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Abstract. The XAI community is currently studying and developing symbolic knowledge-extraction (SKE) algorithms as a
means to produce human-intelligible explanations for black-box machine learning predictors, so as to achieve believability in
human-machine interaction. However, many extraction procedures exist in the literature, and choosing the most adequate one is
increasingly cumbersome, as novel methods keep on emerging. Challenges arise from the fact that SKE algorithms are commonly
defined based on theoretical assumptions that typically hinder practical applicability.

This paper focuses on hypercube-based SKE methods, a quite general class of extraction techniques mostly devoted to
regression-specific tasks. We first show that hypercube-based methods are flexible enough to support classification problems as
well, then we propose a general model for them, and discuss how they support SKE on datasets, predictors, or learning tasks of
any sort. Empirical examples are reported as well – based upon the PSyKE framework –, showing the applicability of hypercube-
based methods to actual classification tasks.
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1. Introduction

One of the main features to be underpinned by
a believable human-agent interaction is explainabil-
ity. Along this line, symbolic knowledge extraction
(SKE) is a powerful tool within the scope of explain-
able artificial intelligence (XAI). It enables reverse-
engineering of the black-box (BB) machine learning
algorithms—nowadays exploited in many artificial in-
telligence tasks [25]. SKE allows data scientists to
associate human-comprehensible, post-hoc explana-
tions [18] to the recommendations or decisions com-
puted by the most common prediction-effective – yet,
poorly interpretable – algorithms. For instance, SKE is
widely adopted for credit-risk evaluation [3,38], med-
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ical diagnosis [5,13], credit card screening [36], intru-
sion detection systems [15], keyword extraction [2],
and space mission data prediction [33].

The basic idea behind SKE is to construct symbolic
(hence interpretable) models mimicking the behaviour
of the pre-existing BB predictors to be explained. Sym-
bolic models should describe BB in terms of the out-
puts they provide as responses to (classes of) input val-
ues. Symbols, in particular, may consist of intelligible
knowledge—e.g., lists or trees of logic rules that can
be exploited to obtain predictions as well as to better
understand the underlying predictor. In other words,
symbols are in principle both human- and machine-
interpretable.

Because of the many SKE techniques available in
the literature, selecting the most appropriate SKE al-
gorithm for a given learning task may become cum-
bersome. Difficulties may derive from the intrinsic de-
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sign choices behind each extraction algorithm. In fact,
SKE algorithms may commonly target specific learn-
ing tasks (classification or regression), specific sorts
of machine learning (ML) predictors (e.g. neural net-
works, support vector machines, linear models, etc.),
or specific sorts of training data (e.g. continuous, cate-
gorical, or binary).

We focus upon a quite general class of SKE tech-
niques, which we denote as hypercube-based methods,
that extract symbolic knowledge by querying black-
box predictors as oracles, and by recursively partition-
ing the input spaces of these BB into several hyper-
cubes. Even though commonly considered regression-
specific, we show that hypercube-based SKE meth-
ods are flexible enough to deal also with classifica-
tion problems. More generally, we propose a common
model for hypercube-based methods, and we show
how they can be exploited to perform SKE on data sets,
predictors, or learning tasks of any sort.

Accordingly, the contribution of this paper is man-
ifold. First, we provide a general and abstract de-
scription of any hypercube-based SKE workflow. Sec-
ond, we discuss how hypercube-based methods can
be engineered to provide full support to supervised
learning tasks—there including regression and classi-
fication ones. Third, we compare existing hypercube-
based procedures (e.g. ITER [16], GridEx [31]) w.r.t.
the methods used to partition the input space, approx-
imate black-box decisions, and construct the extracted
symbolic knowledge. Finally, to demonstrate the ver-
satility of hypercube-based methods, we analyse dis-
parate SKE scenarios via the PSyKE framework [8,
29,30,32]—that is, a platform combining SKE and Se-
mantic Web to provide human-interpretability and in-
telligent agent-interoperability for BB-based machine
learning tasks.

2. State of the Art

2.1. Knowledge Extraction

Computational systems are considered interpretable
when humans are able to easily understand their oper-
ation and outcomes [10]. However, nowadays decision
support systems often rely on ML models having ex-
cellent predictive capabilities at the expense of inter-
pretability. These sub-symbolic predictors of growing
complexity, which learn input-output relations from
data and store them as internal parameters, do not pro-

vide any kind of symbolic representation of the ac-
quired knowledge, thus lacking an interpretable repre-
sentation to the benefit of human users. ML algorithms
are defined as black boxes for this reason [20].

