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Abstract
Decision support systems intended for precision irrigation aim at reducing irrigation appli-
cations while optimizing crop yield to achieve maximum crop water productivity (CWP). 
These systems incorporate on-site sensor data, remote sensing inputs, and advanced algo-
rithms with spatial and temporal characteristics to compute precise crop water needs. The 
availability of variable rate irrigation (VRI) systems enables irrigation applications at a 
sub-field scale. The combination of an appropriate VRI system along with a precise deci-
sion support system would be ideal for improved CWP. The objective of this study was to 
compare and evaluate two decision support systems in terms of seasonal applied irriga-
tion, crop yield, and CWP. This study implemented the Spatial EvapoTranspiration Mod-
eling Interface (SETMI) model and the Irrigation Scheduling Supervisory Control and 
Data Acquisition (ISSCADA) system for management of a center pivot irrigation system 
in a 58-ha maize-soybean field during the 2020 and 2021 growing seasons. The irriga-
tion scheduling methods included: ISSCADA plant feedback, ISSCADA hybrid, common 
practice, and SETMI. These methods were applied at irrigation levels of 0, 50, 100, and 
150% of the full irrigation prescribed by the respective irrigation scheduling method. Data 
from infrared thermometers (IRTs), soil water sensors, weather stations, and satellites were 
used in the irrigation methods. Mean seasonal irrigation prescribed was different among 
the irrigation levels and methods for the 2 years. The ISSCADA plant feedback prescribed 
the least irrigation among the methods for majority of the cases. The common practice pre-
scribed the largest seasonal irrigation depth among the methods for three crop-year cases. 
The maize yield in rainfed was found to be significantly lower than the irrigated levels in 
2020 since 2020 was a dry year. No significant differences were observed in crop yield 
among the different irrigation methods for both years. The CWP among the different irriga-
tion methods ranged between 2.72 and 3.15 kg  m−3 for 2020 maize, 1.03 and 1.13 kg  m−3 
for 2020 soybean, 3.57 and 4.24 kg  m−3 for 2021 maize, and 1.19 and 1.48 kg  m−3 for 2021 
soybean. Deficit level (50%) had the largest irrigation water productivity in all crop-year 
cases in this study. The ISSCADA and SETMI systems were found to reduce irrigation 
applications as compared to the common practice while maintaining crop yield. This study 
was the first to implement the newly developed integrated crop water stress index (iCWSI) 
thresholds and the ISSCADA system for site-specific irrigation of maize and soybean in 
Nebraska.
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Introduction

Precision irrigation aims for improved CWP by managing spatiotemporal crop water 
requirements in a field. Recent advances in sensing technologies, data processing systems, 
modeling approaches, and communication protocols facilitate the management of site-
specific irrigation at a sub-field scale (O’Shaughnessy et al., 2019). Over the past decade, 
numerous precision irrigation technologies and methodologies have been developed and 
tested across different cropping systems (Barker et al., 2019; Bhatti et al., 2020; Haghverdi 
et al., 2016; Lena et al., 2020; Mendes et al., 2019; O’Shaughnessy et al., 2015; Osroosh 
et al., 2016; Stone et al., 2020; Sui & Yan, 2017; Taghvaeian et al., 2014; Thorp, 2020; 
Vories et al., 2020). While there is an abundance of precision irrigation tools, it is impor-
tant to assess the suitability of these irrigation scheduling methods in terms of CWP, com-
plexity, and economic viability (O’Shaughnessy et al., 2019). The downsides of precision 
irrigation include associated costs and lack of effective algorithms and real-time availabil-
ity of data for irrigation scheduling (Evett et  al., 2020a, 2020b, 2020c). Currently, site-
specific irrigation systems are primarily utilized by producers to avoid application on non-
arable areas of the field (Evans et al., 2013). The potential benefits include improved CWP, 
reduced leaching, and energy savings, which are yet to be demonstrated (Lo et al., 2016).

Uniform rate irrigation and speed control VRI are easier to manage than zone control 
VRI and have the potential of incorporating sensor data and precision irrigation techniques 
for improving CWP. The flow rate of individual sprinklers along the lateral pipe does not 
vary with location in case of uniform rate or speed control VRI. Integrated sensing sys-
tems, advanced modeling tools, and irrigation scheduling algorithms will be beneficial for 
both site-specific and conventional irrigation methods (Thorp et al., 2022). Data streams 
for precision agriculture require temporal and spatial knowledge of soil, plant, and field 
characteristics. Precision irrigation technologies should be centered on plant water rela-
tions in the soil–plant-atmosphere-continuum for sustainable management of irrigation 
water (Zhang et al., 2021). Precision irrigation tools using sensor data integration, remote 
sensing inputs, and modeling approaches, have shown promise as effective decision sup-
port systems for irrigation management.

Crop water stress can be estimated spatially and temporally using systems such as the 
ISSCADA system, which was developed and patented (Evett et  al., 2014) by the USDA 
Agricultural Research Service in Bushland, TX. This system uses iCWSI to schedule irri-
gation and monitor crop water stress in the field. The iCWSI is computed by integrating 
the crop water stress index (Jackson et al., 1981) estimated for every minute between the 
daylight hours. Continuous measurement of canopy temperature is needed at different loca-
tions across the field to compute spatial iCWSI maps for the field. The spatial canopy tem-
perature measurements can be obtained by mounting IRTs on moving irrigation systems 
(O’Shaughnessy et  al., 2015, 2017, 2020; Evett et  al., 2020b; Sui et  al., 2017). A scal-
ing algorithm was developed to estimate diurnal temperatures from data collected by the 
pivot-mounted IRTs by using stationary IRTs as a reference (Peters & Evett, 2004). The 
diurnal time series data are estimated using a one-time-of-day temperature reading taken 
during daylight hours (moving IRT sensors) and an equation that scales the temperature to 
a known reference temperature curve (measurements from the stationary sensors). In this 
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way, diurnal temperature time series were determined for many footprint areas in the field. 
The diurnal temperature time series data are used to compute spatial iCWSI for the field 
and automate irrigation management using the ISSCADA system (O’Shaughnessy et al., 
2012). The ISSCADA system was found to adequately manage irrigation scheduling at a 
site-specific level in different climates (O’Shaughnessy et al., 2017; Stone et al., 2020; Sui 
et al., 2020; Vories et al., 2020). This system has built-in algorithms to convert weather, 
soil water sensing, and canopy temperature data into reliable irrigation decisions and auto-
mate the management of moving center pivot irrigation systems.

