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We study e+-H(n) and Ps(n)-p collisions near the three-body breakup threshold and thresholds for the
charge-transfer processes. We show that classical trajectory Monte Carlo (CTMC) simulations for the three-body
breakup agree reasonably well in this energy region with quantum-mechanical convergent close-coupling (CCC)
calculations even if the initial hydrogen atom or positronium atom is in the ground state. The threshold behavior
of the three-body breakup cross section in e+-H(1s) and Ps(1s)-p collisions agrees with the Wannier law with
Klar’s exponent and obeys the classical scaling laws, although some deviation from the Klar-Wannier behavior
is observed in the CCC results. Below the threshold the agreement between CTMC and CCC disappears. In
particular the CTMC method fails completely for the processes of H formation in Ps(1s)-p collisions and Ps
formation in e+-H collisions well below the three-body breakup threshold. For higher initial states the CTMC
results below the threshold improve substantially, in accordance with the correspondence principle. This is
explained by comparing the quantum-mechanical threshold laws with the classical laws.

DOI: 10.1103/PhysRevA.108.032808

I. INTRODUCTION

The threshold laws are ubiquitous in collision processes
[1]. It is important to understand the role of quantum effects
in these laws. In particular, the Wigner threshold law [2] is
purely quantum mechanical. For an endothermic reaction it
appears as a manifestation of quantum suppression [3]. In
contrast, the Wannier law [4] for electron-impact ionization of
atoms was derived within the framework of classical mechan-
ics and confirmed by the quasiclassical theory [5,6]. Although
there is no formal proof of this law within the framework of
the quantum-mechanical three-body problem, there is strong
evidence that the three-body physics of particles interacting
via the Coulomb force, near the threshold of the three-body
breakup, is described adequately by classical mechanics. This
is not surprising since low-energy Coulomb scattering is es-
sentially classical [4,7]. However, until recently, the absence
of accurate quantum calculations in the challenging near-
threshold region prevented rigorous tests of Wannier physics.
Recent convergent close-coupling (CCC) calculations of e+-
H and Ps-p collisions [8–12] have attempted to overcome
this obstacle and allow detailed verification of the classical
approach. On the other hand, with the increasing degree of
excitation of reactants, quantum calculations become very
challenging computationally, whereas classical calculations
can be extended for higher states with the same computa-
tional efficiency. Moreover, due to the classical scaling laws
the volume of the classical trajectory Monte Carlo (CTMC)
calculations can be substantially reduced by rescaling results
obtained for the ground target state. Note, however, that if the
cross section is small, the number of trajectories in the CTMC
method should be substantially increased in order to keep the
relative error small. It is important therefore to investigate the
validity of the classical methods in the near-threshold regions.

In the present paper we investigate the threshold behavior
of several processes involving three particles interacting via
Coulomb’s law,

Ps(n) + p → e− + e+ + p, (1)

Ps(n) + p → e+ + H(n′), (2)

e+ + H(n) → e+ + e− + p, (3)

e+ + H(n) → Ps(n′) + p, (4)

where n is the principal quantum number, by using the CTMC
method [13] and comparing the results with quantum CCC
calculations. A more detailed investigation involving an anal-
ysis of initial and final angular momentum states of H and Ps
is also possible [11,12], but the major physics is captured by
looking at the n dependence. Therefore, we will be consid-
ering cross sections averaged over initial and summed over
final angular momentum states. As a rule, we will also sum
the cross sections over the final discrete n′ states. Note that
the charge-conjugated reactions, which have the same cross
sections, are important for the antihydrogen formation, and
they were studied in this context [10,11]. Here we will be
discussing reactions involving p and H, but the same con-
clusions will be applicable to the charge-conjugated reactions
involving p̄ and H̄.

