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Abstract
Motivation: Encoded by (pro-)viruses, anti-CRISPR (Acr) proteins inhibit the CRISPR-Cas immune system of their prokaryotic hosts. As a result,
Acr proteins can be employed to develop more controllable CRISPR-Cas genome editing tools. Recent studies revealed that known acr genes of-
ten coexist with other acr genes and with phage structural genes within the same operon. For example, we found that 47 of 98 known acr genes
(or their homologs) co-exist in the same operons. None of the current Acr prediction tools have considered this important genomic context fea-
ture. We have developed a new software tool AOminer to facilitate the improved discovery of new Acrs by fully exploiting the genomic context
of known acr genes and their homologs.

Results: AOminer is the first machine learning based tool focused on the discovery of Acr operons (AOs). A two-state HMM (hidden Markov
model) was trained to learn the conserved genomic context of operons that contain known acr genes or their homologs, and the learnt features
could distinguish AOs and non-AOs. AOminer allows automated mining for potential AOs from query genomes or operons. AOminer outper-
formed all existing Acr prediction tools with an accuracy¼0.85. AOminer will facilitate the discovery of novel anti-CRISPR operons.

Availability and implementation: The webserver is available at: http://aca.unl.edu/AOminer/AOminer_APP/. The python program is at: https://
github.com/boweny920/AOminer.

1 Introduction

Anti-CRISPR (Acr) proteins have attracted a great attention
for its application in genome editing (Bondy-Denomy et al.
2013; Nakamura et al. 2019). A total of 98 Acr proteins have
been experimentally characterized. Notably, most Acrs are or-
phan genes (Yin and Fischer 2008), as no significant sequence
similarity was found between the 98 Acrs. In addition, the 98
known Acrs were shown to inhibit only 11/33 CRISPR-Cas
subtypes suggesting that the experimentally characterized
Acrs only represent a tiny tip of an iceberg of the possible
anti-CRISPR diversity in nature.

Six bioinformatics tools are available for automated Acr
discovery: AcRanker (Eitzinger et al. 2020), AcrFinder (Yi
et al. 2020), PaCRISPR (Wang et al. 2020), DeepAcr
(Wandera et al. 2022), AcrNET (Li et al. 2022), and AcrPred
(Dao et al. 2023). There is one important genomic context
feature, however, that has never been employed in these tools:
the co-localization of acr genes with other genes. For example,
42 of the 98 known acr genes reside in short gene operons
containing 32 multiple types of acr genes (Supplementary
Table S1). Also, 41 of the 98 acr genes have putative aca (acr-
associated HTH domain-containing protein) genes nearby
(Yin et al. 2019). Additionally, acr genes can also co-localize
with conserved phage genes [e.g. capsid, terminase, lysozyme,

tail, helicase (León et al. 2021)] and functionally unknown
genes in the gene neighborhood. Therefore, the genomic con-
text of acr genes could be fully exploited in a machine learn-
ing model for improved discovery of Acrs.

Here, we present AOminer focusing on the discovery of
Acr operons by learning the conserved genomic context of acr
genes. The predicted Acr operons have a higher chance to
contain putative Acrs than other regions in the query genome,
and could be further analyzed by other bioinformatics tools
or by experimental approaches for new Acrs.

2 Algorithm

AOminer accepts FASTA sequences of whole genomes/contigs
as well as individual gene clusters/operons as input. The
sequences will be processed with the following steps (Fig. 1):

Step 1: Prodigal (Hyatt et al. 2010) predicts genes, and
short-gene operons (SGOs) are defined (see Supplementary
Method). Users can also input their own SGOs or non-operon
gene clusters.

Step 2: The SGOs will be annotated with a protein family
profile HMM (pHMM) database using hmmscan (Finn et al.
2011). This pHMMdb contains 2030 pHMMs of AO protein
families (AOPFs) and 1218 non-AOPFs that were built based
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on dbAO (see Supplementary Method and Table S2). The
dbAO consists of 12 582 nonredundant Acr operons (AOs)
that must contain homologs of 98 known Acr proteins col-
lected from six phage and prophage genome databases.

Step 3: Each annotated SGO will go through our two-state
HMM to receive a prediction score. SGOs that have a predic-
tion score >3 will be returned to the users as AOs (see
Supplementary Method). The key idea of the two-state HMM
is that AOs of dbAO have different protein family profiles
(e.g. more AOPFs and less non-AOPFs) compared to non-
AOs, and that such difference can be modeled for new AO
discovery.

Step 4: AOminer will also scan the query genome for Acr
and Aca homologs using the built-in dbACR and dbHTH
(Supplementary Method). Users also have the option to iden-
tify prophages, CRISPR-Cas systems, and self-targeting
spacers (STSs) in their query genomes.

3 Implementation

Standalone program: AOminer was written in Python. For
contig/genome input, a FNA file is expected, and annotation
files (FAA, GFF) are optional. For operon or gene cluster in-
put, AOminer expects a FAA file with proteins following their
order in the DNA sequence. Users can provide their own
known Acr sequence and HTH domain databases.

The output of AOminer includes: (i) table of all predicted
AOs (example in Supplementary Table S3-1); (ii) table of all
predicted CRISPR-Cas systems (Supplementary Table S3-2);
and (iii) table of predicted prophage regions (Supplementary
Table S3-3).

Web server: A web server was developed for users without
programing experience. The server was constructed using the
Django framework.

4 Performance evaluation

To evaluate the performance of AOminer, we split the 12 582
AOs in dbAO (Supplementary Table S2) into dbAO-Train
and dbAO-Test. Specifically, a total of 10 481 AOs in dbAO-
Train contain homologs of 77 known Acrs published before
the year 2020; 2101 AOs in dbAO-Test (Supplementary
Table S4) contain homologs of 21 known Acrs published in
2021 and 2022 (Supplementary Table S5). Note that dbAO-
Train and dbAO-Test can still share protein families but the
Acr homologs of the two datasets are identified based on ho-
mology to two sets of published Acrs (i.e. 77 versus 21). After
retraining the two-state HMM using dbAO-Train and testing

it on dbAO-Test, AOminer was able to find 1791 out of the
2101 AOs with prediction score >3 (recall is 0.852). The
dbAO-Test data were also run on AcrFinder, AcRanker,
AcrPred, and PaCRISPR, which all had a much lower recall
than AOminer (Supplementary Table S6). Unlike AOminer,
all these tools are designed to directly predict Acr proteins in-
stead of their operons. Therefore, the predicted Acr proteins
from these tools were located in SGOs to be considered as
AOs (true positives). To account for the difference in the pipe-
line design and output/input format, each tool was run with
an individualized evaluation process (see Supplementary
Method). An additional test was conducted on 10 unpub-
lished but experimentally characterized Acrs kindly provided
by Dr. Karen Maxwell, showing a recall¼ 90% (i.e. 9 was
found by AOminer). Due to the lack of true negative data, a
precision could not be calculated as what has been published
for other tools (Eitzinger et al. 2020; Wang et al. 2020).
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