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ABSTRACT  

In this work, we study numerical solutions of a gradient-elastic Kirchhoff plate model on convex and concave geometries. For a convex plate, we 
first show the well-posedness of the model. Then, we split the sixth-order partial differential equation ( PDE ) into a system of three second-order 
PDEs. The solution of the resulting system coincides with that of the original PDE. This is verified with convergence studies performed by solving 
the sixth-order PDE directly ( direct method ) using isogeometric analysis ( IGA ) and the system of second-order PDEs ( split method ) using both 
IGA and C 

0 finite elements. Next, we study a concave pie-shaped plate, which has one re-entrant point. The well-posedness of the model on 
the concave domain is proved. Numerical solutions obtained using the split method differ significantly from that of the direct method. The split 
method may even lead to nonphysical solutions. We conclude that for gradient-elastic Kirchhoff plates with concave corners, it is necessary to 
use the direct method with IGA. 

KEYWORDS: gradient-elastic Kirchhoff plate, isogeometric analysis, concave corners, sixth-order PDE 

1. INTRODUCTION 

Classical continuum mechanics has been successfully applied 
to macro-scale problems in civil [ 1 ], mechanical [ 2 ], material 
[ 3 ], structural engineering [ 4 ] and more [ 5 , 6 ]. Many of these 
problems exhibit multi-scale features and have broad engineer- 
ing applications [ 7 , 8 ]. To study such problems, it is necessary 
to adopt a continuum theory, which includes multi-scale effects. 
However, the standard theory of continuum mechanics does not 
consider the internal length scale of the material at the micro- 
or nano-scale. Enrichment or modification of the classical the- 
ory becomes important to study problems across multiple scales. 
The theory of strain gradient elasticity [ 9 , 10 ] considers the ef- 
fects of micro-structures using gradients of strains and requires 
the identification of more material parameters. Simplified mod- 
els are developed to reduce the number of higher-order terms 
as well as material coefficients [ 11 ]. These models can capture 
the size effects of the material [ 12 –14 ]. In this work, we are 
interested in numerical solutions of a simplified one-parameter 
gradient-elastic Kirchhoff plate model developed in [ 15 ]. 
The gradient-elastic Kirchhoff plate model is a sixth-order 

partial differential equation ( PDE ) in terms of the transverse 
deflection. If the sixth-order PDEs are solved directly ( direct 
method ) , H 

3 -conforming finite element methods ( FEMs ) be- 
come necessary. Isogeometric analysis ( IGA ) [ 16 ], which offers 
basis functions with high-order inter-element continuity, is an 
ideal candidate for solving third- and higher-order PDEs [ 17 –

19 ], including the gradient-elastic Kirchhoff plate model [ 20 –
22 ]. There are other numerical methods [ 23 –25 ] based on the 
direct method. Another approach that is widely used to solve 
third- and higher-order PDEs is the split method [ 26 –32 ]. By 
rewriting any third- or higher-order PDE into a system of first- 
or second-order PDEs, the use of classical C 

0 FEM becomes pos- 
sible. Reformulating the biharmonic equation into two Poisson 
equations is an example of the split method. In this work, we wi l l 
use both methods ( direct and split ) along with IGA and C 

0 FEM 

to solve the gradient-elastic Kirchhoff model. 
Previous works [ 21 –25 ] on gradient-elastic Kirchhoff plate 

models are limited to convex geometries. Geometries with 
finitely many concave corners are important as they appear in 
many engineering applications. Can one expect numerical solu- 
tions obtained from the direct and split methods on convex and 
concave geometries to be the same? For the biharmonic equa- 
tion, solutions obtained using the two methods differ in domains 
with concave corners [ 19 , 33 –35 ]. We wi l l borrow the ideas and 
tools from analysing the biharmonic equation to study how the 
direct and split methods perform on the gradient-elastic Kirch- 
hoff plate model on both convex and concave geometries. 
In this work, we study numerical solutions of the gradient- 

elastic Kirchhoff plate model with both convex and concave ge- 
ometries using direct and split methods. We first show the well- 
posedness of the model when the plate is convex. Then, we 
split the sixth-order PDE into a system of three second-order 
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PDEs, which enables the use of classical C 

0 FEM. For concave 
pie-shaped geometries, the existence of a unique solution of the 
model is also provided. We solve the sixth-order PDE directly us- 
ing IGA and the system of second-order PDEs using both IGA 

and C 

0 FEM. Convergence studies of direct and split methods 
are performed, and the observed convergence rates are in good 
agreement with [ 21 ]. Next, numerical examples on a concave 
pie-shaped domain are presented. Numerical solutions obtained 
using the split method differ significantly from that of the direct 
method. The split method leads to nonphysical solutions for cer- 
tain loads. Thus, for plates with concave corners, it is necessary 
to use the direct method with IGA. 
This paper is organized as follows. In Section 2, the gradient- 

elastic Kirchhoff plate model, along with the direct and split 
formulations, is presented. Section 3 discusses discretization 
methods. Convergence studies on a convex domain and numer- 
ical examples on an pie-shaped domain are shown in Section 4 . 
Finally, conclusions are made in Section 5 . 

2.  GRADIENT-ELASTIC  KIRCHHOFF  PLATE  

MODEL  

In this section, we first present the gradient-elastic Kirchhoff
plate model. Then we discuss two methods to obtain a solution. 

