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Abstract

A new empirical law for the prediction of the zero-lift pitching moment coefficient of trapezoidal wings with linear twist and constant
taper and sweep in subsonic flow is introduced. This law is quite general in that it does not rely on the use of charts and spans the normal
range of values of taper ratio, aspect ratio, and sweep for subsonic aircraft. It does not, however, accommodate different airfoils along the
wingspan and only positive sweep has been considered. The empirical law was first derived for the incompressible regime and then an
additional empirical law for the compressibility effect has been provided. The results compare favorably with experimental data for
straight wings and with some pre-existing empirical methods for wings with low to moderate sweep. It is also shown that the most widely
used method of estimating the zero-lift pitching moment coefficient is highly inaccurate.
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List of Symbols

A: aspect ratio
a0: section lift-curve slope
aH: horizontal tail lift-curve slope
b: span
c: chord
co: central chord
Cmac

: wing’s moment coefficient at the aerodynamic center
cmac

: section’s moment coefficient at the aerodynamic center
iH: horizontal tail’s angle of incidence
KM: compressibility correction factor
VH: horizontal tail volume ratio
a: angle of attack of airplane’s longitudinal axis
b: subsonic compressibility parameter
dE: elevator deflection angle
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e0: average downwash angle on horizontal tail at zero
lift

gH: �q?H=�q?

h: washout angle
l: taper ratio
L: wing sweep at quarter chord

Introduction

The pitching moment coefficient is an important
parameter in the analysis of an airplane’s longitudinal
stability. In steady flight for instance and in the linear range
of variation of the pitching moment coefficient, it can be
expressed as (Roskam, 1979)

Cm~Cm0
zCma

az
LCm

LiH
iHz

LCm

LdE

dE ð1Þ

where Cm0
is the pitching moment coefficient for

a5iH5dE50:

Cm0
~Cmacwb

zCL0wb
�x{�xacwb
ð ÞzgHaHVHe0zCmp

ð2Þ

where Cmp
represents the contribution of the propulsion

system to the pitching moment coefficient. Cmacwb
and

CL0wb
are the pitching moment coefficient at the aero-

dynamic center and the lift coefficient at zero angle of
attack of the wing–body combination, respectively.
Following Multhopp (1942), the pitching moment coeffi-
cient of the wing–body combination is often written as

Cmacwb
~Cmacw

zDCmacb
ð3Þ

where DCmacb
is the contribution of the fuselage to Cm0

,

while Cmacw
is the pitching moment coefficient at the

aerodynamic center of the wing, which is the subject of the
present work.

A new empirical law for the estimation of this coefficient
is introduced. The data needed for the development of this
law are based on numerical values obtained using a well-
tested cambered VLM code developed by the author
(Author, 2014; Author, 2019a, 2019b). The vortex-lattice
numerical method is a singularity method which has been
around for many decades and is well documented in the
literature (Bertin & Smith, 1998). The accuracy of our
numerical values will be demonstrated by comparing to
some experimental data.

It will be clearly shown that most of the main pre-existing
methods used to predict such an important parameter
generally have an essential drawback to them. One of these
methods involves a semiempirical equation (Abbott & Von
Doenhoff, 1959; Anderson, 1936) based on lifting line
theory. It relies on the use of charts which makes it less
convenient for computer programming. The second method
involves an empirical equation (Kapteyn, 1972) based on
lifting surface theory and is summarized in Torenbeek

(1982). It is more or less accurate for straight wings but
seems to lose accuracy for wing sweep angles larger than
20 .̊ It does not rely on the use of charts which makes it
convenient for computer programming. Both of these
methods are limited to the incompressible flight regime only.

The third method is the widely referenced semiempirical
law from the USAF-DATCOM (Finck, 1978). It relies on
the use of charts and these are given for taper ratios of 0,
0.5, and 1 only. It will be clearly shown that this method is
highly inaccurate.

The new empirical law introduced in the present work is
good for trapezoidal wings with linear twist and constant
taper and sweep. It does not, however, accommodate the
case of wings with varying airfoil along the span and only
positive sweep was considered. The main law was developed
for the incompressible regime, and then an additional
empirical equation for the effect of compressibility was also
provided. The method does not rely on the use of charts,
which makes it convenient for computer programming.

