of
the two GWASs, in line with the common practice of using the largest
possiblediscovery sample to construct a PGI. Since the SNP effect sizes
are simulated to be independent, the PGI simply equals the sum of the
SNPs, weighted by the respective GWAS coefficients.

In our setup, every family has two children. Importantly, in the
GWASs, data for only one sibling per family are used, and so the
resulting PGIs are based on between-family GWAS results, as is com-
mon in the literature (but see Howe et al.30 for a recent exception). The
outcome of each simulation is a data file with the individual’s ID, the
father and mother’s ID, a simulated outcome, two PGIs constructed
from the twonon-overlappingGWASdiscovery samples, and themeta-
analysis PGI. Further details of the simulation design are provided in
Supplementary Methods 1.

The simulations are calibrated based on educational attainment
(EA), but we show that our conclusions hold for traits with a different
level of heritability in Supplementary Results 2. The SNP-based herit-
ability is approximately equal to 25% for EA inmost samples11–13. Hence,
we fix the SNP-based heritability of the outcome at 25%. In turn, we use
different settings that vary in terms of:

• The prediction sample—To create realistic variation in predic-
tion sample sizes we vary Nprediction in the range (1000; 2000;
4000; 8000; 16,000). For example, a recent study on EA33

employs prediction samples of similar sizes (the Dunedin Study
(N = 810), the Environmental Risk Longitudinal Twin (E-Risk)
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Study (N = 1860), AddHealth (N = 5526), the Wisconsin Long-
itudinal Study (WLS, N = 7111) and the Health and Retirement
Study (HRS, N = 8546)).

• The size of the GWAS discovery sample—As described in
refs. 7,8, the predictive power of a PGI mainly depends on the
variance explained by each SNP, and the ratio of the GWAS dis-
covery sample to the number of SNPs. In particular, under the
assumption that all SNPs explain an equal proportionof the SNP-
based heritability, De Vlaming et al. (Eq. 2)34 approximate the
predicted R2 of a given PGI as

R2ðPGI,Y Þ≈h2
SNP

h2
SNP

h2
SNP +

M
NGWAS

� �� � , ð1Þ

whereh2
SNP is the SNP-basedheritability,M is the number of SNPs

andNGWAS denotes theGWASdiscovery sample size. Tomaintain
a manageable simulation space, we hold the number of SNPs
fixed at M = 5000, and set h2

SNP =0:25. In order to simulate
realistic levels of predictive power for a PGI, we useNGWAS in the
range (2000; 4000; 8000; 16,000; 32,000). These values for the
GWAS discovery samples then respectively generate an
expected R2 of 2.3% (i.e., close to the PGI performance in the
first EA GWAS, EA1,35), 4.2% (~EA2,12), 7.1%, 11.1% (~EA3,36) and
15.4% (~EA4,10). To verify that our results are not sensitive to
downsizing both M and NGWAS for computational reasons, we
also analyze an additional setting with M = 100,000 and
NGWAS = 100,000. The results remain very similar, see Supple-
mentary Results 2.

• The presence of genetic nurture—We hold h2
SNP (i.e., the SNP-

heritability) constant at0.25 in eachgeneration. In thepresenceof
genetic nurture, the estimated SNP-based heritability is however a
combination of direct genetic effects and genetic nurture37. If the
direct genetic effects and genetic nurture components are
independent, the heritability is given by: h2

SNP =h
2 +0:5n2, where

h2 denotes the phenotypic variance accounted for by direct
genetic effects, and n2 denotes the phenotypic variance
accounted for by genetic nurture. In scenarios without genetic
nurture, we fix the SNP-based heritability at h2

SNP =h
2 =0:25. In

scenarios with genetic nurture, we set h2 = 0.2 and n2 = 0.1 such
that the genetic nurture is half the size of the direct genetic effect.
This parametrization is again loosely following empirical evidence
for EA,where the indirect genetic effect represents roughly half of
the additive SNP factor10,18.

• Thedegreeof assortativemating—Wevary assortativemating on
the outcome variable (i.e., the phenotypic correlation between
mates) between 0 and 1 in increments of 0.25. Plausible levels of
assortative mating on education vary between 0.1 and 0.638–40.

• The genetic correlation—We vary the genetic correlation
between theGWASdiscovery samples and theprediction sample
between 0.25 and 1 in increments of 0.25, where the two GWAS
discovery samples have a perfect genetic correlation. An
imperfect genetic correlation may for example arise if the dis-
covery GWAS is performed in a UK sample and the prediction is
performed in a non-UK sample. Additionally, we vary the genetic
correlation between discovery sample 1 and discovery sample 2
from0.25 to 1 in increments of 0.25, wherewemaintain a perfect
genetic correlation between discovery sample 2 and the
prediction sample.

For each scenario, we perform 100 simulation replications
(“runs”), andwe average the results over these runs. In all scenarios, we
estimate (i) a linear regression of the outcome on the meta-analysis
PGI; (ii) ORIV, on basis of a two-stage least squares (2SLS) regression

where we simultaneously use both independent PGIs as instrumental
variables for each other; and (iii) the PGI-RC where we scale the coef-
ficient obtained under (i) by the estimated SNP-based heritability. The
SNP-based heritability is estimated in the prediction sample using
MGREML (Multivariate Genome-based Restricted Maximum
Likelihood)41. In these GREML analyses, individuals with a genetic
relatedness larger than 0.05 are excluded.

The default PGI-RC estimator ignores the estimation error in the
estimation of the scaling factor (as acknowledged on p.14 of the Sup-
plementary Information of Becker et al.6). This may lead to anti-
conservative standard errors, and in the univariate case the true
standard error is equal to the standard error of the square root of the
estimated SNP-heritability. We will therefore present both the default
PGI-RC (“PGI-RC (Default)”) application, as well as the PGI-RC that
incorporates the uncertainty in the scaling factor (“PGI-RC (GREML
unc.)”). Details of the estimation procedures can be found inMethods.

Our main evaluation criterion is the resulting point estimate and
95% confidence interval of the estimated coefficient, to compare the
bias of a particular method from the known true coefficient. The true
coefficient is that of a PGI constructed based on an infinitely large
between-family GWAS. However, in order to balance bias as well as
precision, in Supplementary Results 1 we additionally present the root
mean squared error, which is a function of both the bias as well as the
variance.

Variation in prediction sample size. Figure 1 shows the coefficient
estimates and their 95% confidence intervals for a meta-analysis PGI,
ORIV, and the PGI-RC for varying sample sizes of the prediction sam-
ple. The estimates derive from our baseline scenario (no genetic nur-
ture, no assortative mating) and where the GWAS sample size is held
constant such that the resulting meta-analysis PGI roughly corre-
sponds to EA4 (i.e., R-squared ~ 15.4%). Since we simulated a scenario
without genetic nurture and assortative mating, the between-family
(Fig. 1a) and within-family (Fig. 1b) analyses target the same coefficient
(i.e., a SNP-based heritability of 0.25, or a standardized coefficient of
0.5; see “Methods”).

Judging from the point estimates, in a between-family setting,
ORIV and the PGI-RC clearly outperform a meta-analysis PGI, with
limited differences between them in this scenario. An increasing pre-
diction sample size shrinks the confidence intervals but leaves the
coefficients largely unaffected. One notable exception is that for a
small prediction sample size (N ≤1000), the PGI-RC slightly under-
estimates the true coefficient. When using a small prediction sample,
the uncertainty in the PGI-RC (GREML unc.) is considerably larger than
suggested in the default application PGI-RC (default). With a relatively
large GWAS sample, the RMSE for ORIV tends to be slightly smaller
than for the PGI-RC (see Supplementary Table 2 in Supplementary
Results 1).

In a within-family design, the PGI-RC is not available. Confidence
intervals are clearly larger within families than between families, since
the variation in the PGI is more limited, but again shrink with an
increasing prediction sample size. Similar to the between-family ana-
lysis, within-family ORIV is consistent and clearly outperforms a meta-
analysis based PGI in this scenario.

Variation in GWAS sample size. Figure 2 shows the corresponding
figure from the same scenario but now holding the prediction sample
size constant at N = 16,000 and varying the GWAS sample size such
that the R-squared of the meta-analysis PGI varies from 2.3% (EA1) to
15.4% (EA4). Whereas a meta-analysis PGI clearly benefits from an
increased GWAS sample size, for a relatively large prediction sample
size of N = 16,000 both ORIV and the PGI-RC are approximately
unbiased irrespective of the GWAS sample size. The PGI-RC shows a
narrower confidence interval compared with ORIV, even when taking
into account uncertainty in the GREML estimates, with the difference

Article https://doi.org/10.1038/s41467-023-40069-4

Nature Communications |         (2023) 14:4473 3



becoming smaller for larger GWAS discovery samples (see also Sup-
plementary Table 3 in Supplementary Results 1).

Variation in both prediction and GWAS sample size. In Table 1 we
vary both the GWAS as well as the prediction sample size simulta-
neously. In particular, we compare the performance of a relatively
small GWAS sample size, calibrated to be resulting in an R-squared of
4.2% (roughly EA2) for different prediction sample sizes, and a rela-
tively large GWAS sample size, calibrated to be resulting in an R-
squared of 15.4% (roughly EA4), again for different prediction sample
sizes. As expected, when the GWAS sample size increases, the coeffi-
cient of a meta-analysis PGI comes closer to the true value (0.5), but
even for a relatively large GWAS sample size it is still considerably
biased. As before, an increasing prediction sample size does not
decrease the bias in the coefficient of a meta-analysis PGI, but only
shrinks the confidence interval.

