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Abstract

Signal-to-noise ratio aware minimaxity and its asymptotic expansion

Yilin Guo

Since its development, the minimax framework has been one of the corner stones of
theoretical statistics, and has contributed to the popularity of many well-known estimators, such
as the regularized M-estimators for high-dimensional problems. In this thesis, we will first show
through the example of sparse Gaussian sequence model, that the theoretical results under the
classical minimax framework are insufficient for explaining empirical observations. In particular,
both hard and soft thresholding estimators are (asymptotically) minimax, however, in practice
they often exhibit sub-optimal performances at various signal-to-noise ratio (SNR) levels. To
alleviate the descrepancy, we first demonstrate that this issue can be resolved if the signal-to-noise
ratio is taken into account in the construction of the parameter space. We call the resulting
minimax framework the signal-to-noise ratio aware minimaxity. Then, we showcase how one can
use higher-order asymptotics to obtain accurate approximations of the SNR-aware minimax risk
and discover minimax estimators. Theoretical findings obtained from this refined minimax
framework provide new insights and practical guidance for the estimation of sparse signals.

In a broader context, we investigated the same problem for sparse linear regression. We
assume the random design and allow the feature matrix to be high dimensional as X € R and
p > n. This adds an extra layer of challenge to the estimation of coefficients. Previous studies
have largely relied on results expressed in rate-minimaxity, where estimators are compared based

on minimax risk with order-wise accuracy, without specifying the precise constant in the



approximation. This lack of precision contributes to the notable gap between theoretical
conclusions of the asymptotic minimax estimators and empirical findings of the sub-optimality.
This thesis addresses this gap by initially refining the classical minimax result, providing a
characterization of the constant in the first-order approximation. Subsequently, by following the
framework of SNR-aware minimaxity we introduced before, we derived improved
approximations of minimax risks under different SNR levels. Notably, these refined results
demonstrated better alignment with empirical findings compared to classical minimax outcomes.
As showcased in the thesis, our enhanced SNR-aware minimax framework not only offers a more
accurate depiction of sparse estimation but also unveils the crucial role of SNR in the problem.

This insight emerges as a pivotal factor in assessing the optimality of estimators.
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Chapter 1: Introduction

1.1 Objective and organization

The minimax framework is one of the most popular approaches for comparing the performance
of estimators and obtaining the optimal ones. Since its development, the minimax framework
has been used in a broad range of areas including, among others, classical statistical decision
theory [1, 2], non-parametric statistics [3, 4], high-dimensional statistics [5], and mathematical
data science [6]. Despite its popularity, when the parameter space is set too general, since the
minimax framework focuses on particular areas of the parameter space, its conclusions can be
misleading if translated and used in practice. Take the high-dimensional sparse linear regression
for example. It has been proved that the best subset selection is minimax rate-optimal over the
class of k-sparse parameters [7]. Nevertheless, recent empirical and theoretical works demonstrate
the inferior performance of the best subset selection in low signal-to-noise ratio (SNR) [8, 9, 10].
The key issue in this problem is that the parameter space in the minimax analysis only incorporates
sparsity structure and does not control the signal strength for non-zero components of the sparse

vector. In this thesis, we aim to answer the following question:

(*) How can we enhance the minimax framework to improve the accuracy of responses

concerning the optimality of estimators?

We address this question through two canonical examples: (1) sparse signal denoising, and (2)
sparse linear regression. We clarify these two problems as well as the thesis’s contributions in the

following sections.



1.2 Sparse signal denoising

Lety, = 6, + 032, i = 1,2,...,n. where y = (y1,...,y,) denote our observations of the
unknown parameters 6 = (61, . .., 6,) corrupted by i.i.d. standard Gaussian noise z = (21, ..., 2n)-
Let o, > 0 denote the noise level which may vary with n. The goal is to estimate 6 assuming that
0 € O(k,) = {0 e R": ||0]o < kn}. Under the classical minimax framework, the following

minimax risk is often studied:

R(O(ky), o) = inf sup Eqll6 - 6]l3. (1.1)
0 0eO(ky)

This estimation problem has been well studied in statistical decision theory since 1990s. To clarify
some of the existing results and the challenges they face, we first introduce soft and hard thresh-
olding estimators. Define the soft thresholding estimator 7jg(y,4) € R" and hard thresholding

estimator 7y (y, 1) € R" with coordinates:

[hs(y,2)]; = arg rgin (yi — ) + 22| u| = sign(y;) (|yi| = Vs, (1.2)
HE

[ (y, )] = arg rlgin (yi = p)? + 21 (e # 0) = yid(|y:| > 2), (1.3)
UE

where sign(u), u, represent the sign and positive part of u respectively, /(-) denotes the indicator
function, and 4 > 0 is a tuning parameter. Also, the subscript i denotes the coordinate of a vector.

The following theorem states a classical asymptotic minimax result.

Theorem 1 ([11, 12, 3]). Assume the Gaussian sequence model and parameter space ©(k,) with

kn/n — 0 as n — oo. Then the minimax risk, defined in (1.1), satisfies

R(O(ky), ) = (2+0(1)) - 02ky log(n/ky).

Moreover, both the soft and hard thresholding estimators with tuning A, = o,+\/2log(n/k) are



asymptotically minimax, i.e., for 8 = fis(y, A,) or fig(y, A,), it holds that

sup Egllf - 6]1; = (2+0(1)) - ok, log(n/ky).
0€0(k,)

This theorem indicates that both soft and hard thresholding estimators can achieve the asymp-
totic minimax risk when the sparsity satisfies k,/n — 0. However, we will show in Chapter 2 that,
empirically, soft and hard thresholding estimators have divergent average mean squared errors in
different noise levels. Specifically, the experiment in Chapter 2 (Figure 2.2) shows that in low
noise level, hard thresholding performs better than both linear estimator and soft thresholding; as
the noise level increases, soft thresholding starts to outperform hard thresholding, and eventually
both hard and soft thresohlding are outperformed by the linear estimator. This implies that SNR
has significant impact on the sparse estimation. Such phenomenon is not clearly reflected under
classical minimax framework. This leads us to think about Question (*). Particularly, in Chapter 2,
we introduce the SNR-aware minimax framework, where we control the SNR level in addition to
the sparsity in the current minimax parameter space. As will be described in Chapter 2, this more
constrained minimax framework is capable of discovering SNR regimes under which estimators
show different behaviors.

In addition, one of the main challenges in minimax analysis is to estimate the minimax risk and
find the corresponding optimal estimators. As can be guessed, it is even more challenging to solve
this new constrained minimax framework than the original minimax problem. In response to the
difficulty of evaluating the minimax risk, [3] suggested finding an approximation of the minimax
estimator. This asymptotic approximation is also useful in our SNR-aware minimax analysis.
However, we will show in Chapter 2 that, the approximation proposed by [3] is not sufficiently
accurate to solve the SNR-aware minimaxity.

Hence, in Chapter 2, we introduce the higher-order asymptotic analysis to obtain more accurate
approximations of the minimax risk. We show that the combination of the SNR aware minimax

framework and higher order approximation provide much more accurate analysis of estimators.



More specifically, in Chapter 2, we will show that when the SNR level approaches zero, the linear
estimator achieves up to the second-order minimax optimality whereas soft thresholding is proved
to be suboptimal. Furthermore, when the SNR level can be arbitrary large, hard thresholding is the
only optimal estimator in our second-order asymptotic analysis of the minimax risk. Finally, when
the SNR level is large but below a certain threshold, we prove that an optimally tuned combina-
tion of linear and soft thresholding estimators (resembles elastic net in linear regression) is much
closer to the optimal estimator than the soft or hard thresholding estimators. More interestingly,
the threshold dividing the SNR level that leads to different minimax conclusions turns out to be
\/m, the threshold at which the signals in n/k, density can be detected from i.i.d. stan-
dard normal noises. Therefore, our analysis of the new SNR aware minimax framework brings

new insights into the impact of SNR in sparse estimation.

1.3 Sparse linear regression

As one of the most recognized extensions of the sequence model discussed in previous section,

the linear regression model is considered:

yi=x! B +07z, i=1,...,n, (1.4)

where y; € R denotes the response, x; € R? represents the feature or covariate vector, § € R? is
the unknown signal vector to be estimated, and finally zy, ..., z, i N (0, 1) are standard normal
errors. The goal is to estimate 8 € R? given X € R™” and y € R”", assuming the sparsity structure

BeO(k) ={BeRP:|B|lo < k}. The classical minimax framework defines the minimax risk as

R(®(k),0) :=inf sup Egll8 - pBI”. (1.5)
B Bed(k)

Since considered, obtaining the exact minimax risk has remained mathematically challenging. As
alternatives, there arose a line of research finding the approximation of the minimax risk. To

review the prevailing results and develop our framework, in this thesis, we assume that {x;}! LA
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N (O, %I p) and are independent with the noise errors {z;} . In approximation of the minimax

-
risk, previous literatures [13, 7, 14, 15] have studied the rate performance of the minimax risk

when n, p — oo. Following the setting of this thesis, it was shown by [14] that
R(O(k), o) ~ o’k log(p/k), (1.6)

where the notation “~" means thatas n, p — oo and (k log(p/k))/n — 0, the ratio R(®(k), o) /(k log(p/k))
remains bounded. Furthermore, it has been studied in the literatures [13, 7, 14, 15] that many es-
timators, such as best subset selection [16, 17], Dantzig selector [18] and LASSO [19] achieve
this rate-optimal minimax criteria, meaning that their risks (under optimal tuning) divided by
k log(p/k) remain bounded.!
However, extensive simulation results reported in [8, 20] have confirmed that when the signal-
to-noise ratio is low, all these estimators exhibit suboptimal performance and adding an ¢,-squared
regularizer can improve the performance of the estimators. Hence, the rate-optimal minimax re-
sults could become misleading guidelines for practitioners. To figure out the mismatching between

the rate-optimal and the simulation results, we propose the following conjectures:

* Conjecture 1: As is clear, the rate optimal minimax result does not evaluate the minimax risk
exactly. It ignores the constant in the minimax risk approximation and only captures the rate
behavior in view of k and p for mathematical simplicity. It is possible that if we calculate
the exact maximum risk for estimators, the differences between constants can explain the

discrepancies between the simulation studies and the rate-optimal minimax results.

* Conjecture 2: It could be that since the minimax framework only focuses on the spots of the
parameter space that are hard for the estimation problem, its theoretical implications will be
different from the simulation studies. Hence, the framework needs to be amended to provide

more informative results.

To settle Conjecture 1, [21] has contributed to characterizing the constant of the minimax risk

'In some of these results, the risk is stated with high probability and the rate is k log p instead of k log(p/k).



to obtain a better approximation of the minimax risk. As the abovementioned literatures, [21]
proved the result in a probabilistic statement, meaning that, fixing V8 € ©(k) and considering a
certain estimator 8, o~2||8 — B|1?/(klog(p/k)) < 2(1 + o(1)) holds only with high probability
tending to one. This expose the result of [21] to the doubt that there might exist some rare but
possible event, under which the “optimal” estimator has unbounded risk. In this sense, the overall
mean-squared error of the estimator might not achieve the exact constant characterized by [21]. As

a complement, we deliver a result that is proved in Chapter 3:

Theorem 2. Assume model (1.4) and parameter space (k). Suppose n,p — oco. If k/p — 0 and

(klog p)/n — O, then the minimax risk defined in (1.5) satisfies
R(O(k), o) = 202 - klog(p/k)(l + 0(1)).

First, compared to the rate minimax result in (1.6), Theorem 2 characterizes the constant in the
rate ~ klog(p/k), attaining more accurate approximation for the minimax risk. However, from
this point, we have shown that under the current minimax framework, the same estimator remains
optimal irrespective of different SNR settings in practice. This leads to a conclusion for Conjecture
1: By characterizing the exact constant on top of the current rate minimax results cannot explain
the discrepancy between simulation and theoretical findings.

Therefore, we turn to Conjecture 2 for potential interpretations. As we discussed in Section 1.2,
the disalignment between simulations and theories could result from these concerns of the classi-
cal minimaxity: (1) Since we do not impose any constraint on the signal strength, the minimax
framework only focuses on a particular signal-to-noise ratio that makes the estimation problem the
hardest. Hence, the factor of SNR affecting practical results is masked by the minimax framework.
(2) The approximations we obtain for the minimax risk in rate-optimal minimax framework, and
even in Theorem 2 are not accurate enough for distinguishing performances of different estimators
and hence more accurate approximations are required for this purpose. This leads us to think about

Question (*) under linear regression setting.



To address those concerns and answer Question (*), as we introduced in previous section, we
add control of the SNR in the minimax framework by inserting a SNR constraint on the parameter
space such that ®(k, 1) := {,8 e R : |IBllo < k, ||ﬁ||% < krz}. On top of this, the SNR-aware
minimaxity is defined as the minimax risk over ®(k, 7). With the new constrained framework, we
should expect that it is more challenging to mathematically solve the problem. In approximation,
we will present in Theorem 14, Chapter 3 a first-order asymptotic result for the SNR-aware mini-
max risk. As will be clarified in the theorem, the first-order accuracy is still insufficient to identify
the impact of SNR in the minimax risk. Finally, we will show that when we analyze the higher-
order asymptotics, the minimax risk is decreased by different quantities in different SNR settings,
which provides a clearer answer to the above question and becomes a more practical guideline for

empirical applications.



Chapter 2: SNR-aware minimaxity in sparse signal denoising

In Chapter 2, we focus on the popular example of the sparse Gaussian sequence model — a
special case of the sparse linear regression model with an orthogonal design. We first discuss in
detail the limitations of classical minimaxity in Section 2.1. This is devoted to the development
of a much more informative minimax framework that alleviates major drawbacks of the classical
one. Then in Section 2.2, we introduces the SNR aware minimax framework by controlling and
monitoring the signal-to-noise ratio and sparsity level through the parameter space. As will be
discussed later, solving this new constrained minimax problem is much more challenging than the
original minimax analysis. Hence, we resort to higher-order asymptotic analysis to obtain approx-
imate minimax results. The conclusions of this signal-to-noise ratio aware minimax framework

turn out to provide new insights into the estimation of sparse signals.

2.1 Classical minimaxity and its limitations in sparse Gaussian sequence model

We consider the Gaussian sequence model:
vi=6;+o0,z;, i=1,2,...,n. 2.1

Here, y = (y1,...,yn) is the vector of observations, § = (6y,...,60,) is the unknown signal
consisting of n unknown parameters, z;’s are i.i.d. standard Gaussian error variables, and o, > 0
is the noise level that may vary with sample size n. The goal is to estimate 6 from the sparse

parameter space

A(k,) = {0 ER": |0]]o < kn}, 2.2)



where ||6]|, denotes the number of non-zero components of #, and the sparsity k, is allowed to
change with n. The most popular approach for studying this estimation problem and obtaining
the optimal estimators is the minimax framework. Considering the squared loss, the minimax

framework aims to find the estimator that achieves the minimax risk given by

R(®(ky,),0,) = inf sup Bl - 6]l3, (2.3)
0 0e0(ky)

where Ey(+) is the expectation taken under (2.1) with true parameter value 6.

Gaussian sequence model plays a fundamental role in non-parametric and high-dimensional
statistics. There exists extensive literature on the minimax estimation of 6 or its functionals over
various structured parameter spaces such as Sobolev ellipsoids, hyperrectangles and Besov bod-
ies. These parameter spaces usually characterize the smoothness properties of functions in terms
of their Fourier or wavelet coefficients. We refer to [22, 3, 4] and references therein for a sys-
tematic treatment of this topic. The estimation problem over ®(k,) has been also well studied in
statistical decision theory (e.g., with application to wavelet signal processing) since 1990s. Define
the soft thresholding estimator 7js(y, 1) € R” and hard thresholding estimator 7jz(y, 1) € R" with

coordinates: for 1 <i < n,

[hs(y, 2)]; = arg rﬂgin (yi — ) + 22| u| = sign(y;) (|yi| = Vs, (2.4)
ue

[ (y, )] = arg r]gin (yi = p)* + 21 # 0) = yid(|yi| > 2), (2.5)
ue

where sign(u), u, represent the sign and positive part of u respectively, /(-) denotes the indicator
function, and A4 > 0 is a tuning parameter. We summarize a classical asymptotic minimax result in

the following theorem.

Theorem 3 ([11, 12, 3]). Assume model (2.1) and parameter space (2.2) with k,/n — 0asn — oo.
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Figure 2.1: Mean squared error comparison at different noise levels. Data is generated according to
(2.1) with k,, = [n*/3| and 0 having k,, components equal to 1.5. “linear" denotes the simple linear
estimator ﬁ y. All the three estimators are optimally tuned. MSE is averaged over 20 repetitions
along with standard error. Other details of the simulation can be found in Section 2.3.

Then the minimax risk, defined in (2.3), satisfies
R(O(kn), o) = (2+0(1)) - o ky log(n/ky).

Moreover, both the soft and hard thresholding estimators with tuning A, = op,+/2log(n/k) are

asymptotically minimax, i.e., for 8 = fis(y, A,) or fig(y, A,), it holds that

sup Egllf 015 = (2+0(1)) - o7k, log(n/ky).
0€0(ky,)

Theorem 3 shows that both soft and hard thresholding estimators are minimax optimal for es-
timating sparse signals (with small values of k,/n). Despite the mathematical beauty of the above
results, its practical implications seem not clear. We demonstrate this point by a simulation in
Figure 2.1. As is clear from the left panel, when the noise level is low, hard thresholding performs
the best among the three estimators; as the noise level increases, hard thresholding starts to be out-
performed by soft thresholding, and eventually both hard and soft thresohlding are outperformed
by the linear estimator. The same comparison holds in the right panel as the sample size increases
from 500 to 5000. This phenomenon can be widely observed for different types of sparse signals.

We provide more simulations in Section 2.3.
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In light of Theorem 3 and Figure 2.1, we would like to raise a few critical comments:

1. Despite their minimax optimality, both hard and soft thresholding estimators selected by the
classical minimaxity do not perform well compared to a simple linear estimator when the

noise is large.

2. The hard and soft thresholding estimators have distinct performances at different noise lev-

els, despite they are both asymptotically minimax.

3. Figure 2.1 implies that the signal-to-noise ratio (SNR) has a significant impact on the esti-
mation. However, the effect of SNR is not well captured in the classical minimax results

(Theorem 3).

These observations lead us to the following question: is it possible to develop a refined minimax
framework which addresses differences between hard and soft thresholding estimators and char-
acterizes the role of SNR in the recovery of sparse signals? Such a framework will provide more

proper insights and sound guidance for practical purpose.

2.2 SNR-aware minimaxity

To overcome the limitations of the classical minimaxity discussed in Section 2.1, in this chap-
ter, we aim to develop a signal-to-noise-ratio-aware minimax framework. This framework imposes
direct constraints on the signal strength over the parameter space and performs the corresponding
minimax analysis that accounts for the impact of signal-to-noise ratio (SNR). To obtain accurate
minimax results in the SNR-aware setting, we will derive higher-order asymptotics which provides
asymptotic approximations precise up to the second order. As will be discussed in detail in Section
2.2, our proposed framework reveals three regimes in which distinct estimators achieve minimax
optimality. In particular, hard-thresholding estimator outperforms soft-thresholding estimator and
remains (asymptotically) minimax optimal in the high SNR regime; as SNR decreases, new op-

timal estimators will emerge. These new theoretical findings offer much better explanations for

11



what is happening in Figure 2.1, and are much more informative towards understanding the sparse
estimation problem in practice.

We collect the notations used throughout this chapter here for convenience. For a scalar x € R,
x+ and sign(x) denote the positive part of x and its sign respectively; | x| is the largest integer less
than or equal to x. For an integer n, [n] = {1,2,...,n}. We use I4 and I(A) to represent the
indicator function of the set A interchangeably. For a given vector v = (vi,...,v,) € R?,||v||y =
#{i 1 vi # O}, ||v|le = max; |v;], and||v], = (Zle |v,-|q)1/q for g € (0, c0). We use the notation ¢,
as the point mass at 4 € R. We also use {e; }521 to denote the natural basis in R”. For two non-zero
real sequences {a,} >, and {b,} ", we use a, = o(b,) to represent |a,/b,| — 0 asn — oo, and
an = w(by,) if and only if b, = o(a,); a, = O(b,) means sup,, |a,/b,| < oo, and a, = Q(b,) if
and only if b, = O(ay,); a, = ©(b,) denotes a,, = O(b,) and a, = Q(b,). For a distribution 7,
supp(7r) denotes its support. Finally, we reserve the notations ¢(y) and ®(y) = f_ yoo ¢(s)ds for the

standard normal density and its cumulative distribution function respectively.

2.2.1 SNR-aware minimax framework

We focus on the above-mentioned Gaussian sequence model (2.1). To develop the SNR-aware
minimax framework, we start by inserting a notion of signal-to-noise ratio in the minimax setting.

To this end, we consider the following SNR-aware parameter space:
Okns7) = {0 € R 116llo < ks 101 < kT . 2.6)

Here, as before, k, is the parameter that controls the number of nonzero components of the signal
6 € R". The new parameter 7, can be considered as a measure of signal strength (on average) for
each non-zero coordinate of 6. Unlike ®(k,), the new parameter space ©(k,, 7,) is responsive to
changing signal strength. Minimax analysis based on it may thus provide a viable path for revealing

the impact of SNR on the estimation of sparse signals. Define the corresponding minimax risk (for
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squared loss):

R(®(kn, 1), 00) = inf sup Egl|d - 6|l3. (2.7)
0 0€@ (k1)

We aim to investigate the following problems:

1. Characterizing the minimax risk, R(®(k,, 7,), 0,), for different choices of sparsity level and
signal-to-noise ratio. This will help us understand the intertwined roles of SNR and sparsity

on signal recovery.

2. Obtaining minimax optimal estimators in the aforementioned settings, along with evaluating

the performance of some common estimators (e.g., soft thresholding).

The solutions to the above problems will help resolve the issues we raised before about the
classical minimax results. First, we introduce two critical quantities associated with the target

parameter space ©(k,, 7,) introduced in (2.6) under the model (2.1). Denote

ky Tn
€ =— HMn = —. (28)

It is clear that €, represents the sparsity level and wu,, is a form of signal-to-noise ratio over the
parameter space. We aim to study R(®(k,,1,),0,) for different values of (e,, u,). Since an
explicit solution to exact minimaxity is very challenging to derive (it is not even available for
®(k,)), we focus on obtaining asymptotic minimaxity, and consider the following regimes: as

n — oo

Regime (I) Low signal-to-noise ratio: u,, — 0, €, — 0;
Regime (IT) Moderate signal-to-noise ratio: u, — oo, €, — 0, u, = o({/loge;!);
Regime (IIT) High signal-to-noise ratio: €, — 0, u, = w(y/log ;).

The condition €, — 0 is standard to model sparse signals. The above three regimes are clas-

sified according to the order of signal-to-noise ratio u,. As will be shown in Section 2.2.3 via
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higher-order asymptotics, each regime exhibits unique minimaxity, and distinct minimax estima-
tors emerge in different regimes. But before that, we first derive similar first-order asymptotic

result as the classical one and reveal its limitations in the SNR-aware minimax setting.

2.2.2  First order analysis of SNR-aware minimaxity and its drawbacks

Our first theorem generalizes Theorem 3, to our SNR-aware minimax framework.
Theorem 4. Assume model (2.1) and parameter space (2.6). The following hold:

* Regime (I). When u,, — 0,¢, — 0,

R(O(kn, 1), 03) = (1 +0(1)) - noe,u,

and the zero estimator is asymptotically minimax optimal (up to the first order).

» Regime (II). When u,, — o0, €, — 0, u, = 0(\/10g76,{1),
R(O(kn, Ta), o) = (14 0(1)) - nory enpiy,
and the zero estimator is asymptotically minimax optimal (up to the first order).
« Regime (III). When €, — 0, u, = w(y/loge; ),
R(O(kn. T0), ) = (2 + (1) - noyen log(e; ).

Furthermore, both soft and hard thresholding estimators (2.4)-(2.5) with the tuning param-

eter 1, = o,\2log €, are asymptotically minimax optimal (up to the first order).

This theorem is covered as a special case of Theorems 5, 6, and 8 we present in Section 2.2.3.
Hence, the proof is skipped.

