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Enhanced entanglement negativity in boundary-driven monitored fermionic chains
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We investigate entanglement dynamics in continuously monitored open quantum systems featuring current-
carrying nonequilibrium states. We focus on a prototypical one-dimensional model of boundary-driven
noninteracting fermions with monitoring of the local density, whose average Lindblad dynamics features a
well-studied ballistic to diffusive crossover in transport. Here we analyze the dynamics of the fermionic
negativity, mutual information, and purity along different quantum trajectories. We show that monitoring this
boundary-driven system enhances its entanglement negativity at long times, which otherwise decays to zero in
the absence of measurements. This result is in contrast with the case of unitary evolution where monitoring
suppresses entanglement production. For small values of γ , the stationary-state negativity shows a logarithmic
scaling with system size, transitioning to an area-law scaling as γ is increased beyond a critical value. Similar
critical behavior is found in the mutual information, while the late-time purity shows no apparent signature of a
transition, being O(1) for all values of γ . Our work unveils the double role of weak monitoring in current-driven
open quantum systems, simultaneously damping transport and enhancing entanglement.

DOI: 10.1103/PhysRevB.106.024304

I. INTRODUCTION

Understanding entanglement dynamics in many-body sys-
tems is a fundamental challenge that bridges condensed matter
to quantum information theory and helps us to characterize the
wide spectrum of possible dynamical phases of matter. While
generic isolated systems with local interactions exhibit univer-
sal features of entanglement growth [1,2], different scenarios
for entanglement behavior arise in the presence of ergodic-
ity breaking, for instance due to many-body localization [3],
kinetic constraints [4–7], long-range interactions [8–13], or
integrability [14–20].

Entanglement is commonly believed to be destroyed by
bulk coupling to a noisy environment [21]. This is usually
the case for open-system dynamics which are described by
a Lindbladian master equation and in which the environment
is dealt with as a black box. A different behavior emerges by
considering an open-system dynamics induced by monitoring
the system [22,23]: in this setting, the environment is given by
the measurement apparatus, which allows us to gain informa-
tion on its state. The renewed interest in this type of dynamics
has been largely motivated by the progress in quantum optics
experiments, allowing us to manipulate and probe quantum
systems to an unprecedented degree of control [24–28].

The possibility of monitoring the many-body dynamics
has already proven its potential to realize new nonequi-
librium phases, as explicitly shown in the simplest case
where local unitary evolution is interspersed by local mea-
surements [29–36]. In this setting, extensive theoretical
research [37–62] has provided strong evidence that generic
systems described by random unitary circuits undergo a
new type of measurement induced phase transition (MIPT),
characterized by a change in the scaling of the subsystems

entanglement entropy, from volume law to area law. On the
other hand, certain classes of noninteracting systems under
different types of monitoring protocols have been shown to
display MIPT between a phase with subextensive entangle-
ment growth and an area law [63–69].

In this work, we put forward a different setting where mon-
itoring might be expected to give rise to novel nonequilibrium
entanglement behavior. Namely, we focus on current-driven
open many-body quantum systems featuring nonthermal
nonequilibrium stationary states (NESS). For concreteness,
we consider the case of a system with a local U(1) charge,
coupled at its ends to two reservoirs at different chemical
potentials—a prototypical framework to investigate quantum
transport [70,71]. Accordingly, the dynamics under study is
characterized by three ingredients: unitary evolution, bound-
ary driving, and monitoring of the U(1) charge.

Current-driven setups are known to give rise to a nontrivial
interplay between transport and entanglement. For instance,
current-carrying states of noninteracting diffusive fermions
can sustain extensive entanglement [72,73], in stark con-
trast to the universal area-law scaling characterizing thermal
phases [74,75]. In the presence of monitoring, one may ask
how trajectory-resolved features of entanglement depend on
its rate. This question is particularly natural in light of the
apparent competition between different effects: on the one
hand, the driving forces a particle flow through the system
while, on the other, large monitoring tends to pin it to an
eigenstate of particle-density operators.

We will address such a question by studying a simple but
prototypical model of quantum transport: a one-dimensional
chain of noninteracting fermions, where particles are injected
and extracted at the two ends, respectively. In addition we
will consider continuously monitoring the fermionic particle
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FIG. 1. Pictorial representation of the setup. A chain of fermionic
degrees of freedom is subject to unitary dynamics dictated by
the Hamiltonian H , weak monitoring of strength γ , and particle
injection/depletion of the left/right edge sites. The negativity is
computed between the two halves of the system A and B.

number, according to the so-called quantum-state-diffusion
(QSD) protocol [76–78] (see Fig. 1).

This model was introduced in Ref. [79] where its transport
properties were analyzed within the limit of infinite monitor-
ing rate. We also note that, in the absence of boundary-driving
terms, it coincides with that studied in Refs. [63,65,80,81].
In Refs. [63,65], in particular, it was shown that the system
undergoes a MIPT between two phases, with logarithmic and
area-law scaling of the entanglement entropy [82]. While
our analysis builds upon these works, the boundary driv-
ing introduces crucial differences. Most prominently, because
the particle reservoirs are treated as an inaccessible environ-
ment, the state of the system along each quantum trajectory
is a mixed state. Accordingly, in order to quantify the cor-
responding entanglement, we need to rely on the so-called
negativity [83–90], since the entanglement entropy is known
not to be a genuine measure of entanglement for mixed
states [91].

