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Abstract

Myocarditis can result from various infectious and non‐infectious causes that can

lead to dilated cardiomyopathy (DCM) and heart failure. Among the infectious

causes, viruses are commonly suspected. But the challenge is our inability to

demonstrate infectious viral particles during clinical presentations, partly because

by that point, the viruses would have damaged the tissues and be cleared by the

immune system. Therefore, viral signatures such as viral nucleic acids and virus‐
reactive antibodies may be the only readouts pointing to viruses as potential pri-

mary triggers of DCM. Thus, it becomes hard to explain persistent inflammatory

infiltrates that might occur in individuals affected with chronic myocarditis/DCM

manifesting myocardial dysfunctions. In these circumstances, autoimmunity is sus-

pected, and antibodies to various autoantigens have been demonstrated, suggesting

that immune therapies to suppress the autoimmune responses may be necessary.

From this perspective, we endeavoured to determine whether or not the known

viral causes are associated with development of autoimmune responses to cardiac

antigens that include both cardiotropic and non‐cardiotropic viruses. If so, what

their nature and significance are in developing chronic myocarditis resulting from

viruses as primary triggers.
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1 | INTRODUCTION

The immune system evolves to fight infections. The immune response,

which generally refers to the reaction of the immune system to mi-

crobial infections, requires the participation of various cell types that

are grouped into innate and adaptive immune cells. The innate immune

cells include phagocytes (neutrophils and monocytes/macrophages),

dendritic cells (DCs), natural killer (NK) cells, gamma delta (γδ) T cells,

NK‐T cells, B1‐cells, and innate lymphoid cells (ILCs). Of these, the

roles of phagocytes and, to some degree, NK cells and ILCs have been

described in both invertebrates and vertebrates, implying that these

are the first responders to infections in all species.1–4 The adaptive

immune cells, B cells and T cells, express distinct antigen receptors that

are critical to prevent future attacks by generatingmemory responses,

but their distinct roles have been described only in vertebrates.5,6

Nevertheless, immunecells arenot expected to recognise self‐antigens
as foreign, and such faulty recognition can lead to autoimmunity. More

than 80 autoimmune diseases (AIDs) are known to affect humans; they

are the leading cause of death among young and middle‐aged women

and represent the third most common category of chronic diseases

affecting approximately 14.7 to 23.5million people (~8%) in theUnited

States.7–9 Generally, viruses are common suspects in AIDs, and

myocarditis is no exception. Myocarditis‐affected individuals could

recover, but a proportion of them can develop chronic myocarditis

leading to dilated cardiomyopathy (DCM), in which autoimmunity is

suspected. In this review, we present our views on the significance and

implications of cardiac autoimmunity in the development of chronic

myocarditis resulting from theviruses known to causemyocarditis that

include both cardiotropic and non‐cardiotropic viruses.

2 | AIDs ARE DISORDERS OF THE ADAPTIVE
IMMUNE SYSTEM

Unlike autoinflammatory diseases of the innate immune system,10,11

AIDs are primarily mediated by adaptive immune cells. Essentially, B

and T cells mediate their effector functions independently or cooper-

atively in eliminating invading pathogens. Antibodies produced by B

cells are critical for preventing infections caused by extracellular

pathogens that include some viruses as long they are present outside

the cells. Conversely, T cells are indispensable for eliminating estab-

lished infections that might occur with intracellular pathogens,

including viruses. Two subsets of T cells cooperatively eliminate

intracellular pathogens. While exogenously acquired, phagosome‐
originated microbial antigens are presented to CD4 T cells in the

context ofMajorHistocompatibilityComplex (MHC) class IImolecules;

cytoplasmic proteins, importantly viral antigens generated endoge-

nously, are presented to CD8 T cells through the class I pathway.

However, their effector functions differ in that antigen‐sensitised CD4
T cells facilitate their effects by producing cytokines, as opposed to

effector CD8T cells, termed cytotoxic T lymphocytes (CTLs), which kill

the infectedcells directly. The functionalities of theseeffector adaptive

immune cells remain the same, whether directed towards self‐ or

foreign antigens. Thus, when self‐tolerance is broken, autoimmune

responses can be mediated by autoantibodies, autoreactive T cells, or

both. However, it is to be noted that detecting such responses does not

necessarily mean that AIDs are manifested clinically,12,13 raising the

question of how pathogenic autoimmune responses could be gener-

ated in those affected.

To illustrate this viewpoint, we have contrasted the patterns of

immune responses between microbial and self‐antigens, thus

providing new insights into our understanding of AIDs (Figure 1). The

healthy immune system can recognise millions of antigenic de-

terminants arising from exposure to a vast array of microbes that

could be pathogenic or non‐pathogenic. Furthermore, humans could

be exposed to millions of microbes or their particles that include

fungal spores, virus‐like and bacteria‐like particles a day.14 Given the

enormity of the surface areas available in the mucosal sites, espe-

cially the gut, estimated to be on the order of 400 m2 germs have

great potential to enter our bodies, but their effects could vary.15

Upon exposure to pathogenic organisms during the first

encounter (termed hit 1), two major outcomes, either acute or

chronic disease states, can be expected (Figure 1, left panel). As the

immune system adapts to an infection, the effector B cells and T cells

facilitate the clearance of a pathogen, and the memory cells gener-

ated during the first encounter can swiftly react to the same

offending agent in subsequent encounters (hit 2 and so on), giving no

opportunity for pathogens to cause disease. When such a response is

derailed or becomes ineffective, pathogens are able to survive, and

chronicity sets in. Conversely, because exposure to non‐pathogenic
microorganisms leads to no disease, immune responses to such mi-

crobes would never be known or investigated. If these are the gen-

eral patterns of anti‐microbial responses, the means by which

patterns of autoimmune responses could be superimposed on anti‐
microbial responses becomes a contentious issue. Unlike foreign

(microbial) antigens, self‐antigens are expressed widely and are

abundantly available, yet the healthy immune system doesn't

recognise these antigens as foreign. However, under the conditions

of autoimmunity (discussed later), a break in self‐tolerance can lead

to the recognition of self‐antigens as foreign, causing the generation

of autoreactive B cells or T cells or both. Whether such responses

follow the pattern of primary (short‐term) anti‐microbial effector

responses or persist forever is hard to determine in real‐life situa-

tions (Figure 1, right panel). Likewise, should memory responses to

self‐antigens be induced, they can potentially continue to contribute

to tissue damage unless checked by immune modifiers.16–19 But, the

critical question is what factors could contribute to the development

of autoimmune responses.

3 | FACTORS IMPLICATED IN THE OCCURRENCE
OF AIDs

The peripheral repertoires of healthy humans may contain a pro-

portion of self‐reactive B cells and T cells, but they remain tolerant.