It is possible to preserve the impressive BB pre-
dictive performance and, at the same time, obtain
human-intelligible clues or explanations regarding the
BB behaviour by substituting the opaque model with
a mimicking interpretable surrogate. The XAI com-
munity, indeed, has proposed a number of means to
produce ex-post explanations for sub-symbolic predic-
tors in the form of surrogate models based on sets
of rules extracted from the underlying opaque model.
Amongst the proposals there are methods to extract
lists [11,16,31] or trees [6,12] of logic rules, usually
if-then-else, M-of-N or fuzzy. SKE is particularly im-
portant also for another reason: it may enable further
manipulations—for instance, to merge the know-how
of different BB models [9].

Knowledge extraction algorithms can be categorised
along three orthogonal dimensions [7]: (i) supported
learning tasks, (ii) shape of the symbolic knowledge
provided in output, (iii) approach for dealing with
the underlying ML models, usually known as translu-
cency.

Supported tasks – item (i) – are usually supervised
classification or regression. A cluster of SKE algo-
rithms can only explain BB classifiers – e.g. Rule-
extraction-as-learning [11], TREPAN [12] and others
[4,21] –, while a different cluster is designed to sup-
port BB regressors—e.g., ITER [16], GridEx [31],
GridREx [27] and others [34,35,37]. Finally, a little
subset of SKE techniques is able to handle both tasks,
as for the case of G-REX [19] and CART [6].

As far as the shape of the output knowledge is con-
cerned – item (ii) –, decision rules [14,17,22] and
trees [23,24] are usually considered the most human-
understandable ways to represent knowledge. This is
why most SKE methods produce one of these two
structures as output. Regardless of the shape, condi-
tions describing decision rules and nodes are expressed
by using the same input/output data types adopted to
train the underlying BB. For instance, SKE procedures
applied to classifiers accepting N -dimensional numer-
ical data and providing K distinct output classes will
produce rule lists or trees involving a certain number of
predicates over N input variables x1, . . . , xn and hav-
ing K possible outcomes. A further categorisation may
be performed w.r.t. the kind of predicates contained in
the output knowledge. In particular, it is possible to ob-
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serve conjunctions or disjunctions of inequalities (e.g.
xi ≷ c) as well as inclusions in or exclusions from in-
tervals (e.g. xi ∈ [l, u]) for numerical data. Categorical
data are usually associated to equalities (e.g. xi = c)
and set-inclusions (e.g. xi ∈ {c1, c2, . . .}). M-of-N or
fuzzy rules are other available alternatives.

Finally, the translucency dimension – item (iii) –
represents the strategy adopted by the SKE algorithm
to obtain interpretable knowledge from a BB. In partic-
ular, extractors may be decompositional or pedagogi-
cal [1,7]. Decompositional techniques consider the in-
ternal structure of the underlying BB, hence producing
symbolic knowledge which mimics how it internally
works. As a side-effect, decompositional algorithms
are bound to specific sorts of ML predictors—and
possibly introduce constraints on their internal struc-
tures. For instance, techniques tailored to neural net-
works are not applicable to support vector machines.
Similarly, procedures explicitly designed for 3-layered
networks are not suitable for deeper ones. On the
other hand, pedagogical methods can extract symbolic
knowledge without relying on any information about
the inner structure of predictors. They simply query the
predictor as an oracle, observing its response to partic-
ular inputs, and generalise its behaviour accordingly.
For this reason, pedagogical extractors come with no
constraints on the sorts of predictors they can be ap-
plied to. Hence, they are more general – despite poten-
tially being less precise – but considerations about the
output performance strictly depend on the task at hand.

To evaluate the quality of SKE techniques differ-
ent indicators are exploited, depending on the task
to solve. Common choices are readability, fidelity
and predictive performance measurements [26,39], but
also other ad hoc metrics have been recently pro-
posed [28]. The former expresses how interpretable is
the output knowledge from the human perspective. It
is generally evaluated through the number of extracted
rules and the number of constraints per rule. Fidelity is
related to the capability of the extracted knowledge to
mimic the underlying BB predictions, whereas predic-
tive performance measurements are assessed by com-
paring the predictions drawn from the extracted knowl-
edge with the ground truth. Measurements involving
predictions should be assessed via the same scoring
function used for the underlying BB—which in turn
strictly depends on the performed task. Classifiers are
usually evaluated via accuracy, precision, recall, and
F1 score. Conversely, common metrics for regressors

are the mean absolute/squared error (MAE/MSE) and
the R2 score.

2.2. Existing knowledge-extraction methods

In the following an overview of the hypercube-based
SKE algorithms cited in Section 4 – namely ITER
and GridEx – is provided. Differences in the input
space partitioning and in the decision approximation
are highlighted in particular. Output rules are lists of
logic rules in both cases. It is worth noting that both
algorithms assume input features to be continuous and
may be applied to any kind of BB predictor, being ped-
agogical SKE methods.

2.2.1. ITER

The ITER algorithm [16] is based on the iterative
creation and expansion of hypercubes inside the input
feature space until a maximum number of iterations is
reached, or, the whole input space is covered. Expan-
sion may stop also if it is not possible to further expand
the hypercubes. In those cases, additional cubes may
be created to cover the remaining space.