Details of the New Empirical Law

By definition, the pitching moment coefficient at the
aerodynamic center is independent of the angle of attack.
Hence, it was evaluated numerically by computing the
pitching moment coefficient Cm(x) at different chordwise
locations of the pitch axis, for two different values of the
angle of attack, and finding the intersection of the two
straight lines as in Figure 1.

The database needed for the establishment of the new
law was generated by computing Cmac

for a wide range of
values of the aspect ratio, taper ratio, and sweep angle. The
new empirical equation was found to be of the same
general form as the pre-existing empirical or semiempirical
ones (Anderson, 1936; Finck, 1978; Kapteyn, 1972), i.e.,

Figure 1. An example of finding a wing’s Cmac
: A 5 8, l 5 0.5, h 5 23 ,̊

L 5 20 ,̊ and NACA 2412.
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Cmac
~K0cmac

zKhh ð4Þ

where cmac
is the airfoil’s pitching moment coefficient

at the aerodynamic center. Our computations confirm
the linear variation of Cmac

with the twist angle h as
in Figure 2. Considering equation (4), numerical values
for K0 were obtained by computing Cmac

for zero twist
and dividing it by the airfoil’s pitching moment
coefficient:

K0~
Cmac
jh~0

cmac

ð5Þ

This was done for taper ratios of 0.2, 0.3, 0.4, 0.5, 0.6,
0.8, and 1 and aspect ratios of 4, 6, 7, 8, and 10. In order
to generate numerical values for Kh, the same wing
geometric configurations computed with zero twist
are recomputed for h 5 23 .̊ The choice of this value
of the twist angle is arbitrary in view of the linear
variation of Cmac

with h. The values for Cmac
were used as

follows:

Kh~
Cmac

{Cmac
jh~0

h
ð6Þ

We will begin here by giving the final equations making
up the new empirical law. Some of the details behind these
equations will be given once all the elements have been
defined.

Coefficient K0 is of the form

K0~c1 1{cl
L

50

� �n� �
ð7Þ

with L in degrees. Constant c1 is given by

c1~a1{0:0037 10{Aj jn1 ð8Þ

with

a1~1:124{0:086 1{lð Þ4:1l0:25 ð9Þ

n1~1:59z0:4 1{lð Þ4:1 ð10Þ

Constant cl in equation (7) is given by

cl~0:26z0:1 1{lð Þ2 ð11Þ

while exponent n is given by

n~KA1
{KA2

1{lð Þ4:8l0:032A ð12Þ

with

KA1
~3:07{0:1483 A{4ð Þ ð13Þ

KA2
~0:06z0:3233 A{4ð Þ ð14Þ

Coefficient Kh in equation (4) is given by

Kh~{a2 sin Lð Þ0:78
z0:9L1:75

h i
ð15Þ

with L in radians, and

a2~KA3
{KA4

1{lð Þ5:5l0:02A ð16Þ

KA3
~0:0037z0:0018 A{4ð Þ ð17Þ

KA4
~0:0013z0:0020 A{4ð Þ ð18Þ

Equations (4) and (7)–(18) define our new law for the
estimation of the zero-lift pitching moment coefficient of
trapezoidal wings with linear twist and constant sweep and
taper, in the incompressible regime. An empirical equation
for the compressibility effect on this coefficient will also be
provided.

Steps for Finding K0

Our general approach to defining the parameters in
equations (7)–(18) was to plot the discrete numerical values
for each parameter and then, by trial and error and an
educated guess of basic mathematical functions, fit a curve
to these numerical values. The process was rather lengthy
and we will spare the reader some of the details.

Defining coefficient K0 involved finding the equations
for the three parameters c1, cl, and n in equation (7). For a
given taper ratio and for each value of the aspect ratio we
found by trial and error numerical values for these three
parameters. Sample results are shown in Figure 3 for a
taper ratio l 5 0.5. The discontinuous lines represent
equation (7) once numerical values of c1, cl, and n have
been found, while the markers represent the VLM

Figure 2. Linear variation of wing pitching moment coefficient with the
twist angle.
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numerical values obtained using equation (5). The curve-fit
equations for this value of the taper ratio are