There are a few aspects of the above results that we would like to emphasize here:
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1. As is clear, first-order analysis under the SNR-aware minimax framework already provides
more information than in the previous framework. For instance, it implies that below a
certain signal-to-noise-ratio, i.e. when u, = o(+/loge;!), sparsity promoting estimators
such as hard or soft thresholding do not seem to have any advantage over the zero estimator.
In fact, the zero estimator is optimal up to the first order. Later in Section 2.2.3 we will argue
that even these theorems should be interpreted carefully, and that the current interpretation

is not fully accurate.

2. If we consider the rate of €, fixed and evaluate the minimax risk as a function of u,,
we will see a phase transition happening in the first order term of the minimax risk. As
long as the first order is concerned, the trivial zero estimator is minimax optimal for any
i, = o({/loge;!). Hence, it seems that unless u, = Q(y/loge;!), even the optimal mini-
max estimators will miss the signal. Once u,, = a)(\/logie,{l ), the first order result implies
the optimality of non-trivial estimators, such as soft-thresholding. While it is challenging to
provide an intuitive argument for the phase transition occurring at y/loge; ! = m,
the following explanation may offer some insight: Consider a k,-sparse signal (with k, non-
zero components) in R” with Gaussian noises. On average, there exists one non-zero signal
component among n/k, locations. The maximum absolute value of the noises at the n/k,
locations is on the order of m . Consequently, from an intuitive perspective, it be-
comes easier to detect signals when their magnitudes exceed this threshold, but significantly
more challenging when they fall below this threshold. It’s important to note that heuristic
arguments like the one above have their limitations and should not be solely relied upon for
drawing conclusive results. This aspect will be further clarified in the next section, where

we will demonstrate that minimax estimators can outperform zero estimators even when
— -1
pn = o0(Vloge;™).

One of the main issues in the above theorem is that the first-order asymptotic approximation of
minimax risk does not seem to always offer accurate information. For example, as the signal-to-

noise ratio significantly increases from Regime (I) to Regime (II), the first-order analysis falls short
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of capturing any difference and continues to generate the naive zero estimator as the optimal one.
Moreover, in Regime (III), the analysis is inadequate to explain the difference between hard and
soft thresholding estimators. In the next section, we push the analysis one step further to develop
second-order asymptotics. This refined version of the SNR-aware minimax analysis will provide a
much more accurate approximation of the minimax risk, and can provide more useful information

and resolve the confusing aspects of the first-order results presented above.

2.2.3  Second order analysis of SNR-aware minimaxity

In this section, we discuss how the analysis provided in Section 2.2.2 can be refined to resolve

the issues we raised in Section 2.1.

Results in Regime (I)

We start with Regime (I). As discussed in Theorem 4, as far as the first order of minimax risk
is concerned, the zero estimator is asymptotically optimal in this regime, and no other estimators
can outperform the zero estimator. The reason this peculiar feature arises is that since the exact
expression for R(®(k,, 7,), 0,) is very complicated, Theorem 4 resorts to an approximation that
is asymptotically accurate. However, this approximation is coarse when # is not too large and/or
€, i1s not too small. The conclusions that are based on such first order analysis are hence not
reliable. Therefore, we pursue a second-order asymptotic analysis of minimax risk to achieve
better approximations. This more delicate analysis turns out to be instructive for understanding the
three regimes of varying SNRs. We first present the result in Regime (I). Define the simple linear
estimator 7jz (v, 1) € R" with coordinates:

Yi

[ (y. D)) = 77 = arg rgn (yi—p)??+A%, 1<i<n. (2.9)
UE

Theorem 5. Consider model (2.1) and parameter space (2.6). For Regime (I) in which €, —
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0, up, = 0asn — oo, we have

R(O(ky, T0), o) = no-,% (En,uyzz - erlui (1 + 0(1))) .

In addition, the linear estimator 1y (y, A,)) with tuning A,, = (enu%) is asymptotically minimax

up to the second order term, i.e.

sup ol (v, 40) = 0], = no? (el - e2uk (1+ (1)) ).
0€®(ky,th)

The proof of this theorem can be found in Section 2.5.2. Compared with Theorem 4, Theorem
5 obtains the additional second dominating term in the minimax risk. This negative term quantifies
the amount of improvement that can be possibly achieved over the trivial zero estimator (whose
supremum risk exactly equals no2e,u2). Indeed, the non-trivial linear estimator 7jz (y, A,) has
supremum risk matching with the minimax risk up to the second order. Therefore, through the lens
of second-order asymptotics, we discover a new minimax optimal estimator that outperforms the
zero estimator recommended from the first-order analysis.

The second-order optimality of the linear estimator 7jz (v, 4,,) in Regime (I) raises the following
question: how do non-linear estimators compare with 777 (y, 4,)? For instance, the soft thresholding
estimator jg(y, 4) in (2.4) with A = oo recovers the zero estimator and is hence first-order optimal.
Can 75 (y, 4) with proper tuning become second-order asymptotically optimal in this regime? The

following theorem shows that the answer is negative.

Proposition 1. Consider model (2.1) and parameter space (2.6). In Regime (I) where €, —
0,u, — 0asn — oo, the optimally tuned soft thresholding estimator fis(y, A) has supremum

risk:

2
inf sup  Eolfis(y, 1) - 0”; = no?| e’ — exp 1L (log l) (1+0(1))
1 00 (kn,n) Ju €

The proof of this proposition can be found in Section 2.5.3.

17



2
It is straightforward to confirm that exp [— %/% (log é) (1+0(1)) ]/(e,%/,zﬁ) = 0(1) under the
scaling €, — 0, u,, — 0. Hence, soft thresholding 75(y, 1) is outperformed by the linear estimator
(v, A,) and is sub-optimal (up to second order). A similar result can be proved for the hard

thresholding estimator as well.

Proposition 2. Consider model (2.1) and parameter space (2.6). In Regime (I) where €, —
0,u, — 0asn — oo, the optimally tuned hard thresholding estimator fig(y, ) has supremum

risk:

inf  sup Eg”ﬁH(y,/l) - 9”; = na,%en,u,%.
A 0€0(kn,t)

The proof of this proposition is presented in Section 2.5.4.

The fact that 77 (y, 4,) is optimal and 7js(y, 4) and 7y (y, 1) are sub-optimal in Regime () is
intriguing. It says that the former non-sparse estimator is better than the latter sparse one for re-
covering sparse signals. In fact, the result further implies that any sparsity-promoting procedure
cannot improve over a simple linear shrinkage for the recovery of sparse signals. A high-level ex-
planation is that since Regime (I) has low signal-to-noise ratio in which variance is the dominating
factor of mean squared error, linear shrinkage achieves a better balance between bias and variance
than those more “aggressive" sparsity-inducing operations. These results demonstrate the practical

relevance of SNR-aware minimaxity as opposed to the classical minimax approach.

Results in Regime (IT)

We now move on to discuss Regime (II) where new minimaxity results arise as the signal-to-

. .. . ~ il A . .
noise ratio increases. Introduce an estimator g (y, 4, y) = %yy) € R" with coordinates:

1s(v, D) ]i .
M =argmin (y; —u)> +2|u| +yu>, 1<i<n. (2.10)

[AE( ’/l’ )]l:
e LY L+y ueR
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The estimator 7jg(y, 4,y) is a composition of soft thresholding and linear shrinkage. It can be

considered as an "interpolation" between soft thresholding estimator and linear estimator.

Theorem 6. Consider model (2.1) and parameter space (2.6). For Regime (II) in which €, —

0, iy, — 00, u, = o(y/log ;') as n — oo, we have

1
R(O(ky, ), 00) > no;%(en,u% ) r%,ufle/"% (1+0(1)) )

In addition, based on the estimator Ng(y, A,,Yn) with tuning parameters 1, = 21,, and y, =

(26,,/1,%6%'“3')_1 — 1, we have

A~ 2 2
ROk ) ) < sup ol (v dns ) = 6lfy = 0 (el = (V277 + o (1)l punes).
0€® (kp,Tn)

The proof of this theorem can be found in Section 2.5.5.

Remark 1. Theorem 6 does not provide a tight upper or lower bound for the minimax risk ap-
proximation. However, the upper bound given by fig(y, A,, yn) only differs from the lower bound
up to an order of u, in the second order term. Note that this difference is very small in view of
the occurrence of eHn in the second order term. In this sense, the estimator N (y, Ay, y,) is nearly
optimal in Regime (II). In this theorem, we believe that the upper bound is not necessarily sharp.
In fact, we anticipate that there may be other estimators capable of outperforming g (y, Ay, Yn).
Our next theorem (Theorem 7) gives an accurate second order term for the minimax risk in Regime
(Il), under a uniform boundedness condition on parameter coordinates in the parameter space.
However, as will be elaborated in the proof, the technique employed to establish the upper bound

on the minimax risk is not constructive and does not identify the minimax estimator.

Theorem 7. Consider model (2.1) with the following parameter space:
O (ko) 1= {0 € R < 10llg < ko, 1101 < ks 101l < ATy} @.11)

For Regime (II) in which €, — 0, u, — oo, u, = o(\/loge;!) as n — oo, we have that for any
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constant A > 1,

1 2
R(®A(kn’ Tn), O'n) = no—r% En:urzl - E rzuuyzze'un (1 + 0(1)) :

The theorem is proved in Section 2.5.6.

Now let us interpret the above results. First note that in Regime (II), compared to Regime (I),
the magnitude of the second order term (relative to the first order term) is much larger, so that the
possible improvement over the zero estimator is much more significant. This is expected as the
SNR is higher compared to Regime (I). Furthermore, the (near) optimality of 7z (y, 4,, v,) showed
in Theorem 6 indicates that thresohlding and linear shrinkage together play an important role in
estimating sparse signals in Regime (II). To shed more light on it, the following two propositions
prove that neither soft thresohlding 75 (y, A) nor linear estimator 7j7 (y, 1) alone is close to optimal.
To shed more light on it, the following three propositions prove that neither thresohlding estimators

fs(y, ), 1y (y, A) nor linear estimator 7 (v, A) alone is close to optimal.

Proposition 3. Consider model (2.1) and parameter space (2.6). In Regime (II) where €, —
0, u, — oo, p, = o(y/loge;l), as n — oo, the optimally tuned soft thresholding estimator has

supremum risk:

. , 11 1)
inf sup Egis(y. 1) - 9||§ = no? | euu> — exp [—5—2 (log —) (1+ 0(1))] :
0€®(kn77'n) Mn €n

The proof of this proposition can be found in Section 2.5.7.

Proposition 4. Consider model (2.1) and parameter space (2.6). In Regime (II) where €, —
0, p — oo, i, = o(ylog e, ) asn — oo, the optimally tuned hard thresholding estimator iy (y, A)

has supremum risk:

irjf sup Eg”ﬁH(y,/l) - 9”; = no;%en,u,zl.
0€0 (k1)

The proof of this proposition is presented in Section 2.5.8.
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Proposition 5. Consider model (2.1) and parameter space (2.6). In Regime (II) where €, —
0, up — o0,y = o(\loge,l), as n — oo, the optimally tuned linear estimator has supremum
risk:

. R 2 2 2 6}7{,“2
inf  sup E9||I7L(y, A) - 9”2 =noy &ty — — |-
A 0€0(ky,1n) 1+ e,u;

The proof of this proposition can be easily followed by the discussion in Section 2.5.2.

Comparing the second order term in Theorem 6 and Propositions 3-5 under the scaling condi-
tion €, — 0, u,, — oo, u, = 0(\,/bg76n‘1 ), it is straightforward to verify that the supremum risk of
Ne(y, Ay, Yn) is much smaller than that of optimally tuned soft thresholding and linear estimator.
In light of what we have discussed in Regime (I), the results in Regime (II) deliver an interesting
message: when SNR increases from low to moderate level, sparsity promoting operation becomes
effective in estimating sparse signals; on the other hand, since SNR is not sufficiently high yet, a

component of linear shrinkage towards zero still boosts the performance.

Results in Regime (I1I)

Finally, let us consider the high-SNR regime, i.e., Regime (III). As shown in Theorem 4, the
first-order approximation of minimax risk claims that both hard and soft thresholding estimators
are optimal. However, the refined second-order analysis will reveal that hard thresholding remains

optimal while soft thresholding is in fact sub-optimal, up to the second order term.

Theorem 8. Consider model (2.1) and parameter space (2.6). For Regime (IIl) in which €, —

0, up, = w(y/loge; ) as n — oo, we have
R(O(ky, 1), o) = no? (ZEn loge, ! —2¢,v,4/2log v, (1+ 0(1))) ,

where v, = 2log€; . In addition, the hard thresholding iy (y, A,,) with tuning A, = o,y/2log €; !

is asymptotically minimax up to the second order term, i.e.

sup Eg”ﬁH(y,/l,,) - 9||§ = no? (2En loge, ! — 2€,v,\2log v, (1 + 0(1))) .
0€0(ky, 1)
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The proof of this theorem can be found in Section 2.5.9. Before we interpret this result, let us

obtain the risk of the soft thresholding estimator as well.

Proposition 6. Consider model (2.1) and parameter space (2.6). In Regime (IIl) where €, —

0, un = w(yloge; ') as n — oo, the optimally tuned soft thresholding achieves the supremum risk:

inf sup  Byl[is(y, ) - 0| = no? (25,, loge;! — 6, log vy (1 + 0(1))) ,
1 9e®(kn,tn)

where v, = \2log€; .
The proof of the proposition can be found in Section 2.5.10.

Proposition 7. Consider model (2.1) and parameter space (2.6). In Regime (IIlI) where €, —
0, un = w(yloge; ') as n — oo, the optimally tuned linear estimator achieves the supremum risk:
noyently

inf sup Eo|fL(y, ) - 9”; = 2

= w(no;%en log(e,jl)).
A 0€0(kp,Tn) 1+ e,u;

The proof of this proposition is presented in Section 2.5.11.

Combining the above two results, we can conclude that overall in Regime (III) hard thresh-
olding offers a better estimate than soft thresholding. The intuition is that Regime (III) has a high
SNR where bias becomes the dominating factor of mean squared error, therefore hard thresholding
has an edge on soft thresholding by not shrinking the above-threshold coordinates. Moreover, note
that the difference between the first order and second order terms in the minimax risk is smaller
than \/logie,j1 . This implies that the second order term in our approximations can be relevant in a

wide range of sparsity levels.

2.3 Numerical experiments

As discussed in Section 2.1 through one simulation example, classical minimax results are
inadequate for characterizing the role of signal-to-noise ratio (SNR) in the estimation of sparse

signals. Hence, we developed the SNR-aware minimax framework in Section 2.2 to overcome
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the limitations of the classical minimaxity. In this section, we provide more empirical results to
evaluate the points we discussed above.

We generate the signal 6 in the following way: for a sample size n, 8 = (64, . . ., 6,) is generated
by assigning 7, to a random choice of k, coordinates and setting the others to zero. Then y =
(y15...,yn) and z = (21, ..., 2,) are generated according to Model (2.1) for a certain noise level
Oy

Given the sample size n, we consider three sparsity levels k, = |n*3], [n3/*], |n'/?], so that
€, = kn/n — 0 as n — oo. In addition, since SNR is decided by u, = 1,/0,, without the loss
of generality, we fix the value of the signal strength 7, = 10. We demonstrate our findings in two

ways:

1. Let u, change from small to large values, and plot the mean squared error (MSE) of different

estimators as a function of u,,.
2. Let 0, change from small to large values, and plot the MSE as a function of o,.

In our experiments, we consider moderate sample size n = 500 and large sample size n = 5000.
We consider the four estimators that have been extensively discussed in the previous sections:
linear estimator 777 defined in (2.9), soft thresholding 7js defined in (2.4), hard thresholding 77y
defined in (2.5), and the soft-linear “interpolation” estimator 77z defined in (2.10) (since 7jg is the
composition of soft thresholding and linear shrinkage, we refer to it as soft-linear “interpolation”
for convenience). We evaluate the performance of estimators using the empirical MSE scaled by
the total signal strength: ||6||52 . Z?:l(éi — 6;)?>. The MSEs shown in Figures 2.2 and 2.3 are
averaged over 20 repetitions, plotted with 95% confidence intervals from t-distribution. For each
estimator, tuning parameters are chosen by grid search to obtain the minimum possible MSE.

From Figures 2.2, when o, changes from small to large values, we observed that: (1) When o,
is near zero, hard thresholding achieves the minimum MSE among the four estimators discussed in
previous sections. This corresponds to Regime (III) in our theory. (2) When o7, is in moderate area,

the soft-linear ‘interpolation’ estimator 7z has the minimum empirical MSE. This corresponds to
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Figure 2.2: Mean squared error comparison at different noise levels. On each graph, the y-axis is
the scaled MSE, and the x-axis is the noise standard deviation o,.
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Figure 2.3: Mean squared error comparison at different SNR levels. On each graph, the y-axis is
the scaled MSE, and the x-axis is the SNR y,,.
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Regime (II) in our theory. (3) When o, becomes large, the linear estimator 7j; as well as the
optimally tuned 7jg (since 7jg can achieve 7j; when optimally tuned) have the minimum empirical
MSE. Our theory in Regime (I) states that when SNR is small, 7; becomes asymptotically minimax
optimal. The empirical studies align well with our current theory.

Figures 2.3 offer similar conclusions as the ones we mentioned above. The main difference is
that instead of revealing MSE as a function of the noise level, we view it as a function of SNR.
Due to this difference, the leftmost part of each graph corresponds to Regime (I). As u, increases,
the curves will correspond to Regime (II) and Regime (III). In particular, when p, is large, it
corresponds with the area of o, near zero in Figures 2.2. Here, it is shown more clearly that in the

large SNR regime, hard thresholding has the minimum empirical MSE among all the estimators.

2.4 Discussions

24.1 Summary

We introduced two new notions that can make the minimax results more meaningful and ap-
pealing for practical purposes: (i) signal-to-noise-ratio aware minimaxity, (ii) second-order asymp-
totic approximation of minimax risk. We showed that these two notions can alleviate the major
drawbacks of the classical minimax results. For instance, while the classical results prove that
the hard and soft thresholding estimators are minimax optimal, the new results reveal that in a
wide range of low signal-to-noise ratios the two estimators are in fact sub-optimal. Even when
the signal-to-noise ratio is high, only hard thresholding is optimal and soft thresholding remains
sub-optimal. Furthermore, our refined minimax analysis identified three optimal (or nearly opti-
mal) estimators in three regimes with varying SNR: hard thresholding 7y (y, A) of (2.5) in high
SNR; (v, 4,y) of (2.10) in moderate SNR; linear estimator 7 (y, A) of (2.9) in low SNR. As is
clear from the definition of the three estimators, they are induced by {y-regularization, elastic net
regularization [23] and £,-regularization, respectively. These regularization techniques have been
widely used in statistics and machine learning [24]. In the next section, we discuss some related

works.
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The concepts of signal-to-noise ratio aware minimaxity and higher-order asymptotic approx-
imations introduced in this thesis may open up new venues for investigating various estimation
problems. As will be shown in next chapter, we have used the same framework to revisit the
sparse estimation problem in high-dimensional linear regression and obtained new insights. That
being said, it is important to acknowledge that the additional insights gained from this framework
come with increased mathematical complexity when computing minimax estimators. Therefore,
one direction we plan to explore in the future is the development of simpler and more general
techniques for obtaining higher-order approximations of minimax risk or the supremum risk of

well-established estimators.

2.4.2 Related works

There are some recent works on the significance of SNR for sparse learning. The extensive
simulations conducted in the linear regression setting by [8] demonstrated that best subset selec-
tion ({p-regularization) performs better than the lasso (£;-regularization) in very high SNR, while
the lasso outperforms best subset selection in low SNR regimes. [25, 9] developed new variants
of subset selection that can perform consistently well in various levels of SNR. Some authors of
the current paper (with their collaborators) established sharp theoretical characterizations of £,-
regularization under varying SNR regimes in high-dimensional sparse regression and variable se-
lection problems [20, 26, 10]. In particular, their results revealed that among the £,-regularization
for ¢ € [0,2], as SNR decreases from high to low levels, the optimal value of ¢ for parame-
ter estimation and variable selection will move from O towards 2. All the aforementioned works
studied the impact of SNR on several or a family of popular estimators. Hence their comparison
conclusions are only applicable to a restricted set of estimators. In contrast, our work focused
on minimax analysis that led to stronger optimality-type conclusions. For example, the preceding
works showed that £,-regularization outperforms other £,-regularization when SNR is low. We ob-
tained a stronger result that £,-regularization is in fact (minimax) optimal among all the estimators

in low SNR.
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In a separate work, the first order minimax optimality is also proved for other estimators, such
as empirical Bayes estimators [27]. However, as we discussed before, first order minimax anal-
ysis is inherently incapable of evaluating the impact of the SNR on the performance of different
estimators.

The second-order analysis of the minimax risk of the Gaussian sequence model under the
sparsity constraint has been discussed in [28]. To compare this paper with our work, we have to
mention the following points: (1) Such analysis still suffers from the fact that it disregards the
effect of the signal-to-noise ratio. By restricting the signal-to-noise ratio, our SNR-aware minimax
framework provides much more refined information about the minimax estimators. (2) In terms
of the theoretical analysis, the SNR-aware minimax analysis requires much more delicate analysis
compared to the classical settings where there is no constraint on the SNR. In particular, construct-
ing and proving the least favorable distributions is more complicated in our settings compared to
the classical setting. As a result, all the following steps of the proof become more complicated too.

We should also emphasize that minimax analysis over classes of £, balls (i.e., ® = {6 : [|0]|, <
C,}) for p > 0 under Gaussian sequence model has been performed in [11, 3, 29]. These works
revealed that a notion of SNR involving C,, and o, plays a critical role in characterizing the asymp-
totic minimax risk and the optimality of linear or thresholding estimators. Finally, see [30, 31] for
non-asymptotic minimax rate analysis of variable selection and functional estimation on sparse

Gaussian sequence models.

2.4.3 Future research

Several important directions are left open for future research:

* The thesis considered estimating signals with sparsity k,/n — 0. The other denser regime
where k,/n — ¢ > 0 is also important to study. This will provide complementary asymptotic
insights into the estimation of signals with varying sparsity. There exists classical minimax
analysis along this line (see Chapter 8 in [3]). A generalization of SNR-aware minimaxity

to this regime is an interesting future work.
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* The obtained minimax optimal estimators involve tuning parameters that depend on un-
known quantities such as sparsity k, and signal strength 7, from the parameter space. It
is important to develop fully data-driven estimators that retain optimality for practical use.
Hence, adaptive minimaxity is the next step, and classical adaptivity results (e.g., [3]) may

be helpful for the development.

* In this thesis, we have focused on the parameter spaces that imposed the exact sparsity on 6.
Sparsity promoting denoisers such as hard thresholding and soft thresholding have been also
used over other structured parameter spaces such as Sobolev ellipsoids and Besov bodies.
These parameter spaces usually characterize the smoothness properties of functions in terms
of their Fourier or wavelet coefficients. We refer to [22, 3, 4] and references therein for a
systematic treatment of this topic. An interesting future research would be to explore the
implications of the SNR-aware minimaixty and higher-order approximation of the minimax

risk for such spaces.

* The current work focused on the classical sparse Gaussian sequence model. It would be
interesting to pursue a generalization to high-dimensional sparse linear regressions. Existing
works (see [32, 5] and references there) established minimax rate optimality (with loose
constants) which is not adequate to accurately capture the impact of SNR. Instead, the goal
is to derive asymptotic approximations with sharp constants as we did for Gaussian sequence
models. We believe that this is generally a very challenging problem without imposing
specific constraint on the design matrix. A good starting point is to consider the “compressed
sensing" model whose design rows follow independent isotropic Gaussian distribution. We

have made some major progress along this line and look forward to further development.
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2.5 Proofs of the main results

2.5.1 Preliminaries
Scale invariance

The minimax risk defined in (2.7) has the following scale invariance property

R(O(kp, ), ) = 02 - R(O (ks ), 1),

where we recall that u, = 7,/0;,. This can be easily verified by rescaling the Gaussian sequence
model to have unit variance. Moreover, similar invariance holds for the four estimators considered

in the chapter. We state it without proof in the following: Vo > 0,

o-fs(y,A) =fs(oy,od), o-fu(y,A) =ns(ocy,cd),

o-fr(y,d) =hqc(oy, 1), o-fe(y,A,y)=0e(ocy,cd,y).