ORIV is somewhat biased when both the GWAS sample and the
prediction sample are relatively small. This is not surprising, since it is

well known that the bias of IV is inverselyproportional to thefirst-stage
F-statistic42,43. As we derive in the “Methods” section, in this context,
the first-stage F-statistic is given by (see Eq. (25) for a derivation):

F =
corrðPGI1,PGI2Þ2ðN � 2Þ
1� corrðPGI1,PGI2Þ2

: ð2Þ

Thus, the bias in ORIV is determined by the correlation between the
two PGIs, as well as the prediction sample size N. The correlation
between the two PGIs is determined directly by the R-squared of the
independent PGIs (see Eqs. (10) and (17) in the “Methods” section).
Therefore, with a small GWAS sample size and a small prediction
sample size, ORIV is biased. Interestingly, when either the GWAS
sample size increases (i.e., moving from EA2 to EA4 while holding
constant the prediction sample at N = 1000) or the prediction sample
size increases (i.e., moving from N = 1000 to N = 4000 or N = 16, 000
while holding the GWAS discovery sample constant), ORIV quickly
converges to the true point estimate.
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analysis (circles), Obviously Related Instrumental Variables (ORIV, rhombuses), the
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N = 16,000. The confidence interval for EA1 in the within-family analysis extends
beyond the displayed range (−0.08 to −1.29). The dashed line represents the true
coefficient. The simulation results are based on 100 replications.
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In this baseline scenario, the point estimates of the PGI-RC are
largely independent of the GWAS sample size, but are very sensitive to
a small prediction sample. The picture that emerges from Table 1 is
that the PGI-RC outperforms ORIV when the prediction sample size is
relatively large but the GWAS sample size is small; whereas ORIV tends
to outperform the PGI-RC when the GWAS sample size is large but the
prediction sample is relatively small. In case both the GWAS and pre-
diction samples are small, both methods tend to estimate biased
coefficients surrounded by wide confidence intervals, although the
RMSE is still comfortably below that of a meta-analysis PGI (see Sup-
plementary Table 4 in Supplementary Results 1).

Genetic nurture. When genetic nurture is present, the results (Fig. 3
and Supplementary Table 5 in Supplementary Results 1) very much
resemble those obtained in the baseline case (Figs. 1 and 2). The
coefficient of a meta-analysis PGI is consistently attenuated; ORIV and
the PGI-RC both accurately target the correct point estimate, but
confidence intervals are wide for the PGI-RC in small prediction sam-
ples, and for ORIV in small discovery samples. Since the results with
and without genetic nurture are very similar, we confirm the earlier
finding that confounding factors at the GWAS stage do not bias the
ORIV and PGI-RC estimates in targeting the additive SNP factor
between families29. The most important difference is that with genetic
nurture, the between- and within-family results are starting to diverge.
In within-family designs, ORIV continues to outperform a meta-
analysis PGI, yet slightly underestimates the true coefficient becauseof
the noise introduced in the PGI since the GWAS did not control for
genetic nurture (see Methods for a more extensive discussion).

Assortative mating. Figure 4 shows the results for varying levels of
assortative mating. In the top two panels we do not include genetic
nurture, while in the bottom twopanels we domodel genetic nurture in
addition to assortativemating. Interestingly, whereasORIV is consistent
in the presence of assortative mating, the PGI-RC estimator is biased
and overestimates the true coefficient (see also Supplementary Table 6
in Supplementary Results 1). This is not surprising, as the PGI-RC relies
on an estimate of the SNP-based heritability obtained using GREML,
which is known to be biased when assortative mating is present44,45.

The simulations are designed such that the true coefficient does
not change with increasing levels of assortative mating (AM). This is
achieved by standardizing the true PGI to mean zero and unit variance
in each generationof the forward simulation, and then assigning effect

ffiffiffiffiffi
h2

p
to this standardized PGI. This approach keeps the “con-

temporary” heritability fixed and gives a clear target coefficient.
Without standardization in each generation, the target coefficient is
expected to increase with increasing levels of AM, as the genetic var-
iance and heritability of the trait increase45. Similar to our baseline
simulation, in Supplementary Results 2 we provide simulation results
showing that, also without standardization, ORIV provides consistent
estimates, whereas the PGI-RC overestimates the true coefficient.

Genetic nurture and assortative mating. In our simulations, we draw
independent effect sizes for the direct genetic effects and the genetic
nurture components in the founding population, such that the direct
genetic and genetic nurture components are independent. However,
when modeling genetic nurture and assortative mating simulta-
neously, over generations, a correlation emerges between the direct
genetic effects and the genetic nurture effects (see Supplementary
Methods 1 for details). This implies that the SNP heritability and
thereby the target coefficient for the PGI are no longer an additive sum
of direct genetic effects and genetic nurture effects, but also include a
positive covariance among them. This covariance becomes larger
when the degree of assortative mating increases, driving up the target
coefficient (dashed line inpanel c)when assortativemating is stronger.
Interestingly, we find that in between-family analyses ORIV continues
to target the correct coefficient, yet as before, the PGI-RC system-
atically overestimates the target coefficient in the presence of assor-
tative mating (see also Supplementary Table 6 in Supplementary
Results 1). As expected, performing a within-family analysis (panel d)
largely purges the bias induced by genetic nurture and assortative
mating, with again ORIV providing a conservative estimate of the
direct genetic effect in within-family analyses.

Imperfect genetic correlation. Figure 5 shows the sensitivity of the
between-family approaches to an imperfect genetic correlation
between the GWAS and prediction samples (Fig. 5a) and between two
GWAS samples that are meta-analyzed or used for ORIV (Fig. 5b). For a
meta-analysis based PGI, these two settings are closely related because
an imperfect genetic correlation between two GWAS samples by
definition implies an imperfect genetic correlation with the prediction
sample. The results show that both a meta-analysis PGI as well as ORIV
are very sensitive to an imperfect genetic correlation between the
discovery and prediction sample (see also Supplementary Table 7 in
Supplementary Results 1 for the corresponding RMSE values). In

Table 1 | Estimated coefficients for the Polygenic Index (PGI) in the baseline scenario (no genetic nurture, no assortative
mating; between-family analyses only)

GWAS Prediction sample Meta-analysis ORIV PGI-RC PGI-RC
(Default) (GREML unc.)

~EA2 N = 1000 0.209 0.522 0.414 0.414

(0.147–0.271) (0.015–1.029) (0.287–0.542) (0.000–0.828)

~EA2 N = 4000 0.205 0.501 0.497 0.497

(0.174–0.237) (0.294–0.708) (0.421–0.573) (0.339–0.655)

~EA2 N = 16,000 0.204 0.500 0.500 0.500

(0.188–0.219) (0.403–0.598) (0.462–0.539) (0.443–0.558)

~EA4 N = 1000 0.392 0.505 0.472 0.472

(0.334–0.450) (0.417–0.593) (0.402–0.542) (0.024–0.920)

~EA4 N = 4000 0.386 0.497 0.500 0.500

(0.357–0.415) (0.453–0.541) (0.463–0.538) (0.381–0.619)

~EA4 N = 16,000 0.387 0.499 0.500 0.500

(0.373–0.402) (0.477–0.521) (0.481–0.519) (0.456–0.544)

Notes: Data are presented as the estimated coefficients +/− 1.96 times the standard error (95% confidence interval) for the Polygenic Index (PGI) using OLS regression on a meta-analysis based PGI
(column 3), a 2SLS regression using ORIV (column 4), the default PGI-RC procedure (column 5), and the PGI-RC procedure, taking into account uncertainty in the GREML estimates (column 6). The
GWAS discovery sample is set such that the resulting meta-analysis PGI has an R2 of 4.2% (~EA2) and 15.4% (~EA4). The true coefficient is 0.5. The simulation results are based on 100 replications.
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contrast, the PGI-RC procedure is not sensitive at all since it re-scales a
particular coefficient with the SNP-based heritability in the prediction
sample. For a lower genetic correlation across the two discovery
samples, the PGI-RC is completely insensitive, and ORIV is remarkably
robust against deviations from a perfect genetic correlation between
the two GWAS discovery samples. For a genetic correlation between
the two GWAS samples of 0.75, ORIV is consistent, and even when the
genetic correlation is as low as 0.5, the ORIV 95% confidence interval
still includes the true coefficient.

Summary. The simulations suggest that it is virtually always beneficial
to apply a measurement error correction compared to just using a
meta-analysis based PGI. We find that both the PGI-RC as well as ORIV
outperform the benchmark in all scenarios. Comparing among them,
the PGI-RC is particularly valuable in between-family analyseswhen the
GWAS discovery sample is very small (i.e., when the predictive power
of a PGI is low) or when there exists an imperfect genetic correlation
between the discovery and prediction sample (i.e., when the effects of
SNPs on the outcome are very different across the discovery and
prediction sample). In the presence of assortative mating, however,
the PGI-RC is both more biased and less precise than ORIV. Moreover,
the PGI-RC tends to be imprecise in case of small (i.e., N < 1000) pre-
diction samples, and its confidence intervals are wider than those of
ORIV when incorporating the uncertainty of the SNP-based heritability
estimates. In those cases, as well as in within-family settings where the

PGI-RC correction is generally not available, ORIV seems the preferred
alternative.