ITER is limited to regression tasks by design and
performs averaging operations to associate output val-
ues to hypercubes. For each cube, ITER selects all the
training samples inside and calculates the mean pre-
diction by using the underlying BB as an oracle. If the
training samples are not enough to satisfy the mini-
mum amount specified by the user, extra random sam-
ples are generated and predicted along with the others.

ITER also takes advantage of a similarity criterion to
expand hypercubes. In particular, at every iteration, all
the possible expansions around each cube are consid-
ered, but only one is performed, i.e., the one capable of
expanding a cube towards the most similar input space
region. The similarity is calculated via the mean abso-
lute difference between the output values of the cubes
to be expanded and the eligible cubes around them.

2.2.2. GridEx
The GridEx algorithm [31] can be considered as

an extension of ITER aimed at overcoming its major
drawback, i.e., the non-exhaustivity of its output rules.
GridEx achieves this goal because it is exhaustive by
design. Unlike ITER, GridEx adopts a top-down ap-
proach to split the input feature space into hypercubes.
It iteratively partitions the whole space according to
some defined strategies, marking at each iteration if
the created partitions are negligible (i.e., they contain
no training samples, so they are discarded since it is
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not relevant to have rules associated to them), eligi-
ble for further partitioning (if they contain samples
that are not enough similar), or permanent (otherwise,
if they contain similar training instances and, thus,
these cubes should have good predictive performance).
Strategies to split the input space are fixed if the user
specifies for each iteration how many partitions have to
be performed along all the input dimensions, or adap-
tive if the number of splits is determined through the
relevance of each input feature w.r.t. the output vari-
able. Since GridEx has been designed exclusively for
regression tasks, as ITER, also in this case output de-
cisions are obtained via local averaging calculations,
and actual regression rules are not supported.

The similarity between samples is assessed through
the output value standard deviation of all the instances
included inside a hypercube. If the standard deviation
is below a user-defined threshold, then the cube only
contains similar samples and it is not further parti-
tioned. Otherwise, GridEx attempts to split the cube
into smaller regions, possibly enclosing more simi-
lar samples. Since the readability of the output model
depends on the number of extracted rules, it is of
paramount importance to keep it as low as possible.
For this reason, a merging phase is performed after ev-
ery splitting iteration as an optimisation to reduce the
number of rules. Indeed, adjacent cubes are pairwise
merged according to a similarity criterion on the con-
tained samples. The merging phase is iterative: at each
step are merged only the two adjacent cubes that re-
sult in the merged hypercube having the lowest stan-
dard deviation, and it terminates when it is not possible
to further merge cubes without exceeding the standard
deviation user-defined threshold.

A first GridEx generalisation supporting regression
rules as output decisions led to the GridREx algo-
rithm [27]. GridREx can extract fully regressive rules,
with a linear combination of the input variables as a
postcondition. Even though all the other details are
identical to GridEx, GridREx achieves better predic-
tive performance, fidelity, and readability than GridEx.

2.3. PSyKE

The PSyKE [8,29,30,32] software library is a Python
framework providing general-purpose support to SKE.
It can be exploited to obtain logic rules from BB classi-
fiers and regressors via several pedagogical extraction
methods. Its unified API allows users to select the most
adequate procedure with few lines of code, also allow-

ing fast comparison between different alternatives. At
the time of writing, PSyKE supports 6 state-of-the-art
SKE algorithms (see Table 1 for further details), al-
lowing researchers and data scientists to exploit them
without the need to implement and test them.

The PSyKE design is developed around the notion
of extractor, intended as any algorithm accepting as in-
put an ML predictor (classifier or regressor) together
with the data set used to train it, and providing as out-
put a theory of logic rules extracted from the predictor.
PSyKE extractors need additional information about
the data set to give more human-interpretability to the
extracted knowledge. In particular, a schema of the
data set can be given as input to formally describe in-
put and output feature names and types.

PSyKE also exhibits utilities to manipulate the data
set and perform feature engineering, for instance, pro-
cedures to discretise or scale continuous features and
to one-hot encode discrete/discretised features. In ad-
dition, there are automatic procedures to select the op-
timal parameters for extractors, which manual tuning
may be challenging for human users.

As for the knowledge provided in output by extrac-
tors, it is possible to choose between two options: (i) a
Prolog theory composed of human-intelligible clauses,
possibly simplified to ease readability; (ii) an OWL on-
tology having agent-interpretable SWRL rules, to pur-
sue interoperability between intelligent agents [32]. In-
put data as well may follow Semantic Web encoding,
so PSyKE extractors accept tabular data or knowledge
graphs stored in OWL ontologies.

