
Optimal Inference with a Multidimensional Multiscale Statistic

Pratyay (Ashley) Datta

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2023



© 2023

Pratyay (Ashley) Datta

All Rights Reserved



Abstract

Optimal Inference with a Multidimensional Multiscale Statistic

Pratyay (Ashley) Datta

We observe a stochastic process 𝑌 on [0, 1]𝑑 (𝑑 ≥ 1) satisfying 𝑑𝑌 (𝑡) = 𝑛1/2 𝑓 (𝑡)𝑑𝑡 +

𝑑𝑊 (𝑡), 𝑡 ∈ [0, 1]𝑑 , where 𝑛 ≥ 1 is a given scale parameter (‘sample size’),𝑊 is the standard

Brownian sheet on [0, 1]𝑑 and 𝑓 ∈ 𝐿1( [0, 1]𝑑) is the unknown function of interest. We propose a

multivariate multiscale statistic in this setting and prove that the statistic attains a subexponential

tail bound; this extends the work of ’Dumbgen and Spokoiny (2001)’ who proposed the

analogous statistic for 𝑑 = 1. In the process, we generalize Theorem 6.1 of ’Dumbgen and

Spokoiny (2001)’ about stochastic processes with sub-Gaussian increments on a pseudometric

space, which is of independent interest. We use the proposed multiscale statistic to construct

optimal tests (in an asymptotic minimax sense) for testing 𝑓 = 0 versus (i) appropriate Hölder

classes of functions, and (ii) alternatives of the form 𝑓 = `𝑛I𝐵𝑛
, where 𝐵𝑛 is an axis-aligned

hyperrectangle in [0, 1]𝑑 and `𝑛 ∈ R; `𝑛 and 𝐵𝑛 unknown. In Chapter 3 we use this proposed

multiscale statistics to construct honest confidence bands for multivariate shape-restricted

regression including monotone and convex functions.
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Chapter 1: Multivariate Multiscale Statistics

1.1 Introduction

Let us consider the following continuous multidimensional white noise model:

𝑌 (𝑡) =
√
𝑛

∫ 𝑡1

0
. . .

∫ 𝑡𝑑

0
𝑓 (𝑠1, . . . , 𝑠𝑑) 𝑑𝑠𝑑 . . . 𝑑𝑠1 +𝑊 (𝑡), (1.1)

where 𝑡 := (𝑡1, . . . , 𝑡𝑑) ∈ [0, 1]𝑑 , 𝑑 ≥ 1, {𝑌 (𝑡1, . . . , 𝑡𝑑) : (𝑡1, . . . , 𝑡𝑑) ∈ [0, 1]𝑑} is the observed

data, 𝑓 ∈ 𝐿1( [0, 1]𝑑) is the unknown (regression) function of interest, 𝑊 (·) is the unobserved 𝑑-

dimensional Brownian sheet (see Definition A.1.1), and 𝑛 is a known scale parameter. Estimation

and inference in this model is closely related to that of (multivariate) nonparametric regression

based on sample size 𝑛; see e.g., [1] and [2]. We work with this white noise model as this formu-

lation is more amiable to rescaling arguments; see e.g., [3], [4], [5].

In this paper we develop optimal tests (in an asymptotic minimax sense) based on our proposed

multidimensional multiscale statistic (i.e., 𝑑 ≥ 1) for testing:

(i) 𝑓 = 0 versus a Hölder class of functions with unknown degree of smoothness;

(ii) 𝑓 = 0 against alternatives of the form 𝑓 = `𝑛I𝐵𝑛
, where 𝐵𝑛 is an unknown hyperrectangle in

[0, 1]𝑑 with sides parallel to the coordinate axes (i.e., axis-aligned) and `𝑛 ∈ R is unknown.

Scenario (i) arises quite often in nonparametric regression where the goal is to test whether the

underlying 𝑓 is 0 versus 𝑓 ≠ 0 with unknown smoothness; see e.g., [6], [7], [8], [9] and the ref-

erences therein. Our proposed multiscale statistic, which extends the work of [4], that considered

the analogous statistic for 𝑑 = 1, leads to rate optimal detection in this problem under the uni-

form metric. Moreover, with the knowledge of the smoothness of the underlying 𝑓 , we construct a
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asymptotically minimax test which even attains the exact separation constant (see Section 2.0.1 for

formal definitions and related concepts).

Setting (ii) is a prototypical problem in signal detection — an unknown (constant) signal spread

over an unknown hyperrectangular region — and the goal is to detect the presence of such a signal;

see e.g., [10], [11, 12], [13], [14], [15], [16], [17], [18] for a plethora of examples and applications.

Compared to the several minimax rate optimal tests that have been proposed in the literature for

this problem (see e.g., [11], [13] and [18]), our proposed multiscale test leads to simultaneous

optimal detection of signals both at small and large scales. It may be mentioned in this regard

that [14] proposed a test that leads to optimal detection of hyperrectangles when the responses are

Bernoulli variables. Also recently, [19], using a completely differently approach, proved minimax

optimality over hyperrectangles in the general setting of inverse problems.

We first motivate and introduce our multiscale statistic below (Section 1.1.1) and briefly de-

scribe the asymptotic minimax testing framework. Our main optimality results are discussed in

Section 2.0.1.

1.1.1 Multiscale statistic when 𝑑 ≥ 1

To motivate our multiscale statistic let us first look at the following testing problem:

𝐻0 : 𝑓 = 0 versus 𝐻1 : 𝑓 ≠ 0 ∈ H𝛽,𝐿 , (1.2)

where H𝛽,𝐿 is the Hölder class of function with parameters 𝛽 > 0 and 𝐿 > 0. For 𝛽 ∈ (0, 1] and

𝐿 > 0 the Hölder class H𝛽,𝐿 is defined as

H𝛽,𝐿 :=
{
𝑓 ∈ 𝐿1( [0, 1]𝑑) : | 𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝐿 ∥𝑥 − 𝑦∥𝛽 for all 𝑥, 𝑦 ∈ [0, 1]𝑑

}
. (1.3)

For 𝛽 > 1 the Hölder class H𝛽,𝐿 is defined similarly; see Definition A.1.2.

Our multiscale statistic is based on the idea of kernel averaging. Suppose that 𝜓 : R𝑑 → R is

a measurable function such that:

2



(i) 𝜓 is 0 outside [−1, 1]𝑑;

(ii) 𝜓 ∈ 𝐿2(R𝑑), i.e.,
∫
R𝑑
𝜓2(𝑥)𝑑𝑥 < ∞;

(iii) 𝜓 is of bounded Hardy-Krause (HK)-variation (see Definition A.1.3 in the Appendix) and

(iv)
∫
R𝑑
𝜓(𝑥)𝑑𝑥 > 0.

We call such a function a kernel. For any ℎ := (ℎ1, . . . , ℎ𝑑) ∈ (0, 1/2]𝑑 we define

𝐴ℎ := {𝑡 ∈ R𝑑 : ℎ𝑖 ≤ 𝑡𝑖 ≤ 1 − ℎ𝑖 for 𝑖 = 1, . . . , 𝑑}. (1.4)

For any 𝑡 ∈ 𝐴ℎ we define the centered (at 𝑡) and scaled kernel function 𝜓𝑡,ℎ : [0, 1]𝑑 → R as

𝜓𝑡 ,ℎ (𝑥) := 𝜓
(
𝑥1 − 𝑡1
ℎ1

, . . . ,
𝑥𝑑 − 𝑡𝑑
ℎ𝑑

)
, for 𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ [0, 1]𝑑 . (1.5)

Here ℎ ∈ (0, 1/2]𝑑 is the smoothing bandwidth and 𝑡 ∈ 𝐴ℎ ensures that the scaled kernel function

𝜓𝑡,ℎ is zero outside [0, 1]𝑑 . For a fixed 𝑡 ∈ 𝐴ℎ we can construct a kernel estimator 𝑓ℎ (𝑡) of 𝑓 (𝑡)

based on the data process 𝑌 (·) as

𝑓ℎ (𝑡) :=
1

𝑛1/2(Π𝑑
𝑖=1ℎ𝑖)⟨I, 𝜓⟩

∫
[0,1]𝑑

𝜓𝑡,ℎ (𝑥)𝑑𝑌 (𝑥),

where for any functions 𝑔1, 𝑔2 ∈ 𝐿2(R𝑑), define ⟨𝑔1, 𝑔2⟩ :=
∫
R𝑑
𝑔1(𝑥)𝑔2(𝑥)𝑑𝑥. Also define I :

[−1, 1]𝑑 → R such that I(𝑥) := 1 for all 𝑥 ∈ [−1, 1]𝑑 and 0 otherwise. We consider the normalized

version of the above kernel estimator 𝑓ℎ (𝑡):

Ψ̂(𝑡, ℎ) :=
1

(Π𝑑
𝑖=1ℎ𝑖)1/2 ∥𝜓∥

∫
[0,1]𝑑

𝜓𝑡,ℎ (𝑥)𝑑𝑌 (𝑥), (1.6)

where ∥𝜓∥2 :=
∫
R𝑑
𝜓2(𝑥)𝑑𝑥 < ∞. We can use Ψ̂(𝑡, ℎ) to test

𝐻0 : 𝑓 (𝑡) = 0 versus 𝐻1 : 𝑓 (𝑡) ≠ 0

3



where we would reject the null hypothesis for extreme values of Ψ̂(𝑡, ℎ). So, a naive approach to

testing (1.2) could be to consider sup𝑡∈𝐴ℎ
|Ψ̂(𝑡, ℎ) |. As this test statistic crucially depends on the

choice of the smoothing bandwidth vector ℎ, an approach that bypasses the choice of the tuning

parameter ℎ and also combines information at various bandwidths (scales) would be to consider

the test statistic

sup
ℎ>0

sup
𝑡∈𝐴ℎ

|Ψ̂(𝑡, ℎ) |, (1.7)

where ℎ > 0 is a short-hand for ℎ ∈ (0, 1/2]𝑑 . However, under the null hypothesis (1.2)

sup
ℎ>0

sup
𝑡∈𝐴ℎ

|Ψ̂(𝑡, ℎ) | = ∞ almost surely (a.s.)

as, for a fixed scale ℎ, sup𝑡∈𝐴ℎ
|Ψ̂(𝑡, ℎ) | = 𝑂𝑝 (

√︁
2 log(1/(2𝑑ℎ1 . . . ℎ𝑑))); see e.g., [20]. Thus,

to use the above approach to construct a valid test for (1.2) we need to put the test statistics

sup𝑡∈𝐴ℎ
|Ψ̂(𝑡, ℎ) | at different scales (i.e., ℎ) in the same footing — this leads to the following

definition of the multiscale statistic in 𝑑-dimensions:

𝑇 (𝑌, 𝜓) := sup
ℎ∈(0,1/2]𝑑

sup
𝑡∈𝐴ℎ

|Ψ̂(𝑡, ℎ) | − Γ(2𝑑ℎ1 . . . ℎ𝑑)
𝐷 (2𝑑ℎ1 . . . ℎ𝑑)

(1.8)

where Γ, 𝐷 : (0, 1] → [0,∞) are two functions defined as

Γ(𝑟) := (2 log(1/𝑟))1/2 (1.9)

and

𝐷 (𝑟) := (log(𝑒/𝑟))−1/2 log log(𝑒𝑒/𝑟); (1.10)

see [4]. In Theorem 2.1.1, a main result in this paper, we show that the above multivariate mul-

tiscale statistic 𝑇 (𝑌, 𝜓) is well-defined and is a subexponential random variable for any kernel

function 𝜓 satisfying (i)-(iv) above, when 𝑓 ≡ 0. This result immediately extends the main re-

sult of [4, Theorem 2.1] beyond 𝑑 = 1. Although there has been several proposals that extend

4



the definition and the optimality properties of the multiscale statistic of [4] beyond 𝑑 = 1 (see

e.g., [14], [16], [18]) we believe that our approach has the closest resemblance to [4]. Further,

the exact form of 𝑇 (𝑌, 𝜓) leads to optimal tests for (1.2) and other alternatives (see [18] for more

details).

To show the subexponentiality of the proposed multiscale statistic 𝑇 (𝑊, 𝜓) we prove a general

result about a stochastic process with sub-Gaussian increments on a pseudometric space which may

be of independent interest (see Theorem 2.1.2). This result mirrors [4, Theorem 6.1] but improves

it in two ways: Firstly it assumes a weaker condition on the packing numbers of the pseudometric

space on which the stochastic process is defined, and secondly it proves the subexponentiality

(instead of just the finiteness) of the supremum of the process. This weaker condition on the

packing numbers is crucial to the proof of Theorem 2.1.1; see Remark 2.1.1 where we compare our

result with [4, Theorem 6.1]. Moreover, Lemma 2.1.1 gives a bound on the packing numbers of the

pertinent (to our application) pseudometric space, which we believe is also new; see Remarks 2.1.2

and 2.1.3 where we compare our result with some relevant recent papers.
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Chapter 2: Optimality in Testing Problems

2.0.1 Optimality of the multiscale statistic

Before we describe our main results let us first introduce the asymptotic minimax hypothesis

testing framework. There is an extensive literature on nonparametric testing of the simple hypoth-

esis {0}. As a starting point we refer the readers to [21]. In the nonparametric setting it is usually

assumed that 𝑓 belongs to a certain class of functions F and its distance from the null function

𝑓 = 0 is defined by a seminorm | · |. In this setting, given 𝛼 ∈ (0, 1), the goal is to find a level 𝛼

test 𝜙𝑛 (i.e., E0 [𝜙𝑛 (𝑌 )] ≤ 𝛼) such that

inf
𝑔∈F:|𝑔 |≥𝛿𝜌𝑛

E𝑔 [𝜙𝑛 (𝑌 )] (2.1)

is as large as possible for some 𝛿 > 0 and 𝜌𝑛 > 0 where 𝜌𝑛 → 0 as 𝑛 → ∞ (𝜌𝑛 is a function of

the sample size 𝑛); in the above notation E𝑔 denotes expectation under the alternative function 𝑔.

However, it can be shown that given F and | · |, the constants 𝛿 and 𝜌𝑛 cannot be chosen arbitrarily

if one wants to have a statistically meaningful framework (see the survey papers [22], [23], [24]

for 𝑑 = 1 and [9] for 𝑑 > 1). It turns out that if 𝛿𝜌𝑛 is too small then it is not possible to test

the null hypothesis with nontrivial asymptotic power (i.e., the infimum in (2.1) cannot be strictly

larger than 𝛼 + 𝑜(1)). On the other hand if 𝛿𝜌𝑛 is very large many procedures can test 𝑓 ≡ 0

with significant power (i.e., the infimum in (2.1) goes to 1 as 𝑛 → ∞). Note that at first glance

it may seem like the detection boundary 𝛿𝜌𝑛 may depend on the level of the test 𝛼, but as long

as 𝛼 ∈ (0, 1) the detection boundary generally turns out to be independent of 𝛼; see the survey

papers by [22], [23], [24] for details. In our case also the detection boundary is independent of 𝛼

as illustrated in Theorems 2.2.1 and 2.2.2.

The hypothesis testing problem then reduces to: (a) Finding the largest possible 𝛿𝜌𝑛 such that

6



no test can have nontrivial asymptotic power (i.e., under the alternative 𝑓 such that | 𝑓 | ≤ 𝛿𝜌𝑛, the

asymptotic power is less than or equal to the level 𝛼), and (b) trying to construct test procedures

that can detect signals 𝑓 , with | 𝑓 | > 𝛿𝜌𝑛, with considerable power (power going to 1 as 𝑛 → ∞).

More specifically, 𝛿 and 𝜌𝑛 are defined such that 𝛿𝜌𝑛 is the largest for which, for all 𝜖 > 0, we have

lim sup
𝑛→∞

sup
𝜙𝑛

inf
𝑔∈F:|𝑔 |≥(1−𝜖)𝛿𝜌𝑛

E𝑔 [𝜙𝑛 (𝑌 )] ≤ 𝛼,

where the supremum is taken over all sequence of level 𝛼 tests 𝜙𝑛. In this case 𝜌𝑛 is called the

minimax rate of testing and 𝛿 is called the exact separation constant (see [7], [25] for more details

about minimax testing). On the other hand, we want to find a test 𝜙𝑛 such that

lim
𝑛→∞

inf
𝑔∈F:|𝑔 |≥(1+𝜖)𝛿𝜌𝑛

E𝑔 [𝜙𝑛 (𝑌 )] = 1.

In such a scenario, 𝜙𝑛 is called an asymptotically minimax test. Here we would also like to point

out that if there exists a test 𝜙𝑛 and a constant 𝛿 > 𝛿 such that

lim
𝑛→∞

inf
𝑔∈F:|𝑔 |≥𝛿𝜌𝑛

E𝑔 [𝜙𝑛 (𝑌 )] = 1

then the test 𝜙𝑛 is called a rate optimal test.

In Section 2.2 we show that our proposed multiscale statistic yields an asymptotically minimax

test for the following scenarios:

(i) (Optimality for Hölderian alternatives). Consider testing hypothesis (1.2). If

∥ 𝑓 ∥∞ ≥ 𝑐∗(1 + 𝜖𝑛) (log(𝑒𝑛)/𝑛)
𝛽

2𝛽+𝑑 ,

where 𝑓 belongs to the Hölder class H𝛽,𝐿 with 𝛽 > 0 and 𝐿 > 0, ∥ 𝑓 ∥∞ := sup𝑥∈[0,1]𝑑 | 𝑓 (𝑥) |

denotes the sup-norm of 𝑓 , and 𝑐∗ is a constant (defined explicitly in Theorem 2.2.1), we show that

we can construct a level 𝛼 test based on the multiscale statistic (1.8) that has power converging to
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1, as 𝑛 → ∞, provided 𝜖𝑛 does not go to 0 too fast (see Theorem 2.2.1 for the exact order of 𝜖𝑛).

We note that this multiscale statistic would require the knowledge of 𝛽 but not of 𝐿.

Moreover, we show that if ∥ 𝑓 ∥∞ ≤ 𝑐∗(1 − 𝜖𝑛) (log(𝑒𝑛)/𝑛)𝛽/2𝛽+𝑑 no test of level 𝛼 ∈ (0, 1) can

have nontrivial asymptotic power; see Theorem 2.2.1 for the details. This shows that our proposed

multiscale test is asymptotically minimax with rate of testing 𝜌𝑛 = (log(𝑒𝑛)/𝑛)𝛽/(2𝛽+𝑑) and exact

separation constant 𝛿 = 𝑐∗. As far as we are aware this is the first instance of an asymptotically

minimax test for the Hölder class H𝛽,𝐿 when 𝑑 > 1 (under the supremum norm). Moreover, if the

smoothness 𝛽 of the Hölder class H𝛽,𝐿 is unknown (but 𝛽 ≤ 1) then we can still construct a rate

optimal test for this problem; see Proposition 2.2.1 for the details.

(ii) (Optimality for detecting signals at large/small scales). Consider testing the hypothesis

𝐻0 : 𝑓 = 0 versus 𝐻1 : 𝑓 = `𝑛I𝐵𝑛
, (2.2)

where `𝑛 ≠ 0 ∈ R and

𝐵𝑛 ≡ 𝐵∞(𝑡 (𝑛) , ℎ(𝑛)) := {𝑥 ∈ [0, 1]𝑑 : |𝑥𝑖 − 𝑡 (𝑛)𝑖 | < ℎ
(𝑛)
𝑖

for all 𝑖 = 1, . . . , 𝑑}

are unknown, for some ℎ(𝑛) ∈ (0, 1/2]𝑑 and 𝑡 (𝑛) ∈ 𝐴ℎ (𝑛) , and I𝐵𝑛
denotes the indicator of the hy-

perrectangle 𝐵𝑛. First, consider the scenario lim inf𝑛→∞ |𝐵𝑛 | > 0 where |𝐵𝑛 | denote the Lebesgue

measure of 𝐵𝑛. Then, if lim𝑛→∞
√
𝑛|`𝑛 | → +∞, we can construct a level 𝛼 test based on the multi-

scale statistic (1.8) that has power converging to 1 as 𝑛→∞; see Theorem 2.2.2. Further, we show

that, if lim sup𝑛→∞
√
𝑛|`𝑛 | < ∞, no test of level 𝛼 can detect the alternative with power going to 1.

Thus, the multiscale test is optimal for detecting signals on large scales.

On the other hand, let us now consider the case lim𝑛→∞ |𝐵𝑛 | = 0. If

|`𝑛 |
√︁
𝑛|𝐵𝑛 | ≥ (1 + 𝜖𝑛)

√︁
2 log(1/|𝐵𝑛 |), for all 𝑛,

we can construct a test of level 𝛼, based on the proposed multiscale statistic, that has power con-
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verging to 1 as 𝑛 → ∞, provided 𝜖𝑛 does not go to 0 too fast (see Theorem 2.2.2). Furthermore,

we can show that if

|`𝑛 |
√︁
𝑛|𝐵𝑛 | = (1 − 𝜖𝑛)

√︁
2 log(1/|𝐵𝑛 |), for all 𝑛,

no test can detect the signal reliably with nontrivial power (i.e., for any level 𝛼 test 𝜙𝑛 there exists

a signal 𝑓𝑛 of the above described strength such that 𝜙𝑛 will fail to detect 𝑓𝑛 with asymptotic

probability at least 1 − 𝛼); see Theorem 2.2.2 for the details. This shows that our multiscale test is

asymptotically minimax for signals at small scales.

2.0.2 Literature review and connection to existing works

Our multiscale statistic (1.8) can be thought of as a penalized scan statistic, as it is based on the

maximum of an ensemble of local test statistics |Ψ̂(𝑡, ℎ) |, penalized and properly scaled. Scan-type

procedures have received much attention in the literature over the past few decades. Examples of

such procedures can be found in [26], [27], [28], [29], [30], [31] etc. All the above mentioned

papers consider 𝑑 = 1 and no penalization term (like Γ(·) in our case) was used. Asymptotic

properties of the scan statistic have been studied expensively. In [30] and [32] the authors give

asymptotic approximations of the distribution of the scan statistic when 𝑑 = 1. For 𝑑 = 2, similar

results can be found in [10], [31], [33], among others. Recently in [34] the authors give exact

asymptotics for the scan statistic for any dimension 𝑑.

In all of the above papers it is noted that the scan statistic is dominated by small scales; this

creates a problem for detecting large scale signals. One common proposal to fix this problem is

to modify the scan statistic so that instead of the maximum over all scales we look at the max-

imum over scales that are in an appropriate interval containing the true scale of the signal; see

e.g., [30], [34]. In particular, the last two papers show that if the extent of the signal is of a certain

order (log 𝑛) then this approach leads to power comparable to an oracle. An obvious drawback with

the above approach is that we need to have some prior knowledge on which scales the signal(s)
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may be present. In contrast, our multiscale method does not require any such knowledge. [19]

used a multiple testing procedure to obtain optimal detection in both large and small hyperrectan-

gles in the general setting of inverse problems. Our approach, in fact, can also be seen as a form of

multiple testing procedure.

Another approach that has been proposed to optimally detect signals on both large and small

scales is to use different critical values (of the scan statistic) to test for signals at different scales

separately (see e.g., [14], [16]) and use multiple testing procedures (see [35] and the references

within) to calibrate the method. Here we would like to note that most methods, including our

multiscale approach, that try to detect signals optimally for both large and small scales suffers

from a loss of power in either small or large compared to methods that are fine tuned for either

scales. Our method sacrifices power at small scales (compared to the unpenalized scan statistic) in

favor of optimal detection at all scales.

Conceptually, our work is most related to that of [4], where the authors proposed our multiscale

statistic for 𝑑 = 1. Thus, our work can be thought of as a generalization of [4] to multidimension

(𝑑 > 1).

2.1 Multidimensional multiscale statistic

Let us first recall the definition of the multivariate multiscale statistic 𝑇 (𝑌, 𝜓) given in (1.8).

The following theorem, our main result in this section, shows that the multiscale statistic 𝑇 (𝑌, 𝜓)

is well-defined and attains a subexponential tail bound for any kernel function 𝜓; see Appendix

A.3 for a proof.

Theorem 2.1.1 Let 𝜓 be a kernel function satisfying (i)-(iv) in the Introduction. For a positive

vector ℎ := (ℎ1, . . . , ℎ𝑑) > 0, let 𝐴ℎ be as defined in (1.4). For 𝑡 ∈ 𝐴ℎ, let 𝜓𝑡,ℎ (·) and Ψ̂(𝑡, ℎ) be as

defined in (1.5) and (1.6), respectively. Consider the statistic 𝑇 (𝑊, 𝜓) as defined in (1.8), where

𝑊 (·) is the standard Brownian sheet on [0, 1]𝑑 . Then, almost surely, 𝑇 (𝑊, 𝜓) < ∞, i.e., 𝑇 (𝑊, 𝜓)

is a tight random variable. Moreover, there exists constants 𝑐0 and 𝑐1 depending on the kernel 𝜓

such that P(𝑇 (𝑊, 𝜓) > 𝑢) ≤ 𝑐0 exp(−𝑢/𝑐1) for all 𝑢 > 0.
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Theorem 2.1.1 immediately extends the main result of [4, Theorem 2.1] beyond 𝑑 = 1. The proof

of the above theorem crucially relies on the following two results. We first introduce some notation.

Definition 2.1.1 (Packing number) For any pseudometric space (ℱ, 𝜌) and 𝜖 > 0, the packing

number 𝑁 (𝜖,ℱ) is defined as the supremum of the number of elements in ℱ
′ where ℱ

′ ⊆ ℱ and

for all 𝑎 ≠ 𝑏 ∈ ℱ′ we have 𝜌(𝑎, 𝑏) > 𝜖.

We will prove Theorem 2.1.1 as a consequence of the following more general result about

stochastic processes with sub-Gaussian increments on some pseudometric space (see Section A.2

for its proof).

Theorem 2.1.2 Let 𝑋 be a stochastic process on a pseudometric space (ℱ, 𝜌) with continuous

sample paths. Suppose that the following three conditions hold:

(a) There is a function 𝜎 : ℱ → (0, 1] and a constant 𝐾 ≥ 1 such that

P
(
𝑋 (𝑎) > 𝜎(𝑎)[

)
≤ 𝐾 exp(−[2/2) ∀[ > 0, ∀ 𝑎 ∈ ℱ.

Moreover, 𝜎2(𝑏) ≤ 𝜎2(𝑎) + 𝜌2(𝑎, 𝑏), ∀ 𝑎, 𝑏 ∈ ℱ.

(b) For some constants 𝐿, 𝑀 ≥ 1,

P
(
|𝑋 (𝑎) − 𝑋 (𝑏) | > 𝜌(𝑎, 𝑏)[

)
≤ 𝐿 exp(−[2/𝑀) ∀[ > 0, ∀ 𝑎, 𝑏 ∈ ℱ.

(c) For some constants 𝐴, 𝐵,𝑉, 𝑝 > 0,

𝑁 ((𝛿𝑢)1/2, {𝑎 ∈ ℱ : 𝜎2(𝑎) ≤ 𝛿}) ≤ 𝐴𝑢−𝐵𝛿−𝑉 (log(𝑒/𝛿))𝑝 ∀𝑢, 𝛿 ∈ (0, 1] .

Then the random variable

𝑆(𝑋) := sup
𝑎∈ℱ

𝑋2(𝑎)/𝜎2(𝑎) − 2𝑉 log(1/𝜎2(𝑎))
log log(𝑒𝑒/𝜎2(𝑎))

(2.3)
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is subexponential. More precisely, P(𝑆(𝑋) > 𝑢) ≤ b1 exp(−𝑢/b2) for all 𝑢 > 0, for some

b1, b2 > 0 depending only on the constants 𝐾, 𝐿, 𝑀, 𝐴, 𝐵, 𝑝 and 𝑉 .

Remark 2.1.1 (Connection to [4]) A similar result to Theorem 2.1.2 above appears in [4, Theo-

rem 6.1]. However note that there is a subtle and important difference: The bound on the packing

number in (c) of Theorem 2.1.2 involves the additional logarithmic factor (log(𝑒/𝛿))𝑝 which is not

present in [4, Theorem 6.1]. In fact, we show that even with this additional logarithmic factor, the

random variable 𝑆(𝑋), defined in (2.3), involves the same penalization term 2𝑉 log(1/𝜎2(𝑎)) as

in [4, Theorem 6.1]. Hence, we can think of Theorem 2.1.2 as a generalization of [4, Theorem

6.1]. Here we would also like to point out that our result improves [4, Theorem 6.1] by proving the

subexponentiality of the random variable 𝑆(𝑋) instead of just its finiteness.

To apply Theorem 2.1.2 to prove Theorem 2.1.1 we need to define a suitable pseudometric space

(ℱ, 𝜌) and a stochastic process, and verify that conditions (a)-(c) in Theorem 2.1.2 hold. In that

vein, let us define the set

ℱ :=
{
(𝑡, ℎ) ∈ R𝑑 × (0, 1/2]𝑑 : ℎ𝑖 ≤ 𝑡𝑖 ≤ 1 − ℎ𝑖, for all 𝑖 = 1, 2, . . . , 𝑑

}
with the following pseudometric

𝜌2((𝑡, ℎ), (𝑡′, ℎ′)) := |𝐵∞(𝑡, ℎ) △ 𝐵∞(𝑡′, ℎ′) |, for (𝑡, ℎ), (𝑡′, ℎ′) ∈ ℱ,

where 𝐵∞(𝑡, ℎ) := Π𝑑
𝑖=1(𝑡𝑖 − ℎ𝑖, 𝑡𝑖 + ℎ𝑖), 𝐴 △ 𝐵 := (𝐴 ∩ 𝐵𝑐) ∪ (𝐴𝑐 ∩ 𝐵) denotes the symmetric

difference of the sets 𝐴 and 𝐵, and |𝐴| denotes the Lebesgue measure of the set 𝐴. Also, define

𝜎2(𝑡, ℎ) := |𝐵∞(𝑡, ℎ) | = 2𝑑Π𝑑
𝑖=1ℎ𝑖, for (𝑡, ℎ) ∈ ℱ.

The following important result shows that indeed for the above defined pseudometric space (ℱ, 𝜌)

condition (c) of Theorem 2.1.1 holds; see Section A.2.1 for its proof.
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Lemma 2.1.1 Let ℱ, 𝜌(·, ·) and 𝜎(·) be as described above. Then, for all 𝑢, 𝛿 ∈ (0, 1],

𝑁

(
(𝑢𝛿)1/2, {(𝑡, ℎ) ∈ ℱ : 𝜎2(𝑡, ℎ) ≤ 𝛿}

)
≤ 𝐾𝑢−2𝑑𝛿−1(log(𝑒/𝛿))𝑑−1 (2.4)

for some constant 𝐾 depending only on 𝑑.

Remark 2.1.2 Here we would like to point out that Lemma 2.1.1 shows that condition (c) of The-

orem 2.1.2 holds with 𝐵 = 2𝑑, 𝑝 = 𝑑 − 1 and most importantly for 𝑉 = 1, which was also the case

when 𝑑 = 1 (as shown in [4]). An equivalent result for 𝑑 = 2 is proved in [14, Theorem 1].

Remark 2.1.3 (Connection to [36]) Note that a similar multiscale statistic, as in (1.8) without

the log log(𝑒𝑒/(2𝑑ℎ1 . . . ℎ𝑑)) multiplier in the denominator, has been proposed in [36] where the

subexponentiality of their statistic was also proved. Here we would like to point out the main dif-

ferences between the two papers. Translated to our setting, [36] scans over hyperrectangles such

that each side is greater than a prespecified number (1/𝐿), whereas our multiscale statistic (1.8)

scans over hyperrectangles of any length. As our multiscale statistic scans over hyperrectangles of

any length we can optimally test for signals distributed over hyperrectangles on any scale, which

would not be possible for the test statistic proposed in [36]; see Section 2.2.2 for more details.

Compare the numerator of our multiscale statistic (1.8) with the multiscale statistic proposed

in [18, Equation (6)]. Translated to our setting, in [18] the authors propose a penalization term

Γ𝑉 (2𝑑ℎ1 . . . ℎ𝑑) where Γ𝑉 : (0, 1] → (0,∞) is defined as

Γ𝑉 (𝑟) := (2𝑉 log(1/𝑟))1/2.

In [18, Section 1.1] the authors also recommend to choose the constant 𝑉 in the penalization term

Γ𝑉 as small as possible for optimal testing. [18, Example 2.3] recommend choosing 𝑉 = 1 by

appealing to Lemma 2.1.1 of our paper. The following proposition shows that indeed 𝑉 = 1 is the

smallest possible permissible value; see Appendix A.4.1 for a proof.
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Proposition 2.1.1 Suppose 𝑉 < 1. Let Γ𝑉 and ℱ be as defined above. Then we have

sup
(𝑡,ℎ)∈ℱ

|Ψ̂(𝑡, ℎ) | − Γ𝑉 (2𝑑ℎ1 . . . ℎ𝑑) = ∞ a.s.

Thus, sup(𝑡,ℎ)∈ℱ
|Ψ̂(𝑡,ℎ) |−Γ𝑉 (2𝑑ℎ1...ℎ𝑑)

𝐷 (2𝑑ℎ1...ℎ𝑑)
= ∞ a.s.

2.2 Optimality of the multiscale statistic in testing problems

In this section we prove that we can construct tests based on the multiscale statistic that are

optimal for testing (1.2) and (2.2). For both the testing problems we can define a multiscale test

based on kernel 𝜓 as follows: Let

^𝛼,𝜓 = inf{𝑐 ∈ R : P(𝑇 (𝑊, 𝜓) > 𝑐) ≤ 𝛼},

where 𝑊 is the standard Brownian sheet on [0, 1]𝑑 . For notational simplicity we would denote

^𝛼,𝜓 by ^𝛼 from now on.

For testing (1.2) and (2.2) a test of level 𝛼 can be defined as follows:

Reject 𝐻0 if and only if 𝑇 (𝑌, 𝜓) > ^𝛼 .

Let us call this testing procedure the multiscale test. Although any kernel 𝜓 can be used to construct

the above test, in Sections 2.2.1 and 2.2.2 we show that specific choices of the kernel function 𝜓

lead to asymptotically minimax tests.

2.2.1 Optimality against Hölder classes of functions

Let us recall the definition of the Hölder class of functions H𝛽,𝐿 , for 𝛽 ∈ (0, 1] and 𝐿 > 0, as

in (1.3); see Definition A.1.2 for the formal definition of H𝛽,𝐿 for any 𝛽 > 0. Let 𝜓𝛽 : R𝑑 → R, for
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0 < 𝛽 < ∞, be the unique solution of the following optimization problem:

Minimize ∥𝜓∥ over all 𝜓 ∈ H𝛽,1 with 𝜓(0) ≥ 1. (2.5)

Elementary calculations show that for 0 < 𝛽 ≤ 1, we have

𝜓𝛽 (𝑥) = (1 − ∥𝑥∥𝛽)I(∥𝑥∥ ≤ 1);

see Appendix A.4.2 for a proof. For 𝛽 > 1, 𝜓𝛽 can be calculated numerically. We consider the

kernel 𝜓𝛽, for 𝛽 > 0, described above and state our first optimality result for testing (1.2); see

Appendix A.5.1 for a proof.

Theorem 2.2.1 Let 𝑇𝛽 ≡ 𝑇 (𝑌, 𝜓𝛽) be the multiscale statistic defined in (1.8) with kernel 𝜓𝛽, for

0 < 𝛽 < ∞. Define

𝜌𝑛 :=
(
log 𝑛
𝑛

) 𝛽

2𝛽+𝑑

and

𝑐∗ ≡ 𝑐∗(𝛽, 𝐿) :=

(
2𝑑𝐿𝑑/𝛽

(2𝛽 + 𝑑)
𝜓𝛽2

) 𝛽

2𝛽+𝑑

.