Empirical illustration
In this section, we useOLS (using ameta-analysis based PGI), ORIV, and
the PGI-RC to predict EA and height in a subsample of European
ancestry siblings in the UK Biobank (N = 35,282). In the prediction
sample, we first residualized the outcomes EA and height for sex, year
of birth, month of birth, sex interacted with year of birth, and the first
40 principal components of the genetic relationship matrix. For both
EA and height, we consider three PGIs: (i) a PGI based on the UKB
discovery sample that excludes siblings and their relatives; (ii) a PGI
based on the 23andMe, Inc. sample (EA) or the GIANT consortium
(height; ref. 46); and (iii) a PGI based on ameta-analysis of (i) and (ii). In
addition, we construct two additional PGIs on the basis of randomly
splitting the UKB discovery sample into two equal halves. All PGIs are
constructed with the LDpred software47 using as parametrization a
default prior value of 1. We standardize the PGIs to have mean 0 and
standard deviation 1 in the analysis sample. The standardization of the
PGI has the advantage that the square of its estimated coefficient in a
univariate regression is equal to the R-squared (see “Methods”).
Additionally, by standardizing a given PGI we can interpret the
resulting coefficient as a one standard deviation increase in the true
latent PGI (i.e., the additive SNP factor). More details on the variables
and their construction can be found in Supplementary Methods 2.
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Fig. 3 | Genetic nurture. a, c Between-family analyses. b, dWithin-family analyses.
Data are presented as the estimated coefficients +/− 1.96 times the standard error
(95% confidence interval) for the Polygenic Index (PGI) using meta-analysis (cir-
cles),Obviously Related Instrumental Variables (ORIV, rhombuses), the default PGI-
RCprocedure (squares), and the PGI-RCprocedure, taking into accountuncertainty
in the GREML estimates (triangles). The top panels are for a scenario with genetic
nurture but no assortative mating, and holding constant the GWAS discovery

sample such that the resulting meta-analysis PGI has an R2 of 15.4%. The bottom
panels are the same but nowholding the discovery sample fixed atN = 16, 000. The
dashed line represents the true coefficient, which is equal to 0.5 (i.e., the square
root of h2

SNP ) in the between-family design, and equal to the square root of the
direct genetic effect

ffiffi
ð

p
h2Þ=

ffiffi
ð

p
0:2Þ in the within-family design. The simulation

results are based on 100 replications.
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error (95% confidence interval) for the Polygenic Index (PGI) using meta-analysis
(circles), Obviously Related Instrumental Variables (ORIV, rhombuses), the default
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uncertainty in the GREML estimates (triangles). The top two panels do not include
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AM. The simulations hold constant the Genome-wide Association Study (GWAS)
discovery sample such that the resulting meta-analysis PGI has an R2 of 15.4%, and
the prediction sample size is held fixed at N = 16,000. The dashed line represents
the true coefficient, which is equal to 0.5 (i.e., the square root of h2

SNP) in the
between-family analysis, and equal to the square root of the direct genetic effectffiffi
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h2Þ=

ffiffi
ð
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0:2Þ in the within-family analysis. The simulation results are based on

100 replications.
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Fig. 5 | Genetic correlation. Data are presented as the estimated coefficients +/−
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(PGI) usingmeta-analysis (circles), Obviously Related Instrumental Variables (ORIV,
rhombuses), the default PGI-RC procedure (squares), and the PGI-RC procedure,
taking into account uncertainty in the GREML estimates (triangles) in a scenario
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samples that aremeta-analyzed or used byORIV (b). The simulations hold constant
the Genome-wide Association Study (GWAS) discovery sample such that the
resultingmeta-analysis PGI has anR2 of 15.4%, and the prediction sample size is held
fixed at N = 16,000. Between-family analyses only. The dashed line represents the
true coefficient. The simulation results are based on 100 replications.
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SNP-based heritability. Using LDSC and GREML, we estimate the SNP-
based heritability of EA in the prediction sample to be 0.162 (s.e. 0.027)
and 0.155 (s.e. 0.019), respectively, which is somewhat lower than esti-
mates from other samples in the literature. For height, the SNP-based
heritability is estimated to be 0.497 (s.e. 0.039) using LDSC, and 0.530
(s.e. 0.020) using GREML. These results were obtained using one ran-
domly selected sibling per family in the sibling subsample (N = 18,989
for EA, N = 18,913 for height). To obtain the LDSC estimate, the GWAS
summary statistics were computed using FastGWA48. In the GREML
analysis49, the analysis sample was slightly lower (N = 17,696 for EA,
N = 17,849 for height) because we excluded closely related individuals
using the default relatedness cut-off of 0.025. These SNP-based herit-
abilities are a useful benchmark, as they constitute an upper bound on
the R2 we can achieve in our sample using a PGI9. The SNP-based her-
itabilities additionally are a crucial input for disattenuating the OLS
estimator in the PGI-RC6. In fact, in the univariate case, the SNP-based
heritability obtained using GREML is actually the PGI-RC estimate.

Educational attainment (EA). Table 2 shows the results of regressions
of residualized years of education (EA) (standardized to have mean 0
and standard deviation 1 in the sample) on the various PGIs. Figure 6a
visualizes the results in terms of estimated heritability (i.e., the square
of the standardized PGI coefficient). Meta-analyzing summary statis-
tics from independent samples increases the standardized effect size
and associated predictive power of the PGI compared with using the
individual PGIs. That is, the PGI based on the meta-analysis of the UKB
sample (excluding siblings and their relatives) and 23andMe delivers a
standardized effect size of 0.276 (Column 3), implying an estimated
heritability of 7.6%. This estimate is clearly higher than the effect sizes
and heritability estimates obtained when using the UKB or 23andMe
samples on their own (Columns 1 and 2; and the first two estimates of
Fig. 6a). Nevertheless, the meta-analysis PGI still delivers an R2 that is

substantially below the estimates of the SNP-based heritability of
15.5–16.0%.

Column4of Table 2 shows theORIV estimates employing the PGIs
obtained from UKB and 23andMe as instrumental variables for each
other. The ORIV standardized effect estimate is 0.337. Whereas the R2

of an IV regression is not meaningful50, we can estimate the implied
heritability ĥ

2

SNP by squaring the coefficient, which gives 11.4%. While,
unlike in the simulations, we do not know the true standardized effect
size, it is reassuring that the implied heritability estimate is close to our
empirical estimates of the SNP-based heritability of 15.5% (s.e. 1.9%;
GREML) and 16.2% (s.e. 2.7%; LDSC), with the confidence intervals
overlapping. In Column 5, we additionally present the ORIV results
based on two PGIs that were constructed using two random halves of
the UKB discovery sample. The IV assumptions aremore likely to hold
in this scenario since the samples are equally sized and they originate
from the exact same environmental context. In particular, we estimate
the genetic correlation between the 23andMe and UKB summary sta-
tistics to be 0.878 (s.e. 0.011), whereas the genetic correlation between
the split-sample UKB summary statistics is 1.000 (s.e. <0.001). The
resulting coefficient and implied heritability of 10.4% of the split-
sample ORIV are only slightly below the two-sample ORIV results in
Column 4, and considerably higher than the estimate obtained with
the meta-analysis PGI.

When comparing ORIV to the PGI-RC, which in this univariate
context equals the GREML estimate, we observe that the ORIV esti-
mators are somewhat below the PGI-RC estimates (i.e., ORIV estima-
torsmay exhibit somebias). At the same time,when accounting for the
uncertainty in the GREML estimate of the heritability h2

SNP that
underlies the PGI-RC (column 7 of Table 2 and bottom row of Fig. 6a),
the precision of ORIV estimators is considerably higher (i.e., ORIV
estimators have lower variance). Hence, there is a bias-variance trade-
off between ORIV and the PGI-RC in this context.

Table 2 | Results of the OLS and IV regressions explaining (residualized and standardized) educational attainment

OLS OLS OLS ORIV ORIV PGI-RC PGI-RC
(UKB) (23andMe) (Meta-analysis) (2-sample) (Split-sample) (default) (GREML unc.)

Between-family results

Polygenic index 0.258*** 0.218*** 0.276*** 0.337*** 0.323*** 0.394*** 0.394***

(0.005) (0.005) (0.005) (0.007) (0.007) (0.007) (0.024)

First-stage estimate 0.498*** 0.489***

(0.005) (0.005)

First-stage F-statistic 11,919 11,061

Incremental R2 6.7% 4.7% 7.6%

Family fixed effects NO NO NO NO NO NO NO

N 35,282 35,282 35,282 35,282 35,282 35,282 35,282

Within-family results

Polygenic index 0.124*** 0.115*** 0.142*** 0.184*** 0.170***

(0.009) (0.009) (0.009) (0.012) (0.013)

First-stage estimate 0.460*** 0.436***

(0.006) (0.006)

First-stage F-statistic 6068 5158

Incremental R2 1.5% 1.3% 2.0%

Family fixed effects YES YES YES YES YES

N 35,282 35,282 35,282 35,282 35,282

Notes: *p value < 0.10; **p value < 0.05; ***p value <0.01 of a two-sided t test (OLS, PGI-RC) or two-sided z-test (ORIV) without adjustments formultiple comparisons. In all regressions the dependent
variable is residualized educational attainment (EA, standardized to havemean 0 and standard deviation 1), where the residuals are obtained from a regression of EA on sex, year of birth, month of
birth, sex interactedwith year of birth, and thefirst 40principal components of the genetic relationshipmatrix. Standard errors are robust and clustered at the family level, and in case ofORIV also at
the individual level. OLS (UKB) refers to themodel with the PGI constructed using the UKB non-sibling (i.e., excluding all siblings and their relatives) sample. OLS (23andMe) refers to themodel with
the PGI constructed using the 23andMe summary statistics. OLS (Meta-analysis) uses a PGI constructed using a meta-analysis of GWAS summary statistics of the UKB non-sibling sample and the
23andMe sample. ORIV (2-sample) refers to a 2SLS estimation using the PGIs from the UKB non-sibling sample and 23andMe as instrumental variables for each other. ORIV (Split-sample) refers to a
2SLS estimation where the summary statistics derive from a random split of the UKB sample. PGI-RC refers to the PGI repository correction, where (default) refers to the conventional application of
the method, whereas (GREML unc.) refers to the case where we incorporate the uncertainty in the estimation of the SNP-based heritability.
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The results in the bottom panel of Table 2 are obtained using
regressions that include family fixed effects. This approach only relies
on within-family variation in the PGIs and therefore uncovers direct
genetic effects51. It bears repeating that in this context the PGI-RC
cannot be applied, and so the relevant comparison here is between
regular OLS and ORIV. The standardized effect estimates are sub-
stantially smaller within-families than they are between-families. This
finding reflects an upward bias in the between-family estimates as a
result of population phenomena, most notably genetic nurture15,51,52.
More specifically, in line with the literature18,53,54, our within-family
ORIV estimates are around 45% smaller than the between-family ORIV
estimates. As in the between-family analyses, applying ORIV within-
families increases the coefficient of the PGI compared to a meta-
analysis or using standalone individual PGIs. ORIV estimates the stan-
dardized direct genetic effect to be 0.184 (using PGI from two samples
—UKB and 23andMe) and 0.170 (using split-sample UKB PGIs). This
estimatemay still be prone to attenuation bias since the PGIs are based
on a GWAS that did not consider indirect genetic effects from relatives
(see also “Methods”)55,56, but this estimate does represent a tighter
lower bound on the direct genetic effect.