Reactions (3) and (4) near the three-body breakup thresh-
old were studied using the CTMC method in [14,15] and,
more recently, in [16]. Klar [17] obtained an extension of
the Wannier law with e−, e+, and p in the final state, which
includes reactions (1) and (3). The cross section for these
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reactions behaves as

σ = C(�E )μ, (5)

where C is a constant, �E is the energy relative to the thresh-
old, and μ = 2.65. This result was confirmed by semiclassical
theories [18,19]. Moreover, Ihra et al. [19] and Jansen et al.
[20], using the hyperspherical hidden-crossing theory, ob-
tained an exponential correction to Eq. (5) which slows down
the growth of the ionization cross section well above the
threshold. Quantum CCC calculations [21] confirm the Klar
prediction and the correction obtained in [19]. Measurements
of positron-impact ionization of hydrogen [22] do not go
close enough to the threshold to verify the Klar-Wannier law.
Experimental data on the positron-impact ionization of He
[23] confirm the Klar-Wannier law with the exponent close
to that predicted by Klar, although more recent measurements
with the argon atom [24] produced a much lower exponent,
μ = 1.05 ± 0.14. The authors [24] suggested that their mea-
surements, performed above �E = 0.2 eV, were not close
enough to the threshold to reproduce the Klar-Wannier law for
Ar. However, for atomic hydrogen, as will be shown below,
the range of validity of the Klar-Wannier law extends up to
�E = 10 eV.

The threshold behavior of reactions (2) and (4) depends on
their threshold energies and the initial principal quantum num-
ber n. Reaction (2) (summed over all final states) is always
exothermic and, for n = 1, obeys the Bethe-Wigner threshold
law [2,25]

σ ∝ E−1/2, (6)

where E is the incident center-of-mass energy. However, for
n > 1 the hydrogen atom, due to the degeneracy of its excited
states, possesses an effective dipole moment which makes the
cross section for H formation diverge as E−1 [26,27], i.e.,

σ ∝ E−1. (7)

In addition, partial cross sections exhibit Gailitis-Damburg
oscillations [26,28] as a function of ln E . However, these
oscillations are not detectable in total cross sections, summed
over the angular momentum for the relative motion [28].
The dipole threshold law is valid as long as we neglect the
relativistic splitting between the excited states. Within
the energy region where this splitting cannot be ignored the
Bethe-Wigner law is restored. In the present paper we con-
sider energies which are well beyond this region; therefore,
we neglect the relativistic splitting.

The Ps formation reaction (4) is endothermic for n = 1;
therefore, it obeys the Wigner law [2]

σ ∝ (E − Et )
1/2, (8)

where Et = 0.25 a.u. is the threshold energy. For n > 1 it
becomes exothermic and obeys the dipole threshold law for
an exothermic reaction, Eq. (7). Note that for partial n → n′
cases the reaction can be endothermic if n′ > n

√
2 for reaction

(2) and if n′ > n/
√

2 for reaction (4). In this case the quantum
cross section, similar to the classical cross section, becomes
finite at the threshold [26] if n′ > 1. However, the threshold
law, both its classical and quantum versions, does not say
anything about the threshold value of the cross section which
depends on the interaction in the reaction zone; therefore, the

threshold value of the cross section can be substantially differ-
ent in classical and quantum theories. Similarly, the coefficient
of proportionality in the threshold law for the exothermic
case, Eq. (7), as well as the range of validity of the threshold
law, can be substantially different in classical and quantum
theories.

Our goal is to perform detailed studies of classical and
quantum threshold behavior for reactions (1)–(4) for the
ground and first few excited states. For highly excited states,
as shown by previous studies [11,12,29–31], quantum and
classical cross sections converge quickly, according to the
generalized correspondence principle [32]. Although the prin-
ciple was originally applied to ion-atom collisions, it works
rather well even for collisions involving excited-state Ps. The
reason for this is that Ps in excited states interacts with the
proton by effectively dipolar force, and the scattering laws
involving dipolar interactions are similar in quantum and clas-
sical mechanics [31].

Atomic units are used throughout unless stated otherwise.

II. THE CTMC METHOD

The CTMC theory for a three-body system consisting of
charged particles in which two of them are bound was de-
scribed in Refs. [13,33]. The CTMC approach was applied
before in the case of a Ps atom interacting with a proton with
no external field [11,29–31] and was recently extended to the
laser-assisted case [34]. The theory is described in brief as fol-
lows. For a given impact parameter and the principal quantum
number nPs of the projectile Ps atom, an ensemble of initial
states is prepared by a random selection of the eccentricity, the
orientation of the mutual motion (Kepler orbits) of the e−-e+
pair, and the position of e− on the orbit. A classical trajectory
for each random state is then propagated towards the proton
which is stationary at the origin of the configurations space. A
similar procedure is performed for e+-H collisions.

