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Abstract 

Rationale: Trauma, surgery, and infection can cause severe inflammation. Both dysregulated inflammation 
intensity and duration can lead to significant tissue injuries, organ dysfunction, mortality, and morbidity. 
Anti-inflammatory drugs such as steroids and immunosuppressants can dampen inflammation intensity, but 
they derail inflammation resolution, compromise normal immunity, and have significant adverse effects. The 
natural inflammation regulator mesenchymal stromal cells (MSCs) have high therapeutic potential because of 
their unique capabilities to mitigate inflammation intensity, enhance normal immunity, and accelerate 
inflammation resolution and tissue healing. Furthermore, clinical studies have shown that MSCs are safe and 
effective. However, they are not potent enough, alone, to completely resolve severe inflammation and injuries. 
One approach to boost the potency of MSCs is to combine them with synergistic agents. We hypothesized that 
alpha-1 antitrypsin (A1AT), a plasma protein used clinically and has an excellent safety profile, was a promising 
candidate for synergism.  
Methods: This investigation examined the efficacy and synergy of MSCs and A1AT to mitigate inflammation 
and promote resolution, using in vitro inflammatory assay and in vivo mouse acute lung injury model. The in vitro 
assay measured cytokine releases, inflammatory pathways, reactive oxygen species (ROS), and neutrophil 
extracellular traps (NETs) production by neutrophils and phagocytosis in different immune cell lines. The in vivo 
model monitored inflammation resolution, tissue healing, and animal survival.  
Results: We found that the combination of MSCs and A1AT was much more effective than each component 
alone in i) modulating cytokine releases and inflammatory pathways, ii) inhibiting ROS and NETs production by 
neutrophils, iii) enhancing phagocytosis and, iv) promoting inflammation resolution, tissue healing, and animal 
survival.  
Conclusion: These results support the combined use of MSCs, and A1AT is a promising approach for 
managing severe, acute inflammation. 

Keywords: inflammation, mesenchymal stromal cells, alpha-1 antitrypsin, combination therapy 

Introduction 
Many conditions, including infection, trauma, 

and surgery, can cause severe inflammation. Immune 
cells are expected to recognize pathogens (or triggers), 
respond proportionally to the pathogen burden, and 
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effectively eliminate them [1,2]. Subsequently, they 
initiate a process leading to the resolution of 
inflammation and restoration of homeostasis [3,4]. 
Cytokines play critical roles in coordinating immune 
cell function, ensuring that the initiation, amplifi-
cation, and resolution of inflammation occurs in an 
organized manner. Cytokines have a short life span 
and often remain at the injury site to avoid systemic 
immune activation. However, under certain condi-
tions, such as an overwhelming pathogen burden, 
immune cell activation, and cytokine production 
become dysregulated, excessive, persistent, and 
systemic (i.e., cytokine storm) [5]. Hyperinflammation 
can rapidly progress to disseminated intravascular 
coagulation, vascular leakage, acute respiratory 
distress syndrome (ARDS), multi-organ dysfunction 
(MODS), and death [6,7].  

Clinical strategies used to treat patients with 
severe inflammation include supportive care to 
maintain critical organ functions and elimination of 
inflammatory stimuli, such as antibiotics. Addition-
ally, steroids and immunosuppressants can be used to 
suppress immune cells and targeted biologics (e.g., 
monoclonal antibodies) can be used to neutralize 
specific cytokines [5]. However, steroids derail 
inflammation resolution pathways, compromise 
antibacterial host defenses, and have significant 
adverse effects [8–10]. Therefore, there is a clinical 
need for safe therapies that can mitigate hyper- 
inflammation while boosting normal immunity and 
accelerating inflammation resolution.  

Our body has multiple types of negative 
regulators of inflammation, including cells (e.g., Treg) 
[11], proteins (e.g., IL10) [12,13], and special lipid 
mediators (e.g., lipoxin A4) [3,8,14–17]. These mecha-
nisms, designed to work together to prevent severe 
inflammation, often fail in patients with severe 
medical comorbidities and/or compromised immu-
nity [3,4]. It follows that augmenting these inflamma-
tory regulators may offer a promising therapeutic 
approach. Among various inflammatory regulators, 
mesenchymal stromal cells (MSCs) are of particular 
interest since they possess unique and multi-faceted 
capabilities to mitigate severe inflammation. They can 
balance the inflammatory environment by downregu-
lating pro-inflammatory cytokines, such as IL6 and 
TNFα, while upregulating anti-inflammatory or/and 
pro-resolving cytokines, such as IL10 and IL4 [18–33]. 
Using secreted mediators and direct interactions, 
MSCs can program monocytes and macrophages into 
the anti-inflammatory and pro-resolving M2 
phenotype [19,33–36]. They reduce the adherence of 
leukocytes to endothelium [37]. MSCs can inhibit 
tissue infiltration as well as ROS and NETs 
production by neutrophils [19,20,27,30,37–39]. MSCs 

can also enhance ‘normal’ immunity by boosting the 
phagocytosis, bacterial killing, and efferocytosis of 
monocytes and macrophages [34,36,37,40–44]. MSCs 
also secrete antibacterial peptides such as LL-37, 
lipocalin-2, and hepcidin [18,23,29,45]. Finally, MSCs 
can protect organs from inflammation-associated 
damage while promoting organ healing [20,21,23, 
24,31,45–49]. MSCs can reduce cell death and improve 
barrier functions of endothelium and epiththium 
[19,22,24,25,37,46,49–51].  

In addition to these multiple beneficial functions, 
MSCs have low immunogenicity. Therefore, 
allogeneic MSCs can be administered without 
significant side effects [52]. MSCs can be isolated from 
various tissues, such as the placenta, umbilical cord, 
and adipose tissue, and they can be efficiently 
expanded in vitro. It is therefore hardly surprising that 
MSCs have been studied in varying disease contexts, 
including ARDS, sepsis, GvHD, stroke, spinal cord 
injury, myocardial infarction, organ transplantation, 
and COVID-19[53–65]. MSCs have also recently been 
used to treat severe COVID-19 patients [66], reducing 
disease mortality significantly [67–71]. However, one 
shortcoming of MSCs is that monotherapy is not 
potent enough to fully resolve severe inflammation 
[72]. Therefore, approaches to boost MSCs’ potency 
are necessary. One proposed strategy is to combine 
MSCs with FDA-approved drugs that have excellent 
safety profiles and can synergize with MSCs.  

