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Abstract

Utilizing Runtime Information for Accurate Root Cause Identification in Performance Diagnosis

Lingmei Weng

This dissertation highlights that existing performance diagnostic tools often become less ef-

fective due to their inherent inaccuracies in modern software. To overcome these inaccuracies

and effectively identify the root causes of performance issues, it is necessary to incorporate sup-

plementary runtime information into these tools. Within this context, the dissertation integrates

specific runtime information into two typical performance diagnostic tools: profilers and causal

tracing tools. The integration yields a substantial enhancement in the effectiveness of performance

diagnosis.

Among these tools, gprof stands out as a representative profiler for performance diagnosis.

Nonetheless, its effectiveness diminishes as the time cost calculated based on CPU sampling fails to

accurately and adequately pinpoint the root causes of performance issues in complex software. To

tackle this challenge, the dissertation introduces an innovative methodology called value-assisted

cost profiling (vProf). This approach incorporates variable values observed during runtime into the

profiling process. By continuously sampling variable values from both normal and problematic

executions, vProf refines function cost estimates, identifies anomalies in value distributions, and

highlights potentially problematic code areas that could be the actual sources of performance is-

sues. The effectiveness of vProf is validated through the diagnosis of 18 real-world performance is-

sues in four widely-used applications. Remarkably, vProf outperforms other state-of-the-art tools,



successfully diagnosing all issues, including three that had remained unresolved for over four

years.

Causal tracing tools reveal the root causes of performance issues in complex software by gen-

erating tracing graphs. However, these graphs often suffer from inherent inaccuracies, charac-

terized by superfluous (over-connected) and missed (under-connected) edges. These inaccuracies

arise from the diversity of programming paradigms. To mitigate the inaccuracies, the dissertation

proposes an approach to derive strong and weak edges in tracing graphs based on the vertices’ se-

mantics collected during runtime. By leveraging these edge types, a beam-search-based diagnostic

algorithm is employed to identify the most probable causal paths. Causal paths from normal and

buggy executions are differentiated to provide key insights into the root causes of performance

issues. To validate this approach, a causal tracing tool named Argus is developed and tested across

multiple versions of macOS. It is evaluated on 12 well-known spinning pinwheel issues in popular

macOS applications. Notably, Argus successfully diagnoses the root causes of all identified issues,

including 10 issues that had remained unresolved for several years.

The results from both tools exemplify a substantial enhancement of performance diagnostic

tools achieved by harnessing runtime information. The integration can effectively mitigate inherent

inaccuracies, lend support to inaccuracy-tolerant diagnostic algorithms, and provide key insights

to pinpoint the root causes.
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Chapter 1: Introduction

1.1 Thesis Statement

Existing performance diagnostic tools often become less effective due to their inherent inaccu-

racies in modern software. To overcome these inaccuracies and effectively identify the root causes

of performance issues, it is necessary to incorporate supplementary runtime information into these

tools.

1.2 Extensive Efforts in Performance Diagnosis

Performance issues in software can result in substantial service disruptions and financial losses

due to their non-fail-stop nature. For instance, Google has indicated that a 2% increase in la-

tency could lead to a 2% decrease in search activity and user engagement [52]. A survey [64]

also revealed negative business impacts of the performance challenges faced by Office365[53], in-

cluding heightened user frustration, increased demands for IT service and support, and decreased

employee productivity. Even a minor friction issue within an application can lead to reduced user

engagement and prompt users to seek alternative products.

To assist developers, numerous powerful tools have been developed to ensure optimal perfor-

mance throughout the software’s lifecycle. Before release, many software products undergo load

testing, during which testing utilities simulate high levels of user traffic to assess performance and

identify bottlenecks. After release, developers often use profiling, tracing, and debugging tools to

diagnose performance issues.

Many profiling tools [27, 28, 43, 34, 35] have been developed and widely used in the real

world. They collect resource usage data of a program during runtime, including CPU utilization,

memory consumption, and I/O operations. The collected data is then analyzed to identify per-
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formance hotspots, which are the code areas that consume excessive resources. Once identified,

optimizations can be applied to the code to improve performance by reducing unnecessary compu-

tations, memory usage, or I/O operations.

While these profilers are effective in diagnosing performance issues where hot paths are the

culprits, they often lack the information necessary for developers to investigate causal relationships

in complex performance issues involving many components and high concurrency. In response to

these intricate performance challenges, researchers have proposed causal tracing, a method that

identifies the step-by-step workflow leading to performance issues.

Causal tracing uses a tracing tool, such as DTrace [12] or SystemTap [36], to capture run-

time information about user inputs, system calls, function calls, and interprocess communications

during program execution. By analyzing the tracing data, developers can construct a dependency

graph that illustrates the workflow of request handling across threads, processes, and even ma-

chines. Subsequently, developers can examine critical paths in the graphs and pinpoint the root

causes of performance issues.

Despite decades of research efforts dedicated to automating the diagnosis of performance issues

and substantial advancements in diagnostic tools, well-tested software like MariaDB [51] continues

to encounter at least five performance issues each month, some of which can remain unresolved

for years.

1.3 Ineffectiveness of Existing Performance Diagnostic Tools

Developers are aware that existing diagnostic tools can yield inaccurate results, potentially

leading to erroneous conclusions. Nonetheless, there has been insufficient attention towards iden-

tifying the specific inaccuracies that can mislead the diagnosis. Moreover, there has been limited

research exploring the integration of supplementary runtime information as a viable approach to

mitigate these challenges.
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Inaccuracies in Profilers Profiling tools are commonly recommended to identify performance

bottlenecks in software, particularly in cases involving resource-intensive operations. Profilers

can provide valuable insights to developers by highlighting the hot code paths. However, the

functions reported by profilers do not consistently and precisely uncover the root causes of specific

performance issues, leading to speculative guesses.

To better understand the inaccuracies of a profiler and potential solutions to overcome them,

we studied gprof [28] using a bug from MariaDB [11]. This bug manifested during database re-

covery in MariaDB, resulting in unacceptably long execution times and elevated CPU usage. Upon

analyzing the profiling results from gprof, we observed several sources of inherent inaccuracies.

Firstly, the reported hot functions can be inherently expensive and are often already optimized.

They may not necessarily be the primary culprits behind performance issues. For instance, in the

MariaDB case, gprof identified the function applying hashed records from recovery log as the

culprit. However, this information proved unhelpful since the function was inherently costly. It

also incurred significant costs during normal recovery processes.

Secondly, the function cost can be inaccurate due to the CPU sampling bias. The statistical

histogram does not include PC samples that fall outside the text section of the application. If an

inefficient function frequently calls expensive functions from dynamic libraries, the cost of the

inefficient function will be underestimated.

As an illustration, in the MariaDB case, the root cause was ranked 454th in the profiling results.

This discrepancy arose because gprof solely counted the profiling samples within the function,

overlooking the significant time cost incurred through function calls.

Thirdly, the function rankings provided by profilers offer limited insights for in-depth debug-

ging. Consequently, even when profilers accurately identify the root cause functions, developers

often find themselves compelled to undertake supplementary actions, such as recording relevant

variable values, to unearth the root causes of the performance issue.

Based on the communications in the bug report of the MariaDB case, we observed that al-

though senior developers were able to identify the excessive invocations of the costly function,
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they struggled to determine the root causes due to the lack of data flow information.

Inaccuracies in Causal Tracing Tools Causal tracing tools emerge as a solution for diagnos-

ing performance issues in scenarios involving multiple interconnected components. This necessity

arises from the limitations of conventional profilers, which are incapable of revealing causal re-

lationships that span across component boundaries. However, causal tracing rules, derived from

prior research, often fall short in providing accurate causal insights for performance issues within

modern desktop applications.

To illustrate this challenge, consider a performance issue observed in Chrome [71] on macOS

when users input non-English characters into a search bar on some webpages. This action led

to a stall in the Chrome UI thread, rendering the application unresponsive to user inputs. The

intricacy of this performance issue involved various daemons, helper tools, the browser itself, and

the renderer processes within Chrome. Upon closer investigation, the root cause was traced to the

main UI thread of the browser, which was repeatedly waiting for character rendering within the

renderer. This waiting process continually timed out due to a dominant JavaScript request within

the renderer’s main thread.

In this specific scenario, conventional profilers provided limited information, indicating that

the runloop within the UI thread consumed a significant portion of processing time, yet failing

to offer insights into the underlying causes. In contrast, causal paths derived from systemwide

tracing data showed considerable potential in revealing intricate interdependencies that spanned

across multiple components. Therefore, we built a causal tracing tool for macOS, drawing upon

prior research [15, 6, 63, 72, 26, 68, 40, 49, 67, 50, 60, 80] in distributed systems and mobile

applications. As we attempted to diagnose the Chrome case, several inherent inaccuracies were

identified in the causal tracing tool.

Firstly, the delineation of execution boundaries for a particular request were inaccurate. Accu-

rately identifying the point at which a thread transitioned to the execution of a different request was

hard from the tracing log. This difficulty stemmed from the adoption of customized programming

paradigms, such as batch processing, in modern desktop applications for efficiency.
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For example, the system daemon fontd [48], responsible for providing font sizes to appli-

cations, applied batch processing in its message-handling function. While processing messages

from the browser process in Chrome, it continuously accepted messages from other applications

throughout the system. Following the existing causal tracing rules, all activities occurring between

the receipt and reply of a message were associated with the same request. Consequently, incorrect

connections were established between messages from Chrome and those from other applications.

Secondly, system level activities, such as interrupt handling, often intermingled with user space

activities in the tracing log, leading to false connections. This interference introduced noise into

causal paths, making it challenging to discern causalities for a specific performance issue within

complex workflows.

Thirdly, causal tracing tools were built under the assumption that one thread signaling another

implied a causal relationship between the two threads. However, such signals did not invariably

indicate causalities, resulting in an excess of connections in the trace graphs.

Lastly, existing causal tracing tools failed to capture connections arising from data dependen-

cies and shared data flags, rendering the trace graphs incomplete as a consequence.

Sources of Inherent Inaccuracies Investigating the performance issues at hand, we summarized

the sources of inherent inaccuracies in existing diagnostic tools.

Firstly, in an era of escalating software complexity, the information collected by these diagnos-

tic tools becomes insufficient for effectively diagnosing performance issues. Profilers, for example,

may inadvertently overlook inefficient functions due to their profiling strategies. Causal tracing

tools may struggle to capture the entirety of connections across diverse programming paradigms.

Furthermore, adapting to variations in software implementation poses a challenge, invariably lead-

ing to high overhead and consequently, distortion of the system’s behavior.

Secondly, the information collected inherently contains noise. This is because complex soft-

ware systems often present intricate performance issues that manifest solely when multiple con-

current requests are active within the system.

Thirdly, it is worth noting that applying diagnostic algorithms directly to analyze inaccurate
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runtime information can be misleading. Profiling tools, for instance, highlight functions based on

their cost, yet the root causes of performance issues may not necessarily correlate with high costs.

Similarly, the critical paths reported by causal tracing tools may not always accurately represent

the causal paths leading to performance issues.

The ineffectiveness of existing performance diagnostic tools stems from their inherent inaccu-

racies. This dissertation demonstrates vProf and Argus, emphasizing that integrating supplemen-

tary runtime information into traditional diagnostic tools is necessary to overcome these inaccura-

cies and effectively pinpoint the root causes of performance issues.

1.4 vProf: Value-Assisted Cost Profiling

Profiling tools are extensively utilized to identify resource-intensive functions within applica-

tions, enabling subsequent optimizations to address performance concerns. However, this conven-

tional approach often falls short in accurately pinpointing the root causes of specific performance

issues.

Function rankings in profiling results may lead to misguided efforts in bug hunting, because the

top-ranked functions may not necessarily be the root causes of the observed performance issue. In-

stead, many performance problems can result from flawed code logic within seemingly lightweight

functions. Such flaws are often intricately linked to improper data flow, which can be observed by

monitoring the variables accessed within these functions. Unfortunately, existing profilers often

miss this critical data flow information.

Moreover, the absence of data flow information in profiling results leads to vague outcomes,

making it challenging to accurately diagnose performance issues. Developers, for instance, need

to differentiate between excessive execution time attributed to a costly function itself and frequent

function calls. In the former scenario, a comprehensive examination of branches and code blocks

is required, while the latter necessitates the identification of the reasons behind these frequent func-

tion calls. Consequently, debugging complex performance problems often compels developers to

resort to ad-hoc practices such as printf statements, software recompilation, execution, or debugger
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attachment for deeper insights.

The key insight from our analysis is that the common inaccuracies plaguing current profilers of-

ten stem from the absence of program data flow information in profiling results. Essential runtime

data flow, encompassing details like array length, variable values, and the historical evolution of

these values during execution, proves indispensable for achieving effective performance diagnosis,

as evidenced by our study of bug reports.

To determine which variables to record, it is crucial to generalize the requisite information

for performance diagnosis. Performance issues typically manifest in three predominant patterns

related to control flow and data flow — namely, scalability, wrong constraint, and missing con-

straint. Scalability-related issues arise when the array or loop size surpasses the developer’s ex-

pectations, leading to repetitive iterations over objects that trigger performance problems. Issues

linked to wrong constraints often result from erroneous variable configurations or unintentional

negations of conditional expressions, which in turn lead to the execution of incorrect branches.

Bugs stemming from missing constraints involve superfluous operations due to uniform execution.

Consequently, variables utilized in conditional expressions, loops, and function calls are critical to

enhance the effectiveness of the profilers.

Based on the insights, this dissertation introduces a new profiling methodology called value-

assisted cost profiling (vProf). This methodology not only measures execution costs but also con-

currently records the value of variables of interest throughout the profiling session. To enhance

the profiling results for performance diagnosis, vProf integrates the runtime information of the

variables to calibrate the function costs. Specifically, it corrects the underestimated functions and

applies discounts to reduce the cost of inherently expensive ones. By comparing values collected

during a problematic execution with those from a normal execution, vProf highlights root cause

functions with associated anomalous values, identifies problematic code that accesses such values,

and infers patterns of performance issues.

We implemented vProf by following the proposed profiling methodology and applied it to both

resolved and unresolved performance issues in four large software systems to assess its effec-
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tiveness. The results show that vProf significantly enhances the profiling results for diagnosing

performance issues.

1.5 Argus: Annotated Causal Tracing for Modern Desktop Applications

The complexity of modern software poses a significant challenge for developers when diag-

nosing performance issues that propagate across multiple components from their origins. This

challenge is particularly pronounced in modern desktop applications, which often exhibit high

levels of concurrency and communication among threads to meet the evolving demands of users.

When a performance issue arises, conventional profiling tools, such as macOS Instruments, usually

identify the most resource-intensive functions. However, performance issues in modern desktop

applications may not relate to the intensive resource usage. Instead, they can result from improper

synchronization span different software components. For such performance issues, profilers often

fall short in providing comprehensive insights into the underlying root causes.

Causal tracing provides a solution for identifying the root causes of these performance issues. It

captures runtime information that reflects the causal relationships among components, constructs

trace graphs based on these causalities, and subsequently identifies the causal paths leading to

performance problems. While causal tracing tools have demonstrated their effectiveness in mobile

applications and distributed systems, their potential for diagnosing performance issues in desktop

applications remains untested.

We modified the implementation of a conventional causal tracing tool to investigate its effec-

tiveness for desktop applications on macOS. However, the adapted causal tracing tool encountered

inaccuracies in its generated trace graphs, featuring superfluous edges while omitting necessary

ones. These inaccuracies stemmed from unaccounted programming paradigms and overlooked

data dependencies.

While theoretically possible to rectify these inaccuracies through supplementary instrumen-

tation, extensive instrumentation of desktop applications is practically unfeasible due to the sig-

nificant overhead it would introduce. Furthermore, our comprehensive instrumentation attempts
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revealed that the closed-source nature of desktop applications and their associated third-party com-

ponents posed challenges and potential pitfalls.

Instead of attempting to eliminate all inaccuracies, we developed Argus to mitigate these inac-

curacies while imposing minimal overhead on the system. To do so, Argus collects supplementary

runtime information to ascertain the credibility of the trace graph edges, and automatically anno-

tates trace graphs with strong and weak edges. Guided by the edge annotations in the trace graph,

Argus employs a heuristic search algorithm that can tolerate the inaccuracies when identifying

causal paths for performance diagnosis. Specifically, the algorithm expands the most promising

causal paths within a limited set.

By prioritizing the most promising causal paths, Argus focuses on addressing performance is-

sues characterized by either high processing activity or prolonged waiting, as determined by CPU

status. Busy processing issues can be effectively diagnosed by analyzing the causal paths of the

buggy execution. In cases involving prolonged waiting, performance issues often arise due to

the absence of essential events that should have awakened the waiting threads. To identify miss-

ing events in problematic executions, Argus introduces a differential-based comparison algorithm.

This algorithm uses the causal paths from a normal execution as a baseline and compares them to

the partially similar paths in the problematic execution. The comparison algorithm identifies the

problematic activities that lead to the absence of awakening.

Our evaluation of Argus on real-world performance issues in macOS demonstrates that Ar-

gus can effectively identify the root causes of complicated performance issues. Further details

regarding the design and implementation of Argus are presented in Chapter 4.

1.6 Organization

The structure of this dissertation is as follows. Chapter 2 provides an overview of the efforts

made for performance issue diagnosis. Chapter 3 discusses our work on enhancing profilers with

data flow. Chapter 4 introduces Argus, an annotated causal tracing system for diagnosing modern

desktop applications. Chapter 5 analyzes the remaining limitations of the enhanced performance
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diagnostic tools and suggests potential improvements for the future. Finally, we conclude the

dissertation.
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Chapter 2: Background, Related Work and Research Goal

This chapter discusses the related works and the gaps in existing performance diagnostic tools

that lead to the work in this dissertation. We begin with the examination of real-world performance

issues in Section 2.1. In Section 2.2, we delve into the existing tools for performance diagnosis.

Finally, we present our insights into the gaps of existing diagnostic tools in Section 2.3.

2.1 Studies on Real World Performance Issues

In the past few decades, performance issues have attracted significant attention. Several em-

pirical studies [77, 56, 32] have been conducted to investigate how performance issues were intro-

duced, discovered, and fixed, and to summarize the characteristics of performance issues.

Zaman et al. [77] conducted a qualitative analysis of 400 randomly selected bugs from Mozilla,

Firefox, and Google Chrome. Their study aimed to identify the deficiencies in reporting, reproduc-

ing, tracking, and resolving performance issues. The findings revealed that developers and users

often invested more time in discussing performance issues compared to other functional bugs, par-

ticularly in reproducing and debugging them. It was also observed that, at times, performance

issues were occasionally tolerated as a trade-off due to the potential costs involved in addressing

them.

Similarly, Nistor et al. [56] found that most performance issues were discovered through code

review. Fixing performance issues proved to be more challenging compared to non-performance

issues, taking on average 75 days longer to resolve. Developers need improved tool support in

testing and addressing performance bugs.

Some research [38, 45, 32] has focused on unveiling common patterns of performance bugs

that can provide valuable insights for guiding future software development.
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Jin et al. [38] conducted a comprehensive study involving 109 real-world performance issues

randomly sampled from Apache, Chrome, GCC, Mozilla, and MySQL. The root causes of the

majority of real-world performance issues in their study fell into a few categories. Drawing from

their insights, they summarized common patterns to assist developers. These patterns include

uncoordinated functions caused by inefficient function-call combinations composed of efficient

individual functions, skippable functions that perform unnecessary work given the calling context,

synchronization issues, and others.

Liu et al. [45] conducted a similar study on 70 real-world performance issues from Android

applications. They categorized performance issues specific to smartphones into three types: GUI

lagging, energy leaks, and memory bloat. Based on how these performance issues manifested in

the smartphone context, they found that common patterns causing the performance issues included

lengthy operations in the main thread, wasteful computation for invisible GUI elements, and fre-

quent invocations of heavyweight callbacks. Building upon their findings, they developed a static

code analyzer named PerfChecker, which identified heavy APIs in the main thread and patterns

that violated operating rules on the view holder.

PerfScope [32] was proposed based on the observation that performance regressions were of-

ten hidden within multiple patches. Through an analysis of 100 performance regression issues,

the authors aimed to uncover the mechanisms that introduced such regressions. Their investiga-

tion revealed two distinct categories of code changes that led to performance issues: direct calls

to resource-intensive functions and alterations propagated through data and control flow, which

ultimately triggered an expensive function call. In light of these findings, PerfScope introduced

strategies to prioritize testing of patches that were most relevant to the underlying performance

issues.

2.2 Performance Diagnostic Tools

The studies discussed above revealed a diverse range of inefficient code that caused perfor-

mance issues, especially in the context of multi-threading and multi-processing, which imposed
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substantial challenges for developers in pinpointing their root causes. Such performance issues

can propagate across thread, process, and even machine boundaries. Manual diagnosis would take

a long time in those situations. Therefore, accurate diagnostic tools are important to support effec-

tive diagnosis.

In addition to widely used profilers and causal tracing tools, the goal of effective performance

diagnosis has motivated the development of many new solutions for automating performance di-

agnosis over the past decades.

In the remainder of this section, we will explore the evolution of diagnostic tools. Specifically,

we will first provide an overview of profilers in Section 2.2.1, followed by a discussion of causal

tracing tools in Section 2.2.2. Finally, we will look into alternative techniques replacing profiling

and causal tracing tools to automate performance debugging in Section 2.2.3.

2.2.1 Profilers

Existing profilers primarily focus on measuring execution costs, which can be quantified in two

main ways: the number of invocations and execution time. The measurement granularity typically

applies to the function level. This section reviews both the traditional profilers widely employed in

production systems and the state-of-the-art profiling tools proposed by researchers.

Traditional profilers, such as gprof [28], perf [27], and oprofile [43], utilize scheduled peri-

odic alarms to examine the value of the program counter at each interrupt. They then deduce the

cost of a function from the collected program counter samples. For instance, gprof [28] samples

the program by scheduling periodic alarms after a certain CPU time has elapsed. On the other

hand, perf [27] and oprofile [43] sample programs based on hardware events, leveraging Perfor-

mance Monitor Units (PMUs). When an overflow occurs in the configured PMUs, the CPU sends

an interrupt signal to record the sample.