Detection of these cells does not normally signify any ongoing
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pathological processes. The successful maturation of lymphocytes by

positive selection requires recognition of self‐antigens, but with weak
affinity in the bone marrow for B cells and in the thymus for T cells in

the context of MHC molecules, it is not uncommon to detect self‐
reactive cells in the peripheral compartment, although it has been

suggested that self‐reactive T cells may play a beneficial role in im-

mune homoeostasis.20 However, it has been demonstrated that lack

of expression of self‐antigens in the thymus can facilitate the escape

of autoreactive T cells from central tolerance; cardiac myosin (Myhc)

is one example relevant to viral myocarditis.21–25 Such an escape

mechanism for myosin‐specific T cells can be reversed by transgenic

expression of myosin in the thymus.25 Thus, any faulty presentation

of self‐peptides by MHC molecules can potentially allow T cells

bearing high‐affinity T cell receptors (TCRs) to escape from central

tolerance26; several disease associations have been made with

various human leucocyte antigen (HLA) alleles.27–29 However, sup-

pose the MHC molecules are the primary predisposing genetic ele-

ments. If so, concordance of AIDs occurring in twins would be

expected to be 100%, but that is not the case,30–35 suggesting that

non‐MHC genes could also contribute to the occurrence of AIDs. The

best‐characterised non‐MHC genes are AIRE, FoxP3, FAS, and FAS‐L,
among others.36–38 Furthermore, autoreactive cells are also checked

from reacting to self‐antigens in the periphery by mechanisms that

involve anergy, activation‐induced cell death, and regulatory T cells

(Treg).39 Arguably, it may also be possible that continuous expo-

sure to self‐antigens is critical to maintaining the peripheral toler-

ance.40–42 In support of this notion, we and others have

demonstrated constitutive expression of cardiac antigens such as

Myhc and sarcoplasmic/endoplasmic reticulum Ca2þ‐ATPase (SER-

CA2a) by the antigen‐presenting cells (APCs) in myocarditis‐
susceptible mice, but the animals do not spontaneously develop

myocarditis.43,44 Although genetic susceptibility remains an impor-

tant predisposing factor, it is hard to explain why some individuals

with no genetic defects develop AIDs, leading to a suggestion that

non‐genetic (environmental) factors are also critical, and may include

exposure to pathogens, dysbiosis, geographical locations, sex hor-

mones, etc.13,45,46 Mechanistically, a break in self‐tolerance could

involve multiple pathways (Figure 2). These include molecular mim-

icry, epitope spreading, bystander activation, the release of cryptic

antigens, and activation by superantigens, including antigens derived

from cells undergoing apoptosis or autophagy. Excellent reviews are

available that describe these mechanisms in detail.47–50 All factors

considered, should pathogenic, autoimmune responses be generated

in viral myocarditis, it is critical to determine their nature and the

extent to which cardiac autoimmunity could contribute to chronic

myocarditis and its long‐term sequel, DCM.

4 | CARDIAC AUTOIMMUNITY IN VIRAL
MYOCARDITIS

4.1 | Definitions

Inflammation of the heart muscle layer, the myocardium, is termed

myocarditis, and the diagnosis is made based on histological, immu-

nological, and immunohistochemical parameters. Myocarditis has

F I GUR E 1 Hypothetical mechanisms of outcomes and immune responses between microbial and self‐antigens. Microbes. Exposure to
pathogenic microorganisms for the first time (termed hit 1) can lead to the induction of acute or chronic diseases, shown with red and green

curves, respectively. As the immune system adapts to infection, acquired immune responses are set (blue curve), and upon re‐exposure to the
same pathogen (termed hit 2), memory cells swiftly react to prevent infections while strong memory responses continue to build in such future
encounters. However, pathogens that induce chronic diseases may develop evasive mechanisms leading to their survival. Self‐antigens.
Although non‐reactivity to self is one of the cardinal features of the adaptive immune system, under the conditions of a break in tolerance, the

B cells and T cells can react to self‐antigens (red arrow). But it is unknown whether such responses persist (green curve) or whether they
recede over time, and if they do, it is unclear whether these responses can be continuously reactivated, leading to the induction of memory
responses (blue curve). This figure was created using BioRender.com.
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been identified as the third leading cause (6%) of cardiovascular

deaths in young athletes, next only to coronary artery abnormalities

(17%) and hypertrophic cardiomyopathy (36%).51,52 Myocarditis is a

predominant cause of heart failure in children and young adoles-

cents53–55 and has been linked to the cause of sudden death in young

adults/athletes in up to 12% of cases.55,56 Reports indicate that a

proportion 30% of those affected with myocarditis could develop

DCM.57,58 Likewise, recent studies show that ~50% of clinical di-

agnoses of DCM involve immunohistochemically detectable

myocarditis.59–61 Clinically, DCM can be regarded as an end‐stage
disease. Due to the lack of effective therapeutic options, approxi-

mately half of DCM patients undergo heart transplantations,62 and

children with acute myocarditis have only a 60% likelihood of

transplantation‐free survival at 10 years post‐diagnosis.63 The DCM

disease process is defined by decreased fractional shortening or

ejection fraction and increased left ventricular end‐diastolic diam-

eter, excluding any known cause of myocardial damage, but is usually

associated with cardiomyocyte loss.64 However, if myocarditis is

associated with cardiac dysfunction in DCM patients, the term in-

flammatory cardiomyopathy is used.52,64 In these individuals, if viruses

are detected, the suggested description is inflammatory viral cardio-

myopathy, but in the absence of inflammation, the disease process is

described as viral cardiomyopathy.65

4.2 | Viral causes

Aetiologically, viruses are common suspects in myocarditis and

include a wide range of virus types: cardiotropic (Adenovirus,

Enterovirus, and Echovirus); cardiotoxic (Hepatitis C Virus, Human

Immunodeficiency Virus [HIV], Influenza, and Coronaviruses); vas-

culotropic (parvoB19); and lymphotropic (Cytomegalovirus, Epstein

Barr Virus [EBV], and Human Herpes Virus‐6 [HHV‐6]) (Table 1).200

Pathologically, however, it may be hard to draw a clear distinction

between them because many of these viruses can affect organs other

than the heart. For example, disease associations have been made

with almost all six serotypes of Coxsackie B virus (CVBs) in relation

to the heart, pancreas, brain, lungs, skin, eyes, and liver, among

others.201,202 Notably, myocarditis and/or pancreatitis could be

caused by CVB1 to CVB5.201,202 Thus, systemic responses generated

consequent to the tissue damage in multiple organs may be difficult

to delineate organ‐specifically, which may confound interpretations

of the data. Conversely, cardiotropic viruses may cause relatively

more tissue damage in the heart than in other organs, and the

resulting myocarditis can lead to DCM, but the infectious virions may

or may not be detected in them.203 The only diagnostic signatures

used to implicate viruses as primary triggers of DCM may be sero-

logical (virus‐reactive antibodies) and molecular (viral nucleic acids)

