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Abstract
The space–time fields of rainfall during a hurricane and tropical storm (TC) landfall are 
critical for coastal flood risk preparedness, assessment, and mitigation. We present an 
approach for the stochastic simulation of rainfall fields that leverages observed, high-res-
olution spatial fields of historical landfalling TCs rainfall that is derived from multiple 
instrumental and remote sensing sources, and key variables recorded for historical TCs. 
Spatial realizations of rainfall at each time step are simulated conditional on the vari-
ables representing the ambient conditions. We use 6 hourly precipitation fields of tropical 
cyclones from 1983 to 2019 that made landfall on the Gulf coast of the US, starting from 
24 h before landfall until the end of the track. A conditional K-nearest neighbor method is 
used to generate the simulations. The TC attributes used for conditioning are the preseason 
large-scale climate indices, the storm maximum wind speed, minimum central pressure, 
the latitude and speed of movement of the storm center, and the proportion of storm area 
over land or ocean. Simulation of rainfall for three hurricanes that are kept out of the sam-
ple: Katrina [2005], Rita [2005], and Harvey [2017] are used to evaluate the method. The 
utility of coupling the approach to a hurricane track simulator applied for a full season is 
demonstrated by an out-of-sample simulation of the 2020 season.
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1  Introduction

The 2020 North Atlantic hurricane season was record-breaking with 30 named tropical 
cyclones (TC) and 11 mainland US landfalls, of which eight were on the Gulf coast (NHC 
2020). More named TC mainland landfalls occurred in 2020 than in any season on record. 
One of the Gulf coast landing TCs, Sally, moved slowly over Alabama resulting in 20–30 
inches of rain in both coastal and inland areas, causing flash and river flooding (NWS 
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2020). In 2021, Hurricane Ida made landfall in Louisiana as a category 4 storm bringing 
flooding to the Gulf coast and the eastern seaboard as it exited to the North Atlantic (NHC 
2021). These Gulf landfalls brought attention to the frequency and intensity of TC precipi-
tation in this region during the North Atlantic hurricane season. An updated report of US 
casualties from North Atlantic TCs found that rainfall-induced freshwater floods accounted 
for a little more than a quarter of all fatalities (Rappaport 2014).

Stochastic simulation of hurricane tracks and precipitation is useful for hydrologic 
design and risk analysis. In prior work (Nakamura et al. 2015, 2021), we presented a hur-
ricane track simulator (HITS) based on a K-nearest neighbor (k-NN), a semi-Markov pro-
cess that allows a simulation of realistic stochastic hurricane tracks including several of 
their attributes (e.g., center latitude and longitude, maximum wind speed, and minimum 
pressure), using the NOAA National Hurricane Center HURDAT tropical storm (TC) track 
dataset for the North Atlantic. The model has exhibited good performance in simulating 
TC tracks and attributes as well as landfall statistics on the Gulf coast. While not designed 
for the prediction of evolving TCs, it has done well in out-of-sample probabilistic track 
predictions for several TC (Nakamura et al. 2015, Figs. 10 and 11). Recently, the simula-
tor was extended to consider the stochastic simulation of TC tracks for an upcoming sea-
son by conditioning the track algorithm on early-season large-scale sea surface temperature 
(SST) conditions (Nakamura et al. 2021). Here, we seek to extend HITS to also simulate 
the space–time precipitation fields surrounding landfall. The rainfall field simulation uses a 
novel k-NN algorithm that conditions historical precipitation fields on the tropical cyclone 
attributes of maximum wind speed, minimum pressure, center latitude, speed of move-
ment, the portion over land or ocean, and preseason climate indices.

The background of the relevant literature and the rationale for selecting the conditional 
variables is presented in the next section. The data used, consisting of HURDAT2, PER-
SIANN-CCS-CDR precipitation, land fraction quadrants, and preseason climate indices 
are described in Sect. 3. Methods are discussed in Sect. 4. Section 5 presents the design for 
the applications and the associated results. A summary and discussion of our current and 
forthcoming work with tropical cyclones conclude the paper.

2 � Background

Deterministic process-based models have been used for TC precipitation modeling in the 
case of downscaling future climate simulations (Emanuel et al. 2008), for risk assessment 
(Langousis and Veneziano 2009a), for hindcast analysis (Emanuel 2017), and to address 
rainfall mechanisms as in Lu et al. (2018). Marks (2003) used satellite data to update the 
Tropical Cyclone Rainfall Climatology and Persistence (R-CLIPER) model. This model 
produces a symmetric (around the TC center) rain distribution that decays linearly in 
time after landfall. Parametric Hurricane Rainfall Model (PHRaM) updated R-CLIPER 
to include effects from shear and topography (Lonfat et  al. 2007). Precipitation-Clima-
tology and Persistence (P-CLIPER) updated R-CLIPER to include a spatial distribution 
as a function of distance from the center in the three intensity categories of (1) tropi-
cal storms, (2) category 1–2 TC, and (3) category 3–5 TC (Geoghegan et al. 2018). Zhu 
et al. (2013) modeled seasonal TC precipitation in Texas with linear regressions on three 
or fewer predictors. Many averaging areas, temporal scales, and meteorological variables 
were tested. They found ENSO, maximum potential wind velocity, and vorticity as the 
most important predictors of seasonal precipitation, precipitation days, and percentage of 
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tropical precipitation. Kleiber et al. (2020) recently presented a statistical TC space–time 
precipitation generator for Texas Gulf coast landfalls. The model was trained on patterns 
of precipitation from seven hurricanes, accumulated in 1-h increments from the Weather 
Research and Forecasting (WRF) model, giving both a high spatial and temporal resolu-
tion. Predictor variables common to North Atlantic hurricane track datasets were derived 
from the WRF model including an environmental pressure deficit at TC center, position of 
cyclone center and speed, radius of maximum winds, and distance to the Texas coastline. 
Precipitation was simulated in a Lagrangian framework, with the TC center as the center 
of the domain, by dividing it into mean and residual patterns on polar coordinates. Means 
were computed by empirical orthogonal functions and residuals by a random decision for-
est algorithm. Details of TC precipitation patterns were simulated by the method including 
asymmetry, changes in precipitation as the cyclone moves over land, incorporation of drier 
air, and total precipitation amounts.