These invariance properties will be frequently used in the proof to reduce a problem to a simpler
one under unit variance.
Gaussian tail bound

Recall the notation that ¢, @ denote the probability density function and cumulative distribution
function of a standard normal random variable, respectively. The following Gaussian tail bound

will be extensively used in the proof.

Lemma 1 (Exercise 8.1 in [3]). Define

-D*Tr 2k +1)
k! 2k’

l
i) =g Y L
k=0
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where I'(+) is the gamma function. Then, for each k > 0 and all 1 > 0:
Drpr1(4) < 1 - @) < Dy (2).

The minimax theorem

Consider the Gaussian sequence model:
vi=0;+o0z, i=12,...,n, (2.12)

where z1,22,...,2n . N(0,1). If  is a prior distribution of 6 € R”, the integrated risk of
an estimator @ (with squared error loss) is B(6,7) = E,Ey||8 — 6||2, and the Bayes risk of « is
B(r) = infy B(, 7). We state a version of minimax theorem suited to the Gaussian sequence
model. The theorem allows to evaluate minimax risk by calculating the maximum Bayes risk over

a class of prior distributions.

Theorem 9 (Theorem 4.12 in [3]). Consider the Gaussian sequence model (2.12). Let P be a

convex set of probability measures on R". Then

inf sup B(8, 1) = sup inf B(8, ) = sup B(n).
0 neP reP 0 neP

A maximising r is called a least favorable distribution (with respect to P).

Independence is less favorable

We present a useful result that can often help find the least favorable distributions. Let 7w
be an arbitrary prior, so that the §; are not necessarily independent. Denote by n; the marginal
distribution of ;. Build a new prior 7 by making the ¢; independent: 7 = []; 7r;. This product

prior has a larger Bayes risk.

Theorem 10 (Lemma 4.15 in [3]). B(7) > B(x).
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A machinery for obtaining lower bounds for the minimax risk

In our results, we are often interested in finding lower bounds for the minimax risk. The

following elementary result taken from Chapter 4.3 of [3] will be useful in those cases.

Theorem 11. Consider the minimax risk of a risk function r(-,-) over a parameter set ©:

R(®) = inf sup r(8,0).
0 0cO

Recall that B(r) is the Bayes risk of prior n: B(m) = infy f r(0,0)7(d6). Let P denote a collec-

tion of probability measure, and supp P denote the union of all supp « for n in P. If

B(P) = sup B(x),
neP

then
suppP c® = R(O) > B(P).
2.5.2 Proof of Theorem 5

To calculate the minimax risk R(®(k,, 7,), 03,), we first obtain an upper bound by computing

the supremum risk of the linear estimator 77 (y, 4,),

R(O(ky, 1), 00) < sup  EgllAL(y, An) _9”%-
0€®(ky, )

We then derive a matching lower bound based on Theorem 11. In particular, we construct a partic-
ular prior supported on @ (k,, 7,) (that is the least favorable prior at the level of approximation we
require), and its corresponding Bayes risk leads to a sharp lower bound for the minimax risk. The

detailed derivation of the upper and lower bounds is presented below.
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Upper bound

Thanks to the simple form of the linear estimator 7 (y, 4,), its supremum risk under tuning

A, = (€,42)7! can be computed in a straightforward way: for all 8 € @ (k,, 7,,),

n 2
A 1
EOHUL()’, /111) - 9”% = Eg Z (myl — 91)
i=1 n
A 29,2 + o ? 2| < kyt2 +no? _ noZe,u>
1+4, i 1+4, n (1 +/ln)2 1+6n,u,%

n

2

= no? enpn (1 - en,un(l + enyn) ) = no;%en,uﬁ . (1 - e,,,,u,%(l + 0(1))),

where we have used the assumption €, = k,/n — 0, u, = 7,/0, — 0, and the constraint ||9||§ <

k,t2,¥0 € O(ky,, T,). As aresult,

RO ), 00) < sup Byllr(y, ) = 013 = nozenl - (1= e (1+ 0(1))).
0O (kp,Tn)

Lower bound

First, due to the scale invariance property R(©(k,, 7,), 0%) = 2 - R(®(ky, 1,), 1) (see Section
3.4.1), it is sufficient to obtain lower bound for R(®(k,, 1), 1), i.e., the minimax risk under Gaus-
sian sequence model: y; = 60; + z;, 1 < i < n, with z; M N (0,1). A general strategy for finding
lower bounds of minimax risk in sparse Gaussian sequence model, is to employ i.i.d. univariate
spike prior as the (asymptotically) least favorable prior. Although such product prior served as a
suitable tool to establish a sharp lower bound for proving Theorem 3, we have since recognized
its inadequacy in providing a sufficiently sharp lower bound for obtaining the second-order ap-
proximation of the minimax risk. Hence, in order to use Theorem 11, we utilize the family of

independent block priors [33, 3]. The specific independent block prior 7/2(6) on ©(k,, i) for

our problem is constructed in the following steps:
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1. Divide 6 € R" into k,, disjoint blocks of dimension m = n/ ky':

0=(00,0%, . .. 0k,

2. Sample each block /) € R” from the symmetric spike prior ng’m: forl <i<m,

where y € (0, u,] is a location parameter.

3. Combine independent blocks:

kn
B0y = [ [ 5" 07
j=1

In other words, the independent block prior 7/2 picks a single spike (from 2m possible locations)
in each of k, non-overlapping blocks of 6, with the spike location within each block being inde-

pendent and uniform. As is clear from the construction, supp 7/® € ®(k,, u,) so that
R(®(kn, ptn), 1) 2 B(n'?) = ky - B(mg™). (2.13)

Here, the last equation holds because when the prior has block independence and the loss function
is additive, the Bayes risk can be decomposed into the sum of Bayes risk of prior for each block
(see Chapter 4.5 in [3]).

As a result, the main goal of the rest of this section is to obtain a sharp lower bound (up to the

second order) for the Bayes risk B(rr,"™"), i.e., the risk of the posterior mean under the spike prior

wm

g

. The following two lemmas are instrumental in obtaining such a sharp lower bound.

IFor simplicity, here we assume n/k,, is an integer. In the case when it is not, we can slightly adjust the block size
to obtain the same lower bound.
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Lemma 2. Consider the Gaussian sequence model: y; = 0; + z;,1 < i < m, with z; . N(0,1).

The Bayes risk of ﬂ'g’m takes the form
B(nk™) = Eye, (01 — u)* + (m — 1)Eye, 07,

where B, (+) is taken with respect to 'y ~ N(uey,I) and E,e,(-) for y ~ N(uez, I); 0, is the

posterior mean for the first coordinate having the expression

~ /l(e/"yl — e_/“tyl)
01 = .
! Z;’il(eﬂyi + e~HYi)

Proof. Let the posterior mean be 8 = E[6]y]. Using Bayes” Theorem we obtain

A

01

uP(0 = pey | y) — uP(6 = —uey | y)
UP(y | 6 =pe)) =Py |6 =-pe))]  u(et?' —e™ )

TPO 0= pe) +B(y [0=—pe)]  Si (el + e i)

Moreover, since both 6;’s (under the prior) and z;’s are exchangeable, the pairs {(6;, 0;)}1", are

exchangeable as well. As a result,

B(ry™) =E ) (8 - 6)* = mE(f) - 6,)°
i=1

1 X 1 A 1< 5 5
=m | 5—Bye, (01 - w)* + 5, e (01 +p)* + o E (Eﬂeﬁ% + E—ﬂei‘g%)
i

[ R . 1< R R
=3 [Buer 01 = 102+ By 01 02| 5 D [Braes B + B
i i=2

=Ee, (01 — ) + (m — 1)E,,,0%,

where in the last equation we have used the facts that the distribution of 6, under 6 = ey equals

that of = under 6 = —uer, and 6, has the same distribution when @ = tue;,i=2,...,m. O
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Lemma 3. As u — 0, m — oo, The Bayes risk of ﬂg’m has the lower bound

4
B(x"™) > 1i* - %(1 +o(1)).

Proof. Denote p,, = % According to Lemma 2, the Bayes risk can be lower bounded

in the following way:
B(ﬂg’m) > ,u2 |1 =2Eue, pm + (m — I)Elmpi .

It is thus sufficient to prove that E ., pp < %2(1 +0(1)) and (m — )E,,p2, > %2(1 +0(1)). We

first prove the former one. We have

eHu+zr) _ p=p(p+z1)

Zj¢1 [elzi + e M2 ] + et (p+z1) 4 p—p(u+zy)

Bpe,pm =E

(e“2 —1)et

=E
Zj;tl [eﬂz.f + e_ﬂzj] + eﬂ(#+21) + e‘#(#+Zl)

(1- e_“z)e_“zl
Zj;tl [e“zi + e_“zf] + et(ptz1) 4 o—p(utz1)

+E

eﬂzl —_ e_#zl

Zjﬂ [l + e M) + et(pu+z1) 4 o—u(u+z1)

+E

= E{+ E,+ Es.

We study Ey, E; and E3 separately. For Ej, given that the numerator inside the expectation is

positive, we apply the basic inequality a + b > 2Vab,Va, b > 0 to the denominator to obtain

2 2 2
£ < et —1Ee#21 :u_z. (et — 1)et /2 _ W (1+0(1))
"= T om 2m u? 2m '
Similarly, for E, we have
—u2 _2 2
£ < l—e# — :M_Z_ (1 —eH)et /2 :,u2(1+0(1))
= m 2m > 2m )
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To study E3, define

A= Z[e#zi +e ] + el (u+z1) 4 e—,u(#+Z1)’
j#1

B = Z[emj +e M + et u=21) 4 p=p(p=21)
Jj#1
The basic inequality a+b > 2Vab implies that A > 2m, B > 2m. This together with the symmetry

of standard normal distribution yields

i e~HZ eH2l oMl (6#2 _ e—,uz)(e—,um — eHar)ha
E;=E -E =FE -E =FE
STETA A A B [ AB
2 2 2 2
e U ) I p
<EB AB S T am o [(1 - WI)IL(ZISO)] - O(ﬁ)

2
It remains to prove (m — 1)EH62p,%1 > %(1 +0(1)). Denote
2 272
C:=|etl +e7HP + 2(m - 2)eﬂT + e%“2 + e_HT] ,

where b > 0 is a scalar to be specified later. Then

(eM21 — e—ﬂ11)2
E/JEQP%fl = E 2
_ [Zjﬁ(e;uj + €M) + eklprn) 4 e—#(#+zz)] |
(a) . » (eHil — gmHa)2
>
= 2 2
| [er21 + emH2 4+ 2(m — 2)e'T + el 4 e T]2]
> B (eH<t — e )21 (1, |<p)
= 2 2
[erb + =D +2(m — 2)e'T + eI + e~ T2
2 -
= T E€2#Z11(|Zl|gb) —P(|z1] < b)]
) [ 2y bh=2u b
= 2l [ e [ o
i —b-2u -b
[, b—2u b ~b
= 2l@ - [ Ce@d- [ @z [ s
C ] —-b—2pu b—2pu —-b-2u
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= 2 [+ 0(1) +0l) + o(u?)
© 5 u?
m 2u (1+0(1)) = ﬁ(l +0(1)).

Inequality (a) is obtained by conditioning on z; and applying Jensen’s inequality on the convex
function 1/(x + ¢)? for x > 0. Equality (b) holds by setting b = 1/ /11, for the purpose of matching
the asymptotic order %2(1 + 0(1)). Finally, inequality (c) is because C < 4m?e*V¥ when u is

sufficiently small. O

We are in the position to derive the matching lower bound for the minimax risk. Recall that in
the block prior we have m = n/k,, u € (0, u,]. Set u = u,. The assumption €, = k,/n — 0, u,, —
0 guarantees that the condition m — oo, u — 0 in Lemma 3 is satisfied. We therefore combine

Lemma 3 and (2.13) to obtain

R(O(kp, T0), o) = 0_3 - R(O(kp, un), 1) = kno-y% : B(ﬂg’m)
> kpo2 - [ > Hak B (140 (1))]

=no? - (en,un — €2 (1 + 0(1)))

2.5.3 Proof of Proposition 1

Define the supremum risk of optimally tuned soft thresholding estimator as

Ry (G)(kn, Tn) O-n) = inf Sup EGHTIS()’,/D 9”2 5
>0 ge €@ (kp,n)

where y; = 6; + 0,2;, with z; Hd- N (0, 1). It is straightforward to verify that
Ry(O(kp, T4), 00) = 0 - Ry(O(kp, 1), 1). (2.14)

Hence, without loss of generality, in the rest of the proof we will assume that o, = 1.
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Since 7j5(y, ) is the special case of 7jg(y, A,y) with y = 0, the supremum risk result stated
in Equation (2.43) for g (y, A, y) applies to 7js(y, A1) as well. It shows that the supremum risk of

fis(y, A) is attained on a particular boundary of the parameter space:

n
sup B " [As(yi, A) = 0113 = (n = kn)rs(4, 0) + knris (A, 1)
96@(/(,1,/.1,1) i=1

=n [(1 —€,)rs(4,0) + enrs(/l,,un)] , (2.15)
with €, = k,/n and rg(4, u) defined as
rs(A,p) = E(s(u+2,4) — )% z~N(0,1). (2.16)

To prove Proposition 1, we need to find the optimal A that minimizes the supremum risk in (2.15),

or equivalently, the function
F(4) = (1 - €)rs(4,0) + €rs(4, pn). (2.17)

Lemma 4. Denote the optimal tuning by A, = argmin,, F'(1). It holds that

i, M 2 o, M
log2e,” + 5 2loglog — < A.u, < log2e, + ER (2.18)
€n

when n is sufficiently large.

Proof. Using integration by parts, we first obtain a more explicit expression for F(A):
F(A) = (1 - &)Ef5(z, ) + €ntty — 2€nptnBils (1n + 2, 2) + €5 (1n + 2, ), (2.19)
where the three expectations take the form
Effz(z,4) =2(1 +1%) A ) ¢(2)dz —24¢(Q) (2.20)
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oo o

Efs(un +2,4) =¢p(A — pn) + (1n — ) ; ¢(2)dz — (A + pp) + (Ha + ) ; ¢(2)dz (2.21)
~fin +in

(1 + (ﬂ—ﬂn)z) ¢(z)dz - (/l_ﬂn)¢(/l_ﬂn)]

A=pin

Effe(un +2, ) =

. _ (2.22)

(1 +(A+ ﬂn)z) ; ¢(2)dz — (A + pp) d(A + py)
+in

Therefore, F(A) is a differentiable function of A, and as long as the infimum of F(1) is not achieved
at 0 or +oo, A, will satisfy F’(1,) = 0. From Equations (2.19)-(2.22), it is direct to compute
F(0) = 1 > F(+%) = €,u? for large n. Moreover, as we will show in the end of the proof, F (1)
is increasing when A is above a threshold. Hence, the optimal tuning 1. € (0, o), and we can

characterize it through the derivative equation:

0="F(1)=(1-e)

an, /A " 6(2)dz - 49(1,)

. (2.23)

+ €,

200 — ) — 20(A + ) + 21, ( A P(2)dz + L ¢<z>dz)

—HMn T+l

First, we show that 4, — oco. Suppose this is not true. Then A, < C for some constant C > 0

(take a subsequence if necessary). From (2.19), we have

F(A.) > (1-€)rs(C,0) =2(1 - &) > €npty, = F(+00),

(1+C2)/w¢(z)dz—C¢(C)
C

when 7 is large. This contradicts with the optimality of A..
Second, we prove that A,.u, — oo. Otherwise, Ad.u, = O(1) (take a subsequence if necessary).

We will show that it leads to a contradiction in (2.23). Using the Gaussian tail bound ft “ ¢(2)dz =

(l _ ]+0(1)

. 5—)$(t) as t — oo from Section 2.5.1, since A, — oo, yy — 0, Aepty = O(1), we obtain

. / T 6(2)dz+ (1) = (1+0(1)) - 126(1), (2.24)
A*
CH( + ) + A / $(2)dz = 0B (1)), (2.25)
Astfin

40



[e9]

—(As — ) + /l*/ ¢(2)dz = 0(2;%¢(1.)). (2.26)

/l*_/ln

Given that €, — 0, combining the above results with (2.23) implies that 0 = F’(1,) - 12¢~1(1,) =
—4 + o(1), which is a contradiction.
2
Third, we show that A.u, < log é + ’% for large n. Now that we have proved A.u, — oo,

results in (2.25)-(2.26) can be strengthened:

B+ ) + A /A b(2)dz = (A B (1. = 1), 2.27)
wHiln

B — ) + A, /ﬂ $(2)dz = (1+0(1) - nds (A, — u). (2.28)
+—Hn

Plugging (2.24) and (2.27)-(2.28) into (2.23) gives (4+0(1))-172¢(1,) = 2+0(1))-€ptn A d(A—

Un), which can be further simplified as
2+0(1) = €ntnds exp(dupty — 117/2). (2.29)

2
The above equation implies that A, u, < log é + ”7” for large n. Otherwise, the right-hand side will
be no smaller than 2u,1,, — oo contradicting with the left-hand side term.
2
Fourth, we prove that A.u, > log é + % — 2loglog é when n is large. Otherwise, suppose

2
Aty < log é + ”7" —2loglog % (take a subsequence if necessary). This leads to

2ude_2log 5=+ 147

(log 2)2  (log Z)?

0 < €unftnds eXp(Auty — f13/2) < = o(1),
where we have used the upper bound A.u, < log % + “7% derived earlier. The obtained result
contradicts with (2.29).

Finally, as mentioned earlier in the proof, we need to show that A, # +oo for large n. It is
sufficient to prove that F’(1) > 0,V € [ﬂ% log ein, o), when n is large. To this end, using the
Gaussian tail bound /t “o(2)dz > (L - t%)gb(t), V¢ > 0 and the derivative expression (2.23), we

t
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have

A- 2 - 4 —HMn A n 2 - A
)’ )

_? [ 4+4e,+ (2+0(1)) - e ~Ha/2 Appe

where we used that A > % log é implies Ay, = w(1). Note that the above asymptotic notion o(-)
is uniform for all 4 > #% log é when 7 is large. Since Ay, > 2log é, we can easily continue from

the above inequality to obtain F’(1) > O for sufficiently large n. O
The next lemma turns F(4,) into a form that is more amenable to asymptotic analysis.

Lemma 5. Define

/Jn(/l* — /ln)3e—2/l*ﬂn (/l* _ /~l}’l)3e_2/l*ﬂn /_1”
A= il p) 14 + +0(—|,
fin (s = pi) FRYRE TRRT (/1)
1 [ = (1 + 2121+ 0(1))] .
B = ,Un(/l*_Nn)z_/l*+(3+0(1))/l*1 g (/1* _/ln)3e 2/l*lun.
(A + ptp)

As €, — 0, u, — 0, it holds that

4(1 = &) (A,
F(L) = e + 2022

3+0(1))§

1-642+ 074 + (A, - ]
2o+ (1 -2) 7

Proof. We use Gaussian tail bounds to evaluate the three expectations (2.20)-(2.22) in the expres-
sion of F(A,) in (2.19). Note that as shown in Lemma 4, A,.u,, = ©(log 2¢, ). The first expectation
is

Ei(z, 1) = 26(1.) [21;3 122 + 0(4;7)] . (2.30)

Regarding the second one, we obtain

[ee)

B —pn) = (=) [ 9(2)dz = [(a* )2 +0 (A - un)—“)] O~ t),

/l*_/Jn
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and

(o)

¢( s+ pn) = (A + ) ; ¢(z)dz =
wtin

(A + ) e H 40 ((ﬂ* + ﬂn)_4e_2/l*ﬂn)} C (A — ).
Therefore,

Efs (in + 2, As) = [(ﬂ* — )2 = (A + ) 22+ O ((ﬂ* - un)“‘)] (A — pn).  (2.31)

For the third expectation, we first have

(1+ (= ) /

/l*_/ln

(1 + (A +,u,1)2) /Am

i

o0

B()dz = (1 = u) (A = i) = [2(@ )P +0 (A - unrs)] O~ t),

B2z = (A + ) (e + i) = [2(4* 1) 40 (4 + uan)] B+ ).
Thus,

B (i + 2 ) = 204 = )™ + 200+ ) P 1.0 (4 = 1)) | #(4 = ). 232)
Plugging (2.30)-(2.32) into (2.19), we have

F(1) =2(1 - e)¢(L) 2473 = 1247 + 07| + enss]
=26ty (A = ) 2 = (A + p) 280 .0 (= )4 [ = )

b [200 = 1) #2000 + ) e 1.0 (- ) ) [ - )
26, AP (A — ptn)
(A — ,un)3 .

= e +2(1 — 6)p(1,) [21;3 — 12275 + 0(1;7)] + (2.33)

Next, we utilize the derivative equation (2.23) to further simplify (2.33). We first list the asymptotic

approximations needed:

- / T 0(2dz 4 (L) = (1— (34 0o(1)A) - A2(1),
A

*
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. [=pn A3 = A(1 + 25 (1 + 0(1))) ] =>4k
“oGru+d [ o= 3 S~ ).
Astpy (/l* + /’tf’l)
0 fn (A = pt)* = A [1 = (3 +0(1)) ;%]
~ o)A [ g = B B~ ).
*_I-ln * n
Plugging them into (2.23) yields
4(1 -€ [—— ) =2ep——————.
Obtaining the expression for % from the above equation and plugging it into (2.33) completes
the proof. O

We now apply Lemmas 4 and 5 to obtain the final form of F(1.). Referring to the expression of

F(A.) in Lemma 5, the key term to compute is 1 + (/1* - 3+i(l) ) %. Using the fact that A,.u, — oo,

some direct calculations enable us to obtain

(/l*—3+0(1)

ES

)ﬂ +B=(-1+0o(1)dp?, B=pa2(1+0(1)).
Therefore, the expression F(A,) in Lemma 5 can be simplified to

F(a,) :6,,/1,% +

4(1 - ;WM*) =62 +0t) - /;—:(1 +o(1))

2 (4+o(1))upd(As)
nly, /li .

-1
Finally, Lemma 4 implies that 1. = (1+0(1)) logﬂ—i”. Replacing A, by this rate in the above equation
gives us the result in Proposition 1.

2.5.4 Proof of Proposition 2

Define the supremum risk of optimally tuned hard thresholding estimator as

. ~ 2
RH(®(kn’ Tn),o'n) = lnf Sup EHHUH()’, /1) - 9| 2°
>0 9e0(k,, )
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where y; = 6; + 07,z;, wWith z; My (0, 1). It is straightforward to verify that

Ry (®(kp, T4), 07) = 02 - Ry (O (ky, ), 1). (2.34)

Without loss of generality, let o, = 1 in the model. We first obtain the lower bound, by calculating

the risk at a specific value of @ such that 8, = u, fori € {1,2,...,k,} and §, = 0 fori > k,:
Ry (©(kn, tn), 1) > inf Byllitn (3, 2) = 0ll5. (2.35)
Denote the one-dimensional risk:
ru(A,p) =E (ﬁH(,u +z,4) —,u)z, z~N(,1), YueR,A1>0.
It is then direct to confirm that

Eolliim (v, 2) — 0113 = n| (1 — €)ra(4,0) + € (A, i) |- (2.36)

Let A;, be the optimal choice of A in Eg||7jg(y, 2) — 6|? so that
inf Byln (3, 2) = 0I5 = Balliu (v, 43) - 0ll>-

To evaluate the lower bound in (2.35), we consider two scenarios for the optimal choice A, and in
each one we obtain a lower bound for Ey |75 (y, 4;,) — 6 ||>. But before considering these two cases,

we use the integration by part to find the following more explicit forms for rg (4, 0) and rg (4, u):

ri(1,0) =2 /m 2é(2)dz = 246() +2(1 = D(1)),
A
- - 00
rua(A, 1) = /12/ ' ¢(2)dz +/ ' 2¢(2)dz +/ 2¢(2)dz

A—p 00 A—p

= (12 = D@ = ) = (=1 = ) | + 1+ (A= (A= ) + (L4 WA+ ), 23T)
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where we recall that ¢(-) and ®(-) denote the density and CDF of N (0, 1) respectively. Now we

consider two cases for the optimal choice A, and in each case find a lower bound for the risk.

* CaseI A; = O(1): we have 1) < ¢ for some constant ¢ > 0. Hence, from (2.36) we obtain

inf Byl (y, 2) = 0ll; = Eqllin (v, 43) - 0113

\%

n(1 = e)r (4, 0) = n(1 = ) [24,(4;) +2(1 = D(1;)) |

\%

n(1-e)|201 - cp(a;;))] > n(1 - &) [2(1 - @(c))] > nenii?.