The SETMI model (Geli & Neale, 2012; Neale et al., 2012) has the ability to estimate 
spatial crop water requirements and manage precision irrigation. Multiyear studies on 
site-specific irrigation were conducted using the SETMI model for maize and soybean in 
Nebraska (Barker et  al., 2018, 2019; Bhatti et  al., 2020). This model combines a reflec-
tance-based crop coefficient evapotranspiration approach (water balance approach) with a 
two-source energy balance approach (Norman et  al., 1995). The water balance approach 
computes the soil adjusted vegetation index (SAVI; Huete, 1988) from red and near-infra-
red bands and uses the relationships between basal crop coefficients and SAVI (Campos 
et al., 2017). The energy balance approach uses thermal infrared imagery to compute the 
latent heat flux and estimate crop evapotranspiration (ET) at a spatial scale. Sensor-based 
soil water measurements from the root zone can also be used to update the water balance in 
the SETMI model (Bhatti et al., 2020). The water balance approach can forecast irrigation 
needs using historic weather data, which can prove beneficial to producers. The ISSCADA 
system and SETMI model have never been implemented on the same field in a research 
experiment for comparing their potential in site-specific irrigation management.

The overall goal of the study was to implement two decision support systems for site-
specific irrigation management and compare the crop yield and water productivity for 
maize and soybean in eastern Nebraska. The ISSCADA system used in-situ and ground-
based proximal thermal sensing data, and the SETMI model used satellite imagery with 
neutron probe soil water data to compute crop water requirements. These precision irriga-
tion methods were compared with the common irrigation scheduling method practiced by 
farmers in the area. The specific objectives included: (1) the comparison of different irriga-
tion methods applied at four different irrigation levels in terms of crop yield and irrigation 
applied, (2) the assessment of CWP and two other water productivities among the different 
treatments, and (3) the investigation of the suitability of newly developed iCWSI thresh-
olds for irrigation management of maize and soybean in eastern Nebraska.

Material and methods

Experimental site and design

The study was conducted on a 58-ha maize-soybean research field located at the Univer-
sity of Nebraska’s Eastern Nebraska Research and Extension Center, NE, U.S.A. (centered 
at 41.172445°N, 96.478248°W) during the 2020 and 2021 growing seasons (Bhatti et al., 
2022a). The field was irrigated using a seven-span, speed control enabled center pivot irri-
gation system (lateral length of 400 m), model Valley Irrigation 8000 (Valmont, Valley, 
NE), with the X-Tec center drive motors (capable of making a revolution in about 4 h). The 
sprinklers on the pivot lateral were Nelson spinners (model S3030, Nelson, Walla Walla, 
WA) installed on drops at a height of about 2.4 m from the ground and with a sprinkler 
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spacing of 2.7  m. The field was divided into north and south halves managed under a 
maize-soybean rotation (Fig. 1). The soils in the field were classified as silt loam and silty 
clay loam (gSSURGO, Soil Survey Staff, 2018). The planting and harvesting dates were 
April 24 and October 13 for maize 2020, May 2 and September 28 for soybean 2020, April 
28 and October 8 for maize 2021, and May 13 and October 21 for soybean 2021, respec-
tively. Anhydrous ammonia injection applications were applied uniformly after the soy-
bean harvest in the north half in 2020.

Fig. 1  Layout of experimental plots for 2020 and 2021 growing seasons. The irrigation methods included: 
A for ISSCADA plant feedback, B for ISSCADA hybrid, C for common practice, and D for SETMI. The 
irrigation levels were depicted by different color rings and included: 1 for Rainfed, 2 for Deficit, 3 for Full, 
and 4 for over. The irrigation method-level combinations were mentioned in each plot, where the upper row 
was 2020 label, and the lower row was 2021 label. Neutron access tubes, stationary soil water and IRT sta-
tions, and center pivot tire tracks were marked on the map. Labels ‘RB 1–2’ stands for radial blocks 1 and 
2, and labels ‘SB 1–6’ stands for sector blocks 1 through 6. Outer four center pivot spans were also labeled 
in the figure. The IRTs mounted on the center pivot lateral were not marked on this map since they moved 
as the center pivot moved across the field
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A total of 192 plots were designed for the field using eight radial zones (concentric 
zones) and 24 arc-wise plot boundaries (Fig. 1). The area under the outer four spans of 
the pivot was used for the experiment. The north and south halves had a total of 96 plots 
each. The plots were approximately rectangular with lengths ranging between 43 and 90 m, 
and a constant width of 28 m. The area of the plots ranged between 1205  m2 and 2630  m2. 
There were a total of 16 treatment combinations: four irrigation scheduling methods, and 
four irrigation levels. Each combination of an irrigation method-level had six replicates 
for each crop. The treatments were assigned to the experimental plots using a strip-block 
design with two treatment factors: irrigation scheduling methods and irrigation refill lev-
els. More details on the different scheduling methods and refill levels are provided in the 
section ‘Irrigation management’ below. The 24 arc-wise sectors (14° sector angle) were 
assigned to six sector blocks with three sector blocks in each crop: west, center, and east 
sector blocks (Fig. 1). Each sector block included four arc-wise sectors, which were ran-
domly assigned with the four irrigation scheduling methods. The eight radial zones (con-
centric zones shown in different colors in Fig. 1) were assigned to two radial blocks, and 
each radial block constituted two pivot spans. The inner four radial zones were assigned 
to radial block 1 and outer four radial zones were assigned to radial block 2. These radial 
zones were randomly assigned with four irrigation levels for each radial block. The irriga-
tion methods were randomized between the four arc-wise sectors within each sector block 
for the second year of the study. In 2021, the irrigation levels were not randomized among 
radial blocks due to logistical reasons (needed reconfiguration of sprinkler nozzles).

Experimental data

Thermal sensing

The canopy temperature was sensed using IRTs (model SAP-IP IRT, Dynamax, Inc., Hou-
ston, TX, USA) mounted on stationary posts and on brackets mounted on the center pivot 
lateral. The spectral range of the IRT was 8–14 μm with a 20° field of view. The outer two 
spans of the center pivot were used to mount eight IRTs: two IRTs each for the four irriga-
tion levels. Each pair of IRTs were mounted about 6.1 m from the edges of the respective 
radial zone borders and pointed towards the center of the zone at oblique angles to nadir 
(see more details in Bhatti et al., 2022b). The IRTs were mounted on the pivot at a height 
of about 3.6  m from the ground using special mounting arms secured to the truss rods, 
which extended the field of view of the IRTs by about 3 m ahead of the pivot lateral when 
moving in the forward/clockwise direction.