Brackins and Kalyanapu (2020) compared the performance of several parametric mod-
els for TC rainfall and found that the IPET (2006) model performed best. The IPET model 
considers two zones with rainfall that is parameterized based on the TCs central pressure 
deficit, with constant rainfall in the central core, and an exponential decay rate for the rain-
fall in the outer zone. Villarini et al. (2022) followed this up with an approach to simulate 
precipitation fields for TCs that entail a bias correction step, followed by a scaling argu-
ment for spatial precipitation and the use of a parametric Gaussian copula to model the 
spatial dependence of a residual field from the basic IPET model relative to the observa-
tions. An application to fitting the data for 12 TCs with landfalls in Louisiana is presented.

A TC precipitation model that uses surface-level TC winds has been defined by Lu et al. 
(2018) and employed by Feldman et  al. (2019) to define a TC precipitation climatology 
over eastern North America and by Xi et al. (2020) to assess risk due to TC-induced pre-
cipitation. The TC-induced precipitation model partitions the vertical motion at the top of 
the boundary layer into contributions from terrain, friction, stretching, baroclinic effects, 
and radiation. A vertical vapor flux is computed using the net vertical velocity and the satu-
ration specific humidity, then modified by a precipitation efficiency factor to define precipi-
tation rate.

At this point, it is useful to synthesize some key observations from the body of the lit-
erature as to variables that may potentially influence the precipitation pattern for TCs. First 
consider, maximum wind speed and minimum pressure are correlated measures of hurri-
cane intensity. Touma et al. (2019) studied the link between TC intensity and precipitation 
over land. They found that TCs that were hurricane strength and then weakened to a tropi-
cal storm over land produced the most precipitation. The argument was that the attainment 
of a higher intensity led to a larger cyclone size that covered more area and hence more 
total precipitation.

Now, the radius of maximum winds is a measure of cyclone size and impacts precipi-
tation amount through the size of the rain bands. In a study of four groups of TCs sized 
from smallest to largest that impacted North Carolina, the two largest groups produced the 
most rainfall (Konrad and Perry 2010). The smallest group only contained tropical storms 
or depressions; none were hurricane strength. At constant precipitation intensity, a slower 
speed of movement of the TC center will result in a higher overall storm-related precipita-
tion amount than for a faster-moving cyclone (Kossin 2018; Chan 2019; Lai et al. 2020).

Precipitation fields from landfalling TCs are typically asymmetrical and have a high 
degree of variability. Corbosiera and Molinari (2003) found asymmetries due to TC motion 
(strongest in the right front core and on the right of motion in outer bands), linked to the 
vertical wind shear, beta effect, and the tilt with the height of the cyclone. Lu et al. (2018) 
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found frictional convergence to be the dominating factor in the rainfall pattern in two East 
Coast hurricanes. TC position affects the amount of surface friction. TCs overwater expe-
rience less friction. As the cyclone precipitation bands move over land friction increases. 
The fraction of land vs. sea that a TC covers (land–sea fraction) can be a proxy for the 
combined effect of the center position, relative land position, and landfall impact angle.

The cyclone center latitude is a factor in the transition of a TC to an extratropical system 
as the TC moves out of the tropics. The process of extratropical transition creates large pre-
cipitation asymmetries (Atallah and Bosart 2003) due to increasing storm translation speed 
and vertical wind shear due to interactions between the TC and the midlatitude flow into 
which the TC is moving. Interaction with extratropical systems and topography can also 
affect TC movement, increase upward vertical motion, and precipitation amount (Chan 
et al. 2019).

Based on this discussion, we identified the following attributes as potential predictors 
of the precipitation field associated with landfalling TCs in the Gulf region: the TC maxi-
mum wind speed, minimum central pressure, the latitude and speed of movement of the 
storm center, and proportion of storm area over land or ocean. Attributes of the larger-
scale climate system, through SST indices, were also considered as potential predictors 
of precipitation. The larger-scale climate directs TC development, movement, and inten-
sification, as well as ambient conditions in the region at the time of landfall. Thus, they 
can be considered latent variables that influence the basin scale and regional conditions 
attendant to a TC. To use them predictively, SST indices for different months that precede 
the June–November N. Atlantic hurricane season were considered.