In our model, the evolution of the average density matrix is
described by a well-studied Lindbladian master equation, with
boundary driving and bulk dephasing [92–97]. At late time,
any nonzero rate of monitoring leads to diffusive behavior,
thus damping the ballistic transport characterizing the isolated
system. On the contrary, we show that monitoring can en-
hance entanglement. Specifically, we find that the negativity
displays a logarithmic growth for small values of γ , finally
transitioning to an area-law scaling as γ is increased beyond
a critical value.

Before leaving this section, we note that two recent works
also explored the role of a dissipative environment for a sys-
tem that is simultaneously monitored [98,99], although from a
different point of view. Reference [99] considered a fermionic
chain with a coupling to a dephasing bath at each bulk site
in the system. Reference [98], instead, focused on quantum
circuit models with boundary dephasing, but featuring no
local conservation law and therefore no current driving.

The rest of this paper is organized as follows. In Sec. II
we introduce the model and the protocol we consider. In
Sec. III we study the purity and entanglement in the late-time
regime, providing evidence of a transition in the scaling of the
negativity. Our conclusions are consigned to Sec. IV. Finally,
the most technical aspects of our work are reported in several
appendices.

II. MONITORED DRIVEN FERMIONS

We begin by describing in detail the model studied in this
work (cf. Fig. 1). We consider a one-dimensional chain of

spinless fermions, governed by the Hamiltonian

H = −
L−1∑
j=1

[c†
j c j+1 + c†

j+1c j], (1)

where L is the system size, while c j and c†
j are canonical

fermionic operators. The system is coupled at its boundaries to
particle reservoirs at different chemical potentials, and subject
to continuous monitoring in the bulk. Within the so-called
QSD protocol [76–78], the evolution of the system density
matrix ρ is captured by the stochastic master equation (SME)

dρξ = dtL[ρξ ] +
L∑

m=1

d�m[ρ], (2)

L[◦] = −i[H, ◦] + Dbnd[◦] + Dbulk[◦]. (3)

The first term in Eq. (2) describes the deterministic part of
the evolution and includes several contributions, explicitly
reported in Eq. (3). The first one is a coherent term encoding
the bulk unitary dynamics driven by the Hamiltonian (1). The
second one corresponds to the boundary driving and reads
Dbnd[◦] = DL

bnd[◦] + DR
bnd[◦], with

DL
bnd[◦] = �L

[
1 + μ

2
(2c†

1 ◦ c1 − {c1c†
1, ◦})

+1 − μ

2
(2c1 ◦ c†

1 − {c†
1c1, ◦})

]
(4)

and

DR
bnd[◦] = �R

[
1 − μ

2
(2c†

L ◦ cL − {cLc†
L, ◦})

+1 + μ

2
(2cL ◦ c†

L − {c†
LcL, ◦})

]
. (5)

These two terms describe injection/depletion of particles at
the two edges of the chain, respectively, with rates �L(1 ±
μ)/2 and �R(1 ∓ μ)/2. In the following we consider equal
overall scales �L = �R = � and unless stated otherwise set
μ = 1, corresponding to the maximum difference in driving
potential, i.e., pure injection/depletion on the left/right edge.
We will discuss the dependence on μ in Sec. III B. Finally, the
last term in (3) encodes the deterministic back action due to
bulk monitoring of the local particle density ni = c†

i ci, which
takes the form of a dephasing dissipator

Dbulk[◦] = −γ

2

L∑
j=1

[ni, [ni, ◦]]. (6)

Monitoring is also responsible for the stochastic feedback
term in (2), which is defined as

d�m[◦] ≡ √
γ dξm

t {nm − 〈nm〉ξt , ◦}. (7)

It is characterized by independent Brownian processes, with
Îto differentials dξ i

t such that dξ i
t dξ

j
t ′ = δ(t − t ′)δi, jdt . In

Eq. (7) we introduced the notation 〈A〉ξt ≡ tr(ρξ A). We em-
phasize the difference of our setting with respect to Ref. [99],
where an additional bulk dephasing channel was added on top
of the monitoring process.

024304-2



ENHANCED ENTANGLEMENT NEGATIVITY IN … PHYSICAL REVIEW B 106, 024304 (2022)

The solution to the SME (3) is a conditional density matrix
ρξ which encodes complete information on the monitored
quantum system. For a given functional of the density matrix,
F[·], we may define its statistical distribution as

P(F ) ≡
∫

[dξ ]P(ξ )δ(F[ρξ ] − F ). (8)

A natural class of functionals is the expectation value of
an observable O, that is, FO[ρ] ≡ tr(ρO). In this case, the
average over the trajectories

O ≡
∫

dO P(O)O, (9)

coincides with the trace over the average density matrix
tr(Oρ), where

ρ =
∫

[dξ ]P(ξ )ρξ . (10)

It is easy to show that ρ satisfies

d

dt
ρ̄ = L[ρ̄]. (11)

This Lindbladian equation has been extensively studied in the
literature [92–97], and the structures of its late-time NESS
has been worked out analytically [92]. For completeness, we
review its main properties in Appendix B.