F I GUR E 2 Generalised autoimmune mechanisms. Peripheral repertoires of healthy individuals may have autoreactive B cells, CD4 and
CD8 T cells, but they may remain tolerant, and Treg cells occupy a central role in their maintenance of self‐tolerance. However, in genetically

susceptible individuals, self‐tolerance can be broken under the influence of various environmental factors. While disease associations have
been noted with various Major Histocompatibility Complex (MHC) and non‐MHC genes, infectious and non‐infectious agents can trigger
autoimmune responses that may involve more than one mechanism in the genetically predisposed individuals. First, exposure to microbes

carrying sequences similar to self‐antigens can trigger autoimmunity by producing cross‐reactive immune responses as a result of a confused
immune state. Second, pathogens that have a tropism for specific tissues can lead to the generation of a de novo/fresh repertoire of
autoreactive cells in response to the antigens released from damaged tissue through epitope spreading. Third, although autoreactive cells, if

any, in healthy individuals are not expected to react to self‐antigens, exposure to infections may stimulate antigen‐presenting cells (APCs) to
express costimulatory molecules needed to provoke autoreactive cells to become pathogenic as a result of bystander activation analogous to
friendly cross‐fire. Fourth, superantigens, by being polyclonal T cell activators, can activate self‐reactive cells coincidentally if the autoreactive
cells form a component of T cells targeted by superantigens. Fifth, tissue damage caused by exposure to drugs and chemicals can lead to the
release of modified, cryptic antigens that can be seen by the immune system as foreign by mistake. Sixth, tissue‐specific cell types in various
organs may be continually replenished, and the dying or dead cells can be taken up by the resident APCs, leading to the presentation of self‐
antigens to autoreactive cells that might have pre‐existed as a result of genetic predisposition. In all these scenarios, under the right conditions

(signal‐1, antigen; and signal‐2, costimulatory/inflammatory cytokines), autoreactive cells can become pathogenic, causing tissue destruction
as might happen in various organs such as the heart, liver, pancreas, and brain, among others. This figure was created using BioRender.com.
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TAB L E 1 Autoantibodies and autoreactive T cells detected in viral myocarditis.

Viruses Antigens

Autoantibodies Autoreactive T cells

Ref.Humans Mice Humans Mice

Adenovirus Not reported Not reported 66,67

Chikungunya virus Not reported Not reported 68,69

Cytomegalovirus (humans)/

murine cytomegalovirus

(mice)

Actin ✓ ‐ Not reported 70

Endothelial ✓ ‐ 70

Fibrillary ✓ ‐ 70

Myolemmal ✓ ‐ 70–72

Sarcolemmal ✓ ‐ 71,72

Smooth

muscle

✓ ‐ 70–72

Interfibrillary ✓ ‐ 70–72

Myosin ✓ ✓ (Balb/c, C57Bl/6, C57Bl/10,

Balb/c SM‐LacZ)
73–79

NADH‐D1α10 ‐ ✓ (Balb/c SM‐LacZ) 74

Conducting

tissue

✓ ‐ 70

RAMP1 ‐ ✓ (Balb/c SM‐LacZ) 74

Tropomyosin ‐ ✓ (Balb/c, C57Bl/10, Balb/c

SM‐LacZ)
73–75

Troponin ‐ ✓ (Balb/c, C57Bl/10) 73,75

Unknown ‐ ✓ (Balb/c, C57BL/10, C3H) 80,81

Dengue virus Not reported Not reported 82–85

Ebolavirus Not reported Not reported 86

Epstein‐Barr virus Myolemmal ✓ ‐ Not reported 72

Echovirus Not reported Not reported 87,88

EMCV Vimentin ‐ ✓ (DBA/2) Not reported 89

Enterovirus‐71 Not reported Not reported 90–92

CVBs Actin ‐ ✓ (SWR/Ola, A/J) ‐ ‐ 93–95

Endothelial ✓ ‐ ‐ ‐ 70–72

Fibrillary ✓ ✓(A/J) ‐ ‐ 70–72,96

Linear ‐ ✓(A/J) ‐ ‐ 96

Mitochondrial ✓ ‐ ‐ ‐ 70

Myolemmal ✓ ‐ ‐ ‐ 70–72,97,98

ANT ✓ ✓(A‐strain mice, Balb/c, A/J,

SCID, CVB3W, H3, H3‐10A)
✓ ✓(A/J) 75,98–109

Ap3m2 ‐ ✓(A/J) ‐ ‐ 110

Sarcolemmal ✓ ✓(A/J) ‐ ‐ 70–72,96–98

Smooth

muscle

✓ ‐ ‐ ‐ 70–72

Atg13 ‐ ✓(A/J) ‐ ‐ 110

BCKD ‐ ✓(A/J) ‐ ‐ 75,99,106,107

Bola1 ‐ ✓(A/J) ‐ ‐ 110

Cacnb4 ‐ ✓(A/J) ‐ ‐ 110

(Continues)
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T A B L E 1 (Continued)

Viruses Antigens

Autoantibodies Autoreactive T cells

Ref.Humans Mice Humans Mice

Catip ‐ ✓(A/J) ‐ ‐ 110

Celf6 ‐ ✓(A/J) ‐ ‐ 110

COA4 ‐ ✓(A/J) ‐ ‐ 110

Desmin ‐ ✓(SWR/Ola) ‐ ‐ 94

Ehbp1l1 ‐ ✓(A/J) ‐ ‐ 110

Eif4ebp2 ‐ ✓(A/J) ‐ ‐ 110

Fam170b ‐ ✓(A/J) ‐ ‐ 110

Gatad2a ‐ ✓(A/J) ‐ ‐ 110

Gucy2g ‐ ✓(A/J) ‐ ‐ 110

Hemk1 ‐ ✓(A/J) ‐ ‐ 110

Hsp 60 ‐ ✓(SWR/Ola, A/J) ‐ ‐ 93,94

Hsp 70 ‐ ✓(SWR/Ola) ‐ ‐ 94

Interfibrillary ✓ ‐ ‐ ‐ 70–72

Map7 ‐ ✓(A/J) ‐ ‐ 110

Mtrr ‐ ✓(A/J) ‐ ‐ 110

Mup9 ‐ ✓(A/J) ‐ ‐ 110

Myosin ✓ ✓(SWR/Ola, A/J, A.CA/SnJ, A.

SW/SnJ,

A.BY/SnJ, B10.A/SgSnJ,

Balb/c,

B10.PL/SgSf, B10.A/SgSf,

CBA,

CD‐1, C3H/HeJ)

‐ ✓(A/J, Balb/c) 70,75,94,95,98,99,104,

106,107,111–123

Nfkb1 ‐ ✓(A/J) ‐ ‐ 110

Phldb1 ‐ ✓(A/J) ‐ ‐ 110

Pik3ap1 ‐ ✓(A/J) ‐ ‐ 110

Ppp1r14c ‐ ✓(A/J) ‐ ‐ 110

Ptges3 ‐ ✓(A/J) ‐ ‐ 110

Ptpn18 ‐ ✓(A/J) ‐ ‐ 110

Rasd2 ‐ ✓(A/J) ‐ ‐ 110

SERCA2a ‐ ‐ ‐ ✓(A/J) 104,113

Snrnp200 ‐ ✓(A/J) ‐ ‐ 110

Spin1 ‐ ✓(A/J) ‐ ‐ 110

Tropomyosin ‐ ✓(SWR/Ola, Balb/c, CBA) ‐ ‐ 94,121

Troponin ‐ ✓(Balb/c) ‐ ‐ 124

Unknown ‐ ✓(A.Sw/SnJ, Balb/c, DBA/2, A.