Height. Table 3 and Fig. 6b present the results of the regressions with
height as the outcome variable. The standardized effect sizes for
height are considerably larger than for EA, consistent with the higher
heritability of height. For example, ameta-analysis PGI based upon the
UKB and the GIANT consortium GWAS summary statistics reaches a
standardized effect size of 0.583, which corresponds to an incremental
R-squaredof 34%. It is alsonoteworthy that for height thebetween- and
within-family results do not differ asmuch as theydo for EA. Again, this
is in linewith the literature18whichgenerallyfinds genetic nurture tobe
more important for behavioral outcomes such as EA than for anthro-
pometric outcomes like height.

Despite the differences in heritability and in the role of genetic
nurture, we reach similar conclusions for height as for EA in the
comparison of OLS (meta-analysis), ORIV, and the PGI-RC. The two-
sample ORIV estimation is 25% (between-family) and even 30% (within-
family) higher when using ORIV compared to a meta-analysis PGI. The
confidence interval for the PGI-RC incorporating uncertainty in
the GREML estimate is again larger than the confidence interval of the
ORIV estimate, yet the point estimate of the PGI-RC is significantly
higher than the one for ORIV. In the within-family analysis, ORIV deli-
vers the tightest lower bound on the direct genetic effect for height,
which is estimated to be above 0.6. With height being a typical trait to

test new quantitative genetics methodologies49, these empirical find-
ings build confidence that our conclusions from the simulations apply
more broadly.

Assortative mating. As shown in the simulations, depending on the
degree of assortative mating, the SNP-based heritability may be over-
estimated, and hence the PGI-RC could be overestimating the true
effect size more severely than ORIV. With EA being a trait that exhibits
a considerable degree of assortativemating38,39,57, it is not entirely clear
whether the estimated SNP-based heritability of 15.5% (and corre-
sponding standardized effect of ~0.4) is the correct target, or that it is
overestimating the true effect. Similarly, estimates of assortative
mating for height are in the order of 0.2358, again leaving potential for
bias in the GREML estimates that underlie the PGI-RC. For this reason,
in Supplementary Results 3, we compare the relative performance of
ORIV and the PGI-RC for a trait with a similar level of heritability but
that exhibits considerably less assortative mating: diastolic blood
pressure (DBP)59. In line with the absence of assortative mating, the
between-family andwithin-family results are highly concordant in case
of DBP. Similar to the results for EA and height, ORIV increases the
estimated coefficient by 27% compared to an OLS regression on basis
of the meta-analyzed PGI. Again similar to EA and height, the con-
fidence interval around the PGI-RC estimates is wider, but ORIV tends
to produce slightly lower point estimates than the PGI-RC. In sum, it
seems that our empirical findings are not driven by assortative mating
in EA or height.

Discussion
The increasing availability of genetic data over the last decade has
stimulated genetic discovery inGWAS studies and has led to increases
in the predictive power of polygenic indices (PGIs). Phenotypes such
as educational attainment (EA) and height are currently at a critical
turning point at which boosting the GWAS sample size further will
only increase the predictive power of the PGIs at a marginal and
diminishing rate. As a result, for the foreseeable future, regressions
involving PGIs will be subject to an attenuation bias resulting from
measurement error in the estimated GWAS coefficients. In this study,
we compared two approaches that attempt to overcome attenuation
bias in the estimated regression coefficients of a PGI: Obviously-
Related Instrumental Variables (ORIV) and the PGI Repository Cor-
rection (PGI-RC).

Extensive simulations show that in between-family analyses, the
comparison of ORIV versus the PGI-RC is subject to a bias-variance
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Fig. 6 | Empirically estimated SNP-based heritability. a Educational Attainment.
b Height. Data are presented as the estimated coefficients +/− 1.96 times the
standard error (95% confidence interval) for the Polygenic Index (PGI) using OLS
and IV regressions in terms of implied heritability estimates for a educational

attainment (EA) and b height. n = 35,282 independent individuals. The implied
heritability is computed on the basis of the square of the standardized coefficients
(see Eq. (24)), and its standard error is obtained using the Delta method. Rest as in
Table 2.
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trade-off that will differ across applications. The PGI-RC performs
especially well (in terms of Root Mean Squared Error) compared with
ORIV when there exists imperfect genetic correlation between the
discovery and prediction sample, or when the GWAS discovery sample
is relatively small. These conclusions hold evenwhen incorporating the
additional uncertainty induced by first estimating the SNP-based her-
itability. However, when a sizable discovery sample is available that has
a near-perfect genetic correlation with the prediction sample, ORIV
tends to perform better than the PGI-RC. Moreover, when there exists
considerable assortative mating on the basis of the outcome variable,
ORIV also tends to perform significantly better comparedwith the PGI-
RC. In within-family analyses, ORIV is the most convenient way of
estimating direct genetic effects. The simulations suggest that apply-
ing ORIV within-families provides consistent estimates in the absence
of genetic nurture and assortative mating, and tightens the lower
bound on the direct genetic effects in the presence of genetic nurture
and assortative mating.

We empirically tested these predictions using UK Biobank data
on educational attainment (EA) and height and largely confirm the
simulation results. Both ORIV and the PGI-RC outperform a meta-
analysis based PGI in terms of bias and RMSE. Among them, in our
application, ORIV tends to underestimate the SNP-heritability some-
what (11% versus 15% for EA, and 43% versus 53% for height), but tends
to have smaller standard errors than the PGI-RC, especially when the
PGI-RC incorporates the uncertainty in the GREML estimates of the
SNP-based heritability. On the basis of within-family analyses, in our
application, ORIV estimated the standardized direct genetic effect to
be around 0.18 for EA and 0.6 for height, respectively a 30% (EA) and
14% (height) increase compared with a meta-analysis PGI. Similar
findings for diastolic blood pressure provide reassurance that assor-
tative mating on EA and height was not driving these empirical
findings.

In sum, the application of the PGI-RC or ORIV in empirical appli-
cations requires a careful assessment of the setting in which the cor-
rection is applied. From a practical point of view, it is a particular
advantage of ORIV that it can be easily implemented in all standard
statistical software packages (see https://github.com/geighei/ORIVfor
implementations in STATA and R). Moreover, ORIV does not require
external information on the SNP-based heritability. This featuremakes
ORIV particularly attractive for within-family studies aiming to esti-
mate direct genetic effects, because SNP-based heritability estimates
do not solely capture direct genetic effects, but also incorporate
indirect genetic effects from relatives, assortative mating, and popu-
lation stratification60. Whereas Young et al.37 and Eilertsen et al.61

developed approaches for separating direct and indirect genetic
effects, both methods require genetic data from unrelated individuals
and both of their parents, samples of which are currently very rare.
Hence, ORIV is more flexible since it does not require external infor-
mation on the “true” level of disattenuation, which is hard to obtain in
within-family settings or for traits that are subject to considerable
assortative mating.

There are alternative approaches to deal with measurement
error than those analyzed in this study. Simulation-extrapolation
(SIMEX)62,63 is an approach that also exploits external information on
the SNP-based heritability, somewhat similar to the PGI-RC6, yet
relying on simulations. The advantage of ORIV over SIMEX is that it
does not require external information or simulations, and can also
be applied within-families. Notable other techniques to deal with
measurement error are the Generalized Method of Moments
(GMM64) and Structural Equation Modeling (SEM28,65). Since IV can
be seen as a special case of GMM and SEM models28,66, the differ-
ences between the approaches are typically negligible in linear
models. The distributional assumptions are somewhat stronger in
SEM compared with IV, and including family fixed effects tends to be

Table 3 | Results of the OLS and IV regressions explaining (residualized and standardized) height

OLS OLS OLS ORIV ORIV PGI-RC PGI-RC
(UKB) (GIANT) (Meta-analysis) (2-sample) (Split-sample) (default) (GREML unc.)

Between-family results

Polygenic index 0.579*** 0.450*** 0.583*** 0.652*** 0.625*** 0.728*** 0.728***

(0.005) (0.005) (0.005) (0.006) (0.006) (0.006) (0.014)

First-stage estimate 0.622*** 0.586***

(0.004) (0.004)

First-stage F-statistic 27,261 20,792

Incremental R2 33.5% 20.3% 34.0%

Family fixed effects NO NO NO NO NO NO NO

N 35,282 35,282 35,282 35,282 35,282 35,282 35,282

Within-family results

Polygenic index 0.521*** 0.415*** 0.537*** 0.614*** 0.571***

(0.007) (0.007) (0.007) (0.008) (0.009)

First-stage estimate 0.600*** 0.558***

(0.005) (0.005)

First-stage F-statistic 15,735 11,150

Incremental R2 27.1% 17.2% 28.9%

Family fixed effects YES YES YES YES YES

N 35,282 35,282 35,282 35,282 35,282

Notes: *p value < 0.10; **p value < 0.05; ***p value <0.01 of a two-sided t test (OLS, PGI-RC) or two-sided z-test (ORIV) without adjustments formultiple comparisons. In all regressions the dependent
variable is residualized height (standardized to havemean0 and standard deviation 1), where the residuals are obtainedafter a regression of height oncontrolling for sex, year of birth,month of birth,
sex interacted with year of birth, and the first 40 principal components of the genetic relationshipmatrix. Standard errors are robust and clustered at the family level, and in case of ORIV also at the
individual level. OLS (UKB) refers to themodel with the PGI constructed using theUKB non-sibling (i.e., excluding all siblings and their relatives) sample. OLS (GIANT) refers to themodel with the PGI
constructedusing theGIANT summary statistics.OLS (Meta-analysis) uses a PGI constructed using ameta-analysis of GWAS summary statistics of the UKBnon-sibling sample and theGIANT sample.
ORIV (2-sample) refers to a 2SLS estimation using the PGIs from theUKB non-sibling sample andGiant as instrumental variables for each other. ORIV (Split-sample) refers to a 2SLS estimationwhere
the summary statistics derive from a random split of the UKB sample. PGI-RC refers to the PGI repository correction, where (default) refers to the conventional application of the method, whereas
(GREML unc.) refers to the case where we incorporate the uncertainty in the estimation of the SNP-based heritability.
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cumbersome67–69. A possible advantage of SEM is however its flex-
ibility in allowing the factor loadings of the two individual PGIs to be
different. This could be especially relevant when the sample sizes
and/or genetic correlation with the prediction sample differ sub-
stantially across two GWAS discovery samples. An extensive com-
parison of ORIV versus (genomic) SEM or GMM is beyond the scope
of this paper, but we anticipate that differences will typically be
small unless the precision of the two independent PGIs differs
substantially.