When considering nonlinear functionals of the density
matrix, the average behavior cannot be computed from the
averaged density matrix. This is the case, in particular, for the
purity and the entanglement negativity, discussed in Sec. III.
In general, in order to study the dynamics of these quanti-
ties, one needs to solve the SME and sample over different
trajectories.

Crucially, in the noninteracting model (2), the dynamics
along each trajectory can be computed efficiently starting
from a Gaussian initial state [100]. Indeed, a fermionic Gaus-
sian state evolved under the SME (4) remains Gaussian [100],
so that, along each given quantum trajectory, the state of the
system is completely characterized by its covariance matrix.

If the initial state is such that

〈c†
i c†

j 〉t=0 = 0, (12)

it is easy to see that this remains true at later times, and the
state of the system is completely encoded into the matrix(

Ct
ξ

)
m,n ≡ 〈c†

mcn〉ξt . (13)

Accordingly, the full many-body evolution, that is, a trajectory
in the 22L-dimensional space of fermionic density matrices,
can be replaced by the evolution of the L × L covariance
matrix (13). The explicit stochastic equation satisfied by the
covariance matrix is reported in Appendix A, where we also
provide details on our numerical solution.

III. ENTANGLEMENT NEGATIVITY AND PURIFICATION

In this section, we present our results for the dynamics of
entanglement, as quantified by the so-called fermionic nega-
tivity. We will also discuss the behavior of mutual information
and study the purity of the system.

A. Fermionic negativity

As already mentioned, because the state of the system
along each quantum trajectory is mixed, the von Neumann
entropy is not a good measure of quantum entanglement [91].
Here, we focus on the fermionic negativity [86], which has
been recently proposed as a measure of mixed-state entan-
glement alternative to the logarithmic negativity [83–85].
Contrary to the latter, the fermionic negativity can be com-
puted efficiently for fermionic Gaussian states [86], while
it is also a genuine entanglement monotone [87]. In the
context of Lindbladian dynamics of noninteracting fermionic
chains, the fermionic negativity has been extensively investi-
gated [101,102], and its behavior has been understood based
on a semiclassical quasiparticle picture. Here, we show that
qualitative differences arise in the presence of monitoring.

The fermionic negativity is defined based on the concept
of partial time reversal [86], as we now briefly summarize.
Let us introduce the Majorana operators ψ2k−1 = ck + c†

k and
ψ2k = i(ck − c†

k ). Given a bipartition A ∪ B, and denoting by
a j and b j the Majoranas acting respectively on A and B, the
system density matrix is given by

ρ =
k1+k2 even∑

k1,k2

ρ
q1,...,qk2
p1,...,pk1

k1∏
i=1

api

k2∏
j=1

bpj . (14)

Introducing the partial time reversal on the subsystem A

ρRA =
k1+k2 even∑

k1,k2

ρ
q1,...,qk2
p1,...,pk1

ik1

k1∏
i=1

api

k2∏
j=1

bpj , (15)

the fermionic negativity is defined as

E (ρ; A) = ln[tr
√

ρRA (ρRA )†]. (16)

It is a measure of the entanglement of the state ρ shared
between the regions A and B. Importantly, if the state ρ is
Gaussian, so is ρRA and, in this case, the entanglement negativ-
ity can be obtained with polynomial computational resources.
For completeness, we detail the procedure to compute it in
Appendix C, while here we only report the final results of our
analysis.

We focus on the partition given in Fig. 1, with |A| = L/2
and begin with the real-time evolution of the average
negativity

E (t ) ≡ Eξ [E (ρξ ; A)], (17)

from the initial state

|	0〉 = c†
1c†

3 · · · c†
L−1 |0〉 , (18)

where |0〉 is the vacuum. |	0〉 has no entanglement, is Gaus-
sian, and satisfies (12). Therefore, we can apply the numerical
scheme described in Appendix A. We note that the late-
time stationary state does not depend on the choice of
the initial state, as we explicitly verified and discuss in
Appendix E; there we also detail the parameters used for the
numerical simulations.

An example of our numerical data is shown in Fig. 2. In the
absence of monitoring, we find that the negativity grows lin-
early in time, displaying an “entanglement barrier.” Namely,
after a time proportional to L, E (t ) reaches a maximum value
increasing linearly with the system size L. Within this time
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FIG. 2. Entanglement negativity as a function of time. We plot
two sets of curves corresponding to zero (γ = 0.0) and weak
(γ = 0.5) monitoring. In the two cases, we consider chains of size
L = 32–96 with � = 1 and μ = 1. At late times, the negativity
vanishes in nonmonitored systems, while it approaches a constant
increasing with L in the presence of weak monitoring.

frame, we verified that there is a ballistic data collapse ac-
cording to the scaling function ε(t ) = E (t/L, �/L)/L. At later
times, the fermionic negativity starts decaying, as the quantum
correlations are washed out by the boundary coupling with the
dissipative environment. Our numerical data are compatible
with a zero negativity in the infinite-time limit, for all system
sizes.