3. Hypercube-Based Knowledge Extractors

The general model for hypercube-based extractors
presented here is aimed at extending their applica-
tion to classification tasks other than regression tasks.
Hypercube-based extraction methods are pedagogical
extraction procedures that can operate on trained ML
predictors of any sort. They consider the predictor P
undergoing extraction as an oracle to be queried multi-
ple times, in order to find a partitioning H1 ∪ . . .∪Hn

of its input space X such that the output space Y can
be expressed for each partition. Hence, they extract
knowledge in the form of rule lists or trees, where each
rule attempts to describe the outcome of P for a par-
ticular hypercube Hi ⊆ X . Rules have the following
logical form:

x ∈ Hi → ( y = fi(x) )
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Table 1
Knowledge-extraction algorithms supported by PSyKE: summary.

Algorithm Ref. Task Input Features Output type Knowledge Shape

REAL [11] Classification Binary String label Rule list
TREPAN [12] Classification Binary String label Decision tree
ITER [16] Regression Continuous Numerical constant Rule list
GridEx [31] Regression Continuous Numerical constant Rule list
GridREx [27] Regression Continuous Regression law Rule list
CART [6] Classification, Regression Any String label, Numerical constant Decision tree

to be read as “if the input vector x ∈ X is in some
hypercube Hi, then the prediction y ∈ Y is fi(x)”,
where fi(x) is a function approximating P outcomes.
Note that each hypercube Hi is a partition of the input
space X , and fi is the function approximating P out-
comes related to that hypercube (could be a constant,
a linear function, etc.), i.e.: fi(x) ≈ P (x), ∀x ∈ Hi.

Hypercube-based extraction procedures should then
attempt to select hypercubes and local approximation
functions so as to maximise the fidelity of the overall
rule set/list w.r.t. P . Accordingly, they follow a pretty
linear workflow, which may be roughly summarised in
3 steps, namely:

1. partitioning the input space into disjoint hyper-
cubes H1, . . . ,Hn, following a selected strategy
and according to possible defined constraints;

2. approximating the prediction of P for each hyper-
cube Hi, via some function fi; and

3. creating a rule set where each rule concisely rep-
resents the behaviour of P in Hi via fi.

In the following, we delve into the details of all the
aforementioned phases.

3.1. Input space partitioning

Input space partitioning is a recursive computa-
tion aimed at finding the optimal number, shape, and
size of hypercubes w.r.t. some desiderata, such as:
(i) covering the whole input space; (ii) obtaining dis-
joint regions; (iii) minimising the number of regions;
(iv) maximising the similarity amongst the samples in-
side single regions; (v) minimising the predictive error
correlated to each partition.

These conditions cannot be all satisfied simultane-
ously, especially when dealing with high-dimensional
data sets. Thus, some requirements may be relaxed.
For instance, the input space coverage may be limited
only to interesting hypercubes, neglecting the others.

Let us consider a hypercube ‘interesting’ if it contains
training samples, as it may have a role to play in draw-
ing future predictions.

Alternatively, the partitioning process may termi-
nate after a predefined number of iterations, as some
state-of-the-art algorithms actually do. However, this
may lead to the indiscriminate exclusion of some re-
gions of the input space that are not negligible. In turn,
the explained model will not be able to provide predic-
tions for a subset of input instances.

Non-contiguous hypercubes may be relaxed into hi-
erarchical or fuzzy regions, possibly mapped into non-
overlapping rules, in order to have unambiguous out-
put predictions.

3.2. Similarity and fidelity

The amount of hypercubes an input space is parti-
tioned into may significantly impact the interpretabil-
ity of the final symbolic model. In fact, hypercube-
based methods will output as many rules as the hyper-
cubes they have partitioned the input space into—and
of course more (or more complex) rules imply lower
readability for the human user.

The capability of grouping together similar samples
into a single hypercube is so quintessential for sup-
porting the creation of few, general, and simple rules
which capture the behaviour of the original predictor
with high fidelity. This corresponds to (i) data points
from the same hypercube drawing similar predictions,
and to (ii) predictions having a high fidelity (or, equiv-
alently, low error rates) w.r.t. to the original predic-
tor. Accordingly, here we delve into the details of how
to assess (i) similarity amongst data points from con-
tiguous hypercubes, as well as (ii) predictive errors be-
tween a candidate rule and the underlying predictor.

3.2.1. Similarity amongst instances
Input space partitions can be considered similar ac-

cording to the following definitions:
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input closeness if input variables of both subregions
have values ranging in similar domains, as for ad-
jacent disjoint or overlapping regions;

output closeness if the output associated with the in-
stances in the two subregions is similar.

While it is straightforward to check input closeness
(e.g., through Euclidean distance), dealing with out-
put closeness requires taking into account the learning
problem at hand.