Stationary IRTs were installed near the centroid of one ISSCADA hybrid-full plot for 
each crop. These sensors were positioned at a nadir view angle and the height was manually 
adjusted to maintain a distance of about 1 m above the canopy. When the maize reached 
maximum crop height, the 1 m spacing between the sensor and maize canopy could not be 
maintained since the sensor height had to remain below the truss level to prevent damage. 
After this timeframe, the sensor height was between 0.3 and 0.5 m higher than the tassel 
of maize. The maximum height of the stationary IRT from the soil surface was about 3 m 
for maize and about 2.2 m for soybean. The data from the IRTs were recorded every five 
seconds and were averaged over 1 min. The 1 min data were transmitted using the wire-
less Zigbee communication protocol at a frequency of 2.54 GHz to a coordinator (model 
IRT-COR, Dynamax, Inc., Houston, TX, USA). The coordinator routed the data through a 
USB connection to an embedded computer (model MXE-1401, Adlink Technology, Inc., 
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San Jose, California USA) at the center pivot point. The embedded computer also had a 
serial connection to the CAMS (control) panel of the center pivot system and collects time-
stamped data including the GPS location of the end-tower, the center pivot speed, pres-
sure and voltage. A separate software system (ARSPivot) was installed on the embedded 
computer to download data from a nearby AgSense weather station and manages the data 
collected from the IRT network, the CAMS panel, distributed wireless network of the soil 
water sensors (discussed below), and the AgSense weather station to build a prescription 
map (Andrade et al., 2020).

The center pivot system was moved around the field without water (dry scan) to collect data 
using the pivot mounted IRTs. A total of 16 dry scans in 2020 and 19 dry scans in 2021 were 
conducted to sense spatial canopy temperature data. The dry scans were mainly conducted 
between 10:00 AM and 5:30 PM. The scaling algorithm (Peters & Evett, 2004), incorporated in 
the ARSPivot software, was used by the ISSCADA system to estimate the diurnal canopy tem-
perature for each one-time of day remote measurement recorded by each pair of IRTs mounted 
on the pivot lateral. Additionally, the algorithm uses a reference measurement from a station-
ary IRT to capture diurnal pattern in canopy temperature at one location in the field. Further, 
the algorithm scales the diurnal canopy temperature curve from stationary IRT to a predicted 
temperature curve for a remote location using ratio between the reference temperature and the 
remote location measurement, referenced to the predawn temperature (Peters & Evett, 2004). 
There were about 180 remote locations or canopy temperature measurements that were moni-
tored by one moving IRT mounted on the pivot in a dry scan conducted at 100% speed. Data 
from the stationary IRTs were used to develop a reference temperature curve in the scaling algo-
rithm. The integrated crop water stress index (iCWSI; O’Shaughnessy et  al., 2020) was also 
computed by the ISSCADA system at each remote location for every minute during daylight 
hours from 9:00 AM to 7:00 PM. The iCWSI was computed using following equation as men-
tioned in O’Shaughnessy et al. (2017):

where i is the  ith time step, N is total number of 1 min steps between 9:00 AM and 7:00 
PM, T ′
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cultivars and affect the carbon gained by the plant. More research is warranted on the 
energy limiting stress with different cultivars.

Soil water sensing

A total of eight time-domain reflectometer (TDR) soil water sensors (model TDR315L, 
Acclima, Inc., Meridian, Idaho, USA) were installed horizontally at four depths (0.15, 
0.30, 0.46, and 0.76 m) in two hybrid plots (one location per crop; Fig. 1). The four depths 
were selected to represent soil water profile of the root zone to a depth of 1 m. Three sen-
sors were installed within 0.5 m of the ground surface to capture the dynamic nature of soil 
water in shallow depths. The soil water stations consisting of four TDR sensors were situ-
ated adjacent to the stationary IRTs in the same plot. The data was sensed at a frequency 
of 15 min and stored using a CR300 datalogger with an embedded RF407 radio (Campbell 
Scientific, Logan, Utah, USA). The data were transmitted wirelessly using the proprietary 
PakBus communication protocol and Yagi antennas (Campbell Scientific) operating at 
900 MHz. Data were collected using a RF407 radio serving as a base station modem con-
nected to the embedded computer.

Fig. 2  Schematic of three conditions of water stress supported by data for integrated crop water stress 
index, evapotranspiration, and crop yield from soybean in 2020 (adapted from Bhatti et al., 2022a)
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Soil water data from two neutron probes (model 503 Elite Hydroprobe, CPN, Concord, 
CA) were also monitored at multiple depths including 0.15, 0.46, 0.76, and 1.07 m. Since 
the representative volume of a soil water measurement from neutron probe is larger com-
pared to TDR sensors, the depths of measurement for neutron probe were equally spaced to 
represent soil water profile to a depth of 1.2 m. The data were collected with a frequency of 
about 3 weeks. For each crop, 24 access tubes were installed in the approximate geometric 
center of each plot with 12 tubes each in the rainfed and full levels (Fig. 1). Field calibra-
tion from a nearby site (3 km away) with the same soils was used for one of the probes 
(Bhatti et  al., 2020). The second probe was cross-calibrated using the first probe for the 
field site.

Remote sensing imagery

Remote sensing data was acquired from the PlanetScope satellite multispectral imager 
(Planet Labs, Inc., San Francisco, CA, USA) with a spatial resolution of 3  m and tem-
poral resolution of ~ 1  day. The imagery was captured over the field between 10:30 and 
11:30 AM. The data were only selected if the imagery over and around the field was free 
of clouds and image stripes. A total of 20 images (taken between May 8 and October 10) 
in 2020, and 27 images (taken between April 29 and October 18) in 2021 were used in 
SETMI. The model used the red and near-infrared bands of the multispectral imagery to 
compute the SAVI.

Weather data

A weather station (AgSense, Valmont Industries, Inc., Huron, SD, USA) was installed 
in an open area located to the west of the field. The weather data included air tempera-
ture, relative humidity, wind speed and direction, solar radiation, and rainfall, which were 
collected at a frequency of 5 min. The suite of sensors included a cup anemometer, wind 
direction sensor, pyranometer, relative humidity sensor, air temperature sensor, and rain 
gauge (model Vantage Pro2 Plus, Davis Instruments, Hayward, CA). The cup anemometer 
was mounted at a height of about 3 m. The weather data was automatically retrieved by 
the ISSCADA system and was also accessible manually through the AgSense website. In 
addition, weather data was also acquired from Memphis 5N weather station (Automated 
Weather Data Network, High Plains Regional Climate Center), which was about 5 km from 
the field. Historic 20-yr weather data (2000–2019) was also accessed from this weather sta-
tion to compute the normal reference ET.