We propose that protein alpha-1 antitrypsin 
(A1AT) possesses properties well suited to synergize 
with MSCs and increase their therapeutic efficacy. 
A1AT is an acute-phase protein whose concentration 
increases five-fold when the body is injured or 
infected. A1AT has anti-inflammatory, anti-protease, 
pro-resolution, cytoprotective, and pro-angiogenic 
properties [73–83]. It selectively inhibits neutrophil 
recruitment and cytokine production and neutralizes 
many pro-inflammatory cytokines [82,84–91]. It 
suppresses M1 macrophages while promoting M2 
macrophages and Treg cells [73,92–99]. It also reduces 
bacterial and viral burden [100–108]. In addition, it 
protects cells from various stress [75,109–112] and 
promotes angiogenesis [113,114]. A1AT purified from 
plasma has been used to treat alpha-1 antitrypsin 
deficiency for decades, with an excellent safety profile 
[115,116]. Most recently, A1AT has been studied to 
treat severe COVID-19 patients with positive 
outcomes [117–121]. However, like MSCs, A1AT 
alone is insufficient to completely resolve severe 
inflammation [117–121]. In this investigation, we 
examined MSCs-A1AT synergism using both in vitro 
cell cultures and a murine acute lung injury and 
inflammation model.  
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Results 
Isolating MSCs from placenta 

The full-term placenta was cut into small pieces, 
treated with TrypLE for 30 mins, and placed in a cell 
culture flask (Figure S1A). Cells migrated from the 
tissues, adhered to the flask surface, and expanded 
(Figure S1B). When cells reached about 70% 
confluence, tissues were removed, and cells were 
allowed to grow until full confluence. These cells were 
cryopreserved or sub-cultured (Figure S1C). Cells had 
the classical spindle-like morphology. Above 95% of 
passage 4 (P4) cells expressed MSC surface markers 
including CD73, CD90, CD105, CD44, and CD166. The 
expression of negative markers, including CD45, 
CD34, CD11b, CD79A, and HLA-DR, was negligible 
(Figure S1D). In addition, MSCs could be 
differentiated into FABP4+ adipocytes and 
osteocalcin+ osteocytes (Figure S1E). In summary, we 
successfully isolated MSCs from the placenta.  

MSCs modulate cytokine release 
To test if our cultured cells could similarly 

suppress inflammation, we stimulated mouse Raw 
264.7 macrophages (MΦs) with LPS and IFNγ to 
induce intense inflammation. We optimized the 
concentrations of stimulants such that 100 ng/mL LPS 
+ 10 ng/mL IFNγ induced maximal cytokine release 
while not causing rapid and significant cell death. 
Inflamed cells were treated with MSCs at three 
different ratios: one MSC for 1, 5, or 10 macrophages 
(1/1, 1/5, 1/10). 1 µg/mL dexamethasone, a clinically 
relevant dose used to treat severe inflammation, was 
used to benchmark MSC’s capability. In addition, one 
sample was treated with MSCs conditioned medium 
(CCM) to assess if factors secreted by MSCs were 
effective. After 24 hs, the pro-inflammatory (IL6 and 
TNFα) and anti-inflammatory (IL10) cytokines in the 
medium were measured with ELISA. The antibodies 
are specific to mouse proteins to avoid interference 
from human cytokines secreted by human 
placenta-derived MSCs.  

All treatments reduced the IL6 concentration 
(Figure S2A). MSCs also decreased TNFα secretion, 
similar to IL6 (Figure S2B). All treatments except 
dexamethasone increased IL10 levels. MSCs were 
better than their conditioned medium (Figure S2C). 
The IL6/IL10 or TNFα/IL10 ratio can be used to 
assess inflammation/anti-inflammation balance. 
Dexamethasone decreased IL6/IL10 from 8 to 3.5, and 
MSCs decreased IL6/IL10 to 1.5 for 1/10 dosage and 
to < 0.5 for 1/5 and 1/1 dosages. The conditioned 
medium reduced the ratio to 1.5 (Figure S2D). 
Dexamethasone decreased TNFα/IL10 from 38 to 18. 
MSCs decreased TNFα/IL10 to ~ 5, while the 

conditioned medium reduced the ratio to ~ 10 (Figure 
S2E). In summary, the data showed that i) MSCs 
could dampen pro-inflammatory cytokine secretion 
while promoting anti-inflammatory or pro-resolving 
cytokine secretion; ii) cells were better than their 
conditioned medium alone and better than 
dexamethasone; iii) there was no huge difference 
between the 1/10, 1/5 and 1/1 dose for MSCs in 
terms of IL6/IL10 or TNFα/IL10 ratios. Thus, we 
decided to perform subsequent experiments using 
MSCs at a 1/10 ratio. 

A1AT modulates cytokine release 
We evaluated A1AT’s ability to suppress 

inflammation in Raw 264.7 macrophages. Inflamed 
cells were treated with A1AT (isolated from human 
plasma) with concentrations ranging from 0.1 to 2.0 
mg/mL. A1AT reduced the IL6 and TNFα levels in a 
dose-dependent manner (Figure S3A-B). A1AT at a 
concentration ≥ 0.5 mg/mL significantly increased 
IL10 expression, while dexamethasone did not (Figure 
S3C). These findings were concordant with previously 
published data [122]. Dexamethasone decreased 
IL6/IL10 from 7.5 to 2.2, while A1AT decreased 
IL6/IL10 to < 0.5 when ≥ 0.5 mg/mL protein was used 
[122]. Dexamethasone decreased IL6/IL10 from 7.5 to 
2.2, which A1AT decreased IL6/IL10 to < 0.5 when ≥ 
0.5 mg/mL protein was used (Figure S3D). 
Dexamethasone decreased TNFα/IL10 from 30 to 15, 
while A1AT decreased the ratio to ~ 2 when the 
protein was ≥ 0.5 mg/mL (Figure S3E). In summary, 
we found that i) A1AT could inhibit pro-inflamma-
tory cytokine secretion while promoting anti- 
inflammatory/pro-resolving cytokine secretion; ii) 
there was no significant difference between 0.5, 1.0, 
and 2.0 mg/mL A1AT in terms of IL6/IL10 or 
TNFα/IL10 ratios. Therefore, 0.5 mg/mL A1AT was 
used to perform subsequent experiments.  

