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12 African Swine Fever
Vienna R. Brown, Julianna B. Lenoch, 
Courtney F. Bowden

Introduction

At the time of writing this chapter, a global pandemic 
of African swine fever (ASF) is ongoing with the vi­
rus having moved from Eastern Europe, Asia, and 
into the Caribbean—leaving swine production in 
devastation along the way. Due to the global spread 
of African swine fever virus (ASFV), the persistence 
of the virus, and the increasing number of endemic 
countries, this disease poses an imminent threat of 
introduction into North America and other countries 
that are currently ASF free.

Throughout the chapter, we reference Eurasian 
wild boar (Sus scrofa) which are charismatic mega­
fauna that are native to Europe and Asia. Wild boar 
were introduced into numerous areas in the south­
eastern United States and California by early settlers 
and they subsequently augmented and hybridized 
with established feral domestic swine (Sus scrofa) to 
give rise to contemporary populations of feral swine, 
a highly invasive species that are present across much 
of the United States. Feral swine are referred to by 
various terms, including wild hogs, feral pigs, wild 
boar, wild swine, razorbacks, and other regional 
names in North America. African swine fever has 
never been introduced into the United States; as 
such, we do not discuss feral swine in specific within
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the chapter. However, experimental inoculations 
demonstrate that feral swine are acutely susceptible 
to ASFV and given its current rapid global movement 
we anticipate similar patterns of exposure, infection, 
and risk amongst these populations.

History and Global Distribution

In 1909, ASF was first detected following the impor­
tation of European domestic swine into Kenya when 
nearly 100% of the animeJs succumbed to a hemor­
rhagic disease (Gallardo et al. 2015, Sânchez-Cordôn 
étal. 2018). The disease was also detected in central 
and western Africa but confined to sub-Saharan Africa 
until it was reported in Portugal in 1957. In 1960, 
ASF spread to the Iberian Peninsula and other coun­
tries in Europe such as France (1964), Italy (1967, 
1969, and 1983), Malta (1978), Belgium (1985), and 
the Netherlands (1986). Various countries in the

Americas were also affected by ASF during this pe­
riod including Cuba (1971,1980), Brazil (1978), the 
Dominican Republic (1978), and Haiti (1979). By 
the 1990s, the disease had been successfully eradi­
cated from these countries, with the exception being 
the island of Sardinia off the coast of Italy.

Transcontinental spread of ASF occurred for a 
second time in 2007 with the disease reaching Geor­
gia within the Caucasus region and subsequently 
spreading further into eastern Europe (Figure 12.1; 
Revilla et al. 2018, Sanchez-Cordon et al. 2018). 
Specifically, ASF outbreaks were reported in Arme­
nia, Russia, Belarus, Ukraine, Estonia, Lithuania, Lat­
via, Romania, Moldova, the Czech Republic, and 
Poland (Revilla et al. 2018). In August 2018, ASF was 
reported on a small-scale pig farm in China and has 
since spread throughout the country as well as 
through much of Asia and Southeast Asia includ­
ing Mongolia, Korea, Vietnam, Laos, Cambodia,
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Myanmar, the Philippines, Hong Kong, Indonesia, 
Timor-Leste, Papua New Guinea, and India (Ge et al. 
2018, Zhao et al. 2019, Li et al. 2020, Mighell and 
Ward 2021). Hungary, Bulgaria, and Belgium reported 
their first ASF outbreaks in 2018 (Martinez-Aviles 
et al. 2020), and Germany experienced their first out­
break in 2020 (Sauter-Louis et al. 2021b). In the Amer- 
icais, Afric2m swine fever was detected in the Domini­
can Republic in July 2021 (USDA APHIS 2021a) and 
in Haiti in September 2021 (USDA APHIS 2021b).

Etiology

African swine fever is a hemorrhagic disease caused 
by ASFV, which is a large, linear double-stranded 
DNA virus (Sanchez-Vizcaino et al. 2019). African 
swine fever virus is the only member of the family 
Asfarviridae (Alonso et al. 2018) and the only knovm

DNA arbovirus (Gaudreault et al. 2020). Whole- 
genome sequencing and subtyping has revealed that 
ASF viruses demonstrate considerable variation in 
virulence and significant genomic diversity (de Vil- 
liers et al. 2010). Wild and domestic members of the 
Suidae family (see picture on page 198) are the only 
natural, vertebrate hosts of ASF (Gallardo et al. 
2015, Golnar et al. 2019), and soft ticks of the ge­
nus Ornithodoros are natural, arthropod vectors that 
play a significant role in pathogen maintenance and 
transmission.