The Hamilton equations of motion are solved using the
regularization method described in [35,36]. The solutions are
propagated, giving sufficient time for the interaction of the
projectile (Ps or e+) with the target (p or H). At the end of
the propagation, the final energies and the angular momenta
of the trajectories are checked to generate the statistics in
different final channels to calculate the probabilities and cross
sections. For example, the charge-transfer probability P(b) as
a function of the impact parameter b is computed as a ratio
between the number of trajectories leading to the formation
of the final atom and the total number of sampled trajectories.
The charge-transfer cross section σCT is then given by the in-
tegral

∫
2πP(b)bdb. The total number of trajectories for each

energy point was varied between 6 × 104 and 106 to make sure
that the typical statistical error for the cross section is less than
2%. However, when the cross section is small, particularly
for ionization near the threshold, the error can significantly
exceed this limit, sometimes reaching 30%.

In the process of our calculations we have found that the
charge-transfer cross section exhibits regular oscillations with
small amplitudes which are beyond the statistical uncertainty
of the CTMC method. We found out that these are an artifact
of classical calculations which start with a fixed position of the
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projectile in the configuration space. These oscillations and
the process of their elimination are discussed in the Appendix.

III. CONVERGENT CLOSE-COUPLING METHOD

The two-center convergent close-coupling method for
positron-hydrogen scattering was developed by Kadyrov and
Bray [8]. It explicitly incorporates Ps formation with conver-
gence in terms of the basis size, which has to be checked
for both the H and Ps centers. As a truncated complete La-
guerre basis is used for both centers, the two nonorthogonal
expansions lead to a highly ill-conditioned system of linear
equations. This manifests as numerical problems when large
expansions are used, for example, near-threshold regions in
Charlton et al. [12]. Generally, the smaller the required cross
sections are, the larger the expansions must be to obtain
convergence. However, if the larger expansions lead to partic-
ularly ill-conditioned linear equations, then obtaining accurate
results for the smaller cross sections can become problem-
atic. In part, the motivation for the present CCC calculations
is to obtain, as accurately as possible, near-threshold cross
sections for the excitation of states with principal quantum
number n � 3.

The CCC calculations are parametrized by the Laguerre
basis orbital angular momentum quantum number l � lmax,
basis size Nl , and exponential falloff λl . In the case of two-
center calculations these are independent for the two centers.
For simplicity, we take Nl = N0 − l and λl = λ. The CCC
calculations of Charlton et al. [12] had lmax = 9 and N0 = 30
for both centers, with 2λPs = λH = 0.5. Here we take lmax = 4
and N0 = 25 for both centers, with 2λPs = λH = 1.

The two-center CCC calculations of the underlying matrix
elements rely on analytical expansions for their sufficiently
rapid computational evaluation, which has been implemented
only for N0 � 30. Owing to potential precision loss associated
with such expansions, here we utilize calculations with N0 =
25. This limitation is unfortunate as in the near-threshold
region for breakup we require large basis sizes in order to have
sufficiently many open positive-energy pseudostates which
represent the breakup. This shall be discussed further below
when considering the corresponding breakup by electrons.

IV. CLASSICAL SCALING LAWS

The classical motion in a system of charged particles is
invariant under the following scaling rules [13,37,38]:

r′ = α2r, t ′ = α3t . (9)

Consider a collision characterized by the center-of-mass en-
ergy E and impact parameter b involving a hydrogenlike
system (target) with initial energy ε and angular momentum
L. Then the following scaling law for the collision probability
can be obtained from (9):

PεL(E , b) = Pε/α2,αL(E/α2, α2b). (10)

For the cross section integrated over the impact parameter we
obtain

σεL(E ) = α−4σε/α2,αL(E/α2). (11)

Choosing α = 1/n, where n is the principal quantum number
of the target, we have

PnL(E , b) = P1,L/n(n2E , b/n2) (12)

and

σnL(E ) = n4σ1,L/n(n2E ). (13)

This result was obtained by using the classical density of
states of the target corresponding to a fixed energy E and
angular momentum L. Allowing L (or the eccentricity of the
target orbit) to be randomly distributed, we obtain similar
results for the probability and cross section averaged over L:

Pn(E , b) = P1(n2E , b/n2) (14)

and

σn(E ) = n4σ1(n2E ). (15)