3 � Data

The predictors considered were obtained from the revised best-track dataset of Atlantic 
(HURDAT2), the Worldbath world elevation, and Hadley SSTA datasets. Several track-
associated precipitation datasets were considered. Station gauge data and radar data were 
missing data areas as the track approached from the ocean. Satellite data have much better 
coverage spatially and temporally but typically underrepresent tropical precipitation. The 
underestimation of TC precipitation using satellite products such as the NASA Tropical 
Rain Measurement Mission (TRMM) was a problem in R-CLIPPER. Averaged over five 
TCs, R-CLIPPER predicted less than half of the peak gage-estimated TC-total precipita-
tion (Marks 2003). The PERSIANN CCS-CDR dataset employs a neural net analysis of 
cloud clusters and a climate data record to capture higher intensity TC precipitation well. 
Ashouri et al. (2015) found that the PERSIANN-CDR had good agreement with stage IV 
radar data during Hurricane Katrina in 2005.

3.1 � HURDAT2

The Atlantic hurricane database 2 (HURDAT2) is an updated version of the best-track 
HURDAT of TCs, subtropical cyclones, and tropical depression tracks in the North 
Atlantic Ocean, Gulf of Mexico, and Caribbean Sea (Landsea et al. 2015) available at 
https://​oasis​hub.​co/​datas​et/​hurdat-​2-​atlan​tic-​hurri​cane-​datab​ase. It includes cyclone 
number, name, year, month, day, hour, and minute (synoptic times of 00Z, 06Z, 12Z, 
and 18Z and non-synoptic times), center latitude and longitude, landfall indicator, mini-
mum center pressure, and maximum wind speed for the period studied. Non-synoptic 

https://oasishub.co/dataset/hurdat-2-atlantic-hurricane-database
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times were removed for a dataset of observed track locations every 6 h for the 84 tracks 
that occurred during the precipitation dataset time period 1983–2019.

3.2 � PERSIANN‑CCS‑CDR precipitation

The Center for Hydrometeorology and Remote Sensing (CHRS) at the University of 
California, Irvine (UCI), created the ‘Precipitation Estimation from Remotely Sensed 
Information using Artificial Neural Networks’ (PERSIANN) using neural networks 
on geostationary satellite brightness temperatures and is available at https://​chrsd​ata.​
eng.​uci.​edu (Nguyen 2019). The PERSIANN-CCS-CDR is a combination of the PER-
SIANN-CCS, which includes the cloud clustering algorithm, and the PERSIANN-CDR, 
which includes the climate data record. The PERSIANN-CCS improves on the PER-
SIANN by using cloud patches that have distinctive properties rather than directly fit-
ting pixel brightness to rainfall rate (Hong et al. 2004). PERSIANN-CDR incorporates 
the Global Precipitation Climatology Project (GPCP) monthly product for consistency 
(Ashouri et al. 2015). The use of satellite products allows better spatial coverage than 
radar products off the coastline. The native resolution of 0.04 (1/25) degrees was down-
graded to 0.25 (1/4) degrees to reduce the number of pixels. The 6-h temporal resolution 
was selected to match the HURDAT2.

3.3 � Land fraction quadrants

Boxes of size 16 by 16 degrees and centered on the TC were segmented into four (8 by 
8 degree) quadrants for calculation of the fraction of land/sea in each. World bathymetry 
from the ETOPO5 5 by 5-min Navy database (Data Announcement 88-MGG-02 1988) 
available at http://​iridl.​ldeo.​colum​bia.​edu/​SOURC​ES/.​WORLD​BATH/.​bath/ was gridded 
to match the 0.25-degree gridded PERSIANN-CCS-CDR with elevations 0 m and above as 
marked as land (1) and below 0 m as ocean (0) and then averaged over the quadrant. Land 
fraction quadrants are a measure of both dynamic and thermodynamic forces on a cyclone 
through surface friction and the area of available heat and moisture from the ocean.

3.4 � Preseason climate indices

The start of the traditional June–November N. Atlantic hurricane season has been trend-
ing earlier (Kossin 2008). A precipitation model can account for early TCs in May by 
using April variables. The preseason climate index of NINO3.4 (5S-5N, 170W-120W) 
represents the state of ENSO. Positive (warm) ENSO inhibits overall N. Atlantic TC 
development (Gray 1984). The main development region (MDR) (10N-20N, 80W-20W) 
represents the genesis of TCs from easterly waves that lead to most major hurricanes, 
with higher SST increasing TC activity (Goldenberg et  al. 2001). April NINO3.4 and 
MDR were computed from the Met Office Hadley HadSST.4.0.1.0 SSTA is available at 
a 5°-degree resolution from 1850 to current from https://​www.​metof​fi ce.​gov.​uk/​hadobs/​
hadss​t4/. These indices serve the dual purpose of linking ENSO and development region 
to landfall precipitation and also link climatologically similar seasons.

https://chrsdata.eng.uci.edu
https://chrsdata.eng.uci.edu
http://iridl.ldeo.columbia.edu/SOURCES/.WORLDBATH/.bath/
https://www.metoffice.gov.uk/hadobs/hadsst4/
https://www.metoffice.gov.uk/hadobs/hadsst4/
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4 � Methods