2.1 Model equation 
We briefly present the gradient-elastic Kirchhoff plate model, 
and we refer readers to [ 36 ] for a detailed derivation. Let the 
plate occupy a three-dimensional domain � × (−t / 2 , t / 2) , 
where the mid-surface of the plate is denoted as � ⊂ R 

2 , 
and 0 < t � diam (�) is the thickness of the plate. We as- 
sume � is open and bounded. In addition, t is assumed to be 
constant. 
Let w : � → R be the transverse deflection of the mid- 

surface. A standard argument of dimension reduction tech- 
niques gives the gradient-elastic Kirchhoff plate model equa- 
tion [ 21 , 36 ] as 

D �2 w − g 2 D �3 w = f in �, ( 1 ) 

where D = Et 3 /[12 ( 1 − ν2 ) ]. Here, E and ν are Young’s mod- 
ulus and Poisson ratio of the material, g is a constant that repre- 
sents the length scale of the micro-structure of the material and 
is also called the gradient parameter and f is the transverse body 
load scaled by the thickness of the plate. In order to have a well- 
posed boundary value problem, we need to provide Eq. ( 1 ) with 
boundary conditions. 
Boundary conditions for strain-gradient elastic plates are non- 

trivial, and there are a number of options [ 11 , 37 ]. In this work, 
we are mainly interested in numerical solutions of the gradient- 
elastic Kirchhoff plate model on both convex and concave 
domains using the direct and split methods. For simplicity, we 
supply Eq. ( 1 ) with the following boundary conditions and for- 
mulate the model as 

�2 w − g 2 �3 w = 

ˆ f in �, ( 2a ) 

w = w on ∂�, ( 2b ) 

−�w + g 2 �2 w = 

̂ M 

g 
nn on ∂�, ( 2c ) 

g 2 ∇�w · n = 

̂ G 

g 
nn on ∂�, ( 2d ) 

where ˆ f = f /D , w , ̂ M 

g 
nn , ̂  G 

g 
nn are given data, and n is the unit vec- 

tor in outward normal direction to ∂�. 

Remark 1 1. For a rectangular plate, when g = 0 , the gradient- 
elastic model in Eq. ( 2 ) is equivalent to the classical sim- 
ply supported Kirchhoff plate model [ 36 ]. 

2. The boundary value problem in Eq. ( 2 ) is well-posed 
and can be split into a system of equations that has a 
unique solution. 

3. Boundary conditions of Eqs. ( 2c ) and ( 2d ) can be im- 
posed naturally in the weak forms of the direct and split 
methods to be presented later. 

By differentiating convex and concave geometries, we discuss 
the next two methods, namely direct and split methods, to solve 
Eq. ( 2 ) , and show the well-posedness of the problem on convex 
geometries and the existence of a solution on a special type of 
concave geometries. 

2.2 Convex geometries 
2.2.1 Direct method on convex geometries 

We introduce more notations that are used throughout the pa- 
per. The standard L 

2 inner product in � for scalar- or vector- 
valued quantities is denoted as ( ·,·) , and 〈 ·, ·〉 is the duality 
pairing on the boundary, ∂�. L 

2 and H 

s ( s > 0 ) denote the clas- 
sical Lebesgue and Sobolev spaces, respectively. Without loss of 
generality, we further assume w = 

̂ M 

g 
nn = 

̂ G 

g 
nn = 0 for the rest 

of this section. 
A weak solution of Eq. ( 2 ) is said to satisfy the following: find 

w ∈ H 

3 (�) ∩ H 

1 
0 (�) , such that 

( �w, �v ) + g 2 ( ∇ �w, ∇ �v ) − ( ̂  f , v ) = 0 , 

∀ v ∈ H 

3 (�) ∩ H 

1 
0 (�) . ( 3 ) 

It is shown in [ 36 ] that Eq. ( 1 ) equipped with fully clamped 
boundary conditions is well-posed. We present next the well- 
posedness of the gradient-elastic Kirchhoff plate model with the 
boundary conditions given in Eq. ( 2 ) . 

Proposition 1. Suppose � is convex. For every ˆ f ∈ L 

2 (�) , 
Eq. ( 2 ) has a unique solution w ∈ H 

3 (�) ∩ H 

1 
0 (�) , 

such that 

‖ w ‖ H 3 (�) ≤ C(�, g) ‖ ̂

 f ‖ L 2 (�) , ( 4 ) 

where C ( ·) > 0 is a constant depending on ( ·) . 

Proof. As shown in [ 38 , Chapter 8] for w ∈ H 

3 (�) 
∩ H 

1 
0 (�) the norm defined as ‖ w ‖ := ‖ w ‖ H 2 (�) + 

‖ �w ‖ H 1 (�) is equivalent to ‖ w ‖ H 3 (�) . Therefore, 
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‖ w ‖ 

2 
H 3 (�) ≤ C(�) 

(
‖ w ‖ 

2 
H 2 (�) + ‖ �w ‖ 

2 
H 1 (�) 

)
≤ C(�) 

(
‖ �w ‖ 

2 
L 2 (�) + ‖∇�w ‖ 

2 
L 2 (�) 

)
≤ C(�, g) 

(
(�w, �w ) + g 2 (∇ �w, ∇ �w ) 

)
= C(�, g)( ̂  f , w ) 

≤ C(�, g) ‖ ̂

 f ‖ L 2 (�) ‖ w ‖ L 2 (�) . ( 5 ) 

Herein, from the first to the second line of Eq. ( 5 ) , we 
have used the fact [ 38 –40 ] that for 
w ∈ H 

2 (�) ∩ H 

1 
0 (�) 