K04~1:053 1{0:285 L=50ð Þ3:06
h i

K06~1:085 1{0:285 L=50ð Þ2:75
h i

K07~1:098 1{0:285 L=50ð Þ2:59
h i

K08~1:108 1{0:285 L=50ð Þ2:44
h i

K010~1:12 1{0:285 L=50ð Þ2:12
h i

ð19Þ

The subindexes of K0 are the values of the aspect ratio.
Equations similar to (19) were obtained for all the other

taper ratios and the maximum discrepancy between the
curve-fit equations and the numerical values for all the
cases was less than 1.5% up to a sweep angle of 30˚ and a
maximum of 2.3% at a 40˚ sweep angle. We therefore had
numerical values for c1, cl, and n at all the values of A and
l considered in this study. These were used to define
empirical equations for all three parameters.

First, we fitted the curve given by equation (8) to c1 and,
in the process, we had to introduce two new parameters a1

and n1 whose curve fits are equations (9) and (10). Then we
had to find an equation for cl. This parameter is a function
of taper ratio only and the process led toequation (11).

The final step in defining K0 was to find an equation for
exponent n in equation (7). This was a lot more compli-
cated since this parameter is a function of both A and l. First
of all, the discrete values of n were plotted as functions of l
for every value of the aspect ratio. Then we had to devise
functions which would fit the different sets of discrete values
of n. The process led to equation (12). Parameter KA1

was
assigned the maximum of the discrete values of n for each
value of A and these correspond to l 5 1 as indicated by
Figure 4. We were able to fit a straight line to the numerical

values of KA1
whose equation is (13). Then we subtracted the

proper function of l and A which would allow for a close
match with the discrete values of n. It was found by trial and
error that the function that needed to be subtracted from KA1

is of the form of the last term in equation (12), i.e.,

KA2
1{lð Þ4:8l0:032A

Having found a curve fit for every set of values of n
corresponding to a different value of aspect ratio as in
Figure 4, we obtained the numerical values necessary to
define parameter KA2

which is function of aspect ratio
alone. It was then found that KA2

also fits to a straight line
whose equation is (14).

Steps for Finding Kh

We started by plotting values of Kh obtained using
equation (6) as a function of the sweep angle for a given
taper ratio and different values of the aspect ratio. The trial-
and-error process of trying to fit curves to the datasets
converged on equation (15). This is illustrated in Figure 5
for a taper ratio of 0.3. The curve-fit equations for this
particular value of the taper ratio are

Kh4~{0:0035 sin Lð Þ0:78
z0:9L1:75

h i
Kh6~{0:0067 sin Lð Þ0:78

z0:9L1:75
h i

Kh7~{0:0082 sin Lð Þ0:78
z0:9L1:75

h i
Kh8~{0:0098 sin Lð Þ0:78

z0:9L1:75
h i

Kh10~{0:0130 sin Lð Þ0:78
z0:9L1:75

h i

ð20Þ

The numerical values of the parameter in equation (15)
were then plotted as functions of taper ratio for fixed values

Figure 3. Curve-fit (equations (19)) to VLM values of K0: l 5 0.5 and
A 5 4, 6, 7, 8, and 10. Figure 4. Agreement between equation (12) and the discrete values of

exponent n.

M. Yahyaoui / Journal of Aviation Technology and Engineering 67



of aspect ratio. It was noted that this constant followed the
same overall trend as that of exponent n given by equation
(12). Therefore, we only had to adjust the exponents of l
and (1–l) and establish the right equations for coefficients
KA3

and KA4
in equation (16). The process led to the

empirical equations (16)–(18). The close agreement
between equation (16) and the discrete values of a2 is
illustrated in Figure 6.

Compressibility Correction

Compressibility effects on Cmac
were investigated using

Göthert’s rule (Shapiro, 1952). The effect of compressi-
bility on the pitching moment coefficient is represented by
a factor KM such that

Cmac
~KMCmac0

ð21Þ

where Cmac0
is the incompressible value of the pitching

moment coefficient. As shown in Figures 7 and 8, KM

is practically independent of aspect ratio and varies
very slightly with taper ratio. However, as indicated
by Figure 9, this factor is a function of the sweep angle.
This contradicts the chart in the USAF-DATCOM
document (Finck, 1978) which gives one curve for
KM regardless of sweep or any other geometric
parameter.