Epidemiology and Transmission

African swine fever virus transmission dynamics are 
especially complex: there are three epidemiological 
cycles, and a fourth has been proposed, that exist in­
dependent of one another (Figure 12.2).
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Sylvatic Cycle

African swine fever virus evolved in eastern and 
southern Africa in the burrows of common warthogs 
(Phacochoerus africanus) with the Omithodoros mou- 
bata soft ticks that inhabit these dwellings (Penrith 
et al. 2019). Warthogs are believed to be the original 
vertebrate host of ASFV, and trrmsmission within the

warthog population occurs exclusively between in­
fected ticks and the neonatal warthogs that they feed 
upon (Figure 12.3; Costard et al. 2013). Newly in­
fected juvenile wairthogs exhibit viremia for a short 
duration, which can serve to infect naïve ticks amd al­
lows pathogen madntenance in the absence of vertical 
and horizonal transmission amongst warthogs. In­
fected warthogs are asymptomatic carriers, although

Fig. 12.3. Components of the sylvatic epidemiological cycle of African swine fever virus; (A) a mother and juvenile 
warthog, (B) a warthog burrow, and (C) Omithodoros spp. ticks removed from a warthog burrow. Photograph courtesy 
of Dr. Charles Masembe and the African swine fever research consortium, Makerere University, Kampala, Uganda.
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they often maintain the virus for the duration of their 
lives in infected lymph nodes (Costard et al. 2013).

Similar to warthogs, bushpigs (Potamochoerus lar- 
vatus) exhibit moderate viremia when infected with 
ASFV via the bite of an infected tick but do not de­
velop clinical signs (Anderson et al. 1998, Oura et al. 
1998). The contribution of bushpigs to ASFV mainte­
nance and transmission is relatively unknown as they 
do not inhabit burrows (Netherton et al. 2019); how­
ever, bushpigs are thought to play a minor role in 
ASFV epidemiology as their populations are less dense 
and they appear to have lower infection rates (Jori and 
Bastos 2009). Very little is known about red river hogs 
(Potamochoerus porcus) in relation to the epidemiology 
of ASF; however, ASFV genomic DNA was detected in 
a single free-ranging red river hog in Nigeria (Luther 
et al. 2007). Similarly, reports of ASFV infections have 
been limited for giant forest hogs (Hylochoerus mein- 
ertzhageni), and the contribution of giant forest hogs to 
the sylvatic cycle is believed to be negligible.

Tick-Pig Cycle

The soft tick-pig cycle is characterized by ASFV- 
infected ticks transmitting the pathogen to domes­
tic swine (Costard et al. 2013). Competent tick vectors 
of the genus Omithodoros (Table 12.1) become in­
fected after feeding on viremic animals and are 
then capable of transmitting the virus during blood 
meals (Costard et al. 2013). In the absence of vire­
mic hosts, transstadial, transovarial, and sexual trans­
mission has been documented in 0. moubata ticks, 
which contributes to ASFV persistence (Plowright 
et al. 1970, 1974; Rennie et al. 2001). This cycle is 
particularly prevalent in sub-Saharan Africa with Or- 
nithodoros moubata ticks infecting domestic swine; 
however, it also played an important role in the out­
break on the Iberian Peninsula with 0. erraticus ticks 
transmitting ASFV to domestic swine (Gaudreault 
et al. 2020). The tick-pig epidemiologic cycle is par­
ticularly important in outdoor swine production ar­
eas that have endemic disease in soft ticks in nearby 
areas (Sanchez-Vizcaino et al. 2012).