MSCs and A1AT have synergy to modulate 
cytokine release 

Next, we studied if MSCs and A1AT exhibited 
synergistic properties. We treated inflamed Raw 264.7 
macrophages with 0.5 mg/mL A1AT alone, 1/10 
MSCs alone, or their combination. All treatments 
reduced IL6 and TNFα levels while increasing IL10 
levels, with the MSCs + A1AT combination 
demonstrating the most significant effect (Figure 1A). 
Furthermore, we measured 40 inflammation-related 
cytokines using an antibody array. The treatments 
affected the expression of 19 cytokines (Figure S4). 
A1AT reduced the expression of CCL2 (MCP-1), 
CCL5 (RANTES), CCL17, CXCL1, CXCL9, IFNγ, IL13, 
IL15, IL1a and IL6 (Figure S4). MSCs reduced the 
expression of CCL2, CCL17, CXCL9, GM-CSF, IFNγ, 
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IL13, IL15, IL17, IL1a, IL1b, IL6 and TNFα. A1AT and 
MSCs showed strong synergism in regulating the 
expression of CCL5, CCL17, CXCL1, CXCL13, CXCL9, 
G-CSF, GM-CSF, IFNγ, IL10, IL13, IL15, IL1a, IL1b, 
IL2, IL6, IL7, and TNFα (Figure S4). In summary, the 
results showed that i) MSCs and A1AT had 
synergistic effects on regulating many cytokines, and 
ii) the cytokines affected by A1AT and MSCs were not 
identical, indicating their mechanisms of action were 
not identical. 

We then tested whether the findings could be 
replicated using human macrophages. THP-1 
monocytes were first differentiated into macrophages. 
Inflammation was then induced using LPS and IFNγ. 
The effects of MSCs, A1AT and their combination on 
dampening cytokine release (Figure S5) were similar 
to Raw 264.7 macrophages (Figure 1). All treatments 
reduced IL6 and TNFα levels, but only the MSCs + 
A1AT increased IL10 release. The MSCs and A1AT 
combination was much more effective than the 
individual components. The results again showed 
that MSCs and A1AT could concomitantly 
downregulate the pro-inflammatory program and 
upregulate the anti-inflammatory or pro-resolving 
program.  

We also used primary PBMCs to confirm the 
findings. To avoid donor-to-donor variations, we 
used PBMCs pooled from multiple donors. We added 
LPS and IFNγ to activate innate immune cells and 
anti-CD3 and anti-CD28 antibodies to activate T cells. 
All treatments reduced IFNγ and TNFα secretion 
while increasing IL10 production. Again, MSC and 
A1AT combination was much more effective than the 
individual components (Figure 2). dexamethasone 
increased IL10 levels in PBMCs, which is different 
from the findings using macrophages (Figure 1 and 
Figure S5). Therefore, we used flow cytometry to 
assess the cytokine production of monocytes and T 
cells in PBMCs (Figure S6). Monocytes and T cells 
were identified with CD14 and CD3 surface markers, 
respectively. All treatments reduced the %TNFα+ and 
%IFNγ+ monocytes and their mean fluorescence 
intensity (Figure S6A). Only MSCs and MSCs + A1AT 
increased the %IL10+ monocytes and their mean 
fluorescence intensity. Similar results were found for 
T cells, except that only MSCs + A1AT increased the 
%IL10+ monocytes and their mean fluorescence 
intensity. The results indicated that dexamethasone 
boosted IL10 production from cell types other than 
monocytes and T cells in PBMCs.  

 

 
Figure 1. MSCs synergized with A1AT to modulate inflammation in Raw 264.7 macrophages. Cells were stimulated with 100 ng/mL LPS plus 10 ng/mL IFNγ and 
treated with 0.5 mg/mL A1AT or MSCs (MSC/MΦ = 1/10) or their combination. Dexamethasone (Dex, 1 µg/mL) was used as a benchmark. Pro-inflammatory mouse cytokine 
IL6 (A), TNFα (B), and anti-inflammatory mouse cytokine IL10 (C) were measured via ELISA. The IL6/IL10 (D) and TNFα/IL10 ratio (E) was also shown. *:p < 0.05, **:p < 0.01, 
***:p < 0.001. 
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Figure 2. MSCs synergized with A1AT to modulate inflammation in primary human PBMCs. Cells were stimulated with 100 ng/mL LPS + anti-CD3/CD28 
antibodies (positive) and treated with 0.5 mg/mL A1AT or MSCs (MSC/PBMC = 1/10) or their combination for 24 hs. Dexamethasone (Dex, 1 µg/mL) was used as a benchmark. 
PBMCs without activation and treatment were used as a negative control. Pro-inflammatory human cytokine IL6 (A), TNFα (B), and anti-inflammatory human cytokine IL10 (C) 
were measured via ELISA. The IL6/IL10 (D) and TNFα/IL10 ratio (E) was also shown. *:p < 0.05, **:p < 0.01, ***:p < 0.001. 

 
Furthermore, we measured 40 human 

inflammation-related cytokines in the PBMCs 
medium using an antibody array (Figure S7). The 
treatments affected the expression of 20 cytokines. 
MSCs reduced the expression of CCL1, CCL5 
(RANTES), CXCL13, IFNγ, IL1b, IL2, IL6, IL7 and 
IL11, while increased IL4 production. A1AT reduced 
the expression of CCL1, CCL5, CXCL13, CXCL9, 
G-CSF, CM-CSF, IFNγ, IL12p40, IL1ra, IL1a, IL1b, IL2, 
IL6, IL7, IL11 and M-CSF, while increased IL10 and 
IL4 production. A1AT and MSCs showed a strong 
synergy in regulating the expression of CCL1, CCL5, 
G-CSF, CM-CSF, IFNγ, IL10, IL12p40, IL1ra, IL1a, 
IL1b, IL2, IL6, IL7, IL8, IL11, M-CSF and TNFα (Figure 
S7). The results confirmed the findings using 
macrophages that i) MSCs synergized with A1AT in 
regulating many cytokines, and ii) the cytokines 
affected by A1AT and MSCs were not identical.  