However, all of these tools inherently encounter inaccuracies. gprof requires compiling the

target program with the -pg option, which prompts GCC to instrument every function in the pro-

gram to call the monitoring routine mcount() at its entry point. This instrumentation can potentially
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distort the performance of the target program. Furthermore, gprof exclusively profiles CPU time

within the target program, which means that it does not examine performance issues arising from

unexpected long waits or resource-intensive executions within libraries. On the other hand, perf

and oprofile encounter delays between the overflow and the arrival of the interrupt signal, which

leads to the well-known bias referred to as skid. Additionally, these profilers have unavoidable

profiling bias for multi-threaded programs due to their inherent nondeterministic nature.

Decades of research have been devoted to proposing novel profiling techniques that assist de-

velopers in identifying inefficient code areas. In the context of prevalent concurrency, COZ [22]

was a causal profiler aimed at optimizing complex and slow transactions. It randomly sampled

lines from the program, applied a virtual speed-up to the chosen line, and calculated the potential

speed-up for a target transaction. However, its substantial overhead and inability to profile child

processes constrained its practical applicability in some real-world scenarios.

AlgoProf [79] recognized that the traditional algorithm complexity analysis often estimated

function costs based on total executed instructions, overlooking the low-level impacts arising from

cache and memory contentions within the system. These cost functions might have overly generous

worst-case bounds or idealized average-case costs, which were potentially unrealistic. In response,

AlgoProf introduced a novel profiler that automatically varied program inputs and measured func-

tion costs reflecting real-world performance. The resulting plots of function costs approximated the

relationship between actual input and corresponding costs. They provide developers with profound

insights into program performance.

Similarly, aprof [21] served as a Valgrind tool designed to aggregate performance costs based

on input size for each executed function. It automatically measured input sizes for specific code

segments. The collected information was then utilized to generate insightful performance plots.

Additionally, aprof employed statistical curve fitting and bounding techniques to deduce trend

functions. Due to this deduction, a notable distinction from Algoprof was that aprof could profile

the program within a single run on typical workloads, while Algoprof required running the program

multiple times.
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Freud [65] was introduced to make algorithmic complexity more readable and comprehensi-

ble for programmers. This tool automatically generalized performance metrics, including CPU

time, memory usage, and lock holding/waiting time, and established correlations between these

metrics and the features of the input arguments. For instance, Freud can correlate the time cost

with the size of the input array. To achieve this, the analyzer in Freud employed statistical anal-

ysis to construct mathematical models that inferred these correlations. Subsequently, it translated

these models into a semantically meaningful annotation language. This approach empowered pro-

grammers with valuable insights into the relationship between algorithmic complexity and input

arguments, facilitating a better understanding and informed decision-making.

Dmon [42] employed a selective profiling technique to identify data locality issues in produc-

tion environments. To minimize overhead, it selectively and incrementally collected runtime infor-

mation, utilizing the hierarchical top-down approach developed by Intel. The collected data were

then used to automatically pinpoint data locality problems, identify access patterns that negatively

impact locality, and subsequently apply targeted optimizations to address these patterns.

While those novel profiling techniques were powerful, their focus was primarily on optimizing

specific functions rather than on performance diagnosis. Applying profilers to diagnose perfor-

mance issues might miss root cause functions that were lightweight in terms of time cost but

trigger resource-intensive executions in other functions.

2.2.2 Causal Tracing Tools

Profilers focus on identifying costly functions, but they do not answer two fundamental ques-

tions crucial for performance debugging: (1) Why is the function costly? (2) Is the cost necessary

for the task? Conversely, causal tracing tools provide insights into these questions.

Causal tracing tools capture selected execution events along the workflow of a request handling,

and construct trace graphs following the causal relationships among these events. Upon the trace

graphs, a diagnosis algorithm, typically critical path analysis, is employed to pinpoint the root

causes of performance issues. Various causal tracing solutions have been proposed to troubleshoot
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performance issues in distributed systems. Prominent examples include Magpie [6], XTrace [26],

Dapper [68], and Pivot Tracing [50].

Magpie [6] monitored specific events in the server and extracted the system’s workload in the

real world. To capture the workflow for each request, it employed a manually defined event schema

to determine request boundaries within a thread and connect events for the same request. Through

request standardization, Magpie accurately generated workload models and identified performance

anomalies by detecting outliers among them. This approach can be utilized for performance pre-

diction and change detection.

X-Trace [26] was a tracing framework designed to reconstruct a comprehensive view of service

behavior. It associated metadata with payloads from clients and layers of network services. By

propagating this metadata throughout the system, X-Trace identified and maintained the causal

relationships. However, while X-Trace was useful for pinpointing points of failure, it required an

additional detailed report for in-depth debugging.

Dapper [68] was Google’s production distributed systems tracing infrastructure. It shared con-

ceptual similarities with the tracing systems Magpie and X-Trace. They all aimed at assisting

engineers in pinpointing the root causes of overall latency and addressing critical questions: which

service is at fault and why it is performing poorly. However, Dapper distinguished itself from them

in terms of the design choices. Dapper employed adaptive sampling and restricted core tracing

instrumentation to a small corpus of ubiquitous threading, control flow, and RPC library code.

This approach aimed to strike a balance between low overhead, application-level transparency, and

scalability.

Pivot Tracing [50] integrated dynamic instrumentation with causal tracing techniques to build

a monitoring framework for distributed systems. Its key contribution was a novel happened-before

join, which effectively addressed the challenge of correlating events across component or machine

boundaries when using dynamic instrumentation. Pivot Tracing empowered users to define arbi-

trary metrics at specific locations during runtime in the system. While tracing, Pivot Tracing made

use of the defined metrics. It had the capability to select, filter, and group events based on specific
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metrics, enabling the identification of causal relationships. However, it is worth noting that this

tool required manual modifications to the source code to ensure the proper propagation of metadata

for a given request.

In addition to distributed systems, prior works also investigated causal tracing techniques to

help developers identify the performance bottlenecks in mobile applications.

AppInsight [60] intervened at the interface between the application and the framework to col-

lect causal tracing logs and construct trace graphs. Specifically, it determined the boundaries of

different requests within a thread by assuming that each callback function corresponded to a spe-

cific request. To construct trace graphs for requests, it treated the beginning and end of a callback

function as vertices and connected them with an edge in the request graph, indicating that they

belonged to the same request. The activities between the two vertices were all connected as an ex-

ecution segment for a request. If this segment installed additional callbacks or signaled a waiting

thread, AppInsight connected these corresponding execution segments with additional edges. As a

result, by using the generated trace graphs, AppInsight estimated critical paths to pinpoint the root

causes of execution exceptions or performance issues.

Panappticon [80] traced low-level events within the Android system. To construct the depen-

dency graph, it captured causal relationships from two asynchronous programming idioms: the

message queue and thread pooling. In the case of the message queue, it designated the handling

of a message as a vertex and connected it to the event that queued the message. Regarding thread

pooling, it marked a vertex from the wake-up of a worker thread to its waiting for locking primi-

tives, and connected it to the vertex containing the event that woke up the worker thread. In addi-

tion to the defined connections across threads, Panappticon introduced a temporal join. This join

connected events that appeared continuously within a thread. For instance, Panappticon treated the

entry and exit of a callback function as vertices and connected all events between them. Ultimately,

the generated trace graphs were utilized to identify and diagnose performance issues.

Since existing causal tracing tools are usually built upon causal relationships derived from

specific programming paradigms, diagnosing performance issues becomes ineffective when cus-
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tomized programming paradigms exist in the applications.

2.2.3 Automatic Performance Diagnosis

Profilers and causal tracing tools, as discussed, assume that the root causes of performance

issues will be present in the profiling results or extracted paths. They often require developers to

have prerequisite knowledge to understand the results for more in-depth debugging. For instance,

causal tracing tools need developers to understand the causalities among vertices in a causal path

to pinpoint the root causes of the performance issues. However, performance issues are complex

and unpredictable, and obtaining the necessary information to comprehend the results can be chal-

lenging, especially for developers who may not have intimate knowledge of all components. To

alleviate the debugging effort for developers, much research work [2, 5] has introduced inference

rules to bridge the gap and automatically uncover the root causes.

Aguilera et al. [2] diagnosed performance issues in distributed systems by treating application

services as black boxes. They employed timing analysis to establish correlations between input

and output messages, allowing them to attribute the root causes of performance issues to specific

nodes in the system.

X-ray [5] attributed the root causes of performance issues to program inputs or configuration

settings, leveraging dynamic information flow analysis. It introduced a technique called perfor-

mance summarization. The technique first assigned a cost to predefined events, such as a basic

block from the user level. Next, it used dynamic information flow analysis techniques, such as

taint tracking, to associate events with the program inputs or configuration settings and assign

weights to the associations. These weights reflected the relative probabilities that the potential

input or configuration caused the execution of the defined events. Finally, based on the association

weight, X-ray outputted a ranked list of potential root causes by summing the costs of all prede-

fined events for each of the potential root causes. The result can be used to diagnose performance

issues or differentiate similar operations.

Several research works [29, 19, 66, 76, 23, 8, 9, 10] leveraged well-known bug patterns that
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manifested in call stacks or logs to automate diagnosis. StackMine [29] associated callstack pat-

terns with a set of performance metrics, aiding analysts in aligning and calculating similarities

among call stacks to identify performance anomalies. Other research works [19, 66, 76, 23] ap-

plied machine learning methods to identify abnormal events in logs. Extensive research [8, 9, 10]

employed inferred models from logs to automate the detection of abnormal behavior when systems

are exposed to new workloads and environments.

Researchers [69, 62] also leverage statistical debugging to automate performance diagnosis.

Statistical debugging is an effective technique originally employed to address functional bugs. It

gathers program predicates, such as whether a branch is taken and interleaving sequences, dur-

ing both successful and failed runs. It then employs statistical models to automatically identify

the predicates most correlated with failures, which are referred to as failure predictors. For ex-

ample, Holmes [16] collected path profiles from both successful and failed runs and constructed

a statistical model using those path profiles to pinpoint predictors causing failures. Cooperative

Concurrent Bug Isolation [39] tracked interleavings at runtime and established statistical models

on these interleavings to identify strong failure predictors for concurrency bugs.

Song et al. [69] applied statistical debugging to diagnose performance issues. They monitored

predicates, including conditional branches, scalar pairs, and function returns. Using the collected

data from both normal and buggy executions, they ranked the predicates using a statistical model.

Their statistical model followed the principle that a predicate serving as a more reliable predictor

should be true in a greater number of failure runs and false or not observed in successful runs.

Perspect [62] is closely related to the work vProf in the dissertation. Both of them expand

the scope of failure predictors to include runtime information, such as the execution frequency of

instructions, data flow, and processing time for objects. Drawing inspiration from causal relation-

ships and statistical debugging, Perspect employs instruction relationships to precisely identify the

root causes of performance issues. It initially selects an effect instruction as the symptom of a

performance issue manually. Then it identifies all potential pairs of causal and effect instructions

through a comprehensive analysis of instruction causalities. Subsequently, statistical tests are used
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to select relevant pairs from irrelevant ones by comparing normal and buggy runs. To pinpoint the

root causes, Perspect explores causal paths to identify the instruction that is closest to the effect

instruction in the buggy execution.

The methodologies employed by Perspect share similarities with those of vProf. Both ap-

proaches involve static analysis to narrow the scope of runtime tracking, a comparison of normal

and buggy runs, and statistical methods to filter out data unrelated to the specific performance

issue.

However, vProf distinguishes itself by incorporating variable values at runtime, as opposed

to the frequency of instruction execution. This design decision is rooted in several considera-

tions. Firstly, value samples can be used to calibrate function costs, prioritizing functions related

to performance issues. Consequently, it eliminates the need to manually select symptoms from the

source code. Secondly, value samples in vProf, carrying the program counter (PC) where variables

are accessed, can infer the source code regions just like instructions. In contrast, the sheer number

of instruction pairs can lead to overwhelming comparisons and excessive false positives. Thirdly,

while Perspect may overlook instructions that solely appear in the buggy case, vProf consistently

retains unique variables to prevent false negatives. This is primarily due to the manageable num-

ber of variables. Lastly, aligning and comparing the distribution of variable information is more

precise and straightforward compared to instructions, especially when assessing runtime behavior

across different software versions.

2.3 Improve Existing Diagnostic Tools

Despite the emergence of numerous automated performance diagnostic tools, profilers and

causal tracing tools continue to provide substantial value for developers. They are mature, user-

friendly, and practical in real-world scenarios.

However, as discussed in Chapter 1, profilers and causal tracing tools often prove ineffective in

diagnosing complex performance issues. Within the context of the related works examined in this

chapter, a research gap becomes evident: the results produced by existing diagnostic tools are in-
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herently inaccurate, and the absence of comprehensive guidance makes the results fail to prioritize

potential root causes for specific performance issues. Therefore, the primary objective of this dis-

sertation is to enhance the effectiveness of performance diagnosis by incorporating supplementary

runtime information.

This objective drives the dissertation to delve into two pivotal research questions: ’What infor-

mation is requisite for the identification of root causes?’ and ’How can this indispensable infor-

mation be seamlessly integrated into existing tools to yield precise outcomes?’ Specifically, this

dissertation explores the necessary pieces of information for profilers and causal tracing tools. In

the case of profilers, it is imperative to incorporate data flow to refine function costs, as a seemingly

swift function in current profiling result might inadvertently trigger unnecessary computations due

to improper value propagation. Similarly, the inherent inaccuracies of trace graphs primarily stem

from customized programming paradigms and data dependencies. Mitigating these inaccuracies

requires an understanding of the semantics within trace graphs, which can be derived from call

stacks during runtime.

The corresponding improvement of a typical profiler is presented in Chapter 3, and the en-

hancement of causal tracing tools is discussed in Chapter 4.
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Chapter 3: Value-Assisted Cost Profiling

In this chapter, we focus on analyzing the inherent inaccuracies in typical profilers, which ren-

der them ineffective for diagnosing performance issues. In practice, even with mature profilers, it

often takes a developer a significant amount of time to identify the root cause of a performance

issue. In a real-world performance debugging story [44], the developer “spent 5 hours debugging,

and finally moved a single line of code up 10 lines”, which reduced the CPU usage by 20×. Al-

though the fix was simple, it took the developer many hours to find the bug, because the profiler

results suggested the wrong places to investigate.

Such anecdotal examples widely exist. A key reason is that traditional profilers focus on identi-

fying costly functions. They are effective when the performance bug happens to be in the function

that takes the most time. However, tricky performance bugs are often caused by improper code

logic. The buggy code itself may be fast and ranked low by profilers, misleading developers to

waste effort trying to speed up costly functions that are necessary and already highly optimized.

Consequently, we explore methods to address the ineffectiveness based on the widely used profiler

gprof.

Figure 3.1 shows a real performance issue [11] in the widely used MariaDB as an exam-

ple. Based on user-provided logs, developers suspected that the user’s database caused an out-

of-memory error. Existing profilers report that the function recv_apply_hashed_log_recs con-

sumes most of the execution time, but this is not the root cause. From its call count, devel-

opers recognized that this function was called frequently. This could mean that the function is

too costly to be executed frequently and needs to be further optimized. Alternatively, it could

mean that there is an issue with the calling of the function. Knowing which answer is correct is

difficult when the root cause is unknown. In this case, digging into and trying to optimize the

recv_apply_hashed_log_recs function would waste huge amounts of time since it has hundreds of
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void recv_sys_init() {

  ...

  recv_n_pool_free_frames = buf_pool_get_n_pages() / 3;

bool recv_scan_log_recs(ulint available_mem, ...) {

  bool finished  = false;

  if (recv_parse_log_recs(checkpoint_lsn, 

        store_to_hash, available_mem, apply)) {

    finished = true;

    goto func_exit;

  }

}

bool recv_group_scan_log_recs(lsn_t ckpt_lsn, ...) {

  ulint available_mem = srv_page_size * 

        (buf_pool_get_n_pages() - 

        (recv_n_pool_free_frames * srv_buf_pool_ins));

  do {

     recv_apply_hashed_log_recs(false);

     log.read_log_seg(&end_lsn, start_lsn + RSCAN_SIZE);

   } while (end_lsn != start_lsn && 

       !recv_scan_log_recs(available_mem, ...

830

831

846

847

3192

3203

3348

3349

3355

3356

3357

3376

3388

3417

3418

3419

3424

3431

3439

3440

3441

function has more 

than 200 LOC

Figure 3.1: A real performance issue in MariaDB (MDEV-21826). Existing profilers identify
recv_apply_hashed_log_recs as the culprit because it is the most expensive function. But the root cause
is the value of available_mem calculated in functions recv_sys_init and recv_group_scan_log_recs. The
value is set to zero in the buggy case.

lines of code and 20 branches. The developers ended up not doing that and instead focused on the

loop that calls the function. Nevertheless, they still ended up wasting significant time investigating

the loop conditional and the call chains from recv_scan_log_recs to recv_parse_log_recs. Each

function was complex, leading to a wild goose chase.

The real root cause is inside functions recv_sys_init and recv_group_scan_log_recs. The

function recv_sys_init incorrectly sets variable recv_n_pool_free_frames to one-third of the buffer

pool (line 846). It is used in recv_group_scan_log_recs to calculate variable available_mem (line

3417), incorrectly setting it to zero. As a result, recv_scan_log_recs returns false, causing wasteful

computation in the loop (line 3441). The problem was not in the loop where the developers spent

significant time, but in code before the loop. Developers missed focusing on the crucial beginning

of the function recv_group_scan_log_recs before the loop, as profilers provided no indication that
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this function was costly or important. Eventually, developers took 20 days to find the root cause,

with the user being actively involved, even when their initial suspicions of an out-of-memory error

turned out to be correct.

Our insight is that existing profilers’ gaps are often caused by the lack of program data-flow

information in the profiling result. Information such as the length of an array, the value of a

variable, and the history of a variable’s values during the execution is indispensable in debugging.

Indeed, we observe that, in debugging complex performance issues, developers often have to take

additional steps including adding ad-hoc printf statements, re-compiling and re-executing the

software, and attaching a debugger like gdb, to obtain data-flow information to guide performance

debugging.

Based on this insight, we introduce a new profiling methodology, value-assisted cost profiling.

Its basic idea is to not only measure execution costs during profiling, but also continuously record

the values of program variables to provide data-flow information. The recorded values are then

used to distinguish anomalous costly functions from necessarily costly functions to localize the

root cause in the code.

We build a tool vProf by modifying the popular gprof [28] profiler to realize value-assisted cost

profiling, addressing three key challenges. First, vProf needs to decide which variables to record

and how to locate them at runtime. Simply recording all variables and the complete program data-

flow would incur unacceptable overhead, and invalidate the profiling results. Second, vProf needs

to record variables efficiently in a manner that aligns well with other profiling information so it

can be useful. Third, vProf needs to use the recorded value information to improve the diagnosis

of performance issues.

vProf decides which variables to record by using static analysis to identify the types of program

variables that commonly influence performance. vProf uses an LLVM [47] analysis pass to scan the

source of the target program to identify these variables, typically generating hundreds to thousands

of candidate variables.

vProf not only needs to identify which variables to record, but also reliably locate them at
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runtime. The runtime location of a variable, especially a local variable, can change during program

execution, such as being stored in different registers, pushed onto the stack, or becoming dead or

out of scope. Like gprof, vProf presumes debugging information is available in the target program

executable, which it statically analyzes to obtain variable scope and location information. This is

used to record the variable values at runtime.

vProf records variables efficiently at runtime in a manner aligned with other profiling infor-

mation by leveraging the same mechanism it uses for measuring execution costs. Like existing

profilers such as gprof, to minimize the overhead, vProf uses program counter (PC) sampling to

measure execution costs per function. It sets a periodic alarm such that at each alarm signal, vProf

records the current PC to identify which function is executing. The executing cost of a function

is determined based on how often PC samples occur in its address range. vProf leverages this

same approach to passively record variable values at each alarm signal, which we refer to as value

samples. To collect as many value samples without introducing significant overhead, vProf not

only records value samples for variables accessible at the current PC, but also virtually unwinds

the stack to record additional value samples in callers of the current execution context, as well as

the PCs at which they are accessed.

Recording value samples for accessible variables concurrently for an arbitrary profiling signal,

vProf introduces efficient data structures so that the variables accessible at a given PC can be

quickly identified and recorded.

vProf improves the diagnosis of performance issues by introducing a novel post-profiling anal-

ysis algorithm that combines value samples with traditional profiling execution costs. Using only

value samples is insufficient for performance debugging, as they can be noisy. The value samples

themselves also do not carry any information about costs, while costs are central to performance

reasoning. Instead, vProf uses value samples to calibrate raw execution costs in two ways.

First, in addition to computing function execution cost based on PC sampling, vProf uses value

samples recorded with virtual stack unwinding to calculate a variable-based function execution

cost based on how often value samples occur in functions. The idea is that a function that has
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variables of interest that calls other functions should be considered more carefully even if its own

execution time may not be that high. This is done by having the caller effectively inherit the

execution cost of its callees, thereby making it appear more costly. A function that does not have

variables of interest will have no value samples, so its variable-based execution cost will be zero.

vProf assigns each function a raw execution cost which is the greater of the execution cost based

on PC sampling and the variable-based execution cost.

Second, vProf computes a discount ratio for each profiled function based on the degree to

which its associated value samples are anomalous. Anomalous values are determined by compar-

ing value samples between normal and buggy executions of a target program. The more anomalous

a function’s variable values, the lower the function’s discount ratio will be. vProf then weighs a

function’s raw execution cost by one minus its discount ratio. Discounting demotes necessar-

ily costly functions and promotes suspicious, lower-ranked functions. vProf further identifies the

basic blocks in which anomalous values occur to help developers localize the root cause of a per-

formance issue.