Crop yield

Crop yield was calculated using yield monitor data from the combine harvesters. The yield 
data was cleaned and processed using the Yield Editor software version 2.0 (USDA-Agri-
cultural Research Service, Columbia, MO). The processed data was then checked using the 
mean yield reported from the weighing grain carts. The Yield Editor software was used 
to adjust the moisture of grains (measured using yield monitor) to 15.5% for maize and 
13% for soybean. The dry yield was computed by removing the mass of moisture from 
the grains (dry yield = (100 – percent moisture in grain) * yield). Data points were only 
included if they were within a 6.1 m buffer from each plot boundary.
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Irrigation management

The values of field capacity and wilting point used were 0.4  m3   m−3 and 0.2  m3   m−3, 
respectively. These values were computed by averaging field capacity and wilting point 
measurements from multiple locations in a nearby field (within 3 km; Bhatti et al., 2020). 
The irrigation depths prescribed in an irrigation event ranged between 5 and 25 mm. The 
different irrigation refill levels included rainfed, deficit, full, and over-applied at 0, 50, 100, 
and 150%, respectively of the amounts determined by each irrigation scheduling method 
for the full level. Hence, the 50 and 150% levels were computed by scaling the full irriga-
tion amount by corresponding fractions. Since the center pivot was not capable of varying 
the irrigation rate of individual sprinklers on the pivot lateral, the sprinkler nozzles for the 
deficit and over levels were outfitted with the required sized nozzles to achieve variable 
rate application along the lateral of the pivot. These custom sized nozzles for the deficit 
and over levels were specified by the irrigation dealer for achieving the required application 
depth in the respective irrigation zones. The nozzles for the deficit level were switched to 
smaller sizes (to achieve 50% of the full), and the nozzles for the over level were changed 
to larger sizes (to achieve 150% of the full). The nozzles for the rainfed zone were set to the 
off position, so these nozzles applied no water throughout the season. The sprinkler noz-
zles automatically applied corresponding amounts of irrigation on the respective irrigation 
levels (0, 50, 100, and 150%). With these modifications to the sprinkler package from the 
default manufacturer’s design, system uniformity analysis was conducted using catch-can 
tests to ensure high application efficiency in the different management zones. Two catch-
can tests were conducted on June 25, 2020, and June 10, 2021. The wind speed, air tem-
perature, and time for the test were 4.5 m  s−1, 30 °C, and 12:00 PM–1:00 PM, respectively, 
in 2020 and 2.6 m  s−1, 31 °C, and 10:00–11:00 AM, respectively, in 2021. Average percent 
difference between measured (in cans) and prescribed irrigation depth was 28% in 2020 
and 13% in 2021. The test in 2021 was conducted early in the morning with lower evapo-
rative demand and lower wind speeds than 2020. The Christiansen uniformity coefficient 
(CU) was also determined for each irrigation level following Eisenhauer et al. (2021). The 
CU in the deficit level was 53% for 2020 and 71% for 2021. The CU for the over level was 
82% for 2020 and 92% for 2021. The full level had a CU of above 90% in both tests. To 
account for boundary effects from neighboring management zones, a buffer of 6.1 m from 
each plot boundary was used. The plot area after excluding the buffer zone was used to pre-
scribe irrigation. The input irrigation depth for each sector was determined using the four 
irrigation methods discussed below.

ISSCADA plant feedback method

The iCWSI data were calculated for each treatment plot. Canopy temperature data from 
dry scans were only used for iCWSI computations. It was found that the canopy tempera-
ture collected during irrigation events had an apparent canopy cooling of about 2 °C from 
irrigation water for this sprinkler configuration due to the wet canopy (Bhatti et al., 2022b). 
Therefore, the canopy temperature data collected during irrigation was not used for com-
puting iCWSI. The iCWSI data for each plot designated as “plant feedback method with 
the full level” computed by the ISSCADA system from the most recent dry scan were 
compared with pre-established iCWSI thresholds that were used to determine the irriga-
tion amount. The most recent dry scan IRT data was used to schedule irrigation in 2021. 
The replicate plots of this method in different sector blocks were managed independent of 
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each other and had varying levels of irrigation prescribed in a single irrigation event. This 
method included three iCWSI thresholds: low (L), medium (M), and high (H) threshold. 
These thresholds are region, climate, and crop specific.

For irrigation management in 2020, the iCWSI data for a dry scan were compared 
among the different irrigation levels to compute the prescribed irrigation depth. The mini-
mum iCWSI values for the rainfed and deficit levels were used as the high threshold. The 
minimum iCWSI values from the full level plots were used as the low threshold. The aver-
age value of the high and low thresholds was used as the medium threshold. The most 
recent dry scan data were used to compute new thresholds for each irrigation event in 
2020. The low, medium, and high thresholds used for 2020 ranged between 100 and 150, 
130 and 170, and 150 and 190, respectively, for both crops. These thresholds were used 
to determine the amount of irrigation in 2020. The timing of the irrigation was decided 
based on soil water data from the Acclima TDR sensors similar to the hybrid method. The 
thresholds for irrigation management for the 2021 growing season were computed using 
the iCWSI data from the 2020 growing season (refer to Bhatti et  al., 2022a for details). 
The low, medium, and high thresholds were 120, 150, and 180, respectively for maize and 
110, 130, and 150, respectively for soybean. The irrigation was prescribed according to 
the mean iCWSI calculated for the designated treatment plots: no irrigation for iCWSI ≤ L, 
13 mm for L < iCWSI ≤ M, 19 mm for M < iCWSI ≤ H, and 25 mm for iCWSI > H. It was 
observed that the mean iCWSI computed for rainfed was always higher as compared with 
deficit or full irrigation levels. Hence, it was more likely that the irrigation would be trig-
gered using iCWSI thresholds for rainfed since the iCWSI values for rainfed were higher in 
comparison with the other levels (Bhatti et al., 2022a).

ISSCADA hybrid method

The ISSCADA hybrid method used the soil water data from TDR soil water sensors and 
iCWSI data collaboratively to prescribe irrigation. The depth weighted average of soil 
water content was used to represent root zone soil water content. The soil water deple-
tion (SWD) was estimated from the field capacity, wilting point, and soil water content 
(O’Shaughnessy et al., 2020). The ratio of SWD to the maximum value of SWD (differ-
ence between field capacity and wilting point) was used to define SWD thresholds. The 
irrigation was managed with SWD and iCWSI thresholds: if SWD ≤ 15% then no irriga-
tion, if 15% < SWD ≤ 35% then manage using only iCWSI thresholds as in plant feedback 
method, and if SWD > 35% then apply 25 mm irrigation. The most recent dry scan iCWSI 
data and SWD values computed using TDR sensors from the hybrid-full treatment plots 
were used to manage irrigation for this method. The iCWSI data for each hybrid-full treat-
ment plot were independently used to prescribe irrigation for the plot. However, one value 
of SWD was used for this method at a given time since there was one location of TDR sen-
sors per crop.