MSCs synergize with A1AT to modulate 
neutrophil ROS and NETs production 

MSCs and A1AT each can inhibit ROS and NETs 
production [20,123]. We hypothesized that combina-

tion therapy would provide synergistic anti-ROS and 
anti-NET properties when co-incubated with 
neutrophils. Indeed, MSCs + A1AT demonstrated 
significant synergism in reducing ROS production 
(Figure 3A-B) and NET production (Figure 3C-D). All 
treatments also reduced IL6 and TNFα concentrations 
in the culture medium while increasing the 
concentration of IL10. In addition, the MSC and A1AT 
combination worked much better than each treatment 
alone (Figure S8). In summary, MSCs and A1AT 
showed a substantial synergy to modulate inflamma-
tion and ROS and NETs production in neutrophils.  

MSCs synergize with A1AT to modulate 
macrophage phagocytosis and inflammation 
pathways 

Severe inflammation compromises phagocytosis 
by innate immune cells, preventing pathogen 
clearance and inflammation resolution [124–126]. 
MSCs and A1AT can boost macrophage phagocytosis 
[33,34,36,37,40–44,95,127]. We thus tested if MSCs and 
A1AT synergize to enhance phagocytosis in 
macrophages and neutrophils. We measured the % of 
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cells phagocytosing E. Coli particles, mean 
fluorescence intensity (MFI) per cell for all cells, and 
MFI per cell for cells phagocytosing particles. MSCs or 
A1AT alone did not significantly increase any of these 
measurements. However, MSCs plus A1AT led to a 
substantial increase in all these parameters in 
macrophages (Figure 4A-D) and neutrophils (Figure 
4E-H).  

Nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-κB) and the interferon regulatory 
factors (IRF) signaling are critical components of 
pro-inflammatory pathways. Raw 264.7 and THP-1 
cells engineered to express a secreted embryonic 
alkaline phosphatase (SEAP) reporter for the NF-κB 
pathway and a secreted luciferase reporter for the IRF 
pathway were used to evaluate if MSCs and A1AT 

could regulate these pathways. THP-1 monocytes 
were differentiated into macrophages before testing. 
MSCs and A1AT inhibited both pathways in both 
macrophage types, again demonstrating strong 
synergistic effects (Figure S9).  

MSCs synergize with A1AT to suppress 
inflammation and promote inflammation 
resolution in vivo 

We then used the LPS-induced acute lung injury 
and inflammation mouse model to test if the in vitro 
results could be replicated in vivo. Treatments were 
administered 30 mins after the injury (Figure 5A). A 
lethal dosage (20 mg LPS/kg body weight) was 
administrated to the first cohort of mice for survival 
tests. All mice died in 3 days without treatment. MSCs 

 

 
Figure 3. MSCs and A1AT combination treatment reduced neutrophil ROS and NETs production. HL-60 cells derived neutrophils were stimulated with 100 nM 
PMA and treated with 0.5 mg/mL A1AT or MSCs (MSC/neutrophil = 1/10) or their combination for 4 hs. Reactive oxygen species (ROS) (A-B) and neutrophil extracellular traps 
(NETs) production (C-D) were analyzed. *:p < 0.05, **:p < 0.01, ***:p < 0.001.  
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or A1AT alone increased the survival rate, but only 
their combination wholly protected mice from death 
(Figure 5B). Furthermore, mice with the combination 
treatment had significantly less body weight 
reduction (Figure 5C). A non-lethal dosage (10 mg 
LPS/kg body weight) was administrated to the 
second cohort of mice to test inflammation and tissue 
healing. Tissues were harvested on day 3 for analysis. 
First, we analyzed lung injury via H&E staining. The 

lung injury was scored based on five criteria, 
including i) the number of neutrophils in alveolar 
space; ii) the number of neutrophils in interstitial 
space; iii) the amount of hyaline membranes; iv) the 
amount of proteinaceous debris in airspaces, and v) 
the alveolar septal thickening. The treatment groups 
had much less lung injury. The combination therapy 
group showed the least tissue injury (Figure 5D-E).  

 

 
Figure 4. MSC and A1AT combination treatment enhanced phagocytosis in THP-1 derived macrophages (A-D) and HL-60 cells derived neutrophils (E-H). Macrophages were 
stimulated with 100 ng/mL LPS plus 10 ng/mL IFNγ for 24 hs. Neutrophils were stimulated with 100 nM PMA for 4 hs. Cells were treated with 0.5 mg/mL A1AT or MSCs 
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(MSC/MΦ = 1/10) or their combination during the stimulation. E. coli particles were added for 3 hs after treatment. (A, E) E. coli particles emitted green fluorescence after being 
phagocyted. (B, F) The % E. coli+ cells. (C, G) MFI per cell for all cells. (D, H) MFI per cell for cells with E. coli particles. *:p < 0.05, **:p < 0.01, ***:p < 0.001.  

 

 
Figure 5. MSCs synergized with A1AT to improve survival rate and reduce lung injury in mice. (A) Illustration of the model. (B) The survival rate and (C) body 
weight development. N = 6. (D) H&E staining and (E) lung injury scores. The lung injury scores were calculated based on the five criteria shown in (D). *:p < 0.05, **:p < 0.01, 
***:p < 0.001. 
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Figure 6. MSCs and A1AT synergized in reducing total protein (A) and pro-inflammatory cytokines while increasing anti-inflammatory cytokine IL10 (B-F) in BALF. *:p < 0.05, 
**:p < 0.01, ***:p < 0.001. 

 
We harvested the bronchoalveolar lavage fluid 

(BALF) for protein and immune cell analyses. A high 
total protein concentration indicates the disruption of 
the endothelium and epithelium. MSCs and A1AT 
reduced the total protein level, and their combination 
worked significantly better (Figure 6A). Similar to the 

in vitro results, MSCs and A1AT reduced IL6 and 
sTNFαR levels while increasing IL10 levels 
significantly. Their combination was much more 
effective than the individual components (Figure 
6B-F). We measured 40 inflammation-related 
cytokines with an antibody array. The treatments 
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affected the expression of 21 cytokines. MSCs and 
A1AT showed a strong synergy on regulating the 
expression of CCL5, CXCL1, CXCL9, IFNγ, IL10, 
IL12p70, IL15, IL17, IL1a, IL1b, IL2, IL3, IL4, IL5, IL6, 
IL7, Leptin and TNFα (Figure 7A). The cytokine array 
results from BALF (Figure 7A), in vitro mouse 
macrophage study (Figure S4), and in vitro human 
PBMCs study (Figure S7) were similar (Figure 7B).  