As far as classification is concerned, we may con-
sider two hypercubes H1 and H2 as output-close w.r.t.
a predictor P if (and only if) the most frequent output
class is the same in both hypercubes:

H1
P≈ H2 ⇔ mode(P (H1)) = mode(P (H2)) (1)

where mode(·) denotes the statistical operator return-
ing the most frequent item over a set, and P (H) is a
shortcut standing for {P (x) : x ∈ H}, to lighten the
notation.

Conversely, in the case of regression with constant
outputs, output-similarity may be expressed as a func-
tion of the absolute difference between the mean out-
put predictions performed by the predictor P on the
two hypercubes H1 and H2:

H1
P≈ H2 ⇔ |mean(P (H1))− mean(P (H2))| < θ (2)

where θ is a parameter defining the strictness of the
similarity criterion.

Equation 2 does not capture the similarity amongst
hypercubes characterised by high variability of P . In
such a case a more complex solution is required:

H1
P≈ H2 ⇔ mae(f1,2,H1∪H2)

mae(f1,H1)+mae(f2,H2)
≤ 1

2
(3)

where mae(f,H) is the mean absolute error of the lin-
ear function f in approximating P for data in H . In
other words, H1 and H2 are output-similar if it is pos-
sible to (i) merge the two hypercubes, (ii) find a lin-
ear combination f1,2 of the input variables represent-
ing the input/output relationship of the so merged re-
gions, and (iii) reach a predictive performance of f1,2
better than the average performance of the linear func-
tions f1, f2 associated with the corresponding sepa-
rated subregions.

For instance, Figure 1 reports examples of simi-
larity assessments calculated for a theoretical gener-

alised hypercube-based extractor applied to a classifi-
cation task (Figure 1a) and to a regression task (Fig-
ures 1b and 1c). Figures concerning the regression task
represent constant and non-constant extractor outputs,
respectively. The example assumes a 2-dimensional
data set with continuous input features both ranging
in the interval [0, 5]. In the figures, hypercubes to
be expanded/merged are those having coloured back-
grounds. Possible adjacent hypercubes to be joined to
them are represented as hypercubes having no back-
ground. Adjacent hypercubes that are similar to the
hypercubes to be expanded are represented with a
hatched background. It is worth noting that for the ex-
ample depicted in Figure 1b a similarity threshold θ
equal to 5.0 has been chosen. In Figure 1c the predic-
tive errors corresponding to the adjacent hypercubes
as well as the calculated errors of the possible merged
regions are omitted for the clarity of the image.

3.2.2. Predictive error assessment
A generalised metric is necessary to evaluate the

predictive performance of a set of rules for both clas-
sifications and regressions. We propose the following
function as an error function for a rule set R applied to
a data set D:

error(R,D) =

{
mae(R,D) (regression)
1− accuracy(R,D) (classification)

(4)

where mae(R,D) and accuracy(R,D) are the mean
absolute error and the classification accuracy score,
respectively, calculated on the output predictions ob-
tained via the rules in R, for the data set D, and w.r.t.
the expected outputs for D.

Figure 2 reports some examples of predictive errors
measured for a generalised extractor by assuming a
2-dimensional data set with continuous input features
both ranging in the [0, 5] interval. The figure represents
a classification task and two regression tasks. The first
regression task is approximated by the extractor with
constant outputs, whereas the second is associated with
non-constant outputs. The predictive error e is reported
as misclassifications in the first case and absolute error
in the others.

3.3. Approximating predictions

As for the approximation of output predictions as-
sociated with each hypercube, approximated outputs
are usually computed on the basis of the predictions
provided by the underlying BB when applied to an ex-
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Figure 1. Two-dimensional example of different similarities calculated for generalised extractors. Hatched regions are suitable to be merged with
the adjacent one (coloured background). In Figure 1c the predictive error e is reported inside the three central hypercubes.
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Figure 2. Two-dimensional example of different predictive errors measured for generalised extractors. The predictive error e is reported for each
region.

tended training set. The extended training set may con-
sist of the original data the predictor has been trained
upon – or a subset of it – possibly augmented with
some further data. Data augmentation via random in-
put samples is useful to attain higher predictive perfor-
mance, provided that the predictor is used as an oracle
to compute the corresponding expected outputs.

Provided that the input space has been adequately
partitioned into several hypercubes, the prediction as-
sociated with each hypercube may consist of (i) a con-
stant numerical value (e.g., ITER, GridEx) or, (ii) a lin-
ear combination of the input variables (e.g., GridREx).
The latter option, in particular, is well-suited for re-
gression tasks, while the former may support both clas-
sification and regression tasks.

To choose the best output value for each hyper-
cube, one may either (i) aggregate the predictions cor-
responding to all available points in that hypercube –
e.g. via the ‘mean’, ‘mode’, or ‘median’ statistical ag-

gregation functions –, or (ii) fit a local function locally
approximating the predictor in that hypercube. Again,
which option is better really depends on the learning
task the underlying predictor has been designed for.