Table 12.1. Tick vectors from the genus Omithodoros 
capable of transmitting African swine fever virus to pigs

Omithodoros species Global distribution

0. coriaceus (0, marocanus) North America
0. erraticus Africa, Asia, Europe
0. moubata complex Africa, Madagascar
0. puertoricensis Caribbean, North America
0. savignyi Africa, Asia
0. turicata North America

Domestic (Pig-Pig) Cycle

Once ASFV is introduced into domestic pig or Eur­
asian wild boar populations, virus can be efficiently 
transmitted between swine hosts and does not re­
quire a vector (Costard et al. 2013, Dixon et al. 
2020, Blome et al. 2021). ASFV spreads systemically 
within infected swine, and all secretions and excre­
tions contain virus (Guinat et al. 2016). Direct and 
indirect contact as well as the consumption of con­
taminated meat products (e.g., swill feeding prac­
tices), allow for the ready transmission of ASFV 
between pigs (Costard et al. 2013). As an example, 
interactions between free-ranging domestic swine 
and wild boar are believed to have contributed to 
ASFV endemicity in some parts of Europe (Cadenas- 
Fernandez et al. 2019).

Wild Boar-Habitat

The wild boar-habitat cycle consists of direct trans­
mission through contact with infected wild boar as 
well as indirect transmission from dead conspecifics 
or contaminated environments (e.g., soil, drinking 
water, crops, or feed; Chenais et al. 2018, O’Neill 
et al. 2020, Sauter-Louis et al. 2021a, Viltrop et al. 
2021). Direct transmission may occur within or be­
tween herds of wild boar (i.e., sounders; O’Neill et al. 
2020) and is particularly troublesome in areas with 
high wild boar density (Guberti et al. 2019). Reports 
of wild boar scavenging on carcasses are common 
(Cukor et al. 2019, Probst et al. 2020); in wild boar 
populations in Europe, carcass-based transmission is



AFRICAN SWINE FEVER 203

the primary route of infection (EFSA 2014, Cukor 
etal. 2019, Fischer et al. 2020). Carcass-based trans­
mission is estimated to account for 53-66% of 
transmission events in the ASF outbreak that took 
place in eastern Poland in 2014 and 2015 (Pepin 
et al. 2020). Failure to remove carcasses from the 
landscape provides ample opportunity for ASFV 
transmission via direct interactions between live and 
dead conspecifics. Additionally, ASFV is highly sta­
ble in a proteinaceous environment, and as such, indi­
rect transmission can occur through environmental 
contamination during carcass decomposition 
(Dixon et al. 2020; O’Neill et al. 2020).

Clinical Signs and Cross Lesions

With highly virulent strains of ASFV, death occurs 
very quickly in nearly 100% of affected domestic

swine or wild boar (OIF 2019). Clinical disease asso­
ciated with peracute and acute cases typically mani­
fests as fever, increased pulse and respiratory rate, 
reddening of the skin (especially of the extremities; 
Figure 12.4), cmorexici, vomiting, cmd dicirrhea (some­
times bloody). Moderate- and low-virulence strains of 
ASFV cause weight loss, intermittent fever, and general 
malaise and result in subacute and chronic forms of the 
disease, respectively. In swine that succumb to ASFV, 
gastrohepatic and renal lymph node hemorrhage as 
well ¿is enlarged, friable spleens can often be observed 
(Figure 12.4).

Pathogenesis and Pathology

Infection with ASFV in domestic swine and wild 
boar is associated with severe lymphoid depletion 
and hemorrhages (Salguero 2020). Once the virus

Fig. 12.4. Clinical signs and gross lesions associated with African swine fever virus infection in swine: (A) reddening of 
the skin on the ear; (B) red-purple skin discoloration of the skin on the leg; (Q hemorrhagic gastrohepatic lymph nodes; 
and (D) enlarged, friable spleen. Photograph courtesy of Plum Island Animal Disease Center, Plum Island, New York, USA.
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enters the body, tonsils are the primary site of repli­
cation (Heuschele 1967; Greig 1972) before spread­
ing to local lymph nodes, disseminating to the 
secondary organs of replication, and ultimately 
spreading systemically via the lymphatic system. The 
lymphoid depletion characterized by ASF results 
from massive destruction of lymphoid organs, tis­
sues, and cell types. Experimental infection of do­
mestic swine with ASFV has demonstrated that 
tissues abundant in reticuloendothelial cells, in­
cluding the lymph nodes, spleen, bone marrow, 
and liver, commonly have the highest virus titers 
and serve as secondary sites of viral replication 
(Heuschele 1967).