Whereas we have shown that both ORIV as well as the PGI-RC
are superior to a regular meta-analysis PGI in terms of overcoming
attentuation bias, this does not mean that further collection of
additional genotyped samples is useless. In contrast, larger sample
sizes are essential in identifying specific genetic variants that affect
the phenotype of interest, allowing one to investigate the biological
mechanisms driving these effects. Further, whereas the PGI-RC
and ORIV are useful “scaling tools” to estimate the regression
coefficient of the latent “true” PGI, they do not boost the predictive
power of a PGI in out-of-sample applications. Finally, applying
measurement error corrections using ORIV or the PGI-RC are not a
substitute for within-family GWASs. The collection of family sam-
ples is the only way to explicitly control for the indirect genetic
effects from relatives that plague the interpretation of the effects of
PGIs in between-family studies. The collection of genetic data of
family samples is on the rise30, but their sample sizes are still com-
paratively small. The results of the present study suggest that the
application of ORIV could help to reduce attenuation bias in
regression coefficients for PGIs constructed using the results of
within-family GWASs.

Methods
Conceptual model
Consider a simple linear fixed effects model in which a dependent
variable Y (e.g., educational attainment) is influenced by many genetic
variants:

Y =α +
XJ
j = 1

βGWAS
j SNPj + ε ð3Þ

where J is the number of genetic variants (single-nucleotide poly-
morphisms, SNPs) included, SNPj represents the number of effect
alleles an individual possesses at locus j, and βGWAS

j is the coefficient of
SNP j. The true data generating process would also include the effects
of maternal and paternal SNPs, because only conditional on parental
genotypes the variation in SNPs is random and hence exogenous. We
discuss the use of family data briefly below, but ignore the effects of
parental genotype as well as environmental factors in the following
discussion for simplicity.

The dependent variable Y is assumed to be standardized with
mean zero and standard deviation 1 (σY = 1). The true latent polygenic
index PGI* is then defined as:

PGI* =
XJ
j = 1

βGWAS
j SNPj : ð4Þ

If we would observe the true polygenic index PGI*, then running the
OLS regression

Y =α +βPGI* + ε ð5Þ

yields

β̂=
CovðY ,PGI*Þ
VðPGI*Þ

=
Covðα + βPGI* + ε,PGI*Þ

σ2
PGI*

=β
σ2
PGI*

σ2
PGI*

= β

where β measures what happens to the outcome Y when the true
latent PGI* increases with 1 unit in the analysis sample. Since a 1 unit
increase in the PGI* is not straightforward to interpret, researchers are
typically more interested in β × σPGI* , i.e., a one standard deviation
increase in the true PGI. This estimate can be obtained by standar-
dizing the PGI:

PGI*st =
PGI* � μPGI*

σPGI*
,

where μPGI* is the mean of the true PGI, and σPGI* is the standard
deviation of the true PGI. If we now run the regression
Y =α + βst PGI

*
st + ε, then the resulting estimator is:

β̂st =
CovðY ,PGI*stÞ
VðPGI*stÞ

=Cov α +βPGI* + ε,
PGI* � μPGI*

σPGI*

 !

=β
σ2
PGI*

σPGI*
= βσPGI* � βst :

ð6Þ

Apart from an arguably easier interpretation, the standardization of
the PGI has the added advantage that there is a close connection
between the estimated coefficient and the R-squared of this univariate
regression. That is, in a univariate regression, the R-squared measures
the squared correlation between the outcome and the independent
variable, and it can be compared to the upper bound represented by
the SNP-based heritability.

Measurement error in the polygenic index
In practice, any estimated PGI is a proxy for the true latent polygenic
index PGI* because it is measured with error:

PGI = PGI* + ν, ν ∼N 0,σ2
ν

� �
wherewe assume that themeasurement error ν is classical in the sense
that it is uncorrelated to the error term in Eq. (3). If we estimate the
regression Y = α + βPGI + ε, then measurement error in the PGI
attenuates the coefficient of the PGI on Y:

β̂=
CovðY ,PGIÞ
VðPGIÞ =

Covðα + βPGI* + ε,PGI* + νÞ
VðPGI* + νÞ

=β
σ2
PGI*

σ2
PGI*

+ σ2
ν

<β: ð7Þ

If—as is common in the literature—the observed PGI is standardized to
obtain PGIst, it follows that:

PGIst =
PGI� μPGI

σPGI
=

PGIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
PGI*

+ σ2
ν

q =
PGI* + νffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
PGI*

+ σ2
ν

q : ð8Þ

The resulting standardized coefficient of PGIst on Y is given by

β̂st =
CovðY ,PGIstÞ
VðPGIstÞ

=

Cov α +βPGI* + ε, PGI* + νffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
PGI*

+ σ2
ν

p
 !

1

=β
σ2
PGI*ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2
PGI*

+ σ2
ν

q = βst
σPGI*ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
PGI*

+ σ2
ν

q <βst :

ð9Þ

Note that standardizing the observed PGI with respect to its own
standard deviation is a combination of standardizing with respect to
the standard deviation of the true PGI aswell as the standard deviation
of measurement error (see also ref. 28). Therefore, Eq. (9) shows that
the estimate should be interpreted as the effect of a 1 standard
deviation increase in the observed PGI (and not the true latent PGI).
Hence, this estimate does not just underestimate the true β coefficient

Article https://doi.org/10.1038/s41467-023-40069-4

Nature Communications |         (2023) 14:4473 11



due to measurement error but should also be interpreted on a differ-
ent scale than the effect of the true PGI6,28,70.

Equation (9) can be rewritten as:

σ2
PGI*

σ2
PGI*

+ σ2
ν

=
β̂
2

st

β2
st

=
R2

h2
SNP

ð10Þ

where we have used that the square of the standardized coefficient
provides an estimate of the heritability. Hence, Eq. (10) shows that the
bias in OLS is determined by the ratio of the estimated R-squared over
the SNP-based heritability.

PGI repository correction (PGI-RC)
Becker et al.6 exploit their equivalent of Eq. (10) to directly derive an
estimator that corrects for measurement error. The authors invert
Eq. (10) and take the square root to obtain a disattenuation factor:

ffiffiffiffiffiffi
β2
st

β̂
2

st

vuut =

ffiffiffiffiffiffiffiffiffiffi
h2
SNP

R2

s
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
PGI*

+ σ2
ν

q
σPGI*

: ð11Þ

In turn, they suggest—in the univariate case—to multiply the estimated
coefficient β̂st of the standardized PGI by the disattenuation factor to
obtain effects of the true PGI (they call this the “the additive SNP
factor”) free from measurement error:

β̂st

ffiffiffiffiffiffiffiffiffiffi
h2
SNP

R2

s
=βst

σPGI*ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
PGI*

+ σ2
ν

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
PGI*

+ σ2
ν

q
σPGI*

=βst :

ð12Þ

This procedure conveniently ensures that the estimated effect of the
PGI is equal to the estimated SNP-based heritability, which the
developers suggest to obtain using GREML. Hence, the bias of
the product estimator in Eq. (12) is zero if the GREML assumptions
are met and the researcher can compute the SNP-based heritability in
the same sample as where the analysis is conducted.

The standard error of the PGI-RC estimator is discussed in the
Supplementary Information of Becker et al.6. When treating the factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2
SNP=R

2
q

as a fixed non-stochastic scaling term, the variance can be

derived as:

V β̂st

ffiffiffiffiffiffiffiffiffiffi
h2
SNP

R2

s0
@

1
A=

ffiffiffiffiffiffiffiffiffiffi
h2
SNP

R2

s
Var β̂st

� � ffiffiffiffiffiffiffiffiffiffi
h2
SNP

R2

s

=
h2
SNP

R2 V β̂st

� � ð13Þ

and the resulting standard error is then simply given by

s:e: β̂st

ffiffiffiffiffiffiffiffiffiffi
h2
SNP

R2

s0
@

1
A=

ffiffiffiffiffiffiffiffiffiffi
h2
SNP

R2

s
s:e: β̂st

� �
ð14Þ

That is, both the coefficient as well as the standard error of the original
standardized coefficient are simply scaled by the same factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2
SNP=R

2
q

. This standard error is treated as the default and also

implemented in the accompanying software.

However, as acknowledged in the Supplementary Information
(Section 5, pages 14 and 15) of Becker et al.6, in practice the scaling
factor is not a fixed immutable statistic, but rather a stochastic factor
that is estimated in a first step. Hence, the true standard error of the

PGI-RC equals the standard error of the square root of the SNP-based
heritability obtained through GREML. Using the Delta method, this
leads to a standard error

s:e: β̂st

ffiffiffiffiffiffiffiffiffiffi
ĥ
2

SNP

R̂
2

vuut
0
B@

1
CA= s:e: ĥSNP

� �
=

s:e: ĥ
2

SNP

� �
2ĥSNP

ð15Þ

In our simulations as well as empirical applications, we report both
standard errors (Eqs. (14) and (15)) to allow for an accurate comparison
across methods. In rare cases, in a very small prediction sample, the
estimated SNP heritability in our simulations is estimated to be very
small. This results in a huge standard error as can be seen in Eq. (15). To
avoid that these rare cases have a large influence on our mean com-
parisons, we ignore runs that produce a SNP-based heritability lower
than 0.01.

Instrumental variables
An alternative way of addressing measurement error is instrumental
variables (IV regression). It has long been recognized in the econo-
metrics literature71,72 that when at least two independent measures of
the same construct (independent variable) are available, it is possible
to retrieve a consistent effect of this construct on an outcome through
IV estimation.