Figure 3 reports examples of predictions provided
by a generalised extractor—assuming a 2-dimensional
data set with continuous input features both ranging in
the [0, 5] interval, as in previous examples. The figure
shows a classification task and two regression tasks,
where the former regression task is approximated by
the extractor with constant outputs. Background colour
represents the output provided by the extractor.

3.4. Output rule set creation

After selecting a set of input space regions and one
output decision for each of them, hypercube-based ex-
tractors build a rule set, each rule composed of a pre-
condition and a postcondition. The precondition is a
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(c) Regression laws.

Figure 3. Two-dimensional example of different predictions provided by generalised extractors.

formal description of a single input region in terms of
individual features, for instance by means of value in-
clusion inside an interval. Hypercubic n-dimensional
regions may be described through the conjunction of
(at most) n interval inclusion conditions. On the other
hand, the postcondition is simply the decision calcu-
lated for the region on the basis of the task at hand, as
previously described. Thus, extracted human-readable
logic rules generally have the following format:

Output is O if X1 ∈ [l1, u1], X2 ∈ [l2, u2], ..., Xn ∈ [ln, un]

where O is the output decision and X1, X2, ..., Xn are
input variables with values in the intervals described
by corresponding lower- and upper-bounds li and ui.

4. Experiments: PSyKE

We exemplify the effectiveness of hypercube-based
methods by considering the implementations of the
ITER and GridEx extraction algorithms. Both methods
are designed for regression and here applied to classi-
fication tasks. CART is used as a benchmark to assess
the predictive performance of the modified extractors,
since it is a state-of-the-art procedure directly applica-
ble to data sets described by continuous features, with-
out prior discretisation. All the adopted implementa-
tions are included in the PSyKE framework.1

Experiments are executed on the well-known Iris
data set,2 composed of 150 instances corresponding to
Iris flower individuals. Each instance is described by

1Code available at https://github.com/psykei/psyke-python
2https://archive.ics.uci.edu/ml/datasets/iris

4 continuous input features (i.e., petal and sepal width
and length of the exemplary) and a categorical class
label (i.e., the species of the exemplary). Three differ-
ent species are present in the Iris data set (namely, Se-
tosa, Virginica, and Versicolor) and they are equally
balanced (50 individuals per species).

The experiments are carried out as follows: (i) the
data set is randomly split into training and test sets, of
equal size; (ii) a k-nearest neighbour (k-NN) classifier
is trained on the training set; (iii) three different extrac-
tors are used to extract symbolic rules out of that clas-
sifier; (iv) the predictive performance of both the clas-
sifier and the extracted rules are graphically compared
– in terms of decision boundaries –, and numerically
assessed—in terms of accuracy and F1 scores. In the
case of the extracted rules, fidelity and readability mea-
surements are performed as well. It is worth noting that
the training set is used only to train the models. Con-
versely, the test set is used only to assess the predic-
tive performance of the predictor and extractors. Both
sets are constant for each experiment, to better com-
pare the performance under the same conditions. The
fidelity of the extracted rules (w.r.t. the predictor they
have been extracted from) is assessed as well, via the
same metrics adopted for the predictive performance.
Finally, the output knowledge readability is expressed
as the number of extracted rules.

4.1. Predictor training

Extraction techniques require an underlying BB to
be used as an oracle. This is why we trained and com-
pared several k-NN classifiers, with different values
for the k hyper-parameter. Table 2 reports details on
the accuracy and F1 scores measured for each model.

https://github.com/psykei/psyke-python
https://archive.ics.uci.edu/ml/datasets/iris
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(a) 9-NN. (b) CART.

(c) ITER. (d) GridEx.

Figure 4. Decision boundaries corresponding to the 9-NN predic-
tions and to the rules extracted with 3 different extractors for the Iris
data set. Only the two most relevant features are reported.

Table 2
Accuracy and F1 scores for several k-NN predictors.

Accuracy F1 score
k score Setosa Virginica Versicolor

3 0.93 1.00 0.89 0.92
5 0.96 1.00 0.94 0.95
7 0.96 1.00 0.94 0.95
9 0.97 1.00 0.96 0.97

11 0.95 1.00 0.91 0.94
13 0.93 1.00 0.89 0.92
15 0.93 1.00 0.89 0.92
17 0.96 1.00 0.94 0.95

Table 3
Accuracy and F1 scores observed for CART applied to the 9-NN
classifier. Fidelity measurements are reported inside the parentheses.

Accuracy F1 score
# of rules score Setosa Virginica Versicolor

3 0.95 (0.95) 1.00 (1.00) 0.91 (0.91) 0.94 (0.94)

The best predictive performance is achieved by the 9-
NN. Consequently, in the following, all the discussed
extractors are applied to it. The decision boundaries of
the selected 9-NN are reported in Figure 4a.