The evolution is qualitatively different for γ > 0. For weak
monitoring, corresponding to γ = 0.5 in Fig. 2, the entangle-
ment negativity E grows logarithmically in time, saturating to
a nonzero value. Contrary to the case γ = 0, the fermionic
negativity does not show an entanglement barrier: this is
in line with the expectation that monitored noninteracting
fermionic dynamics cannot sustain extensive entanglement,
due to the absence of scrambling [40,63,80,103]. On the other
hand, it is evident from Fig. 2 that, at late times, the negativity
for γ > 0 is larger than in the case γ = 0: namely, moni-
toring a boundary-driven system causes an enhancement of
steady-state entanglement, in stark contrast to what happens in
monitored isolated-system evolution [29–35] where entangle-
ment production is suppressed by measurement, with respect
to the unitary dynamics.

As expected, we find that the late-time negativity depends
on the monitoring strength. For small γ , we see that the
scaling of the latter is consistent with a logarithmic growth
in L. Instead, for γ sufficiently large, the late-time stationary
value of the negativity appears to be convincingly independent
of L, despite being generically nonzero. In order to be quan-
titative, we analyze the system-size scaling of the stationary
negativity E∞ as a function of L, for L � 192. Our results are
reported in Fig. 3, from which we see evidence of a transition
at a critical value, γ = γc, separating a logarithmic from an
area-law scaling. In the small-γ regime, we have performed a
fit of the negativity against the formula

E = c̃eff (γ )

3
ln L + e0(γ ), (19)

FIG. 3. Large-time limit of the fermionic negativity. We consider
chains of size L = 8–192 with � = 1, μ = 1, and γ = 0.15–2. Inset:
numerical fit for the effective central charge appearing in Eq. (19).

obtaining an estimate for the effective central charge
c̃eff (γ ) [104] and the constant e0(γ ). Both parameters are
found to continuously vary with γ , as shown in the inset of
Fig. 3. For γ � 0.8, our fitting procedure gives us c̃eff (γ ) = 0.
We estimate the critical point γc � 0.8 by extrapolating differ-
ent windows of system sizes for L � 80. We note this value is
compatible with the estimate γc(L) ∼ 0.8 in the case without
boundary driving for L ∼ 800 [63]. [As shown in Ref. [63],
there are large finite-size effects, and the thermodynamic limit
is expected to locate around γc(L → ∞) � 0.3.]

We have verified that our estimate for γc does not depend
on the strength of the boundary coupling �. In addition, it is
consistent with the critical value found in Ref. [63] character-
izing the MIPT in the isolated noninteracting fermionic chain
(corresponding to � = 0). Therefore, the critical behavior of
the bipartite entanglement in the stationary state appears to be
dominated by the physics in the bulk, i.e., by the competition
between unitary hopping and monitoring. We note, however,
that boundary driving can influence bulk properties such as
the density profile (cf. Appendix B).

We expect that this transition in the entanglement neg-
ativity can be understood based on an approach similar to
the one developed in Ref. [65], which introduced an effec-
tive n-replica Keldysh field theory capturing the average of
the nth moment of the quantum trajectories, followed by a
bosonization of the bulk monitored problem. In this frame-
work the boundary driving should appear as a local nonlin-
earity for the effective replica field theory, not modifying the
nature of the bulk transition. In turn, this would imply that
the fermionic negativity undergoes a Berezinskii-Kosterlitz-
Thouless (BKT) transition, as established in Refs. [63,65]
for the entanglement entropy of the isolated system.

In order to further substantiate this claim, it would be
useful to provide numerical results for larger system sizes,
especially given the expected large finite-size effects charac-
terizing the BKT transition. Unfortunately, we are not able to
simulate systems of the same sizes studied in Ref. [63]. In our
setting, the main limitation comes from the fact that we need
to follow the evolution up to very large times, in order to reach
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the stationary regime. This can be understood at the level of
the average Lindbladian dynamics (cf. Appendix B). Indeed,
because the latter displays diffusive behavior [92], one has that
the stationary regime is approached at times t ∼ L2/D, where
D = (γ + 1/γ ) is the diffusion constant [93]. Therefore, in
our simulations we need to follow the dynamics up to times
that scale quadratically in L, limiting the system sizes which
can be analyzed. Together with the fermionic negativity, we
have also studied the Rényi mutual information associated
with the bipartition displayed in Fig. 1. It is defined as

I (α)
A:B(t ) := S(α)

A (t ) + S(α)
B (t ) − S(α)

AB (t ), (20)

where

S(α)
S (t ) = Eξ [SS[ρξ ]], (21)

SS[ρξ ] = 1

1 − α

[
ln tr

[
ρS

ξ (t )α
]]

(22)

is the Rényi entropy and ρS
ξ (t ) is the density matrix reduced

to the subsystem S. It is a measure of both classical and
quantum correlations [74] which can be non-zero even for
non-entangled states. We recall that the Rényi entropy of
a subsystem for a Gaussian state can be efficiently calcu-
lated [105,106]. Given the reduced correlation matrix CS

i, j =
Ci, j for i, j ∈ S, the Rényi entropy is given by

SS[ρξ ] = 1

1 − α
tr ln

[(
CS

ξ

)α + (
1 − CS

ξ

)α]
. (23)

For unitary quench dynamics in noninteracting fermionic
chains, it has been shown [19] that, in a scaling limit of large
system sizes and times, the fermionic negativity of a biparti-
tion is proportional to the Rényi-1/2 mutual information, i.e.,

E = 1
2 I (1/2)

A:B . (24)

Recently, this identification has been extended to arbitrary
unitary quantum-circuit dynamics up to times linear in the
subsystem sizes [107]. On the other hand, Eq. (24) does
not generally hold for nonunitary evolution, as shown for
noninteracting fermionic chains with dephasing noise [102].