We now apply the classical scaling to the Klar-Wannier law

σ1 = C(E − Et )
μ, (16)

where μ = 2.65 is Klar’s exponent for the process with e−e+ p
in the final state [17]. For positron impact ionization of the
H(1s) atom Et = 0.5 a.u., and for the Ps(1s) breakup process
Et = 0.25 a.u. For an arbitrary n we obtain

σn = Cn4+2μ(�E )μ, (17)

where

�E = E − Et

n2
. (18)

It is important to note [32] that the classical scaling laws
do not apply rigorously to quantal scattering because of the
dimension of h̄. In addition, in quantum theory the average
over the angular momentum of the target is carried out by
using the equation

σn = 1

n2

∑
l

(2l + 1)σnl , (19)

where l is the orbital angular momentum quantum number of
the target. It is obvious therefore that the classical approach is
less accurate for small n when the number of possible values
of l , which is equal to n, is low.

V. RESULTS AND DISCUSSION

A. Ps-p collisions

In Fig. 1 we present cross sections for Ps breakup in colli-
sions with protons, reaction (1). The cross section σ1 obeys the
Klar-Wannier law, Eq. (16), for energy up to 10 eV above the
threshold energy, Et = 6.8 eV. Such a wide range of validity
of the threshold law follows from Wannier’s derivation [4]
based on the smallness of the parameter (Gaussian units),

β = �Ea

e2
, (20)

where a is the reaction-zone radius, which for the e+e− p sys-
tem is of the order of the Bohr radius, and e is the elementary
charge. Therefore, we should expect the threshold law to be
valid for �E smaller than 1 a.u. = 27.2 eV. These considera-
tions could also explain the relatively narrow range of validity
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FIG. 1. Ps breakup in Ps(n)+p collisions. The Klar-Wannier fit is shown by short-dashed lines. Dashed line: the n = 2 results obtained
from scaling of the n = 1 data. Stars: CTMC results for n = 2. Both sets of data for n = 2 are divided by 24 = 16.

of the Klar-Wannier law in the process of positron-impact
ionization of Ar [24] since the reaction radius is much larger
in this case compared to that for the process of ionization of
hydrogen.

The quantum cross section for the Ps(n = 1) breakup,
although it qualitatively agrees with the CTMC result, is
substantially higher near the threshold and peaks at a lower en-
ergy than the CTMC cross section. For the Ps(n = 2) breakup

FIG. 2. Cross section for Ps breakup in Ps(n)+p collisions for n = 3 and 4, comparing the CTMC results with the CCC data.

032808-4
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FIG. 3. H formation in Ps+p collisions for n(Ps) = 1, 2, and 3, comparing CTMC and CCC [9] calculations.

the agreement is much better. We will address this issue in
more detail in the next section on e+-H collisions.

The classical scaling, Eq. (9), describes very well the re-
sults of ab initio CTMC calculations. A similar picture is

FIG. 4. Cross section for Ps formation and ionization in e+-H collisions. Solid lines: CTMC results and the Klar-Wannier fit to the
ionization cross section; short-dashed line: the extension of the Klar-Wannier law [20]. The units for constants in the fit correspond to those
used on the axes. Dashed line: CCC ionization [39]. Squares: CCC Ps formation. Solid circles with error bars indicate statistical uncertainty in
the CTMC results for ionization.
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FIG. 5. Cross section for electron-impact ionization of H, comparing the CTMC results of Vrinceanu [38] with CCC results employing the
N0 = 25 and N0 = 60 bases (see text) and with experiment [40]. Note that the experimental error bars are too small to be visible on the scale
of drawing.

observed in Fig. 2 for n = 3 and 4. The scaled results are
somewhat different from the ab initio results reflecting sta-
tistical uncertainties of the CTMC calculations. The range of

the validity of the Klar-Wannier law squeezes according to the
scaling law as 1/n2, being about 2.5, 1.0, and 0.65 eV above
the threshold for n = 2, 3, and 4, respectively.

FIG. 6. Cross sections for Ps formation in e+-H(1s) collisions, comparing CTMC, CCC [39], and experiment [43]. The dotted line is
the Wigner law dependence with a proportionality constant of 1.08 a.u./(eV)1/2. The dash-dotted red line is the unphysical CTMC cross
section below the actual threshold (see text).
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FIG. 7. e+-H(n) → Ps + p cross sections for n = 2, 3, comparing CTMC and CCC calculations.