The last inequality is because €,u> = o(1) and (1 — &,)[2(1 — ®(c))] = O(1).

e CaselIl 1) = w(1): then A; — oo as n — oco. From (2.36) and (2.37), we have

inf Byl (v, ) = 0113 = Ballitn (v, 4,) = 0ll3 = knrsn (45, ptn)

_ knw%;—l)[l—/m ¢<z>dz—/°° 6(2)dz
Ap—Hn Ap+in

+ k(A — ) (A — ) + k(A + ) d (A + )
(a)

= kn/.lﬁ + kn(/l;kl — Mp + 0(1))(]5(/12 - /Jn) + kn(/l;k, + Un + 0(1))(1)(/12 + /Jn)

+ k,

2 2
2 kn:un = nenlun’

where to obtain (a), we have used the Gaussian tail bound in Lemma 1 under the scaling

A, — oo and u, — 0.

Note that since the two cases we have discussed above cover all the ranges of A, we conclude that
Riz(® (k. ), 1) 2 inf Byl (y, A) = I3 = nenpy,
for all sufficiently large n. To obtain the matching upper bound, we have

RH(G)(kn’ ﬂn)s 1)
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= igg 0€®S(lipﬂn) Eg|[fim (v, 1) — 9”2

< lim  sup E9||77H(y,/1) - 9”2
A= 9@ (kpptn)

<fim ( sup Beliu(n I3+ sup  Eg(-20u(v.0).6)+ sup [0]3)

A—>o0

0€@ (kp,ptn) 0€0O (ky.ptn) 0€0 (ky.ptn)
<neq i + lim (9 @s(l;p BollAs (y, VI3 + 2+ nenpi? \/9 @Skl;p Egllfia (v, Dl ) (2.38)
€ n /ln € n ﬂn

To obtain the last inequality, we have used Cauchy—Schwarz inequality and supyeg ., 4,) ||6||§ =

kn,u%. From (2.38), to show Ry (©(k,, u,), 1) < nen,u%, it is sufficient to prove

lim  sup  Egllfu(y, D3 =0
A—eo 0€O (kp,pin)

Define fi(u) := E|An(u +z, )|? z ~ N(0, 1). It is not hard to verify that fi(u), as a function of

4, is symmetric around zero and increasing over [0, co) for all 1 > 0. As a result,

lim sup  Bgllfn (v, I3 < lim [(n = ka) f2(0) + knfa(Vhnpn) |
_)OOQGG(kn/Jn)

= (n = ky) lim f2(0) + &y lim fo(Vkupin)

=0+0=0.

The last line holds because lim e fi() = 0,Vu € R from dominated convergence theorem. The
dominated convergence theorem can be used since |y (¢ + z, 1)|* < |u + z|? and limy_,eo [z (i +

zZ,A)* =

2.5.5 Proof of Theorem 6

Recall the scale invariance property in Section 3.4.1: R(®(k,, 1,), 07) = 02 - R(O(ky, in), 1),
where u,, = 1,/0,. Moreover, the estimator g (y, A, y) = ﬁﬁs(y, A) defined in Equation (2.10)

also preserves an invariance: ¢ - jg(y, A,y) = fe(ty,td,y),Vt > 0. Therefore, to prove both the
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upper and lower bounds, in this section, it is sufficient to consider the simpler unit-variance model:

yi:0i+zi’ i:1,...,l’l, (239)
where (z;) AN (0, 1). We find an upper bound for the minimax risk by calculating the supremum
risk of g (y, 4,y) with proper tuning. The lower bound is obtained by using Theorem 11 and con-
sidering the independent block prior again. Both steps are more challenging than the corresponding

steps in the proof of Theorem 5.

Upper bound

To analyze the supremum risk of jg(y, 4,y), it is important to understand its risk in one di-

mension. Define the one-dimensional risk function as:

2
re(idy) =E(s=is(u+ 2.0 =) 2~ N(O,1). (2.40)

1+vy
The following property of the risk function plays a pivotal role in our analysis.
Lemma 6. For any given tuning parameters A > 0, y € [0, +oo], it holds that
(i) re(u;A,7y), as a function of u, is symmetric, and increasing over u € [0, +00).
(i) max .22 [re(x:4,7) +1e(y:4,7)] = 2re(c/V2;4,7), Ve > 0.

Proof. (i) Proving the symmetry of r.(u; 4, y) is straightforward and is hence skipped. To prove
the monotonicity of r,(u; 4,y), we will calculate its derivative and show that it is positive for all
u > 0. To this end, we first decompose r,(u; A, y) into three terms:

Y 2ym
(1+y)2  (1+7y)?

1 X .
re(p; A,y) =———=E@s(u +2,2) — p)* + E(u —As(u+2z,4)).

(1+7y)?
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Accordingly, the derivative of r,(u; 4, y) takes the form:

Ore(usdy) _ 1 0B@s(u+zd)-p)?® = 2%

ou C(L+y)? M (1+7)?
4 [uaE(’”(“ ”’”_”)+E<ﬁs<u+z,ﬂ)—u)]. (2.41)
(1+7y)? op

Using the explicit expression fjg(u + z, 1) = sign(u + z) (|u + z] — 1)+, we can calculate

OE(fs(u+z,)—p) 0
= _E[(_/J)I(I;Hzlsﬁ) + (Z - /l)l(z+y>/l) + (Z + /1)1(2+;1<—/l)]

ou ou
==P(lz+ul <) —pu[-¢(A —p) + ¢(=A = )] — u¢(A — p) + pup(=1 — p)
==P(lz+ul < 1),

and

OE(s(u+z,0) —w)?* 0
Iy :%E 2I(|y+z|£/l) + (Z - /l)zl(z+y>/l) (Z + /1)2[(2+p<—/l)

=2pP(|u+z| <) + 1P [-d(A— ) + ¢(-2 — W] + 2P — p) — P (=A — p)

=2uP(ju+2z| < Q).

Putting the above two results into (2.41), we obtain, Vu > 0,

Ore(; A,y) 2 2y?
BoY) o Bzl <)+ 5
ou (I+7y) (I+7y)
2
+ L [P (2 + ] < D) +E(u—s(u+2.0)] >0, (2.42)
(1+7)?

where the derivative is positive as all the terms on the right-hand side are non-negative and at least
one of them is positive for all 4 > 0. To verify this, all others are obvious and only the last term
E(u — fis(u + z, 1)) needs be checked: this term is positive because it is an odd function and has
positive derivative.

(ii) Since the case where y = +oo is trivial, we consider y € [0, o) in the rest of the proof. Let
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H(x) = re(x;4,9) + re(Vc? — x2; A, y) and consider maxg<,<. H(x). Since H(x) is continuous
over [0, c], we find the maximum by evaluating the derivative of H(x) over (0, c). Using the

derivative calculation (2.42), we have

’ ’ ’ 2 2
H () =7 (6349) = T (Ve =% 9) = i)+ s ()
c-—X

where

filx) =P(lx+z| <) -P(|Vc2 —x2+z| £ 1),

1 1
fr(x) = ﬁEﬁs(ch —x24+z,1) - )—CEﬁS(x +2z,4).

ce—X

We now show that H (x) > 0 for x € (0, %), H'(%) =0,and H (x) < O forx € (%,c). It is
straightforward to confirm that H '(\/%) = 0. Hence, it is sufficient to show both fj(x) and f>(x)
are positive over (0, %) and negative over (%, ¢). This can be proved if we show that both fj(x)
and f>(x) are strictly decreasing over (0, ¢), given that fi (¢c/V2) = fo(c/V2) = 0.

Regarding fi(x), it is direct to verify that P(|x + z| < A) is strictly decreasing over (0, ¢),
and accordingly P(IVe2=x2+2z| < A) is strictly increasing over (0, c¢). Hence fi(x) is strictly
decreasing over (0, ¢). It remains to prove the monotonicity of f;(x). By the structure of f,(x), it
is sufficient to show E[}l—cﬁs (x + z,4)] is a strictly increasing function of x for x > 0. We compute

the derivative:

OB As(x+2,1) 1 1
x = —=EAs(x +2,4) + =P(|x + 2| > )
ox X X

) ¢(z)dz — x ) ¢(Z)dz)

A+x

1
=— —2(E [(X +7Z - /l)I(x+z>/l) + (X o+ /I)I(X+Z<_/l)] -4

X A

:_é[W_x)_4/;¢(Z)dz+4/ﬂ:¢(z>dz_Wﬂ)

h(x)
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Lig(x . .
Therefore, for x > 0, w > 0 if and only if 4(x) < 0. In fact,

h’(x) =A=-x)p(1=x)+ (A +x)p(1+x) — Ap(A1 — x) — Ap(A + x)

=x(¢(1+x)—p(1—x)) <0, Vx>0.

Also, it is straightforward to confirm that 42(0) = 0. Thus i(x) < 0 for x > 0. O

The one-dimensional risk function properties in Lemma 6 will enable us to locate the parameter
value at which the supremum risk of 7z (y, 4, y) over the parameter space ®(k,, u,) is achieved.
The following lemma provides the detailed supremum risk calculation for a carefully-picked choice

of the tuning.

Lemma 7. Consider model (2.39). Suppose €, = k,/n — 0, p, — oo, and u, = o(+/loge;l),

as n — oo. Then the estimator Hg(y, Ay, Yn) = w15y, A), with y, = (26,12 62“'1) '~ 1 and

l+y

An = 2u,, has supremum risk:

2
sup  BollAE (. Ans ¥n) = 0113 = knpty — (V2/m + 0(1)) - —ﬂn€“"~
0€® (ky,ptn)

Proof. Using the one-dimensional risk function in (2.40), we can write:

n

Sup E@HﬁE(ya/ln”y}’l) _9”% = Sup Zre(gi;/ln”)/n)-
0€O (k. pin) 6€O(kp,ptn) i=1

According to the properties proved in Lemma 6, it is clear that the above supremum is attained at
the parameter vector € in which there are k, non-zero components and they are all equal to y, (it
occurs at a particular boundary of the parameter space ®(k,, u,)). Therefore, the supremum risk

can be simplified to

sup  Eollite (v, Aus v) = 0113 = [ (1 = €70 dns ) + € Gtas A )| (2:43)
0€0O (k. ptn)

1- R R 2€,tn
(1 )zEns(Z /ln) + ﬁEns(ﬂn + 2z, n) - 1+ Y EnS(ﬂn +2, /ln) + En/-ln]
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To further calculate the supremum risk, we evaluate the three expectations in the above expression,

using the Gaussian tail bound ftoo ¢(z)dz = (l —~ [13 + 3+0(])

t

) ¢(t) as t — oco. For the particular

choice A,, = 2u, — oo, we have

EﬁS(Z’ /ln) = 2

¢ (2pin). (2.44)

(1+12) / " 6(2)dz —ﬂncf)un)] +ol)
An /J

Furthermore,

Ens(ﬂn +2,4,) =

(I + (un — /1}1) ) / ¢(z2)dz — (Ay = ) p(A, = ,un)]

n~Hn
+ (1+(/Jn+/1n)2) : ¢(Z)dz_(/ln+,un)¢(/1n +,Un)
ntln
2+0(1) 2+0(1) 2+o0(1)
= TR s, - )+ —2 s, . 2.45
(ﬂn—,un)3¢( u)+(/1n+,un)3¢( Mp) = e d(un),  (2.45)
and
Bis (ttn + 20 An) =6 — i) — (A — 1) / $@dz= 0+ )+ (it ) [ (s
ntln
=%¢( - )—%W w) = W a6

Plugging (2.44)-(2.46) into (2.43) with the particular choice y, = (26”p,%e%“%)‘1 — 1 considered in

the lemma, we obtain

sup EO”ﬁE(y’ﬂn,yn)_'QH%
0€O (kp,pin)

= k2 + 2+ 0(1)) - n€pune 3 (1)
+(8+0(1)) - neXtne () — (4+0(1)) - ne2une s (1)

3.2
= kot — (2+0(1)) - neppne ¢ ().

The last equation holds because u, = o(+/log ;') implies ene%“El = 0(1), so that the third term on
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the right-hand side of the first equation is negligible. O

Now we can combine the preceding results we proved to obtain an upper bound for the minimax

risk: with y, = (2e,u2e2#+)~! — 1 and A, = 2u,, it holds that

R(®(kna Tn)’ O-n) = 0'3 : R(®(kn’ ,un)a 1)

<o sup  Byllip(y,dwya) =013 = sup  Eellie(y, 0udu, va) = 6lI3
0€® (ky,ptn) 0€O(ky,Tn)

k2 > >
= o7 |kt — (N2/7 +0(1)) - ;"une#n) = na,%(enu% - (V2/m+ o(l))eﬁuneﬂn).

Lower bound

The derivation of the lower bound follows the same roadmap of proof for the lower bound in
Theorem 5. It relies on the independent block prior constructed in Section 2.5.2. According to
Equation (2.13), the key step is to calculate the Bayes risk B (ng’m) of the symmetric spike prior
p™ for (u € (0, ), in the regime m = n/k, — oo, y, — oo, 1, = o(\/log&;1). It turns out that

setting u = u, will lead to a sharp lower bound. We summarize the result in the next lemma.

Lemma 8. As m = n/k, — oo, u, — oo, u, = o(\/loge; ), the Bayes risk B(Jr’;”’m) satisfies

2

ekn
B(xh™™) > 1= o—(1+o(1)].

Proof. The result is an analog of Lemma 3 in Regime (II). Adopt the same notation from the proof

eHY1 —e—HY1

of Lemma 3: Pm = W.

In light of Lemma 2, it is sufficient to show that

() Eppey (pm — D2 = 1= Leta(140(1)),

m

(i) (m — 1)Bye,p2 = s=eti(1+0(1)).

m

Regarding Part (i), we have

Eunel [Pm — 1]2
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eﬂn(ﬂn"’zl) — e_/ln(/in"'zl)
>1-2-E
Zj;tl (eHn?i + e™HnZj) 4 eHn(tn+21) 4 @=Hn(Hn+21)
eﬂn(ﬂn"’zl)
>1-2-E .
Zjil (eﬂnzj + e_.unzj) + eﬂn(/ln"'zl) + e‘ﬂn(#n"’zl)

Thus, (i) will be proved by showing that

eﬂn(,un"'zl) 1 #2
< —_— n
E Zjil(eﬂnzj + e_/Jan) + eﬂn(ﬂn+z1) + e—,uy,(,un+zl) — zme (1 + 0(1)).

The expectation on the left-hand side of the above can be splitted into a summation of two truncated

expectations according to the following condition:

eﬂn(ﬂn"'zl) + e_ﬂn(ﬂn"'zl) > e/JnZl + e_ﬂnzl

1
= (e’“‘zl -1) (e””zl - e_’“‘"“_”i) >0 upz1 = —nz1 — ﬂ,% =712 ~oHn-

In the first case,

Hn(Un+21)
E ¢ I(ZIZ_%,un)
Zi__#l(e/lnzj + e_ﬂnzj) + elln(,un"'zl) + e_lln(,un"'zl)

e/"n(ﬂn"’zl)l(z S
1>—

> l#n) 2 e)unzl
<E| == —— | < eME | = ———
S (& + ) NCZERTaTE)

b

gﬂ;zl eﬂnZl + e_/JnZ] e,ufl
2 Z?’:l (eHnZi + e ™HnZj) 2m

where in the last two equations we have used the symmetry and exchangeability of i.i.d. standard

normal variables {z; 1~ In the second case,

. eﬂn(ﬂn+ZI)I(Z]S_%#n)

Zj¢1 (eﬂnzj + e_/Jan) + eﬂn(ﬂn"’zl) + e‘ﬂn(ﬂn"’zl)

HMnZl 2 m MnZj

B e T D Do Ll O 70

<R\ T e | S|
j:l J:l

(2.47)
m
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where the last equality is again due to exchangeability of {z;}"_,. Denoting

m 1 m
:unZ/ - MnZj
n = l 2 Z n . 1.2 Ze I(Z]<_'ﬂn)’
2 n = mezﬂn =

then the last expectation in (2.47) can be written as E(Z,/Y,), and it remains to show E(Z,/Y,) =

o(1). It is straightforward to check that EY, = 1. Furthermore, since u, = o(+/log€; '), it is direct

to verify that Var(Y,) < —*- 2 = o(1). Hence, Y,, — 1 in probability. In addition,

m“etn

1.2
E(Zi’l) :E (eﬂnZlIZI< 1 * 6_7”") / _e__+ﬂnz Z#ndz
S—3Hn ,—27[

_FT 1

_ 5 (2—ptn)? / 3, _
= e 2 dz = e 2 dz=o0(1).
~o V21 \/ﬂ

Thus, Z, — 0 in probability. As a result, Z,,/Y,, — 0 in probability. Since |Z,/Y,| < 1, dominated

convergence theorem guarantees that E(Z, /Y,) — 0.

To prove Part (ii), it is equivalent to prove

(eﬂrzZl — e_/JnZl )2

1 2
> Hn
E [Zj;EZ(e#an + e_/Jan) + eHn (ﬂn+12) + @ Hn (ﬂn+12)]2 - 2m2 € (1 + 0(1))

Towards this goal, we have

(eI-an] _ e—,unm)Z
E

[Zj#Z(ellnzj + e_/lnzj) + eﬂrl(ﬂn+z2) + e_ﬂll(ﬂn+z2)]2

(a) eMnil — p~HnZl 2
o 2( )

g let —e “"Z‘> I(IZ1I<3#n)
2
g 3p
[2(m —2)e2 +e2tn 472 + eHnll 4 g=Hni1]2

[2(m 2)62 +4\/_ez

(©) 2 [ )
= . Hn21 | = P(|lz1] <3 n)]
et (2m — 4 + 4yfm)? |z11<3u u
2 2 n 3#;1 1 .
= . e/ln ZdZ_ ZdZ :_eﬂn1+01 .
eln (2m — 4 + 44/m)? ( S ¢(2) s $(2) ) 5 ( (1))

Here, Inequality (a) is by applying the Jensen’s inequality with respect to za, . . ., 2, (conditioned

on z1), as 1/(x + ¢)? (¢ > 0) is a convex function of x > 0. Inequality (b) holds because 3 +
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2 2
_Hn - 2 2 Hn ‘.
€™ 2 +etnil 4o Hnl < 4¢3 when |71 < 3u,, and e3#n < \/me 2 (for large n) under the condition

Un = o(+/logm). Equality (c) is due to the symmetry of z; ~ N (0, 1). O

Our goal now is to use Lemma 8 to finish the proof of the lower bound in Theorem 6:

R(®(kn, ), 7)) =0 - R(®(kns pn), 1) 2 Koy - B(mg"™)

2
ekn 1 2
> k03| 1= S0+ o) | =no? e - Jebiiest 1+ 01|

2.5.6 Proof of Theorem 7

Like in the proof of Theorems 5 and 6, we calculate the minimax risk by deriving matching
upper and lower bounds. However, a notable difference of the proof of Theorem 7 is that the tight
upper bound is obtained not by analyzing the supremum risk of a given estimator, but rather by a
Bayesian approach. In this approach, we establish a uniform upper bound for the Bayes risk of an
arbitrary distribution supported on average on the parameter space, and use the minimax theorem
(i.e. Theorem 9) to connect the result to the matching upper bound of the minimax risk. We present
the details of the upper and lower bounds in Sections 2.5.6 and 2.5.6, respectively.

Upper bound

Consider the univariate Gaussian model:
Y=0+2Z, (2.48)
where § € R and Z ~ N(0, 1). For a given constant A > 1, define a class of priors for 0:
T (e, u) = {n e PR):7({0}) = 1 — €, E6° < ep?, supp(n) € [—A,u,A,u]}, (2.49)

where £ (R) denotes the class of all probability measures defined on R, and € € [0, 1], u > 0. Note

that 7 € T4 (e, u) implies that 7 = (1—€)J+€G, for some distribution G satisfying Eg6> < u? and
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supp(G) C [—-Apu, Au]. The worst-case Bayes risk (i.e., the one of the least favorable distribution),

under this univariate Gaussian model with squared error loss, is defined as
B*(e, 1, 1) := sup {B(ﬂ) iTme FA(E,,u)}, (2.50)
where
B(n) =E(E0]Y)-6)%, 6 ~n, Y |6~ N(,1).

The following lemma allows us to obtain an upper bound for R(®4(k,, 1,), o) in terms of

BA(e,p, 1).

Lemma 9. The minimax risk satisfies the following inequality:
RO (ky, Tn), o) < nO',f - B (€n, ttn, 1).

Proof. The proof closely follows the arguments in the proof of Theorem 8.21 of [3]. However,
since the parameter space we consider is different, we cover a full proof here for completeness.

For notational simplicity, let ©, := ®4(k,, 7,). Consider the class of priors
My = Mk, 7, 4) = {1 € PR  Bill0llg < Ky Ball0113 < Kt supp(m) € [-At,, AT,]"},

where P (R") denotes the set of all probability measures on R”. Let M = M°(k,, 1, A) C
M(k,, 1y, A) be its exchangeable subclass, consisting of the distributions 7 € M,, that are permu-
tation invariant over the n coordinates. Using notation B(w, M) := sup,.,( B(m), we will show
that

R(®,,0,) < B(r, M,) = B(x, M) < noy. - B*(€n, i, 1). (2.51)

We start with equality in (2.51).

) (@) . )
R(®,,0,) = inf sup E[|6 — 6] < inf sup Ex[|d— 62 L sup infE.]|d - 6]2 = B(x, M,).

0 0€O, 0 neM, neM, 0
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Inequality (a) is due to the fact that M, contains all point mass priors dg, for every 6 € ©,. To
obtain Equality (b) we have used the minimax theorem, i.e. Theorem 9, as M, is a convex set of
probability measures. To prove the second inequality in (2.51), note that for any 7 € M,,, we can

construct a corresponding prior:

where o denotes a permutation of the coordinates of 6, and 7 o ¢ is the distribution after permu-
tation. In other words, ¢ is the distribution averaged over all the permutations, thus 7¢ € M.
Given that B(m) is a concave function (it is the infimum of linear functions), we have B(xw, M,,) <
B(m, M¢) which implies B(w, M) = B(m, M) since M. € M,,.

To show the last inequality in (2.51), for any exchangeable prior 7 € M, let r be its univariate
marginal distribution. Using the constraints on 7 from M, and the fact that 7 is symmetric over

its n coordinates, we have
(601 =0)>1-¢,, EmH% < 6,,7'3, suppn; C [-AT,, ATy

Hence 71| € T'4(e,, 7,) defined in (2.49). Furthermore, according to Theorem 10, the product prior
' is less favorable than ¢, namely, B(n) < B(x) = nB(m). Rescaling the noise level to one

and maximizing over 7y € I'(e,, u,) completes the proof. O

Lemma 9 reduces the problem of obtaining the upper bound for frequentist minimax risk (under
Gaussian sequence model) to the problem of upper bounding the worst-case Bayes risk (under a
univariate Gaussian model). Our next goal is to find an upper bound for B4 (e,, t,, 1). Towards

this end, we first state a useful lemma.

Lemma 10. Under model (2.48), consider prior 1 = (1 — €)8o + €G € T'A(e, 1), as defined in

(2.49). Then,
2
62(f te'*"7dG(1))?

1- 6+6f€tz_%dG(t)

E(E(0]Y))’ = / 6(2)dz,

where ¢(-) denotes the density function of standard normal random variable.
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Proof. Given the prior 7 = (1 — €)d¢ + €G, the posterior mean of 6 is given by

e [ 6¢(y - 6)dG(6)
(1-)p(y) +e [ $(y~0)dG(6)

E(6lY =y) =

Thus,

€ [tp(z—-1)dG(1)
(1-€)¢(z) +€ [ ¢p(z—1)dG(1)

~ 2
e // [(1 _ 6>¢§af+t§>(9++f/ ¢?9dfz(t—) 0dG (1)
:/ [ € [tp(z-1)dG(1)
(1-€)p(2) +€ [ p(z—1dG (1)
:/ — efte’z_édG(t)
((1-e)+¢ [ e 5dG (1)

_/ E([ 15 dG (1))?
l-€e+ e/etz_%dG(t)

2
¢ (z)dz

B(E(O]Y)) =(1 - ¢ / [

¢(2)dzdG(0)

2
. [(1 —€)p(z) + e/ d(z - H)dG(G)] dz

. [(1 —€)+ E/ etz_%dG(t)] ¢(2)dz

¢(2)dz,

where the second equality is by a simple change of variable. O
We can now obtain a sharp upper bound for BA (e, i, 1).