Section 4.1 presents the method for the K-nearest neighbor (k-NN) precipitation model that 
creates simulated precipitation field distribution for every point along a tropical cyclone 
track, both observed tracks and simulated tracks based on track-based predictors. Sec-
tion 4.2 outlines a method to evaluate the k-NN simulated precipitation field distribution 
using a mean squared error threshold evaluation. Once a method has been established for 
evaluation, track-based predictors can be tested for fitness in the model in Sect.  4.3. In 
Sect. 4.4, an overall detection for irregularities in the simulated precipitation field is tested 
by Benford’s law. Section 4.5 outlines the method for testcase of linking the k-NN precipi-
tation model to a N. Atlantic track simulator for a sample year.

4.1 � K‑nearest neighbor (k‑NN) precipitation

A k-NN approach for the full precipitation field centered on the TC at each time step is used 
in the precipitation model. We first identify the k-NN of the predictor variables (described 
in Sect. 2 and below) using Euclidean distance applied to a scaled version of each of the 
variables. The scaling is from 0 to 1, using the minimum and the maximum of each obser-
vation. This has the effect of equally weighting each predictor since the scale is now the 
same. It also enables the exploration of interpretable weights for each variable. However, 
for the applications reported here, uniform weights were used as no physical reason was 
known for applying non-uniform weights. The storm precipitation field is then simulated 
by randomly drawing from many fields that correspond to these k-NN, using a probability 
kernel associated with the k-NN.

Consider a TC precipitation field, P(x, y, t), or P(t), defined over p*q grid cells at every 
time step of a TC track. We seek to simulate from the conditional probability density 
f(P(t)|v(t)), where v is a set of potential predictors of the field. The p*q frame for precipi-
tation is defined such that it is centered at on the TC, i.e., the track position, and extends 
symmetrically around that location. As members of v, consider q1 (t) to q4 (t), w (t), p (t), 
lat (t), NINO3.4 (t), MDR (t), and s (t), which refer to the land fraction in each of the four 
quadrants of the frame, the max wind speed, the central pressure of the TC, the center lati-
tude, preseason NINO3.4, preseason MDR, and the TC translation speed at time t.

The dimension, np*nq of the precipitation field is typically large (4225 pixels), and any 
given frame may be dominated by 0 precipitation values, while also containing bands or 
hot spots of very high precipitation. These aspects pose challenges for the application of a 
traditional multivariate probability density function (including a copula representation) that 
accounts for the heterogeneous spatial dependence structure of precipitation in the frame as 
well as the zero values and the skewed distributions and the high dimension. These aspects 
motivated the choice of a non-parametric approach. Conditional simulations or bootstraps 
using an implicit k-NN conditional density estimation process have been shown to give 
good results for meteorological variables (Lall et al. 1996; Lall and Sharma 1996; Rajago-
palan and Lall 1999; Gangopadhyay et al. 2009), and we explored this approach here.

The k-NN conditional bootstrap introduced in Lall and Sharma (1996) has the follow-
ing structure. Consider simulating from the conditional distribution f(y|x = x*) by finding 
the k-nearest neighbors of x* in x, and then drawing the y corresponding to these neigh-
bors using a discrete kernel or probability function. Lall and Sharma (1996) suggested the 
kernel,



Natural Hazards	

1 3

where j is the index of the neighbor (1 is nearest), and k is the number of neighbors consid-
ered. They suggest a nominal choice of k =

√
n , as a default choice, where n is the sample 

size of the data on x. In our application, n, which is the number of precipitation frames (fr) 
over the 1983–2019 period without any missing pixels, is 1439, and so k was selected as 
37. There is only modest sensitivity to the choice of k, and the kernel adapts in shape to the 
local density of x observations around x*. The k-NN algorithm is sensitive to the choice of 
a distance metric for the selection of neighbors, and only the Euclidean distance was used 
here.

In Eq. (1), the numerator corresponds to the weight, while the denominator represents 
the summation of all weights, serving the purpose of normalizing the kernel function. Con-
sider the following, when j = 1, the associated weight (numerator) is 1; for j = 2, the weight 
is 0.5; extending further, for j = 3, the weight is 1/3, and so forth, finishing at j = 37 with 
a weight of 1/37. These individual weights undergo normalization by division with the 
aggregate sum of all 37 weights, ensuring that the resultant values are scaled appropriately.

A nominal choice is to select neighbors using a Euclidean distance metric dE,

However, if the components of x are correlated, the Mahalanobis distance dM 
(Mahalanobis 2018, reprinted from 1936),

is considered useful where Sx is the covariance matrix between x and x*.
Karlsson and Yakowitz (1987) consider a general distance version dW

where W is a diagonal matrix of weights that can be selected by optimization to yield the 
best f(y|x).

Instead of dM or dW, but with a similar motivation to address covariation across predic-
tors, and relevance to the response, we explored a canonical correlation analysis of the total 
and maximum precipitation in the frame versus the predictors and then used just the two 
canonical covariates for the predictors that were maximally correlated with the two precipi-
tation indicators. However, the results from this approach were not superior to those from a 
direct application of the k-NN resampling using dE in Eq. (2).