In Fig. 3 we present the cross section for the exothermic
process of H formation in the same collision, reaction (2).
Comparison with CCC results [9] shows strong disagreement
at low energies for n = 1, where the classical cross section is
very high and diverges as 1/E , in contrast to the quantum
result, which obeys the quantum Bethe-Wigner law for the
exothermic reaction, Eq. (6), and whose absolute value is two
orders of magnitude lower at E below 0.1 eV. It is apparent
that the low-energy region in this case is a pure quantum
domain since the Ps wavelength in this region is much longer
than the range of Ps-p interaction. Note also that the scaled
cross sections, σ̃ = σ/n4, exhibit different n dependence in
the low-energy region: whereas σ̃ produced by CCC calcu-
lations grows with n, σ̃ produced by CTMC decreases with
n. However, near the three-body breakup threshold classical
and quantum cross sections start to agree, and this agree-
ment continues for higher energies. This observation confirms
that in the Wannier region the classical approach is valid for
the charge-transfer process. This means that the three-body
dynamics in this energy region is described very well by
classical mechanics. With the increase of the principal quan-
tum number agreement between classical and quantum results
spreads down to low energies [11]. This is consistent with the
generalized correspondence principle [32] as well as with the
quantum threshold law for collisions involving the interaction
of the charged particle with excited hydrogenlike systems,
Eq. (7) [26,27]. Note that for n = 2, although both classical
and quantum cross sections behave as C/E , the coefficient C
is substantially different in the two theories, and the range of
validity of this dependence is very different as well. However,
already for n = 3 agreement is excellent. This reflects the fast
growth of the Ps dipole moment with n.

B. e+-H collisions

Another confirmation of the validity of classical mechanics
near the three-body breakup threshold is the results for reac-
tions (3) and (4) involving e+ + H collisions.

In Fig. 4 we present Ps formation and positron-impact ion-
ization cross sections for positron collisions with the hydrogen
atom in the ground state, reactions (3) and (4). The Wannier
threshold law with Klar’s exponent μ = 2.65 is reproduced
quite well, taking into account that the number of trajectories
near the threshold should be enormous (about two orders of
magnitude higher than in the region far from the threshold)
due to the instability of the “Wannier-ridge” trajectories near
the three-body breakup threshold [4]. However, the extension
[20] of the Klar-Wannier law does not show improvement. To
show the statistical uncertainty near the threshold, two points
on the graph are shown with error bars, estimated by standard
root-mean-square deviation, although the actual uncertainty
can be larger. By varying the exponent μ while fitting the cross
section to the Klar-Wannier law, we were able to estimate its
uncertainty as �μ = ±0.06.

Near the three-body breakup threshold (Et = 13.6 eV) the
contribution of the excited Ps states to charge transfer, reaction
(4), is very insignificant: the channel

e+ + H(n = 1) → Ps(n′ = 2) + p

contributes only 0.13 a.u., and higher n′ contribute virtually
nothing. Agreement with CCC calculations [39] is very good
for the Ps formation process, but some differences can be
seen when the cross sections are plotted on a linear scale
(see Fig. 6 below). However, for the ionization process dis-
agreement increases with decreasing energy. We note that in
the near-threshold region (�E < 3 eV) both classical and
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FIG. 8. e+-H(n) → p + e+ + e− cross sections for n = 2, 3, comparing CTMC and CCC calculations.

quantum methods suffer from substantial uncertainties. The
CTMC method for breakup cross sections in this region re-
quires a very large number of trajectories, and the CCC results
are affected by poor convergence when the cross section be-
comes very small [39]. Still, it is observed that although both
CTMC and CCC results obey the Klar-Wannier law, the CCC
results for the ionization are systematically higher near the
threshold, so that the coefficient C in the Klar-Wannier law,
Eq. (16), obtained from the CCC calculations exceeds the
CTMC result by a factor of 3.25. At this point it is unclear
whether disagreement between CTMC and CCC is due to
numerical uncertainties or due to some inherent defects in the
classical theory. To shed more light on this issue, in Fig. 5 we
present a comparison of the cross section for electron-impact
ionization of H. CTMC results are taken from Vrinceanu [38]
using the classical parameter l/n = 0.1, and the CCC results
were obtained using Laguerre bases with Nl = 25 − l and
Nl = 60 − l , with λl = 1 for l � lmax = 6. Both CCC calcu-
lations agree with experiment [40] where available. However,
the larger CCC results converge to the Wannier law, with the
Wannier exponent μ = 1.127, better than the smaller ones,
indicating the importance of large expansions when studying
near-threshold breakup. The same energy dependence is ob-
served for the CTMC results, but again, the absolute values are
somewhat different, with the CTMC results exceeding those
of CCC. We note that the classical microcanonical distribution
cannot properly describe the probability density in s states,
and this is the most likely reason for the difference [38]. How-
ever, we expect that with the growth of n, when states with
more orbital angular momenta appear, the classical l-averaged
cross section should approach the quantum-calculated one.