Motivated by these discussions, we have probed the valid-
ity of Eq. (24) in the presence of monitoring. An example of
our results is shown in Fig. 4. Interestingly, despite the dynam-
ics being nonunitary, we found that Eq. (24) is exactly verified
up to times proportional to the system size, both for γ = 0 and
γ > 0. At later times, the two deviate from one another, but
still remain numerically close and display the same qualitative
behavior. In particular, the mutual information shows the same
phase transition of the fermionic negativity. We note that a
similar relation between the two quantities was also found in
Ref. [98] studying monitored quantum circuits with boundary
dephasing.

B. The purity

Finally, we study the dynamics of the purity of the total
system, i.e.,

P (t ) = Eξ

[
tr
[
ρ2

ξ

]]
. (25)

FIG. 4. Comparison between the dynamics of Rényi-1/2 mutual
information and fermionic negativity, from the initial state (18). We
consider chains of size L = 32–128 with � = 1, μ = 1, and γ = 0.0,
γ = 0.25.

For a single quantum trajectory, it is related to the Rényi-2
entropy via P[ρξ ] = e−S(2)[ρξ ]. This observation allows us to
compute it efficiently [cf. Eq. (23)].

For noninteracting fermionic systems, a mixed state subject
to monitored unitary dynamics purifies, i.e., becomes a pure
state, in a time that is polynomial in the system size [103].
However, this is in general not true in the presence of an
incoherent coupling to the environment, since the latter tends
to increase the system entropy, competing with the effect of
monitoring. In our setting, a natural question then pertains to
the scaling of the purity in the late-time stationary regime,
and whether the latter is able to diagnose a transition as a
function of γ . A similar question was also addressed recently
in Ref. [99].

We have found that, contrary to the fermionic negativity,
the purity has a strong dependence on μ, modeling the driving
potential difference [cf. Eqs. (4) and (5)]. We begin by dis-
cussing our results in the simplest case μ = 1. Our numerical
data for the late-time limit of the purity for different values
of γ are displayed in Fig. 5. The plots indicate that the purity
remains close to 1 for large L, so that its logarithm is O(1) as
L → ∞. For small γ , the scaling of P shows a nonmono-
tonic behavior, with an asymptotic growth towards 1. This

FIG. 5. Large-time limit of the averaged purity. We consider
chains of size L = 8–192 with � = 1, μ = 1, and γ = 0.15–1.5.
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FIG. 6. Large-time limit of the averaged purity and entanglement
negativity, for different choices of the driving potential difference μ.
We fix � = 1 and γ = 0.6–1.5. As detailed in the text, the purity
is qualitatively sensible to the values of μ, while the negativity is
only quantitatively affected by μ, the scaling being qualitatively the
same.

trend is manifest well below the critical value γc ∼ 0.8 and
is visible, within the accessible system sizes, at least down to
γ ∼ 0.3.

These numerical results suggest that the purity scaling does
not display a transition as a function of γ , and in particular,
it is never vanishing as L → ∞. Although we were not able
to prove this rigorously, in Appendix D we provide a simple
heuristic argument to justify it. In essence, the idea is that, as
L → ∞, the particle densities in the leftmost and rightmost
sites are close to 1 and 0, respectively. This follows from the
knowledge of the average density profile in the Lindbladian
steady state, as discussed in Appendix B. Accordingly, the
injection and depletion of particles at the ends of the chain
is suppressed, damping the rate of entropy growth due to the
boundary Lindbladian. Our argument is completed by com-
bining this picture with a lower bound on the purification rate
for noninteracting fermionic systems [103].

This discussion also suggests a nontrivial dependence of
the purity from μ, because it changes the particle densities
at the boundary sites. We have verified this numerically, as
shown in Fig. 6, where we report data for the purity and
negativity for different values of μ and γ . First, we see that the
qualitative behavior of the negativity is independent from
the boundary parameters, confirming the picture established
in the previous section. On the other hand, the scaling
of the purity is more complicated. For μ = 0.5 it appears
to be vanishing for weak monitoring (γ = 0.6), while re-
maining approximately constant for γ � 0.9. Our numerics
suggest a γ -dependent stationary value for μ < 1 with a
finite stationary mixedness; however, the limited accessible
system sizes are not conclusive to rule out that these are

finite-size effects, and that for μ < 1 the purity vanishes for
L → ∞.