SETMI method using spatial evapotranspiration model

The water balance approach of the spatial evapotranspiration model was used to prescribe 
irrigation for the SETMI method (Neale et al., 2012). This approach maintains a seasonal 
water balance for the crop which is updated with remote sensing imagery on a regular 
basis. The model was input with PlanetScope imagery, and SAVI was computed at 3 m 
pixel resolution using red and near-infrared bands. The crop ET was computed using the 
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dual crop coefficient approach (Allen et al., 1998) and reflectance-based crop coefficients 
(Campos et al., 2017; Neale et al., 2012). The model estimated water balance components 
on a daily basis. The water balance was updated with inputs of rainfall and irrigation. The 
modeled root zone was linearly increased from 0.1 to 1  m between the respective dates 
of crop emergence, and maximum crop coefficient. The SWD computed with the model 
was updated using soil water data from the neutron probe. Neutron probe data from three 
different SETMI-full plots for each crop were used to adjust the SWD. Depth weighted 
soil water content was used to compute representative soil water content for the root zone. 
The SWD adjustment was conducted following the methodology described in Bhatti et al. 
(2020). The model forecasted crop water requirements using normal reference crop ET 
computed from the 20-year historic weather data and forecasted crop coefficients for the 
entire season. The forecasted crop water requirements were used to apply irrigation for 
the upcoming week. A management allowable depletion (MAD) threshold was used for 
scheduling irrigation in order to maintain soil water above MAD. The MAD was used as 
50% of the available water capacity (difference between soil water content at field capacity 
and wilting point) for majority of the season, which was increased to 60% for both crops 
late in the season (around denting stage for maize and appearance of yellow leaves in soy-
bean). The crop water requirements were computed at 3 m resolution, and pixels excluding 
a 6.1 m inner buffer from each plot boundary were averaged to compute the prescribed irri-
gation depth for the plot. The inner buffer for each plot was used to remove any boundary 
effects from adjacent plots. Additional model specific details can be found in Bhatti et al., 
2020. The two-source energy balance approach of the model was not implemented due to 
time and logistical constraints.

Common practice

This method represented the common practice for irrigation scheduling in eastern 
Nebraska. An agronomist prescribed irrigation by sampling soil up to 0.6 m using a soil 
probe in a common practice-full treatment plot. The hand feel method was used on a 
weekly basis to feel the soil wetness and texture to make conclusions on irrigation require-
ments. In cases of hot and dry weather with high evapotranspiration, the field was sam-
pled for soil water estimation two times during a week. The prescribed irrigation with this 
method was always 25 mm in the full irrigation level. This method allowed for the com-
parison of sensor-driven irrigation methods with the common practices in the area.

Irrigation application

The prescribed irrigation depths for each method were uploaded to the center pivot system 
using the AgSense remote management tool. The angles for each sector and corresponding 
irrigation depths were entered in the AgSense software. The different depths of irrigation 
among the different sectors were achieved by varying the speed of the pivot, given the con-
stant flow rate and operating pressure through the individual sprinklers. A single value of 
irrigation depth was entered for each sector in the AgSense software, and varying depths 
of irrigation were applied in each sector with the custom-sized nozzles. The ISSCADA 
system has the ability to upload and run irrigation prescriptions through the center pivot. 
However, the ISSCADA system was set up as a zone control system on a speed control 
pivot. The zone control configuration of the ISSCADA system enabled data collection and 
computation of iCWSI for each treatment plot independently. Therefore, the AgSense tool 
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was used for irrigation management, and the ISSCADA system was used for data collec-
tion and crop water stress computations. The ISSCADA system was successfully deployed 
for irrigation management on August 4, 2020. The irrigation on the ISSCADA treatments 
before August 4 were prescribed similar to the common treatment. The ISSCADA system 
was used to prescribe four irrigation prescriptions after August 4 for each crop in 2020.

Data analysis

Seasonal irrigation, crop yield, and water productivity were compared among all the treat-
ment plots. The seasonal irrigation and crop yield were statistically tested to identify dif-
ferences among the treatments at a 5% significance level. Statistical analysis was computed 
using SAS 9.4 (SAS Institute, Inc., Cary, NC) software. PROC GLIMMIX was used to 
run the univariate analysis of variance (ANOVA). The main effects of methods and levels 
along with the interaction between the methods and levels were used in the model state-
ment. The blocking was treated as a random effect for these tests. Two blocking effects 
including radial blocks and sector blocks, were considered in the model. The irrigation 
water productivity (IWP), evapotranspiration water productivity (ETWP), and CWP were 
expressed in kg  m−3 and computed following Evett et al., (2020a, 2020b, 2020c):

where Y  is dry yield (kg  m−2), I is applied irrigation depth (m), and ET is actual crop 
evapotranspiration (m). Subscripts i and d represents variables corresponding to irrigation 
treatment i, and dryland treatment d, respectively. Statistical differences in IWP among the 
treatments were also computed at a 5% level. The ET data was only available for a few 
plots in the full and rainfed level plots. Hence, there were inadequate replicates to compute 
statistical differences for ETWP and CWP. The ET were computed using neutron probe 
measurements, water balance components computed from SETMI, and seasonal water 
inputs (rainfall or irrigation). More details on ET computations can be found in Bhatti et al. 
(2022a).

The relationship between irrigation applied and crop yield was also computed using plot 
values of irrigation and yield. These relationships were used to study the increase in yield 
per unit increase in water application for different plots. It was hypothesized that the over 
level plots will not produce significantly larger yield as compared with the full level plots.

Eliminated data

The yield data for soybean in the north half in 2020 indicated significant differences 
between the east and west quarters. The irrigation prescriptions did not have significant dif-
ferences in water application between east and west quarters. The average yield in the west 
quarter was 4.7 Mg  ha−1 and in the east quarter was 4.1 Mg  ha−1. The plot yield in the east 
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quarter was consistently lower than the west quarter for different irrigation treatments. The 
reason for this difference in yield is unclear, and no such observation was found in yield 
maps from the past 5 years. As a result of this observed difference in yield between the two 
quarters, 36 plots from sector block 2 (Fig. 1) which were split equally between east and 
west quarters had to be eliminated from yield analysis in 2020. The eliminated plots could 
have resulted in mean yield for two methods (present in the west quarter for sector block 2) 
to be significantly larger than the other two methods (present in the east quarter for sector 
block 2). The yield data for maize in 2020 or for both crops in 2021 did not demonstrate 
any differences in yield data between the east and west quarters.

Results and discussion

Seasonal climate

The 2020 and 2021 growing seasons were different from each other in terms of the sea-
sonal rainfall received. The cumulative rainfall between June and September was 178 mm 
for 2020 and 386 mm for 2021. The depth of rainfall was almost double in 2021. Historic 
average rainfall (1991–2020) from June to September was 381 mm for the Mead 6S sta-
tion (National Centers for Environmental Information), which was about 6.5 km southwest 
of the field. Therefore, 2020 was a dry season when compared with the normal historic 
rainfall. The average daily air temperature between June and September was 12.3 °C for 
2020, and 13.1 °C for 2021. The maximum air temperature on average was larger in 2021 
(29.2 °C) as compared to 2020 (28.9 °C). The average relative humidity was 58% for both 
years. Solar radiation was slightly larger in 2020 (549 W/m2) as compared to 2021 (541 
W/m2). Wind speed was similar for both years on average (3.5 m/s in 2020 and 3.2 m/s in 
2021).