Overall, the comparison of CTMC with CCC results allows
us to conclude that the three-body dynamics in this energy

region is described reasonably well by classical mechanics.
Above the threshold our CTMC results also agree with the
earlier calculations of Ohsaki et al. [14], and near the thresh-
old they agree with the recent calculations of Liu et al. [16].

The CTMC calculations in [16] employ the so-called
Heisenberg correction [41] to the Coulomb potential to incor-
porate the Heisenberg uncertainty principle in the treatment
of the collisional process. The present results show that this
procedure is unnecessary in the Wannier region, where the
classical treatment works fine. The Heisenberg correction has
been shown to stabilize bound states when they are calcu-
lated with classical mechanics [41]. For systems containing
more than one electron the energy-bound correction was pro-
posed [42] to prevent autoionization forbidden by quantum
mechanics. However, at low collision energies, when one of
the reactants is a neutral particle, the classical mechanics fails
completely, and it is unlikely that its deficiency could be fixed
with the Heisenberg potential or the energy-bound potential.

We continue the discussion of the Ps formation process (4)
by extending the energy range below the three-body breakup
threshold. In Fig. 6 we present the Ps formation results in
the near-threshold region and compare them with CCC cal-
culations [39] and experimental data [43]. The CTMC cross
sections have been averaged over artificial oscillations, as
discussed in the Appendix. The failure of the classical theory
in this region is apparent: while the classical cross section is
finite at the threshold, the quantum cross section starts from
the zero value at the threshold, according to the Wigner law.
This is a typical case of quantum suppression [3]. Moreover,
classically, the process of Ps formation can occur below the
actual threshold because the energy of the Ps(1s) state is not
bounded from below. This unphysical behavior is indicated
in Fig. 6 by the dash-dotted red line, whereas the vertical
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FIG. 9. e+-H(n) → p + e+ + e− probability as a function of the impact parameter for n = 2 and three selected energies, comparing CTMC
and CCC calculations.

threshold onset at E = 6.8 eV is artificial from the classical
point of view.

We have attempted to fit the CCC cross section near the
threshold by the function C(E − Et )1/2, in accordance with
the Wigner law, where C was chosen to reproduce the CCC
cross section at E − Et = 0.2 eV. It is apparent from Fig. 6
that the range of validity of the Wigner law is much narrower
than that for the Klar-Wannier law. This can be understood
from the basic physics of the ionization process versus the
Ps formation process. In the first (classical) case the range of
validity follows from β � 1 [4], where β is given by Eq. (20),
which leads to �E � 1 a.u. = 27.2 eV. In contrast, the
quantum-mechanical Wigner law is based on the assumption
that the wavelength of the outgoing particle is much greater
than the reaction radius a, or k < 1/a. The reaction radius
for Ps formation can be estimated as a = 4 a.u. Then we get
�E < 1/(2ma2) = 1/64 a.u. = 0.42 eV, where m = 2 a.u. is
the Ps mass.

In Fig. 7 we present cross sections for Ps formation in colli-
sions of e+ with excited hydrogen calculated using the CTMC
and CCC methods. The CTMC data are in agreement with
the classical scaling laws. The process is exothermic for both
n = 2 and n = 3. For n = 2 disagreement between CTMC and
CCC is very large in the low-energy region, although at n = 3
agreement is much better. Because of the nonzero dipole mo-
ment of the H atom in the excited state, the quantum cross
section diverges as 1/E even for n = 2; however, its absolute
value is very different from the classical one in this case.
This is in sharp contrast to the three-body breakup behavior.
Also, the n = 2 quantum cross section exhibits a stepwise
structure at the threshold for Ps formation in the excited
n′ = 2 state. The onset is in accord with the Gailitis-Damburg
threshold law [26], which predicts that reactions leading to the

formation of a charged fragment and a hydrogenlike fragment
in an excited state have a finite cross section at the threshold.
This structure is absent in the classical cross section since the
energy levels in these calculations are not quantized.