Then, for arbitrary 𝜖𝑛 > 0 with 𝜖𝑛 → 0 and 𝜖𝑛
√︁

log 𝑛→∞ as 𝑛→∞, the following hold:

(a) For any arbitrary sequence of tests 𝜙𝑛 with level 𝛼 for testing (1.2), we have

lim sup
𝑛→∞

inf
𝑔∈H𝛽,𝐿 :∥𝑔∥∞=(1−𝜖𝑛)𝑐∗𝜌𝑛

E𝑔 [𝜙𝑛 (𝑌 )] ≤ 𝛼;

(b) for 𝐽𝑛 := [(𝑐∗𝜌𝑛/𝐿)1/𝛽, 1 − (𝑐∗𝜌𝑛/𝐿)1/𝛽]𝑑 , we have

lim
𝑛→∞

inf
𝑔∈H𝛽,𝐿 :∥𝑔∥𝐽𝑛,∞≥(1+𝜖𝑛)𝑐∗𝜌𝑛

P𝑔 (𝑇𝛽 > ^𝛼) = 1

where ∥𝑔∥𝐽𝑛,∞ := sup𝑡∈𝐽𝑛 |𝑔(𝑡) |.
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The above result generalizes [4, Theorem 2.2] beyond 𝑑 = 1. Theorem 2.2.1 can be interpreted

as follows: (a) for every test 𝜙𝑛 there exists a function with supremum norm (1 − 𝜖𝑛)𝑐∗𝜌𝑛 which

cannot be detected with nontrivial asymptotic power; whereas (b) when we restrict to functions

with signal strengths (i.e., supremum norm in the interior of [0, 1]𝑑) just a bit larger than the above

threshold, our proposed multiscale test is able to detect every such function with asymptotic power

1. In this sense our proposed test is optimal in detecting departures from the zero function for

Hölder classes H𝛽,𝐿 . We note here that to calculate 𝑇𝛽 we need the knowledge of 𝛽 but we do not

need to know 𝐿.

If 𝛽 is unknown, but is less than or equal to 1, we can use 𝑇1 as a test statistic for testing (1.2).

Although the resulting test is not asymptotically minimax, the test is still rate optimal. The follow-

ing result formalizes this; see Appendix A.5.1 for its proof.

Proposition 2.2.1 Consider testing (1.2) where 𝛽 ≤ 1 is unknown. Let us recall the definition of

𝜓1 in (2.5). Let 𝑇1 ≡ 𝑇 (𝑌, 𝜓1) be the multiscale statistic defined in (1.8) with kernel 𝜓1. Define

𝜌𝑛 :=
(
log 𝑛
𝑛

) 𝛽

2𝛽+𝑑

and let 𝑀 be any constant such that 𝑀 >

(
2𝑑𝐿𝑑/𝛽 ∥𝜓1∥2
(2𝛽+𝑑)⟨𝜓1,𝜓𝛽⟩2

) 𝛽

2𝛽+𝑑
. Let 𝐽𝑛 := [(𝑀𝜌𝑛/𝐿)1/𝛽, 1 −

(𝑀𝜌𝑛/𝐿)1/𝛽]𝑑 . Then we have

lim
𝑛→∞

inf
𝑔∈H𝛽,𝐿 :∥𝑔∥𝐽𝑛,∞≥𝑀𝜌𝑛

P𝑔 (𝑇 > ^𝛼) = 1

where ^𝛼 is the (1 − 𝛼) quantile of the multiscale statistic 𝑇 (𝑌, 𝜓1) under the null hypothesis.

Remark 2.2.1 Instead of using the test statistic 𝑇𝛽 if we use the test statistic

𝑇★𝛽 := sup
ℎ∈(0,1/2]𝑑

sup
𝑡∈𝐴ℎ

[
|Ψ̂(𝑡, ℎ) | − Γ(2𝑑ℎ1 . . . ℎ𝑑)

]
(2.6)

with the kernel 𝜓𝛽, then the same conclusions as that of Theorem 2.2.1 and Proposition 2.2.1 would
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hold. Thus the multiscale statistic 𝑇★
𝛽

is also optimal against Hölderian alternatives.

2.2.2 Optimality against axis-aligned hyperrectangular signals

In Theorem 2.2.1 we proved the optimality of the multiscale test when the supremum norm

of the signal is large. A natural question that arises next is: “What if the signal is not peaked

but distributed evenly on some subset of [0, 1]𝑑?". To answer this question we look at the test-

ing problem (2.2), and establish below the optimality of our multiscale test in this setting (see

Appendix A.5.2 for a proof of Theorem 2.2.2). Note that when 𝑑 = 1 similar optimality re-

sults are known for the multiscale statistic; see [17, Theorem 2.6] and [16, Section 4]. For

𝑑 > 1 see [14] for a similar optimality result when the response variable is Bernoulli. For

ℎ = (ℎ1, . . . , ℎ𝑑) ∈ (0, 1/2]𝑑 , let us first define

ℬℎ := {𝐵 ⊆ [0, 1]𝑑 : 𝐵 = Π𝑑
𝑖=1(𝑡𝑖 − ℎ𝑖, 𝑡𝑖 + ℎ𝑖) for some 𝑡 = (𝑡1, . . . , 𝑡𝑑) ∈ 𝐴ℎ}.

Theorem 2.2.2 Let 𝑇 ≡ 𝑇 (𝑌, 𝜓0) where 𝜓0 = I[−1,1]𝑑 . Let 𝑓𝑛 = `𝑛I𝐵𝑛
where 𝐵𝑛 is an axis-aligned

hyperrectangle and let |𝐵𝑛 | denote the Lebesgue measure of the set 𝐵𝑛. Then we have the following

results:

(a) Suppose that lim inf𝑛→∞ |𝐵𝑛 | > 0. Let 𝜙𝑛 be any test of level 𝛼 ∈ (0, 1) for (2.2). Then, for

any 𝑓𝑛 = `𝑛I𝐵𝑛
such that lim sup𝑛 |`𝑛 |

√︁
𝑛|𝐵𝑛 | < ∞, we have

lim sup
𝑛→∞

E 𝑓𝑛 [𝜙𝑛 (𝑌 )] < 1.

Moreover, for the proposed multiscale test based on 𝑇 , we have

lim
𝑛→∞

inf
𝑓𝑛:lim |`𝑛 |

√
𝑛|𝐵𝑛 |=∞

P 𝑓𝑛 (𝑇 > ^𝛼) = 1.
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(b) Now let us look at the case lim𝑛→∞ |𝐵𝑛 | = 0. Let ℎ𝑛 = (ℎ1,𝑛, . . . , ℎ𝑑,𝑛) ∈ (0, 1/2]𝑑 be any

sequence of points such that lim𝑛→∞ Π𝑑
𝑖=1ℎ𝑖,𝑛 → 0. Let

G−𝑛 := { 𝑓𝑛 = `𝑛I𝐵𝑛
: |`𝑛 |

√︁
𝑛|𝐵𝑛 | = (1 − 𝜖𝑛)

√︁
2 log(1/|𝐵𝑛 |), 𝐵𝑛 ∈ ℬℎ𝑛}

with 𝜖𝑛 → 0 and 𝜖𝑛
√︁

2 log(1/|𝐵𝑛 |) → ∞. (Here we have omitted the dependence of ℎ𝑛 in

the notation G−𝑛 ). If 𝜙𝑛 be any test of level 𝛼 ∈ (0, 1) for (2.2) then we have

lim sup
𝑛→∞

inf
𝑓𝑛∈G−𝑛

E 𝑓𝑛 [𝜙𝑛 (𝑌 )] ≤ 𝛼.

Moreover, let

G+𝑛 := { 𝑓𝑛 = `𝑛I𝐵𝑛
: |`𝑛 |

√︁
𝑛|𝐵𝑛 | ≥ (1 + 𝜖𝑛)

√︁
2 log(1/|𝐵𝑛 |), 𝐵𝑛 ∈ ℬℎ𝑛}.

Then for our multiscale test we have

lim
𝑛→∞

inf
𝑓𝑛∈G+𝑛

P 𝑓𝑛 (𝑇 > ^𝛼) = 1.

Remark 2.2.2 If we use the test statistic 𝑇★, as defined in (2.6) (with the kernel 𝜓0), instead of 𝑇

in Theorem 2.2.2, the optimality results described in the theorem still hold.

Our first result in Theorem 2.2.2 shows that as long as lim inf𝑛→∞ |𝐵𝑛 | > 0, for any test to have

power converging to 1 we need to have lim |`𝑛 |
√︁
𝑛|𝐵𝑛 | = ∞, in which case our multiscale test

achieves asymptotic power 1. Thus our multiscale test is optimal for detecting large scale sig-

nals. The next result can be interpreted as follows: (i) For signals with small spatial extent (i.e.,

lim𝑛→∞ |𝐵𝑛 | = 0) if the signal strength is too small (|`𝑛 |
√︁
𝑛|𝐵𝑛 | ≤ (1 − 𝜖𝑛)

√︁
2 log(1/|𝐵𝑛 |)) no test

can detect the signal reliably with nontrivial probability (i.e., for every test 𝜙𝑛 there exist a signal

such that 𝜙𝑛 will fail to detect it with probability 1 − 𝛼 + 𝑜(1)); (ii) on the other hand, if the signal

strength is a bit larger than the threshold (i.e., the exact separation constant) described above our
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multiscale test will detect the signal with asymptotic power 1. This shows that our multiscale test

achieves optimal detection for signals with small spatial footprint. We would like to emphasize

here that by using the same exact test (using the same kernel 𝜓0) we are able to optimally detect

both large and small scale signals. In [19], the authors used a multiple testing method to achieve

optimal detection in both large and small scale hyperrectangles.

Remark 2.2.3 We would like to point out that the proofs for the minimax lower bound that have

been derived for the two scenarios in Theorems 2.2.1 and 2.2.2 follow the standard techniques that

have been used in [22], [23], [24], [7], [4], [11], [9], [12], [17], etc. Note that although all the

above cited papers have similar proof techniques there is quite some variation in the strength of

their results. Our results and proofs most closely follow that of [4].

Comparison with the scan and average likelihood ratio statistics when 𝑑 = 1

When 𝑑 = 1 there exists an extensive literature on the optimal detection threshold for signals of

the form 𝑓𝑛 = `𝑛I𝐵𝑛
, where now 𝐵𝑛 ⊆ [0, 1] is an interval. In [16] the authors compare the perfor-

mance of the scan statistic (i.e., the statistic (1.7) in the discrete setup with 𝜓 = I[−1,1]) and the aver-

age likelihood ratio (ALR) statistic (which is the discrete analogue of
∫ 1/2

0

∫ 1−ℎ
ℎ

exp[|Ψ̂(𝑡, ℎ) |2/2]𝑑𝑡 𝑑ℎ);

see Section 4 for a description and comparison of the two competing methods with our multiscale

test when 𝑑 = 2.

When lim inf𝑛→∞ |𝐵𝑛 | > 0 the scan statistic can only detect the signal, with asymptotic power

1, when |`𝑛 |
√
𝑛 ≥ (1+𝜖𝑛)

√︁
2 log 𝑛, whereas the ALR statistic (and the proposed multiscale statistic)

can detect the signal whenever we have |`𝑛 |
√
𝑛 → ∞ (which is a less stringent condition). Note

that |`𝑛 |
√
𝑛 → ∞ is also required for any test to detect the signal with asymptotic power 1. This

shows that the scan statistic is not optimal for detecting large scale signals.

On the other hand if lim𝑛→∞ |𝐵𝑛 | = 0, the scan statistic can detect the signal if |`𝑛 |
√︁
𝑛|𝐵𝑛 | ≥

(1 + 𝜖𝑛)
√︁

2 log 𝑛 whereas the ALR statistic can detect the signal when |`𝑛 |
√︁
𝑛|𝐵𝑛 | ≥

√
2(1 +

𝜖𝑛)
√︁

2 log(1/|𝐵𝑛 |). The optimal detection threshold in this scenario is |`𝑛 |
√︁
𝑛|𝐵𝑛 | ≥ (1+𝜖𝑛)

√︁
2 log(1/|𝐵𝑛 |),

which is attained by the multiscale statistic. Thus that scan statistic is optimal in detecting signals
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only when |𝐵𝑛 | = 𝑂 (1/𝑛). The ALR statistic requires the signal to be at least
√

2 times the (de-

tectable) threshold. This shows that neither the standard scan or the ALR is able to achieve the

optimal threshold for detecting small scale signals.

[17, Theorem 2.6] shows the optimality of the multiscale statistic (which is a modification of

the scan statistic) in detecting signals in both cases when 𝑑 = 1. In [37] and [16] the authors

propose a condensed ALR statistic which, much like the multiscale statistic, is able to attain the

optimal threshold for detection in both regimes of 𝐵𝑛. As far as we are aware the condensed

ALR statistic has not been extended beyond 𝑑 = 1 and therefore whether it achieves the optimal

threshold for 𝑑 > 1 is not known. In summary, Theorem 2.2.2 shows that our multidimension

multiscale test is asymptotically minimax even when 𝑑 > 1.

2.2.3 The discrete analogue of the multiscale statistic

Although thus far we have defined and analyzed the multiscale statistic arising from a contin-

uous white noise model, in real applications we have to invariably deal with a discrete analogue

of this problem. In this subsection we briefly describe this discrete setting and comment on the

applicability of our results.

Let us start with the connection to nonparametric regression on gridded design. Let 𝑥1, . . . , 𝑥𝑛 ∈

R𝑑 be an enumeration of the 𝑚×· · ·×𝑚 uniform grid𝐺𝑚 := {1/𝑚, 2/𝑚, . . . , (𝑚−1)/𝑚, 1}𝑑 where

𝑚𝑑 = 𝑛. Let us look at the following nonparametric regression problem:

𝑌𝑖 = 𝑓 (𝑥𝑖) + 𝜖𝑖, for 𝑖 = 1, . . . , 𝑛 (2.7)

where 𝑓 : [0, 1]𝑑 → R is the unknown regression function and 𝜖𝑖’s are i.i.d. standard normal

random variables. For a kernel function 𝜓 : R𝑑 → R and ℎ, 𝑡 ∈ 𝐺𝑚, such that 𝑡 − ℎ, 𝑡 + ℎ ∈ 𝐺𝑚 we

can define a kernel estimator 𝑓ℎ of 𝑓 as

𝑓ℎ (𝑡) =
∑
𝑖:𝑥𝑖∈𝐵∞ (𝑡,ℎ) 𝑌𝑖 𝜓

(
(𝑥𝑖 − 𝑡)/ℎ

)∑
𝑖:𝑥𝑖∈𝐵∞ (𝑡,ℎ) 𝜓

(
(𝑥𝑖 − 𝑡)/ℎ

)
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where by (𝑢1, . . . , 𝑢𝑑)/(ℎ1, . . . , ℎ𝑑) we mean the vector (𝑢1/ℎ1, . . . , 𝑢𝑑/ℎ𝑑). We can also define

the standardized kernel estimator as

Ψ̂𝑛 (𝑡, ℎ) =
∑
𝑖:𝑥𝑖∈𝐵∞ (𝑡,ℎ) 𝑌𝑖 𝜓

(
(𝑥𝑖 − 𝑡)/ℎ

)√︃∑
𝑖:𝑥𝑖∈𝐵∞ (𝑡,ℎ) 𝜓

2 ((𝑥𝑖 − 𝑡)/ℎ) .
Then the multiscale statistic for this regression problem reduces to

𝑇𝑛 (𝑌, 𝜓) := sup
ℎ∈𝐺𝑚:𝑡−ℎ,𝑡+ℎ∈𝐺𝑚

sup
𝑡∈𝐺𝑚

|Ψ̂𝑛 (𝑡, ℎ) | − Γ ( |𝐵∞(𝑡, ℎ) ∩ 𝐺𝑚 |)
𝐷 ( |𝐵∞(𝑡, ℎ) ∩ 𝐺𝑚 |) (2.8)

where |𝐵∞(𝑡, ℎ) ∩ 𝐺𝑚 | now denotes the number of elements in 𝐵∞(𝑡, ℎ) ∩ 𝐺𝑚; Γ(·) and 𝐷 (·)

are defined in (1.9) and (1.10) respectively. Note that 𝑇 (𝑌, 𝜓) (as defined in (1.8)) stochastically

dominates 𝑇𝑛 (𝑌, 𝜓) and thus 𝑇𝑛 (𝑌, 𝜓) is well-defined and finite a.s.

Let us now comment on the computation of the discrete multiscale statistic. Observe that a

naive approach to computing 𝑇𝑛 (𝑌, 𝜓) will involve taking the maximum over 𝑂 (𝑛2) ≡ 𝑂 (𝑚2𝑑)

rectangles. This can indeed be prohibitive for 𝑛 large. A natural idea is to consider a well chosen

subset of all possible hyperrectangles when taking the supremum; we refer the reader to [14]

where such a suitably rich collection (of the order of 𝑂 (𝑛 log 𝑛)) of hyperrectangles is proposed

and analyzed. We believe that such an approximation of the multiscale statistic will still preserve

its optimality properties (up to logarithmic factors in the rates).
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Chapter 3: Confidence bands for multivariate shape-restricted functions

3.1 Introduction

The area of shape-restricted regression is concerned with nonparametric estimation of a re-

gression function under natural shape constraints such as monotonicity, convexity, unimodal-

ity/quasiconvexity, etc. This particular field in the statistical literature has a long history dating

back to influential papers such as [38, 39, 40, 41, 42]; also see [43, 44, 45, 46] for book length

treatments on this topic. Indeed, such shape constraints arise naturally in various contexts: isotonic

regression methods are widely employed in many real-life applications ranging from predicting ad

click–through rates [47] to gene–gene interaction search [48]; convex regression arises in produc-

tivity analysis [49], efficient frontier methods [50], in stochastic control [51], etc. In the recent

years there has been much activity on estimation of such shape-constrained regression functions

with multivariate predictors; see e.g., [52, 53, 54, 55]. A primary focus of many of the recent

papers has been on consistent estimation of the unknown regression function via derivation of fi-

nite sample risk bounds quantifying the performance of estimation; see [56, 57, 58, 59, 60, 61,

62, 54, 63]. The more intricate problem of carrying out statistical inference in these multivariate

shape-constrained problems, e.g., construction of confidence sets, is vastly unexplored.

In this paper we consider construction of honest confidence sets for shape-constrained regres-

sion problems with multiple covariates with special emphasis to: (i) coordinate-wise isotonic func-

tions, and (ii) convex functions. Our proposed methodology, which extends the ideas of Dümb-

gen [64] to multiple dimensions, yields asymptotically optimal confidence sets that possess various

adaptivity properties. In particular, for scenarios (i) and (ii) above, we prove spatial and local adap-

tivity of our confidence bands with respect to the smoothness of the underlying function and its

intrinsic dimensionality. Our confidence bands are constructed using a multidimensional multi-
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scale statistic developed in [65], which in turn was inspired by the one-dimensional multiscale

statistic proposed and studied in [66].

Let us first reiterate our continuous multidimensional white noise model:

𝑌 (𝑡) =
√
𝑛

∫ 𝑡1

0
. . .

∫ 𝑡𝑑

0
𝑓 (𝑠1, . . . , 𝑠𝑑) 𝑑𝑠𝑑 . . . 𝑑𝑠1 +𝑊 (𝑡), (3.1)

where 𝑡 := (𝑡1, . . . , 𝑡𝑑) ∈ [0, 1]𝑑 , 𝑑 ≥ 1, {𝑌 (𝑡1, . . . , 𝑡𝑑) : (𝑡1, . . . , 𝑡𝑑) ∈ [0, 1]𝑑} is the observed

data, 𝑓 ∈ 𝐿1( [0, 1]𝑑) is the unknown (regression) function of interest,

Given a function class F ⊂ 𝐿1( [0, 1]𝑑) (e.g., F can be the class of coordinate-wise isotonic

functions or the class of convex functions defined on [0, 1]𝑑), our goal is to construct an honest

confidence band (ℓ̂, �̂�) for the true function 𝑓 ∈ F , i.e., find functions ℓ̂ and �̂� depending on the

observed data 𝑌 (·) (see (1.1)) that satisfy:

P 𝑓

(
ℓ̂ ≤ 𝑓 ≤ �̂�

)
≥ 1 − 𝛼, for all 𝑓 ∈ F , for all 𝑛 ≥ 1, (3.2)

and for some 𝛼 ∈ (0, 1). Here, by P 𝑓 (·) we mean probability computed when the true function is 𝑓

in (1.1). Although nonparametric estimation of an unknown regression/density function based on

smoothness assumptions using techniques such as kernels, splines and wavelets are abundant in the

literature (see e.g., [67, 68, 69, 70, 71, 72, 73, 74, 75, 76]), it is known that fully adaptive inference

for certain smoothness function classes is not possible without making qualitative assumptions of

some kind on the parameter space; see e.g., [77, Theorem 8.3.11] (also see e.g., [78], [79]).

Indeed, shape constrained functions satisfy a two-sided bias inequality (see (3.6) below) — a

crucial assumption made in this paper for our proposed method — which enables the construction

of adaptive inference procedures. Further, in many real-life applications, justifying smoothness

assumptions (e.g., involving quantitative bounds on the gradient) is often impractical, and in many

such situations qualitative assumptions like shape constraints are available. For example, in many

economic applications — such as estimation of production and utility functions — it is more

reasonable to assume monotonicity and/or concavity on the shape of the underlying function, rather
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than making quantitative assumptions on the smoothness of such functions (see e.g., [80, 81, 82,

83, 84, 49]).

Non-asymptotic confidence bands under such shape-constraints on the true function are avail-

able in the literature but only for one-dimensional function estimation problems (see e.g., [85, 86,

87, 88]). Dümbgen [64] derived asymptotically optimal confidence bands for the true regression

function under shape constraints such as monotonicity and convexity in the continuous univariate

white noise model, based on multiscale tests introduced in [66].

Generalizing the approach in [64], we construct a multiscale statistic in the multidimensional

setting (also see [65]) which can be written as a supremum of a local weighted average of the

response 𝑌 (·) with weights determined by a kernel function, parametrized by a vector of smooth-

ing bandwidths and the centers of the kernel function (see (3.4) below). These multiscale local

averages are appropriately penalized to have them in the same footing, so that the random fluc-

tuations of the kernel estimators can be bounded uniformly in the bandwidth parameters, i.e., the

supremum statistic remains finite almost surely (see [65]). Further, working with the supremum

avoids the delicate choice of tuning parameters (smoothing bandwidths). Using the definition of

the supremum statistic 𝑇 (see (3.4) below) and the two-sided bias condition (see (3.5)), one can

easily obtain pointwise lower and upper bounds for the function 𝑓 in terms of 𝑇 (𝜓ℓ) and 𝑇 (−𝜓𝑢),

where 𝜓ℓ and 𝜓𝑢 denote appropriately chosen kernel functions that make the corresponding kernel

estimators satisfy the bias condition (3.5) (see Theorem 3.2.3). These upper and lower bounds

are random variables depending on 𝑇 (𝜓ℓ) and 𝑇 (−𝜓𝑢), and hence, one can further bound them

with high probability using their respective quantiles, which yields the lower and upper confidence

bands for the true function 𝑓 . Theorem 3.2.1 shows that by choosing the (1 − 𝛼)th quantile of

the statistic max{𝑇 (𝜓ℓ), 𝑇 (−𝜓𝑢)}, we can guarantee at least 1 − 𝛼 coverage of our constructed

confidence band, i.e., (3.2) holds.

Our proposed confidence band automatically adapts to the underlying smoothness of the true

function 𝑓 . In particular, for coordinate-wise isotonic and multivariate convex functions, we show

that our constructed confidence band is adaptive with respect to a number of attributes, such as
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the Hölder smoothness of the underlying function (see Theorem 3.3.1) and the intrinsic dimen-

sionality of the multivariate function, i.e., the number of variables/coordinates it truly depends on

(see Theorem 3.3.2). The confidence band also exhibits spatial and local adaptivity (as shown in

Theorems 3.2.2 and 3.3.3). To elaborate on the spatial adaptivity property, we show that, as a con-

sequence of Theorem 3.2.2, if the true function is monotone and constant in an open neighborhood,

or convex and affine in an open neighborhood, then our constructed confidence band achieves the

parametric (𝑛−1/2) rate of convergence, uniformly on that neighborhood. Adaptivity with respect

to the Hölder smoothness of the true function follows from the fact that the confidence band is

constructed in such a way, that the expression for its width involves controlling local variations

of the function 𝑓 in small neighborhoods of width given by the bandwidth parameters. This, by

the way, is also the crucial step behind showing spatial and local adaptivities. The variations of 𝑓

within these small neighborhoods in turn, adapt to its Hölder smoothness/spatial properties, which

thus gives rise to adaptivity with respect to the latter.

Our proposed confidence bands have width that diminishes (with 𝑛) at the minimax rate on

some non-vanishing neighborhood of every point 𝑡0 ∈ (0, 1)𝑑 . Moreover, for a coordinate-wise

locally strictly increasing function, Theorem 3.4.1 shows that the width of our proposed confidence

band also attains the minimax constant up to a multiplicative constant, which is given by the

geometric mean of the gradient of the true function 𝑓 at 𝑡0. Analogously, Theorem 3.4.2 shows

that we have a similar minimax property for multivariate convex functions.

The rest of the paper is organized as follows. In Section 3.2.1, we introduce some notation that

will be necessary for stating the main results and analyses presented in this paper. In Section 3.2.2,

we give the construction of our confidence bands using our multiscale statistic; in Section 3.2.3 we

discuss the choice of kernels necessary for this construction, under the natural shape constraints

of monotonicity and convexity. Section 3.3 is devoted to proving several adaptivity properties of

our constructed confidence band. In Section 3.4, we show that our proposed confidence band is

optimal in a certain sense. The proofs of our results are provided in the Appendix.
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3.2 Confidence bands for multivariate shape-restricted functions

3.2.1 Definitions and Notation

We now present some notation that we will use throughout the paper.

Notation 1 We will denote by F1 the class of all coordinate-wise increasing functions 𝑓 : [0, 1]𝑑 →

R, i.e., functions 𝑓 that satisfy:

𝑓 (𝑥1, . . . , 𝑥𝑑) ≤ 𝑓 (𝑦1, . . . , 𝑦𝑑) iff 𝑥𝑖 ≤ 𝑦𝑖 for all 1 ≤ 𝑖 ≤ 𝑑,

and by F2 the class of all convex functions 𝑓 : [0, 1]𝑑 → R, i.e. functions 𝑓 that satisfy:

𝑓 (_𝑥 + (1 − _)𝑦) ≤ _ 𝑓 (𝑥) + (1 − _) 𝑓 (𝑦) for all 𝑥, 𝑦 ∈ R𝑑 and _ ∈ [0, 1] .

Notation 2 For measurable functions 𝑔, ℎ : R𝑑 → R, we define:

⟨𝑔, ℎ⟩|𝐵 :=
∫
𝐵

𝑔(𝑥)ℎ(𝑥) 𝑑𝑥 and ∥𝑔∥ |𝐵 :=
√︁
⟨𝑔, 𝑔⟩𝐵 .

When 𝐵 := R𝑑 , we just drop this subscript.

Notation 3 For vectors 𝑎, 𝑏 ∈ R𝑑 , we define:

𝑎 ★ 𝑏 := (𝑎1𝑏1, . . . , 𝑎𝑑𝑏𝑑).

In this section we construct adaptive and optimal confidence bands (ℓ̂, �̂�) for 𝑓 : [0, 1]𝑑 → R

when 𝑓 is known to be shape-constrained (e.g., 𝑓 is (multivariate) isotonic/convex), and our data

is generated according to (1.1).

Let us first recall the definitions of 𝐴ℎ in (1.4) and 𝜓𝑡,ℎ (𝑥) in (1.5). For a fixed 𝑡 ∈ 𝐴ℎ we

26



construct a kernel estimator 𝑓ℎ (𝑡) of 𝑓 (𝑡) as:

𝑓ℎ (𝑡) :=
1

√
𝑛(∏𝑑

𝑖=1 ℎ𝑖)⟨1, 𝜓⟩

∫
[0,1]𝑑

𝜓𝑡,ℎ (𝑥) 𝑑𝑌 (𝑥). (3.3)

Elementary calculations show that

E( 𝑓ℎ (𝑡)) =

∫
[0,1]𝑑 𝜓𝑡,ℎ (𝑥) 𝑓 (𝑥) 𝑑𝑥

(∏𝑑
𝑖=1 ℎ𝑖)⟨1, 𝜓⟩

=
⟨ 𝑓 (𝑡 + ℎ ★ ·), 𝜓⟩

⟨1, 𝜓⟩

Var( 𝑓ℎ (𝑡)) =
∥𝜓𝑡,ℎ∥2

𝑛(∏𝑑
𝑖=1 ℎ𝑖)2⟨1, 𝜓⟩2

=
∥𝜓∥2

𝑛(∏𝑑
𝑖=1 ℎ𝑖)⟨1, 𝜓⟩2

.

The main idea of our approach is to notice that the random fluctuations for these kernel estimators

can be bounded uniformly in ℎ. To accomplish this, we look at the following multiscale statistic

(with kernel 𝜓):

𝑇 (±𝜓) = sup
ℎ∈𝐼

sup
𝑡∈𝐴ℎ

(
±

∫
[0,1]𝑑 𝜓𝑡,ℎ (𝑥) 𝑑𝑊 (𝑥)

(∏𝑑
𝑖=1 ℎ𝑖)1/2∥𝜓∥

− Γ(2𝑑
𝑑∏
𝑖=1

ℎ𝑖)
)

= sup
ℎ∈𝐼

sup
𝑡∈𝐴ℎ

(
± 𝑓ℎ (𝑡) − E( 𝑓ℎ (𝑡))

Var1/2( 𝑓ℎ (𝑡))
− Γ(2𝑑

𝑑∏
𝑖=1

ℎ𝑖)
)

(3.4)

where Γ(𝑟) := (2 log(𝑒/𝑟))1/2.

3.2.2 Proposed confidence band

We assume that the unknown 𝑓 belongs to the function class F (which could be F1 or F2).

In fact, the results in this section are valid for any function class that satisfies the following two-

sided bias condition. In particular, we assume that we can find kernels 𝜓ℓ and 𝜓𝑢 such that the

corresponding kernel estimators 𝑓 ℓ
ℎ

and 𝑓 𝑢
ℎ

(see (1.1.1)) satisfy:

E( 𝑓 ℓ
ℎ
(𝑡)) ≤ 𝑓 (𝑡) ≤ E( 𝑓 𝑢

ℎ
(𝑡)) for all ℎ ∈ 𝐼, 𝑡 ∈ 𝐴ℎ and 𝑓 ∈ F . (3.5)
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We will show later that the above condition holds for the function classes F1 and F2 (see Sec-

tion 3.2.3); in fact, it holds for most shape-constrained function classes.

In view of (3.5) and the definition of 𝑇 , we have the following for all ℎ ∈ 𝐼 and 𝑡 ∈ 𝐴ℎ:

𝑓 (𝑡) =

{
𝑓 (𝑡) − E( 𝑓 𝑙

ℎ
(𝑡))

}
+

{
E( 𝑓 𝑙

ℎ
(𝑡)) − 𝑓 𝑙

ℎ
(𝑡)

}
+ 𝑓 𝑙

ℎ
(𝑡)

≥ 𝑓 ℓ
ℎ
(𝑡) −

∥𝜓ℓ∥
(
𝑇 (𝜓ℓ) + Γ(2𝑑 ∏𝑑

𝑖=1 ℎ𝑖)
)

⟨1, 𝜓ℓ⟩(𝑛∏𝑑
𝑖=1 ℎ𝑖)1/2

(3.6)

and similarly,

𝑓 (𝑡) ≤ 𝑓 𝑢
ℎ
(𝑡) +

∥𝜓𝑢∥
(
𝑇 (−𝜓𝑢) + Γ(2𝑑 ∏𝑑

𝑖=1 ℎ𝑖)
)

⟨1, 𝜓𝑢⟩(𝑛∏𝑑
𝑖=1 ℎ𝑖)1/2

. (3.7)

Now, if ^𝛼 denotes the (1 − 𝛼)th quantile of the statistic:

𝑇∗ := max{𝑇 (𝜓ℓ), 𝑇 (−𝜓𝑢)},

then in view of (3.6) and (3.7), we can define a 1 − 𝛼 confidence band for 𝑓 as [ℓ̂, �̂�], where:

ℓ̂(𝑡) := sup
ℎ∈𝐼: 𝑡∈𝐴ℎ

 𝑓 ℓℎ (𝑡) −
∥𝜓ℓ∥

(
^𝛼 + Γ(2𝑑

∏𝑑
𝑖=1 ℎ𝑖)

)
⟨1, 𝜓ℓ⟩(𝑛∏𝑑

𝑖=1 ℎ𝑖)1/2

 , (3.8)

�̂�(𝑡) := inf
ℎ∈𝐼: 𝑡∈𝐴ℎ

 𝑓 𝑢ℎ (𝑡) +
∥𝜓𝑢∥

(
^𝛼 + Γ(2𝑑

∏𝑑
𝑖=1 ℎ𝑖)

)
⟨1, 𝜓𝑢⟩(𝑛∏𝑑

𝑖=1 ℎ𝑖)1/2

 . (3.9)

In view of (3.6) and (3.7), we have:

P 𝑓

(
ℓ̂(𝑡) ≤ 𝑓 (𝑡) ≤ �̂�(𝑡) for all 𝑡 ∈ [0, 1]𝑑

)
≥ P

(
𝑇 (𝜓ℓ) ≤ ^𝛼 , 𝑇 (−𝜓𝑢) ≤ ^𝛼

)
= P (𝑇∗ ≤ ^𝛼) = 1 − 𝛼. (3.10)

This shows that [ℓ̂, �̂�] is indeed a confidence band with guaranteed coverage probability 1 − 𝛼 for

all 𝑛 ≥ 1, which we state formally below.
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Theorem 3.2.1 For kernels 𝜓ℓ and 𝜓𝑢 satisfying (3.5), we have:

P 𝑓

(
ℓ̂(𝑡) ≤ 𝑓 (𝑡) ≤ �̂�(𝑡) for all 𝑡 ∈ [0, 1]𝑑

)
≥ 1 − 𝛼 (3.11)

for all 𝑓 ∈ F and for all 𝑛 ≥ 1.

The above theorem shows that for any function class F for which the two-sided bias bounds

(3.5) hold, our approach yields an honest finite sample confidence band for any 𝑓 ∈ F . It is natural

to ask if the above constructed band is conservative in nature. In the following result, we show that

if for some function 𝑓 ∈ F , the function − 𝑓 also belongs to F , then our confidence band has exact

coverage at 𝑓 .

Proposition 3.2.1 Suppose 𝑓 ,− 𝑓 ∈ F and (3.5) holds. Then, our 1 − 𝛼 confidence band [ℓ̂, �̂�]

has exact coverage probability 1 − 𝛼, i.e.,

P 𝑓

(
ℓ̂(𝑡) ≤ 𝑓 (𝑡) ≤ �̂�(𝑡) for all 𝑡 ∈ [0, 1]𝑑

)
= 1 − 𝛼.

Proposition 3.2.1 shows that if 𝑓 ∈ F1 is a constant or 𝑓 ∈ F2 is an affine function, then the

coverage probability of our confidence band is exact. We will now see that for certain functions

that exhibit “simple" structure locally (for example, 𝑓 ∈ F1 is locally constant or 𝑓 ∈ F2 is locally

affine), our confidence band exhibits adaptive rates, in particular it can shrink at the parametric

𝑛−1/2 rate locally.

Theorem 3.2.2 In addition to assuming (3.5), suppose that the true 𝑓 satisfies

E( 𝑓 ℓY𝑛1𝑑 (𝑡)) = 𝑓 (𝑡) = E( 𝑓 𝑢Y𝑛1𝑑 (𝑡)) (3.12)

for some Y𝑛 > 0 and all 𝑡 ∈ 𝐷 for some 𝐷 ⊆ 𝐴Y𝑛1𝑑 . Then, for Y𝑛 ≡ Y for some constant Y and
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Y𝑛 = (log(𝑒𝑛))− 1
𝑑 , we have respectively,

sup
𝑡∈𝐷
(�̂�(𝑡) − ℓ̂(𝑡)) ≤ 𝐾Y𝑛−1/2

(
^𝛼 + 𝑇 (𝜓𝑢𝑘 ) + 𝑇 (−𝜓

ℓ
𝑘 )

)
for some constant 𝐾Y > 0 depending on Y, 𝜓𝑢

𝑘
, 𝜓ℓ

𝑘
, and

sup
𝑡∈𝐷
(�̂�(𝑡) − ℓ̂(𝑡)) ≤ 𝐾𝜌𝑛

(
1 +

^𝛼 + 𝑇 (𝜓𝑢𝑘 ) + 𝑇 (−𝜓
ℓ
𝑘
)√︁

log log(𝑒𝑛)

)

for some constant 𝐾 > 0 depending on 𝜓𝑢
𝑘
, 𝜓ℓ

𝑘
, where 𝜌𝑛 := (log(𝑒𝑛) log log(𝑒𝑛)/𝑛)1/2.