We also analyzed immune cells in BALF. MSCs, 
A1AT, and especially their combination reduced the 
number of total cells, macrophages, and neutrophils 
in BALF. The MSC + A1AT treatment functioned 
better than the individual components (Figure 8A-D). 
The M1/M2 ratio of macrophages was reduced by all 
treatments (Figure 8E). We used TUNEL staining to 
identify dead cells in lung tissue. Both MSCs and 
A1AT reduced the number of dead cells. Dead cells 
were scarce in the combination treatment group 
(Figure 8F-G).  

Discussion 
Due to their unique ability to mitigate 

inflammation, boost normal immunity, and promote 
inflammation resolution and tissue healing, MSCs 
have been extensively studied in clinical trials for 
treating severe inflammatory diseases, such as ARDS, 
sepsis, GvHD, stroke, spinal cord injury, myocardial 
infarction, multiple sclerosis, organ transplantation, 
rheumatoid arthritis, Crohn's, systemic lupus 
erythematosus, ulcerative colitis and COVID-19[53–
65]. A meta-analysis including 55 randomized clinical 
studies with 2696 patients reported that MSCs induce 
minor adverse effects while significantly reducing the 
risk of death [52]. Additionally, no signs of increased 
tumorgenicity and pro-thrombotic effect were 
reported [52]. There are about 10 clinical studies on 
using MSCs to treat ARDS and sepsis [72]. Published 
results show MSCs are safe and effective in reducing 
inflammation, epithelial and endothelial damage, and 
risk of death [55–57,59,62–65,128]. Since the 
pandemic, > 106 registered clinical trials using MSCs 
to treat severe COVID-19 patients have been initiated 
[66–69,71,128–135]. Published data show that MSCs 
can reduce the levels of inflammation biomarkers, 
pro-inflammatory cytokines, and NETs while 
increasing the levels of anti-inflammatory cytokines 
and reducing mortality and morbidity significantly 
[66,136]. Further, critically ill patients benefitted more 
from MSC treatment than non-critically ill patients. 
This finding indicates an additional, unique 
characteristic of MSCs: they may be able to 
appropriately respond to the level of inflammation 
[130] and are suitable for treating severely ill patients 
[69].  

A1AT is used to treat alpha-1 antitrypsin 
deficiency [115,116]. A1AT has also been studied for 
treating COVID-19[117–121]. Clinical data shows that 
A1AT concentration is elevated in all COVID-19 
patients as a mechanism to counteract inflammation. 
However, the A1AT response alone is insufficient to 
resolve the cytokine storm [118]. The IL6/A1AT ratio 
is significantly higher in severe patients compared to 
middle patients [118]. A higher IL6/A1AT predicts a 
prolonged ICU stay and higher mortality [118]. An 
improvement in A1AT/IL6 is associated with better 
clinical outcomes [118]. A published clinical study 
finds that A1AT injection can significantly reduce 
blood IL6 and sTNFR1 levels [120,121]. However, 
clinical data show that MSCs or A1AT alone are not 
potent enough to completely resolve hyperinflam-
mation and prevent organ damage [66,120,121,136]. 
Our data show that MSCs and A1AT demonstrate 
strong synergy in suppressing pro-inflammatory 
cytokines, pathways, and NETosis while boosting 
anti-inflammatory/pro-resolving factors, normal 
immunity, and tissue healing. Our study provides 
strong evidence to support the combined use of MSCs 
and A1AT for treating severe inflammation in diverse 
disease states.  

Complex networks of cells, cytokines, and 
signaling pathways are involved in hyperinflam-
mation and cytokine storm [5]. Macrophages are 
major cytokine producers [137–140]. Our data 
demonstrate that MSCs and A1AT can individually 
suppress cytokine release from inflamed macro-
phages and monocytes (Figure 1-2 and Figure S1-7), 
confirming previously reported results [19,33–36]. We 
further demonstrate that combination therapy 
exceeds the performance of each component (Figure 
1-2 and Figure S1-7). Neutrophils also play a critical 
role in hyperinflammation [141–150]. Activated 
neutrophils release NETs and ROS to eradicate 
bacteria [151]. However, excessive NETs can cause 
collateral damage to the endothelium, epithelium, and 
surrounding tissues [152–154], amplify the cytokine 
storm [152–154], and induce disseminated intravas-
cular coagulation [143,155–158]. Our data show that 
MSCs and A1AT reduce the production of cytokines, 
ROS, and NETs from neutrophils (Figure 3 and Figure 
S8), with combination therapy, again exceeding the 
performance of each individual component. IFNγ 
release from T cells is crucial to activating macro-
phages [137–140]. We show that the combination of 
MSCs and A1AT can significantly suppress TNFα and 
IFNγ production by T cells (Figure S6). In short, MSCs 
can synergize with A1AT to effectively modulate the 
major immune cell types involved in hyperinflam-
mation.  
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Figure 7. (A) MSC and A1AT combination treatment reduced pro-inflammatory cytokines while increasing anti-inflammatory cytokines in BALF as measured using an 
inflammation antibody array. Healthy: healthy mouse sample. (B) Heatmaps of cytokine levels in Raw 264.7 medium (from Figure S4), PBMCs medium (from Figure S7), and BALF 
(from Figure 7A). For each cytokine, the highest expression is set as 1 (red). Other groups are normalized to the highest expression. *:p < 0.05, **:p < 0.01, ***:p < 0.001. 