The pathogenesis of ASFV is largely mediated 
by the host immune response and the correspond­
ing cytokine storm (Zhu et al. 2019). Monocytes and 
macrophages aie the main target for ASFV (Howey 
et al. 2013), and virus replication induces an in­
tense upregulation in proinflammatory cytokines 
that ultimately results in significant apoptosis in both 
infected cells and uninfected lymphocytes (Howey 
et al. 2013; Wozni2ikowski et al. 2016). The vasculcu: 
changes are those of a disseminated intravascular co­
agulopathy leading to petechial and ecchymotic hem­
orrhages in multiple organs, hyperemic splenomeg­
aly, and pulmonary edema (Sdguero 2020).

Diagnostics

Given that there is no effective vaccine or treatment, 
early detection of ASFV is paramount in managing 
the disease and limiting outbreak size. Validated di­
agnostic tests are classified into two primary types: 
antigen and antibody-based assays (OIE 2019). Poly­
merase chain reaction (PGR) is the gold standard 
antigen-based test as it is highly sensitive and spe­
cific, allows for high throughput, and generates 
rapid results (Gallardo et al. 2019). Virus isolation 
can be used to detect ASFV and direct immunofluo­
rescence and antigen-based enzyme-linked immuno­
sorbent assays (ELISA) can detect ASFV antigens 
(Gallardo et al. 2019, OIE 2019).

Whole blood captured in EDTA tubes is the best 
suited sample for ASFV detection (Pikalo et al. 
2021); however, serological assays can be useful for 
low to moderately virulent strains of ASF, when clin­
ical signs are not significant enough to trigger an 
ASF investigation (OIE 2019). It is worth noting that 
antibody testing is suboptimal for screening appar­
ently healthy animals (Pikalo et al. 2021). A number 
of diagnostic tests are available for detecting ASFV 
antibodies, including ELISAs, indirect fluorescent 
antibody test (IFAT), indirect immunoperoxidase 
test (IPT), and immunoblotting test (IBT; OIE,
2019) . The recommendation for ASF antibody test­
ing is screening via ELISA with nonnegatives being 
confirmed with IB, IFAT, or IPT (Beltran-Alcrudo 
et al. 2019).

Treatment and Vaccination

To date, there are no efficacious treatments to reduce 
the severity of the disease. Infected animals will 
either die rather quickly, especially with virulent 
strains of ASFV, or become convalescent (Costard 
et al. 2009). Natural infection with a low to moder­
ately virulent strain of ASFV confers a high degree 
of protection against infection with a highly virulent 
homologous strain of ASFV however (Sang et al.
2020) .

The quest to develop a safe, efficacious vaccine for 
ASFV has proven to be extremely challenging, and 
there is not a licensed vaccine available to date (Das 
et al. 2021). This is driven in large part by gaps in 
knowledge related to ASFV entry and replication 
within host cells, virus immune evasion and modu­
lation, and the primary antigens responsible for trig­
gering immune activity (Arias et al. 2017, Rock 
2017, Sang et al. 2020, Wang et al. 2020). Several 
vaccine platforms have been evaluated and are show­
ing varying degrees of promise. For example, inacti­
vated ASFV vaccines are often nonprotective as they 
fail to induce a cellular immune response, even when 
administered with adjuvant (Teklue et al. 2019; 
Gavier-Widen et al. 2020). Subunit vaccines, recom-
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binant proteins, and DNA vaccines have demon­
strated partial protection against wild-type ASFV 
(Teklue et al. 2019; Gavier-Widén et al. 2020; Sang 
et al. 2020). Several live attenuated vaccines have 
been developed, and this is currently the most prom­
ising vaccine candidate (Bosch-Camos et ad. 2020; 
Wu et al. 2020; Muñoz -Pérez et al. 2021), as the host 
responds to the vaccine as if it were naturally en­
countering ASFV (Sang et al. 2020).