Lemma 11. Consider €, — 0, u, — oo, i, = o(y/loge;'). Under model (2.48), the worst-case

Bayes risk BA(e,, jtn, 1) defined in (2.50) satisfies that for any A > 1,

1+o0(1)
3 e pitetn.

BA(EVL’ /'lna 1) < en/li -

Proof. For prior m € T'A(€, u), using the law of total expectation,

E(E(0|Y) - 6)* = E6> — E(E(6]Y))>. (2.52)

We first obtain a lower bound for the term E(E(6|Y))>. We start with the expression derived in
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Lemma 10 and develop a series of lower bounds,

2 tz—%dG 2 2 tz—%dG 2
([ te (1)) ¢(Z)dZ2/| e([te (1) Sz

l-€e+ efelz_%dG(t) Zsylogl/e 1 — e+ efetz_%dG(t)
@ g2 2 2
(/ te‘Z‘TdG(t)) #(z)dz

Z—
1-e+ e% /IZIS\/IOg /e
Viog /e~ (1+1')
tt'e’ ¢(z)dz]dG(t)dG(t’)
1 —€+ e% -// l /\/logl/e (t+1")

Vlog 1/e—(t+t")
// [n ¢ / (z)dz] 4G (1)dG (1)
1 —e+e2 Jiso \log 1/e~(1+1")
Vlog 1/e—(t+t")
// [n ¢ / ¢(z)dz]dG(t)dG(t’)
] — €+ 62 ' <0 —\/log 1/e—(t+t")
©) 6 , Vlog 1/e—(t+t")
> — // [tt'e” / ¢(z)dz]dG(t)dG(t’) — |Au?
l-€e+e2 tt'>0 —/log 1/e—(t+t")

@ 2 \log 1/e-2Ap
> — / #(z)dz - // e dG()dG () — |Au)®|.  (2.53)
1-€e+e2 —Vlogl/e-2Apu t'>0

B(E(O]Y))* = /

Inequality (a) holds because for |z| < v/log 1/e,
e/ etz—édG(t) = cer? / e_%(z_t)sz(t) < eer? < ez,

To obtain Equality (b) we do the following simple calculations:

) 2

f“”"?dG(r)) o(2)d

/||m(/ ‘ 2)dz
i e e ”dG(r)dG(r)]m )d
-/Izlﬁx/bg—l/e[// ¢ z)dz
= et L ey ]dG dG(t
// lm N R 2|dG(ndG ()

ﬂ [ Vlog 1/e~(t+t") 1
= 1t e / PR dz] dG(1)dG(t)
Vlog 1/e—(t+1") \/_

Inequality (c) holds because el < 1 and suppG C [-Au, Au]. Inequality (d) is due to
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the fact that suppG C [-Au, Au] and f \/_‘logl/e ¢ ¢(z)dz (as a function of a) is symmetric and

decreasing over [0, ). To continue from (2.53), we further lower bound //t 50 e dG(1)dG(1').

,lzd

To simplify notation, define two random variables ¢, t G. We have

// tt'e" dG(1)dG (1) = E[tr' e Ip50)]
1’ >0
= Z Ek‘ (1) (Ly=0.50) + L1<0.<0))

k=0

- 1 4 4
=Z — (E[tk+11(t>0)] CBL()* T ps0)] + B[ <0)] - BL(2 )k+ll(z'<0)])

o 1
=Z ] ((Etk+11(t>0))2+ (Bt I(1<0)) )
k=0
B!
= > = (@ 10+ Bl 1<0)?)
k=0
@11 2
> 3" =5 (B ) + Bl <o)
k=0 "
o 1 2 0] 1w 1 k+l ]
== —]Etk+1) > —(E|t])? + = —(Etz) —(EIZEM Etz),
2I;k!(u B3 2 (BIF) = (3 1

where (a) is due to the basic inequality 2(x*> + %) > (x + y)2, and (b) is by Holder’s inequality

(E|t]?)**! < (E|¢|**1)2, k > 1. Combining the above inequality with (2.52) and (2.53) gives

BA(€y, un, 1) =  sup  E(E(6]Y) - 6)?
€l A (enptn)

2 2 242,,2
A A A
En ) Blf? = — 120 gy 2eBif ¢ S0 Hn (2.54)

2(1 - €, + +€,) 1 —e++e

<

= P, (6” 2(1— e, + vey)

Elr|2<py

Vlogl/ep,—2u, A
where A, = z)dz. The results we obtained so far are non-asymptotic. We now
=/ e $G) ymp

make use of the conditions €, — 0, u, — oo, u, = o(y/loge;!) to derive the final asymptotic

result. Under such scaling conditions, it is straightforward to confirm that the expression on the

right-hand side of (2.54) is increasing in E|¢|*> when 7 is sufficiently large (by calculating its deriva-
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tive). As a result,

Ay

1 —e++e

2 2
€2A €A 2
BA ’ ’1 < ( 4 nBn ) 2 nn 2 Hn 4
(€ns tn> 1) €n 2(1 — €, + Ve, Hn 2(1 — €, + Ven)’une
1+o0(1 1+o0(1
= e+ I - LD 20 o)

1 2
= €ty = 5€aHe™ (1+0(1)).

Combing Lemmas 9 and 11 provides the upper bound for the minimax risk:

1
RO (ky, Tn), o) < na,f(enp,% - Eegp%e“zl(l + 0(1))).

Lower bound

Recall that in the lower bound derivation for Theorem 6, in Section 2.5.5, the proof is based

Mn,m

< which is first introduced in

on the independent block prior /8 with single spike distribution 7
Section 2.5.2. Since the spike locations are at +u,, which are contained in [—-Au,, Au,| for any
A > 1, this implies that supp 7/8 € ®4(k,,, u,) as well. As a result, the proof in Section 2.5.5 also
works for the new parameter space @4 (k,,, u,) and it yields the same lower bound:

1
RO (kn, ), ) = no(east2 = Seduet (1 +0(1)).

2.5.7 Proof of Proposition 3

Comparing the results in Propositions 1 and 3, we can see that the supremum risk of optimally
tuned soft thresholding has the same second-order asymptotic approximation in Regimes (I) and
(II). Thus, the proof of Proposition 3 shares a lot of similarity with that of Proposition 1. For
simplicity we will not repeat every detail. Referring to the proof of Proposition 1 in Section 2.5.3,

the key is to obtain the accurate order of the optimal tuning A, and evaluate the function value
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F(A.), where we recall the definitions: A, = argmin ., F (1), z ~ N(0,1) and

F() = (1 - €)Eg(z, ) + B (s (n + 2, A) — p)*.

‘We first address the order of A..

Lemma 12. Consider €, — 0, u,, — oo, u,, = o (\/log 6,71), as n — oo. It holds that

i, Ha 2 1, Ha
log2e,” + 5 2loglog - < Ay < logle,” + ER (2.55)

n

for sufficiently large n.

Proof. This lemma is an analog of Lemma 4 (comparing Equation (2.18) with (2.55)). The proof
is thus similar too. We will skip equivalent calculations and only highlight the differences.
First, we show that d.u,! — oco. Otherwise, A,u,' < C for some constant C > 0 (take a

subsequence if necessary). Then when n is large,

F(A) = (1 - €)BEiz(z,As) = (1 - €,)Eis(z, Cuy)

(L+(Cun)?) ) ¢(2)dz — Cund(Cpiy)
fin

=2(1 - &)

4+o0(1 b
@ 2490 sy Y e = Flroo),

Hn

where (a) is by the Gaussian tail bound, and (b) is due to u,, = o (\/log €, 1). The result F(1,) >

F(+00) contradicts with the optimality of A..

Second, we utilize the derivative equation F’(4,) = 0 in Equation (2.23) to obtain more accu-

rate order information of A.. The results u, — oo, i, — oo imply that 1, — o0, A, — u, —

oo, A i, — oo. This is all needed to obtain Equation (2.24) and Equations (2.27)-(2.28). As a
result, Equation (2.29) holds here as well:

2+ 0(1) = €upnds exp(dupty — /,L%/Z). (2.56)
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To reach (2.55) under the scaling u,, = o(+/log €; ), the rest of the argument is exactly the same as

the one in the proof of Lemma 4 . O
The next lemma characterizes F'(A.).

Lemma 13. Consider €, — 0, u, — oo, u, = (ylog 6,1_1), as n — oo. It holds that

11

2
F(A,) = e, — exp [—5/7 (log ei) (1 +0(1))] )

Proof. This proof deviates a bit from the one of Lemma 5. We will more directly utilize the order
information of A, proved in Lemma 12 to calculate F(4.). Before that, we need a refinement of
(2.56). This is achieved by refining Equation (2.24) and Equations (2.27)-(2.28) with higher-order
approximations:

1+0(17%)

A, /A P+ (L) = (),

*

o0

—¢ (A = pn) + s / ¢(z)dz =

/l*_ﬂn

Hn As + 0(/1;])
A= n (A — pn)?

¢(’l*__lln)’

(o)

O + ) + A, /

Aty

¢(2)dz =0 (%) ¢ (As — ).

Plugging the above into Equation (2.23) and arranging terms gives

e/l*,un—%’z1 €n,un/lz 1= (I-e&)(1+ 0(/1;2)),[1,, _
2(As = pn) fin = (A = )2 (A + O(A31)
A (A _,un)_z"'o(/l;zﬂn) 1 +o(1)
o — (e = )2+ O(ATY)  Aupin

, (2.57)

where in the second equality we have used €,42 = o(1) and A7y, = o(1) which are implied by
the order of A, from Lemma 12.

Now we are ready to evaluate F'(1.). We first use Gaussian tail bound to approximate the three
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expectations (i.e. Equations (2.20)-(2.22)) in the expression of F(4,) (i.e. Equation (2.19))

2
EA2(z, 1) = %W )

) 2
Bis (g 4 2. 1.) = (+0—“)3¢u ~ ),

2 2
By +2..10) = (+0—“)3¢u ~ ).

Using these three approximations in Equation (2.19), we obtain

4+0(27%) 1+0(2;%) 2+0(1;%)
F(A) = (1 - 6) 32 (L) + €ntid — 2enttn———"$(As — ttn) + €n o2 $( s~ i)
* (As = tn) (As = )
—44+0(€ + A2 2 A
— fn,u,% _ ¢(/1*) (En * ) + €Enln > . e/l*/.tn—% 1 + 0 ( )
u3
We further replace e*#2~2" in the above with the result from (2.57) to have
~4+0(e, + 272 4
F(L) = ety — (L) - (Z " - + ( )

A3 AL (A — ) Ay

s _4ro(l) & g

= €My, — ,_27T /14

(@)
= €, —114+0
“ :un ¢( )/13 (/l Hn) * (,Un

n

2
o) 2 [_li (10g el) (1 +0(1))] :

Here, to obtain (a) we have used €,12 = 0(1) and A7 'y, = 0(1) implied by Lemma 12; (b) is due
m|

to the order A, = ;' log e, ' (1 + 0(1)) again from Lemma 12.

Lemma 13 readily leads to the supremum risk of optimally tuned soft thresholding

2
11 1
inf sup Egllfis(y,4) — 8|5 = nor F(L) = noy | €uz — exp [ -5 (log —) (1+0(1)) ] )
00k t) 2\ T &
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2.5.8 Proof of Proposition 4

The proof of this proposition is similar to the proof of Proposition 2 presented in Section 2.5.4.
Hence, for the sake of brevity we adopt the same notation from Section 2.5.4 and only discuss the
differences. If Ry (©(k,, 7,), 0,) denotes the supremum risk of optimally tuned hard thresholding

estimator, then we will have
Ry (®(kp, 1), 07) = 02 - Ryp(®(ky, ), 1). (2.58)

Without loss of generality, let o5, = 1 in the model. As in the proof of Proposition 2, we obtain
a lower bound by calculating the risk at the following specific value of 6 such that 6, = u, for

i€{l,2,...,k,} and §, = O fori > k,. We have
Eollin (v, ) = 0113 = n|(1 - €)ru(,0) + &rp (A, ) |- (2.59)

To evaluate inf,-0 Eg||7g(y, 1) — 0 ||>, we consider three scenarios for the optimal choice of A,,,
denoted by A;,.
* CaseI A, = O(1): In this case, A, < ¢ for some constant ¢ > 0. Using the same argument
as the one presented for Case I in the proof of Proposition 2, we have
inf Byllitn (y, 1) = 0113 = 2n(1 = &) (1 = &(c)).
Since €,u2 — 0 and (1—¢,)2(1-®(c)) = (1), we conclude that inf - Eg|l7u(y, ﬂ)—QH% =
w(ne,u?).
e CaseII 1, = w(1) and A}, = O(u,): Let c; be a fixed number larger than 1. There exists c¢;

such that for large enough n, ¢1 < 4;, < cou,. We thus obtain

inf Byllitn (y, 1) = 0113 = gl (v, 47) - €l3

66



= | (1 - €7 (4, 0) + €ara (45, )|
> n(1 - e)ru(4;,0)

= n(1 - &) [24,6(4;) +2(1 - O(1;))|
> 2n(1 - e)A;8(4;)

> 2n(1 - en)c—le_ P

V2r

2
> nej?,

where the last inequality is due to the scaling u, = o(+/log€; ') in the current regime.

* Case Il 17 = w(u,): In a similar way as in the proof of Case II of Proposition 2, we can

conclude that

inf Eyl|Ay (v, 1) — 0]
inf ollim(y, ) =63

an/«‘% + kn(/lj; —Hnt 0(/12)) : ¢(/12 — ) + kn(/lj; + Up + 0(/1;)) ) ¢(/l: + )

2 2
>k, = ne .

Note that since the three cases we have discussed above cover all the ranges of A;,, we conclude

that

Ri(© (k. ). 1) 2 inf Byl (y. ) = I3 2 neupy.

The proof of the upper bound is the same as the proof of the upper bound for Proposition 2 and is

hence skipped here.
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2.5.9 Proof of Theorem &

Based on the scale invariance property of minimax risk mentioned in Section 3.4.1, it is equiv-

alent to prove

R(O(ky, ptn), 1) = 2ne, loge, ' — 2ne,v,\2log v, (1+0(1)),

where v, = v2loge;!. As in the proof of Theorems 5 and 6, we first obtain an upper bound
by analyzing the supremum risk of hard thresholding, and then develop a matching lower bound
via the Bayesian approach. Before proceeding with the proof, we cover a few properties of the

one-dimensional risk function of hard thresholding that becomes useful in the proof of Theorem 8.

Properties of the risk of hard thresholding estimator

Consider the one-dimensional risk of hard thresholding for 4 € R and 4 > 0,
. 2
re(A ) =E(Au(p+z,0) — )", z~N(O,1).
The following lemma from [3] gives simple and yet accurate bounds for rg (4, u). Let

min{rg(1,0) +1.2u% 1+ 4%} 0<u<2A
FH(A’/'[) =
L+ 21 - @(u - 2)) Mz A,

where @(-) is the CDF of standard normal random variable.
Lemma 14 (Lemma 8.5 in [3]).

(a) For A > 0and u € R,
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(b) The large u component of vy has the bound

, 22 ifa>\2n
sup (1 = @(u—4)) <

Pl .
H= A2 ifax1l.
Our main goal in this section is to derive accurate approximations for sup .o ru(4, 1). The

next lemma provides an accurate characterization of the risk for two different choices of u. The

importance of these choices becomes clear when we analyze sup,,» 7 (4, 1) later in this section.

Lemma 15. As 1 — oo, the risk of the hard thresholding, ry (A, p), satisfies

ra(A,2) = ! +20(1)/12, r(1, A =2log 1) = 22 = (2V2 + 0(1))A4/log A.

Proof. First note that the risk of hard thresholding can be written as

) =42 (D4 - ) — (-2 - )] + /| ot
ZHu|>

=1 = 1) [®A~p) = @(=A = W] + 1+ (A~ @) (A~ p) + (A + @)$(A+p). (2.60)

Let u = A —+/2logd. As 1 — oo, we analyze the order of each term in the above expression:

rg(A,4—+/2log )
I+o(1)
=[(1=+2log)*-1]- |1 - V21 1
[(a ogd)”—1] ( mqb( Og/l)) +
++/2logd- ¢(4/21og ) + (24 — 4/21og 1) p(24 — /2 1og A)

=(a- J@)2 +0 ) =2~ (2V2+ o(1)2ylog

A
vlog A

where in the first equality we have applied the Gaussian tail bound: 1 — ®(x) = (1 +o0(1))x '¢(x)
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as x — oo. To prove the first part of the lemma, let 4 = A. From (2.60) we have

re(, ) = (A2 -1) (% - @(-2&)) +1+22¢(22) = 22/2 (1 +0(1)) .

We now obtain the asymptotic approximation of sup - 7 (4, ) in the next lemma.

Lemma 16. As 1 — oo, the supremum risk satisfies

sup ri(A, 1) = 22 = 2V24/log A + o(A4/log 2).

1=>0

Proof. Define

w* =argmaxrg (4, u).
1=0

Comparing the upper bounds from Lemma 14 and the risk at 4 — y/2log A in Lemma 15, we
can conclude that the superemum risk is attained at u = u* < A (when A is large). To evaluate
rg (4, u*), itis important to derive an accurate approximation for y*. We first claim that y* /1 — 1.
Suppose this is not true. Then u* < cA for some constant ¢ € [0, 1) (take a sequence if necessary).

According to Lemma 14 (a), for large enough values of A, we have
ra(A, p") < Fr(,u*) < 1+ (uh)? <ér®, ée(0,1).

However, the above upper bound is strictly smaller than the risk rg (A, 4 — 4/21log A1) calculated in
Lemma 15, contradicting with the definition of y*.
Second, we show that A—u* — oo, while (1—u*)/A — 0. Otherwise, it satisfies 0 < A—u* < ¢

for some finite constant ¢ > 0 (take a sequence if necessary). Then from (2.60) we have

ra(4, 1) < ®(c)A* (1+0(1)) .
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Comparing this with rg (4, 4 — m) from Lemma 15 leads to the same contradiction.

Third, we prove that for any givenc > 1, A—u* < c\/m for sufficiently large A. Otherwise,
there exists some constant ¢ > 1 such that A, —u;, > cm for a sequence A4,, — coasn — oo.
As a result, using Equation (2.60), and the result proved earlier that A,, — u;, — oo, we obtain that

for large n,

P (s 1) < () + 1 (A = 1) (A — 1) + (A + ) (A + 12

2
< (/ln — 2 log/ln) +0(1) = 22 = (2¢ + 0(1) A2 Tog Ay

Again, comparing the above with rg (A4, 4, — M) =2-(2+ 0(1))/1n\/m in Lemma
15, we see that rg (A, uy) < ra(d,, 4, — M) when n is large, which is a contradiction.
Finally, we prove that (1 — u*)/ m — 1 as 4 — oo. Suppose this is not true. Given
the result proved in the last paragraph, then there exists some constant ¢ < 1 such that 4, — u;, <
cm for a sequence A, — oo as n — oo. Using Equation (2.60) and Gaussian tail bound

1 -d(x) = HOT(I)QS()C) as x — oo, we have

VH(/ln’ ,u:;) = (/-1;;)2 [q)(/ln - /J;;) - q)(_/ln - /’l:’;)] + 0(1)

< ()2 @ (4, — ) +O(1)

a2 _1+0(1)
= (Kp) [1 )

¢(An = ) | +O(1).

_ %
n n

Because ¢(A, — u;) = 1/V2m - exp (—2021%1”) = 1/(\/277/122), we continue with

(A, —cy2log2,)> 1
cy/2log A, V2728

+0(1)).

ra(Ans 1) < (3)* = (L+o(1)) +0(1)

2
/lZ—C
S /12 _ n

1
vlog 4, ' (20\/7_T

Note that for ¢ < 1, /lfl_cz/\/log An = w(Ap/logA,). Hence ry (A, 1)) < ra(An, 4, —+/21log ;)

when n is sufficiently large. The same contradiction arises.
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Having the precise order that u* = A—(1+0(1))+/2log A, we can easily evaluate sup ;- 7 (4, 1)
from (2.60): as 1 — oo,

rg(4,4—+/2log )

IA

sup }"H(/l, ,Lt) = I"H(/l, /l*)
u=0

= (W) (@A — ') = @(=2 — ")) +O(1)
< (u)2+0(1) = (A= (1+0(1)42log1)> +0(1)
= 22 = 2V224/log A + 0(14/log 2).

Combining this result with Lemma 15 completes the proof. O

Upper bound

We are in the position to compute the supremum risk of Gz (y, A,) with 2, = 0,\/2loge, ! in
Theorem 8. First of all, due to the scale invariance of hard thresholding, the supremum risk can be

written in the form:

ky
R 2 ~
sup Eg”nH(y,/l,,) - (9||2 = 0',3 (n—ky)rg(vy,0)+  sup Z rg (v, Hi)],
0€0 (kn,mn) 10113 <knpz; i=1

where § € R* and v, = y/2loge,!. Given that the one-dimensional risk function rg (v,, ;) is

symmetric in g;, if its maximizer satisfies arg maxg s ri(Vn, 0;) < pp, then we will have

A 2
sup  Eolliu(y.4n) = 0||, = o | (n = kn)re (v, 0) + kyy sup reg (v, i) |. (2.61)
0€0(kp,Tp) u=0

This will allow us to focus on finding the supremum risk of hard thresholding in the univariate
setting that we discussed in the last section. In the proof of Lemma 16, we already showed that
arg maxg ra(ve,0;) < v, when n is large. It is then clear that in the current regime u, =
(,u(\/210g7a5,;1 ), it holds that arg maxg - ru (Va, 6;) < u, for large n. Therefore, the supremum risk

of hard thresholding over ®(k,, 7,) can be simplified as in (2.61). We can apply Lemma 16 to
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continue from (2.61):

sup  Egllin (v, ) - 6|5

9€®(kn77'n)

=noy | (1= €)ru (v, 0) + € sup ri (v, 1)
1=0

= no;f [(1 —e)rg(vy,0) + ¢, (v,% - 2vy\/2log v, + o(vy4/log vn))] , (2.62)

where v, = v/2log e, !. We now identify the dominating terms in the above expression. First,

rg(Vi, 0) = 2/mz2¢(z)dz =2vpp(vp) +2(1 = ®(vy)) = (2+ 0(1))vup(vi) = O(€uvn),

n

(2.63)

where the last two equations are due to the Gaussian tail bound 1 — ®(x) = 1+(’T(l)qﬁ(x) as x — oo

and v,, = y2loge, I Therefore, from (2.62) we obtain

sup  Bglliu (v, ) - 9”;
0€O(ky, 1)

= no;% [envﬁ —2€,vp\21log v, + o(€,v,+/log v,,)]
= ncr,%en (Zlog e,jl - (2+o0(1))vyy2log vn) .

This completes our proof of the upper bound in Theorem 8.

The sharp upper bound we have derived is from the hard thresholding estimator 7z (y, 4,) with
tuning A4, = 0, v,. To shed more light on the performance of hard thresholding, we provide a
discussion on the optimal choices of 1,,. The lemma below characterizes the possible choices of

A, that leads to optimal supremum risk (up to second order).

Lemma 17. Consider model (2.1), and parameter space (2.6) under Regime (111), in which €, — 0,

Up — 0, u, = w(logel), asn — oo. Let v, = \2loge,!. Consider the tuning regime
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1

Ayo, " — oo and /1,,0'”_1 < un. If A, satisfies:

(v2 = ciloglogv,) < 20,2 < (V2 + cavun2log vy)

when n is large, for some constant ¢y < 1 and every cy > 0, then

inf  sup Eg”ﬁH(y,/l) - 9||§ = sup Eg”ﬁH(y,/ln) — t9||§ +0 (no;%envn\/log vn) . (2.64)

4 0€® (kp,tn) 0€0(kn,7,)

On the other hand, if (v} — ciloglogv,) > A20,2 for a constant ¢; > 1 or if 20,2 > (V2 +

covar2logvy) for some ¢y > 0, then the conclusion (2.64) will not hold.