‖ w ‖ H 2 (�) ≤ C(�) ‖ �w ‖ L 2 (�) . ( 6 ) 

�

2.2.2 Split method on convex geometries 
The direct method discussed in the previous section requires 
w ∈ H 

3 which prohibits the use of classical C 

0 FEM. We intro- 
duce a split method [ 26 –32 , 35 ] commonly used for third- and 
higher-order PDEs in this section. 
By introducing, u 1 = −�w and u 2 = u 1 − g 2 �u 1 , Eq. ( 2 ) can 

be rewritten into the a system of three second-order boundary- 
value problems {−�u 2 = 

ˆ f in �, 

u 2 = 0 on ∂�, 

{
u 1 − g 2 �u 1 = u 2 in �, 

∇u 1 · n = 0 on ∂�, {−�w = u 1 in �, 

w = 0 on ∂�. 
( 7 ) 

Before discussing the solution of Eq. ( 7 ) , we define the func- 
tional space 

U = H 

1 
0 (�) × H 

1 (�) × H 

1 
0 (�) . ( 8 ) 

A weak form of Eq. ( 7 ) is: find (u 2 , u 1 , w ) ∈ U , such that 

( ∇ u 2 , ∇ v 2 ) − ( ̂  f , v 2 ) + ( u 1 , v 1 ) + g 2 ( ∇ u 1 , ∇ v 1 ) 

− (u 2 , v 1 ) + ( ∇ w, ∇ v 0 ) − (u 1 , v 0 ) 

= 0 , ∀ (v 2 , v 1 , v 0 ) ∈ U . ( 9 ) 
Eq. ( 9 ) can also be written as: find (u 2 , u 1 , w ) ∈ U , such that 

( ∇ u 2 , ∇ v 2 ) − ( ̂  f , v 2 ) = 0 , ∀ v 2 ∈ H 

1 
0 (�) , ( 10a ) 

( u 1 , v 1 ) + g 2 ( ∇ u 1 , ∇ v 1 ) − (u 2 , v 1 ) = 0 , ∀ v 1 ∈ H 

1 (�) , 
( 10b ) 

( ∇ w, ∇ v 0 ) − (u 1 , v 0 ) = 0 , ∀ v 0 ∈ H 

1 
0 (�) . ( 10c ) 

From classical results for elliptic boundary value problems 
[ 41 ] one can show that Eq. ( 7 ) is well-posed by successively solv- 
ing the system of equations in ( 10 ) . 

Corollary 1. Suppose � is convex. If ˆ f ∈ L 

2 (�) then Eq. ( 7 ) 
has a unique solution w ∈ H 

2 (�) ∩ H 

1 
0 (�) with �w ∈ 

H 

2 ( �) and −�w + g 2 �2 w ∈ H 

2 (�) ∩ H 

1 
0 (�) . 

Figure 1 Pie-shaped domain �ω with one re-entrant point 
O = (0 , 0) for π < ω < 2 π . 

Remark 2. For convex � and ˆ f ∈ L 

2 (�) , the solutions of Eqs. 
( 2 ) and ( 7 ) coincide. Using numerical examples, we will 
verify that numerical solutions of Eqs. ( 2 ) and ( 7 ) converge 
to the same solution. 

Remark 3. As shown in Eq. ( 5 ) , the stability constant depends 
on g. The coercivity constant in Eq. ( 10b ) also depends on 
g. We will explore how the solution behaves with different g 
using numerical examples. 

2.3 Concave geometries 
For less regular domains such as domains with finitely many con- 
cave corners, one can not expect solutions of Eqs. ( 2 ) and ( 7 ) to 
be the same. Without loss of generality, we consider a pie-shaped 
domain with only one re-entrant point as shown in Fig. 1 . In 
this section, we assume ω ∈ ( π , 2 π) , and replace � with �ω . 
It is convenient to express �ω in polar coordinates, namely 

�ω = 

{
(r, θ ) : r ∈ (0 , 1) and θ ∈ (0 , ω) 

}
( 11 ) 

where the transformation from polar coordinates x = (r, θ ) ∈ 

�ω to Cartesian coordinates x = (x, y ) ∈ �ω is defined as {
x = r cos θ, 

y = r sin θ. 
( 12 ) 

Because we do not expect solutions of direct method Eq. ( 3 ) and 
split method Eq. ( 9 ) to be the same on �ω , we differentiate them 

as w 

d and w 

s , respectively. We next present the uniqueness of w 

s 

followed by the existence of w 

d . 

2.3.1 Split method 
The existence and uniqueness of a solution w 

s for the split 
method on concave geometries is the same as Section 2.2.2 . We 
rewrite Eqs. ( 10a ) and ( 10b ) using operators G : L 

2 (�ω ) → 

H 

1 
0 (�ω ) and G g : L 

2 (�ω ) → H 

1 (�ω ) , respectively, 

u 2 = G 

ˆ f ∈ H 

1 
0 (�ω ) , and u 1 = G g u 2 = G g G 

ˆ f ∈ H 

1 (�ω ) , 
( 13 ) 
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Similarly, Eq. ( 10c ) can be written as 

w 

s = Gu 1 = GG g G 

ˆ f ∈ H 

1 
0 (�ω ) . ( 14 ) 

2.3.2 Direct method 
On concave domains with re-entrant points, we cannot use the 
technique adopted in Proposition 1. By following [ 33 , 34 , 42 ] 
we instead show in this section that for a given ˆ f there exists a 
unique solution in H 

3 (�ω ) ∩ H 

1 
0 (�ω ) that satisfies Eq. ( 3 ) . We 

first introduce a series of functions 
u ω j = 

(
r − jπ/ω − r jπ/ω 

)
sin ( jπθ/ω ) , j ∈ Z 

+ . ( 15 ) 
We note that u ω, j ∈ L 

2 ( �ω ) but u ω, j �∈ H 

1 ( �ω ) . It is easy to 
check that u w , j satisfies the following, { −�u ω, j = 0 , in �ω , 

u ω, j = 0 , on ∂�ω \{O} . ( 16 ) 

Next, we show the well-posedness of the gradient-elastic 
Kirchhoff plate model Eq. ( 2 ) on the pie-shaped domain �ω . 