Seasonal soil water depletion and water inputs

The rainfall, SWD, and irrigation were depicted using a representative plot for all crop-year 
cases (Fig. 3). A plot assigned with the full level and SETMI method was selected for each 
crop-year. The SWD was modeled on a daily basis for the entire season using SETMI and 
corrected using soil water data from the neutron probe. The MAD was also plotted as a ref-
erence to the SWD. The modeled root zone was linearly increased from 0.1 to 1 m for this 
model run. This resulted in a constant increase of the MAD from the early to peak devel-
opmental stage (identified as the date when crop coefficients reached maximum value) for 
each crop. The SWD on average indicated an increase with time, but the root zone deple-
tion did not reach the allowable depletion (Fig. 3). It is evident that the frequency and mag-
nitude of rainfall events were much higher in 2021 as compared with the 2020 season. The 
2021 season had seven rainfall events larger than 25 mm as compared to only one event in 
2020. Several large rainfall events were observed after August 6, 2021, and only one irriga-
tion event was applied after this day for each crop.

Seasonal prescribed irrigation depth

The mean seasonal prescribed irrigation depth was compared among the different 
treatment plots (Table 1). The mean seasonal irrigation depth reported in Table 1 was 
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computed as the average total irrigation depth prescribed during the growing season 
(April–October) for all plots under an irrigation treatment. This depth was reported for 
all irrigation levels and methods (Table 1). The mean irrigation depth for a specific irri-
gation level was computed by averaging irrigation applied for the four irrigation meth-
ods. Further, the mean irrigation depth for a specific irrigation method was computed 
using the average irrigation depth applied in plots with 50, 100, and 150% levels.

There were a total of 11 and 10 irrigation events applied in maize and soybean, 
respectively, between July 2 and September 3 of the 2020 growing season. There were 
four irrigation events prescribed for both crops after the implementation of ISSCADA 
for irrigation management in 2020. In 2021, there were five and four irrigation events 
applied in maize and soybean, respectively, between July 10 and August 20. As a con-
sequence of the experimental setup, the irrigation depths among the different irrigation 
levels were always significantly different from each other for both years. This observa-
tion was expected as the irrigation depths were applied at 50, 100, and 150% of the 
irrigation depth prescribed by each irrigation method for the deficit, full, and over lev-
els, respectively. In 2020, the range of mean seasonal irrigation depth for plots with 
the four methods applied at the full level was 37 and 41  mm for maize and soybean, 
respectively. The seasonal irrigation averaged for the irrigated levels was largest for the 
common method (254 mm) in maize, and for the ISSCADA hybrid and SETMI methods 
(203 mm) in soybean. The mean seasonal irrigation depth for SETMI method (219 mm) 
was significantly smaller than those of the other irrigation methods for maize (Table 1). 
For soybean, the ISSCADA plant feedback (172 mm) and common practice (178 mm) 
methods were significantly smaller in seasonal irrigation than the other two methods. 
The full level plots averaged for all methods were prescribed with 236 mm for maize, 
and 189 mm for soybean on average.

Fig. 3  Seasonal soil water depletion, rainfall, and irrigation for a representative full level plot in A maize 
2020, B soybean 2020, C maize 2021, and D soybean 2021. Soil water depletion was modeled using 
SETMI and updated with neutron probe soil water data. Management allowable depletion and soil water 
depletions were plotted using the left vertical axis. The rainfall and irrigation events were plotted using the 
right vertical axis
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In 2021, the range of seasonal irrigation among all plots with the four methods applied 
at the full level was 70 and 76 mm for maize and soybean, respectively. The seasonal irri-
gation was significantly larger for the common practice method than other methods for 
both crops (127 mm for maize and 102 mm for soybean). The plant feedback method had 
minimum irrigation for maize (59 mm), and the hybrid method had minimum irrigation for 
soybean (25 mm). The range in prescribed irrigation among the full level plots in 2021 was 
much larger than in 2020 for both crops even though the overall irrigation applied in 2021 
was comparatively smaller. The full level plots were prescribed with 92  mm for maize, 
and 56 mm for soybean on average. There was a significant interaction between the meth-
ods and levels for prescribed irrigation in 2021. For soybean, the common method applied 
at 100% was larger in prescribed irrigation than the other methods applied at 150%. For 
maize, the plant feedback method applied at 150% was significantly smaller than the com-
mon method applied at 100%. Prescriptions generated by the ISSCADA and SETMI meth-
ods for the full level plots on July 2, 2022 were indicated in Fig. 4. It was observed that the 
ISSCADA plant feedback method on this day prescribed irrigation depth between 13 and 
19 mm as compared to 15 mm prescribed by the SETMI method and 25 mm prescribed by 
the ISSCADA hybrid method.

Crop yield

The mean crop yield data for both crops were compared among the irrigation methods and 
levels (Table  1). The irrigation applied and crop yield data for all individual treatments 
(four irrigation methods with four irrigation levels) are depicted in Fig.  5. In 2020, the 
average maize yield was only found to be significantly lower for rainfed (11.8 Mg   ha−1) 
as compared to the other irrigation levels. The full and over levels had a mean yield 
of 13.7 Mg   ha−1, and deficit had a mean yield of 13.1 Mg   ha−1. There were no signifi-
cant differences found in maize yield among the irrigation methods. The soybean yield 
was not found to be significantly different among the methods and levels. Rainfed had 
a mean soybean yield of 4  Mg   ha−1, which was lower than the other irrigation levels 
(4.4–4.5 Mg   ha−1). This yield difference between rainfed and other irrigation levels was 
found to be not significant. The elimination of soybean yield data from 32 plots reduced 
the power of the statistical test which could be a reason for this yield difference to be non-
significant. The mean soybean yield among the methods ranged between 4.3 Mg  ha−1 in 
plant feedback and 4.6 Mg  ha−1 in hybrid.

Fig. 4  Irrigation prescriptions generated for full level plots on July 2 in 2022 by A ISSCADA plant feed-
back and hybrid methods, B SETMI model
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In 2021, mean yield differences were not significant among both the levels and the 
methods for both crops. The rainfed had a similar crop yield as compared to the irrigated 
treatments. Since the rainfall in 2021 was much larger than in 2020, the rainfed crop had 
optimal yield similar to irrigated crop in 2021. The mean maize yield among the levels 
ranged between 14.6 Mg  ha−1 in rainfed and 15 Mg  ha−1 in the full level. The mean maize 
yield among the methods was between 14.7 Mg  ha−1 in hybrid and 15.0 Mg  ha−1 in com-
mon. The soybean yield ranged between 4.8 and 5  Mg   ha−1 among the different levels 
and methods. There were no significant interactions found between the main effects of 
methods and levels. The computed iCWSI thresholds from 2020 season data were used 
for scheduling irrigation in the ISSCADA treatments in 2021. There were three irrigation 
events triggered using the iCWSI thresholds for each crop in 2021. The optimal yield and 
reduced irrigation application (compared to the common practice) observed in the ISS-
CADA treatments indicated that the iCWSI thresholds worked well for the 2021 growing 
season for both crops. These thresholds should be further tested during a few dry seasons 
in this region to validate their credibility for irrigation management of maize and soybean.