4.2. CART

The CART extractor is applied to the 9-NN classi-
fier to extract human-intelligible knowledge in Prolog
syntax, without discretising the input data set. Unlike
ITER and GridEx, CART is able to work upon discre-
tised data sets too. Training the model with a maxi-
mum leaf amount of 3 gives the following theory, com-
posed of 3 rules—namely, one per each possible class
of the Iris data set.�

1 iris(SL, SW, PL, PW, setosa) :- PL =< 2.35.
2 iris(SL, SW, PL, PW, versicolor) :- PW =< 1.75.
3 iris(SL, SW, PL, PW, virginica).
� �

The theory is always exhaustive since it is always pos-
sible to find a leaf classifying an instance. Table 3 re-
ports numerical assessments of the predictive perfor-
mance and fidelity of the theory extracted with CART.
Figure 4b reports the input space partitioning induced
by the theory. Here, only petal width and length are
considered to assign class labels to input instances.

The computational complexity of CART – intended
as the required time to extract the knowledge from a
BB – is dependent on the corresponding tree dimen-
sion and, therefore, it is directly proportional to the
maximum amount of leaves and/or to the maximum al-
lowed depth. The same holds for the complexity of the
input space partitioning.

4.3. ITER

The ITER algorithm has been applied as well to
explain the 9-NN classifier. We test several hyper-
parameter values in order to attain the rule list hav-
ing the highest possible predictive performance and fi-
delity. ITER is based on the following hyper-parameters:
(i) the size for updating cubes, s, expressed as a frac-
tion of input dimension (i.e., 0.1 means a tenth of the
interval between minimum and maximum values of
each dimension); (ii) the number of starting points, n,
representing the initial hypercubes; (iii) the minimum
number of examples to consider in each cube; (iv) the
similarity threshold between adjacent cubes, θ, that is
not relevant for classification; (v) the maximum num-
ber of iterations, fixed to 600.

The results of our experiments for ITER are reported
in Table 4. The best predictive performance, achieved
with the parameters highlighted in bold font in the ta-
ble, corresponds to the following rules.
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Table 4
Comparing accuracy and F1 scores of several ITER instances.

Update Starting Min. # of Accuracy F1 score
size points examples rules score Setosa Virginica Versicolor

0.10 1 75 4 0.84 (0.87) 1.00 (1.00) 0.81 (0.84) 0.78 (0.82)
0.10 1 150 4 0.84 (0.87) 1.00 (1.00) 0.81 (0.84) 0.78 (0.82)
0.10 3 75 3 0.84 (0.87) 1.00 (1.00) 0.81 (0.84) 0.78 (0.82)
0.10 3 150 4 0.84 (0.87) 1.00 (1.00) 0.81 (0.84) 0.78 (0.82)
0.07 1 75 3 0.94 (0.97) 1.00 (1.00) 0.92 (0.96) 0.93 (0.97)
0.07 1 150 3 0.94 (0.97) 1.00 (1.00) 0.92 (0.96) 0.93 (0.97)
0.07 3 75 4 0.94 (0.97) 1.00 (1.00) 0.92 (0.96) 0.93 (0.97)
0.07 3 150 6 0.94 (0.97) 1.00 (1.00) 0.92 (0.96) 0.93 (0.97)

�
1 iris(SL, SW, PL, PW, setosa) :-
2 SL in [4.4, 7.9], SW in [2.2, 4.1],
3 PL in [0.8, 2.4], PW in [0.1, 2.5].
4 iris(SL, SW, PL, PW, versicolor) :-
5 SL in [4.4, 7.9], SW in [2.2, 4.1],
6 PL in [2.4, 4.7], PW in [0.1, 2.5].
7 iris(SL, SW, PL, PW, virginica) :-
8 SL in [4.4, 7.9], SW in [2.2, 4.1],
9 PL in [4.7, 6.9], PW in [0.1, 2.5].
� �

The input space partitioning induced by the extracted
rules is shown in Figure 4c.

The computational time complexity of ITER applied
to a data set having d input features is O

(
n·2d
θs

)
, while

the input space partitioning complexity is O
(
n
θ

)
. In-

deed, the required time depends on the amount of input
features d, of starting cubes n as well as on the num-
ber of new cubes created during the algorithm execu-
tion according to the similarity threshold θ and on the
size of the unitary cube expansion s. Large values for n
and d as well as small values for θ and s imply higher
computational time. On the other hand, the amount of
output partitions only depends on n and θ.