Theorem 1. Provided ˆ f ∈ L 

2 (�ω ) , there exists a unique 
solution w 

d ∈ H 

3 (�ω ) ∩ H 

1 
0 (�ω ) satisfying Eq. ( 3 ) . 

Proof. Adding Eq. ( 15 ) to u 2 and following a similar 
procedure as in Section 2.3.1 , we obtain 

u d 2 = G 

ˆ f + 

∑ 

j∈ Z 

+ 
d j u ω, j 

= u 2 + 

∑ 

j∈ Z 

+ 
d j u ω, j ∈ L 

2 (�ω ) , ( 17 ) 

u d 1 = G g G 

ˆ f + 

∑ 

j∈ Z 

+ 
d j G g u ω, j 

= u 1 + 

∑ 

j∈ Z 

+ 
d j G g u ω, j ∈ H 

1 (�ω ) , ( 18 ) 

w 

d = G G g G 

ˆ f + 

∑ 

j∈ Z 

+ 
d j G G g u ω, j 

= w 

s + 

∑ 

j∈ Z 

+ 
d j GG g u ω, j ∈ H 

1 
0 (�ω ) , ( 19 ) 

for some coefficients d j ∈ R . For the split method, 
d j = 0 for j ∈ Z 

+ because it is required that 
u d 2 = −�w 

d + g 2 �2 w 

d ∈ H 

1 (�ω ) . However, we 
show next that there are non-zero d j such that w 

d ∈ 

H 

3 ( �ω ) . 
Because u d 1 ∈ H 

1 (�ω ) [ 42 , Lemma 6.6.1], the weak 
solution of the Laplacian problem with Dirichlet 
boundary conditions on �ω , namely Gu d 1 , possesses the 
asymptotic expansion [ 43 , Theorem 3.4], [ 42 , 
Theorem 6.6.1] 

w 

d ( x ) = χ (r ) 
3 ∑ 

i =1 

c i r iπ/ω sin ( iπθ/ω ) + ̃  w ( x ) , 

for ̃  w ∈ H 

3 (�ω ) ∩ H 

1 
0 (�ω ) , ( 20 ) 

where 

χ ∈ C 

∞ (R ) satisfies χ (r) 

= 

{
1 , for r ≤ 0 . 5 , 
0 for r ≥ 1 , and 0 ≤ χ < 1 , ( 21 ) 

and 

c i = 

⎛ 

⎝ 

⎛ 

⎝ G g G 

ˆ f + 

∑ 

j∈ Z 

+ 
d j G g u ω, j 

⎞ 

⎠ , u ω,i 

⎞ 

⎠ , for j = 1 , 2 , 3 . 

( 22 ) 
If w 

d ∈ H 

3 (�ω ) ∩ H 

1 
0 (�ω ) , then we obtain 

0 = c i = 

⎛ 

⎝ 

⎛ 

⎝ G g ̂
 f + 

∑ 

j∈ Z 

+ 
d j G g u ω, j 

⎞ 

⎠ , u ω,i 

⎞ 

⎠ . ( 23 ) 

Using Parseval’s identity and Fourier analysis, we have 
(G g u w, j , u w, j ) � = 0 , for j = 1, 2, 3. Then Eq. ( 23 ) leads 
to 

d j = 

⎧ ⎨ 

⎩ 

−
(G g G 

ˆ f , u ω, j 
)(G g u ω, j , u ω, j 
) , for j = 1 , 2 , 3 , 

0 , for j ≥ 4 . 
( 24 ) 

As a consequence, for a given ˆ f ∈ L 

2 (�ω ) , w 

d with d j 
defined in Eq. ( 24 ) is in H 

3 (�ω ) ∩ H 

1 
0 (�ω ) , and 

satisfies Eq. ( 3 ) . This completes the proof. 

�

It is easy to see from Eq. ( 19 ) that w 

d is different from the so- 
lution of the split method w 

s . The H 

1 solution w 

s fails to capture 
additional terms as demonstrated in Eq. ( 19 ) . 

Remark 4. The elliptic operator, −�w + cw, c ≥ 0 , has 
maximum principle [ 39 , 42 , 43 ]. Therefore if 0 ≤ ˆ f ∈ 

L 

2 (�ω ) , then Eq. ( 14 ) also satisfies w = G G g G 

ˆ f ≥ 0 . 
However, Eq. ( 19 ) does not have such a result because 
d j GG g u ω, j can change signs on �ω . We will show this 
discrepancy using numerical examples. 

3. DISCRETIZATION  

We use the Galerkin method along with the two methods dis- 
cussed in Sections 2.2.1 and 2.2.2 to solve the gradient-elastic 
Kirchhoff plate model. In this section, we describe the numer- 
ical methods used to discretize the weak forms obtained using 
the direct and split methods. 