Crop water productivity

The statistical differences in IWP were computed for both crops in 2020 and 2021 
(Table 1). For maize in 2020, the IWP ranged between 0.52 kg  m−3 (over) and 1.12 kg  m−3 
(deficit) among the irrigation levels. The IWP among the levels were significantly differ-
ent from each other. The deficit level had the largest IWP among the levels. There were 
no significant differences in IWP for maize among the methods, which ranged between 
0.72  kg   m−3 in hybrid and 0.91  kg   m−3 in plant feedback. The IWP ranged between 
0.16 kg  m−3 in over and 0.34 kg  m−3 in deficit for soybean in 2020. The IWP differences 

Fig. 5  Mean irrigation depth vs. crop yield plotted for different method-level combinations for A maize 
2020, B soybean 2020, C maize 2021, and D soybean 2021. Each sub-figure contains 16 data points corre-
sponding to the 16 method-level combinations (4 irrigation methods applied at 4 irrigation levels)
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among the irrigation levels were not significant for soybean. Among the methods, the com-
mon practice had the maximum IWP of 0.3 kg  m−3, and plant feedback had the minimum 
IWP of 0.12 kg  m−3. In 2021, no significant differences were observed in IWP among the 
levels and the methods for both crops. The IWP among the irrigation levels ranged between 
0.58 kg  m−3 in deficit and 0.19 kg  m−3 in over for maize. This range was from 0.2 kg  m−3 
in hybrid and 0.58 kg  m−3 in plant feedback among the irrigation methods. For soybean, 
the range in IWP was from -0.17 kg  m−3 in deficit to 0.1 kg  m−3 in over among the lev-
els. The minimum and maximum IWP among the methods were -0.38 kg  m−3 in SETMI 
and 0.15  kg   m−3 in hybrid. The negative values of IWP were observed in 2021 due to 
few irrigation applications and optimal yield produced in the rainfed crop. The IWP was 
found to be largest in deficit among the different levels in all cases except soybean in 2021. 
The plant feedback and hybrid methods were found to have the largest IWP for maize and 
soybean, respectively in both years. In contrast, a study in Stoneville, Mississippi yielded 
an IWP between 1.33 and 2.49 kg  m−3 for maize during the 2014 and 2015 growing sea-
sons (Sui & Yan, 2017). They also found that the IWP for soybean ranged between 0.48 
and 1.2  kg   m−3 in 2014 and 2015. Another irrigation study on corn conducted in Flor-
ence, South Carolina from 2016 to 2019 found IWP values between − 1.8 and 3.2 kg  m−3 
(Stone et al., 2020). In particular, they found that the IWP for the plant feedback method 
ranged between − 1.8 and 3.2 kg  m−3, and for the hybrid method ranged between 1.58 and 
2.64 kg  m−3 during the study period.

The CWP and ETWP were also computed from the ET and yield data (Table 1). The 
CWP was computed for rainfed and full levels only. Evapotranspiration data was not avail-
able for deficit and over levels. The rainfed level had larger CWP as compared to the full 
level in all cases. The full level had a CWP of 2.98 kg   m−3 in 2020 and 3.88 kg   m−3 in 
2021 for maize. In an earlier study, the average CWP for maize was found to range between 
1.61 kg  m−3 in 2013 and 2.1 kg  m−3 in 2014 for maize in Bushland, Texas (O’Shaughnessy 
et al., 2017). The maximum CWP for maize was found in the SETMI method (3.15 kg  m−3) 
in 2020 and in the plant feedback method (4.24 kg  m−3) in 2021. The maximum CWP for 
soybean was observed in hybrid for both years (1.13 kg  m−3 in 2020 and 1.48 kg  m−3 in 
2021). The maize ETWP for the full level was 1.19 kg   m−3 in 2020 and 0.79 kg   m−3 in 
2021. In 2020, the maize ETWP ranged between 0.83  kg   m−3 in common practice and 
1.42  kg   m−3 in SETMI. The soybean ETWP ranged between 0.21  kg   m−3 (plant feed-
back and common practice) and 0.61 kg  m−3 (hybrid). In 2021, the maize ETWP ranged 
between 0.54 kg  m−3 (common practice) and 1.06 kg  m−3 (plant feedback). The soybean 
ETWP ranged between 0.02 kg  m−3 in SETMI and 1.84 kg  m−3 in hybrid. In summary, the 
SETMI and plant feedback methods in 2020 and 2021, respectively had the largest ETWP 
for maize, and the hybrid method had the largest ETWP for soybean in both years.

Irrigation production function

An irrigation production function was computed using irrigation and crop yield data for 
each irrigation treatment (Fig. 5). It was observed that the data points for each level were 
differentiable from each other in 2020, and data labels were placed next to the cluster for 
each level in the figure. An apparent increase in maize yield was observed with the rain-
fed, deficit, and full level clusters in 2020 (Fig. 5). There was no increase in maize yield 
between the full and over levels. The increase in soybean yield between the rainfed and 
full levels was not obvious in 2020. The data from sector block two (32 plots) were elimi-
nated for soybean 2020. In 2021, there were no significant yield differences among the 
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treatments. It can be seen from Fig. 5 that the irrigation for plant feedback at a particular 
level was significantly smaller than the irrigation for common practice at the corresponding 
irrigation level. For both crops in 2021, the seasonal irrigation for the plant feedback with 
over level was smaller than the common practice with full level. The rainfed crop in 2021 
produced similar yield as irrigated crop. The crop yield in 2021 had a small range between 
different method-level plots due to the smaller irrigation applied in 2021 as compared with 
2020.

Overall, the crop yield was similar among majority of the treatments implemented in the 
study for both years. The rainfed maize had a significantly lower yield than the irrigated 
treatments in 2020. The deficit irrigation applied at 50% produced largest IWP for both 
crops and no significant reduction in yield was observed for this level during the two grow-
ing seasons. However, the seasonal irrigation prescribed using the different methods was 
substantially different from each other. The ISSCADA plant feedback method prescribed 
the least irrigation depth among the methods in two crop-year cases. The ISSCADA hybrid 
and SETMI methods also prescribed the least irrigation in one of the four crop-year sce-
narios while maintaining optimal crop yield. This demonstrates that the two ISSCADA 
and SETMI methods performed well by reducing irrigation applications over the common 
practice method while producing adequate yield. Further studies are warranted to test these 
methods in arid and other climates. The iCWSI thresholds developed for this field should 
be further validated for irrigation management in the sub-humid climate of the Central 
Great Plains by continuing irrigation scheduling using these thresholds on two or more 
growing seasons for maize and soybean.