In live attenuated vaccines, the virus can be modi­
fied naturally, through multiple passages in a labora­
tory setting, or by intentional alterations (Liu et al. 
2021). The genes deleted in live attenuated vaccines 
are typically associated with a reduction in virulence, 
a decrease in viral replication rate and dissemination, 
and a dampening of the proinflammatory immune re­
sponse (Sang et al. 2020). One live attenuated vaccine 
strain, developed by the United States Department of 
Agriculture, has been shown to provide protection 
against homologous virulent strains of ASFV in pigs 
with varying backgrounds (Tran et al. 2022), although 
testing is still ongoing. The significant limitation with 
live attenuated vaccines is that unpredictable, strain- 
specific virus phenotypes are created following gene­
tic alteration of ASFV (Turlewicz-Podbielska et al. 
2021). Some animals can develop clinical disease 
following vaccination, or vaccinated animals can con­
tribute to virus transmission via shedding patterns 
(Bosch-Camos et al. 2020, Gavier-Widén et al. 2020). 
In addition to safety concerns in vaccinated animals, 
developing these vaccines is chadlenging due to the 
need for high-level biocontainment facilities for pro­
duction, stable and suitable cell lines, and cell culture 
optimization (Sang et al. 2020). However, efficacious, 
attenuated live vaccine strains have been cultivated 
and can be produced (Borca et al. 2021a).

An important consideration for vaccine develop­
ment is the ability to differentiate between infected 
and vaccinated animals (DIVA). DIVA-compatible 
vaccines are typically generated by the inclusion of 
a marker within the vaccine that can induce an im­
mune response in the host that is distinct from that 
of a natural infection with a wild-type pathogen

(Hardham et al. 2020). This differentiation is para­
mount for understanding pathogen epidemiology on 
the landscape, for informing management practices 
and policies, and for demonstrating disease elimina­
tion following an outbreak.

Developing vaccines for wild pigs presents signif­
icant ecological, logistical, and moral considerations 
that make it challenging to reach desired vaccine efifi- 
cacy and herd-level immunity (Maki et al. 2017, 
Barnett and Civitello 2020, Edwards et al. 2021). 
Vaccines for wild pigs are especially challenging in 
that they probably need to be delivered orally neces­
sitating that they are both attractive and palatable to 
the swine species of interest (Balseiro et al. 2020). 
Additionally, a sufficient quantity of immunogen 
must be present and available at the induction site to 
stimulate a protective response requiring a biocom­
patible encapsulation process (Cross et al. 2007). A 
DIVA-compatible, oral vaccine for classical swine fe­
ver (CSF) was successfully engineered and delivered 
to wild botu: in Europe (Blome et al. 2011; Rossi et al. 
2015), and this achievement could be used as a foun­
dation for the successful implementation of an oral 
ASF vaccine in wild boctr (Teklue et td. 2019).

Given the nature of the global ASFV pandemic, 
vaccine development for wild boar has been an inter­
national research priority, and studies may indicate 
that oral vaccination is plausible. An experimental 
ASF vaccine that was originally developed using do­
mestic swine and delivered via intramuscular injec­
tion (Tran et al. 2022; Borca et al. 2020, 2021a) was 
found to confer high levels of protection against chal­
lenges with a virulent strain of ASFV when the vac­
cine Wcis administered via the oronasal route (Borca 
et al. 2021b). Additionally, vaccination of wild boar 
with an attenuated strain of ASFV from Latvia was 
found to be protective against a virulent strain of 
ASFV (Barasona et al. 2019), and studying shedding 
patterns of this vaccination strain demonstrated it to 
be safe for wild boar and contact animals (Kosowska 
et al. 2020). Further work is necessary to ensure 
safety and efficacy for use in free-roaming wild 
boar.
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ASFV Introduction Routes Into 
Disease-free Countries

Given the lack of a vaccine or treatment for ASF and 
the devastating consequence of the disease for pork 
production, preventing viral spread into previously

unaffected geographical areas is paramount. Intro­
duction pathways vary by country; however, the pri­
mary routes identified for ASFV include legal and 
illegal importation of live swine, swine products, and 
swine byproducts for commercial use or personal 
consumption (Figure 12.5; Brown and Bevins 2018,
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Jurado et al. 2019). Another introduction pathway 
that must be considered is food waste from airlines, 
trains, or ships that originated in ASF-infected re­
gions. Human food waste may be discarded in land­
fills that can be accessed by wild boar, improperly 
disposed of through meat composting or littering, or 
illegally sold for swill (Figure 12.5; Vergne et al. 2017, 
Beltran-Alcrudo et al. 2019, Taylor et al. 2020).