3.1 Spline basis 
We briefly discuss the spline basis used in IGA, and refer to [ 16 ] 
for more details. Setting the weights of all control points to 1 we 
can reduce NURBS to B-splines. We wi l l use tensor product ba- 
sis functions. In this paper, we use bases with C 

p −1 continuous 
derivatives for B-splines of order p ≥ 1. 

3.2 IGA for direct method 
As discussed in Section 2.2.1 , it is necessary to use H 

3 - 
conforming functional spaces for the direct method. The weak 
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Figure 2 Convergence results of w in L 2 and H 

1 norms using the split method ( Section 3.3 ) with g = 0.01 for p = 1, 2, …, 5. For comparison, 
convergence results of w using the direct method ( Section 3.2 ) with g = 0.01 for p = 3, 4, 5, are also included. 

form of Eq. ( 2 ) is given as: find w 

h ∈ H 

3 ( �) , and w 

h = w on 
∂�, such that (

�w 

h , �v h 
) + g 2 

(∇ �w 

h , ∇ �v h 
) − ( ̂  f , v h ) − 〈̂ G 

g 
nn , �v h 

〉
+ 

〈̂ M 

g 
nn , ∇v h · n 〉 = 0 , ∀ v h ∈ H 

3 (�) ∩ H 

1 
0 (�) . 

( 25 ) 

Note that for the rest of the paper, we relax the assumption of the 
boundary data, namely ̂ M 

g 
nn and ̂ G 

g 
nn do not have to be zero. As 

discussed in Remark 1, Eqs. ( 2c ) and ( 2d ) are imposed naturally 
in Eq. ( 25 ) . 
IGA uses spline basis functions ( of order p ≥ 1 ) , which facili- 

tates the construction of H 

p -conforming approximation spaces, 
and has been used to discretize the gradient-elastic Kirchhoff
plate model in [ 21 ]. We wi l l use IGA ( p ≥ 3 ) to discretize 
Eq. ( 25 ) . 

3.3 IGA and C 

0 finite elements for the split method 
The split method proposed in Section 2.2.2 only requires the 
functional spaces to be H 

1 -conforming. The weak form of 
Eq. ( 7 ) is given by: find (u h 2 u 

h 
1 , w 

h ) ∈ H 

1 (�) × H 

1 (�) ×
H 

1 (�) , u h 2 = 

̂ M 

g 
nn and w 

h = w on ∂�, such that (∇ u h 2 , ∇ v h 2 
) − ( ̂  f , v h 2 ) + 

(
u h 1 , v 

h 
1 
) + g 2 

(∇ u h 1 , ∇ v h 1 
)

+ 

〈̂ G 

g 
nn , v 

h 
1 
〉 − (u h 2 , v 

h 
1 ) + 

(∇ w 

h , ∇ v h 0 
)

− (u h 1 , v 
h 
0 ) = 0 , ∀ (v h 2 , v 

h 
1 , v 

h 
0 ) ∈ U . ( 26 ) 

The above equation confirms that Eqs. ( 2c ) and ( 2d ) can be 
imposed naturally in the weak form. For the split method it 
is sufficient to use classical C 

0 finite elements, which are H 

1 - 
conforming. For the ease of implementation, we use IGA of or- 
der p ≥ 1 to solve Eq. ( 26 ) . We remark that IGA and C 

0 finite 
elements coincide when p = 1. 

4. NUM ERIC  AL  EXAM PLES  

In this section, we present numerical examples using the direct 
and split methods discussed in the previous section to solve the 

gradient-elastic Kirchhoff plate model. We first perform con- 
vergence studies on a convex domain. Then, we study the pie- 
shaped plate. 

4.1 Convergence study on convex domain 
In this section, we choose � = ( 0, 1 ) 2 , and use a manufactured 
solution w = sin ( πx ) sin ( πy ) , which leads to the forcing func- 
tion 
ˆ f (x, y ) = 4 π4 sin (πx ) sin (πy ) + 8 g 2 π6 sin (πx ) sin (πy ) . 

( 27 ) 
Thus, the boundary data become 

w = 0 , ̂ M 

g 
nn = 0 , and ̂ G 

g 
nn = −2 g 2 π3 [ cos (πx ) sin (πy ) , cos (πy ) sin (πx )] · n , 

( 28 ) 

which are used in Eqs. ( 25 ) and ( 26 ) . In this case, � is convex 
and ˆ f ∈ L 

2 (�) , thus as in Remark 2, we expect the solutions 
using direct ( Section 3.2 ) and split ( Section 3.3 ) methods coin- 
cide. 
Convergence studies are performed using four uniform 

meshes. The number of elements in each direction is denoted 
as N = 2, 4, 8 and 16. On each mesh, we fix g = 0.01 and solve 
Eq. ( 26 ) equipped with Eqs. ( 27 ) and ( 28 ) for p = 1, 2, …, 5. 
Numerical solutions are compared against the manufactured 
solution. Convergence results of w , u 1 and u 2 in L 

2 and H 

1 norms 
are reported in Figs. 2 –4 . In addition, Eq. ( 25 ) together with 
Eqs. ( 27 ) and ( 28 ) is solved for p = 3, 4, 5. Convergence results 
of w in L 

2 and H 

1 norms using the direct method are included 
in Fig. 2 for comparison with the split method. Convergence 
results of w in H 

2 and H 

3 norms using the direct method can be 
found in Appendix A . 
As shown in Fig. 2 a and b, convergence rates of w in L 

2 

and H 

1 norms are optimal, namely for p th ( p ≤ 4 ) order B- 
splines, the convergence rates in L 

2 and H 

1 norms are of or- 
der p + 1 and p , respectively. Figures 3 and 4 indicate that 
optimal convergence rates of the additional variables u 1 and 
u 2 in L 

2 , and H 

1 norms are also achieved for p ≤ 4. When 
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Figure 3 Convergence results of u 1 = −�w in L 2 and H 

1 norms using the split method ( Section 3.3 ) with g = 0.01 for p = 1, 2, …, 5. 