IV. CONCLUSIONS

We have investigated the entanglement dynamics in a
prototypical one-dimensional model of boundary-driven non-
interacting fermions in the presence of monitoring. We have
shown in this context that the interplay between boundary
dissipation and monitoring can enhance entanglement, as
quantified by the fermionic negativity, as opposed to the uni-
tary case where monitoring is detrimental to entanglement
production. Furthermore, we have provided evidence that the
system undergoes a phase transition that manifests itself in the
scaling of the late-time entanglement negativity, going from
a logarithmic to an area-law scaling. We have also shown
that the transition can be diagnosed from the bipartite mutual
information, but not from the purity of the whole system. Our
results complement recent works studying the effect of a de-
phasing environment on monitored unitary dynamics [98,99].

Our work raises several questions. First, it would be in-
teresting to substantiate analytically our results on the MIPT
of the entanglement negativity. As mentioned, we expect that
a possible strategy could be to extend the field-theoretical
approach developed in Ref. [65]. Second, a straightforward
direction would be to investigate measurement dynamics in
transport settings beyond the noninteracting case considered
in this work. For instance, a natural question is how our
findings are modified in the presence of additional unitary
noise, such as in the quantum symmetric simple exclusion
process [108–114], or of interactions. We believe that an
interesting tractable model to study the latter problem is
given by random unitary circuits featuring a U(1) conserved
charge [115–117], with additional incoherent boundary terms
implementation charge injection and extraction.

Perhaps, the most interesting direction pertains to the study
of transport features beyond the average Lindbladian dynam-
ics. In this respect, a nontrivial task is to define a meaningful
notion of transport at the level of individual quantum tra-
jectories, since the monitoring brings about violations of the
local charge continuity equation. We leave these questions for
future work.
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APPENDIX A: EQUATION OF MOTION
FOR THE CORRELATION MATRIX

In this section, we derive the equation of motion for the
correlation matrix Ct

ξ . For readability, in this section, we
drop the time label and the trajectory label. Following the
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prescriptions in Refs. [63–65,80,81], the stochastic Schrödinger equation for the correlation matrix is easily derived and reads

dCi, j = idt (Ci−1, j + Ci+1, j − Ci, j+1 − Ci, j−1) − γCi, jdt + γ dt
L∑

m=1

Ci,mCm, j + (1 + μ)�Lδi,1δ j,1dt + (1 − μ)�Rδi,Lδ j,Ldt

−
(

�L
(1 + μ)

2
+ �R

(1 − μ)

2

)
(δi,1 + δ j,1)Ci, jdt −

(
�R

(1 + μ)

2
+ �L

(1 − μ)

2

)
(δi,L + δ j,L )Ci, jdt

+ (dξi,t + dξ j,t )Ci, j − 2
L∑

m=1

Ci,mdξm,tCm, j . (A1)

Up to a subleading Trotterization error, we can consider the equation of motion from two separate contributions: (i) the
Hamiltonian and the boundary Lindbladian, and (ii) the monitoring contribution.

The former has been considered in a variety of works (see, e.g., Refs. [92,97,118,119]), and is given by the terms in Eq. (A1)
which are not proportional to γ or to dξ j,t :

d

dt
C = L[C] + P . (A2)

The linear operator L and the matrix P are simply read out from the corresponding terms in Eq. (A1), and Eq. (A2) can be
integrated with standard means (e.g., Runge-Kutta algorithms) to obtain the infinitesimal solution C̃t+dt .

The noisy contribution can be integrated as well, to obtain [80]

Ct+dt ∝ e[d�ξt +γ dt (2Cdiag−1)]C̃t+dt e
[d�ξt +γ dt (2Cdiag−1)], (A3)

where Cdiag is the diagonal part of C. The transformation, Eq. (A3), corresponds to

ρ ′ = e
∑

m dξm
t [nm−〈nm〉]−γ dt

∑
m (nm−〈nm〉)2

ρe
∑

m dξm
t (nm−〈nm〉)−γ dt

∑
m (nm−〈nm〉)2

. (A4)

We note that this transformation preserves the norm only up to terms o(dt ), and the errors accumulate during the evolution. Thus,
we choose to renormalize the state after each step and consider instead

ρ ′ = e
∑

m dξm
t (nm−〈nm〉)−γ dt

∑
m (nm−〈nm〉)2

ρe
∑

m dξm
t (nm−〈nm〉)−γ dt

∑
m (nm−〈nm〉)2

tr
[
e2

∑
m dξm

t (nm−〈nm〉)−2γ dt
∑

m (nm−〈nm〉)2
ρ
] . (A5)

We can think of this map as a sequence of single-site commuting transformations. The associated map for the correlation
matrix can be obtained within the framework of linear fermionic optics [100,103]. The final result is given by the combined
action of L commuting channels C(t + dt ) = M1 ◦ M2 ◦ · · · ◦ ML[C̃t+dt ], each of which is associated to a given site, and
reads

M j (C) = D( j)

[
C + x j

(
E jC + CE ( j) − 2CE ( j)C

) − x j + 1

2
E ( j)

]
D( j) + tanh(ε j ) + 1

2
E ( j), (A6)

where

[D( j)]m,n = δm,n

[
1

cosh(ε j )
δn, j + (1 − δn, j )

]
, (A7)