Legal importation of live swine poses a risk for 
ASFV introduction as the virus can go undetected 
during the incubation period, in which there is an 
absence of clinical disease (Vergne et al. 2017; Beltran- 
Alcrudo et al. 2019; Gao et al. 2020; Taylor et al.
2020) . This latent stage following infection is prob­
lematic for countries that are historically ASF free 
and do not have any trade barriers in place for live 
animals or their products. As an example, classical 
swine fever (CSF) spread to Italy and Spain from the 
Netherlands in 1997 when infected piglets were 
shipped prior to a transportation moratorium 
(Beltran-Alcrudo et al. 2019). In ASF-endemic coun­
tries, swine, their products, and their byproducts 
are often banned for trade and importation; however, 
at a local level, “emergency sales” of swine can oc­
cur during ASF outbreaks to minimize economic im­
pacts. If ASF is undetected in the herd, then these 
sales are silently contributing to the spread of ASFV 
into the production system (Costard et ad. 2015).

The illegal movement of swine and their products 
presents a greater risk of ASFV entry than legal ac­
tivities (Beltran-Alcrudo et al. 2019; Fanelli et al.
2021) . Unregulated movement of live swine within 
or between countries for personal or commercial use 
creates opportunities for direct transmission via in­
fected animals or swill as well as indirect transmis­
sion via fomites. Due to the difficulty of smuggling 
live animals, this introduction pathway presents a 
lower risk of ASFV transmission than illegal move­
ment of products or byproducts (Beltran-Alcrudo 
et al. 2019). Although most countries have sys­
tems in place to confiscate and destroy illegally 
imported animal products, numerous transboundary 
animal disease outbreaks have been attributed to il­

legal imports (Costard et al. 2013). Quantifying the 
magnitude of illegal imports is difficult and reliant 
on extrapolation from products that have been de­
tected and confiscated, and data are widely variable. 
Between 2012 and 2016, approximately 68,000 
domestic swine products and specimens were con­
fiscated from travelers entering the United States, 
and many confiscated products originated from 
countries known to have ASF (Brown and Bevins 
2018). Similarly, in August of 2018 custom officials 
in South Korea identified 4,064 illegal pork prod­
ucts originating from China, and 4 of the 52 submit­
ted for ASFV testing were positive (Kim et al. 2019).

Management Practices

Current management strategies for new ASFV in­
troductions include quarantining infected swine, 
increased biosecurity practices, epidemiological in­
vestigations, restricted swine movement, disposal 
of infected and exposed swine, and multiple forms 
of surveillance (i.e., passive, active, and targeted; 
Sanchez-Cordon et al. 2018; Danzetta et al. 2020). 
Given that ASFV is highly stable and easily spread, 
biosecurity is critical for preventing exposure via 
fomites or a contaminated environment (Nurmoja 
et ed. 2020). Biosecurity, defined as practices to pre­
vent pathogens both coming onto a farm or commer­
cial property or spreading within the premises, is 
critical. (Mutua and Dione 2021). Producers should 
minimize the introduction of animals from outside 
sources, and a quarantine period should be imple­
mented if outsourcing. Access to production areas 
should be limited for people, birds, and other small 
mammals, site-specific equipment and supplies need 
to be maintained, and materials entering and exiting 
the property need to be thoroughly clemed and dis­
infected (Mutua and Dione 2021). Proper disinfec­
tion, which includes both mechanical cleaning and 
the application of an effective disinfectant, is neces­
sary (Juszkiewicz et al. 2019). Swill feeding is widely 
considered to be a risky practice (EFSA 2014), and 
the majority of outbreaiks in ASFV-free zones have
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occurred as a result of feeding food waste products 
from infected pigs to susceptible hosts (Bellini et cJ. 

2016). Although strongly discouraged, swill should 
be heated to a minimum of 70°C if it is to be fed to 
swine.

Human-mediated activities are important drivers 
for the spread of ASFV, and baiting and hunting wild 
boar present challenges in managing the disease (Gu- 
berti et al. 2019). Supplemental feeding increases 
the carrying capacity of wild boar on the landscape, 
amplifies the opportunities for direct and indirect 
contact between animals, and changes movement 
patterns—all of which contribute to the mainte­
nance and persistence of ASFV in wild boar. Regula­
tions for hunters aimed at minimizing the risk of 
ASFV spread include safe storage of the carcass until 
laboratory results are completed, a prohibition of 
leaving offal piles in the forest, and washing and dis­
infecting vehicles, boot, knives, and other equipment 
used during hunting that has been in contact with 
blood or tissues of excreta (Bellini et al. 2016; Gu- 
berti et al. 2019).