BY/SnJ,

A.SW/SnJ, A.CA/SnJ,

C3H.NB/SnJ)

‐ ✓(Balb/c, CBA/J,

Balb/c CUM)

105,125–136

Vimentin ‐ ✓(Balb/c, CBA) ‐ ‐ 121

Zfp983 ‐ ✓(A/J) ‐ ‐ 110
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T A B L E 1 (Continued)

Viruses Antigens

Autoantibodies Autoreactive T cells

Ref.Humans Mice Humans Mice

Parvovirus B19 Not reported Not reported 137–139

Hepatitis virus Nuclear ✓ ‐ Not reported 140

ANCA ✓ ‐ 140

β1‐ AR ✓ ‐ 141,142

Troponin ✓ ‐ 143

Unknown ✓ ‐ 140,144

HHV 6 and 7 Not reported Not reported 145–148

HIV Myosin ✓ ‐ Not reported 149

HSV Not reported Not reported 150–153

Influenza Endothelial ✓ ‐ Not reported 70–72

Fibrillary ✓ ‐ 71,72

Mitochondrial ✓ ‐ 70

Myolemmal ✓ ‐ 70–72

Sarcolemmal ✓ ‐ 70–72

Smooth

muscle

✓ ‐ 71,72

Interfibrillary ✓ ‐ 71,72

Junin Not reported Not reported 154

Lassa fever virus Not reported Not reported 155–157

LCMV Not reported Not reported 158

Measles Not reported Not reported 159,160

MERS CoV Not reported Not reported 161,162

Metapneumovirus Not reported Not reported 163,164

Monkeypox virus Not reported Not reported 165–168

Mumps Endothelial ✓ ‐ Not reported 70–72

Fibrillary ✓ ‐ 70–72

Myolemmal ✓ ‐ 70–72

Nuclear ✓ ‐ 70

Sarcolemmal ✓ ‐ 70–72

Smooth

muscle

✓ ‐ 71,72

Interfibrillary ✓ ‐ 71,72

Myosin ✓ ‐ 70

Parainfluenza virus Not reported Not reported 169,170

Polio Not reported Not reported 171

Rabies Not reported Not reported 172–174

RSV Mitochondrial‐
7

✓ ‐ Not reported 175

Reovirus Not reported Not reported 176–178

Rhinovirus Not reported Not reported 179,180

(Continues)
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measurements. Furthermore, the cardiotropic viruses reported

(Adenovirus, Enterovirus and Echovirus) are not typical reactivation

types of viruses, although isolated reports indicate such a possibility,

as shown with the Adenovirus and CVBs.204–209 However, repeat

exposure to the same viruses can potentially lead to fresh tissue

destruction in immune‐compromised individuals, but such a possi-

bility is less likely in healthy individuals because memory responses

generated from first exposure would prevent reinfections. However,

experimentally, repeat infection with CVB3 led to cardiac dilatation

without inflammatory infiltrates and appearance of anti‐cardiac actin
and HSP60 antibodies.93,210 Given these complex scenarios, a con-

ceptual framework has been built to indicate that chronic myocar-

ditis/DCM might result from events secondary to viral damage,

implicating autoimmune theory as a likely possibility. Enteroviruses,

Parvovirus B19 and Adenovirus are commonly associated with

myocarditis, and of these, Adenovirus is found to be the leading cause

of myocarditis in children.52,66,211–213 This notion has changed as

other viruses, including HHV6, are also frequently detected in

myocarditis patients.211,213 Since autoimmune theory has gained

significant attention in describing myocardial dysfunctions, we have

endeavoured to understand the extent of autoimmune signatures in

each virus infection in humans and experimental animal models, and

identified gaps in the understanding of significance of cardiac auto-

immunity in viral myocarditis.

4.3 | Evidence for autoimmunity in viral myocarditis
in humans

As indicated in Table 1, we noted that 40 different viruses can cause

myocarditis in humans. Evidence for autoimmunity was shown by

detection of antibodies to a variety of self‐antigens in patients

affected with Cytomegalovirus, Enteroviruses (mostly CVBs), Mumps

virus, Influenza virus, and Hepatitis virus more frequently than

others, such as Severe Acute Respiratory Syndrome Coronavirus‐2
(SARS CoV‐2), EBV, HIV, and Respiratory Syncytial Virus (RSV)

(Table 1 and Figure 3, left panel). Autoantibodies were either not

found or not investigated in individuals affected with infections

caused by Adenovirus, Chikungunya virus, Dengue virus, Ebolavirus,

Echovirus, Enterovirus‐71, ParvovirusB19, HHV 6 and 7, HSV, Junin

virus, Lassa fever virus, Lymphocytic Choriomeningitis Virus (LCMV),

Measles, MERS CoV, Metapneumovirus, Monkeypox virus, Para-

influenza virus, Polio, Rabies, Reovirus, Rhinvovirus, Rotavirus,

Rubella, SARS CoV, Vaccinia virus, Variola viruses, Varicella Zoster

virus (VZV), West Nile virus, Yellow fever virus and Zika virus.

Ironically, the role of autoreactive T cells has never been investi-

gated in any of these virus infections except in CVB3 infection

(Table 1, Figure 3 left panel).

4.4 | Evidence for autoimmunity in viral myocarditis
in laboratory animals

Experimentally, most of the viruses listed in Table 1 were found to

induce myocarditis in mice. As in human myocarditis patients, auto-

antibodies have been documented in mice infected with CVBs and

Cytomegalovirus and to a lesser extent with Encephalomyocarditis

virus (EMCV) (Table 1 and Figure 3, right panel). However, no reports

are available regarding the detection of autoantibodies in other viral

causes, namely, Adenovirus, Chikungunya virus, Dengue virus, Ebo-

lavirus, Echovirus, Enterovirus‐71, ParvovirusB19, HHV 6 and 7,

HSV, Junin virus, Lassa fever virus, LCMV, Measles, MERS CoV,

Metapneumovirus, Monkeypox virus, Parainfluenza virus, Polio,

Rabies, Reovirus, Rhinovirus, Rotavirus, Rubella, SARS CoV, Vaccinia

virus, Variola viruses, VZV, West Nile virus, Yellow fever virus and

Zika virus. In contrast to autoantibodies, investigations into the role

of autoreactive T cells have been made only in CVB3 infection (Ta-

ble 1, Figure 3 right panel).

T A B L E 1 (Continued)

Viruses Antigens

Autoantibodies Autoreactive T cells

Ref.Humans Mice Humans Mice

Rotavirus Not reported Not reported 181,182

Rubella Not reported Not reported 183,184

SARS CoV Not reported Not reported 162,185

SARS CoV‐2 α7nAChR ✓ ‐ Not reported 186,187

Unknown ✓ ‐ 188

Vaccinia virus Not reported Not reported 189,190

Variola virus Not reported Not reported 191

VZV Not reported Not reported 192,193

West Nile virus Not reported Not reported 194,195

Yellow fever virus Not reported Not reported 196

Zika virus Not reported Not reported 197–199
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Overall, by comparing the autoimmune signatures between

humans and infection models, it may be fair to say that autoimmune

responses, mainly production of autoantibodies, are more likely to be

seen in myocarditis associated with infections caused by CVBs and

Cytomegalovirus. Although such a trend has existed for Mumps virus,

Influenza virus, and Hepatitis virus in humans, no reports are avail-

able for these viruses in laboratory animals (Table 1). However, the

critical question to address is the nature/breadth of autoimmune

responses noted in viral myocarditis, including antigen‐specificity and
myocarditogenicity.