Comparative usability of SETMI and ISSCADA

Both decision support systems differ from each other in terms of ease of use, cost, labor 
requirements, transferability, and viability for adoption. These systems were used in the 
sub-humid climate of eastern Nebraska in this study. The SETMI model has been imple-
mented for site-specific irrigation scheduling in Nebraska for about 8 years (Barker et al., 
2018, 2019; Bhatti et al., 2020). The ISSCADA system was also tested in many different 
locations with different climates in the US (Evett et al., 2020b; O’Shaughnessy et al., 2015, 
2017; Stone et al., 2020; Vories et al., 2020). Significant reductions in prescribed irrigation 
depth were observed in the previous studies using these irrigation scheduling methods as 
compared with the conventional methods. The SETMI model can be implemented for irri-
gation scheduling using freely available satellite data as compared to the ISSCADA system 
which has a considerable initial investment (~ US$10,000–15,000). The ISSCADA system 
requires extensive instrumentation including network of IRTs, soil water sensors, local 
weather station, radio enabled communication devices, embedded computer, weatherproof 
enclosures, and data loggers.

In terms of usability and time requirements, the SETMI model requires an expert user 
and significant time to run the model. It is currently not designed to be used by producers 
directly, but the model can be used by irrigation consultants to provide recommendations 
to the producers. Additionally, SETMI can forecast irrigation recommendations for a cer-
tain number of days in the future which allows producers to be better prepared for satisfy-
ing crop water needs. On the other hand, the ISSCADA system is capable of automation 
and designed to be used directly by producers. ISSCADA require farmers to run a dry scan 
each time a new irrigation prescription needs to be generated. However, this system can be 
automated to collect data, control the irrigation system, analyze data to design irrigation 
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recommendations, and apply water with no or minimal user inputs. With a remote desktop 
connection, the user can monitor and control the status of the center pivot through the ISS-
CADA system. The soil water and spatial crop water stress data can be viewed with ease 
using the ARS-Pivot software which provide insights about different parts of the field. The 
ability to detect energy-limiting water stress (and use it to manage irrigation) before the 
crop canopy transitions to carbon-dioxide-limiting water stress and subsequent yield loss 
(Bhatti et al., 2022a) supports the idea of using thermal stress detection for a broad array 
of situations, including full irrigation as well as deficit irrigation. In terms of transferabil-
ity, the SETMI model can be implemented in different locations and climates with relative 
ease. This is due to the widespread coverage of land cover by satellites with high tempo-
ral and spatial resolution. However, the ISSCADA system requires development of iCWSI 
thresholds in the new location which requires implementation of the system for at least one 
season for data collection. Both decision support systems have immense potential for preci-
sion irrigation, and their pros and cons should be considered before adopting a particular 
system for irrigation scheduling.

Implications for sensors on the pivot vs. unmanned aircraft systems

Although this study did not include unmanned aircraft systems (UAS), there is a grow-
ing interest in UAS for irrigation (Chavez et al., 2020); therefore, it is helpful to put the 
findings of this research in the context of irrigation management techniques using UAS. 
This study demonstrated that IRTs mounted on a pivot were successful in determining the 
spatial canopy temperature and crop water stress accurately. The moving irrigation sys-
tems can be additionally used to mount different sensors including multispectral sensors, 
RGB cameras, and thermal cameras. These irrigation systems can be used to collect data 
in windy conditions and has low cost of operation. The cost of electrical energy consumed 
during a dry scan was about $3.60 for the pivot used in this study (Bhatti et al., 2022b). 
The data collection using sensors on these irrigation systems has potential for automation 
and does not require any labor for their operation. Currently, there are center pivots that 
can complete a revolution of a quarter section field (~ 60 ha) in only 90 min. This is sig-
nificant as the data across the field can be collected from the moving irrigation systems 
with consistent weather conditions and time of day. The sensor data does not need to be 
corrected for atmospheric interference. Relatively low-cost UAS are available for capturing 
qualitative spatial patterns in crop canopy. However, UAS with a thermal sensor for canopy 
temperature are both costly and labor intensive, especially if accurate canopy temperature 
is needed (i.e., to calculate iCWSI). Maguire et al. (2021) highlight some of the challenges 
of accurately measuring canopy temperature with UAS (RMSE of 2.24 °C when evaluat-
ing UAS canopy temperature against canopy temperature from proximal IRTs). The UAS 
are operated under strict federal regulations and requires expert training on their effective 
operation. Additionally, some UAS are not recommended to be flown in windy conditions 
and require calm, sunny days for flying. The data collected from the UAS may require cor-
rections on the captured imagery to account for atmospheric interference (Maguire et al., 
2022).

The sensors on a pivot determine crop and field characteristics with considerable spatial 
coverage across the field. While it is possible to mount ample number of sensors on an irri-
gation system, the associated cost increases considerably with the addition of instrumenta-
tion. It is crucial to determine the minimum number of sensors needed for monitoring crop 
water stress and manage a field. The ISSCADA system can be used with a minimum of two 
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IRTs to cancel for sun angles as the pivot moves around the field. This would be sufficient 
for managing the entire field uniformly if the sensors were mounted on the outer two spans. 
Mounting sensors on the outer spans will increase the area sensed and improve confidence 
in irrigation decision making. However, it will be beneficial to use two pairs of IRTs in 
the outer two spans of the center pivot for managing variable rate irrigation (either speed 
or zone control). Instead of mounting all four sensors on the two outer spans, one pair of 
IRTs can also be used in an area with low yielding crop. On the contrary, the UAS can be 
maneuvered to collect data from all parts of the field with only one sensor.

Conclusions

This experiment implemented two scientific decision support systems for irrigation man-
agement of maize and soybean during the growing seasons of 2020 and 2021. The rain-
fall received during 2021 (386  mm) was about two times the amount received in 2020 
(178 mm). The differences in crop yield were mainly observed between rainfed and irri-
gated methods in 2020 for both crops since 2020 was a dry year. The deficit level per-
formed adequately and had no yield reduction (not significantly different with a 5% sig-
nificance level) as compared to the full irrigation level. The irrigation prescribed was 
minimum for the plant feedback method in majority of crop-year combinations. With the 
exception of soybean in 2020, the ISSCADA hybrid and SETMI methods significantly 
reduced irrigation applications for both crops as compared with the common practice 
method while maintaining optimal yield. In 2021, the common practice method (127 mm 
for maize and 102 mm for soybean) prescribed more than double the irrigation amount as 
was prescribed by the plant feedback method (59 mm for maize and 46 mm for soybean). 
The deficit level had the largest IWP for both crops in 2020 and 2021. The SETMI model 
and ISSCADA system performed adequately by producing optimal yield while reduc-
ing irrigation applications as compared with the common practice. The newly developed 
thresholds for ISSCADA performed well by reducing irrigation applications over the com-
mon practice method in 2021 and producing optimal yield. Future research could update 
these thresholds with additional iCWSI data and test these thresholds in additional growing 
seasons with more weather variability.
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