We evaluated the effectiveness of vProf against other state-of-the-art tools, including gprof,

perf [27], COZ [22], and statistical debugging [69]. We collected and reproduced 15 real-world

performance bugs in large server applications, including Apache, MariaDB, PostgreSQL and Re-

dis. We then used these various tools to attempt to diagnose the bugs. vProf ranks the root cause

function first for seven of the bugs and within the top five for all 15 bugs. It significantly outper-

forms the other tools, which at best ranked the root cause function within the top five for at most

six of the bugs.

We show that vProf has low profiling overhead, does not require explicit instrumentation or

code changes to target programs, and provides a similar usage model to gprof. These properties

make vProf a practical tool to assist developers to debug tricky performance issues. In fact, we

used vProf to diagnose several previously unresolved performance bugs in MariaDB and Redis,

which have been confirmed by their developers, demonstrating its usefulness in practice.

In summary, the contributions in this chapter include:
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• A new value-assisted cost profiling methodology.

• Novel techniques to make this methodology work, including static analysis to select variables,

passive value sampling, cost re-calibration and root cause analysis.

• An end-to-end tool vProf, and evaluation of it on large applications and real-world performance

bugs.

3.1 Overview of vProf

Figure 3.2 shows the workflow of vProf, which can be decomposed into four steps. First,

a developer runs vProf’s schema generator to extract a list of variables in the target program to

monitor during profiling. This schema generator uses static analysis on the program source code

to automatically identify variables in instructions that likely influence a program’s performance,

such as global variables, variables in conditional expressions, and call parameters, as discussed in

Section 3.2.

It records the definition locations of all identified variables. For example, in Figure 3.1, vProf

identifies the variables recv_n_pool_free_frames and available_mem for monitoring, the former

since it is a global variable and the latter since it appears in a conditional expression as a call

parameter of the function recv_scan_log_recs (line 3441).

Second, the developer compiles the target program with the -pg flag, the same as using gprof, so

that the resulting executable contains DWARF debugging information [24]. This is used to translate

the generated schema into runtime location information for the variables of interest. For example,

in Figure 3.1, the global variable recv_n_pool_free_frames is accessed via its memory address,

but the local variable available_mem is accessed from a register determined by the compiler. vProf

uses the debugging information to determine what register to use to access available_mem.

Third, the developer runs and profiles the program executable. The same -pg flag used for

compilation alters linking to link the executable with the vProf profiling library. At the start of

program execution, the library reads the generated schema into memory and sets periodic alarms,

using the profil system call. At each alarm signal, vProf collects the PC and value samples,
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Figure 3.2: Workflow of vProf.

the latter by using the schema to determine which variables are accessible at the current PC and

where to read their values. vProf also performs bounded virtual stack unwinding to record value

samples in the callers of the current function. The developer is expected to profile the program at

least twice using vProf, one to produce a profile of a normal execution and another to produce a

profile of a buggy execution. Obtaining a normal execution is usually not difficult, as it often only

requires executing the program with a smaller workload or less complex command. For example,

in Figure 3.1, variable recv_n_pool_free_frames will have some constant value for each execution

of the program, but the value will be different for a normal versus buggy execution. Similarly,

variable available_mem will have some nonzero value for a normal execution, but be zero for a

buggy execution.

Finally, the developer runs the vProf post-analysis tool, using the normal execution profile

of the program as a baseline to compare against the buggy execution profile. PC samples are

used to determine the execution cost of each function. If the alarm interval is 𝑡 and the PCs

that lie in the address range of function 𝑓 are sampled 𝑛 times during the profiling session, then

the execution cost of 𝑓 is calculated as 𝑡 × 𝑛. Value samples are grouped based on the func-
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tions where they occur and used to calculate a variable-based execution cost and a discount ratio

to adjust the cost of each function. The discount ratio is based on a comparison of the value

samples from the normal and buggy profiles, with larger discounts for more similar value dis-

tributions between the profiles. vProf automatically classifies bug patterns based on the value

samples and identifies where anomalous value samples occur to pinpoint suspicious basic blocks.

For example, in Figure 3.1, function recv_group_scan_log_recs will be assigned a variable-based

execution cost and have no discount to its execution cost because of the presence of anomalous

values for its variables recv_n_pool_free_frames and available_mem. On the other hand, function

recv_apply_hashed_log_recs will have a substantial discount to its execution cost. The end result

is that vProf will rank the former ahead of the latter, alerting the developer to the correct root cause

of the performance issue.

3.2 Schema Generator

To enable value-assisted cost profiling, we need to decide what variables to monitor during

profiling. If a variable key to a performance issue is not monitored, vProf’s effectiveness will

become similar to conventional profiling. To address this challenge, we use program analysis to

systematically identify the types of variables that commonly influence performance. Then, we

make value recording efficient enough to allow vProf to sample many variables.

3.2.1 Source Code Static Analysis

vProf leverages LLVM to automatically identify the variables to monitor. For C/C++ programs,

it uses the widely used Clang compiler frontend to parse the target program source code into

LLVM’s language-independent intermediate representation (IR). For each program source file,

LLVM IR provides a call graph for all functions in the file. vProf introduces a simple LLVM

analysis pass to traverse the call graph and identify where the variables of interest are defined.

vProf identifies variables that are important to reason about performance bugs, specifically global

variables and local variables from loops, branches, and function calls. vProf monitors all global
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bool recv_group_scan_log_recs(

      lsn_t checkpoint_lsn, ...) {

  ulint available_mem = srv_page_size 

      * (buf_pool_get_n_pages()

        - (recv_n_pool_free_frames 

          * srv_buf_pool_instances));

  ...

source code

 /path/to/log0recv.cc, recv_group_scan_log_recs, 3388, checkpoint_lsn, lsn_t, args

 /path/to/log0recv.cc, recv_group_scan_log_recs, 3416, available_mem, ulint, cond|args

 /path/to/log0recv.cc, #global, 112, recv_n_pool_free_frames, ulint, None

translated schema

…
0x9bab33:0x9bad3b:rdi:0:8:False

…

0x9bac00:0x9bace0:rbx:0:8:False

0x9bacea:0x9bacf7:rbx:0:8:False

… …

311531 var_index = 3859

the tail of accessible 

variables from the PC
hash(PC)

VariableArray indexindex

PCToVar Table

0x9bacc3

…

…

checkpoint_lsn, 0x9bab33:0x9bad3b:rdi:0:8:False, link = …

VariableArray

0x9b0e30:0x9bc6bb:addr:21316200:8:False

…

3859 available_mem, 0x9bac00:0x9bace0:rbx:0:8:False, link = 3804

… …

… …

3804
0x9bab33 var_index = 3804311506

3860 available_mem, 0x9bacea:0x9bacf7:rbx:0:8:False, link = 3848
311533 var_index = 38600x9bacea

Figure 3.3: vProf generates variable metadata and initializes profiler data structures from the schema for
the example in Figure 3.1. Highlighted entries indicate overlap in PC ranges with other variables.

variables in part because most programs contain only a relatively small number of them and they

are accessible from any execution context, making them easy to monitor with low overhead. vProf

is more selective with local variables, since monitoring all of them would be too costly. For loops,

vProf monitors the induction variables, which can indicate not only the number of iterations but

also timing information. For example, if an induction variable’s sampled values are 3, 6, 6, 6, 6, 9

in the buggy profile and 3, 6, 8 in the normal profile, it could indicate a performance issue caused

by a missing skipping or breaking condition inside the loop, because the iteration 6 lasts for a

much longer time in the buggy profile. For branches, vProf monitors all variables in a conditional

expression. For call instructions, vProf monitors all variables used as call parameters.

vProf typically affords the ability to monitor thousands of variables, which can include all

relevant variables for small programs. For large programs, to reduce overhead, developers can

limit the variables to monitor to specific components of the program related to a performance issue,

e.g., the buffer pool component in MariaDB whose source code locates in storage/innobase/buf.

vProf will then only extract variables in source files of the specific component. If the restricted

value recording does not reveal the performance bug, developers can iteratively choose another

component to monitor.
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The analysis pass returns a schema showing where each variable being monitored is defined in

the source code. Each variable is a schema entry in the following format:

file_path, function, line, variable, type, tags

file_path is the file path of the source code file that contains the variable definition. function is

the name of the function that contains the variable definition if it is a local variable or the keyword

#global if it is a global variable. line is the line number of the source code file where the variable

definition is located. variable is the name of the variable. type is the type of the variable. tags is a

set of vProf-specific tags that indicate how the variable is used, such as loop, branch, and args. For

example, vProf monitors the variables recv_n_pool_free_frames and available_mem in Figure 3.1,

which are represented in the schema shown in Figure 3.3. recv_n_pool_free_frames has tags equal

to none since it is not used in any loop induction variables, branch conditional expressions, or call

parameters. available_mem has tags equal to cond|args since it is used in conditional expressions

and call parameters.

3.2.2 Binary Static Analysis

vProf transforms the schema to automatically identify the runtime locations of variables to

monitor, which we refer to as variable metadata. Once the developer compiles the target program

with the -pg flag, the program executable contains DWARF debugging information. vProf simply

uses a DWARF parsing library [7] to search the debugging information to retrieve the scope and

location information for each variable in the schema. vProf outputs a new schema of variable

metadata, where each entry represents a contiguous range of PCs in which the variable can be

accessed. Each entry of variable metadata is in following format:

pc_start:pc_end:location:offset:size:basic_type_ptr

pc_start to pc_end is the range of PCs for which the entry is valid. location indicates the location

in which the variable can be accessed, such as a register. offset is either the offset at which to

access a variable in a register or the address at which to access the variable in memory. size is the

size of the variable. basic_type_ptr is a flag to indicate whether the variable is a pointer to a basic
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type, such as a char or int, in which case vProf can dereference the pointer to obtain the actual

value that is stored. vProf may generate multiple entries of variable metadata for each variable.

For example, Figure 3.3 shows some of the metadata entries generated for the variables in

Figure 3.1. The entry for recv_n_pool_free_frames indicates it is accessible in memory at address

21316200, 8 bytes in size, and not a basic type pointer. The entries for available_mem indicate that

it is accessible in register rbx, 8 bytes in size, and not a basic type pointer. Its offset is zero as it

uses all bits of the 64-bit register.

DWARF debugging information may be incomplete, in that a variable may be accessible

at a given PC but the information is not captured in the debugging information. For exam-

ple, the entries for available_mem in Figure 3.3 cover two separate PC ranges in the function

recv_group_scan_log_recs. The first entry includes the variable definition and the second entry

includes its use in the conditional expression. However, there is a gap between them, likely be-

cause available_mem is pushed onto the stack due to the call to recv_parse_log_recs, and thus no

longer accessible in a register. Efficiently determining the exact address on the stack from which to

read such variables is a challenge. For simplicity, vProf assumes that a variable is not accessible at

a given PC if there is no explicit DWARF debugging information that includes the PC to indicate

its runtime location.

3.2.3 Profiler Intialization

Since profiling is done using PC sampling, we want an efficient mechanism to determine what

value samples to record at a given PC. vProf accomplishes this by transforming the variable meta-

data into a more efficient representation used for profiling. vProf introduces two data structures in

the profiler, a PC hash table, PCToVarTable, and an array for the variable metadata, VariableArray,

shown in the example in Figure 3.3. The data structures are connected via a var_index field in each

entry of PCToVarTable and a link field in each entry of VariableArray. By default, PCToVarTable

is allocated to be half the size of the text section of the program being profiled.

Before executing the program to be profiled, vProf reads the variable metadata from a file.
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For each metadata entry, vProf allocates an entry in VariableArray for the metadata and hashes

each PC in the range of the metadata to an entry in PCToVarTable, which it fills in. For example,

Figure 3.3 shows that the variable checkpoint_lsn is accessible starting at PC value 0x9bab33.

vProf allocates the VariableArray entry at index 3804 to checkpoint_lsn, and fills in multiple

PCToVarTable entries, including 311506 for PC 0x9bab33, whose var_index is set to 3804. Colli-

sions from hashing different PCs to the same element of PCToVarTable are handled using separate

chaining.

Multiple variables may be accessible at a given PC. If vProf finds an entry in PCToVarTable

already filled in for a given PC, that means that some other variable metadata entry has an over-

lapping PC range with the one currently being processed. If the entry in PCToVarTable is already

filled, vProf saves the var_index from PCToVarTable to the link field of the current VariableArray

entry for the variable metadata currently being processed. It then updates the PCToVarTable entry

with the index of the current VariableArray entry. In this way, multiple VariableArray entries are

chained together to a related PCToVarTable entry.

For example, in Figure 3.3, the var_index of PCToVarTable entry 311531 for PC 0x9bacc3

stores the index 3804 for the checkpoint_lsn VariableArray entry since for PC 0x9bacc3 falls

within the PC range for checkpoint_lsn. When processing the variable metadata for available_mem,

PC 0x9bacc3 also falls within the PC range. The link field of the available_mem VariableArray

entry is thus set to 3804. The var_index of PCToVarTable entry 311531 is then updated to the index

3859 for the available_mem VariableArray entry.

Note that Figure 3.3 shows the state of PCToVarTable and VariableArray before processing

the variable metadata for recv_n_pool_free_frames, a global variable that is accessible at all PCs

shown in PCToVarTable. For example, after that variable metadata is processed, the var_index of

PCToVarTable entry 311531 will be updated to the index of a new VariableArray entry, storing the

metadata for the global variable recv_n_pool_free_frames, which in turn will have its link set to

3859.

After this process, the metadata of all variables is stored in VariableArray and accessible by PC
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from PCToVarTable. vProf also stores the mapping from the schema to VariableArray in a Layout

Log, which is used later for post-profiling analysis.

3.3 Value Sample Recording

vProf’s program analysis and data structure design make it straightforward to efficiently record

value samples during profiling. vProf uses PCToVarTable, VariableArray and a SampleArray to store

value samples. When the alarm fires and the PC is sampled, vProf reads all accessible variables

according to the metadata. It looks up the sampled PC in PCToVarTable and follows its var_index

and subsequent link fields in the chain of VariableArray entries. For each VariableArray entry in

the chain, vProf checks that the sampled PC falls within its PC range, in which case it accesses the

variable value and stores it, as well as the sampled PC, to a new SampleArray entry.

For example, when profiling the program shown in Figure 3.3, if the alarm fires and the PC

sampled is 0x9bacc3, vProf will look up the PCToVarTable and follow its var_index. We assume

for this example that the PCToVarTable and VariableArray have been updated to include the variable

metadata for the global variable recv_n_pool_free_frames. Thus, var_index will be the index to

a recv_n_pool_free_frames VariableArray entry. vProf will record the recv_n_pool_free_frames

value in a new SampleArray entry. vProf will then follow the link to VariableArray entry 3859

and record the available_mem value in a new SampleArray entry. vProf will then follow the link to

VariableArray entry 3804 and record the checkpoint_lsn in a new SampleArray entry.

Checking that the sampled PC falls within the variable metadata’s PC range is necessary as

it is possible for this not to be true due to the manner in which VariableArray entries are linked

together when their PC ranges overlap, especially since the property is not transitive. Since most

variables are local with limited PC ranges only accessible within their respective functions, we do

not expect to encounter many VariableArray entries linked to a PCToVarTable entry which are not

accessible.

SampleArray entries are chained together with their corresponding VariableArray entry. Each

SampleArray entry has a link field. Each VariableArray entry has a sample_tail field, which is
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used to record the index of the most recently recorded SampleArray entry for that variable. When

a value is stored to a new SampleArray entry, its link is set to the sample_tail from the respective

VariableArray entry, and the sample_tail is updated to the index of the new SampleArray entry.

vProf’s passive value recording approach relies on having PC samples occurring within the PC

range of the variables being monitored. For functions that do not run much, vProf may not get

enough value samples. This can be an issue especially for callers with time consuming callees. For

example, in Figure 3.1, the root cause function recv_group_scan_log_recs calls the costly function

recv_parse_log_recs, so vProf almost always only observes PCs from recv_parse_log_recs when

it samples the PC. Thus, vProf has few samples for local variables like end_lsn and available_mem

in the root cause function, which are not accessible in the PC range of recv_parse_log_recs based

on the DWARF debugging information available. A related shortcoming of gprof, on which vProf

is based, is that when a target program calls into a dynamic library, gprof does not record PC

samples since they are outside the range of the target program.

To address this issue, vProf introduces virtual stack unwinding. For each sampled PC, it un-

winds the call stack by a bounded depth (default 3) and records variables accessible at the caller

PC, which is PC before the call instruction. Specifically, we restore the registers in each step and

begin the value sampling using the caller PC. We also add a field stack_depth in the SampleArray

entry to indicate how many stack layers are unwound before the sample is recorded. The stack

frames are restored to their normal state before virtual unwinding at the end of the sampling.

Virtual stack unwinding allows vProf to obtain many more value samples to improve the fidelity

of profiling. For example, in Figure 3.1, virtual stack unwinding results in value samples for

recv_n_pool_free_frames and available_mem in recv_group_scan_log_recs even when the PC

sampled occurs in recv_apply_hashed_log_recs. Note that virtual stack unwinding will generate

no additional samples if there are no variables of interest accessible at the caller PCs.

vProf dumps the profiling data to disk at program exit. It saves PC samples and variable

samples separately. The samples are then processed as part of post-profiling analysis.

35



3.4 Post-profiling Analysis

After value sample recording, vProf analyzes the data files from both normal and buggy exe-

cutions. The data files include the PC samples, which gprof refers to as the PC cost histogram,

value samples, and layout mapping used to connect value samples to variable information. vProf

performs two post-profiling analyses. Cost calibration computes raw execution costs and then ad-

justs them based on anomalous value samples to promote suspicious functions in a function cost

ranking. Bug pattern inference infers potential root cause patterns to help developers narrow down

the root cause.

3.4.1 Cost Calibration

Traditional profilers only rank functions based on their raw cost, where a function may be

ranked high due to unavoidably costly operations, while the real culprit of a performance issue is

lower in the raw cost rank. vProf calibrates the cost of functions by increasing the cost of functions

that contain many variables of interest, and decreasing the cost of functions whose variables are

not anomalous.

vProf increases the cost of functions with variables of interest by computing an alternative

execution cost based on the frequency of value samples, which we refer to as the variable-based

execution cost. The standard approach to determine the execution cost of a function using PC

sampling is to count the number of PC samples that lie in the PC range of the function and multiply

it by the alarm interval. Instead of counting PC samples, vProf determines the variable-based

execution cost by counting the number of value samples with distinct PCs that lie in the PC range

of the function and multiplying it by the alarm interval. Multiple value samples at the same PC are

counted as one sample. vProf then uses the maximum of the two costs as the raw execution cost of

the function.

The variable-based execution cost will be higher than the standard execution cost if the number

of value samples with distinct PCs in a function is higher than the number of PC samples. This can
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occur especially due to virtual stack unwinding if some variables being monitored are accessible

within the function, and the function calls some other function with higher execution cost. The idea

is to use the higher variable-based execution cost as the function has variables of interest which

could be related to a performance issue. For example, recv_group_scan_log_recs has a higher

variable-based execution cost than its standard execution cost since variables being monitored

such as available_mem are accessible within the function and it calls recv_apply_hashed_log_recs.

This will result in it having many more value samples than its own PC samples because the value

samples will occur at the frequency of the PC samples of its more time consuming callee due to

virtual stack unwinding.

vProf decreases the cost of functions whose variables are not anomalous by introducing a

variable-discounter, which is vProf’s main cost calibration mechanism. It computes a discount

ratio for each sampled variable based on how anomalous are its samples. The less anomalous the

samples are, the greater the discount ratio, meaning that the variable is unlikely to be contributing

to the performance issue. Discount ratios for variables are aggregated to the functions in which

they are accessible to compute a discount ratio for each function. The cost of a function is calcu-

lated by multiplying its raw execution cost and one minus the discount ratio, which is between zero

and one. As a result, a greater discount ratio (less anomalous samples) results in a greater decrease

in the calibrated execution cost, so that the respective function will be less likely to be considered

in diagnosing a performance issue.

We first describe how vProf determines how anomalous are a variable’s samples and computes

a discount ratio. The idea is to compare the value samples collected from the normal execution

versus those collected from the buggy execution. vProf defines samples as anomalous based on

how different the sample distributions are between the normal and buggy executions. The idea is

to consider distributions to be different if they have different shapes. For example, if two distribu-

tions with the same normal distribution shape will be considered the same even if their means are

different, but a normal and uniform distribution will be considered different.

Specifically, given the null hypothesis that the distributions are identical, vProf applies the k-
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sample Anderson-Darling test [3] to the distributions to determine if the null hypothesis holds with

some probability. By default, vProf uses a probability of 0.05. This means that vProf assumes the

distributions are the same by default unless it can determine with high (95%) confidence that they

are different. If the null hypothesis holds, vProf sets a discount ratio of DefaultDiscount for the

variable, which is 0.8 by default. If the null hypothesis is rejected, vProf calculates the Hellinger

distance [55], a measure of how different the distributions are. Its value is between 0 and 1, where

a larger value indicates greater difference. The discount ratio for the variable is set to one minus

the Hellinger distance, unless it is below a ValidDiscount threshold, in which case the ratio is zero.

ValidDiscount is 0.1 by default.

Assuming the variable is a basic type, vProf considers the degree of anomaly in a variable along

three dimensions. First, it considers values, as previously described. Second, it considers deltas

of values in adjacent samples. This quantifies how much the values change. Third, it considers

processing costs of values, specifically how many alarm intervals a variable value stays the same.

This quantifies how often the values change. vProf determines the discount ratio for a variable in

each of the three dimensions, and uses the lowest of the discount ratios. For pointers to non-basic

types, vProf only uses the discount ratio based on processing costs, since the differences in pointer

values, meaning differences in addresses, is not generally a useful distinction between normal and

buggy executions.

We next describe how we aggregate discount ratios for variables to functions. For local vari-

ables, their discount ratios are attributed to the function in which they are defined. For global vari-

ables, their discount ratios are attributed to the functions which contain recorded PCs at which the

variable was sampled. When a function has multiple associated variables with different discount

ratios, vProf uses the lowest discount ratio among them, because the most anomalous variable of-

ten suggests the function is worthy of further examination. For each function, if its raw execution

cost is 𝑥 and its discount ratio is 𝑟 , its calibrated cost is (1 − 𝑟) × 𝑥. By using a DefaultDiscount of

0.8, vProf can significantly demote costly functions without anomalous value samples, but avoid

eliminating them entirely. By using a ValidDiscount of 0.1, vProf can preserve the ordering of
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functions by cost for functions with similarly low discount ratios, as value samples may be noisy.