F I GUR E 3 Heat maps display the
detection of autoantibodies and

autoreactive T cells in myocarditis
associated with various virus infections in
humans and mice. The left and right panels

indicate autoantibodies detected in humans
and mice, respectively, affected with various
virus infections of viral myocarditis. The top
legend represents viruses, and

autoantibodies noted for various self‐
antigens are indicated on the left of each
panel. Filled and empty squares represent

the presence or absence, respectively, of
antibodies noted in each virus infection. The
last column in each panel represents

detection of autoreactive T cells.
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4.5 | Spectrum of autoimmune responses in viral
myocarditis and their potential relationship to cardiac
damage in humans

By analysing the autoantibody repertoires detected in myocarditis

patients with various viral causes, it is evident that antibodies were

noted for a wide range of self‐antigens that can be specific or non‐
specific to heart tissue (Table 1 and Figure 3, left panel). The note-

worthy cardiac‐specific antibodies detected were troponins, that

include cardiac Troponin I (cTNI), and Myhc in infections caused by

Cytomegalovirus, CVBs, Hepatitis virus, and Mumps virus. Likewise,

antibodies to β1‐andregenic receptor (β1‐AR), whose expression is

preferentially noted in the heart among other tissues,214 were also

noted in Hepatitis virus infection. Nevertheless, the majority of an-

tibodies noted in most of the viral myocarditis patients were not

specific to cardiac antigens. These include actin, ANCA, α7nAChR
(potentially), BCKD, conducting tissues, endothelial, fibrillary, inter-

fibrillary, linear, mitochondrial, myolemmal, nuclear, sarcolemmal,

smooth muscle. Mechanistically, isolated reports are available to

relate the pathogenic role of autoantibodies in myocarditis that may

involve complement‐dependent and/or complement‐independent
pathways. For example, the detection of heart‐specific antibody

complexes (e.g., Myhc) in heart tissues may indicate that heart‐
reactive antibodies might have caused tissue destruction,96,99 but

raise the question how intracellularly located antigens can become

visible to the antibodies. One possible scenario is that the intracel-

lular proteins, upon release from viral damage to the heart, can lead

to the formation of antibodies, which could then migrate to the heart

and bind residual proteins present in the extracellular milieu by vir-

tue of their tissue specificity. It is possible that the cardiomyocytes,

under an inflammatory environment created by the host response to

virus infection through cytokines such as IFN‐γ, and IL‐1β, intracel-
lular antigens (eg., Myhc) can be potentially displayed on the surface

of cardiomyocytes to be able to bind antibodies.215 Alternatively,

viruses may cause damage to the heart epithelial tissue non‐
specifically, allowing the self‐antigens to be exposed so antibodies

can bind to them.216 Whether the heart‐reactive antibodies can alter

the functionalities of cardiomyocytes is unclear. Nonetheless, it has

been shown that adenine nucleotide translocator (ANT) and CVB

proteins can cross‐react with each other in myocarditis and DCM

patients,100 which can alter functionalities of ANT (e.g., energy

metabolism).101 Similarly, antibodies to human Myhc could react with

β1‐AR that can lead to apoptosis of heart cells through proteinase

kinase A (PKA) pathway,217–219 whereas anti‐streptococcal M pro-

tein cytotoxic antibodies cross‐reacting with human myosin can

neutralise CVB3 and CVB4 or polio virus type I could result in

autoimmune heart disease by cytotoxic reaction.111 Furthermore,

reports indicate that β1AR‐reactive antibodies can elevate the L‐type
Ca2þ current, leading to deleterious cardiac remodelling and

DCM.141 Thus, it can be envisioned that heart‐reactive antibodies

could contribute to myocardial dysfunctions directly or indirectly.

Although such detailed studies are lacking for other cardiac non‐
specific antigens, their participation in cardiac remodelling events

cannot be ruled out. Alternatively, the formation of non‐specific an-

tibodies in myocarditis patients could result from tissue damage

elsewhere in the body in response to systemic viral infection, making

it difficult to consider them as potential biomarkers. All factors

considered, it is generally expected that autoantibodies, if patho-

genic, should transfer the disease in question―in this case, myocar-

ditis/DCM. While such studies are not possible in human settings,

isolated reports indicate that antibodies from myocarditis patients

could transfer disease to severe combined immune deficiency (SCID)

mice, supporting the idea that heart‐reactive antibodies could have a

pathogenic role.102 Likewise, antibodies to cTNI could induce cardiac

dilatation and dysfunctions in programed cell death protein‐1‐
deficient mice.220 Although, the role of T cells has not been exam-

ined in viral myocarditis patients per se, investigations from Cun-

ningham's group revealed a role for Myhc‐reactive T‐helper 17

(Th17) cells in myocarditis and DCM patients that had no specific

viral associations,221 but their pathogenic role is unclear. Likewise,

peripheral blood leucocytes from patients with myocarditis could

transfer disease to SCID mice supporting a role of T cells in the in-

duction of myocarditis.103

4.6 | Spectrum of autoimmune responses in viral
myocarditis and their potential relationship to cardiac
damage in laboratory animals in contrast to humans

The finding that most animal studies of viral myocarditis have been

performed only in mice suggests that the mouse models are valuable

tools for myocarditis research. Autoimmune responses have been

investigated in various mouse strains mainly with CVBs and, to some

degree, EMCV (both Enteroviruses) and Cytomegalovirus infections

(Table 1 and Figure 3, right panel). By contrasting the autoantibody

signatures of viral myocarditis in humans and animals, we made four

observations that may or may not correlate with all virus infections.

(1) Detection of antibodies to Myhc and ANT in both humans and

mice in the context of Cytomegalovirus and Enterovirus infections

suggests that they may have pathogenic significance (Figure 3, right

panel). (2) Except for Vimentin‐reactive antibodies in EMCV‐infected
mice, autoantibodies were not detected or investigated in other in-

fections (Figure 3, right panel). (3) Some antibodies uniquely seen in

mice but not in human myocarditis patients include Tropomyosin and

Troponin in relation to Cytomegalovirus and Enterovirus infections,

as well as branched‐chain alpha‐ketoacid dehydrogenase complex

(BCKD)‐reactivity in the latter (Figure 3, right panel). (4) Some de-

gree of correlation exists between humans and mice with antibody

reactivity to actin in myocarditis, although its detection was noted in

infections caused by different viruses in mice (Cytomegalovirus in

humans vs. Enteroviruses in mice) (Figure 3, right panel).