We note that the algorithm as presented is fully automatic, in that the kernel, the dis-
tance metric, and the number of k-NN are specified a priori and are not tuned using a good-
ness of fit metric. Figure 1 summarizes the simulation strategy. The historical dataset of 
predictors is used to find the k-NN of the current predictor vector using the algorithm fast 
k-NN from R version 1.4.1106. Then, 1000 precipitation fields that correspond to this 37 
k-NN (j) using the probability kernel (K) associated with the k-NN are drawn for each 
time step for each proposed TC as in Eq. (1). The choice of 1000 was motivated by sev-
eral considerations: It aligns with the order of magnitude of the original dataset, it was 
large enough for adequate representation of the population distribution, and it facilitated 
a straightforward calculation of percentiles. The current predictor vector is then updated 

(1)K(j) =
1∕j∑k

i=1
1∕j

(2)dE(x, x
∗) =

√
(x − x∗)2

(3)dM(x, x
∗) =

√
(x − x∗)TS−1

x
(x − x∗)T

(4)dW (x, x
∗) =

√
(x − x∗)TW(x − x∗)
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as one moves forward in time steps. Thus, if hurricane tracks have been simulated by any 
method (e.g., HITS), at each time step, the current predictor vector is known from that sim-
ulation and is used to identify the k most similar situations in the entire database of Gulf 
landfalling TCs, and these are resampled based on their degree of similarity to the cur-
rent predictor vector to provide a stochastic simulation of the potential precipitation field at 
each time step as the landfall progresses. The stochastic simulation yields 1000 precipita-
tion fields for each discrete time step.

4.2 � MSE threshold evaluation

Following Casati et al. (2004), who assessed forecasts using the mean squared error (MSE) 
skill score of binary images, three thresholds of precipitation were selected to create binary 
images. Threshold binary images normalize the discontinuous, noisy, heavily right-hand 
skewed with large outliers, and large zero populations typical of precipitation data. MSE 
threshold evaluation was chosen because of these reasons. The discontinuities from the 
abrupt spatial changes in precipitation data can make it difficult to apply scoring methods 
that assume continuous data. Precipitation data are noisy, skill scores are meant to capture 
meaningful signal, and excessive noise can obscure this signal. Precipitation data are heav-
ily right-hand skewed with large outliers, some skill scores rely on assumptions of normal-
ity or symmetry. Precipitation data have large zero populations which can complicate the 
calculation of percentiles.

To determine the threshold values, the maximum precipitation observed for each pixel 
across all 1439 frames was computed. The minimum precipitation was 3.7 mm/6 h, while 

q1

i
wi pi lati

NINOi siMDRi

Predictors i=1..n

q*

*
w* p* lat*

NINO* s*MDR*

 New Predictor Vector

Transform

Kernel K(j) 1/j 

rs random draws from
set of K-NN indices

rs

for new predictor

Fast K-NN

i

Fig. 1   Flowchart illustrating the method of creating simulated precipitation fields. First, we combine the 
predictors over the historical precipitation field (n number of observations) with the new predictor vector. 
Then, the combined matrix is normalized and transformed by rescaling to equally weight the predictors. We 
identify the K-nearest neighbors (Fast k-NN) of the new predictor variables, using the indices of the histori-
cal precipitation field (i). The new precipitation field is then simulated by drawing precipitation fields that 
correspond to these k-NN, using a probability kernel associated with the rank of the k-NN where j is the 
number of neighbors
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the maximum reached 478 mm/6 h. The median precipitation value was 108 mm/6 h, and 
the mean was 129 mm/6 h. The threshold values were selected based on these computed 
values. In results using all Gulf landfalling TCs during 1983–2019 ‘all,’ thresholds were 
set at low: 3.5 mm/6 h to 50 mm/6 h, mid: 50–100 mm/6 h, and high: over 100 mm/6 h.

For in-sample and out-of-sample individual TC results, recognizing that the peak rain-
fall can vary significantly by storm, and hence, the thresholds may need to vary by duration 
and by storm, for the long duration of Hurricane Harvey, we were able to use the same 
thresholds as the ‘all’ TC. For Katrina, low: 1–25 mm/6 h, mid: 25–50 mm/6 h, and high: 
over 50  mm/6  h, and for Rita, low: 1–35  mm/6  h, mid: 35–70  mm/6  h, and high: over 
70 mm/6 h.

Binary values (1—yes and 0—no) were assessed for each TC observed frame pixel and 
its associated model 1000 draws of neighbors (Eq. 1) for each category using the low, mid, 
and high precipitation thresholds above. Also, 1000 random frames were drawn as a con-
trol. Figure 2 shows an example of an observed precipitation frame 200 (F200), the first 
TC of 1994, Tropical Storm Alberto precipitation accumulated from 1800 to 2400Z July 
1, 1994 in (a). (b) shows the pixels that fall into the low category marked in blue. (c) is 
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Fig. 2   a Example precipitation frame of the first TC of 1994, Tropical Storm Alberto precipitation accumu-
lated from 1800-2400Z July 1, 1994. Binary (1 yes and 0 no) pixels in three categories. b Low defined as 
greater than or equal to 3.5 and less than 50 mm per 6 h, c middle defined as greater than or equal to 50 and 
less than 100 mm per 6 h, and d high defined as greater than or equal to 100 mm per 6 h
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the middle category, and finally, (d) is the high category. Looking at frequency only, these 
binary values are averaged over the whole frame then subtracted from the model results 
averaged over the frame, and the result squared to create the mean MSE as in

where MSEf is 1000 mean squared errors computed for frequency only for each of the three 
thresholds of low, mid, and high, fr is the number of frames, n is the number of pixels in 
the frame, p contains the pixel observed precipitation binary counts, and m contains the 
pixel model precipitation binary counts.