Proof. Denote A, = 1,0, !. Given that we focus on the tuning regime A, — oo and A, < u,, the

result (2.62) continues to hold here:

A 2 5 = = 5 = 5
sup  Eo|[fu (v, 2n) = 0||, = noy - [(1 — €)ru(d,,0) + en(ﬂﬁ —21,4J21og A, + 0o(1, logxln))].
0€O(ky,1)

Hence, we define

AQ) = (1= €)ry(1,0) + &, [az _24y21og 1+ 0 (/l Jog /l) ] (2.65)

where the notation o(-) is understood as 1 — oo. We proved before that A(v,) = €,(v2 — (2 +

o(1))v,+/2l0og v,). Now we consider four different regions for 1, (when n is large):

s Case A2 < v2 —2clog(v,/V2r) for some constant ¢ > 1. Equation (2.63) implies

~ - 1/2
A(A,) >2(1 —€,)rp(1,,0) > (1 —€,)ry ((v,% -2c log(vn/27r)) , 0)

—2+0(1)) (v,’f ~2¢ log(vn/2zr))]/2 - ((v2 ~2¢ log(vn/\/Zn)) 1/2)
2 Vn

2+0(1) vn—2¢log 7Y o

= ~ Vn€Xp| — 5 ) =0 (en(vn)l ) .
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Note that A(1,,) = w(A(v,)), and hence A,, does not satisfy (2.64).

s Case v2 — 2cq log(v,/V2r) < 12 < v2 — cyloglog v, for any constant ¢; < 1 and some

constant ¢; > 1. Since 12 < v2 — ¢, loglog v, the same argument as in the previous case

gives

(1= e)ru(1,.0) > 2 i%l) (envn (\/log v,,)cz) . (2.66)

Moreover, using the upper and lower bounds we set for 1,,, we obtain

e |2 = 20,2108 4, + 0 (Zm/log a))
>€, v,zl —2c1 log \;/T"_ - 2vp,\2logv, + o0 (vnvlog v,,)]

T

=€, v,% —2vp,\2logv, + 0 (vn\/log vn)

(2.67)

Combining (2.66)-(2.67) yields

AL 2 [V + v 2logva( -2+ 0(1) + 2;351)(\/@)02_1)].
/s

Since ¢, > 1, it is clear that A(1,,) — A(v,) = Q(e&,vn+/log v,,). Therefore, this choice of A,

does not satisty (2.64).

e Case v%—cl loglogv, < Zfl < v%+czvn\/210g v, for some constant ¢; < 1 and every ¢, > 0.

With the lower bound of 1, similar calculations as in the previous two cases lead to

1/2 c
(1 -€)ru(1,,0) <ry ((v,% —c1 loglog vn) / ,0) =0 (env,, (\/log vn) 1) .

Furthermore, the upper and lower bounds of A, for some ¢; < 1 and every ¢y > 0 imply that
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A2 —v2 = o(vyrflog v,). Thus,

€, (Zfl —21,4/2log A, + 0 (imﬂlogxin)) < € (v,% —2vp\2logv, + 0 (vn\/log vn)) )

Putting together the above two results into (2.65), we have

A(L) <© ( (@)"‘) e, (V,z _2y,\BTogvs + 0 (Vn@))
= & (2 - @+ o(D)v2logy,)

Thus, A(1,) < A(v,) + o(€,vu/logv,), and A, satisfies (2.64).

Case /ifl > v,% + cvy+/21log v, for some constant ¢ > 0. We only need consider A, = (1+
o(1))v,, because for larger values of 1,, (2.65) implies that A(1,)/A(v,) > 1 for large n.

When A, = (1 +0(1))v,, we have
A(d,) = € (/i% —21,4[2log A, + 0 (/im/Zloan))
> €, ( 2 _(2-c)va2logv, +0 (vn\/210g vn)) :

Since ¢ > 0, the above implies that A(1,) — A(v,) = Q(e,v,+/logv,). Hence 1, does not
satisfy (2.64).

Lower bound

As in the proof of lower bound in Theorems 5-7, we will apply Theorem 11 and utilize the

independent block prior that is first described in Section 2.5.2. To simplify the calculations a bit

here, we will use the block prior with one minor modification: adopting the notation from Section
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2.5.2, the spike prior n’;’m in use is now changed to a one-sided spike prior:
1w o) = ey = A :
ng (0Y) =pe)=—, 1<i<m, (2.68)
m

where u € (0, u,]. The key is to calculate the Bayes risk B(ﬂg"m) and obtain a result like Lemma

3. To this end, we first mention a lemma that will become useful later in the proof.

Lemmal8. Letzy, ..., 2, iid N(0,1) and v,, = \/m. Suppose 2u > vy, and 6 < ©(vy, — ).
Then
m
]P m_le_%#Z Z e#zj < 5 1 1 1 1 e_(#_vm)Z.

< +
j=1 mvm \/ﬂ [(I)(Vm — /.l) — 6]2 2'“ ~Vm

Proof. Define the notation:

ij = e,uzj’ ij = ijI(ijSe}le),

m m
Sm:Zija Sm:Zij,
Jj=1 j=1
am =ES,, = me“z/zcb(vm — ).

-1 L2 L . 1,2 am — Sm
P(m Lemam Ze“zl 35): P{am—sz[@(vm—u)—d]-meﬂ‘}: P( S Zt),

where ¢ := [dD(vm —u) — 6] - me KV Clearly,

Sm_am

eHVm eMVm

P(“’"_S’“ Zt) sIP(Sm;tSm)+P(

For the following calculation, we will use Gaussian tail bound 1 — ®(x) < x !¢ (x) for x > 0. To
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obtain a proper upper bound for the first term, we note that

P (Sm * Sm) <P (UTzl{ij # ij}) = ZP (me > etm)
=1

<L 2 v\ m 3 1
:]Z:;P(e“ > et )-m(l—@(vm))saqﬁ(vm)—mvm.

For the second term, we use Chebyshev’s inequality and the fact that a,, = ES,, and Var(X) < EX?,

S, —a 4 _ o
P( ";Wm’" > r) <172 mE(S,, — am)® < (tem) ZZEXij
j=1
< 1 1 1 e_(u_vm)Z.

- [CI)(vm — i) —6]252:“_""1

The last inequality is based on the following calculation:

_ 2
BR2, =B (450 g cprom) ) = / g (2)dz = (1 - @24 — V)
2<Vm

<L 1 ezﬂz—%(zﬂ—"m)z — L 1 e—%vf,,+2,uvm
= 2R 2 — Vm V27 21 = Vin ’
and
1 1 1.2
(te/”'")‘zm . e‘i"m+2ﬂ"m
V27T 2/J ~—Vm
= 1 5 %e—ﬂsz 1 e—%v,z,,+2,uvm
[®(viy — ) — 5] ™ V2 21 = Vi
_ 1 1 1 e_(ﬂ_vm)z‘

[® (v — 1) = 6]° V2 21 =

We are now ready to calculate the Bayes risk B(n’S"m) in the following lemma.

Lemma 19. Let v,, = \/2logm and u = vy,—1 — \/210g v;—1. As m — oo, the Bayes risk B(ﬂ'g’m)
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satisfies
B(nly™) > vE = 2vm21og vy (1 +0(1)) .

uom

Proof. For the one-sided spike prior ¢

introduced in (2.68), doing similar calculations as in the

proof of Lemma 2, we can obtain the expression for the Bayes risk:

B(ﬂ'lsl’m) = ,UZEuel (pm - 1)2 + (m - I)NZE,uegp; 2 /12 - 2/~12Euelpma (269)
where p,, = Z’fw]"’f s Epe, () is taken with respect to y ~ N (uei, I) and E, (+) fory ~ N(ue, I).

Now the goal is to upper bound E ., p,,. We have

eH(utzr) m — 1)~lear*+ua
E,uelpm = EZ 1z N ﬂ(ﬂ+21) = ]E 1 lyzg—ﬂz 1 _luz 2. s (270)
j#1€ e (m—1)"le2 L (m—1)"te 2k 3 eHo
where z1,...,2n itd. N (0, 1). Define the following two events:

1,2 1,2 X
Fi= {(m — l)e 2K 7H > M}, Fr = {(m — 1) lem2# Z et > 5},
J#1
where 6 and M are two positive constants to be determined later. Since the ratio inside the expec-

tation of (2.70) is smaller than one, and on the event 1 N % it is smaller than —~=, we can continue

M(S’
from (2.70) to obtain

1 C C
Bye,Pm < 37— +B(F) + B(F5). (2.71)

Hence, we aim to find upper bounds for P(,°) and P(F;"). For the first probability, using Gaussian

tail bound that 1 — ®(x) < }Cqﬁ(x) for x > 0, and that e'mi/? = m — 1, we have

POFE) =P ((m = D45 < )

1 | )
:P(““*‘“ ) 1‘@(‘;1@‘4*5(%—1‘”)
< 1 ! ! [ u?) -1 Mr U
= — 0 - ,
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as long as v — u? > 2log M. Regarding P(F5), if we limit our choice of 0 < § < @(vy—1 — ),

then from Lemma 18,

1 1 N 1 1 1
\/EVm—l \/ﬂ [(I)(Vm—l — ) - 5]2 2U = Vi1

B(75) < e =y,

Now we set M = v,,_; and recall u = v,,,—; — \/2logv,,—1. We will show that U; = o(vm )

and U, = 0(v;1_1). First, for Uy,

2
—uz)—logM}
1 2
:_2[ 2vp- 1\'210ng 1 —2log vy 1)_10gvm 1]
= —2 [vm_n/Zlog Vm—1 — 2log vm_l]

2
v 2V2v,,— 2
= m—;llog Vin—1 — # (log vm_1)3/2 +— (log vm_1)2 > log V1 +0(1),
7 7

where in the last inequality we used u? < v _, (for large m). Therefore,

2
L (L2 2y
o] o),

and

1 1

logM + 5, ( 2) . (vm_1\/2 log v;y—1 —2log vm_l)
210g v, 1\
ngm_l_&) — (1),
Vv

m—1

==

In combination,

Uy <o(l)-v, (1 +o(1)) = o(vm - (2.72)

For U,, we set ¢ to be any fixed constant between (0, 1). Since v,,—; — u — +oo, it holds that

®(vp_1 —p) —6 > & for some constant § > 0, when m is large. Also, we have the identity
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e~ (Hrvm-1)" = g=2log V-1 = v;lz_l. So the second term in Uj is of order O(V;l3_1). Thus,

1+o(1)
Uy=—=. 2.73
> Py (2.73)

Note that we have set M = v,,_1. Hence, 1/(M - §) = O(1/v,;,—1). Combining (2.71)-(2.73), we

have

Euelpm < O(I/Vm—l)~

Finally, the above together with (2.69) shows that

B(]Tgt’m) > u? - 240 (vr_nl_l)
= v,zn_l — 2Vm_1y210g Vi1 (1 4+ 0(1))
=2 = 2vu210g v, (1 +0(1)).

Now, we aim to apply Lemma 19 to derive the minimax lower bound. First note that in the
current regime €, — 0, u, = w(+/loge; "), the choice of y with m = n/k, = €,! in Lemma 19
satisfies u < u,, when n is large. Thus, the constructed block prior is supported on the parameter

space O(ky, u,) so that we can use Equation (2.13) and Lemma 19 to conclude

R(®(ky, ), 03) = 0 - R(O(kns ), 1) 2 ko - B(rs™)

> fpor? - (v,i 22 Tog v (1 + 0(1))
= no;%(2en loge,! —2e,vuy21log v, (1 + 0(1)),

where v,, = \/2logm = 2log e, .
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2.5.10 Proof of Proposition 6
Roadmap of the proof

Propositions 1 and 3 have derived the supremum risk of optimally tuned soft thresholding in
Regimes (I) and (II) respectively. Proposition 6 continues to obtain it in Regime (III). Hence, we
will use some existing results from the proof of Propositions 1 and 3 to simplify the present proof.
First of all, referring to Equations (2.58)-(2.17) in the proof of Proposition 1, the supremum risk

can be expressed as

. N 2 . A A
inf sup Eg|fis(y, ) - 6|, = noy - inf | (1 - &)Efy(z, ) + &E@s(z + ptn, 1) = )|,

g 96@(/{",7',1)

=F(A)

with z ~ N'(0, 1). Define the optimal tuning A, = arg min, F'(4). Then it is equivalent to prove
F(A,) =2¢,log e,jl —(6+0(1))e,logv,,

where v, = v2loge;,!. To reach the above, we will first find the tight upper bound for F(A,) in
Section 2.5.10, and then obtain the matching lower bound in Section 2.5.10. Before we do these
two parts, let us prove a lemma that provides an approximation for F'(1). This approximation will

help us in the calculation of both the upper and lower bounds.

Lemma 20. Consider €, — 0, u, = w(\/loge, '), asn — 0. If A — o0 and p, — 1 — +oo, then

F() = 2(1 - &) [(1+ (1 - 0(1) - ()| + €, 42+1—%¢(M—4) .

Furthermore, when A is large, it holds that

C(1) < F(A) <D,
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where

C):=2(1-¢) - (% - %) \/%_ﬂen ez (2.74)
+ € AHv%wn—ﬂ)],
and
D) =& {(1 - en)\/%/pe%(vﬁ—‘z) + A%+ 1} . (2.75)

Proof. Throughout the proof, we will use the Gaussian tail bound in Lemma 1 to do calculations.
With the expression of F (1) calculated in Equations (2.19)-(2.22), we have that as 4 — oo, u,, —

A — 400,

FQ) =2(1 - &) |(1+ (1 - (1) - 16D |
ten {(ﬂ2 1)+ (2 = 2 = D1 =@y = ) = (i + D1t = V)|

G == 1) (1= @+ ) — —A)¢(un+ﬂ)]}

(2+0(1))un

A2+1-
(,un_/l)z

—2(1-¢,) [(1 + 22 (1 - D)) - /ld)(/l)] +e,

¢(/~1n - /1)] )

where in the last equation we have used 1 — ®(x) = (}C - l+;’3(1)

)¢(x) as x — oo,

As A — oo, we obtain

(1+ %) (1 - (1)) — A¢(2)

=[(1+2%) LI R o
B B ERR R LA &

$(1)+0 (%)

2 12 90 #()
:(E_EJrﬁ)W)*O(?)'
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Thus,

2 12 1 1 2 ))uy,
% ()) R [y QoW

FQ=2(-¢) |=-=+=+0|=]|| —
(1) =2(1 - &) (ﬂg B Fel ) (ftn = 2)?

As a result, it is straightforward to verify that C(1) and D () defined in (2.74)-(2.75) provide

lower and upper bounds for F'(1). O
Upper bound
Consider A = v% —6logvy,, then 1 — oo and y, — 4 — oo. From Lemma 20,

F(A,) < F(1) < D)

=€y {(1 - en)ie%[(\’%—/lz)—6log/l] +/12 + 1}

V2r
=€, {4 J:/%l) +%+ 1} = €, — 6¢,log v, (1 +0(1)). (2.76)

Lower bound

We now derive a matching lower bound for F'(A.). This requires a careful analysis of the order
of the optimal tuning A.. We break it down in several steps:

Step 1. First, we show that A4, — oo, y, — A, — +co. We will need the following lemma.

Lemma 21 (Lemma 8.3 in [3]). Define rs(A, u) = E(fis(u+z, A)—p)?, and Fs(A, u) = min{rs(1,0)+

/12, 1+ A%}. ForallA >0 and u € R,

1. _
Ers(ﬂ,u) <rs(A,u) <rs(A, p).

Suppose A, — oo is not true. Then A, < ¢ for some finite constant ¢ > 0 (take a subsequence
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if necessary). Then, from the definition of F'(1,) we have
F(A) 2 (1 - )ERX(z,4) = (1 - )E2(z ¢) = Q1) = (),

which contradicts with (2.76). Further suppose u, — 1. — +co is not true. Then 4. > u, — ¢ for

some finite constant ¢ (take a subsequence if necessary). From Lemma 21 we obtain for large n,
1 . 1
F(As) > €rs(Au, un) 2 Efn mln(#%’/ﬁ) 2 _En:u% = w(EnV%)’

where we used y1, = w(y/2log€;') = w(v,). The same contradiction arises.

Step 2. We next claim that 1. = (1 + o(1))v,. Otherwise, 1. = (¢ + 0o(1))v, for some constant

¢ # 1 (take a subsequence if necessary). For ¢ > 1, given that we have proved 1, — oo, u,, — 1. —

+00, we can apply Lemma 20 to reach

(2+o0(1)un

F(1,) > e [22+1-
(n — /l*)z

(kn = 1) | = @2 (1+0(1)) = (¢ +0(1)) - &,
This contradicts with (2.76). For ¢ < 1, we have the same contradiction by applying Lemma 20
again:

4+o0(1)
/13

k

F(L) = ¢(L) + € d2(1 +0(1) = w(ev;).

Here, the last inequality holds because 4. < (1-7)v, for some constant y € (0, 1) when n is large,
so that

72

1 2 1 (1-y2 » 1 2
-y v 2
2 Vn =T = w(ev?).

—e 7 €y —=¢€
(1 =y)3;

3 2 T 33¢
A3 (I =y)v;

Step 3. Finally, we prove that v2 — A2 = (6 + o(1))logv,. Suppose this is not true. Then

v2—2%2 = (c+0(1))log v, for some ¢ # 6 (take a subsequence if necessary). Since we have proved
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A = (1+0(1))v,, we can use the lower bound in Lemma 20 and simplify it to

(4+o0(1))e, 20—

Var A

F(1,) =2C(A,) =
For the case ¢ > 6, since
ée%(vﬁ—di) = 30A-Ai-Glogv)3log  _ ¢
with & = <%0 5 0, (2.77) implies that
F(4,) > O(e5) + €,v2 — (c + 0(1))e, log vy,

contradicting with (2.76). Regarding the case ¢ < 6, (2.77) directly leads to

F(1,) > €,v2 = (c+0(1))e, log v, + (1 +0(1))ep.

+e,,(/lf+ 1 +0(1)).

(2.77)

No mater what value ¢ € [—o0, 6) takes, the above lower bound is larger than the upper bound in

(2.76), resulting in the same contradiction.

Now that we have derived the accurate order information for A.: A2 = v2 — (6 + 0(1)) log v,,

we can plug it into (2.77) to obtain the sharp lower bound:
F(4,) > €, (V,% —(6+0(1))log v,,).

2.5.11 Proof of Proposition 7

Using the simple form of 7z (y, A), the calculation is straightforward:

n 2
) . ) 1
inf  sup Eyl||lh.(y, Q) — 6’||% =inf sup Ey Z (m)’i - 9i)

/1 06®(kn,Tn) /l 9€®(knsTn) l:l
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n 2

2 2
( . ) 9,~2+( : ) op —1nf/12k"7’%+n0-’%:n0-”6"ﬂ’21.
1+A 1+A 1 (1+2)2 1+ €,

= inf sup
A 0e0(kn,1a) 17
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Chapter 3: SNR-aware minimaxity in sparse linear regression

3.1 Introduction

Consider the linear regression model

y,-:xiT,B+0'zl-, i=1,...,n, (3.1

in which y; € R denotes the response, x; € R” represents the feature or covariate vector, 8 € R? is
the unknown signal vector to be estimated, and finally zy, ..., z, iid. N (0, 1) are standard normal
errors. We are interested in studying this problem for broad range of p considering p comparable
with n, or even larger than n. To ease one of the major concerns that linear regression procedures
remain inconsistent unless p/n — 0, following the rich literature of sparse linear regression [24,

32,34, 5, 6], we consider the sparsity structure of the signal in this paper. Specifically, we assume

that the true regression coefficients are k-sparse:

Be€O(k) ={BeR” Bl <k}, (3.2)

where ||8]|o denotes the number of non-zero components of 8. In evaluating the performance of
estimators, the minimax framework has been one of the most popular approaches, aiming to obtain
an optimal estimator which has the best worst-case performance among all estimators. In other

words, estimators are measured by the minimax risk:

R(®(k), o) :=inf sup EgllB - BII*. (33)
B peO(k)
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However, obtaining the exact minimax risk is mathematically challenging and has remained open.
Hence, researchers have explored approaches that aim to “approximate"” the minimax risk. One
of these approaches is known as the rate optimal minimaxity. To witness the existing results and
clarify the limitations, let us assume that the feature vectors satisfy {x;}_, AN (0, %I ») and are
independent with the noise errors {z;}_,. The noise level o > 0 may vary with the sample size n.

By translating the result of [14] in this setting we obtain
R(O(k), o) ~ ok log(p/k).

where the notation “~" means thatas n, p — oo and (k log(p/k))/n — 0, the ratio R(®(k), o) /(k log(p/k))
remains bounded. Furthermore, it has been shown in the literature [13, 7, 14, 15] that many estima-

tors, such as best subset selection [16, 17], Dantzig selector [18] and LASSO [19] achieve this rate-

optimal minimax criteria, meaning that their risks (under optimal tuning) divided by & log(p/k)

remain bounded'.

Despite the rate-optimal minimaxity of the aforementioned estimators, extensive simulation
results reported in [8, 20] have confirmed that when the signal-to-noise ratio (SNR) is low, all
these estimators exhibit suboptimal performance and adding an ¢,>-squared regularizer can improve
the performance of the estimators. Hence, the rate-optimal minimax results lead to misleading
guidelines for practitioners.

There could be two explanations for the mismatch between the rate-optimal minimax frame-

work and the simulation studies:

* Explanation 1: As is clear, the rate optimal minimax result does not evaluate the minimax
risk exactly. It ignores the constant in the minimax risk approximation and only captures the
rate behavior in view of k£ and p for mathematical simplicity. It is possible that if we calculate
the exact maximum risk for estimators, the differences between constants can explain the

discrepancies between the simulation studies and the rate-optimal minimax results.

'In some of these results, the risk is stated with high probability and the rate is k log p instead of k log(p/k).
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* Explanation 2: It could be that since the minimax framework only focuses on the spots of the
parameter space that are hard for the estimation problem, its theoretical implications will be
different from the simulation studies. Hence, the framework needs to be amended to provide

more informative results.

To pinpoint the correct explanation for the discrepancy between the minimax studies and simu-
lation results, [21] considered the asymptotic framework n, p — oo, k/p — O and (klogp)/n — 0
and tried to find a better approximation of the minimax risk. The result in [21] is based on the
Sorted L-One Penalized Estimator (SLOPE) introduced in [35]. For 4y > 4, > ... > 4, > 0, the

SLOPE is defined as the solution of
N o1 )
PsropE = arg min zlly — Xb||” + A1y |bl(1) + A2|b|2) + - - - + A, |b] (),

where |b|(1) > |b|(2) = ... |b](p) are the order statistics of |b1], |ba|, ..., |b,|. The following result

from [21] aims to provide a better approximation of the minimax risk.

Theorem 12 (Theorem 1.2 & 1.3 in [21]). Assume model (3.1) with random Gaussian designs

{xitl, Hd N (O, %Ip) and parameter space (3.2). Suppose k/p — 0 and (klogp)/n — 0. For
any € > 0,
A pl2
inf sup P( |2|’8 Al >1—e)—>1.
B peo(x) \207klog(p/k)

In addition, fix 0 < g < 1 and set 4; = o(1 + €)@~ (1 —iq/2p), where ® is the CDF of standard

Gaussian. Then, the SLOPE achieves the above asymptotic minimax risk in that:

sup P
BeO(k)

(llléSLOPE - BlI?

>14+3 0.
202k log(p/k) 6) -

In view of the above theorem, we have the following comments.

Remark 2. Theorem 12 does not exactly characterize the minimax risk and the minimax estimator.

However, in spirit, it is similar to the minimax result. Intuitively speaking, it can be interpreted
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in that as n,p — o and k/p — 0, the minimax risk is approximately 202k log(p/k), and that
SLOPE achieves the minimax risk. Hence, as the first contribution of this paper, we prove in the
following theorem for one part of this intuitive statement. Besides, compared to the probabilistic
statement in Theorem 12, we proved in the conventional form of minimax risk as in (3.3), which
alleviates some of the concern that under unrealized rare events, risks of estimators become un-

bounded.

Theorem 13. Assume model (3.1) and parameter space (3.2). Suppose n,p — oo. If k/p — 0

and (k log p)/n — 0, then the minimax risk defined in (3.3) satisfies
R(O(k), o) = 202 - klog(p/k)(l + 0(1)).

Remark 3. Compared to the rate-optimal minimax results, Theorem 12 has the advantage of char-
acterizing the constant of the minimax risk accurately. This is confirmed by Theorem 13 that the
constant is indeed for the minimax risk defined in (3.3). However, it still suffers from the same issue
as the rate-optimal minimax risk. The same estimator is optimal irrespective of the signal-to-noise

ratio. This implies that Explanation 1 is not the proper reasoning.