Furthermore, most animal studies have been limited to the

detection of autoantibodies, and determination of their pathogenic

role is reported rarely, but this may vary between mouse strains

(Table 1). For example, the complement‐depletion using the Cobra

venom altered CVB3 myocarditis in DBA mice suggesting that heart‐
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reactive antibodies might be responsible for myocardial damage.

However, such a treatment did not alter the disease progression in

Balb/c mice implying that the cellular immunity may be a contributing

factor for CVB3 myocarditis in Balb/c mice.125 It is possible that the

autoantibodies may not have a pathogenic role, but they could be

regarded as biomarkers. In support of this proposition, antibodies to

muscarinic M2 acetylcholine receptor, β1‐AR, cTNI and BCKD have

been detected in idiopathic DCM patients with no viral associa-

tions.222–226 An alternative interpretation could be that the breadth

of autoantibodies might not have been characterised fully enough to

determine their pathological significance. In that direction, we made

efforts to use Phage ImmunoPrecipitation Sequencing (PhIP‐Seq) to
comprehensively analyse the autoantibody repertoire in the CVB3

myocarditis model in A/J mice, leading us to detect antibodies to 26

proteins that were not previously reported (Table 1).110 Further-

more, antibody reactivity patterns were similar in both CVB3 and

CVB4 infected groups, but not in Influenza virus infection, indicating

that multiple CVB infections can lead to the formation of similar

autoantibodies. Ironically, however, the PhIP‐Seq analysis did not

consistently reveal antibodies for some of the commonly reported

antigens, such as Myhc, and Troponins, previously reported by con-

ventional methods in various virus infections (Table 1). Such dis-

crepancies may reflect variations in the sensitivity of the assays used.

Nevertheless, the finding that the autoantibodies reported in humans

and mice belonged to IgG isotypes suggests a role for autoreactive

CD4 helper T cells, as their help via cytokines is indispensable for

isotype switching.73,112,227

Using serological analysis of recombinant cDNA expression li-

braries technology, T cell responses, including antibody reactivity to

Myhc, were shown in Balb/c mice infected with MCMV and CVB3,

potentially resulting from epitope spreading, but their pathogenic

role was unknown.74 In our studies, to comprehensively address the

role of antigen‐specific T cells in CVB3 pathogenesis, we created

MHC class II tetramers and dextramers (new version of tetramers)

for five antigens, namely ANT, BCKD, β1AR, Myhc 334–352, and

SERCA2a 971–990.104,113 First, we addressed the molecular mimicry

hypothesis, but found no evidence for the appearance of cross‐
reactive T cells to ANT, β1AR, BCKDk, SERCA2a, and TNI that had

sequences mimicking CVB3 proteins with similarities of 28%–47% as

evaluated in the immunisation settings. We thus concluded that their

cross‐reactive T cells are unlikely to be generated in the infection

setting.104 However, as we were enumerating the frequencies of

antigen‐specific T cells in CVB3 infection, we detected the appear-

ance of T cells reacting to Myhc and SERCA2a in both the periphery

(spleen and lymph nodes) and hearts. We also found that T cells

reacting to both the antigens independently transferred disease in

adoptive transfer experiments104,113 Unexpectedly, however, T cells

specific to Myhc, SERCA2a, and ANT were also detected in the livers

of CVB3‐infected mice,104 suggesting that they can potentially

recirculate and contribute to myocarditis in chronically infected an-

imals, a possibility we are investigating currently. Furthermore, we

discovered that Myhc 334–352 possesses epitope determinants for

CD8 T cells, and by creating MHC class I tetramers, we demonstrated

that Myhc‐specific CD8 T cells infiltrate hearts of CVB‐infected an-

imals.104,228 Likewise, our recent investigations involving the deter-

mination of the immune landscape revealed a role for the cytotoxic

nature of CD4 T cells that include Th17 and Treg cell subsets,229 and

we are now analysing their antigen‐specificity. We envision that a

proportion of Myhc‐specific CD4 T cells could contribute to CVB3

pathogenesis via cytotoxicity similar to CD8þ CTLs.

4.7 | Major gaps in the understanding of the
relevance of cardiac autoimmunity to heart tissue
destruction in viral myocarditis

Accumulated literature suggests that autoimmunity forms a compo-

nent of viral myocarditis in both human and animal studies. Since

DCM may be an impending consequential event in individuals

affected with myocarditis, detection of antibodies may correlate with

DCM development, but conclusive proof is lacking as to the cause

and effect relationships.

First, we emphasise the importance of distinguishing between

specific and non‐specific autoantibodies to cardiac antigens. The

rationale for this proposition is that cardiac antibodies, by virtue of

their specificity, are expected to cause damage primarily in hearts, but

such a stringent expectation may not be relevant to non‐specific an-
tibodies. Nonetheless, in either situation, it is necessary to demon-

strate that autoantibodies have a pathological significance. Unlike

animal studies, where adoptive transfer models can be adopted to

investigate the role of autoantibodies or autoreactive T cells, such

investigations are impossible in human settings. Unfortunately, even

in animal studies, only isolated reports are available to indicate that

autoantibodies could transfer disease to naïve animals that may vary

between mouse strains. This limitation further complicates the

relatability of the observations made in inbred mouse strains to the

outbred human population, because testing in one inbred mouse

strain is genetically akin to testing in a single person. To overcome this

limitation, two genetically diverse mouse lines have been developed,

namely, collaborative cross (CC) and diversity outbred (DO)

mice.230,231 Both CC and DO mice represent the genetic composition

of eight different inbred mouse strains (five classic inbred and three

wild‐derived inbred).230,231 We recently used the DO mice to inves-

tigate the development of myocarditis in response to CVB3 infection,

and, as expected, only a small percentage of DO mice showed heart

infiltrates despite developing pancreatitis (manuscript in preparation).

The use of such model systems may lead to the identification of

quantitative trait loci that could be potentially relatable to humans, as

demonstrated with SARS CoV‐2.232 We plan to investigate these as-

pects in viral myocarditis induced with CVB3 in CC lines.

Second, infections with some of the cardiotropic viruses, such as

CVBs, can cause tissue damage in non‐cardiac organs―importantly,

pancreas. An example is CVBs, where multiple serotypes (CVB1 to

CVB5, with CVB3 as a prime candidate) could induce myocarditis and

also pancreatitis. Therefore, evaluation of autoantibodies in surviving

animals in order to relate their pathological significance to
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myocarditis may lead to misinterpretations, because, if formation of

autoantibodies requires tissue damage for antigens to be released,

they could be generated in response to both heart and pancreatic

antigens. We encountered such an issue in our recent investigations

with the PhIP‐Seq analyses in the CVB3 infection model. Using the

pathogenic Nancy strain of CVB3 that induces severe myocarditis

and pancreatitis, and the E2 strain of CVB4 that primarily causes

pancreatitis/insulitis, we noted similar antibody reactivity for select

antigens in sera obtained from both infected groups.110 Additionally,

tissue destruction resulting from systemic infection, as might occur in

the hyperinflammatory syndrome associated with SARS CoV‐2
infection, may lead to the development of autoantibodies to ubiqui-