Figure 4 Convergence results of u 2 = −�w + g 2 �2 w in L 2 and H 

1 norms using the split method ( Section 3.3 ) with g = 0.01 for p = 1, 2, …, 5. 

p = 5, convergence rates of w , u 1 and u 2 deteriorate in L 

2 

norm, see Figs. 2 a, 3 a and 4 a, but they are optimal in H 

1 

norm, see Figs. 2 b, 3 b and 4 b. As presented in Fig. 2 a, con- 
vergence rates in L 

2 norm using the direct method suffer from 

some deterioration, which has been observed in [ 21 ]. Con- 
vergence rates in H 

1 H 

2 and H 

3 are optimal as shown in Ap- 
pendix A . Therefore, we have verified that on convex domains, 
numerical solutions for the gradient-elastic Kirchhoff plate 
model using the direct and split methods converge to the same 
solution. 
Next, we study the convergence behaviour using the split 

method with linear splines ( p = 1 ) for fixed g = 0.01, 0.05, 0.14 
and 0.20. As discussed in Remark 3, the stability constants of 
the direct and split methods depend on g . Thus, convergence 
rates with g -dependence are expected for both methods. It is ob- 
served in [ 21 ] that convergence rates of w in L 

2 and H 

1 norms 
using the direct method change slightly with g . On the contrary 
Fig. 5 a and b shows that the convergence behaviour of w in L 

2 

and H 

1 norms using the split method is independent of the gradi- 
ent parameter g . This independence upon g is also true for u 1 and 
u 2 , and more convergence results for different g are presented 
in Appendix B . 

4.2 Concave pie-shaped domain 
In this section, we consider the pie-shaped plate with ω = 10 π/9 
and 3 π/2 as shown in Fig. 1 . We use polar parametrization to 
represent the pie-shaped geometry [ 44 ]. For ω = 10 π/9 the 
control points used to generate the geometry with cubic splines 
are shown in Fig. 6 a. The mesh, consisting of 256 × 802 ele- 
ments, is demonstrated in Fig. 6 b. The control points and mesh 
( 256 × 905 elements ) for ω = 3 π/2 are similar to Fig. 6 , and 
thus are omitted for conciseness. We remark that the corre- 
sponding basis functions are H 

3 -conforming on �ω \O. The in- 
verse of the geometric mapping is singular at O due to repeated 
control points [ 45 ] such as e 1 −20 , which are shown in Fig. 6 a. 
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Figure 5 Convergence results of u 1 = −�w in L 2 and H 

1 norms using the split method ( Section 3.3 ) with p = 1 and g = 0.01, 0.05, 0.14, 0.2. 

Figure 6 ( a ) A fraction of control points used to generate the pie-shaped geometry for ω = 10 π/9. Points e 1 , ..., e 20 overlap with each other. 
In the simulation, 256 control points in the tangential direction and 5 control points in the radial direction are used to generate the geometry. 
( b ) Mesh demonstration for ω = 10 π/9. In the simulation, the mesh has 256 × 802 elements. 

Nevertheless, the use of Gaussian quadrature points avoid the 
evaluation of the basis function at the singular point O. It is 
shown in [ 46 ] that polar parametrization on a sphere yields op- 
timal convergence rates in H 

3 norm for the solution of a sixth- 
order PDE. Thus we sti l l use the resulting basis functions for the 
direct method. 
We take g = 0.01 and w = 

̂ M 

g 
nn = 

̂ G 

g 
nn = 0 for all numerical 

experiments in this section. A nonuniform body load acting on 
the pie-shaped plate is considered 

ˆ f ( x ) = 10(− tanh ((d( x ) − 0 . 05) / 0 . 01) + 1) , x ∈ �, 

( 29 ) 
where d( x ) = 

√ 

x 2 + (y − 0 . 05) 2 , and x = (x, y ) . The 
nonuniform load, ˆ f in Eq. ( 29 ) , which is centered at F c in 
Fig. 6 b, is non-negative and decays quickly to zero. We remark 

that the support of ˆ f is fully resolved by the mesh in Fig. 6 b. First 
of all, we solve Eq. ( 25 ) on �ω directly and denote the solution 
as w 

d , h . Then, Eq. ( 26 ) is solved on the pie-shaped geometry 
so as to obtain w 

s . Finally, following the procedure presented in 
Section 2.3.2 and utilizing w 

s , we obtain the H 

3 solution w 

d in 
Eq. ( 19 ) . The resulting transverse deflection is shown in Figs. 7 a 
and 8 a for w 

d , h , in Figs. 7 b and 8 b for w 

d and in Figs. 7 c and 8 c 
for w 

s . 
Note that the values of w 

d that we wi l l report are not exact as 
we can only evaluate Eq. ( 19 ) computationally. The computa- 
tional process involves the approximation of w 

s , the computa- 
tion of the coefficients d j in Eq. ( 24 ) and the computation of 
GG g u ω, j . This entails the numerical approximation of the diffu- 
sion and reaction-diffusion problems with singular source terms. 
Thus, we do not expect a perfect agreement between w 

d and 
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Figure 7 Numerical approximation to w obtained using the direct method in Section 3.2 , reference solution in Section 2.3.2 and split method in 
Section 3.3 with ω = 10 π/9, and g = 0.01. Note that the deflection changes sign for the direct method and reference solution, but it is strictly 
positive for the split method. 