In terms of formulas, if we have two measures for the true PGI*,
PGI1 = PGI* + ν1 and PGI2 = PGI* + ν2, with Cov(ν1, ν2) = 0 and
σ2
ν1

σ2
PGI1

=
σ2
ν2

σ2
PGI2

= σ2
ν

σ2
PGI
. Then:

CovðPGI1,PGI2Þ=CovðPGI* + ν1,PGI* + ν2Þ =CovðPGI*,PGI*Þ= σ2
PGI*

; ð16Þ

CorrðPGI1,PGI2Þ=
CovðPGI1,PGI2Þ

σPGI1
σPGI2

=
σ2
PGI*

σ2
PGI*

+ σ2
ν

: ð17Þ

Hence, the correlation between the two PGIs can be used to correct for
the attenuation bias that plagues the interpretation of the OLS esti-
mates inEq. (7).More formally, ifweusePGI2 as an instrumental variable
(IV) for PGI1, then the IV estimator is the ratio of the reduced form
(regression of Y on PGI2) and the first stage (regression on PGI1 on PGI2):

β̂
IV
=

Cov Y ,PGI2ð Þ
V PGI2ð Þ

Cov PGI1,PGI2ð Þ
V PGI2ð Þ

=
Cov α +βPGI* + ε,PGI* + ν2

� �
Cov PGI* + ν1,PGI

* + ν2
� � ð18Þ

= β
σ2
PGI*

σ2
PGI*

=β: ð19Þ

As a consequence, IV regression is able to estimate the unstandardized
coefficient of the true latent PGI in a consistent way. But since
unstandardized coefficients are hard to interpret, one is typicallymore
interested in the standardized coefficient. In this case, the IV estimator
is given by:

β̂
IV

st =

Cov Y ,PGI2,stð Þ
VðPGI2,st Þ

Cov PGI1,st ,PGI2,stð Þ
VðPGI2,st Þ

=

Cov α +βPGI* + ε, PGI* + ν2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
PGI*

+ σ2
ν

p
 !

Cov PGI* + ν1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
PGI*

+ σ2
ν

p , PGI* + ν2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
PGI*

+ σ2
ν

p
 !

=β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
PGI*

+ σ2
ν

q
≥ βσPGI* :

ð20Þ

Importantly, the standardized IV estimator is not equal to the effect of
a one standard deviation increase in the true PGI since the PGI is
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standardized with respect to the standard deviation of the observed
instead of the true latent PGI. As a result, IV overestimates the true
standardized coefficient. However, a way to retrieve the effect of a
1 standard deviation increase in the true latent PGI would be to scale
the standardized IV coefficient:

σPGI*ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
PGI*

+ σ2
ν

q β̂
IV

st =βσPGI* : ð21Þ

Although the scaling factor is unobserved, an estimate is given by the
square root of the correlation between the two PGIs (see Eq. (17)).
Alternatively, one could also divide the observed standardized poly-
genic indices PGI1,st and PGI2,st by the same scaling factor:

PGI1, + =
PGI1,st
σPGI*ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
PGI*

+ σ2
ν

p =

PGI* + ν1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
PGI*

+ σ2
ν

p
σPGI*ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
PGI*

+ σ2
ν

p =
PGI* + ν1
σPGI*

; ð22Þ

PGI2, + =
PGI2,st
σPGI*ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
PGI*

+ σ2
ν

p =

PGI* + ν2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
PGI*

+ σ2
ν

p
σPGI*ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
PGI*

+ σ2
ν

p =
PGI* + ν2
σPGI*

: ð23Þ

If we then base the IV estimator upon these scaled polygenic indices
PGI1,+ and PGI2,+, then the resulting estimator is given by

β̂
IV

+ =

Cov Y ,PGI2, +ð Þ
VðPGI2, + Þ

Cov PGI1, + ,PGI2, +ð Þ
VðPGI2, + Þ

=
Cov α +βPGI* + ε, PGI

* + ν2
σPGI*

� �
Cov PGI* + ν1

σPGI*
, PGI

* + ν2
σPGI*

� � =β

σ2
PGI*

σPGI*

σ2
PGI*

σ2
PGI*

=βσPGI* � βst :

ð24Þ

In sum, an IV estimate of the true standardized effect size can be
obtained by (i) dividing the two independent standardized PGIs by the
square root of their correlation, and (ii) using these scaled PGIs as
instrumental variables for eachother. This newly derived scaling factor
avoids having to rescale regression estimates ex post to retrieve the
estimated heritability as is done for example in ref. 29. In Supple-
mentary Results 3, we show that our ORIV estimates are not biased
when applying the between-family correlation between PGIs in the
within-family analyses.

Since environments differ, the best linear genetic predictor (i.e.,
the true latent PGI) may however differ across samples. This would
imply that the genetic correlation between the two samples would be
lower than 1 for a particular outcome variable. This can be tested, for
examplewith LDSC73. LDSC can also be used to estimate the cross-trait
LDSC intercept. With a trend towards ever-larger GWASmeta-analyses
and reuse of genetic data, it is important to verify that GWAS summary
statistics used to create the two independent PGIs are not computed
frompartially overlapping samples (or from sets of individuals that are
related to each other). Using two PGIs based on such related GWAS
summary statistics would be in violation of the ORIV assumptions. The
cross-trait LDSC intercept can be used to test for sample overlap,
although the precise threshold depends on the GWAS samples sizes
and the heritability of the trait74. In our study, the LDSC cross-trait
intercepts do not cross the critical threshold. Moreover, in the UKB
split-sample analyses, the GWAS samples do not contain related indi-
viduals (see Supplementary Methods 2).

Bias in IV. Instrumental Variable regression provides consistent esti-
mates, yet it is biased in small samples with the bias in IV regression
inversely related to the first-stage F-statistic with a factor roughly
equal to 1/F42,43. The F-statistic in a univariate regression is equal to the
square of the t-statistic of the first-stage coefficient τ̂. Therefore, in

this context:

F = t2 =
τ̂

s:e: τ̂
� �

" #2

=
τ̂2ffiffiffiffiffiffiffiffi
1�τ̂2

pffiffiffiffiffiffiffi
N�2

p
	 
2

=
τ̂2ðN � 2Þ
1� τ̂2

=
CorrðPGI1,PGI2Þ2ðN � 2Þ
1� CorrðPGI1,PGI2Þ2

:

ð25Þ

Where τ̂ is the first-stage coefficient, andwe have used the fact that the
PGIs are standardized such that the coefficient τ̂ represents the
correlation between the two PGIs. Hence, the performance of (OR)IV
depends on the correlation between the two PGIs. This correlation is a
function of the measurement error of the independent PGIs (see
Eq. (17)). Equation (25) also implies that, like OLS, the performance of
(OR)IV is (largely) independent of the absolute values of β and σ2

PGI*
.

Unlike OLS, the bias of (OR)IV decreases with the prediction sample
size N.

Obviously-related instrumental variables
Themost efficient implementation of the proposed IV estimator is the
recently proposed technique “Obviously-Related Instrumental Vari-
ables” (ORIV) by ref. 31. The idea is to use a “stacked” model

Y

Y

� �
=

α1

α2

� �
+ β

PGI1, +
PGI2, +

� �
+ ε, ð26Þ

where one instruments the stack of estimated PGIs
PGI1, +
PGI2, +

� �
with the

matrix

PGI2, + 0N

0N PGI1, +

� �
ð27Þ

in which N is the number of individuals and ON an N × 1 vector with
zero’s. The implementation of ORIV is straightforward: simply create a
stacked dataset and run a Two-Stage Least Squares (2SLS) regression
while clustering the standard errors at the individual level. In other
words, replicate the dataset creating two values for each individual,
and then generate two variables (i.e., an independent variable and an
instrumental variable) that alternatively take the value of PGI1,+ and
PGI2,+. The resulting estimate is the average of the estimates that one
would get by instrumenting PGI1,+ by PGI2,+, and vice versa. This
procedure makes most efficient use of the information in the two
independent PGIs and avoids having to arbitrarily select one PGI as IV
for the other. Family fixed effects can also be included in themodel, in
which case one should include a family-stack fixed effect in order to
conduct only within-family comparisons within a stack of the data.
Standard errors should then be clustered at both the family as well as
the individual level. Supplementary Results 3 illustrates the benefits of
applying ORIV over regular IV in terms of point estimates, and a slight
improvement in precision. Example syntax in STATA and R is available
on our Github webpage https://github.com/geighei/ORIV.

Within-family analysis
So far,we have ignored the potential influence of parental genotypeon
the individual’s outcome. Controlling for parental genotype is impor-
tant since the genotype of the child is only truly randomconditional on
parental genotype. In other words, the only relevant omitted variables
in a regression of anoutcomeon the child’s genotype are the genotype
of the father and the mother. Leaving parental genotype out is not

Article https://doi.org/10.1038/s41467-023-40069-4

Nature Communications |         (2023) 14:4473 13

https://github.com/geighei/ORIV


innocuous. As evidenced by several studies showing the difference
between between-family and within-family analyses18, the role of par-
ental genotype can be profound. Another way of showing this is by
studying the effect of non-transmitted alleles of parents on their chil-
dren’s outcomes53, to estimate so-called genetic nurture. The true data
generating process (DGP) may therefore be:

Y =α +
XJ
j = 1

βGWAS
j SNPj +

XJ
j = 1

βF ,GWAS
j SNPF

j +
XJ
j = 1

βM,GWAS
j SNPM

j + ε, ð28Þ

where the superscripts F and M denote father and mother, respec-
tively. When the true DGP is governed by Eq. (28), βGWAS

j will be esti-
mated with bias in case Eq. (3) is used in a GWAS. A simple solution
would be to control for parental genotype or family fixed effects in the
GWAS phase. However, with the recent exception of30, GWAS dis-
covery samples with sufficient parent-child trios or siblings are
typically not available. Hence, a researcher often has no option but
to work with the “standard GWAS” coefficients that are obtained with
Eq. (3) and that produce a biased PGI. Given this empirical reality, it is
also the approach we adopt in our simulations.