tously expressed antigens.233

Third, unlike liver, which has a remarkable capacity to regen-

erate, heart tissue, especially in adults, lacks regeneration capacity

due to limited renewal of cardiomyocytes after injury, although re-

ports suggest that cardiomyocytes can acquire regenerative potential

by reentering the cell cycle.234–236 The cardiotropic enteroviruses

(e.g., CVBs) primarily infect cardiomyocytes and cause extensive lysis

leading to necrosis, whereas other viruses that may be found in the

heart do not infect myocytes primarily due to a lack of receptors for

their entry.237,238 Furthermore, host response to virus infections

mediated by both innate and adaptive immune cells could also pre-

cipitate tissue damage through the production of inflammatory cy-

tokines. While all these factors collectively contribute to heart tissue

destruction, generation of autoimmune responses in cardiotropic

virus infections is highly likely as reported due to the ability of the

virus to replicate within cardiomyocytes and lyse them, allowing the

intracellular proteins released from damaged myocytes to become

autoimmune targets. This may be the reason for the detection of

autoimmune responses to such proteins as Myhc and troponins,99,124

as well as mitochondrial proteins such as ANT and BCKD, among

others.104 Thus, on one hand, it is possible that the cardiac antibodies

may directly or indirectly alter myocardial functions as demonstrated

with Myhc and ANT antibodies101,239,240; on the other, detection of

autoantibodies may have no pathological significance. In both sce-

narios, cardiac remodelling events associated with myocardial dys-

functions could persist and be ascribed to a lack of regenerative

capacity of cardiomyocytes.

Fourth, unlike autoantibodies, whose role can be relatively easily

determined, it has been a challenge to investigate the role of cardiac

reactive T cells in viral myocarditis, in part due to the lack of readily

available tools such as MHC tetramers needed to enumerate the

frequencies of antigen‐specific T cells at a single cell level. Addi-

tionally, cytokines produced by different Th subsets (Th1, Th2, Th9,

Th17, and Th22) could uniquely mediate their functionalities in

different infection and autoimmune models,241,242 making it chal-

lenging to identify myocarditogenic cytokines in viral myocarditis. It

is generally accepted that Th1 and Th17 cytokines may be critical to

induce myocarditis, but Th17 cytokines appear to be indispensable

for DCM development, as examined in autoimmune myocarditis

models.243–245 Nonetheless, it is essential to provide evidence that

the autoreactive CD4 or CD8 T cells generated in viral myocarditis, if

any, are antigen‐specific in order to relate their relevance to

myocarditis pathogenesis.

In that direction, evidence was provided by demonstrating that

the CTLs harvested from CVB3‐infected Babl/c mice could transfer

disease in adoptive transfer models but antigen specificity was un-

known.105,126,127 In our studies, we used a myocarditis model induced

with CVB3 in which acute and chronic myocarditis phases occurring

in continuum are well documented in myocarditis‐susceptible A/J

mice (Figure 4, left panel). Using MHC tetramers/dextramers, we

demonstrated the appearance of pathogenic T cells with specificities

for multiple antigens as evaluated in the adoptive transfer protocols

(Figure 4, right panel). Unexpectedly, however, autoreactive T cells

were found in the liver of infected animals at the same stage of

infection, and whether the T cells parked in the liver can migrate to

the heart is currently unknown. In these settings, we did not inves-

tigate whether autoantibodies to the corresponding antigens also

appear; if they do so, determination of their pathogenicity in the

adoptive transfer models is critical. Taken together, a conceptual

framework can be built that the cardiac antigens released from the

necrotic myocytes or those derived from the phagocytosed dying or

dead myocytes can trigger the formation of autoreactive CD4 T cells

that can reside in both lymphoid and non‐lymphoid (e.g., liver) com-

partments with potential for them to migrate to the heart and

contribute to chronic myocarditis under conditions of bystander

activation in response to non‐specific inflammatory stimuli. We are

currently investigating this theory in CVB3 infection and adoptive

transfer models of myocarditis (Figure 4). Proving this to be true may

provide a basis to postulate a similar scenario in humans, because

individuals affected with chronic myocarditis/DCM may have

enteroviral signatures (virus‐reactive antibodies and viral nucleic

acids) without detectable infectious virions.203

We also propose that autoreactive T cells can cause endothelial

damage in CVB3 myocarditis by demonstrating that SERCA2a 971–

990 is constitutively expressed by APCs/endothelial cells (ECs)

(Figure 5)43 and that SERCA2a‐reactive T cells can induce EC death

(unpublished observations). Of note, CVBs can infect ECs that ex-

press receptors for CVB in both human and animal models.246–249

Further, CVB induces expression of vascular endothelial‐
cadherin250 and intercellular gap junction proteins,251 as well as

disruption of tight junction proteins in ECs.252 While CVB can survive

for more than 260 days in ECs in vitro, virus‐induced activation of

ECs has been associated with altered permeability, increased

expression of adhesion molecules (ICAM‐1 and VCAM‐1), DNA

fragmentation/apoptosis, and cardiac fibrosis.246,250,252–254 Likewise,

coronary EC dysfunction has been noted in idiopathic DCM pa-

tients255; microvascular spasms stimulated by EC damage have been

noted in the pathogenesis of DCM246,256; and EC dysfunction has

been recognised as an important predisposing factor for the devel-

opment of vascular inflammation and coronary heart disease.257–262

Impaired EC function is noted in inflammatory cardiomyopathy pa-

tients with CVB persistence,246,250,253,259,260,262 and various viruses,

including Enteroviruses, have been detected in atherosclerotic pla-

ques, indicating that plaques are more susceptible to virus infection,
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which may facilitate myocardial infarction.263–268 While T cells from

CVB‐infected mice can lyse ECs by cytotoxicity249,250,269 and EC‐
reactive autoantibodies have been detected in viral myocar-

ditis,70,270,271 target antigens are unknown. Our preliminary studies

indicate that SERCA2a 971–990 possesses epitopes for both CD4

and CD8 T cells. Due to the promiscuity of SERCA2a expression in

ECs, the SERCA2a‐primed CD4 T cells generated in the periphery can

activate ECs, facilitating extravasation of cardiac‐reactive T cells into

the heart (Figure 5). Thus, the cardiac‐specific T cells generated in

response to cardiotropic virus infections as a secondary event may

have a significant role in the development of chronic myocarditis/

DCM through multiple pathways.

F I GUR E 4 Autoimmune mechanisms of viral myocarditis in an experimental model system. Viruses can cause cardiac damage by direct

injury leading to the development of acute myocarditis as indicated by the infiltration of immune cells that can lead to chronic myocarditis (left
panel). During this process, resident dendritic cells (DCs) take up cardiac antigens released from damaged cardiac tissue leading to the
generation of autoreactive B cells or CD4 and CD8 T cells by presenting antigens to the respective cell types in the draining lymph nodes that

can recirculate back into the heart. A proportion of autoreactive T cells can reside in the liver with a potential for recirculation to the heart,
and such emigrations can be potentially inhibited by immune suppressive strategies. Nonetheless, it is critical to confirm that the autoimmune
responses are indeed pathogenic by using appropriate model systems (right panel). This figure was created using BioRender.com.