As will be clarified in this paper, there are two main issues causing the discrepancy between the
theoretical and simulation results: (1) Since we do not impose any constraint on the signal strength,
the minimax framework only focuses on a particular signal-to-noise ratio that makes the estimation
problem the hardest. Hence, the factor of SNR affecting practical results is masked by the mini-
max framework. (2) The approximations we obtain for the minimax risk in rate-optimal minimax
framework, and even in Theorem 12 are not accurate enough for distinguishing performances of
different estimators and hence more accurate approximations are required for this purpose.

To address the first issue, we incorporate the notion of SNR into the minimax framework, and
introduce the notion of SNR-aware minimaxity. We will discuss this framework in Section 3.2.

In view of the second issue of current minimax results, we will consider and analyze a higher-

order expansion of the minimax risk. As will be clarified later, these two changes create a more
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insightful minimax framework that can offer results consistent with the simulation studies per-

formed elsewhere.

3.2 SNR-aware minimaxity

As discussed in the previous section, one of the main reasons of the minimax framework to
produce misguidance for practitioners, is that the signal strength is not controlled and hence the
minimax framework sets the signal strength to a level that makes the estimation problem the hard-
est. As a result, the framework in an indirect way becomes blind to the changes in the signal-
to-noise ratio. To develop the SNR-aware minimax framework, we start by inserting a notion of
signal-to-noise ratio in the minimax setting. To this end, we consider the following SNR-aware
parameter space:

Ok, 7) = {B R Blo < &, 181 < ke}. (34

The new parameter introduced in this model, i.e. 7 is a measure of signal strength. Compared
to the basic sparse parameter space in (3.2), ®(k, T) can monitor the changes in SNR. Hence, the
minimax framework we develop with this parameter space can reveal the impact of the SNR on
the sparse linear regression problem.

Given this new parameter space, the corresponding minimax risk is defined as

R(®(k,7),0) :=inf sup Eg|8- B> (3.5)
B Be®(k,7)

As discussed in the last section, characterizing the exact minimax risk for R(®(k), o) is math-
ematically hard. It is even more challenging to obtaining exact R(®(k, 1), o). Hence, we aim to
find accurate approximations for this quantity. Following the approach proposed for sparse linear

regression problems [12, 21], we consider the sparsity parameter defined as
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and assume that e — 0 as n,p — oo. Given that we have also introduced the notion of signal

strength to our framework, we expect the SNR level, defined as

to affect the final results as well. Specifically, we aim to study R(®(k, 1), o) for different values
of (€, ). Due to the mathematical challenges in identifying exact minimax risk, we focus on

obtaining asymptotic minimaxity, and consider the following regimes: as n, p — oo,
Regime (I) Low signal-to-noise ratio: u — 0, € — 0;
Regime (II) Moderate signal-to-noise ratio: u — o0, € — 0, u = o(4/loge™1);

Regime (III) High signal-to-noise ratio: € — 0, u = w(+/loge1).

As will be discussed later in the paper, each regime exhibits unique minimaxity, and distinct
minimax estimators emerge in different regimes. But before that, we first derive first-order asymp-

totic result similar as the classical one and reveal its limitations in the SNR-aware minimax setting.

3.2.1 First-order asymptotics

Theorem 14. Assume model (3.1) and parameter space (3.4). The following hold:

* Regime (I): When k/p — 0, (klog(p/k))/n > O0and u=1/0c — 0,

ROk, 7)) = kT2(1 +o(1)).

* Regime (I11): When k/p — 0, (klog(p/k))/n > O0and u=7/o = 0(\/10g(p/k)),

R(O(k, 7)) = sz(l +0(1)).
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* Regime (I11): When k/p — 0, (klog(p/k))/n > Oand u =7/0 = a)(\/log(p/k)),

R(O(k, 7)) = ko2 - 210g(p/k)(1 + 0(1)).

One of the main issues in the above theorem is that the first-order asymptotic approximation of
minimax risk does not seem to always offer accurate information. For example, as the signal-to-
noise ratio significantly increases from Regime (I) to Regime (II), the first-order analysis falls short
of capturing any difference and continues to generate the naive zero estimator as the optimal one.?
Moreover, in Regime (III), the result is indistinguishable with the minimax result unconscious to
the SNR as in Theorem 12. In the next section, we push the analysis one step further to develop
second-order asymptotics. This refined version of the SNR-aware minimax analysis will provide a

much more accurate approximation of the minimax risk, and can provide more useful information

and resolve the confusing aspects of the first-order results presented above.

3.2.2 Second-order asymptotics

We first demonstrate the result in Regime (I). As discussed in previous section, the first order
approximation of R(®(k, 7)) is k72. Indeed, this is the exact superemum risk of zero estimator
achieved at the boundary of ®(k, 7). This seems to suggest when the signal-to-noise ratio is low,
no other estimator can outperform the naive estimator. However, we will show this conclusion is
hasty when we go to higher order analysis. In fact, consider the ridge estimator [36] defined as:
for A > 0, let

BR(2) = argmin ||y — Xb||5 + ]|b][3.
beRP

The following theorem indicates that up to second order approximation, the ridge estimator is

asymptotically minimax.

Theorem 15. Assume model (3.1) and parameter space (3.4). Suppose n,p — oo and k/p — 0

’The zero estimator has the exact risk of k72, referring to the proof in Section 3.4.4.
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and k/n — 0. In Regime (I) where u = t/0 — 0, the minimax risk defined in (3.5) satisfies

7),0) = k1? —k—ﬂz o
ROk, 7),0) = k (1 ; (1+ (1))).

In addition, the ridge estimator X with tuning A = p/(ku?) is asymptotically minimax up to the

second order term, i.e.

. ku?
sup  EgllBR(1) - Bl = k72(1 LT 0(1))).
BeBO(k,T) P

The proof of this theorem can be found in Section 3.4.5. The direct result of this theorem
implies that the naive zero estimator is sub-optimal because its exact superemum risk only corre-
sponds with the first order of the minimax. In addition, note that the Gaussian sequence model
is a special case of the linear regression model, the simulation results in Chapter 2 Section 2.3 is
relevant to the discussion here. As indicated by Figure 2.2 and 2.3, when the SNR level is low, the
ridge estimator (equals the linear estimator in Gaussian sequence model case) outperforms other
estimators on the plot. This corresponds with the conclusion of Theorem 15 here.

Along the discussion, the next theorem aims to obtain second-order approximation of R(®(k, 7))
in Regime (II). However, as we present of proof of Theorem 13, even the first-order upper bound of
the classical R(®(k)) is not trivial to be obtained. Obtaining the upper bound up to second-order
of the extra constrained R(®(k, 7)) is even more challenging. We leave the upper bound proof in

the following theorem to future work of studies.

Theorem 16. Assume model (3.1) and parameter space (3.4). Suppose n,p — oo and k/p —

0 and (klog(p/k))/n — 0. In Regime (II) where u = t/oc — oo and u = o(4/log(p/k)),

additionally assuming u*/n — 0, then the minimax risk defined in (3.5) satisfies

2 2
R(O(k,71)) > kT2(1 - k2ip et (14 0(1))).

The proof of this theorem can be found in Section proof:sec:linear-model-second-order-med-
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snr. Combining this theorem with Theorem 14 in Regime (II), we obtain that sz(l - ]‘2—‘1’; ek’ (1+
0(1))) < R(®(k,7)) < krz(l +0(1)). As we expected, the SNR-aware minimax result up to
second-order approximation are consistent with the results in Gaussian sequence model in Chapter
2. This confirms our method in studying minimax problem of sparse estimation. The obtained
results already show that the underlying SNR level intrinsically affects the minimax result and the

optimality of estimators under which.

Remark 4.

In Theorem 16, besides the asymptotic setting in Regime (I1), we made another assumption that
u*/n — 0. Note that this additional assumption does not exclude too much region of (e, yt) from
Regime (II). This is because by original assumption of Regime (II), u = o(m) already
implies that u?> < log(p/k) < n, it is of large possibility that u* < n is also satisfied in practical

setting.

3.3 Discussions

3.3.1 Summary

The estimation problem in sparse linear regression is more challenging compared to Gaus-
sian sequence model. Along the studies, researchers have developed results mostly stated in rate-
minimaxity. The accurate constant of the classical minimax is still hard to be characterized. Based
on this, many estimators including Lasso and best subset are proved to achieve the rate-optimality.
However, as revealed by empirical studies in extensive research, Lasso and best subset exhibits
sub-optimally in different SNR settings compared to each other. This raises the discrepancy be-
tween the theoretical results and the simulation implications. To mitigate this gap, we first provide
the first-order approximation of the classical minimax with accurate constant. However, this is
still insufficient to explain the discrepancy as the the classical minimax framework will output
the same minimax estimator irrespective of the SNR levels, which is against the empirical find-

ings. This calls for the enhancement of the current minimax framework to let it incorporate the
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information of the important factor — SNR into the framework. Along this line, we introduce the
SNR-aware minimaxity which adds additional control of the SNR level in the parameter space and
monitors the minimax risk accordingly. As we introduced in Chapter 2, we split the SNR level in
three different regimes. We first obtain the first-order approximations of the SNR-aware minimax
in all three regimes. Then we show that in low and moderate SNR regimes, the first-order approx-
imations are the same and can be achieved by the zero estimator. Then, we go to the second-order
analysis. We show that the asymptotic minimax estimator in low SNR regime is actually ridge
estimator up to second-order minimax. However, the second-order analysis in moderate and high
SNR regimes are still yet to be completed. The remaining difficulty is to find the minimax es-
timators in these regimes to obtain the upper bounds. So far, we have shown that the low SNR
regime and the moderate SNR regime lower bound results are correspondence with that in Gaus-
sian sequence model. The obtained results already demonstrate that the SNR level intrinsically
affects the minimax results in sparse linear regression problem and the corresponding optimality
of estimators. The analysis of the SNR-aware minimax framework provides new perspectives of

the sparse estimation and more practical guidance for empirical studies.

3.3.2 Future research

* This thesis provides the second-order approximations for the SNR-aware minimax in low
SNR regime and lower bound second-order approximation in moderate SNR regime. The
second-order upper bound in moderate SNR regime and the approximation in high SNR

regime are still missing. It will complete the work if these results are obtained.

* This thesis analyzes the linear regression model under the Gaussian random design of feature
matrix X. It will be interesting to study the minimax as well as the SNR-aware minimax
problem for other common designs, e.g., the fixed design under additional assumptions, the
correlated design with the correlation of i-th and j-th column of X in the form p/~/! and

e.t.c..
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* The classical minimax result in Theorem 13 does not reveal a single estimator to be asymp-
tically minimax such as Lasso or best subset. This does not eliminate the possibility that one
of them can attain the asymptotic minimax. It leaves us to think about more efficient proof

method to obtain more accurate risk upper bound for each estimator.

* The current results rely on the assumptions that k/p — 0 and (klogp)/n — 0. This
characterizes the sparse signals and high dimensional asymptotic when p < e”". It will be
interesting to explore the topic when the signal is denser k/p > ¢ and ultra high dimensional

setting n = O (log p).

3.4 Proofs of the main results

Throughout the proof sections, we adopt the following notations: We use the uppercase al-
phabets for matrices and lowercase alphabets for vectors. || - ||; is the L' norm on the vector
space. If without any subscript, the default || - || stands for the L? norm. Sometimes, we denote
[p] = {1,..., p} for tidiness. In the proof sections of lower bounds, for i € [p], let x; denote
the i-th column of the matrix X € R™?; let x;; € R and x; _;R""! denote the first and the rest of

coordinates of column vector x;.

3.4.1 Preliminaries
Scale invariance

The minimax risks defined in Equations (3.3) and (3.5) of the main text have the following

scale invariance property

R(O(k),0) =02 - R(O(k), 1),

R(O(k,7),0) = 0% R(O(k, p), 1),
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where we recall that u = 7/0. This can be easily verified by rescaling the linear regression model

to have unit variance.

Preliminary probability results

Lemma 22 (Weak law for triangular arrays, Theorem 2.2.6 in [37]). Foreachnlet X, x, 1 < k < n,

be independent. Let b,, > 0 with b,, — oo, and let )_(n,k = Xnk L(1X, |<bn)- SUppose that as n — oo
(i) 25 P(IXukl > bp) — 0, and
(ii) b> Y4 | EX?, — 0.

IfweletS, =X,1+ ...+ Xn, and put a, = 37 _, EX, x then
(S, —an)/b, — 0 in probability.

The following lemma is stated in Corollary 4.2.13 in [38].
Lemma 23 (Covering number of the unit sphere). The covering numbers of the unit Euclidean
sphere 8"~ satisfy, for any € € (0, 1], we have

NS0 < (E)
€

For € > 1, the unit sphere can be covered by just one €-ball, so N(S”_l ,€) = 1.

The following lemma states a simple concentration for y distribution. The proof follows from
the concentration of the Lipschitz function of Gaussians (Theorem 2.26 in [5]) and that the £, norm

is 1-Lipschitz function of a Gaussian vector.

Lemma 24. Let z1,..., 2, Hd N (0, 1), then for every t > 0,

nt2

P(llZII < (1 +t)\/ﬁ) >1—e T,
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The following result is Lemma 2 of [39].

Lemma 25 Q\(z—concentration). Fixt>0,andlet Z; ~N(0,1),i=1,...,d. Then,

Pl

N

Z? <d(1- T)) < eg(”log(l_ﬂ),

and

-

d

Let )(12, (1) denote the non-central chisquare of degrees of freedom p and the noncentrality
parameter A, we have:

77> d(1+ T)) < e‘g(T_log(l”)).
i=1

Lemma 26 (Non-central chisquare, Theorem 3 & 4 in [40]). Suppose X ~ )(I% (A). Then

2
(l) forc >0, P(X>p+/l+C) Sexp [—m];

(ii) forO<c<p+A, P(X <p+Ad—-c) <exp [—_4(;6;)2]'

The following lemma can be proved following Exercise 2.5.10 in [38].

Lemma 27 (Ll bound of the maximum of sub-gaussians). Let X1, X, ..., be an infinite sequence

of sub-gaussian random variables which are note necessarily independent. Let K = max; || X;||y,

be the maximum sub-gaussian norm. Then for every N > 2 we have

Er‘nz}g( | X;| < CK+/logN.
i<

The following lemma states the Gaussian maxima result in tail probability.

Lemma 28 (Concentration of the maximum of Gaussians). Let {i,...,{, A N (0,1). For all

u >0, we have

S

P( max |{;| > \/210gp+u) <e 7.

1<i<p
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Proof. Using union bound and Gaussian tail bound, for u > 1,

11 e 2p 2 e
: < E | > _— finla
P(IIEI;IS);M,I >u) < ,- 1P(|§,| > u) < 2pu 2ﬂe 7 < ane T < pe Z.

Letu = v/2(logp + 1), then 4/2(¢ + log p) > 1 for all t > O since p > 2,

P( max || > \/2(t+10gp)) <e™.

1<i<p

Thus,
Ltz L£2
P( max |;] > +/2logp +u) < e TUNZoEp < o7

1<i<p

In proving most of the upper bound of our results, we will constantly use the concentration of
the Gaussian order statisics. We construct a Bernstein-type tail bound based on the exponential

Efron-Stein inequality for order-statistics. The following result is from [41].

Lemma 29 (Theorem 2.9 in [41]). Let X1, . .., X, be independently distributed according to F, let
X1y 2 ... 2 X(p) be the order statistics and let Ay = Xy — X(k+1) be the k' spacing. Then for

t>0and1 <k <p/2,
log Ee! Xt EXw) < t%E[Ak(e’Ak -]

Based on the above lemma, we show the following properties of Gaussian order statistics con-

centration:
Lemma 30. Let Xy,..., X, Hd N(O,1).

(i) Forall2 < k < p, B|X|; < +/2log(2p/i).
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(ii) Forallu > 0,1 < k < p/2, and some constant ¢ > 0,

P(IXI ~ BIXIe) 2 u) < exp - k(% A (ﬁ)z))

Proof. Prove (i). Since% < /mnil }Cdx = logm—log(m-1), Zi:i % < log p—log(i—1) < log(p/i).

2 p 1 2
EIX%, =E[®7'(1-U/2)] < E[2log ik 2log2+2 ) - <2log >,
l _]=l

where U(;) is the i-th largest among p i.i.d. uniform random variables. Then (i) follows from
(EIX]()* < BIXP2,.

Prove (ii). Let the C.D.F of the absolute value of the standard normal be ®, then ®(x) =
2®(x) — 1. The C.D.F. of Exp(1) is 1 —e™. Let ¥y,...,Y, "/ Exp(1) and Y1y = Y2 = ..., Y(p).
Then

Y L ~ 1 . B 1
Xl ~ @7 (1= e™) = @7 (1 = 5¢™) = |X|y ~ @7 (1= 5¢70).

Let U(t) :== & 1(1- %), 1 X1y ~ U(e'®). The spacing of exponentials satisfies Yy = Y(ker) ~ £

where E; ~ Exp(1) is independent of all ¥;’s and X;’s. Thus,
7 (2L, 7 (Y
Ak =Xl = X ke1y ~ U(eFH &) — U (e-),

By Proposition 4.1 in [41], the property of U o exp satisfies

2E
A, < V2E,

T k\log2 ¥ Yirn

The integration of the exponential has, for 0 < u < 1/2,

* 2(2 - 2u
/ ux(et* = 1)e™dx = a l;) < iy
0 (I-p? S1-24
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Thus,

42 1 42 1
E[tAr(e™ — 1) |Y, < < .
1Ak (e ) Ve k2(log2 + Yjen) 1 _ __2V20 k2log2q _ 2V
(k+1)) 1 1
k\/log2+Y(k+1) k+/log?2
Therefore,
tk 212 1
1 (E f(lxl(k)—Elxl(k))) < —E[A (e — 1)] < .
og (Ee 2 [Ax (e )] klog2 | _ o
k+/log?2
Letvy, = log%’ then
th2

log (Eef(lxl(k)—Elxl(k))) <

T 2(1 = tA2vi k)

The Bernstein inequality follows

P(|X|(k) -E[X|x) = \/kat + \/2vk/kt) <e.
Write it in another form, we obtain (ii). |

3.4.2 Proof of lower bound in Theorem 13

As discussed in Section 3.4.1, the minimax risk in (3.3) is scale-invariant of noise variance.
Hence, without loss of generality, we prove the theorem under o = 1 in model (3.1).
Suppose that we have a prior distribution 7 on the regression coefficients whose support is

contained in ® (k). For any estimator £, it is straightforward to see that

ElB-BlI* < sup E|B-pBI* (3.6)
BEO (k)

where the expectation on the left is with respect to the randomness in (X, z, 8), while the expecta-

tion on the right is with respect to (X, z) only. Let B(xr) be the Bayes risk of 7 for squared loss.
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By taking the infimum with respect to 3, we conclude that

B(n) <inf sup E[|B - Bl = R(O(k),1). 3.7)
B BeO(k)

Hence, in order to obtain a lower bound for the minimax risk, one can use a particular prior distri-
bution and calculate the Bayes risk for that specific distribution.

The proof of lower bound of Theorem 13 relies on the independent block prior, which was once
introduced in Chapter 8.6 of [3]. The independent block prior 7;5(4; p, k) [3, 33] is constructed
in the following way: divide (1,..., p) into k blocks, for block j, randomly select an index /; €
{(j-Dm+1,...,j-m}, m=[p/k] and set ) = (B(j—tym+1: - . Bjm) = Aey,. The selection
between different blocks are independent. Note that the spike choice 4 = 4, , x can depend on
n, p, k. Sometimes for notational simplicity, throughout the proof, we drop the dependency of 4
on the asymptotic parameters without ambiguity.

The following proposition states a lower bound of the Bayes risk under n;5 if the spike A
is below some threshold. This proposition is sufficient to provide a lower bound matching with
the upper bound up to first order asymptotics. In fact, let 1 = \/W - (1 + 0(1)). Then

Proposition 1 indicates that

ExllBr = BI* = 2ka?log(p/k) (1 +o(1)).

Indeed, the condition of choice of A in Proposition 1 is weaker, covering a broader bandwidth
of A from near zero to as large as /2log(p/k) — co. We will discuss in Section 3.4.4 that this

relaxation will provide a more general lower bound for even SNR-aware minimax.

Proposition 1. Assume model (3.1) and suppose (log(p/k))/n — 0 and p/k — oo. Let 1 > 0
and 7t := n1g(A; p, k) be the independent block prior of B. Denote B, as the Bayesian estimator

(posterior mean) under n. For A > 0 satisfying \/21og(p/k) — A — 400, we have

E.llBx — BII* = ko? 2% (1 +0(1)).
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Proof. Because of the scalability of the risk function, described in Section 3.4.1, we can prove the
conclusion for o = 1 without loss of generality. Hence, in the rest of the proof, we assume that
o = 1. Given that we have used the independent block prior, the Bayes risk satisfies the following
property:

Exl|Bx - BII* = kE« NI - BV, (38)

where B(!) denotes a part of 8 whose coordinates belong to the first block. Similarly, A,(Tl) denotes
a part of the posterior mean 3, whose indices correspond to the first block.

In the rest of the proof, we will also use the notation 8~V to denote the part of 8 whose indices
do not belong to the first block. As a result, we have 8 = (81, B(=1)). We will also use the notation
j =y —XDBED in which X7V is a subset of matrix X whose column indices do not belong to
the first block. We have

J=y-— X(_l)ﬁ(_l) — X(l)ﬂ(l) +7.

Hence, we can conclude that (5| X") ~ N(XMBW 1,). As is clear from (3.8), to obtain a lower

bound for the Bayes risk, we need to find a lower bound for E.|| BA;I) - BW]|2. We have

Ex|/Ex (ﬁ(” y,X) yole
= EﬂllEﬁ(—l) [En (ﬁ(l)‘ y, X,ﬁ(—l)) ] _ﬁ(l)Hz
> EqllE, (ﬁ(” y,X,,B(‘l)) _ g2

= En”En (ﬁ(l) 5/’ X(l),X(_l),ﬁ(_l)) _ﬁ(l)HZ

£ EllE (B0]5,x0) - gV (3.9)

To obtain Inequality (a), we note that if allowing additional condition on BV, the posterior
mean E; (B8 |y, X, 87Y) minimizes the expected squared loss compared to other functions of
(y, X, 8V). Equality (b) is due to the fact that by knowing the values of y, X, 8! we can cal-
culate , XV, X=D 8(=1) and vice versa. Finally, Equality (c) is due to the fact that (X1, g(=1)

are independent of ") and (5, X(V).
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As is clear from (3.9) to obtain a lower bound, we have to find a lower bound for E, || E, (,8(1) | vy, X (1))—
BW12. Focusing on the first block for B! € R™, the independent block prior is reduced to the
single spike prior 5(A; m) [3] defined as: select an index I € {1,...,m} uniformly at random and
set 8 = de; € R™. The following lemma provides a lower bound for E,||E, (,8(1)|y, X(l)) - W2

based on the single spike prior.

Lemma 31. Consider model (3.1) with o = 1 and B € R™. Suppose n,m — oo and (logm)/n —

0. Let m = ns(A;m) be the single spike prior of B. Denote B as the Bayesian estimator under .

For A > 0 satisfying m — A — oo, we have
ExllBx = BII* = (1 +0(1)).
We can then conclude from Lemma 31 that
Erl[Ex(87]5. XV) = BVI2 2 (1 +0(1)).
Thus, combining this equation with (3.8) and (3.9) proves

ExllBx = BI* 2 k2 (1+0(1)) .

Proof of Lemma 31

Under 1-spike prior, denote I by the index of the spike coordinate and the posterior probability

by pi(y,X) = P(I =ily, X),i € [p], we have

ExllBx - B3

B, (p1(3, X) = 1)* + 22(p = DE,e, (p1(3, X))?

\%

XEae, (p1(y, X) = 1)%. (3.10)
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Note that in the above equation, the notation E,., means that we are taking the expecatation as-

suming that the spike has happened at the i coordinate of 3, and that the posterior probability

p1(y, X) is given by

exp(Ax]y = %[lx1]17/2)
exp(Ax{y — A%||x11|2/2) + XL, exp(Ax]y — A2 [1x:[12/2)

Pl(an):P(I: 1 |y’X):

For notational simplicity, in the rest of the proof we use the simplified notation p; instead
of p1(y,X). Also, the notation P,., denotes the joint probability of X,y assuming that the first

coordinate of 8 is equal to A and the rest are zero. Since 0 < p; < 1, if we can show that
p1 — 0 in P,,, - probability, 3.11)

then by combining the continuous mapping and the dominated convergence theorems with (3.10),

we will obtain
EqllBx - BI* > (1 +0(1)).