Once again, by trial and error, we were able to fit the
following empirical equation to the numerical values of KM

for the different values of the sweep angle:

KM~1zcLM3:3
? ð22Þ

cL~1:15 1{0:55
L

50

� �1:8
" #

ð23Þ

Figure 5. Curve fit to the numerical values of Kh for l 5 0.3 and different
values of aspect ratio (equations (20)).

Figure 6. Agreement of equation (16) with the discrete values of
coefficient a2.

Figure 7. Effect of aspect ratio on the compressibility correction factor KM.

Figure 8. Effect of taper ratio on the compressibility correction factor KM.
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where L is in degrees. Curves corresponding to equation
(22) are plotted in Figure 9 along with the numerical values
of KM. The agreement is quite good since the relative
difference is less than 2% as indicated by Figure 10.

Results and Discussion

The new empirical law gives results which are in close
agreement with the numerical values of Cmac

. Sample cases are
shown in Figure 11 for a taper ratio l 5 0.4. The agreement is
satisfactory for this case as well as for the other values of taper
ratio considered in this study. The airfoil used is the NACA
2412 and its pitching moment coefficient was taken to be equal
to 20.047.

We also checked the accuracy of equation (4) to values
of aspect ratio outside the range of values used in this
study. Cases of aspect ratio lower than 4 and higher than
10 are given in Table 1. The agreement between the VLM
numerical values and those given by equation (4) is
satisfactory as indicated by the percent differences.

Validation of the Results in the Incompressible Regime

Two experimental values available for comparison
correspond to wings with the following geometric proper-
ties (Neely et al., 1947):

N A 5 8, l 5 0.4, h 5 24.5 ,̊ and L 5 0. The root side
airfoil is the NACA 4416 and the tip side airfoil is the
NACA 4412. The experimental value for Cmac

is
20.099. The value given by the new empirical law
using the NACA 4415 airfoil is 20.103. The relative
difference is 4%.

N A 5 8, l 5 2/7, h 5 23 ,̊ L 5 0, and the NACA 44-
series airfoil with a thickness ratio of 14.7%. The
experimental value for Cmac

is 20.097. Our new

empirical law using the NACA 4415 airfoil gives a
value of 20.102. The relative difference is 5%.

Our new empirical law was also compared to some pre-
existing methods. The first is Anderson’s equation
(Anderson, 1936; given in detail in Abbott & Von
Doenhoff, 1959):

Cmac
~EC

0
mac

{
G

E
a0A tan Lac

� �
h ð24Þ

where E and G are determined from charts. For this
method,

K0~E ð25Þ

Figure 9. Empirical equation (22) versus VLM values of KM. Figure 10. Percent differences in KM values between equation (22) and
numerical values.

Figure 11. Example of agreement between equation (4) and VLM values
of Cmac

.
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Kh~{
G

E
a0A tan Lac ð26Þ

where a0 is the wing section’s lift-curve slope.
The second method is Kapteyn’s empirical equation

(Kapteyn, 1972; given in detail in Torenbeek, 1982) which
is based on the lifting surface theory:

Cmac
~C

0

mac
{ Kl,AawA tan Lb

� �
h ð27Þ

where tan Lb5 tan (L/b)

Kl,A~0:066z0:029l{0:03l2z0:00273 l{0:095ð ÞbA

and aw is the wing’s lift-curve slope. For this method,

K0~1 ð28Þ

Kh~{Kl,AawA tan Lb ð29Þ

The third method is the widely used empirical equation
from the USAF-DATCOM (Finck, 1978):

Cmac
~K0C

0
mac

zKhh ð30Þ

K0~
Acos2L

Az2 cos L
ð31Þ

Kh~
DCmF

h

� �
ð32Þ

No empirical expression for Kh was given and charts for
this parameter were provided for taper ratios of 0, 0.5, and
1 only.

Sample values of Cmac
given by equations (24), (27), and

(30) are shown in Figure 12, along with values provided by
our empirical law, equation (4). The results indicate that
our law is in close agreement with Anderson’s method
(equation (24)) since the relative difference in Cmac

values
between the two methods is less than 4%.