Section 3.5.3 evaluates how sensitive vProf is to these defaults.

For large programs, the variables being monitored may be limited to functions located in certain

program components, resulting in no discount ratio being available for functions outside of those

program components. To derive a discount ratio for these functions as well, vProf includes a

simple hist-discounter, which computes a discount ratio by comparing how the function ranks in

terms of raw execution cost between normal and buggy executions. Because of potential variability

in the rankings, the hist-discounter is based on profiling the program multiple times. Given 𝑛

buggy profile(s) and 𝑚 normal profile(s), we perform a cross-comparison among the two groups

for each function. We maintain a counter ℎ for each function to record in how many comparisons

this function ranks higher in the normal profile(s) than in the buggy profile(s). We also record 𝑐

(𝑐 ≤ 𝑛×𝑚) as the number of comparisons for the function. Then we set the discount ratio to 𝑟 = ℎ
𝑐
.

The ValidDiscount threshold is also used with hist-discounter to avoid reordering the rankings of

functions with similar low discount ratios. The hist-discounter is only used for functions which

otherwise would have no discount ratio available.

3.4.2 Bug Pattern Inference

Since providing a high-level characterization of potential root cause patterns can further ease

performance debugging, vProf provides a root cause classifier to infer potential root cause patterns

for top-ranked functions based on their calibrated costs. We observe three common performance

bug patterns:

1. Wrong constraint: These bugs cause the program execution to unnecessarily fall into a costly

path. They often happen when a conditional expression or its evaluation is incorrect. For exam-

ple, Figure 3.1 shows the while loop condition is evaluated with an incorrect available_mem.

2. Missing constraint: These bugs occur when the code performs some operations uniformly in-

stead of discriminating based on some constraint, such as a conditional expression. For exam-

ple, Figure 3.4 shows such a bug in Apache fixed by adding a conditional expression.
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void ap_mpm_pod_killpg(ap_pod_t *pod, int num) {
  for (i = 0; i < num && rv == APR_SUCCESS; i++) {
+   if (ap_image->servers[i].status != SERVER_READY ||
+     ap_image->servers[i].pid == 0)
+     continue;
    rv = dummy_connection(pod);
  }
}

Figure 3.4: Root cause for performance issue HTTPD-54852. When using the Multi-Processing Mod-
ule (MPM), the graceful restart of Apache httpd can sometimes take a few minutes. The problem is the
dummy_connection call becomes much slower due to polling if all the children have already exited. Develop-
ers fixed the bug by adding a check in the loop to skip unnecessary dummy_connection calls when there are
no more children.

3. Scalability: These bugs usually arise when the program processes data larger than the develop-

ers expected, such as traversing a large list in a critical section. For example, Figure 3.5 shows

such a bug in MariaDB.

To infer the bug pattern for each function, the classifier queries the variable-discounter for

information about which sampled variable was most anomalous. Specifically, for each function,

it finds the anomalous sampled variable with the minimum discount ratio and the dimension used

in calculating that ratio. Then, it obtains the the variable’s abnormal samples from the buggy

execution. The variable-discounter provides this by computing a variable’s normal range from

the normal execution and identifying the value samples in the buggy execution that are out of the

normal range. Since each value sample contains the PC at which it was recorded, the classifier

uses the DWARF information to map the PC back to the text section to localize the code region for

abnormal samples and get the basic block label and control flow structures.

The classifier then checks how an anomalous variable is used in the code region based on its

tags, as discussed in Section 3.2. With the discount ratio, dimension, and tags, the classifier infers

the bug patterns by using the following rules in order:

1. If some loop induction or conditional expression variable stays the same for an abnormally long

time, which is identified as a variable with a loop or cond tag and anomalous samples based on

a discount dimension of processing cost, the function is labeled with a Missing Constraint bug.

2. If some loop induction variable has abnormal values, which is identified as a variable with a

40



bool buf_LRU_scan_and_free_block(bool scan_all) {
  ulint scanned = 0;
  for (bpage = buf_pool.lru_itr.start(); bpage && scan_all;
      ++scanned, bpage = buf_pool.lru_itr.get())
    ...
}
buf_block_t* buf_LRU_get_free_block() {
loop:
  mutex_enter(&buf_pool.mutex);
  block = buf_LRU_get_free_only();
  ...
  if (n_iterations || buf_pool.try_LRU_scan)
    freed = buf_LRU_scan_and_free_block(n_iterations > 0);
  ...
  mutex_exit(&buf_pool.mutex);
  n_iterations++;
  goto loop;
}

the LRU list search was slow, scanned=134468

 scan the whole LRU list 

when n_iterations > 0

Figure 3.5: Root cause for performance issue MariaDB-23399. Under I/O-bound TPCC workloads, Mari-
aDB throughput gradually decreases and is worse than a previous version. The problem arises when the
buffer pool is full. The function get_free_block calls buf_LRU_scan_and_free_block which contains a lin-
ear scan of 1.6 million buffer pool blocks. The thread holds the buf_pool.mutex, preventing other threads
stopping the scan by releasing pages to the buffer pool.

loop tag and anomalous samples based on a discount dimension of value or delta of the value,

the function is labeled with a Scalability bug.

3. If a conditional expression variable is abnormal, which is identified as a variable with a cond

tag and anomalous samples, the function is labeled with a Wrong Constraint bug.

4. If the most costly function is normal and has no variables of basic types being sampled, meaning

it has a DefaultDiscount and discount dimension of processing cost, the function is labeled with

a Scalability bug. Without values of basic types, vProf does not have enough information to

identify other bug patterns in this case.

3.5 Implementation and Evaluation

We implemented vProf for C/C++ programs, mostly by modifying gprof, though vProf is com-

patible with any profiler based on PC sampling. This involved changes to glibc, mainly in gmon.c

and profil.c. We modified gmon.c to set up the in-memory profiling schema metadata on initial-

41



ization, which is called from __monstartup. We modified profil.c to collect value samples. We

extended the profiler signal handler to read values of variables accessible from the current PC. We

implemented virtual stack unwinding using the libunwind library [54]. We fixed issues in gprof

to better support multiple-process programs, such as renaming the gmon.out file with the process

id, setting profiling timers for child processes, and unblocking SIGPROF signals. We implemented

the schema generator using an LLVM analysis pass and a Python library. We implemented the

post-profiling analysis in Python.

We evaluated vProf in diagnosing performance issues in widely used applications. We per-

formed a comparative study against other state-of-the-art solutions on previously diagnosed per-

formance issues to quantify effectiveness. We further used vProf to diagnose several previously

unresolved performance issues in widely used applications. We also quantify vProf’s performance

overhead. All measurements were done on a desktop computer with a 6-core (12 hyper threads)

Intel 2.60 GHz Core i5 CPU and 48 GB DRAM, running Ubuntu-20.04 with Linux kernel 5.11.0.

To collect bugs for evaluation, we considered four large applications: MariaDB [51], Apache

HTTPD [4], Redis [61], and PostgreSQL [57]. We queried their official issue trackers using key-

words slow and performance, randomly selected from among the issues, read their reports, and

included the issues if they were truly performance-related and the reports had sufficient informa-

tion for bug reproduction. We then excluded bugs that developers found from just reading source

code as such bugs typically do not impact real users. In total, we collected 26 issue tickets. Three

of the issues could not be reproduced by following the reports. Five of the issues were database-

related and could be resolved by simply comparing the SQL explanations in the normal and buggy

cases. Our evaluation focused on the remaining 18 out of the 26 issues, including 15 resolved

issues, listed in Table 3.1, and three unresolved issues, discussed in Section 3.5.4.

3.5.1 Comparative Study

We used the bugs in Table 3.1 to evaluate the effectiveness of vProf versus other widely used

and state-of-the-art tools in diagnosing performance issues in widely used applications. The other
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ID Description Bug Pattern

b1: MDEV-21826 After a power failure, mariadb-server-
10.3 starts a crash recovery but it seems
to loop on the same log sequence num-
ber(LSN) forever.

Wrong Constraint

b2: MDEV-23399 Performance with IO-bound tpcc drops
over a varying time period when there is
a competition for buffer_pool space.

Scalability

b3: MDEV-13498 Deleting a table with CASCADE con-
straint is very slow.

Missing Constraint

b4: MDEV-15333 Slow start-up even when .ibd file valida-
tion is off.

Wrong Constraint

b5: MDEV-17933 Checking the server status takes >10 sec-
onds with 3M tables.

Scalability

b6: HTTPD-62668 Multiple threads spin at 100% in the
server after the request from Google
PageSpeed Insights (PSI) has processed.

Missing Constraint

b7: HTTPD-54852 Gracefully restart service with MPM
workers takes long time.

Missing Constraint

b8: HTTPD-62318 Health check is executed more often than
configured interval.

Wrong Constraint

b9: HTTPD-64066 Slow startup/reload when many vhosts

are configured
Scalability

b10: HTTPD-52914 When the server processes a POST re-
quest with a Content-Length header but
only part (but not all) of the request body
sent, the body timeout will be triggered.
After the timeout, the workers in the
server would loop with 100% CPU even
though no client sent requests.

Wrong Constraint

b11: Redis-8145 cluster nodes command is costly in a
large cluster.

Scalability

b12: Redis-8668 BRPOP becomes slow when a large number
of clients exist.

Missing Constraint

b13: Redis-10310 ZREVRANGE command 50% slower after
Redis is upgraded.

Missing Constraint

b14:Postgres-17330 EXPLAIN query hangs for some query
plans.

Scalability

b15:Postgres-14b1 Vacuum process fails to prune all heap
pages and endlessly retries.

Wrong Constraint

Table 3.1: Reproduced real-world performance issues.
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tools we tried were gprof, perf, perf with an enhancement using Intel Processor Trace (perf-PT),

COZ [22], and statistical debugging [69] (stat-debug). Table 3.2 briefly describes each tool and

how it was configured; similar configurations were used whenever possible.

Several of the tools, perf-PT, statistical debugging, and vProf, required profiling normal exe-

cution in addition to the buggy execution. Normal executions were obtained for MariaDB-21826

and Redis-10310 by running the same command on a different version. Normal executions for all

other issues were mostly obtained by using smaller inputs on the same software version. Specifi-

cally, we reduced the number of tables in the database for MariaDB, the number of virtual hosts in

Apache httpd, and the number of nodes in a cluster for Redis. For example, in MDEV-13498, we

deployed a database with the test script provided by the user in the bug report. Deleting the first

table took 20 minutes, which exposed the symptom. Deleting a second table from the same script

took 2 minutes, which we used as the normal execution. We simply reran the same command with

the same inputs multiple times if multiple profiling runs were needed.

Because the applications are large, several of the tools require some identification of the com-

ponent in which the performance issue occurs, to limit overhead. For perf-PT, we only performed

its control-flow profiling on the top ten most costly functions by using the Intel Processor Trace

address filter feature to limit the size and decoding time of the resulting branch traces. For COZ,

we identified the top-level function in the source code file that contains the performance issue to

limit runtime since it can otherwise take many hours to run as it randomly picks source code lines

to virtually speedup to measure potential performance improvement. For statistical debugging and

vProf, we identified the source code file that contains the performance issue to limit the predicates

and variables sampled, respectively.

For each issue, we ran each tool on a buggy execution that reproduced the issue based on

descriptions in the bug reports. We then measured how the tool ranked the root cause function in

its output; lower number rank is better. The best result is for a tool to rank the root cause function

first, meaning the tool pinpoints the function that causes the performance issue. Table 3.3 lists the

results. vProf outperforms all other tools, ranking the root cause function within the top five (2nd
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Name Description and Configuration
gprof Version 2.34 with glibc-2.31, default options used.
perf Version 5.11.22, default options used.
perf-PT perf with top-10 functions re-ranked using control-flow profiling: profile normal and

buggy executions, Intel Processor Trace counts branches taken, calculate difference in
branches taken per function for normal versus buggy executions, and use ratio of differ-
ence over total branches to scale top-10 function cost.

COZ Determines which basic block if optimized further will improve overall performance
the most; user identifies which functions to consider by identifying file that contains
root cause function and top-level function in that file that will eventually call root cause
function.

stat-
debug

Records values of predicates, namely conditional statements and return values of func-
tions, then ranks functions based only on how different the predicate distributions are be-
tween normal and buggy executions; user identifies file that contains root cause function
and predicates only considered for functions in that file, 5 normal and 5 buggy executions
used.

vProf User identifies file that contains root cause function to limit number of variables sampled
to that file, 5 normal and 5 buggy executions used for hist-discounter, but only one of
each was used for variable-discounter.

Table 3.2: Configurations of tools to diagnose performance issues.

on average) in all 15 cases. In comparison, gprof, perf, perf-PT, COZ, and statistical debugging

ranked the root cause function within the top five in only six, three, two, three, and two cases,

respectively. In fact, vProf ranked the root cause function first in seven cases, more cases than the

less precise top-five results for all of the other tools. In comparison, none of the other tools ranked

the root cause function first in any of the cases, with the exception of gprof which did so for only

two cases. Of all the tools, COZ performed the worst, failing to rank the root cause function in

11 cases, of which one was due to the tool crashing and four were due to its inability to support

multiprocess applications.

For comparison purposes, Table 3.3 also shows the result when using vProf with zero variables

monitored and only its hist-discounter (hist-disc), discussed in Section 3.4.1. hist-discounter alone

reports the root cause function within top five for only three cases. This demonstrates the key

vProf mechanism is not just comparing normal and buggy profiles, but doing so using variable

value information, in conjunction with cost discounting using variable value information. Note
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that the hist-discounter is still useful for large applications in which variables are only monitored

in some components. For example, without hist-discounter, vProf has worse results for four cases,

causing the ranking of the root cause function to drop from first to third in one case and dropping

it out of the top five in two cases. Even without using hist-discounter for components without any

monitored variables, vProf still far outperforms all other tools.

This observation that values are important for profiling is reinforced in comparing the results

with vProf versus other tools such as statistical debugging or perf-PT. Statistical debugging also

compares normal and buggy profiles, but uses only predicates, which may be noisy, without ac-

counting for the actual function execution costs. Furthermore, statistical debugging requires the

monitored predicates to be observed many times in both normal and buggy executions. In contrast,

vProf uses variable value samples and conventional function execution costs, correlating them

together with its analysis. Similarly, perf-PT compares normal and buggy profiles, but by moni-

toring control flow based on branch information as an alternative idea. Modern applications have

abundant branches and many sources of non-determinism, so their control flow traces are noisy.

In general, a performance issue may not be visible in control flow. For example, a performance

bug that causes a loop to iterate many more times likely shows the same control flow as a normal

execution. In fact, perf-PT, which enhances perf with control flow profiling, shows no overall

improvement over just perf.

Table 3.3 also shows how effective vProf is in identifying the specific root cause basic block.

Since vProf may report multiple basic blocks, we calculate the mean and minimum distance be-

tween the basic block reported by vProf and the one in which the developers fixed the bug. Shorter

distances generally make diagnosis easier. Table 3.3 shows that in six cases, the basic block vProf

reports in the root cause function is exactly where developers fixed the bug. For MDEV-13498,

vProf did not report a basic block because DWARF did not provide sufficient information to map

a PC sample of an anomalous value sample to basic blocks.

Furthermore, Table 3.3 shows how effective vProf is in classifying bugs using its bug patterns.

vProf infers correct bug patterns for 13 out of 15 cases. It misses the bug pattern in Redis-10310
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ID vProf Other Tools

rank bb-dist bug-patten gprof perf perf-PT COZ stat-debugging hist-discount

b1 1st 5, 0 3 454th 32nd 32nd NR 4th 447th
b2 1st 7, 0 3 5th 2nd 2nd NR 12th 1st
b3 1st n/a 3 2nd 3rd 6th 1st 30th 177th
b4 3rd 9, 0 3 21st 9th 5th NR 18th 31st
b5 4th 0, 0 3 13th 4th 9th NR 566th 22nd

b6 5th 19, 0 3 36th 13th 13th NR NR 15th
b7 3rd 0, 0 3 182nd 1024th 1024th crash 7th 181st
b8 1st 0, 0 3 1st 6th 7th child 3rd 6th
b9 2nd 21, 0 3 11th 28th 28th NR 9th 11th
b10 1st 0, 0 3 4th 16th 16th child 161st 4th

b11 1st 0, 0 3 1st 10th 10th 2nd NR 59th
b12 1st 7, 5 3 5th 19th 19th 1st 8th 2nd
b13 2nd 0, 0 NC 16th 13th 13th 9th NR 33rd

b14 4th 17, 0 3 NR 163rd 163rd child 13th NR
b15 3rd 2, 0 NC 14th 56th 56th child 18th 8th

Table 3.3: Diagnosis effectiveness of tools. NR denotes the root cause function was not ranked, crash
denotes the tool crashed, and child denotes the tool failed diagnosis because the root cause function was run
in a child process. For vProf, bb-dist shows the (mean, minimum) distance between the basic block vProf
identified and the root cause, and class shows whether the bug pattern reported matched the root cause; NC
denotes the root cause could not be classified.

because the identified variable invokes a function pointer and has no labels. Similarly, it misses

the bug pattern in Postgres-14b1 because of missing information on a variable that is stored inside

a class pointer.

Case Studies. This session describes typical cases in further detail, focusing on how vProf com-

pares to gprof, the tool on which it is based. These cases demonstrate how the sampled values help

developers.

MDEV-21826: This is the example in Figure 3.1. gprof ranks recv_apply_hashed_log_recs

first, while the actual root cause function recv_group_scan_log_recs ranks 454th. vProf ranks

the root cause function first, promoting it based on its monitored variables available_mem and

pool_free_frames using the variable-based execution cost, and demoting 44 other functions based
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on its variable-discounter. vProf assigns a zero discount ratio to recv_group_scan_log_recs as

its value samples are quite different between the normal and buggy executions, as shown in Fig-

ure 3.6a. vProf calculates high discount ratios for many other functions. For example, variables

such as end_lsn have no significant differences in their distributions between normal and buggy

executions, discounting the cost of recv_apply_hashed_log_recs. Furthermore, vProf translates

the PC of the anomalous variable sample into lines and corresponding basic blocks. One of the

line numbers is right before the while loop in recv_group_scan_log_recs. The basic block distance

is zero.

MDEV-23399: In this case, the root cause function buf_LRU_free_from_common_LRU_list is

ranked 5th by gprof, following functions such as buf_page_get_low, buf_LRU_get_free_block,

rw_lock_s_lock_spin, and MYSQLparse. Upon analyzing the case with vProf, we observed that

buf_page_get_low, rw_lock_s_lock_spin, and MYSQLparse are inherently costly. Their costs are re-

duced due to similarities in their ranks between normal and buggy executions. However, the root

cause function exhibits different value distributions for the variable scanned: no value samples are

captured in normal executions, while large values are recorded in the buggy cases. The variable is

used within a loop, identified by loop tag. Consequently, vProf identifies the bug as a Scalability

issue. In reality, the values of scanned are the crucial information that developers have extensively

examined during their manual debugging.

MDEV-13498: The root cause of this issue is that the std::find searches a list unnecessar-

ily when the database is not in a cluster. The function row_upd_sec_index_entry and function

row_upd_del_mark_clust_rec are the culprits responsible for the improper invocation of std::find.

While gprof correctly ranks the function row_upd_sec_index_entry at 2nd in the profiling result, it

overlooks the function row_upd_del_mark_clust_rec due to profiling bias. However, vProf ap-

plies hist-discounts to 12 functions which exhibit high cost in both normal and buggy cases.

As a result, row_upd_sec_index_entry is ranked 1st. Furthermore, vProf calibrates the cost of

row_upd_del_mark_clust_rec using value samples, elevating its position to 5th in the list. vProf

identifies an anomaly in the processing time of the variable parent inside the root cause functions.
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The variable is accessed in the same conditional statement where the std::find is evaluated.

MDEV-15333: In this case, the database upgrade causes unnecessary table validation dur-

ing database restart. gprof ranks the root cause function fil_ibd_open at 21st, which unnec-

essarily invokes fsp_flags_try_adjust, ranked at 165th. This performance issue arises when

the number of tables is large. For comparison, we have a baseline with a small number of ta-

bles. vProf adjusts function costs for 11 inherently costly functions, such as buf_chunk_init.

These functions are also costly during normal startup. After applying discounts to functions

based on the distribution of variable values, vProf ranks fil_ibd_open at 3rd. For instance, the

function fil_node_prepare_for_io is adjusted with a high discount of 0.8 due to similar distribu-

tions of processing times for all selected variables. In addition, the cost calibration also elevates

fsp_flags_try_adjust from 165th to 6th. While vProf ranks the functions fil_node_complete_io

and fil_io at the top after applying a default discount of 0.8, such false positives can be identified

by investigating the code logic. They are inherently much costlier due to a larger number of tables

in the buggy execution.

MDEV-17933: MariaDB server takes a long time to display the engine status when there are

many active transactions in the system. To reproduce the issue, we simulate query transactions

concurrently in the background while querying the system status. The root cause function is

dict_sys_get_size, where the server caculates memory usage statistics by traversing the data dic-

tionary cache. In the profiling result, gprof ranks the root cause function 13th. It is proceeded

by inherently costly functions, such as ut_delay and bug_calc_page_new_checksum. vProf removes

nine inherently costly functions with hist-discounts. As a result, the root cause funtion is ranked

4th, following ut_dealy, sync_array_cell_print, and sync_array_print_long_waits. All these

false positive functions are symptomatic of the performance issue. They produce warnings of long

waits because the root cause function dict_sys_get_size holds a mutex and blocks other threads

unnecessarily, preventing background transactions from acquiring the mutex.