Under the bias assumption (3.5), a sufficient condition for (3.12) to hold is if both 𝑓 and − 𝑓 ,

restricted to the set 𝐷, belong to the class F . In particular, the above result shows that if the true

function 𝑓 ∈ F1 is locally constant at a point, or if the true function 𝑓 ∈ F2 is locally affine in a

fixed neighborhood, then our confidence band automatically adapts to this structure, and shrinks

at the parametric rate 𝑛−1/2 uniformly on this neighborhood. In fact, a similar result also holds on

shriking neighborhoods of radius (log(𝑒𝑛))−1/𝑑 , modulo the fact that the rate of convergence now

suffers an inflation by a logarithmic factor in 𝑛.

3.2.3 Choice of kernels for function classes F1 and F2

As we have mentioned in the Introduction, the two prime examples of shape-constrained func-

tion classes are: (1) the class of all 𝑑-dimensional coordinate-wise increasing functions F1, and (2)

the class of all 𝑑-dimensional convex functions F2. In this subsection, we construct kernels 𝜓ℓ and

𝜓𝑢 for each of the function classes F1 and F2, that satisfy (3.5). This would immediately imply

that we can construct honest confidence bands for these function classes that satisfy (3.11). Note

that for construction of the confidence bands with a guaranteed coverage probability, we do not

require any specific choice of kernels, as long as they satisfy (3.5). However, we are going to work

with some specific choices of kernels such that the corresponding confidence bands exhibit certain

30



optimality properties. For the class F1 of all coordinate-wise increasing functions, we define:

𝜓𝑢1 (𝑥) :=

(
1 −

𝑑∑︁
𝑖=1

𝑥𝑖

)
1𝑥∈[0,∞)𝑑 , ∑𝑑

𝑖=1 𝑥𝑖≤1 and 𝜓ℓ1(𝑥) :=

(
1 +

𝑑∑︁
𝑖=1

𝑥𝑖

)
1𝑥∈(−∞,0]𝑑 , ∑𝑑

𝑖=1 𝑥𝑖≥−1

(3.13)

and for the class F2 of all convex functions, we define:

𝜓𝑢2 (𝑥) := (1 − ∥𝑥∥2)1∥𝑥∥≤1 and 𝜓ℓ2(𝑥) :=
(
1 − 2𝑑 + 4

𝑑 + 1
∥𝑥∥ + 𝑑 + 3

𝑑 + 1
∥𝑥∥2

)
1∥𝑥∥≤1. (3.14)

Note that 𝜓ℓ2 can take negative values, too. Theorem 3.2.3 is proved in Section 4.6.3.

Theorem 3.2.3 Let 𝑓 ℓ
ℎ,𝑘

and 𝑓 𝑢
ℎ,𝑘

denote the kernel estimators corresponding to the kernels 𝜓ℓ
𝑘

and

𝜓𝑢
𝑘
, for 𝑘 ∈ {1, 2}. Then, (3.5) holds for the function classes F1 and F2.

3.3 Adaptivity of the confidence band

In this section we show that the width of our confidence band [ℓ̂, �̂�] (see (3.8) and (3.9)) adapts

to the smoothness and the intrinsic dimension of the true function 𝑓 . Let us first define the rate of

convergence for a confidence band as follows:

We say that the confidence band {[ℓ(𝑡), 𝑢(𝑡)] : 𝑡 ∈ [0, 1]𝑑}, with coverage probability 1 − 𝛼,

has rate of convergence 𝛾𝑛 on a set 𝐴𝑛 ⊆ [0, 1]𝑑 for a class G of functions if

inf
𝑓 ∈G
P 𝑓

(
sup
𝑡∈An

(𝑢(𝑡) − ℓ(𝑡)) ≤ Δ𝛾𝑛

)
≥ 1 − 𝛼, for all n

where Δ > 0 is a constant not depending on 𝑛 (but may depend on 𝛼 and G). Clearly we want the

rate of convergence to be as small as possible.

3.3.1 Adaptivity with respect to the smoothness of the underlying function

Let us first define the notion of Hölder smoothness of a function 𝑓 : [0, 1]𝑑 → R.

Definition 3.3.1 For every fixed 𝛽 > 0 and 𝐿 > 0, the Hölder class H𝛽,𝐿 on [0, 1]𝑑 is defined as
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the set of all functions 𝑓 : [0, 1]𝑑 → R that have all partial derivatives of order ⌊𝛽⌋ (defined as

the largest integer strictly less than 𝛽) on [0, 1]𝑑 , and satisfy:

∑︁
𝑘∈N𝑑 :∥𝑘 ∥1≤⌊𝛽⌋

sup
𝑥∈[0,1]𝑑

����� 𝜕∥𝑘 ∥1 𝑓 (𝑥)
𝜕𝑥

𝑘1
1 . . . 𝜕𝑥

𝑘𝑑
𝑑

����� ≤ 𝐿
and

∑︁
𝑘∈N𝑑 :∥𝑘 ∥1=⌊𝛽⌋

����� 𝜕∥𝑘 ∥1 𝑓 (𝑦)
𝜕𝑥

𝑘1
1 . . . 𝜕𝑥

𝑘𝑑
𝑑

− 𝜕∥𝑘 ∥1 𝑓 (𝑧)
𝜕𝑥

𝑘1
1 . . . 𝜕𝑥

𝑘𝑑
𝑑

����� ≤ 𝐿∥𝑦 − 𝑧∥𝛽−⌊𝛽⌋ for all 𝑦, 𝑧 ∈ [0, 1]𝑑 .

The following theorem shows that the rate of convergence of our confidence band [ℓ̂, �̂�] for the

class H𝛽,𝐿 ∩ F𝑘 (𝑘 = 1, 2) is (log 𝑛/𝑛)𝛽/(2𝛽+𝑑) .

Theorem 3.3.1 Suppose that for some 𝑘 ∈ {1, 2}, 𝑓 ∈ F𝑘 ∩ H𝛽,𝐿 with 𝑘 − 1 < 𝛽 ≤ 𝑘 and 𝐿 > 0.

Then there exist a constant Δ > 0 depending only on 𝐿, 𝛽, 𝜓ℓ, 𝜓𝑢 such that

sup
𝑡∈𝐴Y𝑛1𝑑

(
�̂�(𝑡) − ℓ̂(𝑡)

)
≤ ΔY

𝛽
𝑛

(
1 + ^𝛼 + 𝑇 (−𝜓

ℓ) + 𝑇 (𝜓𝑢)
(log(𝑒𝑛))1/2

)
where Y𝑛 := (log(𝑒𝑛)/𝑛)1/(2𝛽+𝑑) , and 1𝑑 is the 𝑑-dimensional vector of all ones. This, in particular,

implies that

inf
𝑓 ∈F𝑖∩H𝛽,𝐿

P

(
sup

𝑡∈𝐴Y𝑛1𝑑

(�̂�(𝑡) − ℓ̂(𝑡)) ≤ Δ

[ log(𝑒𝑛)
𝑛

] 𝛽

2𝛽+𝑑

)
≥ 1 − 𝛼, for all 𝑛,

for some constant Δ > 0 depending only on 𝐿, 𝛽, 𝜓ℓ, 𝜓𝑢, 𝛼. Here we would like to point out that

𝜓ℓ, 𝜓𝑢 depend on the choice of the function class F1, F2.

Theorem 3.3.1 is proved in Section 4.6.4. Its proof starts by bounding the pointwise deviation

of the upper (and lower) band of our constructed confidence set from the true function 𝑓 , in terms

of the inner product of the variation of 𝑓 in a small neighborhood. The variation of 𝑓 over this

neighborhood can then be bounded in terms of appropriate powers of the smoothing bandwidth,
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using the Hölder smoothness of 𝑓 . The rate of convergence obtained in Theorem 3.3.1 is minimax

in the class H𝛽,𝐿 (see [89]).

3.3.2 Adaptivity with respect to the intrinsic dimension

The intrincic dimension of a function refers to the number of variables it actually depends on.

Definition 3.3.2 The intrinsic dimension dim( 𝑓 ) of a function 𝑓 : R𝑑 → R is 𝑘 iff:

1. there exist 1 ≤ 𝑖1 < 𝑖2 < . . . < 𝑖𝑘 ≤ 𝑑 and a function 𝑔 : R𝑘 → R such that 𝑓 (𝑥1, . . . , 𝑥𝑑) =

𝑔(𝑥𝑖1 , . . . , 𝑥𝑖𝑘 ) for all 𝑥 ∈ R𝑑 , and

2. 𝑓 is not a function of (𝑥𝑠)𝑠∈𝑆 for any strict subset 𝑆 of {𝑖1, . . . , 𝑖𝑘 }.

It can be verified easily from Definition 3.3.2 that the intrinsic dimension of a function 𝑓 is unique.

We will now show that our confidence band [ℓ̂, �̂�] adapts to the intrinsic dimension of the true

function 𝑓 .

Theorem 3.3.2 Suppose that for some 𝑗 ∈ {1, 2}, 𝑓 ∈ F𝑗 ∩ H𝛽,𝐿 with 𝑗 − 1 < 𝛽 ≤ 𝑗 and 𝐿 > 0.

Let dim( 𝑓 ) = 𝑘 and suppose that 𝑓 (𝑥) = 𝑔(𝑥𝑖1 , . . . , 𝑥𝑖𝑘 ) for some 1 ≤ 𝑖1 < . . . < 𝑖𝑘 ≤ 𝑑 and some

function 𝑔 : [0, 1]𝑘 → R. Then, for every Y > 0, there exists a constant Δ > 0 depending only on

𝐿, 𝛽, 𝜓ℓ, 𝜓𝑢, Y such that:

sup
𝑡∈𝐴𝜺𝑛,𝑖1 ,...,𝑖𝑘

(
�̂�(𝑡) − ℓ̂(𝑡)

)
≤ Δ𝜌𝑛,𝑘

(
1 + ^𝛼 + 𝑇 (−𝜓

ℓ) + 𝑇 (𝜓𝑢)
(log(𝑒𝑛))1/2

)

where 𝜌𝑛,𝑘 := (log(𝑒𝑛)/𝑛)𝛽/(2𝛽+𝑘) , Y𝑛 := Y𝜌1/𝛽
𝑛,𝑘

and 𝜺𝑛,𝑖1,...,𝑖𝑘 is the 𝑑-dimensional vector with the

𝑖th1 , . . . , 𝑖
th
𝑘

entries all equal to Y𝑛 and all other entries equal to Y.

Theorem 3.3.2 is proved in Section 4.6.5. It states that the rate of convergence of our confidence

band when the function 𝑓 lies in F𝑗∩H𝛽,𝐿 with 𝑗−1 < 𝛽 ≤ 𝑗 and 𝐿 > 0, is (log(𝑒𝑛)/𝑛)𝛽/(2𝛽+dim( 𝑓 )) .

This is a highly desirable property, as the rate of convergence should depend only on the variables

which actually affect the true function, and not on the redundant variables that the function does

not vary with, something that one does not get directly from the statement of Theorem 3.3.1.
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3.3.3 Local Adaptivity

Our results in Section 3.3.1 showed that our confidence bands achieve the optimal rate of

convergence when the true function is globally Hölder smooth. In this section we show that our

adaptivity results hold when the true function is locally smooth. Specifically, we will look at the

behavior of �̂�(𝑡0) − ℓ̂(𝑡0) for a fixed 𝑡0 ∈ (0, 1)𝑑 .

Theorem 3.3.3 Suppose that 𝑓 ∈ F𝑘 (𝑘 = 1, 2), and that there exists Y > 0 such that 𝑓 is Hölder

smooth on �̄�∞(𝑡0, Y) with smoothness parameter 𝛽 ∈ (𝑘 − 1, 𝑘] and 𝐿 > 0. Then there exists a

constant 𝐾 depending on 𝛽, 𝐿, 𝜓ℓ, 𝜓𝑢 such that:

�̂�(𝑡0) − ℓ̂(𝑡0) ≤ 𝐾𝜌𝑛
(
1 + ^𝛼 + 𝑇 (−𝜓

ℓ) + 𝑇 (𝜓𝑢)
(log(𝑒𝑛))1/2

)
where 𝜌𝑛 = (log(𝑒𝑛)/𝑛)𝛽/(2𝛽+𝑑) . Note that this implies that

P 𝑓

(
�̂�(𝑡0) − ℓ̂(𝑡0) ≤ Δ

[ log(𝑒𝑛)
𝑛

] 𝛽

2𝛽+𝑑

)
≥ 1 − 𝛼, for all 𝑛,

for some constant Δ > 0 depending only on 𝐿, 𝛽, 𝜓𝑙 , 𝜓𝑢, 𝛼.

Remark 3.3.1 (On the proof of Theorem 3.3.3) For proving Theorem 3.3.3, first one needs to

observe that for ℎ = Y1𝑑 , we have ∥ℎ★𝑥∥∞ = Y∥𝑥∥∞ ≤ Y, and hence, 𝑡0+ℎ★𝑥 ∈ �̄�∞(𝑡0, Y). The rest

of the proof follows exactly as the proof of Theorem 3.3.1, on noting that one only needs the Hölder

smoothness assumption for bounding the terms | 𝑓 (𝑡0+ℎ★𝑥)− 𝑓 (𝑡0) | and ∥∇ 𝑓 (𝑡0+ℎ★b𝑥)−∇ 𝑓 (𝑡0)∥

for some b𝑥 lying in the segment joining 0 and 𝑥, and consequently, it is enough to have Hölder

smoothness on �̄�∞(𝑡0, Y) only.

3.4 Optimality of the Confidence Band

In this section, we prove that our proposed confidence band (3.8), (3.9) is optimal in a certain

sense. Our results extend Theorem 4.2 in [64]. In order to state our result, we need some notation.
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For a function 𝑔 : R𝑑 → R and𝑈 ⊆ R𝑑 , define:

∥𝑔∥𝑈 := sup
𝑥∈𝑈
|𝑔(𝑥) |.

We first state our optimality result for the class of monotone functions F1.

Theorem 3.4.1 Let 𝑓 ∈ F1 be a continuously differentiable function in an open neighborhood 𝑈

of 𝑡0 ∈ (0, 1)𝑑 such that

𝐿1 = 𝐿1 [ 𝑓 , 𝑡0] :=

[
𝑑∏
𝑖=1

𝜕

𝜕𝑥𝑖
𝑓 (𝑥)

��
𝑥=𝑡0

]1/𝑑

> 0.

Define

𝜌𝑛 :=
(
log(𝑒𝑛)
𝑛

) 1
2+𝑑

and Δ(𝑧) :=
((
𝑑 + 2
2𝑑

)
∥𝜓𝑧∥2

)− 1
2+𝑑

where 𝑧 stands for 𝑢 and ℓ corresponding to kernels 𝜓𝑢1 and 𝜓ℓ1 (respectively) as defined in (3.13).

Then we have the following:

(a) Let (ℓ, 𝑢) be any confidence band such that, for some 𝛼 ∈ (0, 1),

P 𝑓
(
ℓ(𝑡) ≤ 𝑓 (𝑡) ≤ 𝑢(𝑡) for all 𝑡 ∈ [0, 1]𝑑

)
≥ 1 − 𝛼 for all 𝑓 ∈ F1.

Then, for any 𝜖 > 0,

lim inf
𝑛→∞

P 𝑓

(
∥ 𝑓 − ℓ∥𝑈 ≥ (1 − 𝜖)Δ(ℓ)𝐿

𝑑
2+𝑑
1 [𝑡0]𝜌𝑛

)
≥ 1 − 𝛼,

lim inf
𝑛→∞

P 𝑓

(
∥𝑢 − 𝑓 ∥𝑈 ≥ (1 − 𝜖)Δ(𝑢)𝐿

𝑑
2+𝑑
1 [𝑡0]𝜌𝑛

)
≥ 1 − 𝛼.

(b) Moreover, let (ℓ̂, �̂�) be the confidence band with coverage probability 1 − 𝛼 as defined in
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(3.8) and (3.9), with kernels as in (3.13). Then, for any 𝜖 > 0, we have

lim
𝑛→∞
P 𝑓

(
( 𝑓 − ℓ̂) (𝑡0) ≤ (1 + 𝜖)Δ(ℓ)𝐿

𝑑
2+𝑑
1 [ 𝑓 , 𝑡0]𝜌𝑛

)
= 1,

lim
𝑛→∞
P 𝑓

(
(�̂� − 𝑓 ) (𝑡0) ≤ (1 + 𝜖)Δ(ℓ)𝐿

𝑑
2+𝑑
1 [ 𝑓 , 𝑡0]𝜌𝑛

)
= 1.

Theorem 3.4.1 is proved in Section 4.6.6. It states that the length any confidence band of

𝑓 ∈ F1 with guaranteed coverage probability 1 − 𝛼, is at least (log 𝑛/𝑛)1/(2+𝑑) upto a constant

factor. Further, this optimal length is achieved by our constructed confidence band, again up to a

constant multiplicative factor. We can, in particular, exactly compute the constants Δ(ℓ) and Δ(𝑢)

appearing in the above result. For example, for 𝑑 = 2, Δ(ℓ) = Δ(𝑢) ≈ 1.86121.

Remark 3.4.1 (On Theorem 3.4.1) Note that the asymptotic probabilities in the upper bound re-

sults in part (b) of Theorem 3.4.1 do not depend on 𝛼, unlike the corresponding lower bound

probabilities in part (a). This can be understood from the fact that the random variable in part

(a) is a supremum of pointwise deviations of the lower and upper confidence bands from the true

function over a neighborhood, unlike the corresponding random variable in part (b), and hence, is

intrinsically ‘larger’. To draw a simple analogy, note that the 𝛼th quantile 𝑞 (𝑛)𝛼 of the maximum of

a sequence of i.i.d. Gaussians 𝑍1, . . . , 𝑍𝑛 satisfies P(max1≤𝑖≤𝑛 𝑍𝑖 ≥ 𝑞 (𝑛)𝛼 ) = 1 − 𝛼, but since 𝑞 (𝑛)𝛼 is

of the order
√︁

log 𝑛, P(𝑍1 ≤ 𝑞 (𝑛)𝛼 ) = 1 − 𝑜(1).

Next, we state our optimality result for the class of convex functions F2.

Theorem 3.4.2 Let 𝑓 ∈ F2 be a twice continuously differentiable function in an open neighbor-

hood𝑈 of 𝑡0 ∈ (0, 1)𝑑 such that

𝐿2 = 𝐿2 [ 𝑓 , 𝑡0] := det(𝐻 (𝑡0))1/𝑑 > 0

where 𝐻 (𝑡0) ∈ R𝑑×𝑑 denotes the Hessian of 𝑓 at 𝑡0, and det(·) denotes the determinant operator.
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Define

𝜌𝑛 :=
(
log(𝑒𝑛)
𝑛

) 2
4+𝑑

and Δ(𝑧) :=

(
𝑑 + 4
2𝑑

√︂
2(𝑑 + 3)
𝑑 + 1

∥𝜓𝑧∥2
)− 2

4+𝑑

where 𝑧 stands for 𝑢 and ℓ corresponding to kernels 𝜓𝑢2 and 𝜓ℓ2 (respectively) as defined in (3.14).

Then for any confidence band (ℓ, 𝑢) such that, for some 𝛼 ∈ (0, 1),

P 𝑓
(
ℓ(𝑡) ≤ 𝑓 (𝑡) ≤ 𝑢(𝑡) for all 𝑡 ∈ [0, 1]𝑑

)
≥ 1 − 𝛼 for all 𝑓 ∈ F2,

we have for any 𝜖 > 0,

lim inf
𝑛→∞

P 𝑓

(
∥ 𝑓 − ℓ∥𝑈 ≥ (1 − 𝜖)Δ(ℓ)𝐿

𝑑
4+𝑑
2 [𝑡0]𝜌𝑛

)
≥ 1 − 𝛼,

lim inf
𝑛→∞

P 𝑓

(
∥𝑢 − 𝑓 ∥𝑈 ≥ (1 − 𝜖)Δ(𝑢)𝐿

𝑑
4+𝑑
2 [𝑡0]𝜌𝑛

)
≥ 1 − 𝛼.

The above result gives a lower bound on the maximal (local) deviation of any honest confidence

band (for the class of convex functions) around the true function. We can, in particular, exactly

compute the constants Δ(ℓ) and Δ(𝑢) appearing in the above result. For example, for 𝑑 = 2, Δ(ℓ) ≈

1.464067 and Δ(𝑢) ≈ 0.70385.

Remark 3.4.2 (On the proofs of Theorems 3.4.1 and 3.4.2) The proofs of the lower bound re-

sults for both Theorems 3.4.1 and 3.4.2 involve the following main ideas. As a first step, one

constructs a grid with spacing corresponding to the bandwidth vector ℎ starting from the center

point 𝑡0, and for each such grid point 𝑡, defines a function 𝑓𝑡 by perturbing the true function 𝑓 by

an amount proportional to the kernel function corresponding to 𝑡 and ℎ. The proportionality con-

stant 𝑐 depends on the particular shape constraint, and involves either the minimum entry of the

gradient of 𝑓 at 𝑡0 or the minimum eigenvalue of its Hessian at 𝑡0, depending on whether the true

function is monotone or convex, respectively. The second step is to show that all these perturbed

functions satisfy the corresponding shape constraint. As a next step, one shows that the deviation

of the upper and lower limits of any honest confidence band with coverage probability 1 − 𝛼 can

be lower bounded by the proportionality constant 𝑐 with probability at least 1 − 𝛼 minus some
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remainder term, that depends on the perturbed function. One then argues that this remainder term

is asymptotically negligible, by expressing it in terms of an average of the likelihood ratio between

the measures at the perturbed and the true function, and applying the Cameron-Martin-Girsanov

theorem in stochastic calculus to evaluate this likelihood ratio. As a final step, several parame-

ters are tuned appropriately to control the proportionality constant 𝑐 so as to obtain the optimal

constant.

3.5 Construction and adaptivity of the confidence band under additive models

In this section we try to construct a confidence band for our unknown function 𝑓 as described

in (1.1) under the additional assumption that 𝑓 is of the form

𝑓 (𝑥1, . . . , 𝑥𝑑) = ` +
𝑑∑︁
𝑖=1

𝑓𝑖 (𝑥𝑖) (3.15)

where for all 𝑖 = 1, . . . , 𝑑 𝑓𝑖 : [0, 1] → R is non-decreasing or convex and ` ∈ R. For identifiability

we also assume that for all 𝑖 = 1, . . . , 𝑑 we have

∫ 1

0
𝑓𝑖 (𝑦) 𝑑𝑦 = 0.

We do assume that 𝑓 ∈ F for some shape restricted function class F like non-decreasing or

convex. We construct the confidence band under the additive model as follows: First estimate ` by

ˆ̀ :=
1
√
𝑛

∫
[0,1]𝑑

𝑑𝑌 .

Elementary calculations show that E( ˆ̀) = ` and Var( ˆ̀) = 1/𝑛. Now we will construct the confi-

dence band for 𝑓𝑖 (𝑡𝑖) using the kernel 𝜓 : [−1, 1] → R . Fix ℎ𝑖 > 0 and suppose 𝑡𝑖 ∈ [ℎ𝑖, 1 − ℎ𝑖].

Now we can estimate 𝑓𝑖 (𝑡𝑖) by

𝑓
(𝑖)
ℎ𝑖
(𝑡𝑖) :=

1
𝑛1/2ℎ⟨1, 𝜓⟩

∫
[0,1]𝑑

𝜓
(𝑖)
𝑡𝑖 ,ℎ𝑖
(𝑥)𝑑𝑌 (𝑥) − ˆ̀
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where �̂� (𝑖)
𝑡𝑖 ,ℎ𝑖
(𝑥) = 𝜓((𝑥𝑖 − 𝑡𝑖)/ℎ𝑖). Elementary calculations can easily show that

E( 𝑓 (𝑖)
ℎ𝑖
(𝑡𝑖)) =

∫ 1
0 𝜓

(𝑖)
𝑡,ℎ
(𝑥) 𝑓 (𝑥)𝑑𝑥

ℎ⟨1, 𝜓⟩

and

Var( 𝑓 (𝑖)
ℎ𝑖
(𝑡𝑖) + ˆ̀) = ∥𝜓∥2

𝑛ℎ⟨1, 𝜓⟩2
.

Now the main idea that we will use to construct our confidence bands is that the random fluctuations

can be bounded uniformly i.e., we claim that

𝑇 (𝑖) (±𝜓) := sup
ℎ>0

sup
𝑡∈[ℎ,1−ℎ]

©«
𝑓
(𝑖)
ℎ𝑖
(𝑡𝑖) − E( 𝑓 (𝑖)ℎ𝑖 (𝑡𝑖))

Var1/2( 𝑓 (𝑖)
ℎ𝑖
(𝑡𝑖) + ˆ̀)

− Γ(2ℎ)ª®¬ < ∞.
The above assertion can be easily proven from the fact that

sup
ℎ>0

sup
𝑡∈[ℎ,1−ℎ]

©«
𝑓
(𝑖)
ℎ𝑖
(𝑡𝑖) + ˆ̀ − E( 𝑓 (𝑖)

ℎ𝑖
(𝑡𝑖)) − `

Var1/2( 𝑓 (𝑖)
ℎ𝑖
(𝑡𝑖) + ˆ̀)

− Γ(2ℎ)ª®¬ < ∞
and ˆ̀ − ` is a normal variable (i.e., finite almost surely). As we have done previously we will

choose a kernels 𝜓𝑢 and 𝜓𝑙 such that the bias of the estimators are controlled i.e., we need

E( 𝑓 (𝑖),(𝑢)
ℎ𝑖

(𝑡𝑖)) ≥ 𝑓𝑖 (𝑡𝑖) ≥ E( 𝑓 (𝑖),(𝑙)ℎ𝑖
(𝑡𝑖)) for all ℎ > 0, 𝑡𝑖 ∈ [ℎ, 1 − ℎ], 𝑓 ∈ F . (3.16)

Now let ^ (𝑖)𝛼 be the (1 − 𝛼) quantile of the combined statistic

𝑇★,(𝑖) := max(𝑇 (𝑖) (𝜓𝑙), 𝑇 (𝑖) (−𝜓𝑢)).

Hence by similar argument as used in Theorem 3.2.1 we can construct the optimal band for 𝑓𝑖 as

ℓ̂𝑖 (𝑡𝑖) = sup
ℎ>0:𝑡∈𝐴ℎ

 𝑓 (𝑖)ℎ𝑖 (𝑡𝑖) −
𝜓𝑙 (

^
(𝑖)
𝛼 + Γ(2ℎ)

)
⟨1, 𝜓𝑙⟩(𝑛ℎ)1/2
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and

�̂�𝑖 (𝑡𝑖) = inf
ℎ>0:𝑡∈𝐴ℎ

 𝑓 (𝑖)ℎ𝑖 (𝑡𝑖) +
∥𝜓𝑢∥

(
^
(𝑖)
𝛼 + Γ(2ℎ)

)
⟨1, 𝜓𝑢⟩(𝑛ℎ)1/2

 .
The confidence band for the the combined function 𝑓 can also be defined in a similar manner. Let

^𝑎𝛼 be the (1 − 𝛼) quantile of the combined statistic

𝑇★,𝑎 := max

{
ˆ̀ +

𝑑∑︁
𝑖=1
𝑇 (𝑖) (𝜓𝑙), ˆ̀ +

𝑑∑︁
𝑖=1
𝑇 (𝑖) (−𝜓𝑢)

}
.

Then the confidence band for the function 𝑓 is given by

ℓ̂𝑎 (𝑡) = sup
ℎ>0:𝑡∈𝐴ℎ

{
ˆ̀ +

𝑑∑︁
𝑖=1

𝑓
(𝑖)
ℎ𝑖
(𝑡𝑖) −

𝜓𝑙 (
^𝑎𝛼 + Γ(2ℎ)

)
⟨1, 𝜓𝑙⟩(𝑛ℎ)1/2

}
and

�̂�𝑎 (𝑡) = inf
ℎ>0:𝑡∈𝐴ℎ

{
ˆ̀ +

𝑑∑︁
𝑖=1

𝑓
(𝑖)
ℎ𝑖
(𝑡𝑖) +

∥𝜓𝑢∥
(
^𝑎𝛼 + Γ(2ℎ)

)
⟨1, 𝜓𝑢⟩(𝑛ℎ)1/2

}
.

Our next Theorem shows that our bands ℓ̂𝑖 and �̂�𝑖 and ℓ̂𝑎 and �̂�𝑎 are actually honest confidence

bands for the respective functions when the function is shape-restricted.

Theorem 3.5.1 Let 𝑓 satisfy (3.15) and 𝑓 ∈ F . Suppose that we observe the stochastic process 𝑌

as given in (1.1). Suppose that we can find kernels that satisfy (3.16). Let (ℓ̂𝑎, �̂�𝑎) : [0, 1]𝑑 → R×R

and (�̂�𝑖, ℓ̂𝑖) : [0, 1] → R × R be defined as above. Then

P 𝑓

(
ℓ̂𝑎 (𝑡) ≤ 𝑓 (𝑡) ≤ �̂�𝑎 (𝑡) for all 𝑡 ∈ [0, 1]𝑑

)
≥ 1 − 𝛼, for all 𝑓 ∈ F

and

P 𝑓

(
ℓ̂𝑖 (𝑡) ≤ 𝑓𝑖 (𝑡) ≤ �̂�𝑖 (𝑡) for all 𝑡 ∈ [0, 1]

)
≥ 1 − 𝛼, for all 𝑓 ∈ F
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3.5.1 Adaptivity under additive models

Our next theorems show that for the additive model ((3.15)) our confidence bands ℓ̂𝑖 and �̂�𝑖 ℓ̂𝑎 (𝑡)

and �̂�𝑎 (𝑡) achieves the optimal rate of convergence (i.e., (log 𝑛/𝑛)𝛽/2𝛽+1) for the additive model.

Here we would like to point out that for the construction of the confidence band we needed the

additional knowledge that the function is additive. Without this knowledge our generic confidence

band (i.e., ℓ̂ and �̂�) do not attain the required optimal rate of convergence but attains the rate of

(log 𝑛/𝑛)𝛽/2𝛽+𝑑 .

Theorem 3.5.2 Suppose that 𝑓 is additive as defined in (3.15). Also assume that the function

𝑓𝑖 ∈ H𝛽,𝐿 where 0 < 𝛽 ≤ 1 is 𝑓𝑖 is non-decreasing or 1 < 𝛽 ≤ 2 if 𝑓𝑖 is convex and 𝐿 > 0. Let

𝛿𝑛 := (log(𝑒𝑛)/𝑛)1/2𝛽+1. Then there exist a constant 𝐾 depending on 𝐿, 𝛽, 𝜓𝑙 , 𝜓𝑢 only such that

sup
𝑡∈(𝛿𝑛,1−𝛿𝑛)

(�̂�𝑖 (𝑡) − ℓ̂𝑖 (𝑡)) ≤ 𝐾
(
log(𝑒𝑛)
𝑛

) 𝛽

2𝛽+1
(
1 +

^𝑎𝛼 +𝑊𝑖

log1/2(𝑒𝑛)

)
for all 𝑛, where𝑊𝑖 := 𝑇 (𝑖) (−𝜓𝑙) + 𝑇 (𝑖) (𝜓𝑢). Note that𝑊𝑖 is an almost sure finite random variable.

Theorem 3.5.3 Suppose that 𝑓 is additive as defined in (3.15). Also assume that the function

𝑓 ∈ H𝛽,𝐿 where 0 < 𝛽 ≤ 1 is 𝑓 is non-decreasing or 1 < 𝛽 ≤ 2 if 𝑓 is convex and 𝐿 > 0. Let

𝛿𝑛 := (log(𝑒𝑛)/𝑛)1/2𝛽+1. Then there exist a constant 𝐾 depending on 𝐿, 𝛽, 𝜓𝑙 , 𝜓𝑢 only such that

sup
𝑡∈𝐴(𝛿𝑛,..., 𝛿𝑛 )

(�̂�𝑎 (𝑡) − ℓ̂𝑎 (𝑡)) ≤ 𝐾
(
log(𝑒𝑛)
𝑛

) 𝛽

2𝛽+1
(
1 +

^𝑎𝛼 +𝑊
log1/2(𝑒𝑛)

)

for all 𝑛, where𝑊 := 2( ˆ̀ − `) +∑𝑑
𝑖=1

(
𝑇 (𝑖) (−𝜓𝑙) + 𝑇 (𝑖) (𝜓𝑢)

)
. Note that𝑊 is an almost sure finite

random variable.

Note that the above theorem implies that for any 𝛾 ∈ (0, 1) there exist a constant 𝐾𝛾 depending on

𝛾, 𝛽, 𝐿, 𝜓𝑙 , 𝜓𝑢 such that

P

(
sup

𝑡∈𝐴(𝛿𝑛,..., 𝛿𝑛 )
(�̂�𝑎 (𝑡) − ℓ̂𝑎 (𝑡)) ≤ 𝐾𝛾 (log(𝑒𝑛)/𝑛)𝛽/(2𝛽+1)

)
≥ 1 − 𝛾.
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The construction of the above confidence bands require the knowledge that the function is

additive and either non-decreasing or convex; no knowledge of the smoothness of the function is

required.

Our next two theorems extend our local adaptivity properties to the case of additive models as

well.

Theorem 3.5.4 Suppose 𝑓 ∈ F1 or F2. Also assume that 𝑓 satisfies (3.15). Fix 𝑖 ∈ {1, 2, . . . , 𝑑}

and 𝑡0 ∈ (0, 1). Suppose there exists 𝜖 > 0 such that the function 𝑓𝑖 is Hölder smooth on (𝑡0 −

𝜖, 𝑡0 + 𝜖) ⊂ [0, 1] with smoothness parameter 𝛽 ∈ ( 𝑗 − 1, 𝑗] if 𝑓 ∈ F𝑗 for 𝑗 = 1, 2 and 𝐿 > 0. Then

for some constant 𝐾 depending on 𝛽, 𝐿, 𝜓𝑙 , 𝜓𝑢 we have

�̂�𝑖 (𝑡0) − ℓ̂𝑖 (𝑡0) ≤ 𝐾𝜌𝑛
(
1 + ^𝛼 + 𝑇

(𝑖) (−𝜓𝑙) + 𝑇 (𝑖) (𝜓𝑢)
(log(𝑒𝑛))1/2

)
where 𝜌𝑛 = (log(𝑒𝑛)/𝑛)𝛽/(2𝛽+1) . Note that this implies that

P 𝑓

(
�̂�𝑖 (𝑡0) − ℓ̂𝑖 (𝑡0) ≤ Δ

[ log(𝑒𝑛)
𝑛

] 𝛽

2𝛽+1

)
≥ 1 − 𝛼, for all 𝑛,

for some constant Δ depending only on 𝐿, 𝛽, 𝜓𝑙 , 𝜓𝑢, 𝛼.

Theorem 3.5.5 Suppose 𝑓 ∈ F1 or F2. Also assume that 𝑓 satisfies (3.15). Fix 𝑡0 := (𝑡10, . . . , 𝑡
𝑑
0 ) ∈

(0, 1)𝑑 . Suppose there exists 𝜖 > 0 such that the functions 𝑓𝑖’s are Hölder smooth on (𝑡𝑖0−𝜖, 𝑡
𝑖
0+𝜖) ⊂

[0, 1] with smoothness parameter 𝛽 ∈ ( 𝑗 − 1, 𝑗] if 𝑓 ∈ F𝑗 for 𝑗 = 1, 2 and 𝐿 > 0 for all

𝑖 = 1, . . . , 𝑑. Note here we have assumed that all the component functions 𝑓𝑖 have the same

smoothness parameter 𝛽 close to 𝑡0. Then for some constant 𝐾 depending on 𝛽, 𝐿, 𝜓𝑙 , 𝜓𝑢 we have

�̂�𝑎 (𝑡0) − ℓ̂𝑎 (𝑡0) ≤ 𝐾𝜌𝑛
(
1 + ^𝛼 +𝑊
(log(𝑒𝑛))1/2

)
where 𝜌𝑛 = (log(𝑒𝑛)/𝑛)𝛽/(2𝛽+1) and 𝑊 = 2( ˆ̀ − `) + ∑𝑑

𝑖=1

(
𝑇 (𝑖) (−𝜓𝑙) + 𝑇 (𝑖) (𝜓𝑢)

)
. Note that this
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implies that

P 𝑓

(
�̂�𝑎 (𝑡0) − ℓ̂𝑎 (𝑡0) ≤ Δ

[ log(𝑒𝑛)
𝑛

] 𝛽

2𝛽+1

)
≥ 1 − 𝛼, for all 𝑛,

for some constant Δ depending only on 𝐿, 𝛽, 𝜓𝑙 , 𝜓𝑢, 𝛼.