In Fig. 8 we present the positron-impact ionization of H
from the excited states, reaction (3). The CTMC results near
the threshold can be fitted by the Klar-Wannier law, as shown
in Fig. 8. The fit works for n = 2 for energies of about 3.5 eV
above the threshold, whereas for n = 3 the range of validity of
the Klar-Wannier law narrows down to about 1 eV above the
threshold. As in the case of n = 1, the CCC cross sections are
somewhat higher than the CTMC ones. More of a concern is
that the CCC cross section cannot be fit by the Klar-Wannier
law. A similar discrepancy was found in the Ps breakup cross
sections in Ps-p/p̄ collisions [12]. To investigate the mat-
ter further we plot the classical probability for ionization of
H(n = 2) as a function of the impact parameter b and compare
it with its quantum analog calculated from the CCC cross
sections as

Pquant = σ Lk

2πb
,

where b is determined from the angular momentum as

b =
(

L + 1

2

)
/k. (21)

Since we use the classical relation between b and L, L in
Eq. (21) should be understood as the angular momentum of
the incident e+. On the other hand, in CCC calculations L is
the total orbital angular momentum of the system, which cre-
ates some uncertainty in the CTMC-CCC comparison which
decreases with increasing L. In Fig. 9 we present a probability
comparison for three selected energies close to the ionization
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FIG. 10. Ps formation cross section in e+-H(n = 1) collisions in the energy range from the threshold to 20 eV. Solid line: CTMC
calculations with a fixed initial positron position; dashed line: cross section averaged over oscillations.

threshold, Et = 3.40 eV. For the lowest considered energy,
E = 4.19 eV, the statistical uncertainty of the CTMC calcu-
lations is quite large, but it decreases from about 30% at E =
4.19 eV to about 5% at E = 5.79 eV, whereas the error caused
by treating the collision angular momentum as a continuous
quantity remains about 30% for all depicted curves. The latter
error was estimated as being due to uncertainty in b, calculated
as �b = 0.5/k, and the actual error might be somewhat lower.
Nevertheless, disagreement between CCC and CTMC calcu-
lations certainly exceeds both errors. Whereas for large impact
parameters the disagreement can be explained by the neglect
of tunneling in classical calculations, the reason for strong
disagreement at the position of the peak is unclear. It is inter-
esting that the effect is opposite quantum suppression found in
cross sections for hydrogen formation in Ps-p collisions [31].
In that case quantum-mechanical probability is substantially
lower than the classical one for low impact parameters, which
results in the lower integrated cross section.

Farther away from the threshold the classical and quantum
probabilities start to converge, except at larger impact parame-
ters, where quantum P(b) continues to be higher. However, the
relative difference in integrated cross sections becomes small.

VI. CONCLUSION

While, in general, classical and quantum cross sections for
reactions involving the three-body system e+e− p are conver-
gent at a high principal quantum number n of the reactant
(Ps or H), the near-threshold region is of special interest.
In the present paper we have shown that near the three-
body breakup threshold, the classical and quantum results
for three-body breakup and charge transfer agree reasonably

well, even for n = 1, in terms of both energy dependence
and absolute values, although some disagreement in the ab-
solute value of the near-threshold positron-impact ionization
cross section is observed. For scattering from the ground state
disagreement is likely due to the inability of the classical
microcanonical distribution to reproduce the quantum prob-
ability density. However, in general, the classical mechanics
works reasonably well in the Wannier region. In contrast, the
threshold behavior of the charge-transfer reaction in Ps-p and
e+-H collisions is very different in the classical and quantum
theories. For n = 1 the classical results fail completely for
both energy dependence and the absolute value. For n = 2,
although classical and quantum functional behaviors for the
exothermic charge transfer are similar, the quantitative dis-
agreement is still very large. For higher n the classical and
quantum versions converge quickly. Since classical calcula-
tions are computationally less expensive than quantum ones,
these conclusions provide a useful guide for future calcu-
lations of reactions involving three particles interacting via
Coulomb’s law. The unresolved question is related to the near-
threshold behavior of the CCC e+-impact ionization cross
section from excited states. For n > 1 the present N0 = 25
CCC calculations do not obey the Klar-Wannier law, similar
to what was observed in Ps-breakup cross sections [12]. This
problem requires further investigation but is most likely due
to numerical limitations associated with having a too small
Laguerre basis for the problem of interest.
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APPENDIX: OSCILLATIONS IN CLASSICAL PS
FORMATION CROSS SECTIONS