 
Cytokines IFNγ, IL1, IL6, TNFα, and IL18 play a 

central role in hyperinflammation [5]. IFNγ is mainly 
produced by T cells and NK cells and is critical for 
activating macrophages [137–140]. A recent study 
finds that IFNγ and TNFα synergistically induce 
cytokine shock, MODS, and mortality in mice [159]. 
IL1a/1b bind to IL1 receptors and activate NF-kB to 
express multiple pro-inflammatory cytokines 
[160,161]. IL6 acts on both immune and non-immune 
cells [162–165]. IL6 causes inflammation in endothelial 
cells, leading to barrier function loss, vascular 
permeability, hypotension, ARDS, and MODS. TNFα, 
a potent, multifunctional, pro-inflammatory cytokine, 
plays a crucial role in a cytokine storm, as shown by 
the effectiveness of anti-TNF therapies in certain 
cytokine storm conditions [166–168]. IL10 inhibits the 
production of TNFα, IL1, IL6, and IL12 and promotes 
inflammation resolution [169,170]. Our data show that 
MSCs synergize with A1AT to simultaneously 
modulate the major immune cells, cytokines, and 
pathways involved in severe inflammation (Figure 7 
and Figure S4-7), implying an advantage of this 
therapy over targeted biologic agents [5]. Neutralizing 
a particular cytokine with targeted biologics may not 
always be effective since there is redundancy in pro- 
and anti-inflammatory pathways [5].  

It should be noted that cytokines modulated by 
MSCs and A1AT are not identical (Figure 7 and 
Figure S4-7), indicating that the cell types and 
signaling pathways affected by MSCs and A1AT may 
have differences. This may partly explain their 

synergism. Our data from mouse macrophages, 
human macrophages, and PBMCs are congruent in 
demonstrating the robust efficacy and synergism 
between MSCs and A1AT (Figure 1-8 and Figure 
S2-9). Furthermore, the in vivo data agree well with 
the in vitro results, indicating that the mechanisms of 
action in vivo can be modeled by the in vitro assays.  

The NF-kB pathway plays a pivotal role in 
inflammation and cytokine storm [171,172]. It can be 
activated by various ligand-receptor binding such as 
the binding of LPS to Toll-like receptor 4 (TLR4), the 
binding of single-stranded viral RNA to TLR7/8 and 
double-stranded viral RNA to TLR3, and the binding 
of IL1 and TNFα to their corresponding receptors 
[171,172]. These lead to the p50/p65 protein 
translocation to the nucleus to initiate the expression 
of many pro-inflammatory cytokines, chemokines, 
adhesion molecules, and growth factors [171,172]. 
Inhibiting the NF-kB pathway can significantly 
reduce the cytokine storm, ARDS, MODS, and 
mortality in animal models with different triggers 
[171,172]. Glucocorticoids such as dexamethasone and 
immunosuppressive agents such as Cyclosporin A 
and tacrolimus are potent NF-kB blockers; however, 
they have significant adverse effects [173–175]. The 
IRF pathways also contribute to a cytokine storm. 
Knocking down the IRF3 and ISGF3 complex in 
myeloid cells significantly reduces inflammation and 
mortality in LPS-induced severe inflammation in mice 
[176,177]. MSCs can inhibit NF-kB signaling [178–
181], which is confirmed by our study. Additionally, 
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we show that the MSCs synergize with A1AT to block 
both pathways effectively (Figure S9). 

An overwhelming pathogen burden often 
triggers hyperinflammation. Phagocytosis, a major 
way to clear pathogens, thus represents a valuable 
therapeutic target to dampen and resolve severe 
inflammation [125]. Increasing monocytes and 
macrophage phagocytosis can reduce bacterial 
burden, cytokine levels, MODS, and mortality 
[126,182,183]. Clinically, immunoglobulins infused to 
opsonize and neutralize bacteria and bacterial 

products have met modest success [184–187]. G-CSF 
and GM-CSF have also been studied to increase the 
neutrophil and macrophage numbers to enhance 
bacterial clearance with similarly modest success 
[188–191]. MSCs can boost phagocytosis and bacterial 
killing of macrophages, thus reducing bacterial 
burden [34,36,37,40–44]. Our data show that 
combined MSCs and A1AT can maximally enhance 
phagocytosis (Figure 4). 

Severe inflammation causes ARDS and MODS 
[5,192–196]. Circulating cytokines upregulate 

 
Figure 8. MSCs synergized with A1AT to reduce total cell (A-B), macrophage (C), and neutrophil number (D) in BALF. The M1/M2 macrophage ratio was reduced by all 
treatments (E). *:p < 0.05, **:p < 0.01, ***:p < 0.001. (F-G) MSCs synergized with A1AT to reduce cell death as identified via TUNEL staining. 

  



Theranostics 2023, Vol. 13, Issue 9 
 

 
https://www.thno.org 

2856 

adhesion molecules such as VCAM-1 and ICAM-1 on 
the endothelium surface while downregulating the 
tight junction proteins. The adhesion of leukocytes to 
the endothelium and their trans-endothelium 
migration is enhanced during severe inflammation. 
Consequently, large amounts of plasma proteins, 
cytokines, and immune cells are leaked into 
parenchymal tissues. They activate the resident 
immune cells, causing inflammation in distal 
tissues/organs. The released cytokines and 
chemokines recruit more immune cells to the tissues. 
Cytokines, ROS, and proteases cause significant tissue 
damage. Our data show that MSCs and A1AT reduce 
BALF's total protein and immune cells (Figure 8), 
indicating they can protect the endothelial and 
epithelial barrier functions. In addition, the total 
TUNEL+ cells were significantly reduced. Thus, MSCs 
and A1AT synergize to protect the endothelium, 
epithelium, and parenchymal tissues. However, since 
the tissues were harvested 3 days after injury and 
treatment, the improvement in tissue structure may 
be because MSCs and A1AT accelerated the 
inflammation resolution and tissue healing. The 
higher M2/M1 macrophage ratio and low dead cell 
number in treatment groups may support this 
mechanism (Figure 8). Future work should clarify the 
treatment's action model and time.  

There are a few limitations to the study. First, 
MSCs and A1AT were only tested in a sterile acute 
lung injury and inflammation mouse model. Whether 
the treatment can effectively mitigate severe 
inflammation caused by infection is unclear, although 
the features of severe inflammation caused by 
different triggers are similar. Infection models such as 
cecal ligation and puncture mice can be used to test 
the treatment in the future. Testing with large animal 
models will also be necessary before clinical studies. 
Second, the molecular mechanisms leading to the 
MSCs and A1AT synergy are not fully understood. 
Our data show that MSCs synergize with A1AT to 
modulate the NF-kB and IFR pathways. We expect 
there are other pathways contributing to the synergy. 
Future studies can apply RNA-Seq technology to fully 
characterize the changes in global gene expressions 
and signaling pathways caused by the treatments.  