Remark 3.5.1 This section shows that as long as we have apriori knowledge that the function that

we are trying to estimate is additive, the problem basically boils down to multiple one-dimensional

problems where we are just taking 𝑑 − 1th order integrals. What our results show is that this

simplification does not result in any loss in terms of adaptivity of the functions. We can expect the

same rate of convergence as if we were only trying to solve a one-dimensional problem. The results

for both global and local adaptivity goes through in this case. The results can be proven by the

same techniques that we have used throughout the chapter. Look at appendix for more information

about the techniques.
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Chapter 4: Simulation studies

In this section we demonstrate the performance of the multiscale testing procedure described

in Section 2.2 and compare it with other competing methods through simulation studies. For

computational tractability, we choose 𝑑 = 2 and replace the continuous white noise model (1.1)

with its discrete analogue (2.7). For the simulations we have used the kernel function 𝜓 = I[−1,1]𝑑 .

In Table 4.1 we give the empirical 0.95-quantile of the multiscale statistic 𝑇𝑛 (𝑊, 𝜓) (see (2.8))

for different values of 𝑛 = 𝑚2; the computation of the empirical quantiles were based on 3000

replications. Observe that the empirical quantiles seem to stabilize as 𝑚 increases beyond 100.

Figure 4.1 shows the empirical distribution function estimates of 𝑇𝑛 (𝑊, 𝜓) for different values of

𝑛, based on 3000 replications.

In Tables 4.2 and 4.3 we compare the powers of the multiscale test, a test based on a scan-

statistic, and the ALR test (see [16] for the details). Formally, we consider testing (2.2) against

alternatives of the form 𝐻1 : 𝑓 = `𝑛I𝐵𝑛
, for both small and large scale signals (𝐵𝑛). We briefly

describe the above two competing procedures. For 𝑚 ≥ 1, let ℬ be the set of all axis-aligned

rectangles on [0, 1]2 with corner points in the following grid:

ℬ :=
{( 𝑖1
𝑚
,
𝑖2
𝑚

]
×

( 𝑗1
𝑚
,
𝑗2
𝑚

]
: 0 ≤ 𝑖1 < 𝑖2 ≤ 𝑚, 0 ≤ 𝑗1 < 𝑗2 ≤ 𝑚

}
.

Critical values
𝑚 95% quantile 𝑚 95% quantile
25 3.02 75 3.27
40 3.12 100 3.31
50 3.18 125 3.32
60 3.22 150 3.30★

Table 4.1: Critical values ^0.05 for different 𝑛 = 𝑚2.
★Note that 0.95 quantiles necessarily increase as 𝑛 increases. But in our simulations the 0.95
quantile for 𝑛 = 1502 turned out to be slightly less than that of 𝑛 = 1252 due to sampling variability.
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𝑘 = 1
` Scan Multiscale ALR

3.5 0.23 0.08 0.07
4.0 0.34 0.13 0.08
4.5 0.50 0.18 0.08
5.0 0.71 0.30 0.08
5.5 0.86 0.53 0.09

𝑘 = 4
` Scan Multiscale ALR

1.00 0.22 0.14 0.11
1.20 0.43 0.31 0.30
1.35 0.60 0.48 0.44
1.50 0.74 0.55 0.52
1.65 0.86 0.72 0.61

𝑘 = 18
` Scan Multiscale ALR

0.20 0.15 0.21 0.19
0.30 0.49 0.68 0.67
0.35 0.65 0.80 0.82
0.40 0.80 0.90 0.89

𝑘 = 40
` Scan Multiscale ALR

0.040 0.15 0.32 0.31
0.043 0.30 0.56 0.54
0.047 0.45 0.78 0.78
0.050 0.68 0.94 0.95

Table 4.2: Power of the scan, the multiscale and the ALR tests for 𝑚 = 40 (i.e., 𝑛 = 402) as `
changes.

Figure 4.1: The empirical distribution functions of the multiscale statistic for different values of 𝑛.
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For every 𝐵 ∈ ℬ define

Ψ̂(𝐵) :=
1√︁
|𝐵 |

∑︁
(𝑖/𝑚, 𝑗/𝑚)∈𝐵

𝑌

(
𝑖

𝑚
,
𝑗

𝑚

)
.

Note that Ψ̂(·) is the discrete analogue of the normalized kernel estimator as defined in (1.6). The

scan test statistic (see [90, Chapter 5]) for this problem is defined as

𝑀𝑛 := max
𝐵∈ℬ
|Ψ̂(𝐵) |.

The ALR test statistic (see [13]) is defined as

𝐴𝑛 :=
1(𝑚+1
2

)2

∑︁
𝐵∈ℬ

exp(Ψ̂(𝐵)2/2).

The scan test (ALR test) rejects the null hypothesis if the observed 𝑀𝑛 (𝐴𝑛) exceeds the 0.95-

quantile for 𝑀𝑛 (𝐴𝑛) under the null hypothesis. In Tables 4.2 and 4.3 we compare the performances

of the three procedures where ` denotes the signal strength, and 𝑘/𝑚 denotes the length of each

side of the square signal 𝐵𝑛 (i.e., 𝐵𝑛 is a square of size 𝑘/𝑚 × 𝑘/𝑚). The power of the tests were

calculated using 1000 replications. In each replication the location of the square signal 𝐵𝑛 was

chosen randomly.

We make the following observations. For both the cases (𝑚 = 40 and 100) when the signal is

at the smallest scale, e.g., 𝑘 = 1, the scan statistic outperforms everything else. However, when

𝑚 = 100, even in relatively small scales, e.g., 𝑘 = 8 (i.e., about 0.6% of the observations contain

the signal) our multiscale test starts to outperform the scan test. Note that in this setting (small

scales) the ALR performs the worst. As the spatial extent of the signal increases, our multiscale

procedure and the ALR procedure starts performing favorably whereas the performance of the scan

statistics deteriorates. Thus, the simulation experiments corroborate our theoretical findings.

In the next part of our simulation studies we construct confidence bands for shape restricted

regression function for (2.7). At first we consider the regression function 𝑓 (𝑥1, 𝑥2) = 𝑥1 + 𝑥2,

In our simulation studies we have data on a 50 × 50 grid on [0, 1]2 and we have assumed that
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𝑘 = 1
` Scan Multiscale ALR

4.5 0.34 0.11 0.06
5.0 0.52 0.28 0.06
5.5 0.75 0.43 0.09
6.0 0.95 0.61 0.13

𝑘 = 8
` Scan Multiscale ALR

0.25 0.08 0.17 0.07
0.30 0.35 0.46 0.13
0.35 0.60 0.72 0.22
0.40 0.82 0.96 0.50

𝑘 = 30
` Scan Multiscale ALR

0.040 0.07 0.22 0.22
0.050 0.17 0.42 0.45
0.055 0.42 0.74 0.75
0.060 0.58 0.93 0.96

𝑘 = 100
` Scan Multiscale ALR

0.014 0.08 0.42 0.42
0.018 0.17 0.62 0.63
0.020 0.22 0.84 0.86
0.025 0.45 0.96 0.95

Table 4.3: Power of the scan, the multiscale and the ALR tests for 𝑚 = 100 (i.e., 𝑛 = 1002) as `
changes.

the underlying regression function is isotonic. Figure 4.2 shows the constructed confidence band.

Here we would like to point our the confidence band achieves the smallest width in the center of

the rectangle and the width gets larger as we move towards the sides which is expected because of

smaller number of datapoints close by.

In our second simulation study, we construct confidence bands for the function 𝑓 (𝑥1, 𝑥2) =

I(𝑥1 ≥ 0.5); see Figure 4.3. We can clearly see the local adaptivity of our bands in action. On

the regions where the function is constant (regions where 𝑥1 is away from 0.5) we see that the

confidence band has significantly less width.

We have also constructed confidence bands under the assumption that the regression function is

convex. Figure 4.4 shows the constructed confidence band for the regression function 𝑓 (𝑥1, 𝑥2) =

|𝑥1−0.5|, whereas Figure 4.5 is for the regression function 𝑓 (𝑥1, 𝑥2) = 40((𝑥1−0.5)2+(𝑥2−0.5)2).

Both of these simulations show that the upper band is much smoother that the lower band in the

convex regression case. We also see that the lower confidence band is closer to the actual function

in the center of the rectangle than on the sides. Table 4.4 also shows that at least 95% of cases

our confidence bands do encompass the actual regression function, which is expected as we have

guaranteed converge even in the finite sample case; see Theorem 3.2.1 for details.
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Figure 4.2: Confidence band for the function 𝑓 (𝑥1, 𝑥2) = 𝑥1+𝑥2 assuming 𝑓 is isotonic and sample
size 𝑛 = 502

Figure 4.3: Confidence band for the function 𝑓 (𝑥1, 𝑥2) = I(𝑥1 ≥ 0.5) assuming 𝑓 is isotonic and
sample size 𝑛 = 502
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Figure 4.4: Confidence band for the function 𝑓 (𝑥1, 𝑥2) = |𝑥1 − 0.5| assuming 𝑓 is convex and
sample size 𝑛 = 402

Figure 4.5: Confidence band for the function 𝑓 (𝑥1, 𝑥2) = 40((𝑥1 − 0.5)2 + (𝑥2 − 0.5)2) assuming
𝑓 is convex and sample size 𝑛 = 402
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𝑓 (𝑥1, 𝑥2) Category Coverage Probability
0 isotonic 0.95

𝑥1 + 𝑋2 isotonic 0.97
20(𝑥1 + 𝑋2) isotonic 1.00
I(𝑥1 ≥ 0.5) isotonic 0.97

0 convex 0.95
𝑥1 + 𝑋2 convex 0.96

10(𝑥1 + 𝑋2) convex 0.95
(𝑥1 − 0.5)2 + (𝑥2 − 0.5)2 convex 0.98

Table 4.4: Coverage probability of our constructed confidence bands for different regression func-
tions
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Conclusion or Epilogue

In this dissertation we have proposed a multidimensional multiscale statistic in the continuous

white noise model and used this statistic to construct asymptotically minimax tests for testing 𝑓 = 0

against (i) Hölder classes of functions; and (ii) alternatives of the form 𝑓 = `𝑛I𝐵𝑛
, where 𝐵𝑛 is an

unknown axis-aligned hyperrectangle in [0, 1]𝑑 and `𝑛 ∈ R is unknown. However, there are many

open questions in this area. We briefly delineate a few of them below and in the process describe

some important papers in related areas of research.

We have shown that for the Hölder class H𝛽,𝐿 , if the smoothness parameter 𝛽 is known, we

can construct an asymptotically minimax test. However, if 𝛽 is unknown (and 𝛽 ≤ 1) we can only

construct a rate optimal test. A natural question that arises is whether a test can be constructed that

is asymptotically minimax (for the Hölder class of functions with the supremum norm) without the

knowledge of the smoothness parameter 𝛽 (and 𝐿 > 0); see [91, Section 1.3]. Another interesting

question would be to try to extend our results to other smoothness classes like Sobolev/Besov

classes; in [25] the authors gave the minimax rate of testing for Sobolov class, but no test was

proposed that achieves the exact separation constant.

Note that we have shown that our multiscale test is asymptotically minimax for detecting the

presence of a signal on an axis-aligned hyperrectangle in [0, 1]𝑑 . One obvious extension of our

work would be to correctly identify the hyperrectangle on which the signal is present. Further,

we could go beyond hyperrectangles and try to identify signals that are present on some other

geometric structures 𝐴 ⊂ [0, 1]𝑑 (i.e., 𝑓 = `I𝐴 where 𝐴 is not necessarily an axis-aligned hy-

perrectangle). Examples of such geometric structures could be: (𝑖) 𝐴 is an hyperrectangle which
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is not necessarily axis-aligned, (𝑖𝑖) 𝐴 is a 𝑑-dimensional ellipsoid, (𝑖𝑖𝑖) 𝐴 =
⋃𝑘
𝑖=1 𝐴𝑖 where each

𝐴𝑖 ⊆ [0, 1]𝑑 is an (axis-aligned) hyperrectangle, etc. [17] and the references therein investigated

the problem of finding change points in 𝑑 = 1 which can be thought of as detection of multiple

intervals. In [11] the authors use the scan statistic to detect regions in R𝑑 where the underlying

function is non-zero. [12] considers the problem of finding a cluster of signals (not necessarily

rectangular) in a network using the scan statistic. Although the method they propose achieves the

optimal boundary for detection, it requires the knowledge of whether the signal shape is “thick"

or “thin". For hyperrectangles this refers to whether or not the minimum side length is of order

log 𝑛/𝑛 or not. We believe that the multiscale statistic, with proper modifications, can be used to

find asymptotically minimax/rate optimal tests in such problems.

In our white noise model (1.1) we assume that the distribution of the response variables is

(homogeneous and independent) Gaussian. Similar questions about signal detection can be asked

when the response is non-Gaussian; see e.g., [14], [37], [92], [18], etc. In [93] the authors looked

at the problem of detecting change points under heterogeneous variance of the response variable

(when 𝑑 = 1). [94] looked at this problem where the error distribution is known to be symmetric

(when 𝑑 = 1). A multiscale approach could be used to tackle such problems as well. Here we note

that [14] studied a similar problem where the response variable is binary when 𝑑 > 1.

Several interesting applications of the multiscale approach exist when 𝑑 = 1 (following the

seminal paper of [4]): In [95] the authors propose a multiscale test statistic to make inference

about a probability density on the real line given i.i.d. observations; [96] use multiscale methods

to make inference in a deconvolution problem; [37] use multiscale methods to detect a jump in the

intensity of a Poisson process; [97] and [98] use multiscale approaches to make inferences about

multivariate densities in deconvolution problems, etc. We believe that our extension beyond 𝑑 = 1

will also lead to several interesting multidimensional applications.

One such application we have looked at in Chapter 3. We have used this multidimensional

statistics to find confidence band for both co-ordinatewise monotone and convex functions. Our

constructed confidence bands are honest, adaptive with respect to the smoothness of the underlying
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function (both globally and locally). We have also shown that the function is adaptive to the

intrinsic dimension of the function. We have also shown that our constructed confidence bands

not only achieves the optimal rate of convergence but also the optimal constant. We have also

demonstrated a method of constructing confidence bands in the special case of additive functions,

where the problem essentially boils down to solving multiple one-dimensional problems and attains

the same rate of convergence corresponding to 𝑑 = 1.
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36, 1969.

[42] P. Groeneboom, G. Jongbloed, and J. A. Wellner, “Estimation of a convex function: Char-
acterizations and asymptotic theory,” Ann. Statist., vol. 29, no. 6, pp. 1653–1698, 2001.

[43] R. E. Barlow, D. J. Bartholomew, J. M. Bremner, and H. D. Brunk, Statistical inference
under order restrictions. The theory and application of isotonic regression. John Wiley &
Sons, London-New York-Sydney, 1972, pp. xii+388.

[44] T. Robertson, F. T. Wright, and R. L. Dykstra, Order restricted statistical inference (Wiley
Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics).
John Wiley & Sons, Ltd., Chichester, 1988, pp. xx+521, ISBN: 0-471-91787-7.

[45] P. Groeneboom and J. A. Wellner, Information bounds and nonparametric maximum like-
lihood estimation (DMV Seminar). Birkhäuser Verlag, Basel, 1992, vol. 19, pp. viii+126,
ISBN: 3-7643-2794-4.

[46] P. Groeneboom and G. Jongbloed, Nonparametric estimation under shape constraints
(Cambridge Series in Statistical and Probabilistic Mathematics). Cambridge University
Press, New York, 2014, vol. 38, pp. xi+416, Estimators, algorithms and asymptotics, ISBN:
978-0-521-86401-5.

[47] H. B. McMahan et al., “Ad click prediction: A view from the trenches,” in Proceedings
of the 19th ACM SIGKDD international conference on Knowledge discovery and data
mining, 2013, pp. 1222–1230.

[48] R. Luss, S. Rosset, and M. Shahar, “Efficient regularized isotonic regression with applica-
tion to gene-gene interaction search,” Ann. Appl. Stat., vol. 6, no. 1, pp. 253–283, 2012.

[49] G. Allon, M. Beenstock, S. Hackman, U. Passy, and A. Shapiro, “Nonparametric estima-
tion of concave production technologies by entropic methods,” Journal of Applied Econo-
metrics, vol. 22, no. 4, pp. 795–816, 2007.

[50] T. Kuosmanen and A. L. Johnson, “Data envelopment analysis as nonparametric least-
squares regression,” Operations Research, vol. 58, no. 1, pp. 149–160, 2010.

[51] A. Keshavarz, Y. Wang, and S. Boyd, “Imputing a convex objective function,” in 2011
IEEE international symposium on intelligent control, IEEE, 2011, pp. 613–619.

[52] E. Seijo and B. Sen, “Nonparametric least squares estimation of a multivariate convex
regression function,” Ann. Statist., vol. 39, no. 3, pp. 1633–1657, 2011.

57



[53] X. Chen, Q. Lin, and B. Sen, “On degrees of freedom of projection estimators with applica-
tions to multivariate nonparametric regression,” J. Amer. Statist. Assoc., vol. 115, no. 529,
pp. 173–186, 2020.

[54] Q. Han, T. Wang, S. Chatterjee, and R. J. Samworth, “Isotonic regression in general di-
mensions,” Ann. Statist., vol. 47, no. 5, pp. 2440–2471, 2019.

[55] H. Deng and C.-H. Zhang, “Isotonic regression in multi-dimensional spaces and graphs,”
Ann. Statist., vol. 48, no. 6, pp. 3672–3698, 2020.

[56] M. Meyer and M. Woodroofe, “On the degrees of freedom in shape-restricted regression,”
Ann. Statist., vol. 28, no. 4, pp. 1083–1104, 2000.

[57] C.-H. Zhang, “Risk bounds in isotonic regression,” Ann. Statist., vol. 30, no. 2, pp. 528–
555, 2002.

[58] A. Guntuboyina and B. Sen, “Global risk bounds and adaptation in univariate convex re-
gression,” Probab. Theory Related Fields, vol. 163, no. 1-2, pp. 379–411, 2015.

[59] S. Chatterjee, A. Guntuboyina, and B. Sen, “On risk bounds in isotonic and other shape
restricted regression problems,” Ann. Statist., vol. 43, no. 4, pp. 1774–1800, 2015.

[60] S. Chatterjee, A. Guntuboyina, and B. Sen, “On matrix estimation under monotonicity
constraints,” Bernoulli, vol. 24, no. 2, pp. 1072–1100, 2018.

[61] A. Guntuboyina and B. Sen, “Nonparametric shape-restricted regression,” Statist. Sci.,
vol. 33, no. 4, pp. 568–594, 2018.

[62] S. Chatterjee and J. Lafferty, “Adaptive risk bounds in unimodal regression,” Bernoulli,
vol. 25, no. 1, pp. 1–25, 2019.

[63] G. Kur, F. Gao, A. Guntuboyina, and B. Sen, “Convex regression in multidimensions:
Suboptimality of least squares estimators,” arXiv preprint arXiv:2006.02044, 2020.

[64] L. Dümbgen, “Optimal confidence bands for shape-restricted curves,” Bernoulli, vol. 9,
no. 3, pp. 423–449, 2003.

[65] P. Datta and B. Sen, “Optimal inference with a multidimensional multiscale statistic,” Elec-
tron. J. Statist., vol. 15, no. 2, pp. 5203–5244, 2021.

[66] L. Dümbgen and V. G. Spokoiny, “Multiscale testing of qualitative hypotheses,” Ann.
Statist., vol. 29, no. 1, pp. 124–152, 2001.

58



[67] M. P. Wand and M. C. Jones, Kernel smoothing (Monographs on Statistics and Applied
Probability). Chapman and Hall, Ltd., London, 1995, vol. 60, pp. xii+212, ISBN: 0-412-
55270-1.

[68] I. M. Johnstone, “Wavelets and the theory of non-parametric function estimation,” Philo-
sophical Transactions: Mathematical, Physical and Engineering Sciences, vol. 357, no. 1760,
pp. 2475–2493, 1999.

[69] L. D. Brown, T. T. Cai, and H. H. Zhou, “Robust nonparametric estimation via wavelet
median regression,” Ann. Statist., vol. 36, no. 5, pp. 2055–2084, 2008.

[70] J. Hart, onparametric Smoothing and Lack-of-Fit Tests. Springer, New York, 1997.

[71] H. Lian, K. Zhao, and S. Lv, “Projected spline estimation of the nonparametric function
in high- dimensional partially linear models for massive data,” Ann. Statist., vol. 47, no. 5,
pp. 2922–2949, 2019.

[72] C. Gu, Smoothing spline ANOVA models (Springer Series in Statistics). Springer-Verlag,
New York, 2002, pp. xiv+289, ISBN: 0-387-95353-1.

[73] J. Fan, Local Polynomial Modelling and Its Applications (Monographs on Statistics and
Applied Probability). Chapman and Hall, 1996, vol. 66, p. 360, ISBN: 9780203748725.

[74] G. Wahba, Spline Models for Observational Data (CBMS-NSF Regional Conference Se-
ries in Applied Mathematics). Society for Industrial and Applied Mathematics, 1990, vol. 59,
pp. XII + 169, ISBN: 978-0-898712-44-5.

[75] D. L. Donoho and I. M. Johnstone, “Ideal spatial adaptation by wavelet shrinkage,” Biometrika,
vol. 81, no. 3, pp. 425–455, 1994.

[76] D. L. Donoho and I. M. Johnstone, “Adapting to unknown smoothness via wavelet shrink-
age,” JASA, vol. 90, no. 432, pp. 1200–1224, 1995.

[77] E. Giné and R. Nickl, Mathematical foundations of infinite-dimensional statistical models
(Cambridge Series in Statistical and Probabilistic Mathematics). Cambridge University
Press, New York, 2016, vol. [40], pp. xiv+690, ISBN: 978-1-107-04316-9.

[78] D. L. Donoho, “One-sided inference about functionals of a density,” Ann. Statist., vol. 16,
pp. 1390–1420, 1988.

[79] T. T. Cai and M. G. Low, “An adaptation theory for nonparametric confidence intervals,”
Ann. Statist., vol. 32, no. 5, pp. 1805–1840, 2004.

[80] H. R. Varian, Microeconomic analysis. WW Norton, 1992.

59



[81] H. R. Varian, Intermediate Microeconomics, a modern approach, Eighth. Macmillan &
Company, 2010.

[82] R. Chambers, “Duality, the output effect, and applied comparative statics,” American Jour-
nal of Agricultural Economics, vol. 64, no. 1, pp. 152–156, 1982.

[83] S. Mukherjee, R. Patra, A. Johnson, and H. Morita, “Least squares estimation of a mono-
tone quasiconvex regression function,” arXiv preprint arXiv:2003.04433, 2021.

[84] X. Chen, V. Chernozhukov, I. Fernández-Val, S. Kostyshak, and Y. Luo, “Shape-enforcing
operators for point and interval estimators,” arXiv:1809.01038v3, 2018.

[85] L. Dümbgen, “New goodness-of-fit tests and their application to nonparametric confidence
sets,” Ann. Statist., vol. 26, no. 1, pp. 288–314, 1998.

[86] P. Davies, “Data features,” Statistica Neerlandica, vol. 49, pp. 185–245, 1995.

[87] N. W. Hengartner and P. B. Stark, “Finite-sample confidence envelopes for shape-restricted
densities,” Ann. Statist., vol. 23, no. 2, pp. 525–550, 1995.

[88] J. Freyberger and B. Reeves, “Inference under shape restrictions,” Social Science Research
Network, 2018.

[89] A. B. Tsybakov, Introduction to nonparametric estimation (Springer Series in Statistics).
Springer, New York, 2009, pp. xii+214, Revised and extended from the 2004 French orig-
inal, Translated by Vladimir Zaiats, ISBN: 978-0-387-79051-0.

[90] J. Glaz, J. I. Naus, and S. Wallenstein, Scan statistics. Springer, 2011.

[91] P. Ji and M. Nussbaum, “Sharp minimax adaptation over Sobolev ellipsoids in nonpara-
metric testing,” Electron. J. Stat., vol. 11, no. 2, pp. 4515–4562, 2017.

[92] H. P. Chan and G. Walther, “Optimal detection of multi-sample aligned sparse signals,”
Ann. Statist., vol. 43, no. 5, pp. 1865–1895, 2015.

[93] F. Pein, H. Sieling, and A. Munk, “Heterogeneous change point inference,” J. R. Stat. Soc.
Ser. B. Stat. Methodol., vol. 79, no. 4, pp. 1207–1227, 2017.

[94] A. Rohde, “Adaptive goodness-of-fit tests based on signed ranks,” Ann. Statist., vol. 36,
no. 3, pp. 1346–1374, 2008.

[95] L. Dümbgen and G. Walther, “Multiscale inference about a density,” Ann. Statist., vol. 36,
no. 4, pp. 1758–1785, 2008.

60



[96] J. Schmidt-Hieber, A. Munk, and L. Dümbgen, “Multiscale methods for shape constraints
in deconvolution: Confidence statements for qualitative features,” Ann. Statist., vol. 41,
no. 3, pp. 1299–1328, 2013.

[97] K. Eckle, N. Bissantz, and H. Dette, “Multiscale inference for multivariate deconvolution,”
Electron. J. Stat., vol. 11, no. 2, pp. 4179–4219, 2017.

[98] K. Eckle, N. Bissantz, H. Dette, K. Proksch, and S. Einecke, “Multiscale inference for
a multivariate density with applications to X-ray astronomy,” Ann. Inst. Statist. Math.,
vol. 70, no. 3, pp. 647–689, 2018.

[99] E. Wong and M. Zakai, “An extension of stochastic integrals in the plane,” Ann. Probab.,
vol. 5, no. 5, pp. 770–778, 1977.

[100] D. Khoshnevisan, Multiparameter processes (Springer Monographs in Mathematics). Springer-
Verlag, New York, 2002, pp. xx+584, An introduction to random fields, ISBN: 0-387-
95459-7.

[101] P. E. Protter, Stochastic integration and differential equations (Stochastic Modelling and
Applied Probability). Springer-Verlag, Berlin, 2005, vol. 21, pp. xiv+419, Second edition.
Version 2.1, Corrected third printing, ISBN: 3-540-00313-4.

[102] C. Aistleitner and J. Dick, “Functions of bounded variation, signed measures, and a general
Koksma-Hlawka inequality,” Acta Arith., vol. 167, no. 2, pp. 143–171, 2015.

[103] A. W. van der Vaart and J. A. Wellner, Weak convergence and empirical processes (Springer
Series in Statistics). Springer-Verlag, New York, 1996, pp. xvi+508, With applications to
statistics, ISBN: 0-387-94640-3.

[104] Z. Kabluchko and A. Munk, “Exact convergence rate for the maximum of standardized
Gaussian increments,” Electron. Commun. Probab., vol. 13, pp. 302–310, 2008.

61



Appendix A: Proofs of our main results

A.1 Some useful concepts

In this subsection we formally define some technical concepts that we use in this paper.

Definition A.1.1 (Brownian sheet) By a 𝑑-dimensional Brownian sheet we mean a mean-zero

Gaussian process {𝑊 (𝑡) : 𝑡 ∈ [0, 1]𝑑} with covariance

Cov(𝑊 (𝑡1, . . . , 𝑡𝑑),𝑊 (𝑠1, . . . , 𝑠𝑑)) = Π𝑑
𝑖=1 min(𝑡𝑖, 𝑠𝑖),

for (𝑡1, . . . , 𝑡𝑑), (𝑠1, . . . , 𝑠𝑑) ∈ [0, 1]𝑑 . The Brownian sheet is the 𝑑-dimensional counterpart of the

standard Brownian motion; see e.g., [99], [100, Chapter 5] for detailed properties of the Brownian

sheet. See Appendix A.1.1 for some important properties of the Brownian sheet used in our proofs.

A.1.1 Properties of Brownian Sheet

In the following we give some useful properties of the Brownian sheet𝑊 (·).

• If 𝑔 ∈ 𝐿2( [0, 1]𝑑) then
∫
𝑔𝑑𝑊 :=

∫
[0,1]𝑑 𝑔(𝑡)𝑑𝑊 (𝑡) ∼ 𝑁 (0, ∥𝑔∥

2).

• If 𝑔1, 𝑔2 ∈ 𝐿2( [0, 1]𝑑) then Cov
(∫
𝑔1𝑑𝑊,

∫
𝑔2𝑑𝑊

)
=

∫
[0,1]𝑑 𝑔1(𝑡)𝑔2(𝑡)𝑑𝑡.

• Cameron-Martin-Girsanov Theorem for Brownian sheet: Let us state the simplest version of

the Cameron-Martin-Girsanov Theorem that we will use in this paper (see [101, Chapter 3]

for detailed discussion about change of measure and the result).

Assume 𝑓 ∈ 𝐿1( [0, 1]𝑑) and let {𝑊 (𝑡) : 𝑡 ∈ [0, 1]𝑑} be a standard Brownian sheet. Let Ω

be the set of all real-valued continuous functions defined on [0, 1]𝑑 . Let 𝑃 denote the mea-

sure on Ω induced by the Brownian sheet {𝑊 (𝑡) : 𝑡 ∈ [0, 1]𝑑} and let 𝑄 denote the measure
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induced by {𝑌 (𝑡) : 𝑡 ∈ [0, 1]𝑑} where 𝑌 (𝑡) is defined as in (1.1). Then 𝑄 is absolutely

continuous with respect to 𝑃 and the Radon-Nikodym derivative is given by

𝑑𝑄

𝑑𝑃
(𝑌 ) = exp

(√
𝑛

∫
𝑓 𝑑𝑊 − 𝑛

2
∥ 𝑓 ∥2

)
.

This, in turn, implies that for any measurable function 𝜙 we have

E𝑄 (𝜙(𝑌 )) = E𝑃
(
𝜙(𝑌 ) 𝑑𝑄

𝑑𝑃
(𝑌 )

)
.

Definition A.1.2 (Hölder Function) Fix 𝛽 > 0 and 𝐿 > 0. Let ⌊𝛽⌋ be the largest integer which is

strictly less than 𝛽 and for 𝑘 = (𝑘1, 𝑘2, . . . , 𝑘𝑑) ∈ N𝑑 set ∥𝑘 ∥1 :=
∑𝑑
𝑖=1 𝑘𝑖. The Hölder class H𝛽,𝐿

on [−1, 1]𝑑 is the set of all functions 𝑓 : [−1, 1]𝑑 → R having all partial derivatives of order ⌊𝛽⌋

on [−1, 1]𝑑 such that ∑︁
0≤∥𝑘 ∥1≤⌊𝛽⌋

sup
𝑥∈[0,1]𝑑

����� 𝜕∥𝑘 ∥1 𝑓 (𝑥)
𝜕𝑥

𝑘1
1 . . . 𝜕𝑥

𝑘𝑑
𝑑

����� ≤ 𝐿
and ∑︁

∥𝑘 ∥1=⌊𝛽⌋

����� 𝜕∥𝑘 ∥1 𝑓 (𝑦)
𝜕𝑥

𝑘1
1 . . . 𝜕𝑥

𝑘𝑑
𝑑

− 𝜕∥𝑘 ∥1 𝑓 (𝑧)
𝜕𝑥

𝑘1
1 . . . 𝜕𝑥

𝑘𝑑
𝑑

����� ≤ 𝐿 ∥𝑦 − 𝑧∥𝛽−⌊𝛽⌋ ∀ 𝑦, 𝑧 ∈ [−1, 1]𝑑 .

See Appendix A.1.1 for an important property of Hölder classes of functions useful in our proofs.

Properties of Hölder functions

One of the most important properties of H𝛽,𝐿 that we will use is the following: If 𝑓 ∈ H𝛽,1

then, for any ℎ = (ℎ1, . . . , ℎ𝑑) > 0 and 𝑡 ∈ 𝐴ℎ,

𝑔(𝑥1, . . . , 𝑥𝑑) := 𝐿min(ℎ)𝛽 𝑓
(
𝑥1 − 𝑡1
ℎ1

, . . . ,
𝑥𝑑 − 𝑡𝑑
ℎ𝑑

)
∈ H𝛽,𝐿

where min(ℎ) := min𝑖=1,...,𝑑 ℎ𝑖. The proof of the above result follows directly from the definition

of Hölder functions.
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Definition and Properties of Hardy-Krause variation

The notion of bounded variation for a function 𝑓 : R𝑑 → R, where 𝑑 ≥ 2, is more involved

than when 𝑑 = 1. In fact there is no unique notion of bounded variation for a function when 𝑑 ≥ 2.

Below we describe the notion of Hardy and Krause variation as given in [102], which suffices for

our purpose.

Definition A.1.3 (Hardy-Krause variation) Let 𝑓 : [−1, 1]𝑑 → R be a measurable function. Let

𝑎 = (𝑎1, . . . , 𝑎𝑑) and 𝑏 = (𝑏1, . . . , 𝑏𝑑) be elements of [−1, 1]𝑑 such that 𝑎 < 𝑏 (coordinate-wise).

We introduce the d-dimensional difference operator Δ(𝑑) which assigns to the axis-aligned box

𝐴 := [𝑎, 𝑏] a d-dimensional quasi-volume

Δ(𝑑) ( 𝑓 ; 𝐴) =
1∑︁
𝑗1=0
· · ·

1∑︁
𝑗𝑑=0
(−1) 𝑗1+···+ 𝑗𝑑 𝑓 (𝑏1 + 𝑗1(𝑎1 − 𝑏1), . . . , 𝑏𝑑 + 𝑗𝑑 (𝑎𝑑 − 𝑏𝑑)).

Let 𝑚1, . . . , 𝑚𝑑 ∈ N. For 𝑠 = 1, . . . , 𝑑, let −1 =: 𝑥 (𝑠)0 < 𝑥
(𝑠)
1 < · · · < 𝑥

(𝑠)
𝑚𝑠

:= 1 be a partition of

[−1, 1] and let P be a partition of [−1, 1]𝑑 which is given by

P :=
{
[𝑥 (1)
𝑙1
, 𝑥
(1)
𝑙1+1] × · · · × [𝑥

(𝑑)
𝑙𝑑
, 𝑥
(𝑑)
𝑙𝑑+1] : 𝑙𝑠 = 0, 1, . . . , 𝑚𝑠 − 1, for 𝑠 = 1, . . . , 𝑑

}
.

Then the variation of 𝑓 on [−1, 1]𝑑 in the sense of Vitali is given by

𝑉 (𝑑) ( 𝑓 ; [−1, 1]𝑑) := sup
P

∑︁
𝐴∈P
|Δ(𝑑) ( 𝑓 ; 𝐴) |

where the supremum is extended over all partitions of [−1, 1]𝑑 into axis-parallel boxes generated

by 𝑑 one-dimensional partitions of [−1, 1]. For 1 ≤ 𝑠 ≤ 𝑑 and 1 ≤ 𝑖1 < . . . < 𝑖𝑠 ≤ 𝑑, let

𝑉 (𝑠) ( 𝑓 ; 𝑖1, . . . , 𝑖𝑠; [−1, 1]𝑑) denote the 𝑠-dimensional variation in the sense of Vitali of the restric-

tion of 𝑓 to the face

𝑈
(𝑖1,...,𝑖𝑠)
𝑑

=
{
(𝑥1, . . . , 𝑥𝑑) ∈ [−1, 1]𝑑 : 𝑥 𝑗 = 1 for all 𝑗 ≠ 𝑖1, . . . , 𝑖𝑠

}
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of [−1, 1]𝑑 . Then the variation of 𝑓 on [−1, 1]𝑑 in the sense of Hardy and Krause anchored at 1,

abbreviated by HK-variation, is given by

𝑇𝑉 ( 𝑓 ) :=
𝑑∑︁
𝑖=1

∑︁
1≤𝑠≤𝑑

𝑉 (𝑠) ( 𝑓 ; 𝑖1, . . . , 𝑖𝑠; [−1, 1]𝑑).

We say a function 𝑓 has bounded HK-variation if 𝑇𝑉 ( 𝑓 ) < ∞.

The main property of a bounded HK-variation function that we will need in this paper is stated

below.