Cross sections for charge transfer plotted as a function of
the projectile energy on a finer energy scale exhibit oscilla-
tions. For example, cross sections for Ps formation in e+-H
collisions oscillate with a period which varies between 0.5
and 0.8 eV in the energy range between the threshold and
20 eV, as shown in Fig. 10. These oscillations are regular and
cannot be attributed to statistical uncertainties. However, this
is an artificial effect caused by a fixed starting point for the
running trajectory. To show this, consider a positron incident
on a H atom with a zero impact parameter and initial velocity
v. Consider for simplicity a circular electron trajectory, and
neglect the e+-H interaction. Then the electron trajectory is
described by the equations

x− = r cos(ωt − φ), y− = r sin(ωt − φ),

where r is the radius of the trajectory, ω is the angular
frequency, and −φ is a random initial phase. The positron
trajectory is described by the equations

x+ = x0 − vt, y+ = 0,

where x0 is the positron’s initial position. For effective charge
transfer we require r− = r+. Then we obtain

sin(ωt − φ) = 0, t = (π + πk + φ)/ω,

where k is an integer. Solving now

r cos(ωt − φ) = x0 − vt,

we obtain

vk = x0 − r cos(ωt − φ)

t
= ω[x0 + (−1)kr]

π (k + 1) + φ
. (A1)

These values of velocity correspond to events that occur
when the charge transfer is most likely. Although vk depends
on the random quantity φ, this dependence is weak since k
should be large for moderate values of vk . Indeed, for the
ground state ω = 1 a.u., and x0 is typically several hundred
atomic units; therefore, k should be of the order of 100.
Averaging (A1) over φ, we obtain

〈vk〉 = 1

2π

∫ 2π

0
vk (φ)dφ = ω

[x0 + (−1)kr]

2π
ln

k + 3

k + 1
.

Using r � x0 and k 	 1, we obtain

vk = x0ω

πk
,

and the corresponding values of energy are

Ek = 1

2

(x0ω

πk

)2
.

The value of k corresponding to the peak at E = Ek is

k = (2Ek )−1/2 x0ω

π
,

FIG. 11. Probability of Ps formation in e+-H(n = 1) collisions for impact parameter b = 2 a.u. The lower curve is the cross section in
atomic units divided by 40, which incorporates all impact parameters.
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and the distance between peaks is

�Ek = 2Ek

k
.

With the increase of Ek , the distance between peaks grows
as (2E )3/2, which is in agreement with the numerical results.
Furthermore, for x0 = 300 a.u., Ek = 13.6 eV; for example,
we obtain k = 95 and �Ek = 0.28 eV, compared to the com-
puted �Ek = 0.5–0.6 eV. Agreement is reasonable for such
a simplistic estimate. The discussed effects can also be ob-
served for the probability as a function of E for a fixed
impact parameter b. In Fig. 11 we plot the probability for
b = 2 a.u. and compare it with the cross section (divided by
40 for a better view). The probability exhibits some statistical
uncertainties, but it is clear that its maxima match the maxima

in the cross section. Since a similar dependence is observed
for other impact parameters, the oscillations do not disappear
after integration over b.

For a given energy E the oscillation frequency grows with
the growth of x0, and for x0 → ∞ it becomes indefinitely
large, whereby the average over an arbitrarily small interval
of energies gives the physical value of the probability and the
cross section. In fact, there is no need to go to very large values
of x0. Even for x0 values of about 300 a.u. the average over
the oscillation period gives accurate enough values of physical
cross sections. We demonstrate this by presenting in Fig. 10
cross sections averaged over oscillations which give phys-
ically meaningful values. Since the average of oscillations
over E is equivalent to the average over x0, the oscillations
should not appear in quantum-mechanical calculations where
the plane wave has an infinite uncertainty in x0.
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