4.4. GridEx

Finally, as the last step of our experiments, the
GridEx extractor is applied to the 9-NN classifier.
In this case as well, different values for the hyper-
parameters have been explored. We recall that funda-
mental hyper-parameters for GridEx are (i) the depth
of the recursive partitioning, ∆ (i.e., how many iter-
ations); (ii) the number of slices to perform at every
iteration, n; (iii) the error threshold used to decide if
further divide a hypercube, θ, fixed to 0.1 for all exper-
iments; (iv) the minimum number of examples to con-
sider in each cube, here fixed to 1. As for the number
of slices to be performed, adaptive strategies are pre-

ferred to fixed strategies. Experiment results concern-
ing GridEx are reported in Table 5. The best hyper-
parameter values are highlighted in bold font. The se-
mantics of adaptive splitting strategies described by
the couple (a, b) is the following: all input dimensions
having relevance greater than a are split into b subre-
gions at each iteration. All the other dimensions are not
split. Input feature relevance is always scaled in the [0,
1] interval. Corresponding output Prolog theory and
input space partitioning are reported in the following
and in Figure 4d, respectively.�

1 iris(SL, SW, PL, PW, setosa) :-
2 PL in [0.8, 2.2].
3 iris(SL, SW, PL, PW, versicolor) :-
4 PL in [2.6, 4.8].
5 iris(SL, SW, PL, PW, virginica) :-
6 PL in [4.8, 6.9].
� �

Also in this case only one input feature is consid-
ered to draw predictions. The partitioning is exhaus-
tive w.r.t. the data set, however, a small input space re-
gion is neglected since the algorithm observed no in-
stances included in it. Differently from ITER, GridEx
is able to detect input dimensions that do not affect the
classification. In this manner all the non-relevant an-
tecedents are dropped from the output theory, resulting
in a higher human-readability.

The computational time complexity of GridEx ap-
plied to a data set having d input features is O (∆),
whereas the input space partitioning complexity is
O
(
d

n∆
θ

)
. Indeed, required time depends on the depth

of the partitioning, whereas the amount of output par-
titions is equal to n for each input feature (= dn),
for each one of the ∆ iterations (= dn∆). During the
merging phase the number of partitions is reduced ac-
cording to the θ threshold, thus larger θ values imply
fewer output partitions (and vice versa).
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Table 5
Comparing accuracy and F1 scores of GridEx instances with different hyper-parameters.

Adaptive Accuracy F1 score
Depth strategy # of rules score Setosa Virginica Versicolor

1 (0.85, 5) 3 0.87 (0.90) 1.00 (1.00) 0.84 (0.87) 0.82 (0.86)
1 (0.85, 8) 3 0.94 (0.97) 1.00 (1.00) 0.92 (0.96) 0.93 (0.96)
1 (0.85, 10) 3 0.87 (0.90) 1.00 (1.00) 0.84 (0.87) 0.82 (0.86)
2 (0.85, 5) 6 0.89 (0.91) 1.00 (1.00) 0.86 (0.88) 0.83 (0.88)
2 (0.85, 8) 6 0.94 (0.97) 1.00 (1.00) 0.92 (0.96) 0.93 (0.96)
2 (0.85, 10) 6 0.89 (0.91) 1.00 (1.00) 0.86 (0.88) 0.83 (0.88)
2 (0.75, 5) 8 0.93 (0.94) 1.00 (1.00) 0.89 (0.91) 0.91 (0.93)
2 (0.75, 2) 11 0.69 (0.69) 0.87 (0.87) 0.74 (0.74) 0.39 (0.39)

4.5. Discussion

In this subsection we compare the results of CART,
ITER, and GridEx applied to the Iris data set, all sum-
marised in Figure 4. Results are compared on the ba-
sis of readability, fidelity, and predictive performance,
other than the decision boundaries induced by the ex-
tracted rules. As for readability, all the extractors are
equivalent w.r.t. the number of rules, since they are
able to extract one predictive rule per output class.
Conversely, the readability of ITER is hindered by the
number of antecedents per rule, since it produces a
constraint for each input dimension. Under this per-
spective, CART and GridEx are able to keep amongst
the rules’ conditions only those involving relevant fea-
tures to perform the classification, resulting in a fourth
of the total amount of antecedents w.r.t. ITER.

The decision boundaries provided by GridEx and
ITER are more similar to those produced by the under-
lying k-NN, but no sensible difference in the classifica-
tion accuracy is noticeable, since all extractors present
a score between 0.94 and 0.95 (we recall that the 9-NN
has an accuracy score equal to 0.97). The same rea-
soning may be performed about the extractors’ fidelity,
equal to 0.95 for CART and 0.97 for ITER and GridEx.

Finally, GridEx does not provide a classification rule
for a small input space region, since it finds that region
as negligible (no data set instances belong to it).

5. Conclusions

In this paper we generalise the class of hypercube-
based knowledge extractors, usually designed for ap-
plications in regression tasks, in order to demonstrate
their suitability in classification tasks as well. We

therefore propose a common model for these meth-
ods and a concrete implementation within the PSyKE
framework. The generalised model presented here con-
siders how algorithmic patterns currently adopted by
hypercube-based SKE extractors can be relaxed to
widen their applicability scopes, achieving competitive
overall performance w.r.t. ad hoc existing alternatives.
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