Controlling ASFV has proven especially challeng­
ing once it is introduced into wild boar populations, 
and eradication is nearly impossible, although it has 
been accomplished on a couple of occasions. Early 
detection, a prompt and coordinated approach to 
prohibit movement of infected wild boar, and re­
stricted public access have been demonstrated to be 
effective in stopping the spread of ASFV. Identifying 
and disposing of carcasses on the landscape, the use 
of strategic fencing, and culling operations to reduce 
densities can also help slow or halt the spread of 
ASFV (Danzetta et al. 2020; Gavier-Widén et al. 
2020).

In addition to field activities to manage an ASFV 
outbreak, disease-dynamic models can be helpful to 
guide ASFV preparedness efforts or response and 
management activities (Miller and Pepin 2019). 
Given ASFV’s multiple routes of transmission and 
stability, transboundary management is extremely 
challenging. Extensive collaboration and cooperation 
between governments and industry are paramount

(Shi et al. 2021), and science-based policies and ap­
proaches must engage stakeholders across many dis­
ciplines (Tucker et al. 2021).

Human Dimensions of ASF

The financial, social, and political implications of 
ASF are potentially tremendous and can simulta­
neously impact multiple economic sectors. A system­
atic literature review on the country-level economic 
impact of ASFV outbreaks found the range from 
$649,000 (USD 2019) for annual production loss 
in Nigeria to $94,539,870,064 for the total eco­
nomic impact of an outbreak in Spain (Brown et al. 
2020). This meta-analysis also found that there is a 
paucity of data that allows estimation of costs and 
losses from ASF on national or global scales.

In addition to the short-term direct macroeco­
nomic impacts related to outbreak management, 
production losses and exclusion from international 
export markets are secondary impacts for associated 
products. For example, with an ASF outbreak caus­
ing greatly reduced pork production, the demand for 
animal feed would likely decrease drastically in the 
United States, causing decreased prices and revenue 
in the feed market (Stancu 2018). The magnitude of 
a foreign animal disease introduction event ripples 
through the economy with direct and indirect costs 
that have short- and long-term impacts.

A significant reduction in live hog prices can be 
expected in countries where ASF is reported, as the 
market clears out surplus pork that would otherwise 
be exported (Carriquiry et al. 2020), as well as in­
creases to pork products with demand exceeding 
supply in other markets and regions (Mason-D’Croz 
et al. 2020). Both scenarios are likely to drive-up 
costs for alternative sources of animal-based protein, 
including beef and poultry, impacting the most vul­
nerable communities globally, and negatively 
impacting food and financicd security (Abworo etal. 
2017; Plavsic et al. 2019; Matsumoto et al. 2021; 
Paulino-Ramirez et al. 2021). Pork supply-demand 
patterns are believed to have played a significant role
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in ASFV dissemination within China (Yang et al.
2021).

When ASF outbreaks occur, pig trader networks 
rush to sell their pigs to ensure that their animds do 
not succumb to infection (Lichoti et al. 2017; Pen­
rith et al. 2019). This has social implications and 
been linked to rapid viral dissemination. As an inter­
esting aside and a compelling tale on the intercon­
nectedness of human and anim2J health, it has been 
postulated that the ASFV outbreak in China reached 
its worst impacts around December 2019, near the 
time when SARS-CoV-2 emerged (Xia et al. 2021). 
The authors suggest that the dramatic pork shortage 
led to an increase in the risk of transmission of a zoo­
notic disease as human-wildlife interactions were 
more frequent.

Summary

African swine fever outbreaks in ASF-free countries 
have become commonplace in the last several years, 
and the global ASF pandemic is an example of the tre­
mendous implications of diseases shaured by livestock 
and wildlife. In addition to morbidity and mortality 
events, production losses, and barriers to interna­
tional trade, an outbreak of ASF has political ram­
ifications. Measures to reduce the risk of ASFV 
introduction in ASF-free countries should be of 
the utmost priority as control and eradication is 
time consuming, costly, and often out of reach.
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