Remark A.1.1 If 𝑓 is a right continuous function on [−1, 1]𝑑 which has bounded HK-variation

then there exists a unique signed Borel measure a on [−1, 1]𝑑 for which

𝑓 (𝑥) = a( [−1, 𝑥]), 𝑥 ∈ [−1, 1]𝑑;

A.2 Proof of Theorem 2.1.2

In the following proofs 𝐾 would be used to denote a generic constant whose value would

change from line to line.

For every 𝑣 > 0, we define

Γ(𝑋, 𝑣) := sup
𝑎,𝑏∈ℱ,𝜌(𝑎,𝑏)≤𝑣

|𝑋 (𝑎) − 𝑋 (𝑏) |.

For simplicity we divide the proof in three steps.

Step 1: In this step we will prove that

P
(
Γ(𝑋, 𝑣) > [

)
≤ 𝐾 exp

(
− [2

𝐾𝑣2 log(𝑒/𝑣)

)
∀[ > 0 and 𝑣 ∈ (0, 1], (A.1)
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where 𝐾 > 0 is a positive constant not depending on 𝑣. We will prove the above result by introduc-

ing the notion of Orlicz norm. Let _ : R+ → R be a nondecreasing convex function with _(0) = 0.

For any random variable 𝑋 the Orlicz norm ∥𝑋 ∥_ is defined as

∥𝑋 ∥_ = inf
{
𝐶 > 0 : E_

(
|𝑋 |
𝐶

)
≤ 1

}
.

The Orlicz norm is of interest to us as any Orlicz norm easily yields a bound on the tail probability

of a random variable i.e., P( |𝑋 | > 𝑥) ≤ [_(𝑥/∥𝑋 ∥_)]−1, for all 𝑥 ∈ R (see [103, Page 96] for a

simple proof). Let us define _(𝑥) := exp(𝑥2) − 1, 𝑥 > 0. Hence,

P
(
|𝑋 | > 𝑥

)
≤ min

{
1,

1
exp(𝑥2/∥𝑋 ∥2_) − 1

}
≤ 2 × exp(−𝑥2/∥𝑋 ∥2_). (A.2)

Hence, it is enough to bound the Orlicz norm of Γ(𝑋, 𝑣). A bound on the Orlicz norm of Γ(𝑋, 𝑣)

can be shown by appealing to [103, Theorem 2.2.4] which we state below.

Lemma A.2.1 Let _ : R+ → R be a convex, nondecreasing, non-zero function with _(0) = 0 and

for some constant 𝑐 > 0, lim sup𝑥,𝑦→∞
_(𝑥)_(𝑦)
_(𝑐𝑥𝑦) < ∞. Let {𝑋𝑎, 𝑎 ∈ ℱ} be a separable stochastic

process with

∥𝑋𝑎 − 𝑋𝑏∥_ ≤ 𝐶𝜌(𝑎, 𝑏) for all 𝑎, 𝑏 ∈ ℱ

for some pseudometric 𝜌 on ℱ and constant C. Then for any Z, 𝑣 > 0,

∥Γ(𝑋, 𝑣)∥_ ≤ 𝐾
[∫ Z

0
_−1(𝑁 (𝜖,ℱ))𝑑𝜖 + 𝑣_−1(𝑁2(Z,ℱ))

]
for some constant 𝐾 depending only on _ and 𝐶.

We apply the above lemma with _(𝑥) := exp(𝑥2) − 1 (i.e., _−1(𝑦)

=
√︁

log(1 + 𝑦)). Note that condition (b) of Theorem 2.1.2 directly implies that ∥𝑋𝑎 − 𝑋𝑏∥_ ≤

𝐶𝜌(𝑎, 𝑏) by an application of [103, Lemma 2.2.1].

By taking 𝛿 = 1, 𝜖 = 𝑢1/2, condition (c) of Theorem 2.1.2 yields 𝑁 (𝜖,ℱ) ≤ 𝐴𝜖−2𝐵. Thus,
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Lemma A.2.1 gives (with Z = 𝑣)

∥Γ(𝑋, 𝑣)∥_ ≤ 𝐾
[∫ 𝑣

0

√︃
log(1 + 𝐴𝜖−2𝐵)𝑑𝜖 + 𝑣

√︃
log(1 + 𝐴2𝑣−4𝐵)

]
.

The expression on the right side of the above display can be easily shown to be less than or equal

to 𝐾𝑣
√︁

log(𝑒/𝑣) for some constant 𝐾 . This result along with an application of (A.2) with Γ(𝑋, 𝑣)

instead of 𝑋 imply

P
(
Γ(𝑋, 𝑣) > [

)
≤ 𝐾 exp

(
− [2

𝐾𝑣2 log(𝑒/𝑣)

)
for all [ > 0, 0 < 𝑣 ≤ 1,

for some constant 𝐾 .

Step 2: Let us define ℱ𝛿 := {𝑎 ∈ ℱ : 𝛿/2 < 𝜎2(𝑎) ≤ 𝛿}, for 𝛿 ∈ (0, 1], and

Π(𝛿) := P
(
𝑋2(𝑎)
𝜎2(𝑎)

> 2𝑉 log(1
𝛿
) + 𝑆 log log( 𝑒

𝑒

𝛿
) for some 𝑎 ∈ ℱ(𝛿)

)
(A.3)

for 𝑆 ≥ 4𝑝 + 1. In this step we will prove that

Π(𝛿) ≤ 𝐾 exp((𝐾 − 𝑆/𝐾) log log(𝑒𝑒/𝛿))

for some constant 𝐾 .

Fix 𝑢 < 1/2. Let ℱ(𝛿, 𝑢) be a
√
𝑢𝛿-packing set of ℱ𝛿). By our assumption the cardinality

of ℱ(𝛿, 𝑢) is less than or equal to 𝐴𝑢−𝐵𝛿−𝑉 (log(𝑒/𝛿))𝑝. Fix 𝑎 ∈ ℱ(𝛿). From the definition of

ℱ(𝛿, 𝑢) we can associate �̂� ∈ ℱ(𝛿, 𝑢) (corresponding to 𝑎 ∈ ℱ(𝛿)) such that 𝜌2(𝑎, �̂�) ≤ 𝑢𝛿.

Using assumption (a) of Theorem 2.1.2 we have

𝜎2(𝑎) ≥ 𝜎2(�̂�) − 𝑢𝛿 ≥ 𝜎2(�̂�) (1 − 2𝑢) (A.4)

where the last inequality follows from the fact that �̂� ∈ ℱ𝛿) (thus 𝜎2(�̂�) > 𝛿/2).
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We want to study the event
𝑋2(𝑎)
𝜎2(𝑎)

> 𝑟 (A.5)

for some 𝑟 > 0. Obviously, for any _ ∈ (0, 1), either (i) |𝑋 (𝑎) − 𝑋 (�̂�) |2 > _2𝑋2(𝑎) or (ii)

|𝑋 (𝑎) − 𝑋 (�̂�) |2 ≤ _2𝑋2(𝑎) (which, in particular implies |𝑋 (�̂�) | ≥ (1 − _) |𝑋 (𝑎) |). The above two

cases reduce to:

Γ(𝑋, (𝑢𝛿)1/2)2 ≥ |𝑋 (𝑎) − 𝑋 (�̂�) |2 > _2𝑋2(𝑎) ≥ _2𝑟𝜎2(𝑎) ≥ _2𝑟
𝛿

2
(A.6)

(here the first inequality follows from the definition of Γ(𝑋, (𝑢𝛿)1/2) and the third inequality fol-

lows from condition (A.5)), and

𝑋2(�̂�) ≥ (1 − _)2𝑋2(𝑎) ≥ (1 − _)2𝑟𝜎2(𝑎) ≥ (1 − _)2𝑟 (1 − 2𝑢)𝜎2(�̂�) (A.7)

(here the second inequality follows from (A.5) and last inequality follows from (A.4)). Therefore,

for any 𝑟 > 0,

Π𝑟 (𝛿) := P

(
𝑋2(𝑎)
𝜎2(𝑎)

> 𝑟 for some 𝑎 ∈ ℱ𝛿

)
≤ P

(
Γ(𝑋, (𝑢𝛿)1/2)2 > _2𝛿𝑟/2

)
+

∑︁
�̂�∈ℱ(𝛿,𝑢)

P
(
𝑋2(�̂�)/𝜎2(�̂�) > (1 − _)2𝑟 (1 − 2𝑢)

)
where we have used the fact that if 𝑋2(𝑎)/𝜎2(𝑎) > 𝑟 for some 𝑎 ∈ ℱ, then either (A.6) holds

or (A.7) is satisfied for some �̂� ∈ ℱ(𝛿, 𝑢). The first term on the right side of the above display

can be bounded by appealing to (A.1) with [ =
√︁
_2𝛿𝑟/2 and 𝑣 =

√
𝑢𝛿 and the second term can be
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bounded by using conditions (a) and (c) of Theorem 2.1.2. Hence we get

Π𝑟 (𝛿) ≤ 𝐾 exp

(
− _2𝛿𝑟/2
𝐾𝑢𝛿 log(𝑒/

√
𝑢𝛿)

)
+ 𝐴𝑢−𝐵𝛿−𝑉

(
log( 𝑒

𝛿
)
) 𝑝 exp

(
− (1 − _)

2𝑟 (1 − 2𝑢)
2

)
≤ 𝐾

[
exp

(
− _2𝑟

𝐾𝑢 log(𝑒/(𝑢𝛿))

)
+ exp

(
𝐵 log(1/𝑢) +𝑉 log(1/𝛿) + 𝑝 log log(𝑒/𝛿) + 𝑢𝑟 − (1/2 − _)𝑟

) ]
. (A.8)

Fix 𝑆 ≥ 8𝑝 + 1 and set

𝑟 := 2𝑉 log(1/𝛿) + 𝑆 log log
( 𝑒𝑒
𝛿

)
and

_ :=
1
𝑟

(
(𝑆/4) log log(𝑒𝑒/𝛿) − 𝑝 log log(𝑒/𝛿)

)
.

Observe that 𝑟 > 1 and 0 < _ < 1/4. Moreover, we have

(1/2 − _)𝑟 = 𝑉 log(1/𝛿) + 𝑝 log log(𝑒/𝛿) + (𝑆/4) log log(𝑒𝑒/𝛿).

Putting these values in (A.8) gives us

Π(𝛿) ≡ Π𝑟 (𝛿) ≤ 𝐾

[
exp

(
− (𝑆 − 4𝑝)2(log log(𝑒𝑒/𝛿))2

𝐾𝑢𝑟 log(𝑒/(𝑢𝛿))

)
+ exp

(
𝐵 log(1/𝑢) + 𝑢𝑟 − (𝑆/4) log log(𝑒𝑒/𝛿)

)]
(A.9)

where we have used the fact that _2𝑟2 = ((𝑆/4) log log(𝑒𝑒/𝛿)−𝑝 log log(𝑒/𝛿))2 ≥ (𝑆−4𝑝)2(log log(𝑒𝑒/𝛿))2/16.

Now, let us pick

𝑢 :=
𝑆

8𝑟 log(𝑒/𝛿) <
1
2
.

Then we have 1
𝑢
≤ 𝐾 log2(𝑒/𝛿) for some constant 𝐾 . Let us consider the two terms on the right

side of (A.9) separately. For the first term, using 𝑢𝑟 = 𝑆[log(𝑒/𝛿)]−1/8, and that 1
𝑢
≤ 𝐾 log2(𝑒/𝛿),
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we have

(𝑆 − 4𝑝)2(log log(𝑒𝑒/𝛿))2
𝐾𝑢𝑟 log(𝑒/(𝑢𝛿)) =

8(𝑆 − 8𝑝 + 16𝑝2/𝑆) (log log(𝑒𝑒/𝛿))2 log(𝑒/𝛿)
𝐾

(
log(𝑒/𝛿) + log(𝑢−1)

)
≥ (𝑆 − 8𝑝)

( (log log(𝑒𝑒/𝛿))2 log(𝑒/𝛿)
𝐾

(
log(𝑒/𝛿) + log𝐾 + 2 log log(𝑒/𝛿)

) )
≥ (1/𝐾 ′) (𝑆 − 8𝑝) (log log(𝑒𝑒/𝛿)).

Here the last inequality follows from the following fact: As

𝜏(𝛿) :=
(log log(𝑒𝑒/𝛿)) log(𝑒/𝛿)

𝐾
(
log(𝑒/𝛿) + log𝐾 + 2 log log(𝑒/𝛿)

) →∞, as 𝛿→ 0,

we can find a lower bound 𝐾′ > 0 such that 𝜏(𝛿) ≥ 1/𝐾′ for all 𝛿 ∈ (0, 1].

For the second term on the right side of (A.9) we have

𝐵 log(1/𝑢) + 𝑢𝑟 − (𝑆/4) log log(𝑒𝑒/𝛿)

≤ 𝐵 log𝐾 + 2𝐵 log log(𝑒/𝛿) + 𝑆/8 − (𝑆/4) log log(𝑒𝑒/𝛿)

≤ 𝐵 log𝐾 + 2𝐵 log log(𝑒/𝛿) − (𝑆/8) log log(𝑒𝑒/𝛿)

≤ 𝐵 log𝐾 + (2𝐵 − 𝑆/8) log log(𝑒𝑒/𝛿).

Thus, both the terms on the right side of (A.9) have the form 𝐾 exp[(𝐶 − 𝑆/𝐾′) log log(𝑒𝑒/𝛿)] for

some constants 𝐾,𝐶, 𝐾′ > 0. Putting these values in (A.9) gives us, for suitable constant 𝐾 > 0,

we get

Π(𝛿) ≤ 𝐾 exp ((𝐾 − 𝑆/𝐾) log log(𝑒𝑒/𝛿)) .

Step 3: In this step we will prove that as 𝑆 →∞

P

(
𝑋2(𝑎)
𝜎2(𝑎)

> 2𝑉 log(1/𝜎2(𝑎)) + 𝑆 log log
( 𝑒𝑒

𝜎2(𝑎)

)
for some 𝑎 ∈ ℱ

)
→ 0.
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First let us define

Π̃(𝛿) := P
(
𝑋2(𝑎)
𝜎2(𝑎)

> 2𝑉 log(1/𝜎2(𝑎)) + 𝑆 log log
( 𝑒𝑒

𝜎2(𝑎)

)
for some 𝑎 ∈ ℱ(𝛿)

)
.

Comparing with (A.3) we can see that for any 𝛿 ∈ (0, 1],

Π̃(𝛿) ≤ Π(𝛿)

as: If 𝑎 ∈ ℱ(𝛿) then 𝜎2(𝑎) ≤ 𝛿 and 𝑥 ↦−→ 2𝑉 log(1/𝑥) + 𝑆 log log(𝑒𝑒/𝑥) is a decreasing function

of 𝑥. Hence, we have

Π̃(𝛿) ≤ 𝐾 exp ((𝐾 − 𝑆/𝐾) log log(𝑒𝑒/𝛿)) .

Therefore, for 𝑆 > 0 such that 𝑆/𝐾 > 𝐾 + 1 (as ℱ =
⋃
𝑙≥0 ℱ(2−𝑙)),

P

(
𝑋2(𝑎)
𝜎2(𝑎)

> 2𝑉 log(1/𝜎2(𝑎)) + 𝑆 log log
( 𝑒𝑒

𝜎2(𝑎)

)
for some 𝑎 ∈ ℱ

)
≤
∞∑︁
𝑙=0

Π̃(2−𝑙)

≤ 𝐾
∞∑︁
𝑙=0

exp((𝐾 − 𝑆/𝐾) log log(𝑒𝑒2𝑙))

= 𝐾

∞∑︁
𝑙=0
(𝑒 + 𝑙 log 2)−(𝑆/𝐾−𝐾)

≤ 𝐾
∞∑︁
𝑗=2

𝑗−(𝑆/𝐾−𝐾) .

Note that the last term can be further upper bounded as

𝐾

∞∑︁
𝑗=2

𝑗−(𝑆/𝐾−𝐾) ≤ 𝐾
∫ ∞

2
𝑥−(𝑆/𝐾−𝐾)𝑑𝑥 ≤ 𝐾 2−(𝑆/𝐾−𝐾)+1

(𝑆/𝐾 − 𝐾) − 1
≤ b1 exp(−𝑆/b2)

for some constants b1 and b2 depending only on the constants 𝐾, 𝐿, 𝑀, 𝐴, 𝐵, 𝑝,𝑉 . This proves that

𝑆(𝑋) := sup𝑎∈ℱ
𝑋2 (𝑎)/𝜎2 (𝑎)−2𝑉 log(1/𝜎2 (𝑎))

log log(𝑒𝑒/𝜎2 (𝑎)) is a subexponential random variable.
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A.2.1 Proof of Lemma 2.1.1

First let us define the following sets:

ℱ𝛿,(𝑙1,...,𝑙𝑑) :=
{
(𝑡, ℎ) ∈ ℱ : 𝛿/2 < 𝜎2(𝑡, ℎ) ≤ 𝛿, 2𝑙𝑖−1 <

ℎ𝑖

𝛿1/𝑑 ≤ 2𝑙𝑖 ,

∀ 𝑖 = 1, . . . , 𝑑
}

for some (𝑙1, . . . , 𝑙𝑑) ∈ Z𝑑 ,

ℱ(𝛿) :=
{
(𝑡, ℎ) ∈ ℱ : 𝛿/2 < 𝜎2(𝑡, ℎ) ≤ 𝛿

}
.

We note that ℱ𝛿,(𝑙1,...,𝑙𝑑) is empty unless we have

(i) 𝑙𝑖 ≤ (1/𝑑) log2(1/𝛿) for all 𝑖 = 1, . . . , 𝑑;

(this restriction is a consequence of the fact that ℎ𝑖 ≤ 1/2) and

(ii) − (𝑑 + 1) <
𝑑∑︁
𝑖=1

𝑙𝑖 ≤ 0

(this restriction is a consequence of the fact that 𝛿/2 < 𝜎2(𝑡, ℎ) ≤ 𝛿).

Step 1: First, we will show that for any (𝑙1, . . . , 𝑙𝑑) ∈ Z𝑑 , and 𝛿, 𝑢 ∈ (0, 1],

𝑁

(
(𝑢𝛿)1/2,ℱ𝛿,(𝑙1,...,𝑙𝑑)

)
≤ 𝐾𝑢−2𝑑𝛿−1. (A.10)

Let ℱ′ be a subset of ℱ𝛿,(𝑙1,...,𝑙𝑑) such that for any two elements (𝑡, ℎ), (𝑡′, ℎ′) ∈ ℱ′ we have

𝜌2((𝑡, ℎ), (𝑡′, ℎ′)) > 𝑢𝛿. (A.11)

Our aim is to show that

|ℱ′| ≤ 𝐾𝑢−2𝑑𝛿−1,
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for some constant 𝐾 independent of (𝑙1, . . . , 𝑙𝑑), 𝑢 and 𝛿. If ℱ𝛿,(𝑙1,...,𝑙𝑑) is empty then the assertion

is trivial. So assume that ℱ𝛿,(𝑙1,...,𝑙𝑑) is non-empty which imposes bounds on the 𝑙𝑖’s as shown

above.

Let us define the following partition of [0, 1]𝑑 into disjoint hyperrectangles:

𝑅 :=
{
𝑀(𝑖1,...,𝑖𝑑) ∩ [0, 1]𝑑 : 𝑀(𝑖1,...,𝑖𝑑) := Π𝑑

𝑘=1

(
(𝑖𝑘 − 1)𝑢𝛿

1
𝑑 2𝑙𝑘
𝑐

, 𝑖𝑘
𝑢𝛿

1
𝑑 2𝑙𝑘
𝑐

]
,

1 ≤ 𝑖𝑘 ≤ ⌈𝑐𝑢−1𝛿−
1
𝑑 2−𝑙𝑘 ⌉

}
where we take 𝑐 := 𝑑4𝑑 . We would like to point out that in the above definition when 𝑖𝑘 = 1, for any

𝑘 = 1, . . . , 𝑑, by
(
(𝑖𝑘−1)𝑐−1𝑢𝛿1/𝑑2𝑙𝑘 , 𝑖𝑘𝑐−1𝑢𝛿1/𝑑2𝑙𝑘

]
we mean the closed interval

[
0, 𝑐−1𝑢𝛿1/𝑑2𝑙𝑘

]
.

Observe that all the sets in 𝑅 are disjoint and moreover
⋃
𝑀∈𝑅 𝑀 = [0, 1]𝑑 . Observe that

2𝑙𝑖−1𝛿1/𝑑 < ℎ𝑖 ≤ 1/2 ⇒ 2𝑙𝑖𝛿1/𝑑 < 1 ⇒ 𝑐𝑢−1𝛿−1/𝑑2−𝑙𝑖 > 1

⇒ ⌈𝑐𝑢−1𝛿−1/𝑑2−𝑙𝑖⌉ ≤ 2𝑐𝑢−1𝛿−1/𝑑2−𝑙𝑖 .

Hence we can easily see that

|𝑅 | = Π𝑑
𝑖=1⌈𝑐𝑢

−1𝛿−1/𝑑2−𝑙𝑖⌉ ≤ 2𝑑𝑐𝑑𝑢−𝑑𝛿−12−
∑𝑑

𝑖=1 𝑙𝑖 ≤ 22𝑑+1𝑐𝑑𝑢−𝑑𝛿−1.

Here the last inequality follows from the fact that
∑𝑑
𝑖=1 𝑙𝑖 ≥ −(𝑑 + 1). Let us define the following

set:

𝑅2 :=
{
(𝑀𝑖

∼
, 𝑀𝑖

∼
′) ∈ 𝑅 × 𝑅 : ∃ (𝑡, ℎ) ∈ ℱ′ s.t. 𝑡 − ℎ ∈ 𝑀𝑖

∼
and 𝑡 + ℎ ∈ 𝑀𝑖

∼
′

}
.

Note that if (𝑡, ℎ) ∈ ℱ′ then ℎ𝑘 ≤ 2𝑙𝑘𝛿1/𝑑 for all 𝑘 = 1, . . . , 𝑑. This implies that if (𝑀𝑖
∼
, 𝑀𝑖

∼
′) ∈ 𝑅2,

where 𝑖
∼
= (𝑖1, . . . , 𝑖𝑑) and 𝑖

∼
′ = (𝑖′1, . . . , 𝑖

′
𝑑
), then

(𝑖′𝑘 − 𝑖𝑘 ) ≤ (1 + 2𝑐𝑢−1), for all 𝑘 = 1, . . . , 𝑑, (A.12)
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as (i) (𝑖′
𝑘
− 1)𝑢𝛿1/𝑑2𝑙𝑘𝑐−1 ≤ 𝑡𝑘 + ℎ𝑘 , and (ii) 𝑖𝑘𝑢𝛿

1
𝑑 2𝑙𝑘𝑐−1 ≥ 𝑡𝑘 − ℎ𝑘 . Thus for each hyperrectangle

𝑀𝑖
∼
∈ 𝑅 the number of hyperrectangles 𝑀𝑖

∼
′ ∈ 𝑅 such that (𝑀𝑖

∼
, 𝑀𝑖

∼
′) ∈ 𝑅2 is less than or equal to

(1 + 2𝑐𝑢−1)𝑑 ≤ 4𝑑𝑐𝑑𝑢−𝑑 . Hence we have

|𝑅2 | ≤ |𝑅 | × 4𝑑𝑐𝑑𝑢−𝑑 ≤ 24𝑑+1𝑐2𝑑𝑢−2𝑑𝛿−1 ≤ 𝑑2𝑑24𝑑2+4𝑑+1𝑢−2𝑑𝛿−1.

Thus, our proof will be complete if we can show that |𝑅2 | = |ℱ′|. From the definition of 𝑅2

and the fact that elements in 𝑅 are disjoint it is easy to observe that |𝑅2 | ≤ |ℱ′|.

Therefore, the only thing left to show is that |ℱ′| ≤ |𝑅2 |. Let us assume the contrary, i.e.,

|𝑅2 | < |ℱ′|. This implies that there exist two elements (𝑡, ℎ) and (𝑡′, ℎ′) ∈ ℱ′ and (𝑀𝑖
∼
, 𝑀𝑖

∼
′) ∈ 𝑅2

such that both 𝑡 − ℎ and 𝑡′ − ℎ′ belong to 𝑀𝑖
∼

and, also, 𝑡 + ℎ and 𝑡′ + ℎ′ belong to 𝑀𝑖
∼
′ . Let us first

define the following two hyperrectangles:

𝐵1 := Π𝑑
𝑘=1(𝑖𝑘 − 1, 𝑖′𝑘 ] × 𝑐

−1𝑢𝛿1/𝑑2𝑙𝑘 and 𝐵2 := Π𝑑
𝑘=1(𝑖𝑘 , 𝑖

′
𝑘 − 1] × 𝑐−1𝑢𝛿1/𝑑2𝑙𝑘 .

Our goal is to show that

𝐵∞(𝑡, ℎ) △ 𝐵∞(𝑡′, ℎ′) ⊆ 𝐵1 \ 𝐵2 (A.13)

which is implied by the following two assertions:

(1) 𝐵∞(𝑡, ℎ) ∪ 𝐵∞(𝑡′, ℎ′) ⊆ 𝐵1 and

(2) 𝐵2 ⊆ 𝐵∞(𝑡, ℎ) ∩ 𝐵∞(𝑡′, ℎ′).

See Figure A.1 for a visual illustration of (A.13) when 𝑑 = 2. Now, as 𝑡 − ℎ ∈ 𝑀𝑖
∼
, this im-

plies 𝑡𝑘 − ℎ𝑘 ≥ (𝑖𝑘 − 1)𝑐−1𝑢𝛿1/𝑑2𝑙𝑘 , for all 𝑘 = 1, . . . , 𝑑. Also 𝑡 + ℎ ∈ 𝑀𝑖
∼
′ implies that

𝑡𝑘 + ℎ𝑘 ≤ 𝑖′𝑘𝑐
−1𝑢𝛿1/𝑑2𝑙𝑘 , for all 𝑘 = 1, . . . , 𝑑. Therefore, 𝐵∞(𝑡, ℎ) = Π𝑑

𝑖=1(𝑡𝑖 − ℎ𝑖, 𝑡𝑖 + ℎ𝑖) ⊆ 𝐵1. A

similar argument shows that 𝐵∞(𝑡′, ℎ′) ⊆ 𝐵1. Hence assertion (1) above holds.

Now as 𝑡 − ℎ ∈ 𝑀𝑖
∼
, we have 𝑡𝑘 − ℎ𝑘 ≤ 𝑖𝑘𝑐−1𝑢𝛿1/𝑑2𝑙𝑘 , for all 𝑘 = 1, . . . , 𝑑. Also 𝑡 + ℎ ∈ 𝑀𝑖

∼
′

implies that 𝑡𝑘 + ℎ𝑘 ≥ (𝑖′𝑘 − 1)𝑐−1𝑢𝛿1/𝑑2𝑙𝑘 , for all 𝑘 = 1, . . . , 𝑑. Hence we have 𝐵2 ⊆ 𝐵∞(𝑡, ℎ). A
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Figure A.1: The figure shows how the symmetric difference of the hyperrectangles 𝐵∞(𝑡, ℎ) (de-
noted by the green border) and 𝐵∞(𝑡′, ℎ′) (denoted by the blue border) is contained in the set 𝐵1\𝐵2
(denoted by the shaded region).

similar argument shows that 𝐵2 ⊆ 𝐵∞(𝑡′, ℎ′). Therefore, assertion (2) is also satisfied. Now let us

define the following set

𝐼 :=
{
𝑗
∼
= ( 𝑗1, . . . , 𝑗𝑑) ∈ N𝑑 : 𝑗𝑘 ∈ (𝑖𝑘 − 1, 𝑖′𝑘 ], for all 𝑘 = 1, . . . , 𝑑,

∃ 𝑙 ∈ {1, . . . , 𝑑} such that 𝑗𝑙 = 𝑖𝑙 or 𝑖′𝑙
}
.

Clearly, using (A.12),

|𝐼 | ≤ 2𝑑 (2 + 2𝑐𝑢−1)𝑑−1.

Also see that 𝑤 = (𝑤1, . . . , 𝑤𝑑) ∈ 𝐵1 \ 𝐵2 if and only if

(1) for every 𝑘 = 1, . . . , 𝑑, we have 𝑤𝑘 ∈
(
𝑖𝑘 − 1, 𝑖′

𝑘

]
× 𝑐−1𝑢𝛿1/𝑑2𝑙𝑘 (this is true as 𝑤 ∈ 𝐵1),

(2) there exists 𝑙 ∈ {1, 2, . . . , 𝑑} such that either 𝑤𝑙 ∈
(
𝑖𝑙 − 1, 𝑖𝑙

]
× 𝑐−1𝑢𝛿1/𝑑2𝑙𝑙 or 𝑤𝑙 ∈

(
𝑖′
𝑙
−

1, 𝑖′
𝑙

]
× 𝑐−1𝑢𝛿1/𝑑2𝑙𝑙 (this is true as 𝑤 ∉ 𝐵2 implies that there exist 𝑙 such that 𝑤𝑙 ∉ (𝑖𝑙 , 𝑖′𝑙 −

1] × 𝑐−1𝑢𝛿1/𝑑2𝑙𝑙 and 𝑤 ∈ 𝐵1 implies that 𝑤𝑙 ∈ (𝑖𝑙 − 1, 𝑖′
𝑙
] × 𝑐−1𝑢𝛿1/𝑑2𝑙𝑙 ).
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Therefore, we see that

𝐵1 \ 𝐵2 =
⋃
𝑗
∼
∈𝐼
𝑀 𝑗
∼
.

Also, note that, |𝑀 𝑗
∼
| ≤ 𝑢𝑑𝛿𝑐−𝑑2

∑𝑑
𝑖=1 𝑙𝑖 ≤ 𝑢𝑑𝛿𝑐−𝑑 for all 𝑗

∼
. Therefore, using (A.13) and the fact that

𝑐 = 𝑑4𝑑 , we easily see that

𝜌2((𝑡, ℎ), (𝑡′, ℎ′)) ≤ |𝐵1 \ 𝐵2 | ≤ 2𝑑 (2 + 2𝑐𝑢−1)𝑑−1𝑢
𝑑𝛿

𝑐𝑑
≤ 2𝑑𝑑 (1 + 𝑐−1)𝑑−1𝑢𝛿

𝑐
< 𝑢𝛿

which contradicts (A.11). This proves that two elements of ℱ′ cannot correspond to the same pair

of hyperrectangles (𝑀𝑖
∼
, 𝑀𝑖

∼
′) ∈ 𝑅2. Hence we have proved (A.10).

Step 2: In this part of the proof we show that

𝑁

(
(𝑢𝛿)1/2,ℱ(𝛿)

)
≤ 𝐾𝑢−2𝑑𝛿−1(log(𝑒/𝛿))𝑑−1. (A.14)

Let us define the set

𝑆 :=
{
(𝑙1, . . . , 𝑑) ∈ Z𝑑 : −(𝑑 + 1) <

𝑑∑︁
𝑘=1

𝑙𝑘 ≤ 0 and 𝑙𝑘 ≤
1
𝑑

log2(1/𝛿) ∀ 𝑘 = 1, . . . , 𝑑
}
.

Now it can be easily seen that 𝑙 := (𝑙1, . . . , 𝑑) ∈ 𝑆 implies 𝑙𝑘 ≥ −(𝑑 +1) − (𝑑 −1) (1/𝑑) log2(1/𝛿),

for all 𝑘 = 1, . . . , 𝑑. This shows that each 𝑙𝑘 can only take at most (𝑑 + 2) + log2(1/𝛿) ≤ (𝑑 + 2) +

log(1/𝛿) log2(𝑒) ≤ 𝑑 + 2(log(𝑒/𝛿)) many values. This shows that

|𝑆 | ≤ (𝑑 + 1) (𝑑 + 2 log(𝑒/𝛿))𝑑−1 ≤ (𝑑 + 2)𝑑 (log(𝑒/𝛿))𝑑−1.

Note that the power of (𝑑 + 2 log(𝑒/𝛿)) in the above display is 𝑑 − 1 because if we fix the values of

𝑙1, 𝑙2, . . . , 𝑙𝑑−1 then 𝑙𝑑 can only take at most (𝑑 + 1) values such that (𝑙1, 𝑙2, . . . 𝑙𝑑) ∈ 𝑆 (as
∑𝑑
𝑘=1 𝑙𝑘
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can take at most 𝑑 + 1 distinct values). Also note that

ℱ(𝛿) ⊆
⋃
𝑙∈𝑆

ℱ𝛿,𝑙 .

The above representation of ℱ(𝛿) along with the trivial fact that 𝑁 (𝜖,⋃𝑛
𝑖=1 𝐴𝑖) ≤

∑𝑛
𝑖=1 𝑁 (𝜖, 𝐴𝑖)

gives us (A.14).

Step 3: In this step we will complete the proof of Lemma 2.1.1. We want control the
√
𝑢𝛿-packing

number of the set {(𝑡, ℎ) ∈ ℱ : 𝜎2(𝑡, ℎ) ≤ 𝛿} which can be decomposed in the following way: for

𝑢 ∈ (0, 1],

{(𝑡, ℎ) ∈ ℱ : 𝜎2(𝑡, ℎ) ≤ 𝛿} = ©«
⌊1+log2 (1/𝑢)⌋⋃

𝑙=0
ℱ(𝛿2−𝑙)ª®¬ ∪ {𝑎 ∈ ℱ : 𝜎2(𝑎) ≤ 𝑢𝛿/2}.

Now we can control the
√
𝑢𝛿-packing number of each of the above sets. First observe that 𝑁 ((𝑢𝛿)1/2, {(𝑡, ℎ) ∈

ℱ : 𝜎2(𝑡, ℎ) ≤ 𝑢𝛿/2}) = 1. Also, for any 𝑢 ∈ (0, 2) and 𝛿 ∈ (0, 1] we have

𝑁 ((𝑢𝛿)1/2,ℱ(𝛿)) ≤ 𝑁 ((𝑢𝛿/2)1/2,ℱ(𝛿)) ≤ 𝐾𝑢−2𝑑𝛿−1(log(𝑒/𝛿))𝑑−1 (A.15)

for some constant 𝐾 . Putting 𝛿← 𝛿/2𝑙 and 𝑢 ← 2𝑙𝑢 for 0 ≤ 𝑙 ≤ ⌊1 + log2(1/𝑢)⌋ in (A.15) we get

𝑁 ((𝑢𝛿)1/2,ℱ(𝛿2−𝑙)) ≤ 𝐾2−(2𝑑−1)𝑙𝑢−2𝑑𝛿−1(log(𝑒/𝛿))𝑑−1.
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Now from the trivial fact that 𝑁 (𝜖,⋃𝑚
𝑖=1 𝐴𝑖) ≤

∑𝑚
𝑖=1 𝑁 (𝜖, 𝐴𝑖) we get

𝑁

(√
𝑢𝛿, {(𝑡, ℎ) ∈ ℱ : 𝜎2(𝑡, ℎ) ≤ 𝛿}

)
≤

⌊1+log2 (1/𝑢)⌋∑︁
𝑙=0

𝑁

(√
𝑢𝛿,ℱ(𝛿2−𝑙)

)
+ 𝑁

(√
𝑢𝛿, {(𝑡, ℎ) ∈ ℱ : 𝜎2(𝑡, ℎ) ≤ 𝑢𝛿/2}

)
≤ 1 + 𝐾𝑢−2𝑑𝛿−1(log(𝑒/𝛿))𝑑−1

∞∑︁
𝑙=0

2−(2𝑑−1)𝑙

≤ 1 + 2𝐾𝑢−2𝑑𝛿−1(log(𝑒/𝛿))𝑑−1 ≤ (2𝐾 + 1)𝑢−2𝑑𝛿−1(log(𝑒/𝛿))𝑑−1,

which proves Lemma 2.1.1.