HTTPD-62668: Filters in HTTPd are configured to process a sequence of data buckets. They

are maintained in a filter chain until encountering an EOS(end of stream) data bucket. The root
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cause in this case is that the core request filter bails out on EOS data bucket without cleaning up all

related data structures, leaving the filter function ap_request_core_filter in the filter stack. When

the function ap_filter_output_pending iterates over all the filter functions in the filter stack, it

invokes ap_request_core_filter and illegally accesses either corrupted or reused memory. Con-

sequently, the updates of induction variable in ap_filter_output_pending will invalidate the con-

ditional statement designed to break its for-loop, resulting in an infinite loop.

gprof ranks the root cause function ap_filter_output_pending at 14th and the related func-

tion ap_request_core_filter at 36th. In this case, the first important clue needed to figure out

is whether ap_filter_output_pending has an infinite loop or is invoked repeatedly. vProf ranks

ap_filter_output_pending at 5th after adjusting the function costs, and indicates its local variable

c, of type conn_rec, experiences an unexpected long processing for a fixed value inside for-loop.

Such information confirms that the issue is related to the loop. Further, vProf reveals the anomalous

values are accessed inside the loop and labels it as a Missing Constraint bug.

HTTPD-54852: The root cause in this case is the cascading polling cost for child processes.

When the main process gracefully restarts a child process that has already exited, it will poll for a

second in dummy_connection. During the polling period, more child processes will exit, leading the

main process to poll for all the exited child processes. As a result, the graceful restart takes a few

minutes.

The core issue lies within the function ap_mpm_pod_killpg, which invokes dummy_connection

for all children without checking their status. gprof ranks ap_mpm_pod_killpg at 182nd, and

dummy_connection is not ranked because gprof does not consider samples about socket opera-

tions in libraries. Conversely, vProf ranks dummy_connection at 1st, ap_mpm_pod_signal at 2nd,

and ap_mpm_pod_killpg at 3rd after calibrating the function costs using value samples collected

by virtually unwinding the callstack. For the root cause function ap_mpm_pod_killpg, vProf iden-

tifies an anomaly in the processing costs of the variable i within its loop. The false positive

ap_mpm_pod_signal is identified by the anomalous value of the variable ap_daemons_max_free from

the configuration. Such false positive can be excluded by examining the source code or attempting
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the buggy executions with a smaller value of the variable ap_daemons_max_free.

HTTPD-62318 : This case is related to a multithread error that is notoriously hard to diagnose.

If threads are enabled and one of them takes an unusually long time to finish a health check, it will

update the finishing time of the nearest health check with a past timestamp when the health check

begins. This past value causes watchdog to invoke a new health check request for every heartbeat

because it assumes the last health check happened a long time ago.

Ideally, the useful information for diagnosis can be the unusual health check in the function

hc_check and the variables used in a conditional statement inside hc_watchdog_callback. Although

gprof ranks hc_watchdog_callback at 1st already, it does not provide hints for developers to figure

out the cause of the unusually frequent invocations of hc_check.

vProf ranks hc_check at 1st and indicates abnormal return values from its callee hc_check_http,

which is ranked 2nd. The return value is used in a conditional statement in the function hc_check,

and thus vProf marks the case as a WrongConstraint issue. Additionally, hc_watchdog_callback

is ranked 3rd and also marked as WrongConstraint due to the abnormal delta values of the vari-

able now. The former information about hc_check is more helpful in diagnosing the performance

issue, as it suggests that the problem is triggered by a corner case where a health check takes too

long. Without this information, developers simply moved the code updating the last health check

timestamp upwards at the beginning of the health check, which cannot fix the bug ultimately, as

documented in the related bug report at https://bz.apache.org/bugzilla/show_bug.cgi?id=63010

HTTPD-64066: This is a typical case related to scalability, where repeated computations for

thousands of virtual hosts cause a slow start in HTTPd. The root cause is that each virtual host

reads and searches commands in its HTTPd config file using ap_find_command_in_modules, which,

in turn, invokes ap_cstr_casecmp to compare strings. The performance issue arises from the ac-

cumulated time cost. gprof ranks the root cause function ap_find_command_in_modules at 11th.

Preceding it are functions related to string operations.

To diagnose the issue with vProf, we configured HTTPd with a smaller number of virtual

hosts as a normal case. Comparing function rankings between the normal and buggy cases for

51



calculating hist-discount is not helpful because no similar function rankings are detected. On the

other hand, based on similarities in values of variables, vProf discounts the inherently costly string-

comparing functions. It also calibrates the cost of the root cause function based on the number of

value samples collected. The cost adjustment promotes ap_find_command_in_modules to the 2nd in

the result. vProf identifies it as a Scalability issue because the distributions of processing times

for variables in both cases are similar, and the root cause function remains costly after applying the

discount value of 0.8.

HTTPD-52914: When the HTTPd server attempts to discard a response body, it calls the func-

tion ap_discard_request_body to read and test any message body in the request before discarding

it. This process involves a two-dimensional loop that terminates either upon encountering an EOS

bucket or when an input filter returns an error value indicating a failure in passing the data bucket

of the message.

In this case, the connection between the server and the client times out while the client has a

POST request delivering a large body content. However, the filter function dumpio_input_filter

incorrectly returns APR_SUCCESS even when it fails to retrieve data buckets from the next filter

function in the filter stack. The incorrect return value leads to a loop in ap_discard_request_body.

gprof ranks the root cause function dump_io_input_filter at 4th and ap_discard_request_body

at 8th. However, the ranking is misleading without data flow. Developers often focus on ver-

ifying the correctness of the loop logic. According to the bug report, the reporter submitted a

wrong patch for the function ap_discard_request_body because the attached debugger indicated

that ap_discard_request_body repeatedly invoked dumpio_input_filter.

vProf ranks dump_io_input_filter at the top and reports a zero discount for the function based

on the value of the variable readbytes. It has many value sample of a fixed value in buggy case, but

much fewer samples of value zero in the normal case. The anomalous value samples in the buggy

case are recorded in the basic block with a conditional statement, so vProf identifies the issue as a

WrongConstraint. The basic block is exactly where an error return value should have been emitted.

Thus, vProf reports a block distance of zero.
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Figure 3.6: Value samples of key variables in MDEV-21826 and Redis-8668 respectively.

Redis-8145: In a Redis cluster with many nodes, the command cluster nodes queries mapping

information from cluster hash slots to actual nodes, aiming to acquire the list of hash slots served

by each node in the cluster. This case is similar to HTTPD-64066, associated with a large number

of instances configured in the system.

Both gprof and vProf place the root cause function clusterGenNodesDescription at 1st, but

vProf also indicates the bug pattern and the locations where value samples are collected. Since

all sampled varibles are of pointer type and their processing costs are similar between normal and

buggy cases, vProf reports the bug pattern related to Scalability, with a default discount 0.8.

Redis-8668: gprof ranks functions from the zmalloc_* family and dictEncObjKeyCompare above

the root cause function serveClientsBlockedOnKey which is ranked 5th. vProf ranks the root cause

function 1st, demoting other functions based on its hist-discounter and keeping the root cause func-

tion highly ranked based on its variable-discounter. vProf finds the zmalloc_* are inherently costly
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in both normal and buggy executions, have no variables being monitored, so its hist-discounter

assigns a discount ratio of 1.0 to them. For similar reasons, dictEncObjKeyCompare is assigned a

discount ratio of 0.76.

vProf assigns a zero discount ratio to the root cause function as its value samples for numclients

are quite different between the normal and buggy executions, especially in terms of processing

costs. Specifically, Figure 3.6b shows that the distribution of the value samples in normal versus

buggy executions are different, but this results in a discount ratio of 0.12. Instead, the distri-

butions based on processing costs are even more different, resulting in a discount ratio of zero,

which vProf uses since it is the smaller of the two. Furthermore, vProf translates the PC of the

anomalous variable sample into lines and corresponding basic blocks. One of the line numbers

falls in the invocation of listRotateHeadToTail, which makes up the costly part of a while loop in

serveClientsBlockedOnKey. The mean basic block distance to the while loop is five.

Redis-10310: This is a performance regression observed after upgrading Redis. In this case,

the function genericZrangebyrankCommand inappropriately employs deferred replies, even when

the result size is already known. This leads to unnecessary computations in the heap. gprof ranks

functions responsible for managing sorted sets and memory allocations, such as je_malloc, ahead

of the root cause function genericZrangebyrankCommand.

vProf profiles the normal and buggy executions across two different versions of Redis. It

elevates the root cause function genericZrangebyrankCommand to 2nd by applying hist-discounts to

inherently costly functions. The discount for the root cause function is zero because the function

and variables are unique to the buggy version of Redis.

vProf also highlights anomalous values in the variable handler, which is dereferenced to invoke

beginResultEmission and finalizeResultEmission. Although vProf fails to directly infer the bug

pattern due to handler being an argument for function invocation without labels, it recognizes the

difference in the implementation of the ZREVRANGE command. This information provides insights

to pinpoint the functions contributing to the observed performance regression.

postgres-17330: PostgreSQL employs the function get_actual_variable_range to determine
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the maximum and minimum values of a variable. This information allows PostgreSQL to estimate

costs for query plans. To prevent the inflation of value ranges due to dead tuples, PostgreSQL

ignores the values of dead tuples. This is achieved by specifying the snapshot type within the

get_actual_variable_range function.

Basically, when accessing a data page, PostgreSQL can skip the tuples in the middle if the first

and last tuples on the data page are active. This is because the tuples are ranked. However, if dead

tuples are present at the beginning or end of the data page, get_actual_variable_range invokes

_bt_readpages to traverse and ignore the dead tuples one by one, due to the improper snapshot

type.

In this case, gprof ranks inherently costly functions such as _bt_checkkeys, pglz_decompress

and SearchCatCache at the top but misses the function get_actual_variable_range.

vProf compares the performance issue with the same query upon a database with fewer deleted

tuples. As a result, the normal case has fewer data pages with dead tuples at the top and bottom. In

this scenario, vProf applies hist-discounts to inherently costly functions: 1.0 on pglz_decompress,

0.76 on SearchCatCache, which lowers their ranks. Furthermore, vProf calibrates the costs for

_bt_readpage and get_actual_variable_range based on value samples, assigning a zero discount

ratio to _bt_readpage and 0.8 to get_actual_variable_range. Therefore, vProf ranks the root

cause function get_actual_variable_range at 4th and identifies it as a Scalability issue. This

bug pattern is drawn from the similarity in processing costs for local variables inside the function

in both normal and buggy cases. Regarding the false positive, _bt_readpage, ranked at the top,

analyzing its code logic helps developers understand the expensive scans on data pages.

postgres-14b1: This performance issue occurs during PostgreSQL reclaims stale tuples and re-

leases memory through its autovacuum process. The user reported that an autovacuum worker con-

sumed 100% CPU after reindex and analyze had been running concurrently for a few minutes. The

problematic execution takes place in the function lazy_scan_prune. It invokes heap_page_prune to

delete non-indexed dead tuples first and then scans the page to collect indexed dead tuples. Dur-

ing the scan, the function HeapTupleSatisfiesVacuum identifies a deletable non-indexed tuple and
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restarts the process from heap_page_prune. However, heap_page_prune identifies that the tuple is

dead but not deletable. Therefore, lazy_scan_prune loops between the two functions back and

forth.

The traditional profiler, gprof, ranks the root cause function lazy_scan_prune at 14th. Func-

tions ranked before it are its callees, including heap_page_prune and HeapTupleSatisfiesVacuumHorizon.

Without hints on the data flow, it is hard to determine whether a busy loop is specific to a particular

tuple or inherently a hot code path for dead tuples.

vProf compares the profiling data from the buggy run with a normal run where reindex and

analyze are executed sequentially. After adjusting function costs based on the value samples, vProf

ranks the root cause function at 3rd and reports an anomaly in its local variable tuple.t_data.

In the buggy case, all recorded samples are for a single tuple, while in the normal case, different

values are sampled, and each of them costs much less time. This information indicates that the

transaction states stored in the tuple can be problematic and are related to the inconsistent behaviors

in the functions HeapTupleSatisfiesVacuum and heap_page_prune.

An ideal diagnosis tool needs to report the specific data flow within the tuple that causes the dis-

crepancy. However, vProf fails to provide this very data flow because it does not track the variables

stored via pointers of complex classes, such as vistest->maybe_needed and vacrel->OldestXmin in

this case. Adding support for these complex pointers would introduce overhead for sanity checks

and negatively impact the scalability of the profiler. We leave this problem for future work.

False Positives. Like all profilers, vProf cannot guarantee that the root cause function is always

ranked first. Fortunately, a performance issue often involves multiple functions, which are also

helpful for performance diagnosis. For example, in HTTPD-54852, vProf ranks dummy_connection

above the root cause function ap_mpm_mod_killpg. However, dummy_connection is called by the

root cause function, so revealing that function in addition to the root cause function can help with

performance diagnosis since the root cause function is still highly ranked. This connection is less

clear with gprof, which ranks the root cause function well outside its top 100 ranked functions.

However, if the top ranked functions are unrelated to a performance issue, they can waste
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developers’ investigation time and are considered false positives. For vProf, we computed the false

positive ratio for each issue by counting the number of functions unrelated to the performance issue

before the developer reaches the root cause function and dividing that by five. The false positive

ratio would be 100% if all top five ranked functions are unrelated to the performance issue. Across

all 15 cases, the average false positive ratio was only 10.6%. Given that vProf ranked the root

cause function first in almost half the cases and in the top five in all cases, this means that when

vProf does not rank the root cause function first, on average at most one other function was ranked

ahead of the root cause function that was unrelated to the performance issue.

The false positive ratio does not imply that the developers would necessarily waste time in-

vestigating unrelated functions, which depends on the sources of false positives. First, an inherent

costly function can be top-ranked even though it has a high discount ratio. For example, in MDEV-

17933, vProf ranks the function ut_delay first but with a high discount ratio. In such cases, the

discount ratio indicates the function is inherently costly in normal and buggy cases, so the devel-

oper can consider it lower priority to investigate. Second, some functions are costly as a side effect

of a buggy execution. For example, in HTTPD-62668, vProf ranks the function listener_thread

first because it takes a long time in the buggy case waiting for a request timeout, but it returns

immediately in the normal case. Such false positives are hard to eliminate but usually help con-

firm the causes of performance issues. Third, false positives can also be due to the limitations of

statistical methods. Developers can exclude such functions by verifying the annotated bug pattern

or increasing the accuracy with repeated experiments.

3.5.2 Performance Overhead

We measured the memory and runtime overhead when using vProf to profile buggy executions

of the performance issues in Table 3.1. For each case, Table 3.4 shows how many variables were

monitored, the time for initializing the vProf-specific profiler data structures, how much memory

was consumed by vProf during profiling to store metadata and value samples, and the time to

profile the buggy execution. In almost all cases, vProf monitored hundreds of variables for a
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ID Variables Init PCToVar Variable Value Run
Time Table Array Samples Time

b1 233 7.4 ms 3862 KB 430 KB 21133 KB 105 s
b2 65 0.9 ms 4143 KB 29 KB 153 KB 1903 s
b3 399 0.4 ms 4005 KB 26 KB 38563 KB 1140 s
b4 852 15.9 ms 3987 KB 67 KB 58 KB 338 s
b5 577 18.2 ms 3575 KB 22 KB 8 KB 1635 s

b6 501 31.1 ms 673 KB 287 KB 2 KB 1448 s
b7 113 0.3 ms 162 KB 6 KB 16 KB 147 s
b8 169 4.5 ms 260 KB 127 KB 43 KB 553 s
b9 374 6.2 ms 194 KB 16 KB 25 KB 36 s
b10 164 1.4 ms 642 KB 186 KB 13 KB 139 s

b11 531 3.4 ms 612 KB 382 KB 1216 KB 885 s
b12 623 5.5 ms 591 KB 44 KB 1755 KB 112 s
b13 564 7.1 ms 641 KB 754 KB 132 KB 10 s

b14 479 5.2 ms 2037 KB 1031 KB 79 KB 68 s
b15 805 6.4 ms 2297 KB 927 KB 3269 KB 29 s

Table 3.4: Memory overhead and execution time for profiling performance issues.

program component. In all cases, vProf-specific profiler initialization was fast enough to appear

instantaneous to a user, and memory overhead was small for vProf’s core data structures except in

some cases for storing variable samples, which scales based on the number of samples recorded.

We further measured the application memory footprint under profiling with vProf and gprof. The

maximum memory footprint with vProf scales as expected based on the measurements in Table 3.4,

but the difference versus gprof is modest overall. For example, MDEV-13498 has the largest

memory footprint, but vProf’s maximum memory footprint is only 8% larger than gprof. On

average, the maximum memory footprint with vProf is 7% (8 MB) larger than with gprof.

Figure 3.7 shows the runtime overhead of vProf when profiling each performance issue, with

performance normalized to execution without using the profiler. For comparison, we also measured

the runtime overhead of gprof on these issues. vProf runtime overhead is modest in all cases except

for when gprof overhead is higher, in which case vProf overhead tracks that of gprof, on which

it is built. We also used sysbench to measure the latency and throughput of MariaDB under a
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Figure 3.7: Profiling overhead for performance issues.

TPCC workload, with and without profiling. Both vProf and gprof incurred the same latency and

throughput overheads, 32% and 20%, respectively; vProf shows no increased overhead for the

features it adds. Overall, these results show that vProf is lightweight and practical for diagnosing

performance issues in large applications.

vProf also incurs some cost for its schema generator and post-profiling analysis, which we

quantified for the 15 issues in Table 3.1. vProf’s LLVM pass increases compilation time by an

average of 5 s. Using DWARF debugging information to obtain variable metadata takes an average

of 142 s. Post-profiling analysis takes an average of 117 s. If we monitor variables across the entire

program instead of per program component, analysis can take much longer. For example, doing

so for Redis-8145 resulted in 17,930 variables being monitored and 7 GB of value samples being

recorded, which took post-profiling analysis roughly six hours to process.

3.5.3 Sensitivity

We evaluated how vProf’s effectiveness is affected for the 15 issues in Table 3.1 for different

values of DefaultDiscount and ValidDiscount. We measured effectiveness by how many issues

had their root cause function ranked in the top five. We first used the default ValidDiscount of 0.1

and set the DefaultDiscount to different values between 0.1 and 1.0. We then used the default De-

faultDiscount of 0.8 and set the ValidDiscount to different values between 0.1 and 1.0. Figure 3.8

shows that vProf is most effective with a DefaultDiscount of at least 0.8 and a ValidDiscount of

less than 0.3.
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Figure 3.8: Sensitivity of settings for discount parameters.

3.5.4 Diagnosing Unresolved Issues

We further used vProf on three real unresolved performance issues to demonstrate its effective-

ness at diagnosing unknown root causes in practice. These issues are listed in Table 3.5.

Redis-10981: Developers investigated the issue by bisecting their commits but could not draw

a definitive conclusion for the performance degradation in version 7.0.3. In both 7.0.3 and the

earlier version, traditional profilers attribute the highest costs to functions _addReplyToBuffer and

addReply. Comparing the ranking of functions in profiling reports from the two versions does not

provide useful information either.

We used vProf to diagnose the performance issue, which had remained unresolved for more

than six months. We first investigated the component db.c. vProf ranks its function lookupKey

first. It shows that the variable key has different processing costs and sampled values in the buggy

version. Looking into the code, we found that function expireIfNeeded was moved into lookupKey.

The code refactoring caused a longer execution time and different values samples, leading to a false

positive.

We next investigated the component networking.c. Although _addReplyToBufferOrList is the

function ranked first in vProf, it is new in 7.0.3 due to code refactoring, so we excluded it from

further consideration. vProf ranks the function clientHasPendingReplies second as the processing
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ID Description Date

Redis-10981 lrange command takes longer to finish when
redis is upgrade from version 6.2.7 to 7.0.3

07-14-2022

MDEV-16289 Query runs unexpectedly slow; the query se-
lects records created within a given time period
in one table, and excludes records whose certain
fields are after a given time by checking another
table.

05-25-2018

MDEV-17878 Searching for the query execution plan for a SE-
LECT query involving many joins takes forever
for larger datasets, using 100% CPU

11-30-2018

Table 3.5: Unresolved performance issues diagnosed using vProf.

cost for its variable client differs in the two versions. vProf reports the anomalous variable sam-

ples are accessed in a conditional expression. The condition was introduced in 7.0.3. We verified

our findings by reverting this condition, which caused the performance degradation to disappear.

vProf successfully identified the unresolved issue that was unable to be clarified previously using

the commit-bisecting method or traditional profilers. We reported our findings to the developers,

who quickly confirmed the diagnosis.

It took about four-person hours per component to generate schemas for a specified program

component, run test cases with vProf, and investigate the source code based on the vProf reports.

Since we investigated two components, the total time to diagnose the performance issue was eight

person-hours.

MDEV-16289: A developer reproduced the issue and reported that different timezone settings

caused different processing costs, identifying it as a performance bug because he believed the

query results should be independent of the timezone. In trying to diagnose the issue, the developer

traced the query execution plans for two different timezone settings, but the results were similar

and provided limited hints for further debugging.

We used vProf to diagnose the performance issue, which had remained unresolved for more

than four years. We investigated the component row0sel.cc, which implements row selection

in MariaDB. The function row_search_mvcc was ranked first. Although this function is costly
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whether or not the query runs slow, its discount ratio is zero because the sample distributions for

local variable clust_index differ between fast and slow queries. No value samples are captured

when the query is fast, but over 30 are captured when the query is slow. We also noticed a similar

issue for the variable result_rec. Both variables appear to be pointers to temporary storage of

intermediate query results.

Because references to additional temporary storage only appear when the query runs slow, we

suspected the queries might return different numbers of records for different timezone settings.

We verified our hypothesis by changing the query’s timestamp to refer to the same absolute time in

different timezones. For example, instead of querying with 8pm in all timezones, we queried with

8pm EST and 5pm PST. By doing the latter, the difference in query performance disappeared. We

further confirmed our hypothesis by checking the number of records returned; many more records

were returned for the slow query case. Contrary to the developer’s belief, this issue turned out

not to be a performance bug, but correct operation with different query times for what are actually

different queries. Diagnosing the issue using vProf took roughly five person-hours. We reported

the findings to the developer.