These binary values are also aggregated into larger boxes (5 by 5 pixels) to capture spa-
tial coherence rather than individual pixel agreement for spatial and frequency. Figure 3 
shows an example of the aggregation of the observed frame binary values. In space and 
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1
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Fig. 3   a Example precipitation frame in the upper left of the first TC of 1994, Tropical Storm Alberto pre-
cipitation accumulated from 1800 to 2400Z July 1, 1994. Aggregated binary pixels in the three categories. 
b Low defined as greater than or equal to 3.5 and less than 50 mm per 6 h, c middle defined as greater than 
or equal to 50 and less than 100 mm per 6 h, and d high defined as greater than or equal to 100 mm per 6 h. 
Values are counts of binary values in each of the larger boxes
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frequency, the 25 aggregated boxes are subtracted from the aggregated boxes of each 
model frame, squared, and then averaged over the frame to create the mean MSE as

where MSEsf is 1000 mean squared errors computed for spatial and frequency for each of 
the three thresholds of low, mid, and high, fr is the number of frames, a is the number of 
aggregated boxes in the frame, pa contains the observed precipitation binary counts in the 
aggregated boxes, and ma contains the model precipitation binary counts in the aggregated 
boxes.

Mean MSE values are computed over all frames simulated, broken into the six compo-
nents of low, mid, and high binary, and aggregated binary values shown in Figs. 2 and 3. 
As a benchmark of performance, we compare the median values of MSEs across all frames 
or a complete TC using the k-NN simulations vs. the MSEs from an equal number of simu-
lations of randomly selected precipitation frames centered at the TC.

4.3 � Predictor selection sensitivity

Predictors available in the HURDAT2 include those recorded and those calculated from the 
recorded variables. External to the HURDAT2, the April NINO3.4 and MDR computed 
from Hadley SSTA were also tested. Each predictor is used successively in the k-NN pre-
cipitation model and the MSE threshold evaluation. The MSE in each of the three thresh-
old categories (low, mid, and high precipitation) and two spatial scales (MSEf and MSEsf of 
Eqs. 5 and 6) is tested against the values for the previous best model using the Kolmogo-
rov–Smirnov (KS) test. The two-sample KS test is a nonparametric test to determine if the 
underlying distribution is statistically significantly different from the previous test. If the 
median MSE is lower for the new case and at least one of the three categories indicates that 
the underlying distribution of the 1000 MSE values is different from the previous test, the 
predictor is included. If the median MSE is higher or none of the categories shows a signif-
icant difference, then the predictor is discarded. Each predictor is added until all are tested.

4.4 � Benford’s law

The observed and simulated TC precipitation of the Gulf landfalls 1983–2019 was tested 
to see if they followed Benford’s law. The precipitation is heavily positively skewed with a 
long asymmetrical tail of extremely high values. This is also typical of the probability dis-
tribution of many natural systems that follow Benford’s law. The law indicates the chance 
of the leading number 1 of about one-third and decreasing in probability as the first number 
increases, with 9 occurring to less than 5%,

(Fewster 2009). Benford’s law was used to investigate tropical cyclone length homoge-
neity in Joannes-Boyar et al. (2015), fraud detection in financial matters such as Enron’s 
accounting scandal, and Greece’s economic reports to European authorities (Goodman 
2016). Here, we use it as a check to see if the simulations have the same property as the 
observations. The process of resampling introduces randomness, as it allows for the same 
data point to be sampled multiple times while excluding others. This variability can result 

(6)MSEsf =
1

fr

fr∑
1

1

a

a∑
1

(
pa − ma

)2

(7)P (leading digit = d) = log10 ((d + 1)∕d), where d = 1, 2, 3,… 9
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in differences between resampled and observed distributions. Even if the original dataset 
follows Benford’s law, it is not a guarantee that the simulated will.

4.5 � Linking k‑NN precipitation and C3 HITS for sample 2020 year

The sample year of 2020 was run with (cluster climate conditioned) C3 HITS following 
Nakamura et al. (2021). An individual simulation was picked that had approximately the 
same total TC count as observed in 2020 (31 TC—30 named TC and one subtropical TC). 
C3 HITS creates a simulated season by starting a specified number of tracks in each N. 
Atlantic track cluster based on a Poisson regression of early-season indices of NINO3.4 
and MDR.