A.3 Proof of Theorem 2.1.1

We use Theorem 2.1.2 to prove Theorem 2.1.1. Let us recall the definitions of ℱ, 𝜎 and 𝜌 as

introduced just before Lemma 2.1.1 in the main article. Without loss of generality we assume that

∥𝜓∥ = 1. For ℎ ∈ (0, 1/2]𝑑 , let us define the stochastic process

𝑋 (𝑡, ℎ) := 2𝑑/2(ℎ1ℎ2 . . . ℎ𝑑)1/2Ψ̂(𝑡, ℎ) = 2𝑑/2
∫

𝜓𝑡,ℎ (𝑥)𝑑𝑊 (𝑥), 𝑡 ∈ 𝐴ℎ,

where 𝑊 (·) is the standard Brownian sheet on [0, 1]𝑑 . This defines a centered Gaussian process

with Var
(
𝑋 (𝑡, ℎ)

)
= 𝜎2(𝑡, ℎ). Also by a standard calculation on the variance we have Var

(
𝑋 (𝑡, ℎ)−

𝑋 (𝑡′, ℎ′)
)
≤ 2𝑑𝑇𝑉2(𝜓)𝜌2((𝑡, ℎ), (𝑡′, ℎ′)) when the function 𝜓 has finite HK-variation. Note that

when 𝜓 satisfy average Hölder condition with parameters 𝛾 > 1/2 and 𝐿 we have Var
(
𝑋 (𝑡, ℎ) −

𝑋 (𝑡′, ℎ′)
)
≤ 2𝑑𝑑𝐿𝜌2((𝑡, ℎ), (𝑡′, ℎ′)). As 𝑋 (𝑡, ℎ) and 𝑋 (𝑡, ℎ) − 𝑋 (𝑡′, ℎ′) have normal distributions

this shows that conditions (a) and (b) of Theorem 2.1.2 are satisfied. Condition (c) is also satisfied

because of Lemma 2.1.1. Thus, by an application of Theorem 2.1.2 we have

P

(
sup

0<ℎ≤1/2
sup
𝑡∈𝐴ℎ

Ψ̂2(𝑡, ℎ) − 2 log(1/2𝑑ℎ1ℎ2...ℎ𝑑)
log log(𝑒𝑒/2𝑑ℎ1ℎ2...ℎ𝑑)

< 𝑆

)
≥ 1 − b1 exp(−𝑆/b2)
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for some constants b1 and b2 and large enough 𝑆.

For notational simplicity, let us define ^1 := 2 log(1/𝜎2(𝑡, ℎ)) and ^2 := 2
√

2𝑆 log log(𝑒𝑒/𝜎2(𝑡, ℎ)).

Therefore,

P
©«|Ψ̂(𝑡, ℎ) | ≤

√︄
2 log

(
1

𝜎2(𝑡, ℎ)

)
+ 𝑆

(
log log(𝑒𝑒/𝜎2(𝑡, ℎ))

log
1
2 (1/𝜎2(𝑡, ℎ))

)
∀(𝑡, ℎ) ∈ ℱª®¬

= P
(
|Ψ̂(𝑡, ℎ) | ≤ ^1/2

1 + ^−1/2
1 ^2/2 ∀ (𝑡, ℎ) ∈ ℱ

)
= P

(
Ψ̂(𝑡, ℎ)2 ≤

(
^

1/2
1 + ^−1/2

1 ^2/2
)2
∀(𝑡, ℎ) ∈ ℱ

)
≥ P

(
Ψ̂(𝑡, ℎ)2 ≤ ^1 + ^2 ∀(𝑡, ℎ) ∈ ℱ

)
= P

(
sup
𝑡,ℎ∈ℱ

Ψ̂2(𝑡, ℎ) − 2 log(1/2𝑑ℎ1ℎ2...ℎ𝑑)
log log(𝑒𝑒/2𝑑ℎ1ℎ2...ℎ𝑑)

< 2
√

2𝑆
)

≥ 1 − b1 exp

(
−2
√

2𝑆
b2

)
.

A.4 Proof of some smaller Results

A.4.1 Proof of Proposition 2.1.1

The proof of this result follows from the following result. Suppose that 𝑍1, . . . , 𝑍𝑛 are i.i.d. stan-

dard normal random variables. Then, we know that

max1≤𝑖≤𝑛 𝑍𝑖√︁
2 log 𝑛

→ 1 a.s.

The above result follows trivially from [104, Theorem 1.1]. Let 𝐹𝑛 be the distribution function of

max1≤𝑖≤𝑛 𝑍𝑖/
√︁

2 log 𝑛, i.e., 𝐹𝑛 (𝑥) := P(max1≤𝑖≤𝑛 𝑍𝑖 ≤ 𝑥
√︁

2 log 𝑛), for 𝑥 ∈ R. Therefore, for every

𝑥 < 1, we have 𝐹𝑛 (𝑥) → 0. We want to show that

sup
(𝑡,ℎ)∈ℱ

|Ψ̂(𝑡, ℎ) | − Γ𝑉 (2𝑑ℎ1 . . . ℎ𝑑) = ∞ a.s.
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Hence it is enough to show that for every 𝑠 ∈ R we have P(sup(𝑡,ℎ)∈ℱ |Ψ̂(𝑡, ℎ) | −Γ𝑉 (2𝑑ℎ1 . . . ℎ𝑑) <

𝑠) = 0. Fix 𝑚 ∈ N. Now,

P

(
sup
(𝑡,ℎ)∈ℱ

|Ψ̂(𝑡, ℎ) | − Γ𝑉 (2𝑑ℎ1 . . . ℎ𝑑) < 𝑠
)

≤ P ©« sup
𝑡∈𝐴( 1

2𝑚 ,..., 1
2𝑚 )

����Ψ̂ (
𝑡,

(
1

2𝑚
, . . . ,

1
2𝑚

))���� − Γ𝑉 (𝑚−𝑑) < 𝑠ª®¬
≤ P

(
sup
𝑡∈𝐴★𝑚
|Ψ̂(𝑡, (2𝑚)−1) | − Γ𝑉 (𝑚−𝑑) < 𝑠

)
where 𝐴★𝑚 := {(𝑡1, . . . , 𝑡𝑑) : 𝑡𝑖 = 𝑘𝑖/2𝑚 for some odd integer 𝑘𝑖 < 2𝑚, for all 𝑖 = 1, . . . , 𝑑}. Thus,

the last term in the above display can be further upper bounded by

P

(
sup
𝑡∈𝐴★𝑚

Ψ̂(𝑡, (2𝑚)−1)√︁
2 log(𝑚𝑑)

−
√
𝑉 <

𝑠√︁
2 log(𝑚𝑑)

)
= 𝐹𝑚𝑑 (

√
𝑉 + 𝑠/

√︃
2 log(𝑚𝑑)),

where we have used the fact that now we are dealing with 𝑚𝑑 i.i.d. standard normal random vari-

ables. Now, for every 𝑠 > 0, choose 𝑚 such that
√
𝑉 + 𝑠/

√︁
2 log(𝑚𝑑) < 1− 𝜖 , for some fixed 𝜖 > 0.

Hence, 𝐹𝑚𝑑 (
√
𝑉 + 𝑠/

√︁
2 log(𝑚𝑑)) ≤ 𝐹𝑚𝑑 (1 − 𝜖), if 𝑚 is large enough. As this is true for all large

𝑚, taking 𝑚 →∞ gives us the desired result.

A.4.2 Solution to (2.5)

Let 𝜓 ∈ H𝛽,1 such that 𝜓(0) ≥ 1. Hence by the property of H𝛽,1 we have

|𝜓(𝑥) − 𝜓(0) | ≤ ∥𝑥∥𝛽 , for all 𝑥 ∈ R𝑑 ,

which implies 𝜓(𝑥) ≥ 1 − ∥𝑥∥𝛽. Hence, on the set ∥𝑥∥ ≤ 1, we have 𝜓(𝑥) ≥ 1 − ∥𝑥∥𝛽 ≥ 0.

Therefore, we have

∫
∥𝑥∥≤1

𝜓2(𝑥)𝑑𝑥 ≥
∫
∥𝑥∥≤1
(1 − ∥𝑥∥𝛽)2𝑑𝑥 ⇒ ∥𝜓∥ ≥

𝜓𝛽 ,
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where 𝜓𝛽 (𝑥) = (1−∥𝑥∥𝛽)I(∥𝑥∥ ≤ 1). Hence the only thing left to prove is that 𝜓𝛽 ∈ H𝛽,1. Suppose

that 𝑥, 𝑦 ∈ R𝑑 such that 1 ≥ ∥𝑥∥ ≥ ∥𝑦∥. Then

0 ≤ 𝜓𝛽 (𝑦) − 𝜓𝛽 (𝑥) = ∥𝑥∥𝛽 − ∥𝑦∥𝛽 ≤ (∥𝑥∥ − ∥𝑦∥)𝛽 ≤ ∥𝑥 − 𝑦∥𝛽 .

Here the third inequality follows from the fact that when 𝛽 ≤ 1 the function 𝑢 ↦→ 𝑢𝛽 is a 𝛽-Hölder

continuous function; the last inequality follows from the triangle inequality. If 𝑥, 𝑦 ∈ R𝑑 such that

∥𝑥∥ ≥ 1 ≥ ∥𝑦∥ then we have

0 ≤ 𝜓𝛽 (𝑦) − 𝜓𝛽 (𝑥) = 1 − ∥𝑦∥𝛽 ≤ (1 − ∥𝑦∥)𝛽 ≤ (∥𝑥∥ − ∥𝑦∥)𝛽 ≤ ∥𝑥 − 𝑦∥𝛽 .

If 𝑥, 𝑦 ∈ R𝑑 is such that ∥𝑥∥ ≥ ∥𝑦∥ ≥ 1 then the assertion is trivial. Hence we have proved that 𝜓𝛽

minimizes (2.5).

A.5 Proofs of Optimality of multiscale statistics

The proofs of Theorems 2.2.1 and 2.2.2 depend on the following lemma (stated and proved

in [4, Lemma 6.2]).

Lemma A.5.1 Let 𝑍1, 𝑍2, . . . be a sequence of independent standard normal variables. If 𝑤𝑚 :=

(1 − 𝜖𝑚)
√︁

2 log𝑚 with lim𝑚→∞ 𝜖𝑚
√︁

log𝑚 = ∞ and lim𝑚→∞ 𝜖𝑚 = 0 then we have

lim
𝑚→∞

E

����� 1
𝑚

𝑚∑︁
𝑖=1

exp
(
𝑤𝑚𝑍𝑖 −

𝑤2
𝑚

2

)
− 1

����� = 0.

A.5.1 Proof of Theorem 2.2.1

Proof of part (a). For any bandwidth ℎ = (ℎ1, . . . , ℎ𝑑) ∈ (0, 1/2]𝑑 and 𝑡 = (𝑡1, . . . , 𝑡𝑑) ∈ 𝐴ℎ, let us

define the function 𝑔𝑡 : [0, 1]𝑑 → R as

𝑔𝑡 (𝑥) := 𝐿min(ℎ)𝛽𝜓 (𝛽)
𝑡,ℎ
(𝑥), for 𝑥 ∈ [0, 1]𝑑 ,
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where min(ℎ) := min{ℎ1, ℎ2, . . . , ℎ𝑑} and 𝜓 (𝛽)
𝑡,ℎ
(𝑥1, . . . , 𝑥𝑑) = 𝜓𝛽 ((𝑥1 − 𝑡1)/ℎ1, . . . , (𝑥𝑑 − 𝑡𝑑)/ℎ𝑑).

Elementary calculations show that 𝑔𝑡 ∈ H𝛽,𝐿 and ∥𝑔𝑡 ∥∞ = 𝐿min(ℎ)𝛽. Now let us define the set

𝑆 :=
{
𝑡 ∈ 𝐴ℎ : 𝑡𝑖 = 𝑘𝑖ℎ𝑖 for some odd integer 𝑘𝑖, 𝑖 = 1, . . . , 𝑑

}
.

Let 𝜙𝑛 be an arbitrary test for (1.2) with level 𝛼. Then,

inf
𝑔∈H𝛽,𝐿 :∥𝑔∥∞=𝐿min(ℎ)𝛽

E𝑔 [𝜙𝑛 (𝑌 )] − 𝛼 ≤ min
𝑔𝑡 :𝑡∈𝑆

E𝑔𝑡 [𝜙𝑛 (𝑌 )] − E0 [𝜙𝑛 (𝑌 )]

≤ |𝑆 |−1
∑︁
𝑡∈𝑆
E𝑔𝑡 [𝜙𝑛 (𝑌 )] − E0 [𝜙𝑛 (𝑌 )]

≤ E0

[(
|𝑆 |−1

∑︁
𝑡∈𝑆

𝑑𝑃𝑔𝑡

𝑑𝑃0
(𝑌 ) − 1

)
𝜙𝑛 (𝑌 )

]
≤ E0

���|𝑆 |−1
∑︁
𝑡∈𝑆

𝑑𝑃𝑔𝑡

𝑑𝑃0
(𝑌 ) − 1

���. (A.16)

Here 𝑃0 denotes the measure of the process 𝑌 under the null hypothesis 𝑓 = 0 and 𝑃𝑔𝑡 denotes the

measure of 𝑌 under the alternative 𝑓 = 𝑔𝑡 . Also for 𝑔 ∈ H𝛽,𝐿 , 𝑑𝑃𝑔
𝑑𝑃0

denotes the Radon-Nikodym

derivative of the measure 𝑃𝑔 with respect to the measure 𝑃0. By Cameron-Martin-Girsanov’s

Theorem (see [101, Chapter 3] for more details about absolutely continuous measures and Radon-

Nikodym derivatives) we get that

log
(
𝑑𝑃𝑔

𝑑𝑃0
(𝑌 )

)
=
√
𝑛

∫
𝑔𝑑𝑊 − 𝑛

2
∥𝑔∥2 .

For 𝑔𝑡 (·) = 𝐿min(ℎ)𝛽𝜓 (𝛽)
𝑡,ℎ
(·),
√
𝑛
∫
𝑔𝑡𝑑𝑊 =

√
𝑛𝐿

𝜓𝛽 min(ℎ)𝛽
√︃
Π𝑑
𝑖=1ℎ𝑖Ψ̂(𝑡, ℎ). Observe that

{𝑍𝑡 ≡ Ψ̂(𝑡, ℎ)}𝑡∈𝑆 are i.i.d. standard normals; note that the independence of the normals arises

from the disjoint supports of the functions {𝑔𝑡 : 𝑡 ∈ 𝑆}. Let

𝑤𝑛 :=
√
𝑛𝐿

𝜓𝛽 min(ℎ)𝛽
√︃
Π𝑑
𝑖=1ℎ𝑖 .

Then Γ𝑡 = exp(𝑤𝑛𝑍𝑡 − 𝑤2
𝑛

2 ) and we can write 𝑑𝑃𝑔𝑡
𝑑𝑃0
(𝑌 ) − 1 = Γ𝑡 − 1.
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Hence we have E0

���|𝑆 |−1 ∑
𝑡∈𝑆

𝑑𝑃𝑔𝑡
𝑑𝑃0
(𝑌 ) − 1

��� = E0
��|𝑆 |−1 ∑

𝑡∈𝑆 Γ𝑡 − 1
��. According to Lemma A.5.1

the above term will go to zero if |𝑆 | → ∞ and the corresponding 𝑤𝑛’s satisfy:(
1 − 𝑤𝑛√︁

2 log |𝑆 |

)
→ 0 and

√︁
log |𝑆 |

(
1 − 𝑤𝑛√︁

2 log |𝑆 |

)
→∞.

Now let us pick

ℎ1 = . . . = ℎ𝑑 = 𝐿
− 2

2𝛽+𝑑 ((1 − 𝜖𝑛)𝜌𝑛)1/𝛽
(𝜓𝛽2 (2𝛽 + 𝑑)/2𝑑

)−1/(2𝛽+𝑑)
=: ℎ̃.

Then,

𝑤𝑛 =
√
𝑛𝐿

𝜓𝛽 𝐿−1 ((1 − 𝜖𝑛)𝜌𝑛)
2𝛽+𝑑

2𝛽
(𝜓𝛽2 (2𝛽 + 𝑑)/2𝑑

)−1/2

=
√
𝑛(1 − 𝜖𝑛)1+𝑑/2𝛽

√︂
log 𝑛
𝑛

√︁
(2𝑑/(2𝛽 + 𝑑))

=
√︁
(2𝑑/(2𝛽 + 𝑑)) (1 − 𝜖𝑛)1+𝑑/2𝛽

√︁
log 𝑛. (A.17)

Also, as 𝑛→∞, |𝑆 |/(Π𝑑
𝑖=1(1/ℎ𝑖)) → 2−𝑑 . Therefore, for a suitable constant 𝐾 ,

log |𝑆 |/log 𝑛 = (−𝑑 log ℎ̃ − 𝑑 log 2 + 𝑜(1))/log 𝑛

= [𝐾 + 𝑜(1) − (𝑑/𝛽) log ((1 − 𝜖𝑛)𝜌𝑛)]/log 𝑛

=

(
𝐾 + 𝑜(1) − 𝑑

𝛽
log(1 − 𝜖𝑛) +

𝑑

2𝛽 + 𝑑 log
(
𝑛

log 𝑛

))
/log 𝑛

→ 𝑑

2𝛽 + 𝑑 as 𝑛→∞. (A.18)

Also notice that for all large 𝑛, log |𝑆 |/
(

𝑑
2𝛽+𝑑 log 𝑛

)
< 1. Combining (A.17) and (A.18), we get

𝑤𝑛√︁
2 log |𝑆 |

=
𝑤𝑛√︁
log 𝑛

√︁
log 𝑛√︁

2 log |𝑆 |
→ 1 as 𝑛→∞.
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Similarly, for suitable constants 𝐾, 𝐾′ > 0,

√︁
log |𝑆 |

(
1 − 𝑤𝑛√︁

2 log |𝑆 |

)
≥
√
𝐾
√︁

log 𝑛
(
1 − (1 − 𝜖𝑛)1+𝑑/2𝛽 + 𝑜(1)

)
≥
√
𝐾′

√︁
log 𝑛 (𝜖𝑛 + 𝑜(1)) → ∞ as 𝑛→∞,

as the o(1) term above is positive when 𝑛 is large. This proves part (a) of Theorem 2.2.1 by noting

that 𝐿min(ℎ)𝛽 = (1 − 𝜖𝑛)𝑐∗𝜌𝑛.

Proof of part (b). Let 𝛿 ≡ 𝛿𝑛 := 𝑐∗𝜌𝑛 and ℎ𝑖,𝑛 = (𝛿/𝐿)1/𝛽 =: ℎ̃𝑛 for all 𝑖 = 1, 2, . . . , 𝑑. For nota-

tional simplicity, in the following we drop the subscript 𝑛. As the term 𝐷 (2𝑑ℎ1 . . . ℎ𝑑) is bounded

from above, for any 𝑡 ∈ 𝐽 ≡ 𝐽𝑛, the probability of rejecting the null hypothesis, P𝑔 (𝑇𝛽 (𝑌 ) > ^𝛼), is

bounded from below by, for some constant 𝐾 > 0,

P𝑔

(
|Ψ̂(𝑡, ℎ) | > Γ(2𝑑 ℎ̃𝑑) + 𝐾

)
= P0

(����Ψ̂(𝑡, ℎ) +√︂
𝑛

ℎ̃𝑑

𝜓𝛽−1 ⟨𝑔, 𝜓 (𝛽)
𝑡,ℎ
⟩
���� > Γ(2𝑑 ℎ̃𝑑) + 𝐾

)
≥ P0

©«−sign(⟨𝑔, 𝜓 (𝛽)
𝑡,ℎ
⟩)Ψ̂(𝑡, ℎ) <

√︂
𝑛

ℎ̃𝑑

|⟨𝑔, 𝜓 (𝛽)
𝑡,ℎ
⟩|𝜓𝛽 − 𝐾 − Γ(2𝑑 ℎ̃𝑑)ª®¬

= Φ

(√︂
𝑛

ℎ̃𝑑

𝜓𝛽−1 |⟨𝑔, 𝜓 (𝛽)
𝑡,ℎ
⟩| − 𝐾 − Γ(2𝑑 ℎ̃𝑑)

)
(A.19)

where Φ is the standard normal distribution function. Hence, to prove our claim it suffices to show

that

(1 + 𝜖𝑛)max
𝑡∈𝐽

√︂
𝑛

ℎ̃𝑑

𝜓𝛽−1 |⟨𝑔, 𝜓 (𝛽)
𝑡,ℎ
⟩| − Γ(2𝑑 ℎ̃𝑑) → ∞

uniformly for all 𝑔 ∈ H𝛽,𝐿 such that ∥𝑔∥𝐽,∞ ≥ 𝛿. Note that 𝐴ℎ = 𝐽.

Let 𝑔 be any such function, and let 𝑡 ∈ 𝐽 be such that |𝑔(𝑡) | ≥ 𝛿. Let us assume that 𝑔(𝑡) ≥ 𝛿;

the other case where 𝑔(𝑡) ≤ −𝛿 can be handled similarly by looking at −𝑔. By construction of 𝜓𝛽

we have 𝛿𝜓 (𝛽)
𝑡,ℎ
∈ H𝛽,𝐿 . Also note that as 𝜓𝛽 minimizes ∥𝜓∥ in the set {𝜓 ∈ H𝛽,1 : 𝜓(0) ≥ 1},
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𝛿𝜓
(𝛽)
𝑡,ℎ

minimizes ∥𝜓∥ in the set {𝜓 ∈ H𝛽,𝐿 : 𝜓(𝑡) ≥ 𝛿}. Note that both 𝑔 and 𝛿𝜓 (𝛽)
𝑡,ℎ

belong to the

closed convex set {𝜓 ∈ H𝛽,𝐿 : 𝜓(𝑡) ≥ 𝛿}. As 𝛿𝜓 (𝛽)
𝑡,ℎ

is the projection of the zero function onto the

above closed convex set, we have

|⟨𝜓 (𝛽)
𝑡,ℎ
, 𝑔⟩| = 𝛿−1 |⟨𝛿𝜓 (𝛽)

𝑡,ℎ
, 𝑔⟩| ≥ 𝛿−1∥𝛿𝜓 (𝛽)

𝑡,ℎ
∥2 = 𝛿

𝜓𝛽2
ℎ̃𝑑 .

Thus,

(1 + 𝜖𝑛)max
𝑡∈𝐽

√︂
𝑛

ℎ̃𝑑

𝜓𝛽−1 |⟨𝑔, 𝜓 (𝛽)
𝑡,ℎ
⟩| − Γ(2𝑑 ℎ̃𝑑)

≥ (1 + 𝜖𝑛)
𝜓𝛽 𝛿√︁𝑛ℎ̃𝑑 − Γ(2𝑑 ℎ̃𝑑)

= (1 + 𝜖𝑛)
𝜓𝛽 𝑐∗𝜌𝑛√𝑛(𝑐∗𝜌𝑛)𝑑/2𝛽𝐿−𝑑/2𝛽 − Γ(2𝑑 ℎ̃𝑑)

= (1 + 𝜖𝑛)

√︄(
2𝑑

2𝛽 + 𝑑

)
log 𝑛 −

√︄
𝐾 +

(
2𝑑

2𝛽 + 𝑑

)
log

(
𝑛

log 𝑛

)
≥ 𝜖𝑛 (2𝑑/(2𝛽 + 𝑑))1/2(log 𝑛)1/2 + 𝑜(1) → ∞.

This proves part (b) of Theorem 2.2.1.

Proof of Proposition 2.2.1

Let ℎ := ( ℎ̃, . . . , ℎ̃) ∈ R𝑑 , where ℎ̃ = (𝑀𝜌𝑛/𝐿)1/𝛽, for 𝑀 as defined in the statement of the

proposition. By the same argument as in (A.19) we have

P𝑔 (𝑇 (𝑌 ) > ^𝛼) ≥ Φ

(√︂
𝑛

ℎ̃𝑑
∥𝜓1∥−1 |⟨𝑔, 𝜓 (1)

𝑡,ℎ
⟩| − 𝐾 − Γ(2𝑑 ℎ̃𝑑)

)
.

Now we would want to bound |⟨𝑔, 𝜓 (1)
𝑡,ℎ
⟩| uniformly for all 𝑔 ∈ H𝛽,𝐿 such that ∥𝑔∥𝐽𝑛,∞ ≥ 𝑀𝜌𝑛.

Without loss of generality, let us assume that 𝑔(𝑡) ≥ 𝑀𝜌𝑛 for some 𝑡 ∈ 𝐽𝑛 and 𝑔 ∈ H𝛽,𝐿 . Then

𝑔(𝑥) ≥ 𝑔(𝑡) − 𝐿 ∥𝑥 − 𝑡∥𝛽 ≥ 𝑀𝜌𝑛 − 𝐿 ∥𝑥 − 𝑡∥𝛽 = 𝑀𝜌𝑛

(
1 −

𝑥 − 𝑡
ℎ̃

𝛽) .

85



This shows that if ∥𝑥 − 𝑡∥ ≤ ℎ̃ then 𝑔(𝑥) ≥ 0. Hence,

⟨𝑔, 𝜓 (1)
𝑡,ℎ
⟩ ≥

∫
∥𝑥−𝑡∥≤ℎ̃

𝑀𝜌𝑛

(
1 −

𝑥 − 𝑡
ℎ̃

𝛽) (
1 −

𝑥 − 𝑡
ℎ̃

) 𝑑𝑥
= 𝑀𝜌𝑛 ℎ̃

𝑑

∫
∥𝑥∥≤1

(1 − ∥𝑥∥)
(
1 − ∥𝑥∥𝛽

)
𝑑𝑥

= 𝑀𝜌𝑛 ℎ̃
𝑑 ⟨𝜓𝛽, 𝜓1⟩.

Here the last equality follows as 𝜓𝛽 (𝑥) = (1 − ∥𝑥∥𝛽)I(∥𝑥∥ ≤ 1). Also note that

Γ(2𝑑 ℎ̃𝑑) =

√︄
2𝑑 log

(
1
2

)
+ 2𝑑
𝛽

log
(
𝐿

𝑀

)
+ 2𝑑

2𝛽 + 𝑑 log
(
𝑛

log 𝑛

)
≤

√︄
2𝑑

2𝛽 + 𝑑 log 𝑛

for large 𝑛. Therefore, for large 𝑛,

√︂
𝑛

ℎ̃𝑑
∥𝜓1∥−1 |⟨𝑔, 𝜓 (1)

𝑡,ℎ
⟩| − 𝐾 − Γ(2𝑑 ℎ̃𝑑)

≥
√︁
𝑛ℎ̃𝑑𝑀𝜌𝑛

⟨𝜓𝛽, 𝜓1⟩
∥𝜓1∥

− 𝐾 −

√︄
2𝑑

2𝛽 + 𝑑 log 𝑛

= −𝐾 +
√︁

log 𝑛

(
𝐿−𝑑/2𝛽𝑀

(𝑑+2𝛽)
2𝛽
⟨𝜓𝛽, 𝜓1⟩
∥𝜓1∥

−

√︄
2𝑑

2𝛽 + 𝑑

)
→∞ as 𝑛→∞.

Here the last equality holds by the choice of 𝑀 , as

√︁
𝑛ℎ̃𝑑𝑀𝜌𝑛

⟨𝜓𝛽, 𝜓1⟩
∥𝜓1∥

=
√
𝑛𝑀

𝑑
2𝛽 𝜌

𝑑
2𝛽
𝑛 𝐿

− 𝑑
2𝛽𝑀𝜌𝑛

⟨𝜓𝛽, 𝜓1⟩
∥𝜓1∥

=
√︁

log 𝑛 𝐿−𝑑/2𝛽𝑀
(𝑑+2𝛽)

2𝛽
⟨𝜓𝛽, 𝜓1⟩
∥𝜓1∥

>
√︁

log 𝑛

√︄
2𝑑

2𝛽 + 𝑑 .

Hence lim𝑛→∞ P𝑔 (𝑇 (𝑌 ) > ^𝛼) = 1.
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A.5.2 Proof of Theorem 2.2.2

Proof of part (a). Let us suppose that 𝐵𝑛 := 𝐵∞(𝑡𝑛, ℎ𝑛) ⊆ [0, 1]𝑑 for some 𝑡𝑛, ℎ𝑛 ∈ [0, 1]𝑑 . Let

us first look at the case when lim inf𝑛→∞ |𝐵𝑛 | > 0. Now assume that the location 𝐵𝑛 was known

and it was also known that `𝑛 > 0. In such a scenario the best test statistic would be Ψ̂(𝑡𝑛, ℎ𝑛)

(with kernel 𝜓0) which follows the normal distribution with mean 0 and variance 1, under the null

hypothesis. Hence in this case, the UMP test rejects 𝐻0 : `𝑛 = 0 if Ψ̂(𝑡𝑛, ℎ𝑛) > 𝑧1−𝛼 where 𝑧1−𝛼 is

the (1− 𝛼)’th quantile of the standard normal distribution. When 𝐵𝑛 is not known then, obviously,

the power of any level 𝛼 test 𝜙𝑛 is less than the test described above. Hence,

E 𝑓𝑛 [𝜙𝑛 (𝑌 )] ≤ P`𝑛

(
Ψ̂(𝑡𝑛, ℎ𝑛) ≥ 𝑧1−𝛼

)
= P0

(
Ψ̂(𝑡𝑛, ℎ𝑛) +

√︁
𝑛|𝐵𝑛 |`𝑛 ≥ 𝑧1−𝛼

)
= 1 −Φ

(
𝑧1−𝛼 −

√︁
𝑛|𝐵𝑛 |`𝑛

)
̸→ 1 unless `𝑛

√︁
𝑛|𝐵𝑛 | → ∞.

A similar argument can be made when `𝑛 < 0 as well. Hence the power of any level 𝛼 test does

not go to 1 unless |`𝑛 |
√︁
𝑛|𝐵𝑛 | → ∞.

Now suppose that |`𝑛 |
√︁
𝑛|𝐵𝑛 | → ∞. Then we will show that lim𝑛→∞ P 𝑓𝑛 (𝑇 > ^𝛼) = 1.

Without loss of generality assume `𝑛 > 0. Hence,

P 𝑓𝑛 (𝑇 > ^𝛼) ≥ P 𝑓𝑛
(
|Ψ̂(𝑡𝑛, ℎ𝑛) | − Γ( |𝐵𝑛 |)

𝐷 ( |𝐵𝑛 |)
> ^𝛼

)
= P0

(���Ψ̂(𝑡𝑛, ℎ𝑛) + `𝑛√︁𝑛|𝐵𝑛 |��� − Γ( |𝐵𝑛 |) ≥ ^𝛼𝐷 ( |𝐵𝑛 |))
≥ P0

(���Ψ̂(𝑡𝑛, ℎ𝑛) + `𝑛√︁𝑛|𝐵𝑛 |��� ≥ 𝐾)
→ 1 as `𝑛

√︁
𝑛|𝐵𝑛 | → ∞.

Here the last inequality follows from the fact that as lim inf𝑛 |𝐵𝑛 | > 0, Γ( |𝐵𝑛 |) + ^𝛼𝐷 ( |𝐵𝑛 |) is

bounded from above (say, by 𝐾) for all large 𝑛.

Proof of part (b). Now let us look at the case lim |𝐵𝑛 | → 0. Let us assume that |`𝑛 |
√︁
𝑛|𝐵𝑛 | =

(1 − 𝜖𝑛)
√︁

2 log(1/|𝐵𝑛 |) where 𝜖𝑛 → 0 and also 𝜖𝑛
√︁

2 log(1/|𝐵𝑛 |) → ∞. Without loss of generality
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also assume that `𝑛 > 0. Recall that 𝐵𝑛 = 𝐵∞(𝑡𝑛, ℎ𝑛) for ℎ𝑛 = (ℎ1,𝑛, . . . , ℎ𝑑,𝑛) ∈ (0, 1/2]𝑑 . Let us

first define the following grid points:

𝐺ℎ𝑛 :=
{
𝑡 = (𝑡1, . . . , 𝑡𝑑) ∈ [0, 1]𝑑 : 𝑡𝑖 = (2𝑘𝑖 − 1)ℎ𝑖,𝑛 for 𝑘𝑖 ∈ N, 𝐵∞(𝑡, ℎ𝑛) ⊆ [0, 1]𝑑

}
.

Clearly |𝐺ℎ𝑛 | ≤ 1/|𝐵𝑛 |. Also, as 𝑛 → ∞, |𝐺ℎ𝑛 | |𝐵𝑛 | → 1. For each 𝑡 ∈ 𝐺ℎ𝑛 define 𝑓𝑡 :=

`𝑛I𝐵∞ (𝑡,ℎ𝑛) . Clearly as |𝐵𝑛 | = |𝐵∞(𝑡, ℎ𝑛) |, we have 𝑓𝑡 ∈ G−𝑛 . Let 𝜙𝑛 be a test of level 𝛼 for

testing (2.2). Similar arguments as in (A.16) show that

inf
𝑔∈G−𝑛
E𝑔𝜙𝑛 (𝑌 ) − 𝛼 ≤ E0

������|𝐺ℎ𝑛 |−1
∑︁
𝑡∈𝐺ℎ𝑛

𝑑𝑃 𝑓𝑡

𝑑𝑃0
(𝑌 ) − 1

������ .
Now by an argument similar to that in the proof of Theorem 2.2.1, we have

log
(
𝑑𝑃 𝑓𝑡

𝑑𝑃0
(𝑌 )

)
=
√
𝑛

∫
𝑓𝑡𝑑𝑊 − 𝑛 ∥ 𝑓𝑡 ∥2 /2 = `𝑛

√︁
𝑛|𝐵𝑛 |Ψ̂(𝑡, ℎ𝑛) − `2

𝑛𝑛|𝐵𝑛 |/2.

Also note that the collection of random variables in {Ψ̂(𝑡, ℎ𝑛) : 𝑡 ∈ 𝐺ℎ𝑛} are mutually independent.

Now putting 𝑤𝑛 = `𝑛
√︁
𝑛|𝐵𝑛 | = (1 − 𝜖𝑛)

√︁
2 log(1/|𝐵𝑛 |) and 𝑚 = |𝐺ℎ𝑛 | we see that

E0

�����|𝐺ℎ𝑛 |−1
∑︁
𝑡∈𝐺

𝑑𝑃 𝑓𝑡

𝑑𝑃0
(𝑌 ) − 1

�����→ 0

if 𝜖𝑛 → 0 and 𝜖𝑛
√︁

log(1/|𝐵𝑛 |) → ∞, by a direct application of Lemma A.5.1. This proves that

lim sup
𝑛→∞

inf
𝑓𝑛∈G−𝑛

E 𝑓𝑛𝜙𝑛 ≤ 𝛼.

Now let us assume that |`𝑛 |
√︁
𝑛|𝐵𝑛 | ≥ (1 + 𝜖𝑛)

√︁
2 log(1/|𝐵𝑛 |). Without loss of generality also
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assume that `𝑛 > 0. A similar argument as in part (𝑎) shows that

P 𝑓𝑛 (𝑇 > ^𝛼) ≥ P 𝑓𝑛
(
|Ψ̂(𝑡𝑛, ℎ𝑛) | − Γ( |𝐵𝑛 |)

𝐷 ( |𝐵𝑛 |)
> ^𝛼

)
= P0

(���Ψ̂(𝑡𝑛, ℎ𝑛) + `𝑛√︁𝑛|𝐵𝑛 |��� ≥ Γ( |𝐵𝑛 |) + ^𝛼𝐷 ( |𝐵𝑛 |)
)

≥ P0

(
Ψ̂(𝑡𝑛, ℎ𝑛) ≥ Γ( |𝐵𝑛 |) + ^𝛼𝐷 ( |𝐵𝑛 |) − `𝑛

√︁
𝑛|𝐵𝑛 |

)
≥ P0

(
Ψ̂(𝑡𝑛, ℎ𝑛) ≥ −𝜖𝑛

√︁
2 log(1/|𝐵𝑛 |) + ^𝛼𝐷 ( |𝐵𝑛 |)

)
→ 1

as 𝑛→∞. This completes the proof of Theorem 2.2.2.

4.6 Proofs Associated with Confidence Band Construction

4.6.1 Proof of Proposition 3.2.1

We begin by showing that under the hypothesis of Proposition 3.2.1, we have:

E 𝑓 ℓℎ (𝑡) = 𝑓 (𝑡) = E 𝑓 𝑢ℎ (𝑡) for all 𝑡 ∈ 𝐴ℎ. (4.20)

Towards this, note that since 𝑓 ,− 𝑓 ∈ F , and since − 𝑓ℎ is the kernel estimator of − 𝑓 as defined in

(1.1.1) (since for a standard 𝑑-dimensional Brownian sheet𝑊 , we have𝑊 𝐷
= −𝑊), we have:

E( 𝑓 ℓ
ℎ
(𝑡)) ≤ 𝑓 (𝑡) ≤ E( 𝑓 𝑢

ℎ
(𝑡)) and E(− 𝑓 ℓ

ℎ
(𝑡)) ≤ − 𝑓 (𝑡) ≤ E(− 𝑓 𝑢

ℎ
(𝑡))

for all ℎ ∈ 𝐼, 𝑡 ∈ 𝐴ℎ. This proves (4.20).