MDEV-17878: The user who reported the issue also profiled the issue using perf, which ranks

function prev_record_reads first. In trying to diagnose the issue, developers obtained query exe-

cution plans from both MariaDB and a different version of MySQL that finishes the query quickly.

The information obtained did not provide enough hints for the developers to diagnose the perfor-

mance issue.

We used vProf to diagnose the performance issue, which had remained unresolved for more

than four years. We identified the program component involved in optimizing the query execution

plan and monitored its variables using vProf. We then needed to profile a useful normal execu-

tion, which took us three tries. First, because the report indicates that the performance issue does

not occur for small datasets, we created a small dataset to profile a normal execution. However,

the query finished too fast and resulted in no value samples being collected. Second, we took the

original dataset causing the bug and reduced the number of joins so that the performance issue dis-
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appeared. vProf ranked the functions best_access_path and best_extension_by_limited_search

first and second, respectively; the latter calls the former. However, vProf set both their discount

ratios to DefaultDiscount, indicating a lack of anomalous value samples.

Finally, because the report was specific to a version of the application, we tried a different

version with the original dataset that caused the bug and found that the performance issue dis-

appeared. We used this different version with the original dataset as the normal execution. In

this case, vProf ranked the function best_extension_by_limited_search first. vProf labels it a

Missing Constraint bug because of anomalous value samples for use_condition_selectivity,

which is used in a conditional expression. This variable value comes from the system variable

optimizer_use_condition_selectivity in sys_vars.cc, which has different default values for dif-

ferent versions of MariaDB. use_condition_selectivity decides the heuristics used to estimate the

cost of the current partial query plan. The query plan search algorithm stops if the cost is greater

than the current best heuristic. However, if the value of optimizer_use_condition_selectivity is

one by default, the search algorithm fails to stop searching through more costly heuristics to find a

better plan.

Diagnosing the issue using vProf took roughly 12 person-hours, eight of which were for going

through the three approaches to profile a normal execution, and four of which to investigate the

source code. In this and the other cases, the process could be faster for actual developers who

are familiar with the program source code. This case also shows how using a different program

version can be useful to profile a normal execution. We reported the root cause to developers, who

confirmed our diagnosis and updated the issue ticket to include our reported root cause.

3.6 Conclusions

Value-assisted cost profiling is a new profiling methodology that provides effective diagnosis of

performance issues in real-world applications. It measures execution costs together with program

data-flow information to more accurately reason about whether a costly function is necessary and

why a function is slow. vProf is a practical tool that implements this methodology. It leverages
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static analysis to identify variables that commonly influence performance and determine their run-

time locations. It builds efficient data structures for profiling to quickly index accessible variables

and continuously records value samples with PC sampling. It provides post-profiling analysis to

compare value samples across normal and buggy program executions to identify anomalous sam-

ples, use them to calibrate function costs, and pinpoint root causes. vProf significantly outperforms

other state-of-the-art tools in diagnosing real-world performance bugs in large applications, yet in-

curs only modest performance overhead. We used vProf to diagnose longstanding unresolved

performance issues in real applications, which have been confirmed by developers.

64



Chapter 4: Annotated Causal Tracing for Modern Desktop Applications

Diagnosing performance issues can be extremely challenging in modern desktop applications.

These applications are often built using assorted frameworks and libraries to break down the han-

dling of user interface (UI) events into numerous small execution segments [31], which run con-

currently on multi-core hardware, to ensure responsiveness. For instance, macOS applications

manage UI events by sending messages to delegate objects containing code that reacts to these

events asynchronously. The messages are generated by the closed-source Cocoa framework [18],

which, in turn, interacts with the operating system (OS), daemons, and other libraries. The predom-

inantly asynchronous and concurrent interactions complicate the identification of the root cause of

a performance anomaly.

In Chapter 3, we proposed value-assisted cost profiling, a method in which data flow

is recorded during profiling, to assist developers in identifying the root causes of performance

issues. While profilers can excel at analyzing individual components, they are not well-suited

to troubleshoot intricate performance issues in modern desktop applications, which often involve

high degrees of concurrency and communication. Profilers lack the capability to analyze the causal

relationships that span across numerous frameworks, libraries, system daemons, the kernel, and

applications.

To understand the causalities across components, causal tracing [15, 6, 63, 72, 26, 68, 40, 49,

67, 50, 60, 80] was initially proposed. It generates trace graphs in which vertices represent execu-

tion segments containing system activities, such as user operations, system calls, or messages, and

edges indicate causal relationships between vertices. To diagnose a performance issue, developers

usually conduct critical path analysis on the trace graph to identify an end-to-end path that takes

the greatest amount of time.

Unfortunately, we have observed that previous causal tracing approaches are ineffective for
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desktop applications, as they cannot accurately identify the boundaries of execution segments

and their causal relationships. For instance, a long-standing performance anomaly in the Google

Chrome web browser [17] on macOS occurs when a user enters non-English words in the search

box, causing Chrome to hang with the infamous macOS spinning pinwheel—a visual indicator that

the application is unresponsive to user input. Employing previous approaches to construct trace

graphs for the multi-threaded, multi-process browser results in many missing execution segments

and numerous additional irrelevant execution segments. Attempting to diagnose the issue using

these incomplete and inaccurate graphs would lead to incorrect identification of events as the cul-

prit. In theory, these tracing inaccuracies could be rectified by adding instrumentation, such as

incorporating constraints in noisy trace points to filter out irrelevant events. However, frameworks

and libraries used by desktop applications encompass diverse programming idioms and are often

closed-source, rendering deep instrumentation challenging. In addition, extensive instrumentation

would also entail prohibitive overhead, resulting in unacceptable performance.

To address these challenges, we have developed Argus, a causal tracing tool specifically de-

signed to assist users in diagnosing performance anomalies in desktop applications. Argus is built

upon the insight that tracing inaccuracies are inherently inevitable in real desktop systems. In-

stead of attempting to eliminate all inaccuracies, our approach is to design tracing solutions that

can accommodate certain inaccuracies. Guided by heuristics derived from supplementary runtime

information, Argus introduces a novel concept of annotated trace graphs. In this approach, edges

are explicitly and automatically marked as strong or weak edges. Strong edges represent connec-

tions among segments that adhere to typical programming paradigms that must be causal, such as

sending and receiving an IPC message. Weak edges, on the other hand, represent uncertain rela-

tionships among segments. For instance, when one thread awakens another thread, it could be a

causal relationship, such as a lock/unlock mechanism, or just an artifact of regular OS scheduling.

To further enhance its effectiveness, Argus boosts or prunes unnecessary weak edges by leveraging

operation semantics and call stacks collected at runtime.

Argus introduces a new beam search diagnosis algorithm based on edge strength and a novel
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method of comparing trace subgraphs across normal and abnormal executions of an application.

The algorithm is motivated by our observation that critical path analysis used in prior work is

ineffective due to inaccuracies inherent in trace graphs. Beam search embraces more possibilities

while exploring the annotated noisy trace graph. Our algorithm efficiently selects likely causal

paths in the massive trace graph and tolerates noises. Comparing trace subgraphs across normal

and abnormal executions also helps with diagnosis when the problem is due to missing operations

in the abnormal execution.

Argus provides system-wide tracing by extending existing tracing support in the OS kernel and

applying binary patching for low-level libraries. This allows Argus to easily track objects across

process boundaries, account for kernel threads involved in communications among processes, and

cover customized programming paradigms by operating in a common low-level substrate used

by higher-level synchronization methods and APIs that may be introduced and evolve over time.

Argus does not require any application modifications.

We have implemented and evaluated a prototype of Argus across multiple versions of macOS.

This presents a harsh test for Argus given the many complex, closed-source frameworks, libraries,

and applications in the macOS software stack. We evaluated Argus on 12 real-world spinning

pinwheel issues in widely-used macOS applications, such as Chrome, Inkscape, and VLC. Argus

successfully pinpoints the root cause and sequence of culprit events for all cases. This result is

particularly notable given that 10 of the 12 cases are open issues whose root causes were previously

unknown to developers. Argus incurs runtime overhead low enough such that users can leave Argus

tracing always-on in production without experiencing any noticeable performance degradation.

Source code for Argus is available at https://github.com/columbia/ArgusDebugger.

4.1 Motivation and Observations

We experienced first-hand the Chrome web browser performance issue on macOS. Typing non-

English words in a search box while a web page is loading causes Chrome to freeze and trigger a

spinning pinwheel. The spinning pinwheel appears when an application is not responsive to user
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input for more than two seconds. Others have also experienced this issue with the Chromium web

browser and reported it to Chromium developers [17]; Chrome is based on Chromium.

We study the bug in Chromium since it is open-source, so we can verify its ground truth.

Chromium is a multi-process macOS application involving a browser process and several renderer

processes, each process having dozens of threads. When a user types a string in the browser search

box, a thread in the browser process sends an IPC message to a thread in the renderer process,

where the rendering view code runs to calculate the bounding box of the string, which in turn

queries fontd, the font service daemon, for font dimensions.

To diagnose the bug, we first tried using spindump [1], a widely-used macOS debugging tool,

which shows the main thread of the browser process is blocking on a condition variable. However,

spindump provides no clue as to why the condition variable is not signaled. Using macOS Instru-

ments [34] was also ineffective, as it simply analyzes what functions take the most time, which

are not the root cause in this case. These traditional debugging and profiling tools are fundamen-

tally not well suited to analyzing causality in highly concurrent execution flows across multiple

components over time.

We next tried state-of-the-art causal tracing techniques. Specifically, we use Panappticon [80],

a system-wide tracing tool originally built for Android. We reimplemented a version for macOS

with more complete tracing of asynchronous tasks, using non-intrusive interposition to trace asyn-

chronous tasks, IPCs, and thread synchronizations from the system and libraries. We use the tool

when running Chromium and reproduce the anomaly by typing non-English search strings. After

the browser handles the first few characters normally, the remaining characters trigger a spinning

pinwheel. We then stop the tracing. The entire session took around five minutes.

Dividing up the trace graph into separate graphs each beginning from a user input event results

in 359 trace graphs; user input events are dispatched from the macOS WindowServer process to

Chromium. The trace graphs are highly complex, with 888,236 vertices and 751,332 edges in

total. They span across 11 applications, 79 daemons including fontd, mdworker, nsurlsessiond,

and various helper tools started by the applications. They cover 90 processes, 1177 threads, and
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// worker thread in fontd:

block = dispatch_mig_server;

dispatch_async(block);
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// implementation of dispatch_mig_server

dispatch_mig_server()

  for (;;) { // batch processing

    mach_msg(send_reply,recv_request)

    call_back(recv_request)

    set_reply(send_reply) 

 }

// main thread in fontd:

// dequeue blocks

block = dequeue();

dispatch_client_callout(

    block);

Figure 4.1: Dispatch message batching. dispatch_mig_server can serve unrelated applications together.

644K IPC messages.

Studying the trace graphs, we observe: (i) connections exist between graphs from different UI

events; (ii) some long execution segments have no boundaries; (iii) there are orphaned vertices with

no edges; (iv) the trace graph that contains the anomalous event sequence triggering the spinning

pinwheel contains 12 processes—3 are clearly unrelated to the transaction, and 6 are daemons

whose relationships are unclear without further investigation. Based on further analysis of these

graphs with call stacks and reverse engineering techniques, we conclude that they have significant

inaccuracies. Running diagnosis on them leads to a wild goose chase, investigating components

such as fontd, as it sends out messages after a long execution, which turn out to be completely

unrelated to the root cause. We observe two general inaccuracies: over-connections and under-

connections.

Over-connections usually occur when intra-thread execution segment boundaries are missing.

We summarize three common programming patterns responsible for this—dispatch message batch-

ing, piggyback optimization, and superfluous wake-ups.

Dispatch message batching. Frameworks and daemons often implement event loops for handling

multiple events inside callback functions. For example, Figure 4.1 shows two threads from the

fontd daemon in macOS; the worker thread installs a callback function dispatch_mig_server() in a

dispatch queue and the main thread dequeues and calls the function via dispatch_client_callout.
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dispatch_mig_server() has an event loop which batch processes requests from different applica-

tions, presumably for performance. It invokes call_back to process a message and set_reply to

post a reply. However, previous causal tracing tools like Panappticon assume the execution of a

callback function is entirely on behalf of one request. dispatch_mig_server is thus treated as a sin-

gle execution segment and edges are added between the vertex representing dispatch_mig_server

and the many unrelated applications for which it handles requests. These edges incorrectly indicate

causal relationships that would result in misleading diagnoses.

Piggyback optimization. Frameworks and daemons may piggyback multiple tasks in a system call

to reduce kernel boundary crossings. For example, Figure 4.2 shows the macOS system daemon

WindowServer uses a single system call mach_msg_overwrite to receive data and piggyback the reply

for an unrelated event. However, previous causal tracing tools like Panappticon treat the execution

of a system call as a single execution segment for one event, artificially making many events appear

causally related.

Non-causal wake-up. Desktop applications typically have multiple threads synchronized via mu-

tual exclusion, such that a thread’s unlock operation wakes up another waiting thread. Such a

wake-up may be, but is not always, intended as causality. For example, in Chromium, a wake-up

is commonly followed by a batch processing block, but it is unclear whether the following events

being batch processed depend on the wake-up event. Previous causal tracing tools assume any

wake-up is causal, which may artificially make events appear causally related when they are not.

Under-connections usually occur due to missing intra-thread data dependencies and inter-

thread shared flags.

Data dependency. Frameworks and daemons may have internal state that causally link different

execution segments of a thread. For example, Figure 4.2 shows that a WindowServer thread calls

the function CGXPostReplyMessage to save the reply message, which it internally stores in a variable

_gOutMsg. When the thread later calls CGXRunOneServicePass, it sends out _gOutMsg if there is any

pending message.

Shared data flags. Frameworks and daemons may use shared flags that causally link different
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//a thread in WindowServer

while (true){
  //postpone a reply
  CGXPostReplyMessage(msg);
  //receive requests
  CGXRunOneServicePass();
}

CGXRunOneServicePass(){
  if (_gOutMsgPending)
    mach_msg_overwrite(
     SEND|RECV,      
     _gOutMsg, RecvMsg)
  else
    mach_msg(RECV,RecvMsg)
}
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Figure 4.2: Piggyback optimization and intra-thread data dependency. mach_msg_overwrite combines the
reply of a previous event. Operations inside a thread have dependencies on _gOutMsg.

// worker thread needs

// UI update

obj->need_display = 1

//main thread

if (obj->need_display == 1)

  render(obj)

1

2

3

1

2

3

Figure 4.3: Shared data flag across threads.

threads. Figure 4.3 shows a worker thread sets a field need_display inside a CoreAnimation object

whenever the object needs to be repainted. The main thread iterates over all animation objects and

reads this flag, rendering any such object. Existing tools do not track these kinds of shared-memory

communication.

4.2 Overview of Argus

We have designed Argus to diagnose performance issues in desktop applications. Argus sat-

isfies four key requirements not met by previous causal tracing tools: (1) use minimal instru-

mentation, (2) support closed-source components, (3) extract rich information from heterogeneous

components with minimal manual effort, and (4) incur low runtime overhead.

Central to its design is the construction of annotated trace graphs from low-level trace events.

Argus introduces the notion of strong and weak edges in trace graphs to mitigate inherent inaccu-

racies in tracing. When there is strong evidence of causality, such as an IPC message event, Argus

adds a strong edge between vertices. When an execution segment is created by events that may

not necessarily represent causality, such as non-causal wake-ups, Argus adds a weak edge. During
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Figure 4.4: Overview of Argus.

diagnosis, Argus prefers traversing through strong edges when possible. Argus also stores extra

semantic information in the graph vertices, including user input events, system calls, and sampled

call stacks. This extra information is used to improve weak edge annotation and align and compare

trace graphs for normal and abnormal execution to aid diagnosis.

Figure 4.4 shows an overview of Argus. It consists of three main components—a tracer, a

grapher, and a debugger. The tracer runs continuously in the background on a user’s machine,

transparently logging events from low-level system libraries and the kernel, without any need to

modify applications. When a user encounters some performance anomaly, she reports the issue

about the problematic application, along with the timestamp of the anomaly occurrence. The

reported issue and trace logs are sent to the developer, the logs containing events for both normal

execution and abnormal execution when the performance anomaly occurs. The developer feeds

the logs into the grapher to construct the annotated trace graphs for both normal and abnormal

execution, and runs the debugger on the graphs to output the diagnosis results.
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4.3 Argus Tracer

Argus traces events inside the kernel and low-level libraries, with minimal instrumentation.

This provides three advantages over tracing in user applications. First, tracing in the kernel and

libraries ensures coverage of custom programming paradigms. For instance, Argus traces general

thread scheduling events and wake-up and wait to ensure coverage of a variety of custom syn-

chronization primitives in desktop applications, because their implementations almost always use

kernel wake-up and wait. Second, tracing in the kernel helps connect tracing events across process

boundaries, because the addresses of the traced objects in kernel space are usually unique, while

tracing in user programs requires maintaining and propagating unique identifiers. Third, tracing

kernel threads helps bridge communications among processes. For instance, a kernel thread sends

out a message to a process when the process needs to execute a delayed function.

In the macOS XNU kernel, Argus traces system calls, thread scheduling, interrupts, time-

delayed calls, and Mach messages. Argus leverages existing macOS kernel tracing support [73],

but adds enhancements to log more information and enable always-on tracing using a ring buffer

to avoid exhausting storage. The enhancements require roughly 500 lines of code (LOC) in the

XNU kernel, which are straightforward to add given that the kernel is open source. Trace events

are asynchronously flushed to a file with a size limit. The limit is by default 2 GB, which can store

roughly 20 million trace events; this is about 5 minutes of tracing when running large applications

like Chrome. It can be easily adjusted to accommodate longer execution times. We used the default

limit for all experiments in Section 4.6.

Argus logs kernel events to identify when threads are executing and their causal relationships.

All system calls are traced to provide high-level semantics that can be used to identify causal rela-

tionships. Argus simply records return values for most system calls, but call stacks are also logged

for a small set of system calls, namely those pertaining to Mach messages and synchronization

using conditional variables and semaphores. Call stack information is later used by the Argus de-

bugger to provide debugging information for developers. Thread scheduling is traced to track when
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a thread becomes idle and which thread wakes it up. Argus logs three types of thread scheduling

events: wait to indicate when a thread becomes idle, wake-up to indicate when the current thread

wakes up another thread, and preempt to indicate when a thread is preempted due to its timeslice

being used up or priority policies. Interrupts are logged to indicate when threads are preempted

by interrupts, with call stacks also logged for interprocessor interrupts (IPIs). Argus traces the

internal kernel implementation of time-delayed calls, which are used to implement asynchronous

calls in libraries such as Grand Central Dispatch (GCD). Finally, Argus traces the internal kernel

implementation of Mach messages, not just their invocation via system calls, to enabling tracing

of all use of Mach messages, including use within the kernel among kernel threads.

To aid developers in interpreting the virtual addresses in call stacks via lldb, Argus also logs

in userspace the virtual memory layout of images for all processes. The tracer records the virtual

memory maps for all running processes when tracing is enabled or terminated; processes launched

during tracing are also recorded. The memory layout information is also fed to the Argus debugger.

In addition to kernel tracing, Argus traces four closed-source macOS frameworks, AppKit,

libdispatch.dylib, CoreFoundation, and CoreGraphics, to track UI events and batch processing

paradigms used by applications. Because these frameworks are closed source, the trace events are

added via binary instrumentation using a mechanism similar to Detour [33]. AppKit is used to dis-

patch UI events to handlers. Argus traces where a UI event is fetched from the WindowServer and

dispatched to an event handler. libdispatch.dylib implements GCD, managing dispatch queues

to balance work across the entire system. Argus adds trace events to track when objects are pushed

into a dispatch queue and popped off of the dispatch queue and executed. CoreFoundation sup-

ports event loops for GUI applications, which are widely used to process requests from timers,

customized observers, and sources such as sockets, ports, and files. Argus adds trace events so the

handling of different requests inside event loops can be tracked separately.

To deal with the under-connection issues (Section 4.1), we annotate a handful of data flags

in CoreGraphics. Given the shared flag variable names, Argus monitors the respective virtual ad-

dresses with watchpoint registers. Reads or writes to the addresses will invoke a signal handler that
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records trace events with the values stored in those addresses. Argus adds code to CoreFoundation

to install this signal handler.

Argus can use the same watchpoint mechanism to trace shared data flags in applications. To

assist developers in finding these shared data flags, Argus provides a lightweight tool that uses lldb

to record the operand values of each instruction and finds ones that lead to divergence in control

flow, which are likely data flags. The shared flag variable names are recorded in an Argus tracer

configuration file, which are then traced using the same signal handler installed by CoreFoundation.

Since CoreFoundation is imported by all GUI applications, Argus can trace these shared data flag

accesses without any application modifications.

Note that the annotation effort for shared data flags is in general small. This is because ex-

ecution segments that access shared variables are usually connected already by some types of

causality, e.g., wait/signal events; developers mainly need to provide Argus with shared flags that

are accessed through ad-hoc synchronization [75]. In our experience, only a few shared flags

need to be monitored. Also for this reason, although hardware watchpoint registers are limited,

Argus is unlikely to exhaust them. In fact, none of the applications we evaluated in Section 4.6

needed shared flags to be identified or traced in the applications themselves. Mechanisms such as

Kprobe [41] could potentially be used to extend Argus to support monitoring more shared flags.

4.4 Argus Grapher

Argus uses the trace logs to build an annotated trace graph by first identifying the bound-

aries of execution segments in each thread to determine the graph vertices, then adding annotated

edges between vertices. The annotated edges contain type metadata to indicate strong versus weak

edges, which is used during diagnosis to mitigate inaccuracies due to over-connections and under-

connections, as discussed in Section 4.1.

Argus first determines the execution segments that will form the graph vertices. Using various

trace events as boundaries, Argus splits the execution of each thread is into separate execution

segments. First, Argus splits nesting of tasks executed from dispatch queues. If an execution
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Edge Rules for Edge Annotation

Strong 1. IPC message send and receive;
2. Asynchronous calls (work queue, delayed call);
3. Direct wake-up of a thread on purpose;
4. Data dependency.