5 � Results and discussion

5.1 � Predictor selection sensitivity

Using the MSE thresholding evaluation of Sect. 4.2 and the KS tests explained in Sect. 4.3, 
13 predictors tested for the k-NN model included in order: four land fraction quadrants, 
maximum wind speed, minimum pressure, the latitude of the center position, the longi-
tude of the center position, April MDR, April NINO3.4, X component of TC motion, Y 
component of TC motion, and direct TC translation speed. All had a lower error and sta-
tistically significant differences in MSE median except center longitude, X component of 
TC motion, and Y component of TC motion. These three non-significant or higher error 
predictors were removed. Center latitude was only significant for the lower threshold, but 
it also had a lower error for that category, so it was retained. After testing, 10 predictors 
remained the four land fraction quadrants, maximum wind speed, minimum pressure, 
center latitude, April MDR and NINO3.4, and TC movement speed.

An example of the precipitation neighbors based on the k-NN model of 10 predictors 
is shown in Fig. 4. The upper left of Fig. 4 is the observed frame (Obs) which is frame 
number 200 (F200 as in Fig. 2). N1–N37 are the 37 closest matches to the predictors with 
1 being the closest with increasing distance to 37. N1 is the next step on the current track 
and matches well, but other neighbors have various patterns of precipitation some closer 
to observations and some diffuse as in N17 or N31. In Eq. (1), the kernel is biased toward 
selecting frames that are closer to N1 than to N37. Therefore, the 1000 frames that are cho-
sen are expected to be more closely associated with N1.

5.2 � Benford’s law

The underlying probability distribution given in Eq.  (5) was plotted for all observed and 
modeled precipitation data. Both the observed (blue solid line, Fig. 5) and the k-NN model 
simulated median precipitation (red circles, Fig. 5) follow Benford’s law and match indi-
cating that the underlying natural probability distribution is matched by the simulated 
distribution.
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5.3 � Hurricanes Harvey, Rita, and Katrina

The precipitation patterns of Hurricanes Harvey (Fig.  6a), Rita (Fig.  6b), and Katrina 
(Fig.  6c) summed from 24  h before landfall until the end of the track in mm/6  h. Both 
Harvey and Rita were under low vertical wind shear, which is normally the case for Gulf 

Fig. 4   Observed PERSIANN-CCS-CDR precipitation frame 200 (F 200), Tropical Storm Alberto precipita-
tion accumulated from 1800 to 2400Z July 1, 1994, and the 37 closest neighbors based on the model pre-
dictors titled N1–N37 and the associated historical frame number



	 Natural Hazards

1 3

landfalls. Consequently, the strong and extensive precipitation was in the northeastern 
quadrant (Fig. 6b and c). Katrina interacted with a mid-latitude trough causing increasing 
vertical wind shear, with most of the precipitation falling in the northwestern quadrant in 
the onshore flow. Ashouri et al. (2015) showed the PERSIANN-CDR captures a wide view 
of the precipitation and hurricane landfall during severe weather when radar sites go down 
as the Lake Charles radar site did in Southwest Louisiana during Katrina. Figure 6 is pro-
duced with the updated PERSIANN-CDR-CCS.

After masking the observed average of 1 mm/6 h over the track frames, the percentile 
of the observed value relative to the 1000 k-NN model ensemble is shown in Fig. 7. Dark 
blues indicate the model overestimated the precipitation, light blues, greens, and yellows 
indicate that the precipitation was well represented, and oranges and reds indicate that the 
precipitation was underestimated. The orange values on the fringe of hurricanes are low 
values shown in Fig. 6. In model validation, the median of the model simulation can be 
used as a reference point for comparative analysis. While exact correspondence with obser-
vations is not expected, a degree of proximity is anticipated, suggesting that the model is 
capable of reasonably simulating the underlying processes.

Using the MSE threshold evaluation of Sect. 4.2, Fig. 8 shows the results for the k-NN 
model precipitation (blue) and a random draw of precipitation frames (red) over low a), 
mid b), and high c) categorized precipitation amounts. This view shows the distribution 
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Fig. 5   Benford’s law (first digit vs. percentage) applied to 1983–2019 PERSIANN-CCS-CDR tropical 
cyclone-centered precipitation as a solid blue line and model median precipitation as red circles
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of MSE errors. Frequency only computes the MSE after averaging the binary image in 
total (Eq. 5). In and out of sample performance is shown for individual tracks in catego-
ries for the three Gulf coast landfalling hurricanes Katrina (K), Rita (R), and Harvey 
(H). In sample (In), the remainder of the track is included as possible neighbors and out 

Fig. 6   Six-h average tropical 
cyclone-centered precipita-
tion over a track within 24 h of 
landfall to the end of the track in 
mm/6 h
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of sample (Out), the remainder of the track is not included. Individual frames are always 
calculated out of sample. The k-NN precipitation model is not calibrated for the precipi-
tation field; therefore, cross-validation is not required. However, the frame predicted is 
not used, which provides cross-validation. The random draw (red) from the full popula-
tion of frames is the same for in or out of sample. Random selects the same number of 

Fig. 7   Percentile of the observed 
sum of tropical cyclone-centered 
precipitation over a track to 
1000 modeled precipitation runs 
summed over a track within 24 h 
of landfall to the end of the track. 
Masked below average 1 mm/6 h 
per 6 h frame. Hurricanes 
Katrina and Rita (2005) contain 
14 frames and Hurricane Harvey 
(2017) 35



Natural Hazards	

1 3

frames as the k-NN model: 14 for Katrina, 14 for Rita, and 35 for Harvey and computes 
the error from the observed frames. The k-NN (blue) shows a slightly lower MSE for 
in-sample tests. Harvey has the lowest out of sample error followed by Rita and Katrina. 
Harvey also has the most frames and was the slowest moving of the three hurricanes. 
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Differences between the three hurricanes are largest for the highest precipitation cat-
egory (c), the largest category.