Next, observe that in view of (3.10), all it requires to complete the proof of Proposition 3.2.1 is

to show that:

{ℓ̂(𝑡) ≤ 𝑓 (𝑡) ≤ �̂�(𝑡) for all 𝑡 ∈ [0, 1]𝑑} ⊆ {𝑇 (𝜓ℓ) ≤ ^𝛼 , 𝑇 (−𝜓𝑢) ≤ ^𝛼} (4.21)
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Towards this, suppose that ℓ̂(𝑡) ≤ 𝑓 (𝑡) ≤ �̂�(𝑡) for all 𝑡 ∈ [0, 1]𝑑 . In view of (4.20), we have:

ℓ̂(𝑡) ≤ 𝑓 (𝑡) for all 𝑡 ∈ [0, 1]𝑑

=⇒ ℓ̂(𝑡) ≤ E 𝑓 ℓℎ (𝑡) for all 𝑡 ∈ [0, 1]𝑑

=⇒ 𝑓 ℓ
ℎ
(𝑡) −

∥𝜓ℓ∥
(
^𝛼 + Γ(2𝑑

∏𝑑
𝑖=1 ℎ𝑖)

)
⟨1, 𝜓ℓ⟩(𝑛∏𝑑

𝑖=1 ℎ𝑖)1/2
≤ E 𝑓 ℓℎ (𝑡) for all 𝑡 ∈ [0, 1]𝑑 and ℎ ∈ 𝐼 with 𝑡 ∈ 𝐴ℎ

=⇒
𝑓 ℓ
ℎ
(𝑡) − E 𝑓 ℓ

ℎ
(𝑡)√︃

Var( 𝑓 ℓ
ℎ
(𝑡))

− Γ(2𝑑
𝑑∏
𝑖=1

ℎ𝑖) ≤ ^𝛼 for all 𝑡 ∈ [0, 1]𝑑 and ℎ ∈ 𝐼 with 𝑡 ∈ 𝐴ℎ

=⇒ 𝑇 (𝜓ℓ) ≤ ^𝛼 .

Similarly, one has:

�̂�(𝑡) ≥ 𝑓 (𝑡) for all 𝑡 ∈ [0, 1]𝑑

=⇒ �̂�(𝑡) ≥ E 𝑓 𝑢ℎ (𝑡) for all 𝑡 ∈ [0, 1]𝑑

=⇒ 𝑓 𝑢
ℎ
(𝑡) +

∥𝜓𝑢∥
(
^𝛼 + Γ(2𝑑

∏𝑑
𝑖=1 ℎ𝑖)

)
⟨1, 𝜓𝑢⟩(𝑛∏𝑑

𝑖=1 ℎ𝑖)1/2
≥ E 𝑓 𝑢ℎ (𝑡) for all 𝑡 ∈ [0, 1]𝑑 and ℎ ∈ 𝐼 with 𝑡 ∈ 𝐴ℎ

=⇒
𝑓 𝑢
ℎ
(𝑡) − E 𝑓 𝑢

ℎ
(𝑡)√︃

Var( 𝑓 𝑢
ℎ
(𝑡))

+ Γ(2𝑑
𝑑∏
𝑖=1

ℎ𝑖) ≥ −^𝛼 for all 𝑡 ∈ [0, 1]𝑑 and ℎ ∈ 𝐼 with 𝑡 ∈ 𝐴ℎ

=⇒ 𝑇 (−𝜓𝑢) ≤ ^𝛼 .

This proves (4.21) and completes the proof of Proposition 3.2.1.

4.6.2 Proof of Theorem 3.2.2

We will take ℎ := Y𝑛1𝑑 throughout the proof. Note that the hypothesis (3.12) of Proposition

3.2.2 implies that for all 𝑡 ∈ 𝐷,

⟨ 𝑓 (𝑡 + ℎ ★ ·) − 𝑓 (𝑡), 𝜓(·)⟩
⟨1, 𝜓⟩ = E 𝑓ℎ (𝑡) − 𝑓 (𝑡) = 0
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and hence, we can conclude from (4.24) that as long as 𝑡 ∈ 𝐷 and Y𝑛 = Y,

�̂�(𝑡) − 𝑓 (𝑡) ≤ 𝑛−1/2 ∥𝜓𝑢∥(^𝛼 + 2Γ(2𝑑Y𝑑) + 𝑇 (𝜓𝑢))
⟨1, 𝜓𝑢⟩Y𝑑/2

≤ 𝐾Y𝑛−1/2 (^𝛼 + 𝑇 (𝜓𝑢))

for some constant 𝐾Y > 0. The rest of the proof for the case Y𝑛 = Y can be completed following

the steps of the proof of Theorem 3.3.1.

For the case Y𝑛 := (log(𝑒𝑛))− 1
𝑑 , we can conclude from (4.24) that for 𝑡 ∈ 𝐷,

�̂�(𝑡) − 𝑓 (𝑡) ≤ 𝐾1(log(𝑒𝑛))1/2𝑛−1/2∥𝜓𝑢∥
(
^𝛼 + 𝑇 (𝜓𝑢) +

√︁
log log(𝑒𝑛)

)
/⟨1, 𝜓𝑢⟩

= 𝐾2

(
log(𝑒𝑛) log log(𝑒𝑛)

𝑛

)1/2
(

1
2
+ ^𝛼/2 + 𝑇 (𝜓

𝑢)√︁
log log(𝑒𝑛)

)

for some constants 𝐾1, 𝐾2 > 0. The bound for 𝑓 (𝑡) − ℓ̂(𝑡) follows similarly, thereby completing

the proof of Proposition 3.2.2.

4.6.3 Proof of Theorem 3.2.3

For 𝑘 = 1, we will show that just the facts that 𝜓𝑢1 is supported on a subset of [0,∞)𝑑 , 𝜓ℓ1 is

supported on a subset of (−∞, 0]𝑑 , and they are non-negative, are enough to conclude Theorem

3.2.3. This follows easily from the fact that the coordinate-wise increasing nature of 𝑓 ensures

that:

⟨ 𝑓 (𝑡 + ℎ ★ ·), 𝜓𝑢1⟩ ≥ 𝑓 (𝑡)⟨1, 𝜓𝑢1⟩ and ⟨ 𝑓 (𝑡 + ℎ ★ ·), 𝜓ℓ1⟩ ≤ 𝑓 (𝑡)⟨1, 𝜓ℓ1⟩.

Next, we consider the case 𝑘 = 2. If we could show that for every convex function 𝑔 : R𝑑 → R,

we have:

⟨𝑔, 𝜓𝑢2⟩ ≥ 𝑔(0)⟨1, 𝜓
𝑢
2⟩ and ⟨𝑔, 𝜓ℓ2⟩ ≤ 𝑔(0)⟨1, 𝜓

ℓ
2⟩, (4.22)

then we would be done, because substituting 𝑔(𝑥) := 𝑓 (𝑡 + ℎ ★ 𝑥) (which is a convex function)

in (4.22) will complete the proof. We can also assume, without loss of generality, that 𝑔(0) = 0,

because otherwise we can apply (4.22) on the function 𝑔−𝑔(0). In view of all these reductions, we
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just need to show that ⟨𝑔, 𝜓𝑢2⟩ ≥ 0 and ⟨𝑔, 𝜓ℓ2⟩ ≤ 0. The first inequality is a direct consequence of

Jensen’s inequality, because if𝑈 denotes a random vector distributed on the 𝑑-dimensional sphere

𝑆𝑑−1 := {𝑥 ∈ R𝑑 : ∥𝑥∥ ≤ 1}, with density at 𝑥 being proportional to 1 − ∥𝑥∥2, then there exists a

constant 𝐶 > 0 such that:

⟨𝑔, 𝜓𝑢2⟩ = 𝐶E𝑔(𝑈) ≥ 𝐶𝑔(E𝑈) = 𝐶𝑔(0) = 0

where we used the fact that E𝑈 = 0 by symmetry of the distribution of𝑈 around 0.

Finally, to prove that ⟨𝑔, 𝜓ℓ2⟩ ≤ 0, first note that by convexity of 𝑔 and the fact that 𝑔(0) = 0,

we have:

𝑔(𝛼𝑦) ≤ 𝛼𝑔(𝑦) for all 𝑦 ∈ R𝑑 and 𝛼 ∈ [0, 1] .

We can now substitute 𝛼 := (𝑑 + 3)∥𝑥∥/(𝑑 + 1) and 𝑦 := (𝑑 + 1)𝑥/((𝑑 + 3)∥𝑥∥), and have:

𝑔

(
(𝑑 + 1)𝑥
(𝑑 + 3)∥𝑥∥

)
≥ (𝑑 + 1)
(𝑑 + 3)∥𝑥∥ 𝑔(𝑥) when ∥𝑥∥ ≤ 𝑑 + 1

𝑑 + 3
.

Similarly, we can substitute 𝛼 := (𝑑 + 1)/((𝑑 + 3)∥𝑥∥) and 𝑦 := 𝑥, and have:

𝑔

(
(𝑑 + 1)𝑥
(𝑑 + 3)∥𝑥∥

)
≤ (𝑑 + 1)
(𝑑 + 3)∥𝑥∥ 𝑔(𝑥) when

𝑑 + 1
𝑑 + 3

≤ ∥𝑥∥ ≤ 1 .

Moreover, note that 𝜓ℓ2(𝑥) ≤ 0 when (𝑑 + 1)/(𝑑 + 3) ≤ ∥𝑥∥ ≤ 1 and 𝜓ℓ2(𝑥) ≥ 0 when ∥𝑥∥ ≤

(𝑑 + 1)/(𝑑 + 3). We have:

⟨𝑔, 𝜓ℓ2⟩ =

∫
𝑆𝑑−1

(
1 − 2𝑑 + 4

𝑑 + 1
∥𝑥∥ + 𝑑 + 3

𝑑 + 1
∥𝑥∥2

)
𝑔(𝑥)𝑑𝑥

≤ 𝑑 + 3
𝑑 + 1

∫
𝑆𝑑−1

∥𝑥∥
(
1 − 2𝑑 + 4

𝑑 + 1
∥𝑥∥ + 𝑑 + 3

𝑑 + 1
∥𝑥∥2

)
𝑔

(
(𝑑 + 1)𝑥
(𝑑 + 3)∥𝑥∥

)
𝑑𝑥 .

At this point, for every 𝑒 ∈ {−1, 1}𝑑 , define:

𝐻𝑒 := {𝑥 ∈ 𝑆𝑑−1 : 𝑒𝑖𝑥𝑖 ≥ 0 for all 1 ≤ 𝑖 ≤ 𝑑} .
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Note that {𝐻𝑒}𝑒∈{−1,1}𝑑 form the 2𝑑 orthants of R𝑑 , intersected with 𝑆𝑑−1. We will show that for

all 𝑒 ∈ {−1, 1}𝑑 ,

∫
𝐻𝑒

∥𝑥∥
(
1 − 2𝑑 + 4

𝑑 + 1
∥𝑥∥ + 𝑑 + 3

𝑑 + 1
∥𝑥∥2

)
𝑔

(
(𝑑 + 1)𝑥
(𝑑 + 3)∥𝑥∥

)
𝑑𝑥 = 0 (4.23)

which is enough to complete the proof. Towards this, fix 𝑒 ∈ {−1, 1}𝑑 , and make the following

change of variables 𝑥 ↦→ 𝑦 := (𝑦0, 𝑦1, . . . , 𝑦𝑑−1) on 𝐻𝑒:

𝑦0 = ∥𝑥∥ and 𝑦𝑖 =
𝑥𝑖

∥𝑥∥ for all 1 ≤ 𝑖 ≤ 𝑑 − 1 .

This transformation is invertible, and we have:

𝑥𝑖 = 𝑦0𝑦𝑖 for all 1 ≤ 𝑖 ≤ 𝑑 − 1 and 𝑥𝑑 := 𝑦0𝑒𝑑

√︃
1 − 𝑦2

1 − . . . − 𝑦
2
𝑑−1 .

The Jacobian of this transformation is given by:

𝐽 (𝑦) =



𝑦1 𝑦0 0 . . . 0

𝑦2 0 𝑦0 . . . 0
...

...
...

...
...

𝑒𝑑

√︃
1 −∑𝑑−1

𝑖=1 𝑦
2
𝑖
− 𝑦0𝑦1𝑒𝑑√︃

1−∑𝑑−1
𝑖=1 𝑦2

𝑖

− 𝑦0𝑦2𝑠𝑑√︃
1−∑𝑑−1

𝑖=1 𝑦2
𝑖

. . . − 𝑦0𝑦𝑑−1𝑒𝑑√︃
1−∑𝑑−1

𝑖=1 𝑦2
𝑖


and hence, we have:

|det(𝐽 (𝑦)) | =
𝑦𝑑−1

0√︃
1 −∑𝑑−1

𝑖=1 𝑦
2
𝑖

.
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Therefore, defining �̃� :=
(
𝑦1, . . . , 𝑦𝑑−1, 𝑒𝑑

√︃
1 − 𝑦2

1 − . . . − 𝑦
2
𝑑−1

)
, we have:

∫
𝐻𝑒

∥𝑥∥
(
1 − 2𝑑 + 4

𝑑 + 1
∥𝑥∥ + 𝑑 + 3

𝑑 + 1
∥𝑥∥2

)
𝑔

(
(𝑑 + 1)𝑥
(𝑑 + 3)∥𝑥∥

)
𝑑𝑥

=

∫
𝑆𝑑−2

⋂∏𝑑−1
𝑖=1 𝑒𝑖 [0,1]

𝑔

(
𝑑+1
𝑑+3 �̃�

)
√︃

1 −∑𝑑−1
𝑖=1 𝑦

2
𝑖

∫ 1

0
𝑦𝑑0

(
1 − 2𝑑 + 4

𝑑 + 1
𝑦0 +

𝑑 + 3
𝑑 + 1

𝑦2
0

)
𝑑𝑦0𝑑𝑦1 . . . 𝑑𝑦𝑑−1

= 0 (since the inner integral is 0).

This proves (4.23) and completes the proof of Theorem 3.2.3.

4.6.4 Proof of Theorem 3.3.1

To begin with, note that for 𝑡 ∈ 𝐴ℎ, we have

�̂�(𝑡) − 𝑓 (𝑡)

≤ 𝑓 𝑢
ℎ
(𝑡) − 𝑓 (𝑡) +

∥𝜓𝑢∥
(
^𝛼 + Γ(2𝑑

∏𝑑
𝑖=1 ℎ𝑖)

)
⟨1, 𝜓𝑢⟩(𝑛∏𝑑

𝑖=1 ℎ𝑖)1/2

≤ ⟨ 𝑓 (𝑡 + ℎ ★ ·) − 𝑓 (𝑡), 𝜓𝑢 (·)⟩
⟨1, 𝜓𝑢⟩ +

∥𝜓𝑢∥(^𝛼 + 2Γ(2𝑑 (∏𝑑
𝑖=1 ℎ𝑖)) + 𝑇 (𝜓𝑢))

⟨1, 𝜓𝑢⟩(𝑛∏𝑑
𝑖=1 ℎ𝑖)1/2

. (4.24)

Here the last line follows from the inequality

𝑇 (𝜓𝑢) ≥
𝑓 𝑢
ℎ
(𝑡) − ⟨ 𝑓 (𝑡 + ℎ ★ ·), 𝜓𝑢 (·)⟩/⟨1, 𝜓𝑢⟩
∥𝜓∥⟨1, 𝜓𝑢⟩−1(𝑛∏𝑑

𝑖=1 ℎ𝑖)−1/2
− Γ(2𝑑

𝑑∏
𝑖=1

ℎ𝑖).

Now, if 𝑓 ∈ H𝛽,𝐿 ∩ F1 (where 0 < 𝛽 ≤ 1) we have

| 𝑓 (𝑡 + ℎ ★ 𝑥) − 𝑓 (𝑡) | ≤ 𝐿∥ℎ ★ 𝑥∥𝛽
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Hence, denoting ℎ := max{ℎ1, . . . , ℎ𝑑}, we have:

⟨ 𝑓 (𝑡 + ℎ ★ ·) − 𝑓 (𝑡), 𝜓𝑢 (·)⟩
⟨1, 𝜓𝑢⟩ ≤

𝐿
∫
[−1,1]𝑑 ∥ℎ ★ 𝑥∥

𝛽𝜓𝑢 (𝑥)𝑑𝑥
⟨1, 𝜓𝑢⟩ ≤

𝐿ℎ𝛽
∫
[−1,1]𝑑 ∥𝑥∥

𝛽𝜓𝑢 (𝑥)𝑑𝑥
⟨1, 𝜓𝑢⟩ := 𝐾1ℎ

𝛽

(4.25)

where 𝐾1 := 𝐿
∫
[−1,1]𝑑 ∥𝑥∥

𝛽𝜓𝑢 (𝑥)𝑑𝑥/⟨1, 𝜓𝑢⟩. On the other hand, if 𝑓 ∈ H𝛽,𝐿 ∩ F2 (where 1 <

𝛽 ≤ 2) then defining 𝑔(𝑥) := 𝑓 (𝑡 + ℎ ★ 𝑥), we have the following for some b𝑥 lying in the segment

joining 0 and 𝑥:

⟨ 𝑓 (𝑡 + ℎ ★ ·) − 𝑓 (𝑡), 𝜓𝑢 (·)⟩

=

∫
[−1,1]𝑑

𝑥⊤∇𝑔(b𝑥)𝜓𝑢 (𝑥)𝑑𝑥

=

∫
[−1,1]𝑑

𝑥⊤ (∇𝑔(b𝑥) − ∇𝑔(0)) 𝜓𝑢 (𝑥)𝑑𝑥

≤
∫
[−1,1]𝑑

∥𝑥∥∥∇𝑔(b𝑥) − ∇𝑔(0)∥𝜓𝑢 (𝑥)𝑑𝑥

= 𝐿

∫
[−1,1]𝑑

∥𝑥∥∥ℎ ★ (∇ 𝑓 (𝑡 + ℎ ★ b𝑥) − ∇ 𝑓 (𝑡))∥𝜓𝑢 (𝑥)𝑑𝑥 (4.26)

≤ 𝐿ℎ

∫
[−1,1]𝑑

∥𝑥∥∥∇ 𝑓 (𝑡 + ℎ ★ b𝑥) − ∇ 𝑓 (𝑡)∥𝜓𝑢 (𝑥)𝑑𝑥

≤ 𝐿ℎ𝛽
∫
[−1,1]𝑑

∥𝑥∥𝛽𝜓𝑢 (𝑥)𝑑𝑥 .

Hence, in this case also, we have:

⟨ 𝑓 (𝑡 + ℎ ★ ·) − 𝑓 (𝑡), 𝜓𝑢 (·)⟩
⟨1, 𝜓𝑢⟩ ≤

𝐿ℎ𝛽
∫
[−1,1]𝑑 ∥𝑥∥

𝛽𝜓𝑢 (𝑥)𝑑𝑥
⟨1, 𝜓𝑢⟩ = 𝐾1ℎ

𝛽.

Hence, (4.24) tells us that as long as 𝑡 ∈ 𝐴ℎ we have

�̂�(𝑡) − 𝑓 (𝑡) ≤ 𝐾1ℎ
𝛽 +
∥𝜓𝑢∥(^𝛼 + 2Γ(2𝑑 (∏𝑑

𝑖=1 ℎ𝑖)) + 𝑇 (𝜓𝑢))
⟨1, 𝜓𝑢⟩(𝑛∏𝑑

𝑖=1 ℎ𝑖)1/2
. (4.27)
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Putting ℎ1 = ℎ2 = . . . = ℎ𝑑 = Y𝑛 := (log(𝑒𝑛)/𝑛)1/(2𝛽+𝑑) in (4.27), we get 𝐾1ℎ
𝛽 = 𝐾1Y

𝛽
𝑛 and

∥𝜓𝑢∥(^𝛼 + 2Γ(2𝑑 (∏𝑑
𝑖=1 ℎ𝑖)) + 𝑇 (𝜓𝑢))

⟨1, 𝜓𝑢⟩(𝑛∏𝑑
𝑖=1 ℎ𝑖)1/2

≤ 𝐾2
^𝛼 + 𝑇 (𝜓𝑢) + 2

√︁
2 + 2 log 𝑛

𝑛𝛽/(2𝛽+𝑑) log(𝑒𝑛)𝑑/(4𝛽+2𝑑)

≤ 𝐾3Y
𝛽
𝑛

(
^𝛼 + 𝑇 (𝜓𝑢)
log1/2(𝑒𝑛)

+ 1
)
.

for some constants 𝐾2 and 𝐾3 not depending on 𝑛. The above two equation tells us that as long as

𝑡 ∈ 𝐴Y𝑛1𝑑 , we have

�̂�(𝑡) − 𝑓 (𝑡) ≤ 𝐾Y𝛽𝑛
(
2 + ^𝛼 + 𝑇 (𝜓

𝑢)
log1/2(𝑒𝑛)

)
≤ 4𝐾Y𝛽𝑛

(
1
2
+ ^𝛼/2 + 𝑇 (𝜓

𝑢)
log1/2(𝑒𝑛)

)
(4.28)

for some constant 𝐾 not depending on 𝑛.

The steps for bounding 𝑓 (𝑡) − ℓ̂(𝑡) are similar, but we point out some differences. First, we

have:

𝑓 (𝑡) − ℓ̂(𝑡) ≤ ⟨ 𝑓 (𝑡) − 𝑓 (𝑡 + ℎ ★ ·), 𝜓
ℓ (·)⟩

⟨1, 𝜓ℓ⟩
+
∥𝜓ℓ∥(^𝛼 + 2Γ(2𝑑 (∏𝑑

𝑖=1 ℎ𝑖)) + 𝑇 (−𝜓ℓ))
⟨1, 𝜓ℓ⟩(𝑛∏𝑑

𝑖=1 ℎ𝑖)1/2
,

which gives:

𝑓 (𝑡) − ℓ̂(𝑡) ≤ 𝐾2ℎ
𝛽 +
∥𝜓ℓ∥(^𝛼 + 2Γ(2𝑑 (∏𝑑

𝑖=1 ℎ𝑖)) + 𝑇 (−𝜓ℓ))
⟨1, 𝜓ℓ⟩(𝑛∏𝑑

𝑖=1 ℎ𝑖)1/2

where 𝐾2 := 𝐿
∫
[−1,1]𝑑 ∥𝑥∥

𝛽 |𝜓ℓ (𝑥) |𝑑𝑥/|⟨1, 𝜓ℓ⟩|. Hence, for some constant 𝐾′ not depending on 𝑛,

we have:

𝑓 (𝑡) − ℓ̂(𝑡) ≤ 𝐾′Y𝛽𝑛
(
1
2
+ ^𝛼/2 + 𝑇 (−𝜓

ℓ)
log1/2(𝑒𝑛)

)
. (4.29)

Theorem 3.3.1 now follows by adding (4.28) and (4.29).
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4.6.5 Proof of Theorem 3.3.2

It follows from (4.24) and (4.27) that for 𝑡 ∈ 𝐴𝜺𝑛,𝑖1,...,𝑖𝑘 , we have:

�̂�(𝑡) − 𝑓 (𝑡) ≤ 𝐾1Y
𝛽
𝑛 +
∥𝜓𝑢∥(^𝛼 + 2Γ(2𝑑Y𝑘𝑛Y𝑑−𝑘 ) + 𝑇 (𝜓𝑢))

⟨1, 𝜓𝑢⟩(𝑛Y𝑘𝑛Y𝑑−𝑘 )1/2

= 𝐾1Y
𝛽𝜌𝑛,𝑘 +

∥𝜓𝑢∥(^𝛼 + 2Γ(2𝑑Y𝑑 (log(𝑒𝑛)/𝑛)𝑘/(2𝛽+𝑘)) + 𝑇 (𝜓𝑢))
⟨1, 𝜓𝑢⟩(𝑛Y𝑑 (log(𝑒𝑛)/𝑛)𝑘/(2𝛽+𝑘))1/2

≤ Δ1𝜌𝑛,𝑘

(
1
2
+ ^𝛼/2 + 𝑇 (𝜓

𝑢)
(log(𝑒𝑛))1/2

)
for some constants 𝐾1 and Δ1 > 0. The rest of the proof follows the idea of the proof of Theorem

3.3.1. The only modifications are in (4.25) and (4.26), where one now uses the fact that the function

𝑓 only depends on 𝑘 coordinates, and hence, the vector ℎ can now be replaced by its restriction on

the 𝑖th1 , . . . , 𝑖
th
𝑘

coordinates.

4.6.6 Proof of Theorem 3.4.1

(a) We prove only the bound for ∥ 𝑓 − ℓ∥𝑈 as the other case can be handled similarly. Thus, we will

show that for any level 1 − 𝛼 confidence band (ℓ, 𝑢) with guaranteed coverage probability for the

class F1, and any 0 < 𝛾 < 1, we have

lim inf
𝑛→∞

P 𝑓

(
∥ 𝑓 − ℓ∥𝑈 ≥ 𝛾Δ(ℓ)𝐿

𝑑
2+𝑑
1 [𝑡0]𝜌𝑛

)
≥ 1 − 𝛼.

For notational simplicity, we will abbreviate 𝜓ℓ by 𝜓. By our assumption, 𝑓 is continuously differ-

entiable on an open neighborhood𝑈 of 𝑡0 ∈ (0, 1)𝑑 such that 𝐿1 [ 𝑓 , 𝑡0] :=
[∏𝑑

𝑖=1
𝜕
𝜕𝑥𝑖
𝑓 (𝑥)

��
𝑥=𝑡0

]1/𝑑
>

0. Let us define, for 𝑖 = 1, . . . , 𝑑,

𝑀★
𝑖 :=

𝜕

𝜕𝑥𝑖
𝑓 (𝑥) |𝑥=𝑡0 .
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Without loss of generality, let us assume that 𝑀★
1 ≤ 𝑀

★
2 ≤ . . . ≤ 𝑀

★
𝑑
. Since 𝛾 < 1, we can find

𝜖 > 0 and 𝛾∗ < 1 such that:

𝛾𝐿
𝑑/(2+𝑑)
1 [𝑡0] = 𝛾★(𝐿1 [𝑡0] − 𝜖)𝑑/(2+𝑑) .

Also since 𝑓 is continuously differentiable on𝑈, we can find ℎ0 ∈ [0, 1]𝑑 and 𝜖★ > 0 small enough

such that

(i) 𝐵∞(𝑡0, ℎ0) ⊂ 𝑈,

(ii)
[∏𝑑

𝑖=1(𝑀★
𝑖
− 𝜖★)

]1/𝑑 ≥ 𝐿1 [𝑡0] − 𝜖 ,

(iii) for all 𝑥 ∈ 𝐵∞(𝑡0, ℎ0) we have

𝜕

𝜕𝑥𝑖
𝑓 (𝑥) ≥ 𝑀★

𝑖 − 𝜖★ > 0, for all 𝑖 = 1, 2, . . . , 𝑑.

Suppose that ℎ ≡ (ℎ1, ℎ2, . . . , ℎ𝑑) is such that ℎ1 ∈ (0, 1/2] and ℎ𝑖 = ℎ1 ×
(
𝑀★

1 −𝜖
★

𝑀★
𝑖
−𝜖★

)
, for

𝑖 = 2, . . . , 𝑑. Let us define a set of grid points 𝐺 for bandwidth ℎ as

𝐺 := {𝑡 = (𝑡1, . . . , 𝑡𝑑) : 𝑡𝑖 = 𝑡0𝑖 + ℎ𝑖 (2𝑘𝑖) for some integer 𝑘𝑖, 𝐵∞(𝑡, ℎ) ⊂ 𝐵∞(𝑡0, ℎ0)}

where 𝑡0 = (𝑡01, . . . , 𝑡0𝑑). For 𝑡 ∈ 𝐺, let

𝑓𝑡 := 𝑓 − ℎ1(𝑀★
1 − 𝜖

★)𝜓𝑡,ℎ,

where 𝜓𝑡,ℎ is defined in (1.5). We will now show that for every 𝑡 ∈ 𝐺, 𝑓𝑡 ∈ F1.

Lemma 4.6.1 𝑓𝑡 ∈ F1 for all 𝑡 ∈ 𝐺.

Proof 1 Fix 𝑡 ∈ 𝐺. Suppose that 𝑥 ≤ 𝑦 (coordinatewise) and 𝑥, 𝑦 ∈ 𝑇𝑡,ℎ where

𝑇𝑡,ℎ :=

{
𝑢 = (𝑢1, . . . , 𝑢𝑑) ∈ [0, 1]𝑑 : 𝑢𝑖 ≤ 𝑡𝑖 for all 𝑖 and

𝑑∑︁
𝑖=1

(
𝑢𝑖 − 𝑡𝑖
ℎ𝑖

)
≥ −1

}
.
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Then, for some 𝝃 ∈ [𝑥, 𝑦] ⊂ 𝐵∞(𝑡0, ℎ0),

𝑓 (𝑦) − 𝑓 (𝑥) = ▽ 𝑓 (𝝃)⊤(𝑦 − 𝑥) ≥
𝑑∑︁
𝑖=1
(𝑀★

𝑖 − 𝜖★) (𝑦𝑖 − 𝑥𝑖). (4.30)

Then,

−𝜓𝑡,ℎ (𝑦) + 𝜓𝑡,ℎ (𝑥) = −
𝑑∑︁
𝑖=1

( 𝑦𝑖 − 𝑥𝑖
ℎ𝑖

)
= − 1

ℎ1(𝑀★
1 − 𝜖∗)

𝑑∑︁
𝑖=1
(𝑀★

𝑖 − 𝜖★) (𝑦𝑖 − 𝑥𝑖). (4.31)

It now follows from (4.30) and (4.31) that:

𝑓𝑡 (𝑦) − 𝑓𝑡 (𝑥) ≥
𝑑∑︁
𝑖=1
(𝑀★

𝑖 − 𝜖★) (𝑦𝑖 − 𝑥𝑖) − ℎ1(𝑀★
1 − 𝜖

★)
[

1
ℎ1(𝑀★

1 − 𝜖∗)

𝑑∑︁
𝑖=1
(𝑀★

𝑖 − 𝜖★) (𝑦𝑖 − 𝑥𝑖)
]
= 0

thereby yielding 𝑓𝑡 (𝑦) ≥ 𝑓𝑡 (𝑥).

Let us now look at the case 𝑥 ∉ 𝑇𝑡,ℎ, 𝑦 ∈ 𝑇𝑡,ℎ and 𝑥 ≤ 𝑦. Define 𝑎 := 1 + ∑𝑑
𝑖=1

(
𝑥𝑖−𝑡𝑖
ℎ𝑖

)
and

𝑏 := 1 +∑𝑑
𝑖=1

(
𝑦𝑖−𝑡𝑖
ℎ𝑖

)
. By the assumptions on 𝑥, 𝑦, we have 𝑥 ≤ 𝑦 ≤ 𝑡 (coordinatewise). Hence as

𝑥 ∉ 𝑇𝑡,ℎ, 𝑎 < 0 and as 𝑦 ∈ 𝑇𝑡,ℎ, 𝑏 ≥ 0. Define 𝑧 = 𝛼𝑥 + (1 − 𝛼)𝑦 where 𝛼 = 𝑏/(𝑏 − 𝑎). Note that∑𝑑
𝑖=1(𝑧𝑖 − 𝑡𝑖)/ℎ𝑖 = −1 and 𝑥 ≤ 𝑧 ≤ 𝑦 ≤ 𝑡 which implies that 𝑧 ∈ 𝑇𝑡,ℎ. Hence,

𝑓𝑡 (𝑦) ≥ 𝑓𝑡 (𝑧) = 𝑓 (𝑧) ≥ 𝑓 (𝑥) = 𝑓𝑡 (𝑥).

Here, the first inequality follows from the fact that 𝑧, 𝑦 ∈ 𝑇𝑡,ℎ, the third inequality follows from

monotonicity of 𝑓 and the second and fourth equality follows from the fact that 𝜓𝑡,ℎ (𝑧) = 𝜓𝑡,ℎ (𝑥) =

0.

Now let us look into the case where 𝑥 ∈ 𝑇𝑡,ℎ, 𝑦 ∉ 𝑇𝑡,ℎ and 𝑥 ≤ 𝑦. In this case

𝑓𝑡 (𝑦) = 𝑓 (𝑦) ≥ 𝑓 (𝑥) ≥ 𝑓 (𝑥) − ℎ1(𝑀★
1 − 𝜖

★)𝜓𝑡,ℎ (𝑥) = 𝑓𝑡 (𝑥).

The only case left is when 𝑥 ∉ 𝑇𝑡,ℎ, 𝑦 ∉ 𝑇𝑡,ℎ and 𝑥 ≤ 𝑦. In this case 𝜓𝑡,ℎ (𝑥) = 𝜓𝑡,ℎ (𝑦) = 0, hence the

monotonicity of 𝑓𝑡 directly follows from the monotonicity of 𝑓 . This completes the proof of Lemma
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4.6.3.

Now let us define the set

𝐴 := {ℓ(𝑥) ≤ 𝑓𝑡 (𝑥) for all 𝑥 ∈ [0, 1]𝑑 , for some 𝑡 ∈ 𝐺}.

Now, since (ℓ, 𝑢) is a confidence band for all 𝑓 ∈ F1, and since 𝑓𝑡 ∈ F1, we have

P 𝑓𝑡 (𝐴) ≥ 1 − 𝛼 for all 𝑡 ∈ 𝐺.

Hence we have:

P 𝑓
(
∥ 𝑓 − ℓ∥𝑈 ≥ ℎ1(𝑀★

1 − 𝜖
★)

)
≥ P 𝑓 (𝐴) ≥ 1 − 𝛼 −min

𝑡∈𝐺

(
P 𝑓𝑡 (𝐴) − P 𝑓 (𝐴)

)
. (4.32)

Here the first inequality follows from the fact that if 𝐴 happens then there exists 𝑡 ∈ 𝐺 ⊂ 𝑈 such

that ℓ ≤ 𝑓𝑡 , thereby giving:

ℓ(𝑡) ≤ 𝑓𝑡 (𝑡) = 𝑓 (𝑡) − ℎ1(𝑀★
1 − 𝜖

★).

Hence it is enough to bound min𝑡∈𝐺
(
P 𝑓𝑡 (𝐴) − P 𝑓 (𝐴)

)
.

min
𝑡∈𝐺
P 𝑓𝑡 (𝐴) − P 𝑓 (𝐴) ≤ |𝐺 |−1

∑︁
𝑡∈𝐺

(
P 𝑓𝑡 (𝐴) − P 𝑓 (𝐴)

)
= |𝐺 |−1

∑︁
𝑡∈𝐺
E 𝑓

((
𝑑P 𝑓𝑡
𝑑P 𝑓
(𝑌 ) − 1

)
I𝐴 (𝑌 )

)
≤ E 𝑓

���|𝐺 |−1
∑︁
𝑡∈𝐺

(
𝑑P 𝑓𝑡
𝑑P 𝑓
(𝑌 ) − 1

) ���. (4.33)

Now by Cameron-Martin-Girsanov’s Theorem, we have

log
𝑑P 𝑓𝑡
𝑑P 𝑓
(𝑌 ) = 𝑛1/2ℎ1(𝑀★

1 − 𝜖
★)

√︃
Π𝑑
𝑖=1ℎ𝑖∥𝜓∥𝑋𝑡 − 𝑛(𝑀

★
1 − 𝜖

★)2ℎ2
1(Π

𝑑
𝑖=1ℎ𝑖)∥𝜓∥

2/2
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where

𝑋𝑡 = (Π𝑛
𝑖=1ℎ𝑖)

−1/2∥𝜓∥−1
∫

𝜓𝑡,ℎ𝑑𝑊

with𝑊 being the standard Brownian sheet on [0, 1]𝑑 . Note that here 𝑋𝑡 follows a standard normal

distribution and for 𝑡 ≠ 𝑡′ ∈ 𝐺, 𝑋𝑡 and 𝑋′𝑡 are independent. Now let

𝑤𝑛 := 𝑛1/2ℎ1(𝑀★
1 − 𝜖

★)
√︃
Π𝑑
𝑖=1ℎ𝑖∥𝜓∥.

At this point, Let us recall the following lemma A.5.1 (stated and proved in Lemma 6.2 in

[66]).