In summary, we showed that the MSCs and 
A1AT combination was much more effective than 
individual components in i) downregulating 
pro-inflammatory cytokines while upregulating 
pro-resolving cytokines, ii) turning off the NF-kB and 
IRF inflammation pathways, iii) inhibiting neutrophil 
ROS and NETs production, iv) enhancing 
macrophage phagocytosis in vitro, and v) reducing the 
levels of pro-inflammatory cytokines, neutrophils, M1 
macrophages, M1/M2 ratio, and tissue injury and 

mortality significantly in a mouse lung injury model. 
Our results provide evidence supporting the com-
bined use of MSCs and A1AT as anti-inflammatory 
therapy. Further investigations are warranted to 
investigate their combined utility in treating human 
disease. 

Materials and Methods 
Study design 

The study was designed to investigate the 
combinational use of MSCs and A1AT for modulating 
severe acute inflammation response in vitro and in 
vivo. All experiments performed in this study had at 
least three replicates to demonstrate biological 
reproducibility and to ensure adequate statistical 
power for comparisons. All animals were randomly 
allocated to the control and treatment groups. Details 
for the number of mice, number of cells used, 
duration, and statistical tests are described below and 
in the figure legends. 

MSC isolation 
Full-term human placentas were purchased from 

ZenBio Inc. The procedure for isolating and 
expanding MSCs is similar to a published protocol 
with minor modifications [197,198]. Briefly, the 
placenta was washed and cut into 0.5 cm3 pieces that 
were treated with TrypLE select solution (Gibco) at 37 
˚C for 30 mins for partial digestion. 15-20 partially 
digested pieces were then plated in a 75 cm2 tissue 
flask with 9 mL of EBM-2 complete cell culture 
medium (EBM-2 + 10% FBS + 1% antibiotic). The 
flasks were placed in an incubator without 
disturbance for three days to allow tissues to adhere 
to the flask surface. After that, the medium was 
changed every three days until cells reached 70% 
confluence. These cells were considered passage 0 
(P0). They were cryopreserved or subcultured at a 
seeding density of 5,000 cells/cm2 with EBM-2 
complete medium.  

MSC surface marker characterization  
P4 MSCs were characterized with the Human 

Mesenchymal Stem Cell Verification Flow Kit (R&D 
Systems), including antibodies for positive markers 
CD90, CD73, CD105, and negative markers CD45, 
CD34, CD11b, CD79A, HLA-DR, as well as the 
Human Mesenchymal Stem Cells Multi-Color Flow 
Kit (R&D Systems) including antibodies for positive 
markers CD44, CD106, CD146, and CD166. Cells were 
analyzed with the BD FACSCanto™ II System. 

MSC differentiation 
P4 MSCs were assessed using the Human 

Mesenchymal Stem Cell Functional Identification Kit 
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(R&D System) following the product instruction. 
After 21 days, cells were fixed and stained with 
FABP-4 antibody to identify adipocytes and 
osteocalcin antibody to identify osteocytes.  

Immune cell culture 
Raw 264.7 cells (RAW-dual cells from 

InvivoGen) were cultured in DMEM (with 4.5 g/L 
glucose, 2 mM L-glutamine, 10% heat-inactivated FBS, 
100 µg/mL Normocin and 1% Pen-Strep) at a seeding 
density of 1.5 × 104 cells/cm2. The medium was 
renewed twice a week. THP-1 cells (THP1-dual cells 
from InvivoGen) were maintained in RPMI 1640 (with 
2 mM L-glutamine, 25 mM HEPES,10% heat- 
inactivated FBS, 100 μg/mL Normocin, and 1% 
Pen-Strep). HL-60 cells were cultured in IMEM with 
20% FBS. 

Macrophage inflammation assay 
Raw 264.7 cells were stimulated with 100 ng/mL 

LPS (O111:B4, Sigma) plus 10 ng/mL murine IFNγ 
(Peprotech). Human M0 macrophages were 
differentiated from THP-1 monocytes by incubating 
cells with 100 ng/mL PMA (Sigma) for 24 hs. 
Macrophages were then stimulated with 100 ng/mL 
LPS plus 10 ng/mL human IFNγ. For treatment, 
A1AT was added to the medium, and P4 MSCs were 
co-cultured with macrophages. Condition medium 
was harvested after 18 hs, and cytokines were 
measured by ELISA. The quantitative levels of 40 
mouse (for Raw 264.7 and BALF) or human (for 
PBMCs) cytokines were evaluated with the Mouse or 
Human Inflammation Arrays (RayBiotech) following 
the product instructions. Array scanning and data 
extraction were done by RayBiotech using InnoScan 
700/710 Microarray Scanner (Innopsys).  

Neutrophil ROS production 
HL-60 cells were differentiated into 

neutrophil-like cells with 0.1 μM ATRA and 1.25% 
DMSO in RPMI1640 (with 10% FBS and 2 mM 
L-Glutamine) for 5 days. Cells were preloaded with 
5 μM CellROX deep red reagent (Invitrogen) for 
15 mins at 37 °C. After washing, cells were 
resuspended in fresh medium and seeded into 96-well 
plates (100 µL of 200,000 cells/mL/well). Next, cells 
were activated with 100 nM PMA and treated with 
0.5 mg/mL A1AT or 1/10 MSCs or their combination. 
The fluorescent and phase contrast images were taken 
with an FV3000 confocal laser scanning microscope 
(Olympus). 

Neutrophil NETs production 
The Incucyte Cytotox Red Dye was used to 

measure NETs production. HL-60 cells were 
differentiated into neutrophil-like cells with 0.1 μM 

ATRA and 1.25% DMSO in RPMI1640 (with 10% FBS 
and 2 mM L-Glutamine) for 5 days. Cells were 
preloaded with Cytotox Red Dye and seeded into 
96-well plates (100 µL of 200,000 cells/mL/well). Cells 
were immediately stimulated with PMA and treated 
with 0.5 mg/mL A1AT or 1/10 MSCs or their 
combination. The fluorescent and phase contrast 
images were taken by the FV3000 confocal laser 
scanning microscope (Olympus). 