The agreement of Kapteyn’s method (equation (27)) with
our empirical law is less favorable than that of the method
of Anderson. One reason for the discrepancy is that K0 in
equation (27) takes the value 1 regardless of aspect ratio,
taper ratio, or sweep. This disagrees with both Anderson’s
method and our findings. For instance, the charts for
constant E in equation (24) give values of K0 as large as
1.16 (Abbott & Von Doenhoff, 1959) and this is larger by

16%. Also, our values for K0 vary from 1.11 for A 5 10,
L 5 0, and l 5 1 down to about 0.85 for A 5 4, L 5 40 ,̊
and l 5 0.2. The constant value of 1 assigned to K0 in
equation (27) is off by more than 10% for straight wings
and as much as 15% for highly swept wings. The second
reason is that, at large sweep angles, coefficient Kh given
by equation (29) deviates away from the values given by
the other three methods (Figure 13).

The method of the USAF-DATCOM (equation (30)) is
inaccurate for all values of the sweep angle as seen in
Figure 12. The main problem with this equation is in K0

and this is rather obvious if we look at its expression for
straight wings, i.e., for L 5 0:

K0~
A

Az2
ð33Þ

Our method and the two methods discussed previously
all agree that, for a straight tapered wing, K0 is either
exactly 1 for Kapteyn’s method or greater than 1 for
Anderson’s method and our new empirical law. Equation
(33), however, gives much lower values. If we consider an
aspect ratio A 5 4 for instance, then K0 5 0.67. This is off
by 33% with respect to the method of Kapteyn and by
about 40% with respect to both Anderson’s method and our

Table 1
Equation (4) tested outside the range of values of aspect ratio used in this study (h 5 23 ,̊ NACA 2412).

Wing geometry VLM Equation (4) Difference

A 5 3, l 5 0.3, L 5 35˚ 20.0372 20.0368 1.1%
A 5 3.6, l 5 0.4, L 5 27˚ 20.0403 20.0398 1.2%
A 5 11, l 5 0.5, L 5 25˚ 20.0138 20.0140 1.4%
A 5 12, l 5 0.5, L 5 0˚ 20.0525 20.0521 0.8%

Figure 12. Comparison between Cmac
values given by our new empirical

law and those given by equations (24), (27), and (30).
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new empirical law. The discrepancy in K0 increases with
the sweep angle as indicated in Figure 14.

To illustrate this point further, we consider a wing with
A 5 6, l 5 0.5, h 5 0, L 5 9.67 ,̊ and the NACA 23012
airfoil (Pearson & Anderson, 1939). The experimental
value for Cmac

is 20.014 while the one given by equation
(30) is 20.01 and this is off by 29%. Our new empirical
law gives a value of 20.015 and the difference is 7%. This
is reasonably close to the test value.

Validation of the Compressibility Correction Law

The compressibility correction coefficient KM given by
our empirical law for the compressibility effect on Cmac

(equation (22)) was compared to values obtained from
a chart based on experimental data given in the

USAF-DATCOM (Finck, 1978). Values from this chart
are plotted in Figure 15, along with curves given by
equation (22) for sweep angles of 30 ,̊ 35 ,̊ 40 ,̊ and 45 .̊
The percent differences between our values and the test
data from the DATCOM chart are shown in Figure 16.

There was no mention of any value of the sweep angle
L in association with the USAF-DATCOM chart, as if KM

were independent of the wings’ sweep. Our computations
show that this is not the case, and this is physically
justifiable since the aerodynamic behavior of swept wings
is dictated by the component of the Mach number which is
normal to a wing’s leading edge. Or, this component
decreases with sweep for a given free-stream Mach
number. Since Figure 9 shows that KM increases with the
Mach number, it only makes sense that, for a given Mach
number and as the sweep angle increases and the effective
Mach number decreases, the compressibility correction
factor KM should decrease. This is in accordance with our

Figure 13. Comparison between the values of coefficient Kh as given by
the new empirical law and equations (24), (27), and (30).

Figure 14. Variation of coefficient K0 with the sweep angle for A 5 8.

Figure 15. Equation (22) versus test values of KM (Finck, 1978).

Figure 16. Percent differences between values of KM given by equation
(22) and test values.
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results shown in Figure 15 where, at a given free-stream
Mach number, coefficient KM decreases as the sweep angle
goes from 30˚ to 45 .̊

The percent differences in KM values between equation
(22) and the test data from the chart generally increase with
the Mach number. At Mach 0.8, the difference is less than
1% for a sweep angle of 45 ,̊ less than 4.7% for 40 ,̊ and
less than 8% for 35 .̊ Apparently, the test data from the
USAF-DATCOM chart were obtained for high sweep
angles.