Weak 1. Non-causal wake-up;
2. Execution segments divided between a wait event and a wake-up

event, excluding following cases: wait or wakeup are introduced
by system call workq_kern_return, or they are in kern_task;

3. Split suspicious batching execution segments, except
known batching APIs: RunLoopDoObservers, CGXServer,
RunLoopDoSources1, etc.

Boosted Weak Continuous execution segments matching weak edge rules but are
on behalf of the same task.

Table 4.1: Edge annotation rules.

of dispatch_callout invokes several other dispatch_callout, each dispatched task is separated.

Second, Argus recognizes batch processing patterns such as dispatch_mig_server() in Figure 4.1

and splits the batch into separate execution segments. Third, when a wait operation blocks a

thread execution, Argus splits the execution into separate segments at the entry of the blocking

wait. The rationale is that blocking wait is typically done as the last step in event processing.

Finally, Argus uses Mach messages to split execution when the set of communicating peers differs.

Argus maintains a set of peers, including the direct sender or receiver of the message and the

beneficiary of the message; macOS allows a process to send or receive messages on behalf of a third

process. Argus splits execution when two consecutive messages have non-overlapping peer sets.

By splitting thread execution using these four criteria, Argus avoids potential over-connections due

to batching and piggyback optimizations.

Argus next determines the edges that should be added between vertices. Edges are introduced

to reveal the causality of two execution segments and thus guide the causal path exploration. Based

on the rules in Table 4.1, Argus annotates three types of edges: strong, weak, and boosted weak.

First, Argus adds strong edges by identifying Mach message, dispatch queue, time-delayed

call, and data flag trace events associated with a vertex and finding the corresponding peer events
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and peer vertices. For Mach message events, Argus adds a strong edge from the vertex with the

message send event to the vertex with its associated receive event. If a message requires a reply,

the received message can produce a reply message, which can be sent by a third thread, in which

case Argus adds a strong edge from the vertex with the received message event to the one with the

send event for the reply message. For dispatch queue events, Argus adds a strong edge from the

vertex where the callback function is pushed to a dispatch queue to the vertex where the callback

function is invoked. For time-delayed calls, Argus adds a strong edge from the vertex where the

timer is armed to the vertex where the callback function is fired. For shared data flags, Argus adds

a strong edge from the vertex with a data flag write event to the vertex with its corresponding read

event, avoiding potential under-connections.

Second, Argus adds edges by identifying thread scheduling trace events and finding the events

and vertices corresponding to the pair operations. Argus adds strong edges only when the context

clearly indicates causality, such as the signal and wait operations of a condition variable. Other-

wise, Argus adds only weak edges. One hint Argus takes from macOS is that, if a wake-up is

not followed by a specific communication operation (e.g., message receive), and does not target a

specific thread but all threads on the wait queue, then it is likely not causal, in which case a weak

edge is added.

Third, because Argus splits the execution of a thread into segments (graph vertices) based on

heuristics that may not always be valid, Argus adds weak edges between these adjacent execution

segments, as shown in Figure 4.5. Argus converts a weak edge into a boosted weak edge if two

continuous execution segments are on behalf of the same task. It infers whether the segments

are for the same task by leveraging call stack symbols. We calculate frequencies for all symbols

across the whole tracing and notice a low-frequency (bottom 10%) symbol usually only appears in

a task from a specific application, compared to high-frequency symbols from system routines or

framework APIs. Thus, if the two segments share the same low-frequency symbols, Argus infers

they are collaborating on the same task and sets a boost flag for the weak edge between them.

However, abuse of weak edges could generate excessive false positives during diagnosis, so
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Figure 4.5: The segment for batch processing in dispatch_mig_server is split into multiple segments to
distinguish different items. Weak edges are added among the split segments.

Argus takes advantage of high-level semantics to avoid adding unnecessary weak edges between

adjacent execution segments. First, if the call stacks of two segments of a thread share no common

symbols or share a recognized system library batching API, Argus does not add a weak edge

between them. Second, because wait and wake-up events are mostly from system calls, Argus

leverages system call semantics to determine the necessity of weak edges. For example, we find the

wait event from system call workq_kern_return indicates an end of a task in the thread, while the

wake-up event formed in workq_kern_return intends to acquire more worker threads for concurrent

tasks in the dispatch queue. Execution segments containing such event sequences do not need

bridging with weak edges. Finally, the kernel task in macOS acts as a delegate to provide service

for many applications, such as I/O processing and timed delayed invocations. The kernel task

threads contain execution segments beginning with a wake-up event and ending with a wait event.

Each segment serves different requests and they are not causally related, so weak edges are not

added between those kernel task execution segments.

4.5 Argus Debugger

Argus uses the constructed trace graphs to diagnose performance issues by starting with the

vertex that contains the performance anomaly and traversing the graphs to identify the causal paths

including the root cause vertices. The typical critical path analysis used in existing causal tracing

solutions cannot effectively handle the noises in the trace graphs. Argus introduces a new diag-

nosis algorithm based on beam search to efficiently explore the causal paths likely related to the
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performance anomalies. It also introduces a novel subgraph comparison mechanism to find miss-

ing vertices not present in the trace graph for abnormal execution that are present in the graph for

normal execution. This comparison is helpful to identify the root cause that would be otherwise

unknown.

4.5.1 Causal Path Search—Beam Search

From a given vertex that contains the anomaly, such as the spinning cursor, Argus finds what

path “caused” the anomaly by using beam search based on a cost function for annotated edges.

Beam search is similar to breadth-first-search, but at each search step, it sorts the next level of

graph vertices based on a cost function and only stores 𝛽—the beam width—best vertices to con-

sider next. Argus customizes its beam search with a lookback scheme such that the algorithm eval-

uates the cost function for multiple levels of edges before pruning. Argus evaluates the vertices

and prunes them with 𝛽 only after the search advances the configured lookback steps to avoiding

pruning paths with weak edges too early.

Argus’s beam search algorithm provides two key advantages. First, compared to brute-force

search, beam search only explores the most promising vertices, which is essential given that trace

graphs are highly complex with millions of edges; searching all paths would be too inefficient

and, given graph inaccuracies, result in an overwhelming number of options to consider. Second

compared to local search methods such as hill-climbing, beam search embraces more possible

causal paths because it ranks partial solutions and the ranking changes during the exploration. For

example, assuming strong edges are preferred to weak ones, a path with a weak edge followed by

a series of strong edges is likely to get a higher ranking and be returned by beam search, but will

be missed by a hill-climbing search algorithm.

Figure 4.6 illustrates the algorithm. It searches for causal paths backwards from the anomaly

vertex. For each incoming edge of the current vertex, the algorithm computes the penalty score for

the new path. At every lookback step, the search branches are pruned: it sorts the paths by their

penalty scores and only retains at most 𝛽 paths with low penalties. A path is added to the result if
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Figure 4.6: Beam search diagnosis algorithm. Search backwards from the anomaly vertex; choose the best
𝛽 states to expand next. For every lookback steps, prune the existing states to at most 𝛽 paths.

a vertex is reached containing a UI event or has no incoming edges, and the beam width decreases

by one. Using such vertices as for path termination helps developers understand causality in an

end-to-end request handling transaction.

Algorithm 1 lists the pseudo-code of the search algorithm. Lines 16 – 18 compute penalty

scores for new paths after incoming edges are added to the path. Lines 22 – 25 prune the searched

branches every 𝐿 lookback steps. Paths are sorted by their penalty scores and paths with high

penalties are discarded. Penalty scores are calculated with a linear function on edge values, where

a strong edge is -1, a weak edge is 1, and a boosted weak edge is 0. A path with 𝑛 edges has

a penalty 𝑝 =
∑𝑛

𝑖=1(𝑎 × 𝐸𝑖 + 𝑏), where 𝐸𝑖 is the 𝑖th edge value. This approach guides search

towards paths with stronger causality. While more complex non-linear functions may be feasible,

this simple function works well for many diagnosis cases.

The beam width setting affects the search efficiency and diagnosis accuracy. A setting too large

would cause path explosion and noisy paths to be returned. A setting too small may easily miss

the true causal path. We set 𝛽 = 5 to strike a good balance. Tuning this parameter is relatively

easy in practice. The lookback step setting is set based on observing that traversal of most graphs

encounters a weak edge within five steps. We set 𝐿 = 5 to tolerate weak edges. Given this

setting, a path of 𝑥 strong edges, 𝑦 weak edges, and 𝑧 boosted weak edges has a penalty of 𝑝 =

−𝑎 × (𝑥 − 𝑦) + 5 × 𝑏. If all edges are strong, the penalty is negative only when 𝑏 < 𝑎. If there

are weak edges, the penalty is positive only when (𝑥 − 𝑦) × 𝑎 < 5 × 𝑏, 𝑤ℎ𝑒𝑟𝑒 − 3 < 𝑥 − 𝑦 < 3.
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Algorithm 1: Causal Path Search Algorithm (Beam Search).
Data: g - event graphs, curVertex - vertex inspected in current search state, beamWidth -

search branches at most, lookbackSteps - searching steps taken before pruning
current search branches

Result: paths
1 Function 𝐵𝑒𝑎𝑚𝑆𝑒𝑎𝑟𝑐ℎ(g, curVertex, beamWidth, lookbackSteps):
2 curStates.init(curVertex);
3 curSteps← 0;
4 while curStates.incoming_edges() > 0 && beamWidth > 0 do
5 ++curSteps;
6 newStates.clear();
7 for each 𝑠𝑡𝑎𝑡𝑒 ∈ curStates do
8 if beamWidth <= 0 then
9 break;

10 end
11 if 𝑠𝑡𝑎𝑡𝑒.path.reach(UI) | | 𝑠𝑡𝑎𝑡𝑒.path.incoming_edges = ∅ then
12 paths.add(𝑠𝑡𝑎𝑡𝑒.path);
13 −−beamWidth;
14 end
15 for each 𝑒𝑑𝑔𝑒 ∈ 𝑠𝑡𝑎𝑡𝑒.path.incoming_edges do
16 𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒.path← 𝑠𝑡𝑎𝑡𝑒.path + 𝑒𝑑𝑔𝑒;
17 𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒.score← 𝑠𝑡𝑎𝑡𝑒.score + penalty(𝑒𝑑𝑔𝑒.val);
18 newStates.add(𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒);
19 end
20 end
21 curStates← newStates;
22 if curSteps = lookbackSteps then
23 pruneStates(curStates, beamWidth);
24 curSteps← 0;
25 end
26 end
27 pruneStates(curStates, beamWidth);
28 paths.append(curStates.paths);
29 return SortIncPenaltyScore(paths);
30 Function 𝑝𝑟𝑢𝑛𝑒𝑆𝑡𝑎𝑡𝑒𝑠(newStates, beamWidth):
31 SortIncPenaltyScore(newStates.paths);
32 while newStates.size() > beamWidth do
33 newStates.pop_back();
34 end
35 return;
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Therefore, we set the default penalty function coefficients 𝑎 = 3 and 𝑏 = 2.

Algorithm 2: Subgraph Comparison Algorithm.
Data: 𝑎𝑛𝑜𝑚𝑉𝑒𝑟𝑡𝑒𝑥 – problematic vertex, 𝑎𝑛𝑜𝑚𝐺𝑟𝑎𝑝ℎ – trace graph for anomaly case,

𝑛𝑜𝑟𝑚𝐺𝑟𝑎𝑝ℎ – trace graph for normal case
Result: ret- potential culprits of anomaly

1 Function 𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎ𝐶𝑜𝑚𝑝𝑎𝑟𝑒(𝑎𝑛𝑜𝑚𝑉𝑒𝑟𝑡𝑒𝑥, 𝑎𝑛𝑜𝑚𝐺𝑟𝑎𝑝ℎ, 𝑛𝑜𝑟𝑚𝐺𝑟𝑎𝑝ℎ):
2 ret.clear();
3 similarVertices← 𝐹𝑖𝑛𝑑𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝑛𝑜𝑟𝑚𝐺𝑟𝑎𝑝ℎ, 𝑎𝑛𝑜𝑚𝑉𝑒𝑟𝑡𝑒𝑥);
4 baselineVertex← 𝐺𝑒𝑡𝐵𝑎𝑠𝑒𝐿𝑖𝑛𝑒(similarVertices, 𝑎𝑛𝑜𝑚𝑉𝑒𝑟𝑡𝑒𝑥);
5 targetVertex← 𝑤𝑜𝑘𝑒𝑛(𝑛𝑜𝑟𝑚𝐺𝑟𝑎𝑝ℎ, baselineVertex);
6 causalPaths← 𝐵𝑒𝑎𝑚𝑆𝑒𝑎𝑟𝑐ℎ(𝑛𝑜𝑟𝑚𝐺𝑟𝑎𝑝ℎ, targetVertex, beamWidth, lookbackStep);
77 // sub-graph is constituted with paths;
8 for each causalPath ∈ causalPaths do
9 for each 𝑣𝑒𝑟𝑡𝑒𝑥 ∈ causalPath do

10 expectVertex← 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑉𝑒𝑟𝑡𝑒𝑥(𝑎𝑛𝑜𝑚𝐺𝑟𝑎𝑝ℎ, 𝑣𝑒𝑟𝑡𝑒𝑥);
11 if expectVertex = ∅ then
1212 // missing similarity to 𝑣𝑒𝑟𝑡𝑒𝑥 ;
13 anomThr← 𝑆𝑒𝑎𝑟𝑐ℎ𝑇ℎ𝑟𝑒𝑎𝑑(𝑎𝑛𝑜𝑚𝐺𝑟𝑎𝑝ℎ, 𝑣𝑒𝑟𝑡𝑒𝑥.thread);
1414 // get the vertex that causes the dissimilar ;
15 suspVertex← 𝑉𝑒𝑟𝑡𝑒𝑥𝐼𝑛𝑇ℎ𝑟𝑒𝑎𝑑(𝑎𝑛𝑜𝑚𝐺𝑟𝑎𝑝ℎ, anomThr);
16 else if 𝐷𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑡𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠 (expectVertex, 𝑣𝑒𝑟𝑡𝑒𝑥) then
1717 // vertex acts different from normal case ;
18 suspVertex← expectVertex;
19 else
20 countinue;
21 end
22 ret.push_back(suspVertex);
23 end
24 if !ret.empty() then
25 return ret;
26 end
27 end
28 return ret;

4.5.2 Subgraph Comparison

If we run causality analysis only on the trace graph constructed with the anomalous perfor-

mance issue, the root cause may not be exposed in some cases. For example, a blocked function
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could be caused by a missing wake-up from one of the background threads. If the thread does

not perform the wake-up during abnormal execution, there will be no execution segment with the

wake-up, and therefore no vertex in the anomalous trace graph that can be identified correctly as

the root cause. Argus addresses this problem by first constructing the trace graphs for both normal

and abnormal execution. It then uses its beam search method on the normal trace graph to iden-

tify the causal paths in that graph that corresponds to the desired normal behavior that does not

occur during abnormal execution. We refer to those causal paths a subgraph.Argus then uses the

vertices in the subgraph to identify the missing root cause in the abnormal execution. This is done

by introducing a novel subgraph comparison method between the trace graphs for both normal and

abnormal execution, which is listed in Algorithm 2.

Argus first determines a baseline vertex in the normal graph that is comparable to the anomaly

vertex in the anomalous graph. Argus computes a signature for each vertex based on the trace

event sequence in its execution segment. The signature is composed of two parts, one that encodes

the types corresponding to the event sequence e.g. 0 for IPC event, 1 for syscall event, etc., and

another that is a hash of the event parameters, e.g., process names of IPC events. Argus calculates

the similarity of two vertex signatures using string edit distance. Among the vertices in the normal

graph that are similar to the anomaly vertex, Argus chooses one that behaves differently from the

anomaly vertex, based on return values of system calls and execution times. For example, a vertex

whose last event is a blocking system call with a timed wait may behave in two different ways,

timing out or quickly woken up.

After Argus identifies a baseline vertex, it obtains its causal paths using Algorithm 1. The result

is a subgraph of the normal trace graph rooted from the baseline vertex to some ending vertex.

Argus examines the subgraph from the most related causal path. Starting with the ending vertex 𝑉 ,

whose execution segment was executed by some thread 𝑇 , Argus identifies vertices in the abnormal

trace graph that were also executed by 𝑇 . For each identified vertex, Argus checks whether it

behaves differently from 𝑉 , in which case it is flagged as a suspicious vertex. If no such vertices

are found, Argus repeats this procedure with the next vertex in the subgraph. Otherwise, for each
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suspicious vertex that has incoming edges, Argus recursively repeats the subgraph comparison by

treating the suspicious vertex as the initial anomaly vertex. The recursive procedure effectively

keeps working backwards through vertices to eventually find a set of root cause candidate vertices

in the anomalous trace graph with no incoming edges. Argus then returns the vertex whose path

to the original anomalous vertex has the lowest penalty score, identifying that vertex as the root

cause.

Figure 4.7 shows a simplified example of the subgraph comparison method applied to the

Chromium performance issue discussed in Section 4.1. Vertex 𝐸′ in the anomalous graph is the

initial anomaly vertex. Argus identifies vertex 𝐸 in the normal graph as having a similar signature

but behaving differently, and treats it as a baseline vertex. Argus applies beam search to the normal

graph starting with vertex 𝐸 , resulting in the subgraph 𝐴 ← 𝐵 ← 𝐶 ← 𝐷 ← 𝐸 . Argus starts

with 𝐴, identifies its browser thread, and determines that 𝐴 cannot be the root cause since the

same browser thread contains the performance anomaly 𝐸′ in the anomalous trace graph. Argus

then considers 𝐵, identifies its renderer thread, and finds all vertices in the anomalous trace graph

executed by the renderer thread. 𝐹′ is similar to 𝐹, so it is not considered a suspicious vertex,

but 𝐽′ is not similar to any vertex in the normal trace graph, so it is considered suspicious. 𝐽′ has

no incoming edges and is identified as a root cause candidate. If there are no other candidates

identified, 𝐽′ is returned as the root cause.

4.5.3 Debug Information

Argus further provides the calling contexts of the anomaly vertex and the root cause vertex to

help developers localize the bug in code. To do so, Argus examines the call stacks it attaches in the

graph vertices. If the anomaly or root cause vertex has a blocking call, the call stack Argus tracer

collects would reveal the context of the blocking call directly. If the vertex has a long runtime cost,

the problematic vertex usually contains periodic IPIs, where the Argus tracer collects call stacks.

In this case, the Argus debugger calculates the longest common sequence of frames from those call

stacks. The top frame in the sequence reflects the costly function call.
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Figure 4.7: Chromium normal and anomalous trace graphs after user typed in a search box (vertex G/G’).
Vertex E’ (requesting a bounding box for input) is the anomaly vertex. Sub-graph in normal trace graph
is extracted from baseline vertex E. Vertex J’(javascript processing blocks on semaphore) is the root cause
Argus reported. Trace graphs are simplified for clarity; only processes are shown and communications with
processes such as imklaunchagent are omitted.

For instance, in Figure 4.7, Argus reports the following information: (i) the calling context of

problematic vertex E’ and its causal path 𝐸′ ← 𝐺′; (ii) the calling context of root cause vertex J’

along with its unmatched causal path in baseline trace graph: 𝐴← B← 𝐶 ← 𝐷 ← 𝐸 ← 𝐺, and

vertex B is marked because its thread should have waken up the blocking thread in the anomaly

case.

4.5.4 Diagnosis for Spinning Pinwheel in macOS

Argus’s debugger can be used to effectively diagnose spinning pinwheel performance issues in

macOS applications. Recall that a spinning pinwheel appears when the UI thread of an application

can not process any user inputs for over two seconds. During normal execution, the two-second

interval may cover many vertices, but when the spinning pinwheel appears, the main thread of

the application is stalled and the two-second interval covers only a single vertex. Leveraging

this timing information, Argus identifies the anomaly vertex in the main thread of the targeted

application and classifies the issue as either a LongRunning and LongWait anomaly.

LongRunning. The main thread is busy performing lengthy CPU operations and therefore its
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execution segment is in the anomalous trace graph. Argus uses its beam search method to identify

the causal path between the anomaly vertex and the vertex with the UI event resulting in the issue.

Argus reports the costly API, event handler, and causal path to the developer.

LongWait. A UI thread is blocked, but it is hard to tell why. Argus uses its subgraph comparison

method together with its beam search method to deduce which vertex is missing from the anoma-

lous trace graph. A long-wait event could be caused by another long-wait event. Argus supports

recursively diagnosing “the culprit of the culprit.” Therefore, it can reveal deep root causes. At the

end of each iteration of diagnosis, the calling context of problematic vertex, root cause vertices in

the anomalous trace graph, and causal paths are ranked and reported to users.

Some LongRunning issues may be diagnosed with existing tools such as spindump if the pro-

filing is accurate and complete. However, Argus is better in that a call stack is usually not enough

to connect the busy processing to the event handler, due to the prevalence of asynchronous calls.

Also, call stack profiles after the anomaly may miss the real costly operations. LongWait issues

usually involve multiple components and are extremely hard to understand and fix with current

tools. Those issues may remain unresolved for years and significantly hurt user experience and

developer productivity.

4.6 Evaluation

We have implemented Argus across multiple versions of macOS, ranging from El Capitan to

Catalina. We evaluate Argus to answer several key research questions: (1) Can Argus effectively

diagnose real-world performance anomalies for modern desktop applications? (2) How does Argus

compare to other performance debugging tools? (3) How useful are Argus’s weak edges and their

optimizations in mitigating tracing inaccuracies? (4) How much overhead does Argus’s tracing

tool incur? Unless otherwise indicated, all applications and tools were run on a MacBookPro12,1

with an Intel Core i7 CPU, 16 GB RAM, and an APPLE SM0512G SSD.
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4.6.1 Diagnosis Effectiveness

We evaluated Argus on 12 real-world user-reported performance issues in 11 popular desktop

applications, which we collected and reproduced, as listed in Table 4.2. We are especially inter-

ested in evaluating performance issues that have been hard to troubleshoot. Except for B11, all of

these are open issues, meaning their root causes were previously unknown to developers. For B2,

the reported issue was “fixed” in the latest version (due to refactoring or platform upgrade) but the

root cause remained unknown. Nine applications, or some of their components, have source code

available, whereas two applications are closed-source. Source code was used to validate whether

the correct root cause was diagnosed for the performance issues, but all evaluation was performed

on the released application binaries. We have also used Argus with proprietary applications like

Microsoft Word for macOS, but without source code, we need to wait for vendors’ confirmation

and responses; in our experience, vendors are reluctant to communicate issues with an external

party.