Define Y𝑛 := 1 − (𝑤𝑛/
√︁

2 log |𝐺 |). If Y𝑛 → 0 and Y𝑛
√︁

log |𝐺 | → ∞ are satisfied, then by

Lemma A.5.1 and (4.40), we have the following as |𝐺 | → ∞:

min
𝑡∈𝐺
P 𝑓𝑡 (𝐴) − P 𝑓 (𝐴) → 0 (4.34)

Now let us choose ℎ1 = (1 − 𝜖𝑛)𝑐𝜌𝑛 where 𝜌𝑛 = (log(𝑒𝑛)/𝑛)1/(2+𝑑) , with 𝜖𝑛 → 0 and

𝜖𝑛
√︁

log 𝑛→∞ and 𝑐 is a constant to be chosen later. This implies that

√︁
2 log |𝐺 | = (1 − 𝑜(1))

√︂
2𝑑
𝑑 + 2

log 𝑛

and for large 𝑛,
√︁

2 log |𝐺 | <
√︃

2𝑑
𝑑+2 log 𝑛. Hence,

𝑤𝑛 = (1 − 𝜖𝑛) (2+𝑑)/2𝑐(2+𝑑)/2∥𝜓ℓ∥
(𝑀★

1 − 𝜖
★) (2+𝑑)/2∏𝑑

𝑖=1(𝑀★
𝑖
− 𝜖★)1/2

√︁
log(𝑒𝑛).

Let us now put:

𝑐 =

∏𝑑
𝑖=1(𝑀★

𝑖
− 𝜖★)1/(2+𝑑)

(𝑀★
1 − 𝜖★)

[
(𝑑 + 2)∥𝜓ℓ∥2

2𝑑

]−1/(2+𝑑)
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whence we have:

𝑤𝑛√︁
2 log |𝐺 |

∼ (1 − 𝜖𝑛) (2+𝑑)/2𝑐(2+𝑑)/2∥𝜓ℓ∥
(𝑀★

1 − 𝜖
★) (2+𝑑)/2

Π𝑑
𝑖=1(𝑀

★
𝑖
− 𝜖★)1/2

√︂
𝑑 + 2
2𝑑

= (1 − 𝜖𝑛) (2+𝑑)/2 → 1 as 𝑛→∞.

Also note that for large 𝑛, (1 − 𝑤𝑛/
√︁

2 log |𝐺 |) > 0 as
√︁

2 log |𝐺 | <
√︃

2𝑑
𝑑+2 log 𝑛. Also, note that:

√︁
log |𝐺 |

(
1 − 𝑤𝑛√︁

2 log |𝐺 |

)
∼

√︂
𝑑

2 + 𝑑
√︁

log 𝑛(1 − (1 − 𝜖𝑛)1+𝑑/2)

=

√︂
𝑑

2 + 𝑑

(
2 + 𝑑

2
+ 𝑜(1)

)
𝜖𝑛

√︁
log 𝑛→∞ (by assumption).

Also note that we denoted
(
(𝑑 + 2)∥𝜓ℓ∥2/2𝑑

)−1/(2+𝑑) as Δ(ℓ) in the statement of the theorem.

Hence, by (4.39) and (4.41), we have:

1 − 𝛼 ≤ lim inf
𝑛→∞

P 𝑓
(
∥ 𝑓 − ℓ∥𝑈 ≥ ℎ1(𝑀★

1 − 𝜖
★)

)
= lim inf

𝑛→∞
P 𝑓

(
∥ 𝑓 − ℓ∥𝑈 ≥ (1 − 𝜖𝑛)𝜌𝑛Δ(ℓ)Π𝑑

𝑖=1(𝑀
★
𝑖 − 𝜖★)1/(2+𝑑)

)
≤ lim inf

𝑛→∞
P 𝑓

(
∥ 𝑓 − ℓ∥𝑈 ≥ 𝛾★Π𝑑

𝑖=1(𝑀
★
𝑖 − 𝜖★)1/(2+𝑑)𝜌𝑛Δ(ℓ)

)
≤ lim inf

𝑛→∞
P 𝑓

(
∥ 𝑓 − ℓ∥𝑈 ≥ 𝛾★(𝐿1 [𝑡0] − 𝜖)𝑑/(2+𝑑)𝜌𝑛Δ(ℓ)

)
= lim inf

𝑛→∞
P 𝑓

(
∥ 𝑓 − ℓ∥𝑈 ≥ 𝛾𝐿𝑑/(2+𝑑)1 [𝑡0]𝜌𝑛Δ(ℓ)

)
.

This completes the proof of part (a).

(b) We again restrict our attention to ( 𝑓 − ℓ̂) (𝑡0). The other case can be done by a similar argument.

For 𝑖 = 1, 2, . . . , 𝑑, let us recall

𝑀★
𝑖 =

𝜕

𝜕𝑥𝑖
𝑓 (𝑥) |𝑥=𝑡0 .

Fix 𝜖 > 0. As 𝑓 has continuous derivative on an open neighborhood 𝑈 of 𝑡0 we can find 𝜖★ > 0
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and a hyperrectangle 𝐵∞(𝑡0, ℎ0) small enough such that

sup
𝑥∈𝐵∞ (𝑡0,ℎ0)

𝜕

𝜕𝑥𝑖
𝑓 (𝑥) ≤ 𝑀★

𝑖 + 𝜖★

and

[Π𝑑
𝑖=1(𝑀

★
𝑖 + 𝜖★)]1/𝑑 ≤ (1 + 𝜖)𝐿1 [𝑡0] .

Recall that we have assumed without loss of generality 0 < 𝑀★
1 ≤ 𝑀★

2 ≤ . . . ≤ 𝑀★
𝑑

. Now

let ℎ = (ℎ1, . . . , ℎ𝑑) be such that ℎ𝑖 := ℎ̃ × 𝑀★
1 +𝜖

★

𝑀★
𝑖
+𝜖★ . Let 𝑀 :=

[
Π𝑑
𝑖=1

𝑀★
1 +𝜖

★

𝑀★
𝑖
+𝜖★

]1/𝑑
which implies that

Π𝑑
𝑖=1ℎ𝑖 = ℎ̃

𝑑𝑀𝑑 . Recall that

ℓ̂(𝑡0) = sup
ℎ∈𝐼:𝑡0∈𝐴ℎ

{
𝑓ℎ (𝑡0) −

∥𝜓∥
⟨1, 𝜓⟩(𝑛Π𝑑

𝑖=1ℎ𝑖)1/2
(
^𝛼 + Γ(2𝑑Π𝑑

𝑖=1ℎ𝑖)
)}

and

𝑓ℎ (𝑡0) =
1

𝑛1/2(Π𝑑
𝑖=1ℎ𝑖)⟨1, 𝜓⟩

∫
[0,1]𝑑

𝜓𝑡0,ℎ (𝑥)𝑑𝑌 (𝑥)

=
1
⟨1, 𝜓⟩ ⟨ 𝑓 (𝑡0 + ℎ ★ ·), 𝜓(·)⟩ +

1
𝑛1/2(Π𝑑

𝑖=1ℎ𝑖)⟨1, 𝜓⟩

∫
𝐵∞ (𝑡0,ℎ)

𝜓𝑡0,ℎ (𝑥)𝑑𝑊 (𝑥)

where for ℎ, 𝑥 ∈ R𝑑 we define ℎ ★ 𝑥 := (ℎ1𝑥1, . . . , ℎ𝑑𝑥𝑑).

Now, it follows from the definition of ℓ̂(𝑡0) that if 𝑓 (𝑡0) − ℓ̂(𝑡0) ≥ (𝑀★
1 + 𝜖

★) ℎ̃, then

𝑓ℎ (𝑡0) −
∥𝜓∥

(
^𝛼 + Γ(2𝑑𝑀𝑑 ℎ̃𝑑)

)
𝑛1/2 ℎ̃𝑑/2𝑀𝑑/2⟨1, 𝜓⟩

≤ 𝑓 (𝑡0) − (𝑀★
1 + 𝜖

★) ℎ̃,

which can be rewritten as:

∫
𝐵∞ (𝑡0,ℎ)

𝜓𝑡0,ℎ (𝑥)𝑑𝑊 (𝑥)

∥𝜓∥ ℎ̃𝑑/2𝑀𝑑/2 ≤ − (𝑛ℎ̃
𝑑𝑀𝑑)1/2
∥𝜓∥ ⟨ 𝑓 (𝑡0 + ℎ ★ ·) − 𝑓 (𝑡0) + (𝑀★

1 + 𝜖
★) ℎ̃, 𝜓(·)⟩

+ Γ(2𝑑𝑀𝑑 ℎ̃𝑑) + ^𝛼 . (4.35)
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Lemma 4.6.2 Suppose ℎ ∈ [0, 1]𝑑 is such that 𝐵∞(𝑡, ℎ) ⊆ 𝐵∞(𝑡0, ℎ0) where 𝐵∞(𝑡0, ℎ0), 𝜓 are as

described above. Then

⟨ 𝑓 (𝑡 + ℎ ★ ·) − 𝑓 (𝑡) + (𝑀★
1 + 𝜖

★) ℎ̃, 𝜓(·)⟩ ≥ (𝑀★
1 + 𝜖

★) ℎ̃∥𝜓∥2

Proof of Lemma 4.6.2: Suppose 𝐵∞(𝑡0, ℎ) ⊆ 𝐵∞(𝑡0, ℎ0) holds. Note that

𝜓(𝑥) =
(
1 +

𝑑∑︁
𝑖=1

𝑥𝑖

)
I

(
𝑥 ≤ 0,

𝑑∑︁
𝑖=1

𝑥𝑖 ≥ −1

)

Let 𝑥 ∈ [−1, 0]𝑑 be such that
∑𝑑
𝑖=1 𝑥𝑖 ≥ −1.

𝑓 (𝑡 + ℎ ★ 𝑥) − 𝑓 (𝑡) = (ℎ ★ 𝑥)⊤▽ 𝑓 (𝝃) for some 𝝃 ∈ [𝑡, 𝑡 + ℎ ★ 𝑥]

≥
𝑑∑︁
𝑖=1

ℎ𝑖𝑥𝑖 (𝑀★
𝑖 + 𝜖★) note that ℎ ★ 𝑥 ≤ 0

= ℎ̃(𝑀★
1 + 𝜖

★)
𝑑∑︁
𝑖=1

𝑥𝑖 .

Hence on the set 𝐷 := {𝑥 ≤ 0,
∑𝑑
𝑖=1 𝑥𝑖 ≥ −1}

𝑓 (𝑡 + ℎ ★ 𝑥) − 𝑓 (𝑡) + (𝑀★
1 + 𝜖

★) ℎ̃ ≥ ℎ̃(𝑀★
1 + 𝜖

★) (1 +
𝑑∑︁
𝑖=1

𝑥𝑖) ≥ 0.

Hence

⟨ 𝑓 (𝑡+ℎ★·)− 𝑓 (𝑡)+(𝑀★
1 +𝜖

★) ℎ̃, 𝜓(·)⟩ ≥
∫
𝐷

ℎ̃(𝑀★
1 +𝜖

★)
(
1 +

𝑑∑︁
𝑖=1

𝑥𝑖

)2

𝑑𝑥 = ℎ̃(𝑀★
1 +𝜖

★)∥𝜓∥2. (4.36)

This completes the proof of Lemma 4.6.2.

By (4.35) and (4.36) we get that as long as 𝐵∞(𝑡0, ℎ) ⊆ 𝐵∞(𝑡0, ℎ0), ( 𝑓 − ℓ̂) (𝑡0) ≥ (𝑀★
1 + 𝜖

★) ℎ̃

implies that
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∫
𝐵∞ (𝑡0,ℎ)

𝜓𝑡0,ℎ (𝑥)𝑑𝑊 (𝑥)

∥𝜓∥ ℎ̃𝑑/2𝑀𝑑/2 ≤ −
√
𝑛ℎ̃1+𝑑/2𝑀𝑑/2(𝑀★

1 + 𝜖
★)∥𝜓∥ + Γ(2𝑑𝑀𝑑 ℎ̃𝑑) + ^𝛼 .

Also note that ∫
𝐵∞ (𝑡0,ℎ)

𝜓𝑡0,ℎ (𝑥)𝑑𝑊 (𝑥)

∥𝜓∥ ℎ̃𝑑/2𝑀𝑑/2 ∼ 𝑁 (0, 1).

Now let us choose

ℎ̃ = 𝑐(𝑀★
1 + 𝜖

★)− 2
2+𝑑 𝜌𝑛

where 𝜌𝑛 = (log(𝑒𝑛)/𝑛)1/(2+𝑑) and a constant 𝑐 to be chosen later.

Note that 𝜌𝑛 → 0 as 𝑛 → ∞. Hence for large enough 𝑛, 𝐵∞(𝑡0, ℎ) ⊆ 𝐵∞(𝑡0, ℎ0) (here ℎ

depends on 𝑛). Also we have

Γ(2𝑑𝑀𝑑 ℎ̃𝑑) ≤

√︄(
2𝑑

2 + 𝑑

)
log 𝑛 for large 𝑛

√
𝑛ℎ̃1+𝑑/2𝑀𝑑/2(𝑀★

1 + 𝜖
★)∥𝜓∥ = 𝑀𝑑/2∥𝜓∥𝑐(𝑑+2)/2

√︁
log(𝑒𝑛).

Now let us pick

𝑐 = (1 + 𝜖)
(
(𝑑 + 2)∥𝜓∥2

2𝑑

)−1/(𝑑+2)
𝑀−

𝑑
𝑑+2 .

Note that Δ(ℓ) =
(
(𝑑+2)∥𝜓∥2

2𝑑

)−1/(𝑑+2)
as defined in the statement of the theorem.

Hence for large 𝑛 we have

P
(
𝑓 (𝑡0) − ℓ̂(𝑡0) ≥ (𝑀★

1 + 𝜖
★) ℎ̃

)
≤ P

(∫
𝐵∞ (𝑡0,ℎ)

𝜓𝑡0,ℎ (𝑥)𝑑𝑊 (𝑥)

∥𝜓∥ ℎ̃𝑑/2𝑀𝑑/2 ≤ −
√
𝑛ℎ̃1+𝑑/2𝑀𝑑/2(𝑀★

1 + 𝜖
★)∥𝜓∥ + Γ(2𝑑𝑀𝑑 ℎ̃𝑑) + ^𝛼

)
= Φ

(
−
√
𝑛ℎ̃1+𝑑/2𝑀𝑑/2(𝑀★

1 + 𝜖
★)∥𝜓∥ + Γ(2𝑑𝑀𝑑 ℎ̃𝑑) + ^𝛼

)
≤ Φ

(
^𝛼 −

√︁
log(𝑒𝑛)

[
𝑀𝑑/2∥𝜓∥𝑐(𝑑+2)/2 −

√︂
2𝑑

2 + 𝑑

])
= Φ

(
^𝛼 −

√︁
log(𝑒𝑛)

√︂
2𝑑

2 + 𝑑

[
(1 + 𝜖) 𝑑+22 − 1

] )
→ 0 as 𝑛→∞.
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Here Φ denotes the distribution function of standard normal. Hence

lim
𝑛→∞
P

(
( 𝑓 − ℓ̂) (𝑡0) ≤ (𝑀★

1 + 𝜖
★) ℎ̃

)
= 1. (4.37)

Now

(𝑀★
1 + 𝜖

★) ℎ̃ = (𝑀★
1 + 𝜖

★)𝑐(𝑀★
1 + 𝜖

★)− 2
2+𝑑 𝜌𝑛

= 𝜌𝑛 (𝑀★
1 + 𝜖

★)𝑑/(2+𝑑) (1 + 𝜖)Δ(ℓ)𝑀−𝑑/(𝑑+2)

= (1 + 𝜖)Δ(ℓ)𝜌𝑛

(
(𝑀★

1 + 𝜖
★)𝑑

𝑀𝑑

)1/(𝑑+2)

= (1 + 𝜖)Δ(ℓ)𝜌𝑛
(
Π𝑑
𝑖=1(𝑀

★
𝑖 + 𝜖★)

)1/(𝑑+2)

≤ (1 + 𝜖)Δ(ℓ)𝜌𝑛 (1 + 𝜖)𝑑/(𝑑+2)𝐿𝑑/(𝑑+2)1 [𝑡0]

= (1 + 𝜖) (2𝑑+2)/(𝑑+2)Δ(ℓ)𝜌𝑛𝐿𝑑/(𝑑+2)1 [𝑡0] . (4.38)

Hence our assertion is proved by (4.37) and (4.38).

4.6.7 Proof of Theorem 3.4.2

Once again, we prove only the bound for ∥ 𝑓 − ℓ∥𝑈 and the other case can be handled similarly.

we will show that for any level 1 − 𝛼 confidence band (ℓ, 𝑢) with guaranteed coverage probability

for the class F2, and any 0 < 𝛾 < 1, we have

lim inf
𝑛→∞

P 𝑓

(
∥ 𝑓 − ℓ∥𝑈 ≥ 𝛾Δ(ℓ)𝐿

𝑑
4+𝑑
2 [𝑡0]𝜌𝑛

)
≥ 1 − 𝛼.

Once again, for notational convenience, we will abbreviate 𝜓ℓ by 𝜓. It is more convenient to solve

the problem if we introduce a rotation of the coordinate system, so that the Hessian of 𝑓 at 𝑡0 with

respect to this new changed coordinate system, is diagonal. If ∇2 𝑓 (𝑡0) = 𝑃𝐷𝑃⊤ is the spectral

decomposition of the Hessian of 𝑓 at 𝑡0, then for any point 𝑦, we will define 𝑦′ := 𝑃⊤𝑦, and for any
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set 𝑆 ⊆ R𝑑 , we will define:

𝑆′ := {𝑃⊤𝑠 : 𝑠 ∈ 𝑆} .

Further, defining 𝑔(𝑡) := 𝑓 (𝑃𝑡), we note that 𝑔(𝑡′) = 𝑓 (𝑡) for all 𝑡 (recall our notation that 𝑡′ =

𝑃⊤𝑡), and ∇2𝑔(𝑡′0) = 𝐷.

Recall that by assumption, 𝑓 is twice continuously differentiable on an open neighborhood

𝑈 of 𝑡0 ∈ (0, 1)𝑑 such that 𝐿2 [ 𝑓 , 𝑡0] := det(∇2 𝑓 (𝑡0))1/𝑑 > 0. Hence, 𝑔 is twice continuously

differentiable on the open neighborhood𝑈′ of 𝑡′0. Denote the 𝑖th smallest eigenvalue of ∇2 𝑓 (𝑡0) by

_𝑖 (𝑡0). Since 𝛾 < 1, we can find 𝜖 > 0 and 𝛾∗ < 1 such that:

𝛾𝐿
𝑑/(4+𝑑)
2 [𝑡0] = 𝛾★(𝐿2 [𝑡0] − 𝜖)𝑑/(4+𝑑) .

Using the twice continuous differentiability of 𝑔 on 𝑈′, we can find ℎ0 ∈ [0, 1]𝑑 and 𝜖★ > 0 small

enough such that

(i) 𝐵′∞(𝑡′0, ℎ0) ⊂ 𝑈′,

(ii)
[∏𝑑

𝑖=1(_𝑖 (𝑡0) − 𝜖★)
]1/𝑑 ≥ 𝐿2 [𝑡0] − 𝜖 ,

(iii) for all 𝑥′ ∈ 𝐵′∞(𝑡′0, ℎ0), we have

sup
𝑣∈𝐵2 (0,1)

���𝑣⊤ (
∇2𝑔(𝑥′) − ∇2𝑔(𝑡′0)

)
𝑣

��� < 𝜖∗
where 𝐵2(0, 1) denotes the ball around 0 with ℓ2 norm 1, and 𝐵′∞(𝑦, ℎ) := (𝐵∞(𝑃𝑦, ℎ))′.

Next, let ℎ ≡ (ℎ1, ℎ2, . . . , ℎ𝑑) be such that ℎ1 ∈ (0, 1/2] and ℎ𝑖 = ℎ1 ×
√︃
_1 (𝑡0)−𝜖★
_𝑖 (𝑡0)−𝜖★ , for 𝑖 =

2, . . . , 𝑑. Let us define a set of grid points 𝐺 for bandwidth ℎ as

𝐺 := {𝑡 = (𝑡1, . . . , 𝑡𝑑) : 𝑡𝑖 = 𝑡0𝑖 + ℎ𝑖 (2𝑘𝑖) for some integer 𝑘𝑖, 𝐵∞(𝑡, ℎ) ⊂ 𝐵∞(𝑡0, ℎ0)}

107



where 𝑡0 = (𝑡01, . . . , 𝑡0𝑑). For 𝑡′ ∈ 𝐺′, let

𝑔𝑡′ (𝑥) := 𝑔(𝑥) − ℎ2
1(_1(𝑡0) − 𝜖★)𝜓∗

(
𝑥1 − 𝑡′1
ℎ1

, . . . ,
𝑥𝑑 − 𝑡′𝑑
ℎ𝑑

)
where 𝜓∗ := (𝐺𝐴 − 𝐺0) (𝑃·) with 𝐺𝐴, 𝐺0 as defined as follows:

𝐺𝐴 (𝑦) :=
∥𝑦∥2

2
1∥𝑦∥≤

√
2(𝑑+3)/(𝑑+1) and 𝐺0(𝑦) :=

(
−1 +

√
2(𝑑 + 2)√︁

(𝑑 + 1) (𝑑 + 3)
∥𝑦∥

)
1∥𝑦∥≤

√
2(𝑑+3)/(𝑑+1) .

We will now show that for every 𝑡′ ∈ 𝐺′, the function 𝑔𝑡′ ∈ F2.

Lemma 4.6.3 𝑔𝑡′ ∈ F2 for all 𝑡′ ∈ 𝐺′.

Proof 2 Fix 𝑡′ ∈ 𝐺′ and a vector 𝑣 ∈ 𝐵2(0, 1). In order to prove Lemma 4.6.3, it suffices to show

that the univariate function ℎ : R→ R defined as ℎ(𝑥) := 𝑔𝑡′ (𝑥𝑣) is convex. Towards proving this,

take scalars 𝛼 > 𝛽, such that 𝛼𝑣 and 𝛽𝑣 ∈ 𝐵′∞(𝑡′0, ℎ0), and define

𝜙(𝑥) = 𝜙𝑡′,ℎ (𝑥) := 𝜓∗
(
𝑥1 − 𝑡′1
ℎ1

, . . . ,
𝑥𝑑 − 𝑡′𝑑
ℎ𝑑

)
Then, we have:

ℎ′(𝛼) − ℎ′(𝛽)

= (∇𝑔(𝛼𝑣) − ∇𝑔(𝛽𝑣))⊤ 𝑣 − ℎ2
1(_1(𝑡0) − 𝜖★) [∇𝜙(𝛼𝑣) − ∇𝜙(𝛽𝑣)]⊤ 𝑣

= (𝛼 − 𝛽)
[
𝑣⊤∇2𝑔(b𝑣)𝑣 − ℎ2

1(_1(𝑡0) − 𝜖★)𝑣⊤∇2𝜙([𝑣)𝑣
]

for some b, [ lying between 𝛼 and 𝛽. First, note that since b𝑣 ∈ 𝐵′∞(𝑡′0, ℎ0), we have:

𝑣⊤∇2𝑔(b𝑣)𝑣 ≥
[
𝑣⊤∇2𝑔(𝑡′0)𝑣 − 𝜖

∗] = 𝑑∑︁
𝑖=1
(_𝑖 (𝑡0) − 𝜖∗)𝑣2

𝑖 .
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Next, note that ∇2𝜙 is diagonal, with the 𝑖th diagonal entry being ℎ−2
𝑖

. Hence, we have:

ℎ′(𝛼) − ℎ′(𝛽) ≥ (𝛼 − 𝛽)
[
𝑑∑︁
𝑖=1
(_𝑖 (𝑡0) − 𝜖∗)𝑣2

𝑖 − (_1(𝑡0) − 𝜖∗)
𝑑∑︁
𝑖=1
(ℎ1/ℎ𝑖)2𝑣2

𝑖

]
= 0.

This completes the proof of Lemma 4.6.3.

Now let us define the set

𝐴 := {ℓ(𝑃𝑥) ≤ 𝑔𝑡′ (𝑥) for all 𝑥 ∈ ([0, 1]𝑑)′, for some 𝑡′ ∈ 𝐺′}.

Now, since (ℓ, 𝑢) is a confidence band for all functions in F2, and since the function 𝑔𝑡′ (𝑃⊤·) ∈ F2,

we have

P𝑔𝑡′ (𝐴) ≥ 1 − 𝛼 for all 𝑡′ ∈ 𝐺′.

Hence, defining ℓ∗(𝑥) := ℓ(𝑃𝑥), we have:

P𝑔

(
∥𝑔 − ℓ∗∥𝑈′ ≥ ℎ2

1(_1(𝑡0) − 𝜖★)
)
≥ P𝑔 (𝐴) ≥ 1 − 𝛼 − min

𝑡′∈𝐺′
(
P𝑔𝑡′ (𝐴) − P𝑔 (𝐴)

)
. (4.39)

Note that the first inequality follows from the fact that if 𝐴 happens then there exists 𝑡′ ∈ 𝐺′ ⊂ 𝑈′

such that ℓ∗ ≤ 𝑔𝑡′ on ( [0, 1]𝑑)′, thereby giving:

ℓ∗(𝑡′) ≤ 𝑔𝑡′ (𝑡′) = 𝑔(𝑡′) − ℎ2
1(_1(𝑡0) − 𝜖★).

Hence it is enough to bound min𝑡′∈𝐺′
(
P𝑔𝑡′ (𝐴) − P𝑔 (𝐴)

)
.

min
𝑡′∈𝐺′
P𝑔𝑡′ (𝐴) − P𝑔 (𝐴) ≤ |𝐺′|−1

∑︁
𝑡′∈𝐺′

(
P𝑔𝑡′ (𝐴) − P𝑔 (𝐴)

)
= |𝐺′|−1

∑︁
𝑡′∈𝐺′
E𝑔

((
𝑑P𝑔𝑡′

𝑑P𝑔
(𝑌 ) − 1

)
I𝐴 (𝑌 )

)
≤ E𝑔

���|𝐺′|−1
∑︁
𝑡′∈𝐺′

(
𝑑P𝑔𝑡′

𝑑P𝑔
(𝑌 ) − 1

) ���. (4.40)
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Now by Cameron-Martin-Girsanov’s theorem, we have

log
𝑑P𝑔𝑡′

𝑑P𝑔
(𝑌 ) = 𝑛1/2ℎ2

1(_1(𝑡0) − 𝜖★)
√︃
Π𝑑
𝑖=1ℎ𝑖∥𝜓

∗∥𝑋𝑡′ −
𝑛

2
(_1(𝑡0) − 𝜖★)2ℎ4

1(Π
𝑑
𝑖=1ℎ𝑖)∥𝜓

∗∥2

where

𝑋𝑡′ = (Π𝑑
𝑖=1ℎ𝑖)

−1/2∥𝜓∗∥−1
∫

𝜙𝑡′,ℎ 𝑑𝑊

with𝑊 being the standard Brownian sheet on [0, 1]𝑑 . Note that here 𝑋𝑡′ follows a standard normal

distribution and for 𝑠′ ≠ 𝑡′ ∈ 𝐺′, 𝑋𝑠′ and 𝑋𝑡′ are independent. Now let

𝑤𝑛 := 𝑛1/2ℎ2
1(_1(𝑡0) − 𝜖★)

√︃
Π𝑑
𝑖=1ℎ𝑖∥𝜓

∗∥ and Y𝑛 := 1 − (𝑤𝑛/
√︁

2 log |𝐺′|).

If Y𝑛 → 0 and Y𝑛
√︁

log |𝐺′| → ∞ are satisfied, then by Lemma A.5.1 and (4.40), we have the

following as |𝐺′| → ∞:

min
𝑡′∈𝐺′
P𝑔𝑡′ (𝐴) − P𝑔 (𝐴) → 0 (4.41)

Now let us choose ℎ1 =
√︁
(1 − 𝜖𝑛)𝑐𝜌𝑛 where 𝜌𝑛 = (log(𝑒𝑛)/𝑛)2/(4+𝑑) , with 𝜖𝑛 → 0 and

𝜖𝑛
√︁

log 𝑛→∞ and 𝑐 is a constant to be chosen later. This implies that

√︁
2 log |𝐺′| = (1 − 𝑜(1))

√︂
2𝑑
𝑑 + 4

log 𝑛

and for large 𝑛,
√︁

2 log |𝐺′| <
√︃

2𝑑
𝑑+4 log 𝑛. Hence,

𝑤𝑛 = [𝑐(1 − 𝜖𝑛)] (4+𝑑)/4∥𝜓∗∥
(_1(𝑡0) − 𝜖★) (4+𝑑)/4∏𝑑
𝑖=1(_𝑖 (𝑡0) − 𝜖★)1/4

√︁
log(𝑒𝑛).

Let us now put:

𝑐 :=
∏𝑑
𝑖=1(_𝑖 (𝑡0) − 𝜖★)1/(4+𝑑)

(_1(𝑡0) − 𝜖★)

[
(𝑑 + 4)∥𝜓★∥2

2𝑑

]−2/(4+𝑑)
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whence we have:

𝑤𝑛√︁
2 log |𝐺′|

= (1 − 𝜖𝑛) (4+𝑑)/4 → 1 as 𝑛→∞.

Also note that for large 𝑛, (1 − 𝑤𝑛/
√︁

2 log |𝐺 |) > 0 as
√︁

2 log |𝐺 | <
√︃

2𝑑
𝑑+2 log 𝑛. Also, note that:

√︁
log |𝐺′|

(
1 − 𝑤𝑛√︁

2 log |𝐺′|

)
∼

√︂
𝑑

4 + 𝑑
√︁

log 𝑛(1 − (1 − 𝜖𝑛)1+𝑑/4)

=

√︂
𝑑

4 + 𝑑

(
4 + 𝑑

4
+ 𝑜(1)

)
𝜖𝑛

√︁
log 𝑛→∞ (by assumption).

Also denoting
(
(𝑑 + 4)∥𝜓∗∥2/2𝑑

)−2/(4+𝑑) by Δ
(ℓ)
∗ , Hence, by (4.39) and (4.41), we have:

1 − 𝛼 ≤ lim inf
𝑛→∞

P𝑔

(
∥𝑔 − ℓ∗∥𝑈′ ≥ ℎ2

1(_1(𝑡0) − 𝜖★)
)

= lim inf
𝑛→∞

P𝑔

(
∥𝑔 − ℓ∗∥𝑈′ ≥ (1 − 𝜖𝑛)𝜌𝑛Δ(ℓ)★ Π𝑑

𝑖=1(_𝑖 (𝑡0) − 𝜖
★)1/(4+𝑑)

)
≤ lim inf

𝑛→∞
P𝑔

(
∥𝑔 − ℓ∗∥𝑈′ ≥ 𝛾★𝜌𝑛Δ(ℓ)★ Π𝑑

𝑖=1(_𝑖 (𝑡0) − 𝜖
★)1/(4+𝑑)

)
≤ lim inf

𝑛→∞
P𝑔

(
∥𝑔 − ℓ∗∥𝑈′ ≥ 𝛾★(𝐿2 [𝑡0] − 𝜖)𝑑/(4+𝑑)𝜌𝑛Δ(ℓ)★

)
= lim inf

𝑛→∞
P𝑔

(
∥𝑔 − ℓ∗∥𝑈′ ≥ 𝛾𝐿𝑑/(4+𝑑)2 [𝑡0]𝜌𝑛Δ(ℓ)★

)
.

Now, note that ∥𝑔 − ℓ∗∥𝑈′ = ∥ 𝑓 − ℓ∥𝑈 and ∥𝜓∗∥2 =
√︁

2(𝑑 + 3)/(𝑑 + 1)∥𝜓∥2. This completes the

proof of Theorem 3.4.2.

4.6.8 Some Technical Lemmas

Lemma 4.6.4 The function 𝜓ℓ2 defined in (3.14) satisfies:

⟨1, 𝜓ℓ2⟩ ≥ ∥𝜓
ℓ
2∥

2 and ⟨𝑔, 𝜓ℓ2⟩ ≥ ∥𝜓
ℓ
2∥

2 − ⟨1, 𝜓ℓ2⟩

for all 𝑔 ∈ H2,
√

2(𝑑+3)/(𝑑+1) whenever 𝑔(0) ≥ 0.
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Proof 3 To begin with, note that 𝜓ℓ2(𝑥) = (𝐺𝐴 − 𝐺0)
(√︁

2(𝑑 + 3)/(𝑑 + 1)𝑥
)
, where

𝐺𝐴 (𝑦) :=
∥𝑦∥2

2
1∥𝑦∥≤

√
2(𝑑+3)/(𝑑+1) and 𝐺0(𝑦) :=

(
−1 +

√
2(𝑑 + 2)√︁

(𝑑 + 1) (𝑑 + 3)
∥𝑦∥

)
1∥𝑦∥≤

√
2(𝑑+3)/(𝑑+1) .

We will now prove the following claim:

Proposition 4.6.1 For all 𝑔 ∈ H2,1,𝐺𝐴−𝑔 is convex on the set ℬ𝑑 := {𝑦 : ∥𝑦∥ ≤
√︁

2(𝑑 + 3)/(𝑑 + 1)} .

For proving Claim 4.6.1, it suffices to show that for every 𝑣 ∈ R𝑑 such that
∑𝑑
𝑖=1 𝑣𝑖 ≥ 0, the function

𝑓𝑣 : R ↦→ R defined as 𝑓𝑣 (𝛼) := ∥𝛼𝑣∥
2

2 − 𝑔(𝛼𝑣) is convex. Towards this, note that:

𝑓 ′𝑣 (𝛼) = 𝛼∥𝑣∥2 − 𝑣⊤∇𝑔(𝛼𝑣) .

Now, take any pair (𝛼, 𝛽) such that 𝛼 < 𝛽, and note that:

��𝑣⊤∇𝑔(𝛼𝑣) − 𝑣⊤∇𝑔(𝛽𝑣)�� ≤ ∥𝑣∥∥∇𝑔(𝛼𝑣) − ∇𝑔(𝛽𝑣)∥

≤ ∥𝑣∥
𝑑∑︁
𝑖=1
|∇𝑖𝑔(𝛼𝑣) − ∇𝑖𝑔(𝛽𝑣) |

≤ ∥𝑣∥∥(𝛼 − 𝛽)𝑣∥ = (𝛽 − 𝛼)∥𝑣∥2 .

The last inequality followed from the fact that 𝑔 ∈ H2,1. Hence, we have:

𝑣⊤∇𝑔(𝛽𝑣) − 𝑣⊤∇𝑔(𝛼𝑣) ≤ 𝛽∥𝑣∥2 − 𝛼∥𝑣∥2 =⇒ 𝑓 ′𝑣 (𝛼) ≤ 𝑓 ′𝑣 (𝛽) ,

thereby showing that 𝑓𝑣 is convex, and completing the proof of Claim 4.6.1.

With Claim 4.6.1 in hand, we are now ready to prove Lemma 4.6.4. Defining 𝜓 := 𝐺𝐴 − 𝐺0,

we have in view of Claim 4.6.1 and (4.22), that for any 𝑔 ∈ H2,1,

⟨𝐺𝐴 − 𝑔, 𝜓⟩ ≤ (𝐺𝐴 − 𝑔) (0)⟨1, 𝜓⟩
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and hence, we have:

⟨𝑔, 𝜓⟩ = ⟨𝐺𝐴, 𝜓⟩ − ⟨𝐺𝐴 − 𝑔, 𝜓⟩

≥ ⟨𝐺𝐴, 𝜓⟩ − (𝐺𝐴 − 𝑔) (0)⟨1, 𝜓⟩

= ⟨𝐺𝐴, 𝜓⟩ + 𝑔(0)⟨1, 𝜓⟩

= ∥𝜓∥2 + ⟨𝐺0, 𝜓⟩ + 𝑔(0)⟨1, 𝜓⟩

= ∥𝜓∥2 + (𝑔(0) − 1)⟨1, 𝜓⟩

where the last equality followed from the fact that ⟨𝐺0 + 1, 𝜓⟩ = 0, which follows by an argument

similar to the proof of (4.23). Since 𝑔(0) ≥ 0, we conclude that:

⟨𝑔, 𝜓⟩ ≥ ∥𝜓∥2 − ⟨1, 𝜓⟩ (4.42)

On putting 𝑔 ≡ 0 in (4.42), we get:

⟨1, 𝜓⟩ ≥ ∥𝜓∥2 (4.43)

Lemma 4.6.4 now follows from (4.42) and (4.43) by a change of variables.
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