[E ( j)]m,n = δn, jδm, j, (A8)

x j = tanh(ε j )

1 − (1 − 2Cj j ) tanh(ε j )
, (A9)

ε j = dξ
j

t + (2Cj j − 1)dt . (A10)

APPENDIX B: AVERAGE LINDBLADIAN
EQUATION AND NESS

In this section we give a brief summary of known
results for the average stationary state ρ = Eξ [ρξ ]. The den-
sity, current density, and two-point density functions in the
nonequilibrium steady state were computed in Ref. [92]. The

average current jNESS = i〈(c†
mcm+1 − c†

m+1cm)〉NESS is given
by

jNESS = − μ

� + �−1 + (L − 1)γ /2
, (B1)

and displays in the large system size limit L � 1 a diffusive
behavior. The average density, on the other hand, shows a
linearly decreasing gradient profile from source (l = 1) to
drain (l = L),

nl = 1 + jNESS

(
1 + (l − 1)

γ

2
+ 1

2
δl,1 − 1

2
δl,L

)
(B2)

with a slope given by the average current jNESS ∼ 1/L.
The full dynamics was analyzed in Ref. [93]. Within the

Lindbladian framework, large deviations in the statistics of
the current were later analyzed in Refs. [95,120]. It is also
important to mention that quantum trajectories in this model
were analyzed before in Ref. [96], which, however, considered
a unitary unraveling of the averaged Lindbladian evolution.
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Within this framework, and for γ > 0, the entanglement neg-
ativity has been estimated in Ref. [101].

APPENDIX C: FERMIONIC NEGATIVITY
OF GAUSSIAN STATES

In this section we detail the computation of the fermionic
negativity for Gaussian fermionic states. We consider a den-
sity matrix ρAB over a bipartite system A ∪ B, characterized by
the 2N × 2N Majorana matrix

M j, k = 1
2 tr (ρ[ψ j, ψk]). (C1)

To compute Eq. (16), the starting point is the block decompo-
sition over A ∪ B,

M =
(

MAA MAB

MBA MBB

)
. (C2)

From (15), it follows that

M± =
(−MAA ±iMAB

±iMBA MBB

)
(C3)

are the covariance matrices associated with ρRA and [ρRA ]†.
The product of these covariance matrices can be performed
following Refs. [121,122]. The resulting density matrix is
Gaussian with covariance matrix

M∗ = 1 − (1 − M−)
1

1 + M+M−
(1 − M+). (C4)

It can be shown that this matrix is antisymmetric and
purely imaginary, and so Hermitian. Furthermore, the prod-
uct density matrix has a normalization factor given by√

det[1 + M2/2] [121].
Collecting all the terms, we arrive at the final result

E (ρ) =
∑

j

ln

[(
1 + ξ j

2

)1/2

+
(

1 − ξ j

2

)1/2]

+ 1

2

∑
j

ln

[(
1 + ζ 2

j

2

)]
. (C5)

Here we denoted by {ξ j,−ξ j} and {ζ j,−ζ j} the eigenval-
ues of M∗ and M, respectively (in both cases they come in
pairs of opposite sign, because they are symmetric). So in
the above sums only a single element in each pair must be
included.

The formula, Eq. (C5), holds for any quadratic fermionic
system [102]. For the specific instance considered in the main
text, and for the initial condition 〈c†

ac†
b〉 = 0, the computation

of the negativity can be simplified. Defining the matrix Gm,n =
2Cm,n − δm,n, and given the bipartition A ∪ B, we have

G =
(

GAA GAB

GBA GBB

)
. (C6)

Then, in a similar fashion to the Majorana case, one can
compute

G± =
(

GAA ±iGAB

±iGBA −GBB

)
, (C7)

and the matrix

G∗ = 1
2 [1 − (1 + G+G−)−1(G+ + G−)]. (C8)

The final expression for the negativity for the restricted corre-
lation is given by

E (ρ) =
∑

j

(
ln[

√
μ j +

√
1− μ j] + 1

2
ln

[
1 − 2λ j + 2λ2

j

])
,

(C9)

where μ j are the eigenvalues of G∗ and λ j are the eigenvalues
of C.

APPENDIX D: LATE-TIME SCALING OF THE PURITY

In this section, we provide a heuristic argument to justify
that, for μ = 1, the average of the late-time Rényi-2 entropy
is O(1) as L → ∞. First, following Ref. [103], we introduce
the quantity

Sproxy(C) = 2 ln(2)tr{1 − [C2 + (1 − C)2]}. (D1)

It is not difficult to show that, for a Gaussian state,

1

2 ln(2)
Sproxy(C) � S(2) � Sproxy(C). (D2)

Therefore, Sproxy(C) and the Rényi-2 entropy S(2) have the
same scaling in L, so that Sproxy can be considered a proxy
for S(2).