Figure 9 shows similar to Fig. 8, but for spatial and frequency distributions. Spatial and 
frequency distributions are evaluated by binning the binary data into boxes and compar-
ing those to the observed (Eq. 6). Harvey and Rita have smaller errors than Katrina for the 
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mid and high categories. The center of Katrina is overestimated (Fig. 7a) leading to higher 
errors in Figs. 8 and 9. Katrina has larger errors in the k-NN model due to the high verti-
cal wind shear leading to a rainfall pattern heaviest in the northwestern quadrant (Fig. 6a). 
Sharma and Varma (2022) found in high environmental shear, the eye is shifted at the 
cloud top level toward the heaviest precipitation quadrant. Harvey and Rita have more aver-
age error patterns representative of the full set of Gulf coast landfalling TCs that primarily 
make landfall under a low vertical wind shear environment.

5.4 � Gulf coast landing tropical cyclones 1983–2019

Using the MSE threshold evaluation of Sect.  4.2, Fig.  10 shows the results for all Gulf 
coasting landing tropical cyclones during the PERSIANN-CDR-CCS period of 1983–2019. 
Blue is the k-NN model precipitation, and red is a random draw of precipitation frames over 
low a and b), mid c and d), and high e and f) categorized precipitation amounts. The largest 
median skill separation between model and random appears in the low category spatial and 
frequency distributions (b) and the lowest in the high category frequency only distributions 
(e). Overall, the high precipitation areas (e and f) have a lower MSE than the low precipita-
tion areas (a and b). This is a promising result as the high precipitation category contrib-
utes more to the overall TC amount than the low precipitation category. However, there are 
many more low precipitation pixels than the high.

5.5 � Linking k‑NN precipitation and C3 HITS for sample 2020 year

Individual sample C3  HITS run of 2020 using the observed number of 2020 TCs as 
explained in Sect. 4.5. The N. Atlantic Gulf landfalling TCs are recorded 24 h before land-
fall to the track end in 6-h increments. The observed 2020 had eight Gulf landfalls, but our 
simulation had 6. The six tracks have 124 6-h frames. The median of the 1000 rank draws 
is computed and summed over the 124 frames giving the total precipitation of Gulf coast 
landfalling TCs over the simulated 2020 season (Fig. 11). Many C3 HITS can be run with 
many median or maximum k-NN simulated precipitation seasons resulting in theoretical 
bounds on precipitation amounts from Gulf landfalling hurricanes from a particular season 
for risk analysis.

6 � Summary and future work

The precipitation of Gulf coast landfalls was simulated over the PERSIANN-CDR-CCS 
data period including in-sample and out-of-sample examinations of Hurricanes Katrina, 
Rita, and Harvey with those showing more skill during standard low shear Gulf coast cli-
mate conditions. Historically statistical TC precipitation models of CLIPPER origin have 
significantly underestimated peak precipitation (Marks 2003), but using the PERSIANN-
CDR-CCS data as a base for this new precipitation model, Fig. 7 shows an underestimation 
of the low precipitation (Fig. 6) fringe edges but not in the peak areas.

Benefits of this k-NN precipitation model include the addition of correlated predic-
tors does not cause a problem as it does in a regression model, the precipitation frames 
are selected only by predictors so no cross-verification is needed, and the inclusion of 
the satellite-based neural network and climate data record enhanced precipitation prod-
uct PERSIANN-CDR-CCS results in better-defined precipitation fields than previous 
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satellite or radar-based statistical-based TC precipitation models. Drawbacks include a 
relatively short database of TCs from 1983 to 2019 that had 84 Gulf landfalling tracks. 
This is sufficient for modeling purposes, but more tracks would increase the possible 
choices of precipitation data frame neighbors to select. With time, more tracks can be 
added. Also, a decision was made not to include east coast landfalling tracks due to syn-
optic differences in shear with more encountering mid-latitude systems. Shear changes 
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the precipitation amount and distribution, as illustrated in Fig. 6a in relation to the pre-
cipitation from Hurricane Katrina.

Future work includes fully linking the precipitation model to both the C3 HITS sta-
tistical model of N. Atlantic hurricane tracks and tracks derived using model future sce-
narios and exploring east coast landfalls. The benefit of linkage to the statistical model 
of hurricane tracks is that full distributions of TC precipitation can be used in a risk 
analysis that can then be used with rainfall-runoff models and topographic and land sur-
face models to assess the potential runoff characteristics. Furthermore, the data can be 
combined with a surge model for full risk analysis of TC-driven flood hazards. Across 
all k-NN precipitation model ensembles, potential hot spots of very high precipitation 
corresponding to flat land areas could be highlighted for potential protection. A finan-
cial risk analysis of flooding is beneficial for the insurance industry and government 
entities.

K-NN Precipitation Simulation of C3 HITS 2020 Season
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