In a between-family design, the bias in the coefficient of the
resulting PGI tends to be upward, as the coefficients of the individuals
and his/her parents are typically of the same sign55. However, inter-
estingly, when the conventional PGI is used in a within-family design,
the bias is downward. The intuition is that when a conventional GWAS
(i.e., a GWAS that does not control for parental genotype) is used in its
construction, a PGI reflects direct genetic effects as well as indirect
genetic effects (e.g., genetic nurture) arising from parental genotype.
When applying these PGIs within-families, some of the differences in
the PGI across siblings therefore spuriously reflect the effects of par-
ental genotype, whereas in fact their parental genotype is identical.
Hence, genetic nurture can be seen as measurement error in the PGI
when applied inwithin-family analyses, leading to anattenuationbias55.

A final source of downward bias could stem from indirect genetic
effects, sometimes referred to as social genetic effects56,75, e.g., arising
fromsiblings. For example, consider a casewith two siblingswhere there
is a direct effect γj of one’s sibling’s SNP on the outcome of the other:

Y 1j =αj +
XJ
j = 1

βjSNP1j +
XJ
j = 1

γjSNP2j + ε1j

Y 2j =αj +
XJ
j = 1

βjSNP2j +
XJ
j = 1

γjSNP1j + ε2j :

When taking sibling differences to eliminate the family fixed effects,
we obtain:

Y 1j � Y 2j =
XJ
j = 1

βj � γj
� �

SNP1j � SNP2j

� �
+ ε1j � ε2j
� �

:

Since sibling effects are again likely to have the same sign as the direct
effect, sibling effects cause a downward bias in the estimated effect of
one’s ownSNP, asmeasuredbyβj. Again, theonlyway toovercome this
source of bias is to include the parental genotype in the GWAS, since
conditional on the parental genotype, the genotypes of siblings are
independent.

In sum, within-family analyses are the gold standard to estimate
direct genetic effects, free from bias arising from the omission of
parental genotype. However, when using a family fixed effects strategy
on the basis of a PGI from a conventional GWAS that did not include
parental genotype, the direct genetic effect is biased downward as a
result ofmeasurement error, genetic nurture effects and social genetic
effects76. Therefore, this approach provides a lower bound estimate on
the direct genetic effects.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This research has been conducted using the UK Biobank resource
(Application number 41382). UK Biobank data can be applied for
through https://www.ukbiobank.ac.uk/enable-your-research/apply-
for-access. The polygenic indices were constructed using the UK Bio-
bank, the GIANT summary statistics available at https://portals.
broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_
data_files, and the 23andMe summary statistics. The 23andMe sum-
mary statistics are only available to qualified researchers under an
agreement with 23andMe that protects the privacy of the 23andMe
research participants. For more information, visit https://research.
23andme.com/collaborate/#dataset-access/. All results supporting the
findings described in this manuscript are available in the article and its
Supplementary Information files and from the corresponding author
upon request.

Code availability
All syntax and details on the simulation analyses are available on
https://github.com/devlaming/gnames. All syntax for the empirical
analyses can be found on https://github.com/geighei/ORIV.

References
1. Visscher, P. M. et al. 10 years of GWAS discovery: biology, function,

and translation. Am. J. Hum. Genet. 101, 5–22 (2017).
2. Chabris, C. F., Lee, J. J., Cesarini, D., Benjamin, D. J. & Laibson, D. I.

The fourth law of behavior genetics. Curr. Dir. Psychol. Sci. 24,
304–312 (2015).

3. Janssens, A. C. J. W. et al. Predictive testing for complex diseases
using multiple genes: fact or fiction? Genet. Med. 8,
395–400 (2006).

4. Dudbridge, F. Polygenic epidemiology. Gen. Epidemiol. 40,
268–272 (2016).

5. Harden, K. P. Reports of my death were greatly exaggerated:
behavior genetics in the postgenomic era. Annu. Rev. Psychol. 72,
37–60 (2021).

6. Becker, J. et al. Resource profile and user guide of the Polygenic
Index Repository. Nat. Hum. Behav. 5, 1744–1758 (2021).

7. Daetwyler, H. D., Villanueva, B. & Woolliams, J. A. Accuracy of
predicting the genetic risk of disease using a genome-wide
approach. PLoS ONE 3, e3395 (2008).

8. Dudbridge, F. Power and predictive accuracy of polygenic risk
scores. PLoS Genet. 9, e1003348 (2013).

9. Visscher, P. M., Hill, W. G. &Wray, N. R. Heritability in the genomics
era: concepts and misconceptions. Nat. Rev. Genet. 9,
255–266 (2008).

10. Okbay, A. et al. Polygenic prediction of educational attainment
within and between families from genome-wide association ana-
lyses in 3 million individuals. Nat. Genet. 54, 437–449 (2022).

11. Davies, G. et al. Genome-wide association study of cognitive func-
tions and educational attainment in UK Biobank (N=112,151). Mol.
Psychiatry 21, 758–767 (2016).

12. Okbay, A. et al. Genome-wide association study identifies 74 loci
associated with educational attainment. Nature 533,
539–542 (2016).

13. Tropf, F. C. et al. Hidden heritability due to heterogeneity across
seven populations. Nat. Hum. Behav. 1, 757–765 (2017).

14. Wray, N. R. et al. Pitfalls of predicting complex traits fromSNPs.Nat.
Rev. Genet. 14, 507–515 (2013).

15. Cesarini, D. & Visscher, P. M. Genetics and educational attainment.
NPJ Sci. Learn. 2, 1–7 (2017).

Article https://doi.org/10.1038/s41467-023-40069-4

Nature Communications |         (2023) 14:4473 14

https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access
https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access
https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
https://research.23andme.com/collaborate/#dataset-access/
https://research.23andme.com/collaborate/#dataset-access/
https://github.com/devlaming/gnames
https://github.com/geighei/ORIV


16. Belsky, D. W. & Harden, K. P. Phenotypic annotation: using poly-
genic scores to translate discoveries from genome-wide associa-
tion studies from the top down. Curr. Dir. Psychol. Sci. 28,
82–90 (2019).

17. Barth, D., Papageorge, N. W. & Thom, K. Genetic endowments and
wealth inequality. J. Political Econ. 128, 1474–1522 (2020).

18. Selzam, S. et al. Comparing within-and between-family polygenic
score prediction. Am. J. Hum. Genet. 105, 351–363 (2019).

19. Barcellos, S. H., Carvalho, L. S. & Turley, P. Education can reduce
health differences related togenetic risk of obesity. Proc. Natl Acad.
Sci. USA 115, E9765–E9772 (2018).

20. Muslimova, D., van Kippersluis, H., Rietveld, C. A., von Hinke, S. &
Meddens, S. F. W. Dynamic complementarity in skill production:
evidence from genetic endowments and birth order. Preprint at
arXiv https://doi.org/10.48550/arXiv.2012.05021 (2020).

21. Isungset, M. A. et al. Social and genetic associations with educa-
tional performance in a scandinavian welfare state. Proc. Natl Acad.
Sci. USA 119, e2201869119 (2022).

22. Sanz-de-Galdeano, A. & Terskaya, A. Sibling Differences in Educa-
tional Polygenic Scores: How do Parents React? IZA Discussion
Papers, No. 12375 (Institute of Labor Economics (IZA), 2019).

23. Rustichini, A., Iacono, W., Lee, J. & McGue, M. Educational attain-
ment and intergenerational mobility: a polygenic score analysis. J.
Political Econ. https://doi.org/10.1086/724860 (2023).

24. Smith-Woolley, E. et al. Differences in exam performance between
pupils attending selective and non-selective schools mirror the
genetic differences between them. NPJ Sci. Learn. 3, 1–7 (2018).

25. Privé, F., Arbel, J. & Vilhjálmsson, B. J. LDpred2: better, faster,
stronger. Bioinformatics 36, 5424–5431 (2020).

26. Zhang, Q. et al. Risk prediction of late-onset Alzheimer’s disease
implies an oligogenic architecture. Nat. Commun. 11, 1–11 (2020).

27. Márquez-Luna, C. et al. Incorporating functional priors improves
polygenic prediction accuracy in UK Biobank and 23andMe data
sets. Nat. Commun. 12, 1–11 (2021).

28. Tucker-Drob, E. M. Measurement error correction of genome-wide
polygenic scores in prediction samples. Preprint at bioRxiv https://
doi.org/10.1101/165472 (2017).

29. DiPrete, T. A., Burik, C. A. P. & Koellinger, P. D. Genetic instrumental
variable regression: explaining socioeconomic and health out-
comes in nonexperimental data. Proc. Natl Acad. Sci. USA 115,
E4970–E4979 (2018).

30. Howe, L. J. et al. Within-sibship genome-wide association analyses
decrease bias in estimates of direct genetic effects.Nat. Genet. 54,
581–592 (2022).

31. Gillen, B., Snowberg, E. & Yariv, L. Experimenting with measure-
ment error: techniques with applications to the Caltech cohort
study. J. Political Econ. 127, 1826–1863 (2019).

32. Bycroft, C. et al. The UK Biobank resource with deep phenotyping
and genomic data. Nature 562, 203–209 (2018).

33. Belsky, D. W. et al. Genetic analysis of social-class mobility in five
longitudinal studies. Proc. Natl Acad. Sci. USA 115, E7275–E7284
(2018).

34. De Vlaming, R. et al. Meta-GWAS Accuracy and Power (MetaGAP)
calculator shows that hiding heritability is partially due to imperfect
genetic correlations across studies. PLoS Genet. 13, e1006495
(2017).

35. Rietveld, C. A. et al. GWAS of 126,559 individuals identifies genetic
variants associated with educational attainment. Science 340,
1467–1471 (2013).

36. Lee, J. J. et al. Gene discovery and polygenic prediction from a
1.1-million-person GWAS of educational attainment.Nat. Genet. 50,
1112–1121 (2018).

37. Young, A. I. et al. Relatedness disequilibrium regression estimates
heritability without environmental bias. Nat. Genet. 50,
1304–1310 (2018).