F I GUR E 5 Potential mechanism of endothelial dysfunction in CVB3 myocarditis. Cardiac antigens such as SERCA2a released from
myocardial damage could be taken up by the resident dendritic cells (DCs). They present antigens (eg., SERCA2a) in the draining lymph nodes
leading to the generation of SERCA2a‐reactive CD4 T cells that can activate endothelial cells (ECs), which facilitate the extravasation of

cardiac‐reactive T cells into the heart. During this process, the ECs can be killed by the cytotoxic function of SERCA2a‐reactive CD8 T cells by
an autoimmune reaction. This figure was created using BioRender.com.
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4.8 | Conclusions and implications

By critically analysing the literature available in human viral

myocarditis patients and experimental infection models, we noted

that autoantibodies have been extensively studied, but their rele-

vance to the development of chronic myocarditis is insufficiently

investigated to make conclusive interpretations. Since mechanisti-

cally addressing the role of autoimmune responses is not possible in

human settings, the use of infection and adoptive transfer models in

animal settings may help overcome this limitation, but observations

made in the inbred mouse strains may or may not be relevant to the

outbred human population. This is critical because, for example, ge-

netic susceptibility has been well documented in mice in that the

mouse strains with genetic background A (A/J and Balb/c) are sus-

ceptible to CVB3 myocarditis and develop a chronic course of the

disease, whereas B strains (e.g., C57Bl/6) are relatively resistant and

do not develop chronic myocarditis.114,128,129 Such a clear association

with MHC alleles with viral myocarditis in humans has not been re-

ported,272 although isolated reports indicate potential associations

between HCV infection and hypertrophic cardiomyopathy in in-

dividuals bearing DBB1*0303 and DPB1*0901273,274; Coxsackievirus

myocarditis and HLA antigens, A3, B40 and Cw2275; and EBV

myocarditis with DR4 and DR13.276 Likewise, susceptibility to HCV‐
associated DCM was mapped to non‐HLA gene locus from NFKBIL1

to MICA gene.277 Thus, the use of recently developed genetically

diverse mouse strains such as CC and DO in infection studies may

yield information regarding genetic susceptibility to viral myocar-

ditis/DCM relatable to humans. Overall, in contrast to antibodies, the

role of autoreactive T cells has rarely been studied in viral myocar-

ditis patients, in part due to the lack of availability of appropriate

tools. However, efforts have been made to analyse the role of

cardiac‐specific T cells in the mouse model of CVB3 infection by

creation of MHC tetramers, leading to detection of autoreactive T

cells specific to multiple cardiac antigens secondary to viral dam-

age.278 Likewise, T cells can be parked in the peripheral lymphoid and

non‐lymphoid compartments during the post‐viral phase of CVB3

infection with the possibility of recirculating back to hearts under

conditions of bystander activation. Proving this to be true may pro-

vide a basis to envision a similar scenario in humans because in-

dividuals affected with chronic myocarditis may have viral signatures

in the absence of detectable infections. Finally, among various

experimental infections, CVB3 infection has remained the best model

studied thus far. CVB pathogenesis exhibits an acute and chronic

disease course occurring in the presence or absence of virus in the

respective phases, and because it also resembles the disease features

of DCM, it is an excellent model to address the virological and

immunological mechanisms of viral myocarditis. However, when au-

toantibodies or autoreactive T cells are detected, it is critical to

demonstrate their pathogenicity in adoptive transfer models since

such studies are possible in laboratory animals; doing so may also

create avenues to evaluate the efficacy of immune suppressive

strategies (Figure 4). Failing to address the pathogenic role of auto-

immune responses is unlikely to advance the myocarditis field, in the

context of developing both new therapies and/or preventative stra-

tegies because viruses remain major disease triggers.

Translationally however, it is critical to stratify the DCM patients

with or without virus origin in large clinical cohorts to determine the

extent to which cardiac autoimmunity could be a contributing factor

for disease pathogenesis. The rationale for this proposition is that

some of the organ‐specific autoimmune diseases such as multiple

sclerosis are deemed autoimmune origin based on extensive clinical

investigations leading to the use of disease‐modifying therapies tar-

geting autoimmunity.279–284 Unfortunately, such a guideline is not

there yet or not routinely adopted for DCM patients although clinical

trials have been carried out, but with mixed success.285 The in-

vestigations require analysis of autoantibody signatures for multiple

cardiac antigens such as Myhc, cTNI, and SERCA2a in addition to β1‐
AR (although expressed in other organs)286 in combination with

screening for viral signatures (antibodies or nucleic acids) using

myocarditis virus panels. Screening for cardiac‐reactive antibodies is

imperative because of their specificity to heart and their pathogenic

mechanisms may not necessarily involve inflammatory events. Rather

alterations in the physiological functionalities of cardiomyocytes may

be the key mechanisms. In support of this notion, administration of

anti‐cTNI antibodies have been shown to induce DCM in animal

studies,220,287,288 whereas β1‐AR antibodies could result in the pro-

longed activation of β1‐adreno receptors leading to hyperadrenergic

state resulting in apoptosis, fibrosis and heart failure.289 Similarly,

antibodies to mitochondrial ANT or β1‐AR could induce DCM by

enhancing the calcium current.288,290,291 Additionally, cross reactive

antibodies between self‐antigens as shown with Myhc and β1‐AR can

cause apoptosis of myocytes.217–219 Recent investigations suggest

that autoimmune calcium channelopathies may be relevant to DCM

pathogenesis, and voltage gated calcium channels could be potential

autoimmune targets in the development of DCM. For example, anti‐
α1C Ca channel antibodies have been shown to be associated with

cardiac electrical abnormalities, ventricular arrythmias and sudden

death in DCM patients.292,293 Similarly, it is known that the DCM

patients could have elevated antibodies to SERCA2a.294,295 Since

SERCA2a being critical in calcium homoeostasis in the sarcoplasmic

reticulum within cardiomyocytes, antibodies to SERCA2a may alter

calcium cycle and disturb contractibility of heart muscle leading to

heart failure.295 Finally, in addition to investigating the autoantibody

signatures, determination of T cell responses for the corresponding

proteins described above would be beneficial because of their critical

role in the production of autoantibodies especially for protein anti-

gens. Such an effort requires developing assays that are practi-

cally feasible, and one such assay may be ELISPOT and its

variations.296–299 Accumulated literature indicate that cytokines

produced by mainly Th1 and Th17 are proinflammatory241 and

myocarditis and DCM patients could be associated with the pro-

duction of Th17 cytokines.221 However, roles of cytokines produced

by other Th subsets (Th9, Th22 and TFH) cannot be discounted

including that of Th2 subset since their cytokines can influence

antibody production similar to Th1 and Th17 cytokines, but pathways

could be different. Overall, such investigations may provide a
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rationale or basis to explore the use of immune suppressive therapies

in clinical settings. In that direction, newer modalities such as the use

of peptides or aptamers to neutralise autoantibodies can be explored

further,289 in combination with or without traditional approaches

such as immunoadsorption, intravenous immunoglobulin therapy,

biologics and selective immune suppressants targeting autoreactive

B cells or T cells or both.300–310
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