PBMC flow cytometry assay 
Pooled human PBMCs were purchased from 

Zenbio and recovered overnight before stimulation. 
LPS (100 ng/mL) and 25 uL human CD3/CD28 
activator solution / million cells and the treatments 
were added for 72 hours. Then PBMCs were cultured 
with 1 x Cell Stimulation Cocktail plus protein 
transport inhibitors (Invitrogen) for 4 hs. Single cells 
were harvested and stained with anti-human 
CD3-APCcy7 and CD14-FITC for 15 mins at room 
temperature. After that, the cells were fixed and 
permeabilized with the BD Cytofix/Cytoperm™ 
Fixation/Permeabilization Solution Kit (BD 
Bioscience) and labeled intracellularly with 
anti-human IFNγ-APC, TNFα-BV605 (Biolegend) and 
IL10-PE (ebioscience). Data were collected on Attune 
NxT Flow Cytometer (Thermofisher) and analyzed 
using FlowJo software. 

Phagocytosis analysis 
FITC-labeled pHrodo E. coli Bioparticles® 

Conjugate (Thermo Fisher) were used to assess 
phagocytosis of THP-1 derived macrophage and 
HL-60 derived neutrophils. The stimulation and 
treatment methods were described in their 
inflammation assay paragraph. E. coli particles were 
resuspended in PBS and coated with rabbit polyclonal 
IgG antibodies (Escherichia coli BioParticles™ 
Opsonizing Reagent, Thermo Fisher) at 37 °C for 1 h. 
Next, cells were incubated with 0.1 mg/mL coated E. 
coli particles at 37 °C for 3 hs. Non-phagocytosed E. 
coli bioparticles were removed by washing with PBS 
(PH = 7.4). Next, cells were fixed with 4% PFA, 
permeabilized with 0.05% TritonX-100, and stained in 
DAPI solution. Cells were imaged with Olympus 
FV3000 confocal microscope and analyzed using 
ImageJ software. 

Acute lung injury and inflammation mice 
All animal experiments were approved by the 

Animal Care and Use Committee of the University of 
Nebraska-Lincoln. 10-week old male C57BL/6 mice 
(25 g) were purchased from Jackson Lab. For A1AT 
treatment, 2 mg A1AT (in 200 µL PBS) was injected 
intraperitoneally (i.p.) at 48 hs, 24 hs, and 0 h before 
the LPS challenge (three doses). Mice were 
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anesthetized with ketamine (120 mg/kg body weight 
or BW, i.p.) and xylazine (16 mg/kg BW, i.p.). Mice 
were placed in the prone position. A 22 gauge (G) 
venous catheter was gently inserted into the trachea 
along the tongue’s root in the vertical direction. 
Approximately 10 mm of the catheter was inserted. 
50 µL of LPS was instilled. For survival rate assay, 
20 mg LPS/kg BW was used. For lung tissue injury 
and cytokine production studies, 10 mg LPS/kg BW 
was used. Using a pipette, 1 × 106 MSCs were instilled 
via the catheter 30 mins after the LPS challenge. Next, 
1 mL air was instilled to ensure LPS and cells were 
distributed well in the lung. The mouse's upper body 
was kept upright for 30 seconds to avoid fluid 
leakage. The body temperature was maintained at 
37 °C until full awareness. The mouse was transferred 
to ventilated cage individually with free access to 
food and water. The survival rate and body weight 
were monitored and recorded twice a day. 

Bronchoalveolar lavage fluid (BALF) and tissue 
harvest 

Anesthesia was induced. The trachea was 
carefully exposed, and a 22 G venous catheter was 
inserted after a 5 mm cut to the trachea. 0.5 mL PBS 
was instilled, followed by 0.1 mL of air. After 60 s, the 
fluid was aspirated. This process was repeated three 
times to collect all BALF. Cells in BALF were 
harvested by centrifuging at 300 g for 10 mins. BALF 
cells were resuspended using 90% FBS plus 10% 
DMSO and frozen in a Mr. Frost at - 80 °C before 
long-term storage in liquid nitrogen. The supernatant 
was frozen at - 80 °C for cytokine analysis. After 
collecting BALF, lungs and other organs were 
harvested and fixed in 4% PFA for histology analyses.  

Histology and immune staining 
The fixed tissues were embedded in paraffin and 

sectioned (5 μm thickness). Sections were dewaxed 
with the Leica Auto Stainer XL and soaked in EDTA 
pH 8.0 (Abcam) or 10 mM Sodium Citrate solution pH 
6.0 (Invitrogen) for antigen retrieval. The TBS 
superblock blocking buffer (Thermo Fisher) was 
applied to the slide for 1 h, followed by primary 
antibody incubation overnight at 4 °C. Slides were 
washed with PBS and incubated with secondary 
antibody and DAPI at room temperature in the dark.  

BALF cells staining 
Cells collected from BALF were thawed, 

resuspended in PBS, and fixed in 4% PFA for 20 mins. 
Next, cells were washed in dd H2O, placed on a 
Poly-Prep Slide (Sigma), and heated until dry. Slides 
were blocked and stained as the tissue immune 
staining.  

TUNEL staining 
The One-step TUNEL In situ Apoptosis AF 594 

Kit (Elabscience) was used. Paraffin sections were 
dewaxed and treated with 1 x proteinase K solution at 
37 °C for 20 mins. Next, sections were labeled by TDT 
reaction mixture for 2 hs at 37 °C. The reaction was 
stopped with PBS and stained with DAPI before 
mounting and imaging. 

Statistical analysis  
All the data were analyzed using GraphPad 

Prism 8 statistical software and shown as mean ± 
standard error of the mean. P value was determined 
by one-way analysis of variance (ANOVA) for 
comparison between the means of three or more 
groups, log-rank test for survival, or unpaired 
two-tailed t-tests for two groups analysis. The 
significance levels are indicated by p-value, *: p < 0.05, 
**: p < 0.01, ***: p < 0.001. 

Supplementary Material  
Supplementary figures. 
https://www.thno.org/v13p2843s1.pdf  
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