38. Domingue, B. W., Fletcher, J., Conley, D. & Boardman, J. D. Genetic
and educational assortative mating among US adults. Proc. Natl
Acad. Sci. USA 111, 7996–8000 (2014).

39. Eika, L., Mogstad, M. & Zafar, B. Educational assortative mating and
household income inequality. J. Political Econ. 127,
2795–2835 (2019).

40. Boertien, D. & Permanyer, I. Educational assortative mating as a
determinant of changing household income inequality: a 21-
country study. Eur. Sociol. Rev. 35, 522–537 (2019).

41. De Vlaming, R. et al. Multivariate analysis reveals shared genetic
architecture of brain morphology and human behavior. Commun.
Biol. 4, 1–9 (2021).

42. Bound, J., Jaeger, D. A. & Baker, R. M. Problems with instrumental
variables estimation when the correlation between the instruments
and the endogenous explanatory variable is weak. J. Am. Stat.
Assoc. 90, 443–450 (1995).

43. Angrist, J. D. & Pischke, J.-S. Mostly Harmless Econometrics: An
Empiricist’s Companion (Princeton University Press, 2008).

44. Keller, M. et al. Effects of assortative mating on estimates of snp
heritability. Eur. Neuropsychopharmacol. 29, S788–S789 (2019).

45. Border, R. et al. Assortative mating biases marker-based heritability
estimators. Nat. Commun. 13, 660 (2022).

46. Wood, A. R. et al. Defining the role of common variation in the
genomic and biological architecture of adult human height. Nat.
Genet. 46, 1173–1186 (2014).

47. Vilhjalmsson, B. J. et al. Modeling linkage disequilibrium increases
accuracy of polygenic risk scores. Am. J. Hum. Genet. 97,
576–592 (2015).

48. Jiang, L. et al. A resource-efficient tool for mixedmodel association
analysis of large-scale data. Nat. Genet. 51, 1749–1755 (2019).

49. Yang, J. et al. Common SNPs explain a large proportion of the
heritability for human height. Nat. Genet. 42, 565–9 (2010).

50. Pesaran,M. H. & Smith, R. J. A generalizedR2 criterion for regression
models estimated by the instrumental variables method. Econo-
metrica 62, 705–710 (1994).

51. Morris, T. T., Davies, N. M., Hemani, G. & Smith, G. D. Population
phenomena inflate genetic associations of complex social traits.
Sci. Adv. 6, eaay0328 (2020).

52. Koellinger, P. D. & Harden, K. P. Using nature to understand nurture.
Science 359, 386–387 (2018).

53. Kong, A. et al. The nature of nurture: effects of parental genotypes.
Science 359, 424–428 (2018).

54. Wertz, J. et al. Using DNA from mothers and children to study par-
ental investment in children’s educational attainment. Child Dev.
91, 1745–1761 (2020).

55. Trejo, S. et al. Schools as moderators of genetic associations with
life course attainments: evidence from the WLS and Add Health.
Sociol. Sci. 5, 513–540 (2018).

56. Young, A. I. et al. Mendelian imputation of parental genotypes
improves estimation of direct genetic effects. Nat. Gen. 54,
897–905 (2022).

57. Schwartz, C. R. & Mare, R. D. Trends in educational assortative
marriage from 1940 to 2003. Demography 42, 621–646 (2005).

58. Stulp, G., Simons, M. J., Grasman, S. & Pollet, T. V. Assortative
mating for human height: a meta-analysis. Am. J. Hum. Biol. 29,
e22917 (2017).

59. Robinson, M. R. et al. Genetic evidence of assortative mating in
humans. Nat. Hum. Behav. 1, 0016 (2017).

60. Young, A. I. Solving the missing heritability problem. PLoS Genet.
15, e1008222 (2019).

61. Eilertsen, E. M. et al. Direct and indirect effects of maternal, pater-
nal, and offspring genotypes: Trio-GCTA. Behav. Genet. 51,
154–161 (2021).

62. Stefanski, L. A. & Cook, J. R. Simulation-extrapolation: the mea-
surement error jackknife. J. Am. Stat. Assoc. 90, 1247–1256 (1995).

Article https://doi.org/10.1038/s41467-023-40069-4

Nature Communications |         (2023) 14:4473 15

https://doi.org/10.48550/arXiv.2012.05021
https://doi.org/10.1086/724860
https://doi.org/10.1101/165472
https://doi.org/10.1101/165472


63. Conley, D., Laidley, T. M., Boardman, J. D. & Domingue, B. W.
Changing polygenic penetrance on phenotypes in the 20 th cen-
tury among adults in the us population. Sci. Rep. 6, 30348 (2016).

64. Kimball, M. S., Sahm, C. R. & Shapiro, M. D. Imputing risk tolerance
from survey responses. J. Am. Stat. Assoc. 103, 1028–1038 (2008).

65. Grotzinger, A. D. et al. Genomic structural equation modelling
provides insights into the multivariate genetic architecture of
complex traits. Nat. Hum. Behav. 3, 513–525 (2019).

66. Baum,C. F., Schaffer,M. E. & Stillman, S. Instrumental variables and
gmm: estimation and testing. Stata J. 3, 1–31 (2003).

67. Teachman, J., Duncan, G. J., Yeung, W. J. & Levy, D. Covariance
structuremodels forfixedand randomeffects.Sociol.MethodsRes.
30, 271–288 (2001).

68. Bollen, K. A. & Brand, J. E. A general panel model with random and
fixed effects: a structural equations approach. Soc. Forces 89,
1–34 (2010).

69. Warrington, N. M., Hwang, L.-D., Nivard, M. G. & Evans, D. M. Esti-
mating direct and indirect genetic effects on offspring phenotypes
using genome-wide summary results data. Nat. Commun. 12,
1–12 (2021).

70. Beauchamp, J. P., Cesarini, D. & Johannesson, M. The psychometric
and empirical properties of measures of risk preferences. J. Risk
Uncertainty 54, 203–237 (2017).

71. Sargan, J. D. The estimation of economic relationships using
instrumental variables. Econometrica 26, 393-415 (1958).

72. Hausman, J. Mismeasured variables in econometric analysis: pro-
blems from the right and problems from the left. J. Econ. Perspect.
15, 57–67 (2001).

73. Bulik-Sullivan, B. K. et al. An atlas of genetic correlations across
human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

74. Yengo, L., Yang, J. & Visscher, P. M. Expectation of the intercept
from bivariate ld score regression in the presence of population
stratification. Preprint at bioRxiv https://doi.org/10.1101/
310565 (2018).

75. Domingue, B. W. et al. The social genome of friends and school-
mates in the national longitudinal study of adolescent to adult
health. Proc. Natl Acad. Sci. USA 115, 702–707 (2018).

76. Biroli, P. et al. The economics and econometrics of gene-
environment interplay. Preprint at arXiv https://doi.org/10.48550/
arXiv.2203.00729 (2022).

Acknowledgements
The authors gratefully acknowledge participants of the 23andMe, Inc.
cohort for sharing GWAS summary statistics for educational attainment.
This work made use of the Dutch national e-infrastructure with the
support of the SURFCooperative using grant no. EINF-2327. The authors
also acknowledge funding from NORFACE through the Dynamic of
Inequality across the Life Course (DIAL) program (462-16-100; H.v.K.,
P.B., S.v.H., C.A.R., S.F.W.M., D.M., R.D.P.), from the European Research
Council (DONNI 851725 to S.v.H. and GEPSI 946647 to C.A.R.), from the
National Institute on Aging of the National Institutes of Health
(RF1055654, R56AG058726 to T.J.G.,H.v.K. andR01AG078522 to T.J.G.),
and from theDutchResearchCouncil (016.VIDI.185.044 to T.J.G.).H.v.K.,
P.B., T.J.G., S.v.H., and C.A.R. also acknowledge the European Union’s

Horizon 2021 research and innovation program under the Marie
Skłodowska-Curie grant agreement (ESSGN 101073237). This research
was supported by the National Institute for Health Research (NIHR
Cambridge BRC-1215-20014 for E.A.W.S.). The views expressed are
those of the authors and not necessarily those of the National Institutes
of Health, NIHR, or the Department of Health and Social Care. Wewould
like to thank Sjoerd van Alten, Dan Belsky, Neil Davies, Ben Domingue,
Michel Nivard, and Elliot Tucker-Drob for valuable comments.

Author contributions
H.v.K. and C.A.R. conceived and designed the analysis. R.D.P., S.F.W.M.,
and D.M. contributed data or analysis tools; H.v.K., E.A.W.S., R.d.V., and
C.A.R. performed the simulations and analyzed the results; H.v.K. and
C.A.R. performed the empirical analysis; H.v.K., P.B., R.D.P., T.J.G., S.v.H.,
S.F.W.M., D.M., E.A.W.S., R.d.V., and C.A.R. contributed to writing
the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-40069-4.

Correspondence and requests for materials should be addressed to
Hans van Kippersluis.

Peer review information Nature Communications thanks Alexander
Young and the other, anonymous, reviewer(s) for their contribution to
the peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-40069-4

Nature Communications |         (2023) 14:4473 16

https://doi.org/10.1101/310565
https://doi.org/10.1101/310565
https://doi.org/10.48550/arXiv.2203.00729
https://doi.org/10.48550/arXiv.2203.00729
https://doi.org/10.1038/s41467-023-40069-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Overcoming attenuation bias in regressions using polygenic indices
	Results
	Simulation study
	Variation in prediction sample size
	Variation in GWAS sample size
	Variation in both prediction and GWAS sample size
	Genetic nurture
	Assortative mating
	Genetic nurture and assortative mating
	Imperfect genetic correlation
	Summary
	Empirical illustration
	SNP-based heritability
	Educational attainment (EA)
	Height
	Assortative mating

	Discussion
	Methods
	Conceptual model
	Measurement error in the polygenic index
	PGI repository correction (PGI-RC)
	Instrumental variables
	Bias in IV
	Obviously-related instrumental variables
	Within-family analysis
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