Figure 8 Numerical approximation to w obtained using the direct method in Section 3.2 , reference solution in Section 2.3.2 and split method in 
Section 3.3 with ω = 3 π/2, and g = 0.01. Note that the deflection changes sign for the direct method and reference solution, but it is strictly 
positive for the split method. 

w 

d , h ; but we do expect w 

d and w 

d , h to be in good agreement and 
w 

s to be fundamentally different. This is indeed what the results 
wi l l show. Comparing Fig. 7 a against Fig. 7 b and Fig. 8 a against 
Fig. 8 b, we observe that the contour lines of w 

d , h and w 

d are sim- 
ilar every w here on �ω especially near the singular point x = 0 . 
The good agreement of w 

d , h and w 

d in contour lines justifies the 
use of the repeated control points at O. However, the maximum 

values of transverse displacements, w 

d , h and w 

d , are slightly dif- 
ferent and show an error of ∼16% in Fig. 7 , and of ∼10% in 
Fig. 8 . 
While w 

d and w 

d , h are in good agreement, it is easy to see from 

Figs. 7 and 8 that the H 

1 solution w 

s differs significantly from w 

d , h 

and w 

d . In particular, the contour lines near the concave corner 
x = 0 of w 

s are smoother than those of w 

d , h and w 

d . In Fig. 7 , 
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the maximum value of the displacement using the split method 
shows an error of ∼186% with respect to w 

d and an error of 
∼233% with respect to w 

d , h . The difference between w 

s and w 

d 

or w 

d , h is even more dramatic in Fig. 8 . The maximum transverse 
displacement from the split method shows an error of ∼340% 

with respect to w 

d and an error of ∼393% with respect to w 

d , h . 
This can be explained by that compared to w 

d , the H 

1 solution w 

s 

excludes additional terms induced by the series of functions u ω, j 
in Eq. ( 15 ) , which are singular near the re-entrant point. There- 
fore, this shows that the H 

1 solution of the split method cannot 
capture important features of the reference solution near the ge- 
ometric singular point. 
In addition, as shown in Fig. 7 a and b, both the IGA direct 

solution w 

d , h and the reference solution w 

d give a sign-changing 
transverse deflection near the concave corner. Meanwhile, 
Fig. 7 c indicates that w 

s is strictly positive every w here in �ω . 
The sign-changing effect is more evident in Fig. 8 when w = 

3 π/2. This can be explained using the maximum principle [ 39 ]. 
As stated in Remark 4, the elliptic operator, −�w + cw , c ≥ 0, 
has a maximum principle. Therefore, a positive load ˆ f , such as 
in Eq. ( 29 ) , leads to a positive u 2 in Eq. ( 13 ) . As a result, u 1 in 
Eq. ( 13 ) is positive. Then, w 

s obtained using Eq. ( 14 ) becomes 
positive. However, the sign of w 

d ∈ H 

3 in Eq. ( 19 ) depends on 
both ˆ f and the geometric singularity at the concave corners 
[ 34 ], namely the angle ω. 
These results show the super ior ity of the direct method with 

IGA over the split method. The reason is 2-fold. First, the con- 
tour lines of the solution obtained using the direct method are 
similar to those of the reference solution, while the solution from 

the split method is very different from the reference solution. 
Second, for a positive body load, the reference solution and the 
solution from the direct method might change signs near the 
concave corner, while the split method results in a positive so- 
lution. 

5. CONCLUSION 

In this work, we have studied numerical solutions of a gradient- 
elastic Kirchhoffplate model. First, we assumed that the plate ge- 
ometry is convex. We showed the well-posedness of the model 
in H 

3 . Then, we split the sixth-order PDE into a system of three 
second-order PDEs, and the resulting solution is only in H 

1 . The 
well-posedness of the system of equations is trivial, and the solu- 
tions obtained using the direct and split methods coincide. Next, 
we consider a pie-shaped domain with one re-entrant point. For 
any given data in L 

2 , the uniqueness of an H 

3 solution of the 
model is proved by utilizing the H 

1 solution, which is obtained 
by the system of second-order PDEs. The difference between the 
H 

3 solution and the H 

1 solution is presented. 
The fact that the H 

3 and H 

1 solutions coincide on convex ge- 
ometry is verified numerically by conducting convergence stud- 
ies using a manufactured solution. Optimal convergence rates 

are obtained using the direct method along with IGA and the 
split method with IGA and C 

0 FEM. In addition, for the range of 
the gradient parameters studied in this work, we observe an in- 
dependence between the performance of the split method and 
the gradient parameter. However, it is found in [ 21 ] that conver- 
gence rates in L 

2 and H 

1 norms using the direct method depend 
moderately on the gradient parameter. 
Next, numerical examples on a concave pie-shaped domain, 

which is subjected to a nonuniform body load, were studied. The 
transverse deflection obtained using the direct method agrees 
well with the reference solution. The H 

1 solution, which is ob- 
tained using the split method, differs significantly from the refer- 
ence solution in H 

3 . The deflection contour lines near the con- 
cave corner are also dissimilar. More importantly, for a positive 
nonuniform body load, the reference solution and the solution 
from the direct method both change signs near the concave cor- 
ner, while the H 

1 solution from the split method preserves the 
positivity. For plates with geometric singularities, it is hence nec- 
essary to use the direct method with IGA. 
This work opens up a number of possibilities for future work. 