Conclusions

A new empirical law for the prediction of the pitching
moment coefficient at the aerodynamic center of trapezoi-
dal wings with linear twist and constant taper and sweep
was introduced. The data used in establishing this law were
generated using the vortex-lattice method. The empirical
law is quite general in that it does not rely on the use of
charts and spans the full practical range of values of taper
ratio, aspect ratio, and sweep angle for subsonic aircraft. It
is, however, limited to positive sweep angles and does not
accommodate the case of varying airfoils along the span.
The empirical law was first derived for the incompressible
regime and then, using Göthert’s rule, more data were
generated and used to establish an additional empirical law
for the compressibility effect on the zero-lift pitching
moment coefficient.

The results have been fairly well validated by compar-
ison to some experimental values, the relative difference
being typically around 5%. Our method was also compared
to three pre-existing methods. Good agreement with the
method of Anderson was obtained for all sweep angles,
while the method of Kapteyn tends to be inaccurate at high
sweep angles. It has also been shown that the widely
referenced method from the USAF-DATCOM is highly
inaccurate. This emphasizes the importance of our new
empirical law which henceforth provides a reliable method
for the prediction of this important parameter in the
conceptual and preliminary stage of aircraft design.
Another contribution of this work is the empirical law for
the compressibility effect on the zero-lift pitching moment
coefficient. The methods of Anderson and Kapteyn

discussed in this work are limited to the incompressible
regime. The USAF-DATCOM does not provide an
empirical law for the compressibility effects but only gives
a chart which does not account for the influence of wing
sweep on the compressibility effect.

This work can be extended to include the case of forward
swept wings, wings with variable airfoil along the span,
and the effect of flaps on the zero-lift wing pitching
moment coefficient.

References

Abbot, I. H., & Von Doenhoff, A. E. (1959). Theory of wing sections.
Dover Publications.

Anderson, R. F. (1936). Determination of the characteristics of tapered
wings. NACA Report No. 572.

Bertin, J. J., & Smith, M. L. (1998). Aerodynamics for engineers (3rd ed.).
Prentice Hall.

Finck, R. D. (1978). USAF stability and control DAT-COM. Clayton, MO:
Global Engineering Documents.

Kapteyn, P. (1972). Design charts for the aerodynamic characteristics of
straight and swept, tapered, twisted wings. Delft University of
Technology, Department of Aeronautical Engineering, M-180.

Multhopp, H. (1942). Aerodynamics of fuselage. NACA TM-1036.
Neely, R. H., Bollec, T. V., Westrick, G. C., & Graham, R. R. (1947).

Experimental and calculated characteristics of several NACA 44-series
wings with aspect ratios of 8, 10, and 12, and taper ratios of 2.5 and
3.5. NACA TN No. 1270.

Pearson, H. A., & Anderson, R. F. (1939). Calculation of the aerodynamic
characteristics of tapered wings with partial-span flaps. NACA TR
665.

Roskam, J. (1979). Airplane flight dynamics and automatic flight controls.
Roskam Aviation and Engineering Corporation.

Shapiro, A. (1952). The dynamics and thermodynamics of compressible
flow (Vol. I). John Wiley & Sons, Inc.

Torenbeek, E. (1982). Synthesis of subsonic aircraft design. Delft
University Press, Kluwer Academic Publishers.

Yahyaoui, M. (2014). Generalized vortex lattice method for predicting
characteristics of wings with flap and aileron deflection. International
Journal of Mechanical, Aerospace, Industrial, and Mechatronics
Engineering, 8(10), 1690–1698.

Yahyaoui, M. (2019a). A new method for the prediction of the downwash
angle gradient. International Journal of Aviation, Aeronautics, and
Aerospace, 8(3/9).

Yahyaoui, M. (2019b). A comparative aerodynamic study of nonplanar
wings. International Journal of Aviation, Aeronautics, and Aerospace,
6(4/10).

72 M. Yahyaoui / Journal of Aviation Technology and Engineering


	A New Empirical Law for the Prediction of the Zero-Lift Pitching Moment Coefficient of Swept and Tapered Wings