Next, we consider a simplified dynamics which we expect
to display the same qualitative behavior of the SME (2).
Namely, we focus on a discrete, rather than continuous, model
where the single time step consists in three parts: (i) the appli-
cation of a quantum channel [91] acting at the boundary sites,
implementing extraction/injection of particles; (ii) a finite-
depth quantum-circuit Gaussian dynamics; and (iii) a round
of random measurements of the local density. For simplic-
ity, we take the measurements to be projective, although our
conclusions also hold if they are weak. They are performed
at each site with a finite probability p ∈ [0, 1]. In the fol-
lowing, we do not need to specify the quantum-circuit gates,
which can be obtained, for instance, by a Trotterization of the
Hamiltonian in Eq. (2). Finally, for the right quantum channel
we choose a Gaussian operation implementing extraction of
particles,

ρS �→ trA{exp[−iH](|0〉〈0|A ⊗ ρS ) exp iH}, (D3)

where H = (π/2)(c†
AcL + c†

LcA). Here cA and c†
A act on an

ancillary degree of freedom initialized in the vacuum, |0〉,
and eventually they are traced over. Note that the symbol
⊗ in (D3) denotes graded tensor product. Analogously, we
can define a Gaussian operation implementing injection of
particles at the left boundary.

Let us consider the stationary state for μ = 1. We want to
estimate the variation of Sproxy due to the action of the right
quantum channel, denoted by �SR. First, we recall that the
average density at the right boundary site is nL = O(1/L)
[cf. Eq. (B2)]. Therefore, denoting by C the covariance
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FIG. 7. Choice of saturation time. We consider � = 1, and show
which saturation time (red line) is chosen for γ = 0.5, 2, and
L = 16–128.

matrix along a typical trajectory, we have CL,L ∼ O(1/L) and
Cj,L,CL, j ∼ O(1/

√
L), for j �= L. It follows that �SR ∼ 1/L.

The same holds for the left quantum channel, so that we
can estimate the variation of Sproxy due to the action of the
boundary channels as

�Sc = c/L, (D4)

for some constant c. Next, we would like to estimate the
variation of Sproxy after the discrete steps (ii) and (iii) de-
scribed above, which we denote by �Sm. On average, the
measurements decrease Sproxy since they have the tendency
of purifying the system. Suppose we replace the finite-
depth circuit with a random Gaussian unitary acting on
the whole system. In this case, based on the analysis of
Ref. [103], and using that we have on average pL measure-
ments, we would obtain the estimate |�Sm| ∼ (Sproxy)2/L.
For our quantum-circuit model, we expect |�Sm| to be larger
than this (measurements purify more), because the unitary
dynamics is less scrambling and so less effective in protecting
quantum information from the measurements. Therefore, we
obtain the lower bound

|�Sm| � c′ (Sproxy)2

L
. (D5)

Now, after a single application of steps (i), (ii), and (iii),
the total change of Sproxy is �Sproxy = �Sc − |�Sm|. In the
stationary regime, we must have �Sproxy = 0. Putting to-
gether (D4) and (D5), this readily implies

S2
proxy � (c/c′) ∼ O(1). (D6)

Namely, even in the weak monitoring limit, the late-time
Rényi-2 entropy does not grow with the system size, consis-
tently with our numerical results.

FIG. 8. Robustness against different initial conditions. As an ex-
ample, here we consider γ = 0.5 and various system sizes with the
infinite temperature initial state (blue) and the initial state (18) (or-
ange). As expected, the dynamics show a different transient regime,
but the same stationary state.

APPENDIX E: NUMERICAL IMPLEMENTATION
AND ADDITIONAL NUMERICAL BENCHMARKS

In this section, we briefly summarize the numerical imple-
mentation and give further numerical results.

We have used a Runge-Kutta algorithm of fourth order to
solve the combined evolution consisting of boundary-driving
and Hamiltonian dynamics and implemented the mapping
Eq. (A6) for the noise contribution. For the time evolution
of the quantum trajectories, we considered the average over
N = 200–1000 trajectories. Furthermore, we have evidence
that a self-averaging property occurs at late time: hence
we also average the stationary state values over the last
T = 5000–20 000 time steps in the stationary regime.
Throughout this paper, we have chosen dt = 0.05, but we
tested, but not shown here, that the protocol gives the same
average results for dt = 0.01. Another test we have performed
is that the results are qualitatively robust against varying �,
which have overall set to � = 1 in this paper.

In Fig. 7 we illustrate the choice of the stationary time tstat

for various γ and various system sizes. Typically, due to the
diffusive nature of the average state, the saturation timescales
at O(L2/γ ), which combined with the O(L3) simulation cost
of each time step, results in O(L5) cost.

Independence from the initial conditions. Initial conditions
affect the transient dynamics, but results in the same stationary
state. As an example, in Fig. 8 we consider two different
initial conditions: the infinite temperature state ρ = 1/2L and
the Néel state (18). Focusing on γ = 0.5, � = 1, our nu-
merics show the conditional average of the negativity and
of the purity saturates to the same stationary value. We have
also checked the independence from the initial conditions by
taking random product states and different values of γ (not
shown here).
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(2021).

[8] J. Schachenmayer, B. P. Lanyon, C. F. Roos, and A. J. Daley,
Phys. Rev. X 3, 031015 (2013).

[9] S. Pappalardi, A. Russomanno, A. Silva, and R. Fazio, J. Stat.
Mech. (2017) 053104.

[10] S. Pappalardi, A. Russomanno, B. Žunkovi č, F. Iemini, A.
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