Table 4.3 shows that Argus was able to diagnose all 12 performance issues, including all long-

standing open issues. As listed in Table 4.4, we checked the correctness of Argus’s diagnosed

root causes in three ways: (1) inspecting the corresponding source code if available, (2) dynamic

patching with lldb based on the diagnosed root cause to fix the problem, and (3) confirmation by

developers. The last one is ideal, but not always feasible; we reported our findings to developers

for seven issues, but only received two responses. Only the root cause of B11 was previously

known, which Argus returned correctly (Grd). For B1, B7, and B10, we validated the diagnosed

root causes by analyzing the source code (Src). For B2 and B4, we received confirmation from

the respective application developers that Argus correctly diagnosed the root cause for these open

issues [70, 74] (Dev). For example, for B4, the Sequel Pro developers suspected a particular Cocoa

Framework API does not work as expected, but could not pinpoint the exact place to fix it. Argus

determined the defect was in their installed callback function, and we submitted a pull request [74]

to fix the issue. B8 was fixed in an official developer patch after we reported the root cause (Fix).

For the remaining issues, we confirmed the issue was resolved by dynamically patching the appli-

87



ID App Performance Issue Age

B1 Chromium Typing non-English in searchbox, page freezes. 7 yr
B2 TeXstudio Modifying Bib file in other app gets pinwheel. 2 yr
B3 BiglyBT Launching BiglyBT installer gets pinwheel. 1 yr
B4 Sequel Pro Reconnection via ssh causes freeze. 4 yr
B5 Quiver Pasting a section from webpage as a list freezes. 5 yr
B6 Firefox Connection to printer takes a long time. 1 mo
B7 Firefox Some website triggers pinwheel in the DevTool. 3 yr
B8 Alacrity Unresponsive after a long line rendering. 6 mo
B9 Inkscape Zoom in/out shapes causes intermittent freeze. 1 yr
B10 VLC Quick quit after playlist click causes freeze. 7 mo
B11 QEMU Unable to launch on macOS Catalina. 1 mo
B12 Octave Script editing in GUI gets pinwheel. 2 yr

Table 4.2: Real-world performance issues in macOS applications.

cation based on the root cause (Dyn). We describe the typical performance issues in further detail

to show how Argus diagnose them effectively.

B1-Chromium: This is the Chromium performance issue discussed in Section 4.1. Argus analyzes

the trace graph, pinpoints the circular waits between renderer main thread and browser main thread

with the interactions of daemon processes like fontd. Argus not only localizes the problematic

execution segment (waiting on a condition variable), but also the sequence of events leading to this

issue. The same issue occurs in Chrome. We also reported our findings to Chrome developers, but

received no reply.

B2-TeXstudio: TeXstudio [78] is an IDE for creating LaTeX documents. Users reported when

they modified a bibliography file with another application, TeXstudio froze with a spinning pin-

wheel. We reproduced this case by running touch from a terminal on a 500 entry bibliogra-

phy file, which immediately caused a spinning pinwheel to appear in TeXstudio’s window. Ar-

gus analyzes the trace graph and identifies five causal paths, ordered by likelihood of causal-

ity. The first path is from Terminal to TeXstudio: Terminal→WindowServer→bash→kernel_task

→fseventd→TeXstudio. It connects multiple entities and suggests the following root cause chain.

The touch command triggers a change in the file metadata. fseventd notifies TeXstudio and in-
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ID Root Cause Identified

B1 circular wait between renderer and browser main threads.
B2 long running function calculating line indices in document.
B3 recursive invocations of accessible objects in GUI.
B4 UI event loop mishandling input causes deadlock with ssh.
B5 paragraph value never equals last paragraph inside web view.
B6 sleep waiting on chain of deamons, the last being nsurlsessiond.
B7 excessive garbage collection on the main thread.
B8 excessive copy of rendering cells when searching potential URL.
B9 excessive memory operations for trimming and compositing.
B10 termination signal before displaying thread ready; deadlocks.
B11 window adjustment before it finishes launching; deadlocks.
B12 readline thread writing tty repeatedly, main thread waiting.

Table 4.3: Root causes identified by Argus.

vokes a callback handler. TeXstudio executes QDocument::startChunkLoading, and causes busy

processing in TeXstudio’s main thread. Argus also outputs the call stack with the busy APIs,

startChunkLoading and QDocumentPrivate::indexOf(). We reported our findings to the developers

and received confirmation that the diagnosis is correct.

B5-Quiver: Quiver [59] is a closed-source notebook application for mixing text, code, Mark-

down, LaTeX, etc. Users report that applying bullet points to a text cell without an empty line

at bottom causes a spinning pinwheel [58]. Based on the Argus trace graph, there is a hang-

ing vertex in the WebKit component used by Quiver. In particular, WebKit hangs in execut-

ing InsertListCommand::doApply when applying the list command to the Webview context from

Quiver. The hang occurs because of an infinite loop bug in WebKit rather than Quiver. We verified

the root cause by changing the comparison result of the loop with lldb, which enables Quiver to

display the bulletin points without a spinning pinwheel. We reported our findings to the developers,

but received no reply.

4.6.2 Comparing with Other Approaches

We compared Argus versus other state-of-the-art tools for diagnosing the performance issues

in Table 4.2. We used two widely-used traditional debugging and profiling tools from Apple,
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spindump [1] and Instruments [34]. For spindump, we enable it once the performance issue ap-

pears, and repeat the process five times to eliminate bias on the start timing. spindump separately

ranks the symbols from all sampled call stacks and only the top of call stacks. We examined the

topN symbols and their corresponding call stack information. For Instruments, we enable its time

profiler in the background when reproducing the bugs, and analyze its data from two seconds be-

fore the performance issue occurs to three seconds after. We rank APIs in the reported call trees

with CPU time percentage and filter out system routines. Then, we select the topN APIs for in-

vestigation. We used values from 𝑁 = 1 to 𝑁 = 10. We also used two causal tracing tools, the

macOS version of Panappticon, as discussed in Section 4.1, and AppInsight [60]. Since AppIn-

sight was originally built for Windows, we reimplemented a version for macOS which captures

trace events, constructs trace graphs, and follows the path analysing rules for diagnosis according

to AppInsight’s design.

Table 4.4 shows the results for using the different tools, including the results for Argus dis-

cussed in Section 4.6.1; checks indicate correct root cause diagnosis. All of the other tools di-

agnosed much fewer performance issues than Argus. spindump diagnosed at most five issues. It

captures the state near the symptom point but cannot deduce how the execution reaches a prob-

lematic point, especially in the presence of highly concurrent and asynchronous execution across

different entities. Instruments diagnosed at most four issues. It only outputs the most costly func-

tions, which are helpful for performance optimizations but may not be for troubleshooting specific

performance issues. Neither of the causal tracing tools did any better because the constructed trace

graphs are highly inaccurate. AppInsight only diagnosed two issues while Panappticon diagnosed

four issues.

4.6.3 Mitigation of Trace Graph Inaccuracies

We evaluated the effectiveness of Argus in mitigating trace graph inaccuracies in diagnosing

the performance issues in Table 4.2. Table 4.4 shows the benefits of weak edges and Beam search.

Argus diagnoses eight issues if it discards weak edges (no weak edges), and seven issues if it uses
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B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12

spind.@top1 7 7 7 7 7 7 7 7 7 7 3 7

spind.@top3 7 7 7 7 7 7 3 7 7 7 3 7

spind.@top5 7 7 7 7 7 7 3 3 7 7 3 7

spind.@top10 7 7 7 7 7 3 3 3 3 7 3 7

Instr.@top1 7 7 7 7 7 7 7 3 7 7 7 7

Instr.@top3 7 7 7 7 7 7 7 3 7 7 7 7

Instr.@top5 7 7 7 7 7 7 3 3 7 7 7 7

Instr.@top10 7 7 7 7 7 3 3 3 3 7 7 7

AppInsight 7 7 7 7 7 7 3 3 7 7 7 7

Panappticon 7 7 7 7 3 3 3 3 7 7 7 7

Argus 3 3 3 3 3 3 3 3 3 3 3 3

no weak edges 7 7 3 3 3 3 3 3 3 7 7 3

w/critical path 7 7 3 7 3 3 3 3 3 7 7 7

Argus result
Src Dev Dyn Dev Dyn Dyn Src Fix Dyn Src Grd Dyn

validation

Table 4.4: Comparing Argus with other debugging tools.

Events Vertices
Edges

Total Strong Weak

Max 12.3M 1.68M 1.62M 751.3K 864.6K
Min 260.8K 15.1K 25.5K 17.5K 8.01K
Mean 3.31M 349.5K 358.4K 188.8K 169.6K
Med 1.02M 97.3K 172.6K 111.9K 60.71K

Table 4.5: Argus trace graph statistics.

traditional critical path analysis instead of Beam search (w/critical path). In both cases, Argus still

performs better than other tools.

Table 4.5 shows that the Argus trace graphs include hundreds of thousands to millions of events,

and on average have 350K vertices and up to 1.68M vertices. Graphs are in general dense, with

an average of 358K edges. A significant percentage, 40% on average, of the edges are tagged as

weak edges. To avoid abusing weak edges and overwhelming the diagnosis, Argus applies the

optimizations discussed in Section 4.4. Figure 4.10 shows the percentages of potential weak edges

that Argus excludes from the trace graph for different techniques: call stack similarity, wait on end
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Figure 4.9: Sensitivity of beam search settings.

of task in a thread, acquire worker threads, and kernel task delegate. Call stack similarity was most

effective in pruning potential weak edges.

We evaluated the sensitivity of Argus’s beam search settings: beam width, lookback steps, and

penalty function coefficients 𝑎 and 𝑏. Figure 4.9 shows the number of diagnosed issues when

changing one setting and leaving the rest at their defaults. The settings for beam width and look-

back steps are robust. Larger settings increase the diagnosis effectiveness, but if they are too large,

the Argus debugger could run out of memory or time out for large trace graphs. Changing penalty

function coefficients can significantly change the number of diagnosed issues. In general, small

coefficients from two to four are better. Overall, the results indicate that Argus is practical, and
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developers do not need to spend much effort to tune search settings.

4.6.4 Performance

We measured the time to run the Argus grapher and debugger for diagnosing each of the per-

formance issues in Table 4.2. Figure 4.8 shows the time varies for different issues, ranging from

49 s (B12) to 9870 s (B1). Constructing the trace graph is the dominant cost. Running the beam

search diagnosis algorithm on the graph is fast, taking at most 144 s (B10).

We also measured the overhead of the Argus tracer using various CPU, memory, and I/O bench-

marks running on a live deployment of Argus on a MacBookPro9,2 with an Intel Core i5-3210M

CPU, 10 GB RAM, and a 1 TB SSD. We first measured five runs of the iBench Cocoa bench-

mark [46], with and without Argus, to measure overall performance. The reported scores were

6.14 with 0.027 standard error without Argus tracing and 6.13 with 0.025 standard error with Ar-

gus tracing enabled. Argus only has a 0.16% performance degradation on average. In comparison,

with Instruments, the reported score was 6.04, showing a 1.6% performance degradation. We

next ran the Chromium Catapult benchmarks [14] to evaluate CPU performance, with and without
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Figure 4.11: CPU overhead.

Argus tracing. Figure 4.11 shows that Argus overhead is less than 5%. The average overhead for

real and user time was 3.36% and 2.15%, respectively. sys overhead was higher because Ar-

gus tracing in libraries involves crossing the user-kernel boundary. Finally, we ran Bonnie++ [20]

and IOzone [13] I/O benchmarks to evaluate I/O performance, with and without Argus tracing.

Figure 4.12 shows the I/O throughput measurements. Argus tracing has almost no overhead for

sequential character read and write operations and less than 10% overhead for block read and write

operations.

4.7 Conclusions

Argus is the first comprehensive causal tracing system to diagnose performance anomalies in

complex desktop applications. We observe that although causal tracing is powerful and extensively

studied in distributed systems, it is brittle when applied to desktop systems due to inherent tracing

inaccuracies.

Argus addresses this problem by introducing annotated trace graphs with strong and weak

edges to account for these inaccuracies. Argus pairs annotated trace graphs with a novel beam
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Figure 4.12: I/O overhead.

search diagnosis algorithm and subgraph comparison mechanism to determine causal paths in the

presence of these inaccuracies. We have implemented Argus across multiple versions of macOS

and evaluated its effectiveness on complex desktop applications. Argus successfully pinpoints

the root causes for 12 real-world performance issues in these applications, many of which had

remained open for several years. Argus imposes less than 5% CPU overhead, making it fast enough

for regular use.

We believe Argus’s strong and weak edge notions and inaccuracy-tolerant diagnosis algorithm

may extend beyond the scope of desktop systems. In causal tracing of distributed systems, many

solutions assume systems are perfectly instrumented, but in practice this is not the case. We plan to

explore using Argus’s techniques in the context of distributed systems as an area of future work.

95



Chapter 5: Limitations and Future Work

This chapter discusses the limitations of the performance diagnostic tools, namely Argus and

vProf, which are implemented in this dissertation. In addition to examining their limitations, we

also explore the future work aimed to overcome these challenges.

Reliable Bug Reproduction One significant limitation of these diagnostic tools is that they re-

quire performance issues to be reliably reproducible. However, reproducing certain performance

bugs in real-world scenarios can be extremely challenging. A study conducted by Han et al. [30]

further emphasizes the difficulties associated with the reproduction of performance bugs. The re-

searchers randomly examined 98 performance bugs, all of which had been confirmed by developers

with domain knowledge. Surprisingly, out of these bugs, only 17 could be consistently reproduced.

Hence, it becomes imperative to explore strategies aimed at facilitating easier and more reliable

bug reproduction. Based on our experience, the continuous collection of supplementary runtime

information can be a viable solution to help developers identify crucial operations for bug repro-

duction. For instance, user input event handlers can manifest the necessary user operations, such as

a sequence of key presses, to reproduce the performance issue. Recording data flow, on the other

hand, can aid developers in discovering the configuration settings. This lightweight information

has the potential to significantly enhance the ease of reproducing performance issues.

Baseline Selection The diagnostic algorithms in both Argus and vProf require a comparison be-

tween a buggy execution and a normal baseline. The effectiveness of these tools depends on the

choice of appropriate baselines. For example, if a performance bug consistently exists in modern

desktop applications, Argus works effectively only when the bug is a LongRunning performance

issue. In such cases, Argus extracts the most likely causal paths that lead to high CPU utilization.

However, in LongWait cases involving extended waiting periods, the effectiveness of Argus di-
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minishes because it cannot identify the missing events that should have awakened the long waiting

thread in the absence of a baseline. Similarly, when there is no comparable use case available,

vProf operates similarly to the traditional profiler gprof.

Fortunately, runtime information can provide valuable insights into the potential variations in

the use cases that revolve around the performance anomaly. Focusing on leveraging these varia-

tions to automatically generate the appropriate baseline deserves our attention, as it can ensure the

usefulness of the diagnostic tools.

Refine Runtime Information The diagnostic tools inevitably involve noisy data, as discussed in

Chapter 2, and the runtime information collected to enhance these tools can be incomplete. This is

because the availability of certain information is not guaranteed due to various optimization tech-

niques in both source code and compilers. For example, the call stack collected in Argus depends

on the existence of debugging symbols in the binary. Similarly, the locations where variables can

be accessed at runtime are also determined by the debugging information entries in the binary.

Furthermore, collecting all related data is not feasible due to the resulting overhead. For instance,

vProf does not support dereferencing complex class pointers, as sanitizing these pointers incurs a

considerable cost.

Noise and the incompleteness of runtime information can impact the diagnosis, potentially

leading to both false positives and false negatives. Take Argus as an example. If Argus catego-

rizes a weak connection as a strong edge due to incorrectly inferred semantics from call stacks, it

may generate false positives. Conversely, missing a strong edge may result in false negatives. Al-

though the beam search algorithm helps tolerate potential errors, it cannot completely eliminate the

possibility of errors. Similarly, in vProf, different baselines can produce different value samples,

leading to different inferences of bug patterns. While multiple bug patterns may all be reasonable,

they provide developers with varying levels of insight into performance bugs.

Hence, it is worthwhile to explore approaches for mitigating erroneous data and determining

whether the collected data is sufficient for diagnosing performance issues. For example, employing

different baselines can offer developers a comprehensive understanding of performance issues from
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various aspects. Aggregating the findings can help pinpoint root causes.

Implementations for Production Environment The prototypes of vProf and Argus, as imple-

mented in this dissertation, demonstrate good performance in addressing the selected performance

issues. However, their current implementations may be overly simplified to provide comprehensive

support for production systems, particularly in terms of reliability, usability, and scalability.

To address these limitations, several areas of improvement need to be considered. Firstly,

enhancing implementation details is essential to accommodate complex software. Currently, the

vProf prototype restricts value sampling to primitive types, structure members, and pointers. To

enhance comprehensiveness, it could be extended to reliably and efficiently dereference pointers

from intricate data structures. Moreover, the static analysis in vProf remains incomplete due to the

absence of analysis for function pointers. Integrating dynamic analysis can further improve the

reliability of vProf in performance diagnosis.

Secondly, minimizing analysis overhead is crucial to improve their usability and scalability

for production systems. While the overhead on the online system is manageable, offline analysis

becomes costlier with larger data sizes. Given the potentially overwhelming nature of runtime

information from production systems, incorporating advanced data processing techniques becomes

vital to ensure scalability, thus enabling prompt diagnosis of performance issues.

Thirdly, to make the tools more useful, the implementation must accommodate modifications

in production system designs. For instance, Argus necessitates developers to accurately identify

and insert tracing points based on domain knowledge. Simplifying instrumentation for production

systems is imperative, especially since different third-party libraries may be used over time. Feasi-

ble options include defining binary instrumentation templates or providing utilities for vendors to

modify their source code, drawing from our experience.

Beyond Performance Issues on CPU Usage Both vProf and Argus primarily focus on enhanc-

ing diagnostic tools to address performance issues related to CPU usage. However, application per-

formance is significantly impacted by many other factors. These factors include excessive memory
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usage, I/O blocking, and energy leaks, among others.

Nonetheless, the fundamental concept underpinning vProf and Argus is the integration of sup-

plementary runtime information into diagnostic tools. This foundational concept can be extended

to address various other performance issues. For instance, integrating supplementary runtime data

into profilers that measure wall-clock time enables the diagnosis of performance issues stemming

from inappropriate I/O blocking, paging, or synchronization.

Furthermore, this fundamental concept can enhance the effectiveness of tools designed to detect

excessive resource consumption, such as memory leaks. It aids in distinguishing between inher-

ent intensive resource usage and wasteful resource consumption by comparing the buggy case to

normal use cases.

Improve profiling strategy in vProf for multi-threading vProf relies on gprof for support in

multi-threaded applications. In general, gprof delivers the SIGPROF signal to an arbitrary thread

depending on the thread scheduling in the system. Specifically, it sets a timer and monitors the CPU

time used by a process. When the timer runs out, it delivers the SIGPROF signal and saves the

runtime information from the context of the running thread. Therefore, vProf might still experience

sampling bias. Different scheduling algorithms for the threads can result in different profiling

results. This bias could lead to the omission of specific thread executions, potentially weakening

the effectiveness of vProf.

One potential area for future work is to adjust the profiling strategy for multi-threaded appli-

cations, taking into account the characteristics of workloads and the scheduling strategies in the

system.

Generalize Argus to Other Systems Our evaluation of the annotated causal tracing tool, Argus,

has been implemented and has demonstrated promising results on macOS. However, the general-

izability of Argus to other systems has not yet been explored.

It is worth noting that inherent inaccuracies are common in diagnostic tools across various

operating systems, as well as in distributed systems. The concept of annotating edge types based

99



on semantics and introducing error-tolerant diagnostic algorithms using these edge types shows

promise in mitigating inaccuracies and enhancing effectiveness.

Nevertheless, the construction of the annotated trace graph relies on domain-specific knowl-

edge, such as typical programming paradigms in operating systems. While it is possible that the

techniques in Argus may not be universally applicable to other operating systems, modern operat-

ing systems often share many similarities and draw inspiration from each other’s designs. For in-

stance, they frequently offer tracing facilities like ETW [25] in Windows and LTTng in Linux [37],

which could potentially support techniques similar to those used in Argus. Therefore, we are

hopeful that our ideas are generally applicable.

In conclusion, there exist numerous potential avenues for further enhancing the effectiveness

of diagnostic tools, in addition to the ones discussed above.
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Conclusion

Despite the existence of various diagnostic tools, diagnosing performance issues often remains

ineffective.

Profilers, although mature and commonly recommended for diagnosing performance issues,

tend to produce inaccurate results, lack the capability to capture data flow, and determine why a

function is slow. Causal tracing tools, designed to tackle performance issues with causal relation-

ships spanning across components, encounter limitations due to inaccuracies in the tracing graphs

they generate, thus undermining the effectiveness of performance diagnosis.

This dissertation critically examines the sources of these inherent inaccuracies and underscores

the essential role of capturing supplementary runtime information to overcome them. To this end,

it introduces a novel profiling methodology named value-assisted profiling (vProf), built upon the

existing profiler gprof. vProf measures not only execution costs but also data-flow in a program

to effectively pinpoint the root causes of performance issues. Similarly, in a bid to enhance the

efficacy of causal tracing tools, the dissertation presents a pioneering causal tracing tool called

Argus. This tool leverages semantic inferences drawn from supplementary runtime information

to annotate the edges of tracing graphs. Utilizing a beam-search algorithm guided by these edge

types, Argus mitigates and tolerate the inherent inaccuracies and improves the effectiveness of

performance diagnosis.

Our evaluation indicates that both of them are practical for real-world performance bugs.
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