We have only considered a boundary condition that converges 
to the classical simply supported plate model as the gradient 
parameter, g , goes to zero. It would be interesting to include 
more types of boundary conditions, such as singly and doubly 
clamped, double simply supported, and free boundaries. The 
boundary of the plate is limited to straight boundaries. Extend- 
ing the current work to curved boundaries would significantly 
increase our understanding of the model and the algorithms. For 
the pie-shaped geometry, even though the reference solution 
and the solution from the direct method agree well, they are not 
the same. The difference measured in the H 

3 norm becomes 
even more evident. The discrepancy might be caused by the 
singular parametrization of the geometry and by the singularity 
of the basis function at the singular point. Thus, it is necessary 
to develop basis functions that are H 

3 -conforming every w here 
for such concave geometry. 
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APPENDIX A . CONVERGENCE  RESULTS  

USING DIRECT METHOD  

We present in this section convergence results obtained by solv- 
ing the manufactured solution discussed in Section 4.1 using the 
direct method ( Section 3.2 ) . The gradient parameter is chosen 
to be g = 0.01. Convergence results using a B-spline basis of or- 
der p = 3, 4 and 5 are shown in Tables A.1 , A.2 and A.3 , respec- 
tively. Convergence rates are in agreement with [ 21 ]. 
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Table A.1. Convergence results of w using the direct method ( Section 3.2 ) with p = 3 and g = 0.01. Convergence rates are shown in the bracket. 

N L 2 ( �) H 

1 ( �) H 

2 ( �) H 

3 ( �) 

2 4.28 × 10 −3 ( −) 4.53 × 10 −2 ( −) 6.53 × 10 −1 ( −) 1.02 × 10 1 ( −) 
4 3.59 × 10 −4 ( 3.58 ) 7.13 × 10 −3 ( 2.67 ) 1.71 × 10 −1 ( 1.93 ) 5.08 × 10 0 ( 1.00 ) 
8 1.99 × 10 −5 ( 4.17 ) 8.06 × 10 −4 ( 3.14 ) 4.09 × 10 −2 ( 2.07 ) 2.50 × 10 0 ( 1.02 ) 
16 1.55 × 10 −6 ( 3.68 ) 9.79 × 10 −5 ( 3.04 ) 1.01 × 10 −2 ( 2.02 ) 1.24 × 10 −1 ( 1.01 ) 

Table A.2. Convergence results of w using the direct method ( Section 3.2 ) with p = 4 and g = 0.01. Convergence rates are shown in the bracket. 

N L 2 ( �) H 

1 ( �) H 

2 ( �) H 

3 ( �) 

2 1.34 × 10 −3 ( −) 1.37 × 10 −2 ( −) 1.81 × 10 −1 ( −) 3.35 × 10 0 ( −) 
4 3.92 × 10 −5 ( 5.09 ) 7.85 × 10 −4 ( 4.12 ) 1.84 × 10 −2 ( 3.30 ) 5.92 × 10 −1 ( 2.50 ) 
8 1.06 × 10 −6 ( 5.21 ) 4.62 × 10 −5 ( 4.09 ) 2.29 × 10 −3 ( 3.01 ) 1.33 × 10 −1 ( 2.15 ) 
16 4.86 × 10 −8 ( 4.45 ) 2.94 × 10 −6 ( 3.97 ) 2.93 × 10 −4 ( 2.96 ) 3.20 × 10 −2 ( 2.06 ) 

Table A.3. Convergence results of w using the direct method ( Section 3.2 ) with p = 5 and g = 0.01. Convergence rates are shown in the bracket. 

N L 2 ( �) H 

1 ( �) H 

2 ( �) H 

3 ( �) 

2 6.47 × 10 −5 ( −) 1.02 × 10 −3 ( −) 1.85 × 10 −2 ( −) 4.63 × 10 −1 ( −) 
4 6.08 × 10 −6 ( 3.41 ) 1.33 × 10 −4 ( 2.94 ) 3.05 × 10 −3 ( 2.60 ) 7.33 × 10 −2 ( 2.66 ) 
8 6.91 × 10 −8 ( 6.46 ) 3.31 × 10 −6 ( 5.33 ) 1.61 × 10 −4 ( 4.24 ) 8.00 × 10 −3 ( 3.20 ) 
16 5.91 × 10 −9 ( 3.55 ) 9.99 × 10 −8 ( 5.05 ) 9.60 × 10 −6 ( 4.07 ) 9.65 × 10 −4 ( 3.05 ) 

APPENDIX B. CONVERGENCE  RESULTS  

USING THE  SPLIT METHOD  FOR 

DIFFERENT g
We provide in this section convergence results of the additional 
variables, u 1 ( Fig. B.1 ) and u 2 ( Fig. B.2 ) , using the split method 
for different gradient parameters, g . We use linear basis functions. 

Optimal convergence rates, second-order in the L 

2 norm and lin- 
ear in the H 

1 norm, are obtained. 

Figure B.1 Convergence results of u 1 in L 2 and H 

1 norms using the split method ( Section 3.3 ) with p = 1 and g = 0.01, 0.05, 0.14, 0.2. 
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Figure B.2 Convergence results of u 2 = −�w + g 2 �2 w in L 2 and H 

1 norms using the split method ( Section 3.3 ) with p = 1 and g = 0.01, 
0.05, 0.14, 0.2. 
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