Let plwl) denote the expression for p;(y, X) under the assumption that 8 = Ae;. Also, use the
notation x; ; and x; _; for the first coordinate of x; and the vector that has all the elements of x;

except for x; 1. Then, we have

pi/lel) _ 1+

S exp (] (1 +2) = Pl 2) ]-1

exp (/12||x1 12/2 + /lxsz)

L,

Il

1+

S exp ([l + zll iy - 422, /2 = Pl /2) ]‘

exp (/12||x1 12/2 + /lxsz)

) d )
where we have used the notation A = B to denote the fact that random varibales A and B
have exactly the same distributions. Also, to obtain the second equality, we have used the fact

. - d . .
that since x; is independent of Ax; + z, we have /lxl.T (Ax1 + 2) = ||Ax1 + z]|Ax;1 (this can be easily
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confirmed by for instance conditioning on x; and seeing that the distribution of Txt-T(T)q +7) is
N (0, 2?||Ax1 + z||?). Write
-1
pP1 = (1 + ﬂntnm) ’

where

2 2
S exp (Il + zllvy = 52, = Sk )

ﬂn,m = N : : , (312)
(m—=1)(1+7-)"2exp (EW”Z + Axq ||2)
2 n
(m =11+ ) Fexp (S pbmllz+ n IP)
By = (3.13)

exp (ﬂ—;llxl 12 + /lxsz)
In order to show (3.11), our goal is to first show that A, ,, 2 1 and Bum %, co. This will be done
in the next two lemmas.

Lemma 32. Consider model (3.1) with o = 1 and 8 € R™. Suppose that (logm)/n — 0. Consider
the random variable B, ,, defined in (3.13). If A > 0 and y/21logm — 1 — 400, then

p
Bum — .

Proof. Throughout this proof, for notational simplicity we use the notation 7 instead of 7, ,. We

can rewrite 8, , in the following form:

Bom=m-1[1+2] L= (1= — ) [t s e
m = (m — —| exp|—— -|1-— —|lx .
: " Py T+n/2) | F1ET

Using the central limit theorem, we have the following estimate:

* NIzl = n+0,(Vn),

2 2
s LllP+ e = £(1+0,(5)) +2-0,(1).
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Then, we have

2

Bum = (1+0,(1))exp log(m—l)—%+ (n+0p(\/ﬁ))

1
2(1+n/A2)

(% + 0, Viogm + 222 |

log(m — 1) - %2 +0, logm)],

(1+0,(1))exp

where in the second equality, we have used that (log m)/n — 0 implies (log m)/+/n = o(+/log m).
Then to show 8, ,, KN +00, using the above expression and the continuous mapping theorem, it’s

sufficient to argue

2

log(m — 1) — % - (\/log(m - %)(\/log(m "D+ %) — +oo.

Note that the assumption /2 logm — A — +oo implies log(m — 1) — %2 = w(+/log(m — 1)). Then
asm — oo, log(m — 1) — ’172 = w(+/log(m — 1)) — +co. Therefore,

P
By — +0o.

Lemma 33. Consider model (3.1) with o = 1 and 8 € R™. Suppose that (logm)/n — 0. Consider
the random variable A, , defined in (3.12). If A > 0 and J2logm — A — +oo, then

Apm — 1.

Proof. The proof is based on the weak law of triangular arrays, one version of which is stated in

Lemma 22. Define

S 2, 2 2
Sum 1= 3y exp It + 2llAxia = Sy = S 1.
i=2
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Let
2 2

Vg = xp | s + 2llvis = Sy = 5l ).

Note that {Y,,,; : i = 2,...,n} are independent only if conditioning on ||Ax; + z||. Hence, instead,

we will prove, for certain b, , to be determined,

(1) er‘izp(ym,i > bym ‘”/lxl +z||) — 0a.s.

(i) b32, ;.ZQE[YY%JIL(YMJS;,W) I1Ax; +z||] — 0as.

For simplicity, without ambiguity, we write b = b, ,, in the following proof.
To prove condition (i), using Lemma 34 (i) and applying the non-central y? inequality in

Lemma 26,

i P(Ym,,. > b )||Ax1 + zll)

i=2
= (m- 1)P[(\/ﬁx,~,1 - %H/lxl +z||)2 + (\/ﬁﬂxi,—l”)z <

n

A

(ll/lxl + 22 = 2log b) ‘||Ax1 + 2

2
n
= (m- 1>P(x,%<m < 5 (I + 2| - 21og b) [lx +z||)

< ( D l nc%
< m — Xpl———F——"—=
4(n +2y1)2]
_ _ n ( _ 2(”"‘2)’1) 1 ( _ 1))( + 2(l’l+2’)/1) 1 ( _ 1)) (3 14)
= exp —4(n+2')/1)2 C1 —\/71 og(m C1 —\/ﬁ viog(m . .

where ¢; = n+n/A%-2logb and y; = n/A% - ||Ax; + z||>. Since A2 = o(n), by strong law of large
numbers,

1
—||Ax1 +z]]> = 1 as..
n

Thus,n+2y; =n- 3 (1+0,(1)). A sufficient condition for the upper bound in (3.14) goes to zero

a.s. is

-1
n 2(n+71)\/m] :op(cl—M‘/m ,
Vi Vn

4(n+2y1)?
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or

n____ 2(A% + 2| Ax;1 +2|*)
4m ‘OP(“’g b= NG Viog(m —1)). (3.15)

There exists such choice of b since

2(4%+2 22222 +2]4
@+ 71)\/7 @+ Q/_’”“” ) Jloglm =1 = 4ntoglm =1)(1 +0,(1))
n
(3.16)
as A2 = o(n) and log(m — 1) — oo. Therefore, condition (i) is satisfied.

To prove condition (i1), using Lemma 34 (i1) and applying Lemma 26, we have

m
b ZE[Yn%,iLYm,isb) ‘”/lxl + zll]
=2

242\ -n/2 2)|Ax; + z]|?
= b 2m-1 (1+ ) Al 2lb
(m=1) eXp( 2402

n/A? 2
.P[(Z - /—||z+/lx1||) +xy 2 (24 0/2) (1l + 2l - 21ogb) [l + 2]

V2 +n/A?

20%\-n/2 2||Ax 2
b~ (m - 1)(1+ ) exp 2l + 2|7
2+n/A?

IA

2||Ax; + 2|

= —2logh +1 -1 -2+
eXp[ ogb +log(m - 1) 2

Since A = O(+/logm) and log m = o(n), we have ”jjljjﬂ = 22(1+0,(1)), 2> = o(4/n - logm) and
log(m — 1) = o(4/nlogm). For b satisfying (3.15), (3.16), 4/n - logm = O, (21og b). Therefore,

2||/1X1 +Z||2

SPPYIE — 0a.s..

exp[—2logb+log(m— 1) -2+

Thus, condition (ii) is satisfied.
Finally, we calibrate

m
Anm = ZE[Ym,iﬂ(Ym,[Sb) ‘”/le + Z||:| .
=2
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From Lemma 34 (iii), we have

n/2 [l Ax1 + 2l
_ 2 2
= (m=1)(1+22/n) (2(1 ool | UREA FACARE RS e (PR R
where ¢y = (1 +n/1%) - 2logh +n — 1420/ |Ax1 + z||? and y; = (n)2%)? |Ax1 + z||>. We will show

1+n/A2 T 1+n/A2

that

P[szz(VZ) <n+y;—c ‘Ilﬂxl +z||] —0as..

Using Lemma 26, we have

=)

P[,zl <n+yy—c ‘/lx+z]§ex [—(
X (72) Y2 —c2 [[|Ax + 2] p 2t yy)

As Ll + 2P > las, y = (1 +0,(1)). Using the selection of b in (3.15) and (3.16),

Vnes

m) Asm — 00, WE have

Eynlogm = 0,(c2). Thus, logm:OP(

ex| - (W—)Z] 0.

2(n+1vy2)

Thus,
/12)_7 (Il/lxl+z||2
exp| —

an,m:(m—l)(1+7 2(1+n//12)).(1+0p(1))'

Now, we use Lemma 22 with the bounded convergence theorem to obtain, Ve > 0,

Spm—a Spm—a
P[] ) -z ) o
bn,m bn,m
Therefore, we conclude
A 5 1

Lemma 34. Assume xi,...,%Xy id N (O, %In), 7z ~ N(,I,) and {x; : i = 1,...,m} being
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independent with z. Let

A2, 22

DA ?H)Ci,—l”2 , 1=2,...,n.

Yii = exp ||lAxy + z]|Ax; 1 —

Let Z ~ N(0,1), ,\/,21_1 denote the chi-squared variable with degrees of freedom n — 1. (Z, X,%_ )

are independent with (x1, z). Then for VA > 0 and Vb > 0,

(i) D P(Yni>bllldxi +2])) = (m—1)
i=2

2
n n
p{[Viras = s+ 20 + (a2 < 25+l - 210g ) +21)

m
(i) Y B|Y210mn i +2|
i=2

2\ 2| Ax; + 2|
—m-1)1+2= L S L)
(rm )( n ) exp( 2 +n/A?

2

n/ A2 n
/ Fx 2 (24 5 (s + 2]~ 21og )| s + 21

V2 +n/A2

P\Z~- l|lz + x|

(ii)) B[ Ynill i, n|lle+ nl]
i=2
4 [Jz+ P
=(m—-1)(1+%/n) ° Je T AT |
(m )( /”) exP(2(1+n/12)

P

20+ aa)’
z - Mo er A ) + x>

n 2
Ny X2 z(1+ﬁ) (||z+/lx1|| —2logb) .

Proof. Y,; < b is equivalent to

1 1 1
exp [—guxi,l — s+ 2ID)% = 5% |+ I + 2| < b

o (Axip = [lx +zlD* + Al 11D = (|1 +z]|* - 2 log b.

Thus, Equality (1) follows.

To show Equality (ii), we first take extra condition on x; _; and integrate with x; ;. By combin-
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ing the exponential function with the normal density function of x; ;, we obtain

E[Y 1y <

ml—

it 2+ A

E

exp (24l1x1 + 2l 1 - 252, - i1 )

X1 |2+ x|

1
{ (=l 22+ (A, -1 )22 vy 42|22 Tog b }

1 2|z + Ax1])?
exp | EEMIEN e (<%, 117
V1+22/n 2+n/d

-1

(3.17)

2
2 9
{(Z—\/wallzhlxl ||) > (242 ) (v +2l2-21og b-22x;,1112) }

where Z ~ N(0, 1) and Xﬁ_ , denote the Chi-squared random variable with degrees of freedom

n—1.(Z, szl—l are independent with (xy, x; _1, z) foreachi = 1,...n. Then, taking the expectation

2

of x; 1 and using n||x; ||2 ~ X1

E |-l g [ Axy + 2]l

2
{( A ||z+Ax1||) > (2445 ) (x4l -2 log b-22lwi -1 17) }

2 2
= Ele wmikiall®. g |Ax) + 2|

nllxi 1172 25 ([l axi+2]*~2log b) ="

n//l2
- Ax1+z
~ Mz( A I, ||)}

_ 242
= P{Xn 12 (1+7)[ (II/lxl +Z|| —210gb)

_LAZ(Z_L
240/ 2\" T piae

n/ A2 2 n
_ P{(Z _ M, +/lx1||) + xR, > (2 + ﬁ)(ll/lxl 2l —210g b)'nm + z|K}L18)

V2 +n/A?

Equality (i1) follows by taking expectation with x; _; of equation (3.17) and using (3.18).

I+ Axal) ‘nm +z||}

The argument of Equality (iii) follows similarly from Equality (ii). O
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3.4.3 Proof of upper bound in Theorem 13

As we discussed in Section 3.4.2, using the scale invariance property 3.4.1 of the minimax
risk, it’s equivalent to prove for the case of oo = 1 in model (3.1). In the following proof, we will
make this unit variance assumption without loss of generality. Throughout the proof, for notational
simplicity, everytime we use constant notation C > 0, we mean it is a constant that does not depend
on any variable or parameter, but whose value may change at each occurrence. For X € R™? let
i €{l,...,p}and X; stand for the i-th column of X; let T C [p] and X7 stand for the submatirx

consists of the columns with indices contained in 7.

Proof of upper bound in Theorem 13

Obtaining constant-sharp upper bounds for the minimax risk of the sparse linear regression is
quite challenging and for that reason it has remained open, despite the existing extensive literature
on the topic. To obtain an upper bound matching the lower bound we derived in the last section,
we aim to construct an estimator that combines the maximum likelihood estimator and LASSO.

More specifically, consider the following two estimates:

 LASSO:

. 1
BE(A) = argmmilly—Xb||%+/l||b||1. (3.19)
beRP

¢ Maximum likelihood estimator:

BM := argmin ||y - Xb||2. (3.20)

be®(k)
Here, LASSO depends on the regularization parameter 4 > 0. We will clarify later in the proof
of the selection of 4. At this point, we assume A may vary with the asymptotic parameters as

L

n — oo. For notational simplicity, throughout the proof, we write A% (1) =: B in appropriate

context without ambiguity.
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Furthermore, define the cone

Csre(k,co) = {A € R? = ||Ally < (1+co)VE|All),

with co determined later in the proof. Consider the observable event

: I XAll2
A= AWo) ={X e R : max ||Xe;||? <1+, inf > /1 =6},
(%0) { jmax 1Xellz O pcCsre(keo):azo [|All2 0
(3.21)

where 0 < §¢ is a constant that will be determined later. Define the new estimator

Bi=Bl1a+ M1 4e. (3.22)

Our goal is to show that

sup E|[B - BI = 2k log(p/k) (1 + o(1)).
BeO(k)

From the construction of £, the risk consists of two parts

EllS - Bl = ElIB" - BI*1a +ElAY - Bl Lac. (3.23)

We will show that: (1) E||AM — 8|21 4c = o(k log(p/k)); (2) BE||BL - B|* 14 = 2k log(p/k)(l +

0(1)). To see (1), we use the Cauchy-Schwartz inequality and obtain

BIBY - I < (BIBY - I3} P(AY). (3.24)

We have the following proposition:

Proposition 2. Assume model (3.1) with o = 1. Suppose k/p — 0 and (klog(p/k))/n — O.
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Then, for Vm > 2, there exists a constant C = C(m) > 0, such that

Bl

(Bl - AlI3)" < Cklog(p/k).

Besides, Lemma 45 indicates that A holds with probability tending to one. Then, from (3.24),

we have

ElBM - BII* < o(klog(p/k)). (3.25)

To demonstrate (1), note that it is not trivial to directly bound the expected loss of LASSO with
accurate constant not assuming additional structures of the design matrix X such as the mutual
incoherence condition [42] and the restricted eigenvalue condition [43]. Largely motivated by
[21], we resort to an oracle estimator to draw out the accurate constant of the minimax risk and
show that it is close to LASSO with further analysis. For LASSO defined in (3.19), given & > O,

choose the regularization parameter as

A=A, = (1+e)\2log(p/k). (3.26)

Let n,(y) := argminy g, %lly - blli + A||b||1 and consider the oracle estimator

B° =m(B+X"z), (3.27)

with the same choice of 4 = A,.

We will show that as & — 0, the expected loss of the oracle estimator can be as close to
2k log(p/k) as we want. In fact, we have obtained a mean-squared error (MSE) upper bound for
the oracle estimator under orthogonal design of X. 3 in a previous study in [44] (Theorem 1). With

this, consider an event

81 = {llzll2 < (1+2)/¥}.

3Under orthogonal design, the model is simplified as the Gaussian sequence model, and the oracle estimator in
(3.27) becomes a real estimator not depending on any latent variables as z anymore.
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Then for every 0 < ¢ < 1 + &, conditional on ||z|| = cvn, Xz ~ N(0, czlp) and

72, (B+X"2) = Bll £ clina,, (B/c + N (0, 1,)) = Bcll,

where &’ = (1 +&)/c — 1 > 0. Hence, based on Theorem 1 in [44], for arbitrarily small §; > 0, we

have

IzI?

E < B TE(lne (Bl + N0, 1)) = Blell Il = cﬁ)ﬂ{nzugmm}]

187 — BlI* 1,

IA

Iz]1? "2
B 02(1+ &) 2k 1og(p/K) - (14 0(1) L a<1repyi

n

< (1+&)*(1+6)) - 2klog(p/k), (3.28)

where the last inequality is due to (1+¢&)?/c? = (1+¢&’)%. Thus, under B, we have the MSE of the
oracle estimator upper bounded by 2k log(p/k) - (1 + 0(1)), as €,6; — 0. In addition, B; holds
with probability at least 1 — exp(—n&?/2).

Then, we show that the oracle estimator falls close to LASSO in a negligible distance compared

to 2k log(p/k). We have this lemma:

Lemma 35. Let S, C {1,..., p} be a subset of columns assumed to contain the supports of B~, 5°
and B, i.e. S, 2 supp(BL) U supp(B°) U supp(B). Suppose for some 8> < 1/2, all the eigenvalues

of X§ Xs, lie in [1 = 63,1+ 62]. Then

. n 36,
18° = Bz < =55, 18° = Bl

The proof of this lemma follows by exact mirroring the proof of Lemma 4.2 in [21], so we skip

the argument. Then assume there exists some S, 2 supp(3~) U supp(8°) U supp(B) and let

By 1= By(62) = {Supp(/?L) U supp(59) U supp(B) < S.,

all eigenvalues of X} Xs, liein [1 - 62, 1 + 6] } (3.29)
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Lemma 35 implies that

~ - 36,
ElB" - GO 1g,ns, <

< T-a, (1+61)(1+£)* - 2klog(p/k). (3.30)

E||B° - BlI*1g, <

The right end is 2k log(p/k) - (1 +0(1)) as d2,& — 0. Then we wonder if such S, exists to satisfy
the condition of Lemma 35.

Following [21], we consider a constructed resolvent set developed by [21]:

Definition 1 (Resolvent set of Lasso). Fix S = supp(f) of cardinality at most k, and an integer k*
obeying k < k* < p. The set S, = S.(S, k") is said to be a resolvent set if it is the union of S and

the k* — k indicies with the largest values 0f|Xl.Tz| among alli € {1,...,p}\S.

Though designed for SLOPE in [21], it turns out the resolvent set and the following procedure

in [21] works for LASSO as well. Denote S, := supp(8) U supp(3%) U supp(B3°), we have

Proposition 3. Assume model (3.1). Consider the LASSO estimator ﬁL (3.19) and the oracle
estimator B° (3.27) with the same regularization A > 0 as (3.26). Let S, be the resolvent set in
Definition 1 and k < k* < p be its cardinality. Suppose k* > 2k, k*/p — 0 and (k*log p)/n — O.

Then for arbitrary small 6, € (0,1/2),

(3.29) holds w.h.p. 1 —exp [ — c1eky21og(p/k)| — cse™",

for some constants cy, c4,cs,c6 > 0.

At this point, let B := B; N B,, we have proved that
P(B) > 1 —exp(—ng?/2) —exp [ — c1ek2log(p/k)| - cse " - 1, (3.31)
and (3.28) and (3.30) imply that

Ell8" - BlI*1a = ElB° - Bl Lans + 2E(B" - B2)T (B° - B)Lans (3.32)
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+ E||BF - B2\ Lans + ElIBE - BlI* Lans:

BIE° - BIPLans + 2\ BIA - BOIPLans - \EIBC - BIPLans

IA

+BIIBE - FO1PLacs + (BIB" - Bl 1a) " P(B°)

BIF® - B2, + 2yBIIB: - B°PLs, - \EIEC - B Ls,

IA

+ElIB" - 01 1s, + (EIB - BI*1a) P(S)

2 log(p/k) - (1 + 0(8 L6+ \/5_2)) + (EW —ﬁllqlﬂ)%P(Bc); (3.33)

we have used Holder’s inequality with a power factor g > 2. Therefore, as &, 01, 0 — 0, the first
term in the last line is the dominating term.

It remains to derive an upper bound for . We refer to [15] that it has been shown that under a
condition similar to the restricted eigenvalue condition that LASSO can achieve the sparse mini-
max risk up to rate optimality. The condition introduced in [15] is called the Strong Eigenvalue

Condition defined below. This leads us to consider event (A.

Definition 2. Let ¢ > QO and s € {1,...,p}. We call a design matrix X € R"™P satisfying the

SRE(s, co) condition if || Xe;||» < 1 forall j=1,...,p, and

I XAl
min
AECsrE (5,c0):A20 || All2

0(s,co) = > 0,

where Csgre (s, co) :={A € R : ||All; < (1+co)Vs||All2} is a cone in RP.

However, the result (Theorem 4.2 in [15]) requires the regularization of LASSO satisfying
1>C \/W for a constant C > 4 + V2 > (1 + &). Compared to our choice in (3.26), larger
A will cause the constant in the risk upper bound of the oracle estimator (3.28) being larger than 2.
From (3.33), since the risk from the oracle estimator is the dominating term, it then results in an
upper bound of the minimax risk with worse constant (larger than 2). Therefore, in the following
proposition, we intend to amend this result such that it can adapt to the choice of 1 in (3.26).

Consider A (3.21), let the constant in (A be co = co(03, d4, dg) defined by (3.67), we have
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Proposition 4. Assume model (3.1) and € > 0. Consider LASSO estimator ,@L (3.19) with
regularization Az as in (3.26). Let A(cp,do) be the event in (3.21). If 63, 64 > 0 such that

V1+60(1 +64)(1+03) < 1+¢&. Then, for g > 2 and some constant C, > 0, we have

. T+00(1+64)4+V2 T 2Nk \4 1 C,
L o4
B[18" - 815 1] < (V ot +1) ( ; | T e

2

To demonstrate (Ell,@L - ,8||‘1115q) ;P(B") < o(klog(p/k)), we have the following argument:
First, fix £, > 0. Second, select and fix 63, 64 > 0 such that V1 +6o(1 +d4)(1 +03) < 1 +&.
Then, from (3.31) and Proposition 4, if n > &3 and k+/2log(p/k) > &2,

2

(BNB" - Bl191.4) " P(5°)

VI+00(1+6)4+V2  \avk\2p 1 cll .
= ( l+e& \2 " 1) ( 62 ) [(1 — 60)? ¥ (62klog(p/k))? PE)
< Cklog(p/k)-&™*- [cz exp ( — 03n62) + exp ( - clsk\/210g(p/k))]
< o(klog(p/k)). (3.34)

Review (3.23), (3.25), (3.33) and (3.34), we have completed the proof.

Proof of Proposition 2

Proof of Proposition 2. Recall the definition of the maximum likelihood estimator (MLE). For

k = | supp(B)I,

BM = argmin ||y — Xb||3. (3.35)
beB®(k)

Note that the MLE is the minimizer of (3.35), for VB € ©®(k),

Ily = XBIl5 < lly = XBY113
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With y = X + z, this implies

IX(B - B3 < 2" X(BY - p). (3.36)

Fix s € {1,...,p}, let
Vy = inf{|IXAl3 = 1Al =1, [1Allo = ). (3.37)

Since both 8 and M are in ®(k), from (3.36) we have

Vo - 1B = B"15 < I1IX(B - B")II5 < 22" X (B =) <2018 - Bllo - sup 2" Xu.

flull2=1
llullo=2k
Hence,
A 2
0<|B-B",<——- sup z'Xu.
Vak  Julb=1
llullo=2k
Then, using Holder’s inequality, we have
Hlm m 1 % T q %
El|g - Bl5 < 2"|E—- E( sup  z Xu) : (3.38)
Vai Juflo=1
llullo=2k

where r,q > 0 and = + % = 1. Hence, we need to bound the two terms on the right hand side of

(3.38). First, we have the following bound for the first term.

Lemma 36. Suppose the Gaussian random design X € R™? in model (3.1). Fors € {1,...,p},
let Vg be defined as in (3.37). If (slog(p/s))/n — O, then, for Vr > 0,

1
E— =0(1).
7r =00

a1t
In addition, we have the following upper bound for [E( SUP |jull=1 2 X u) ] ‘.
llullo=2k

Lemma 37. Suppose the standard normal vector 7 € R" and the Gaussian design X € R"™P in

model (3.1). Denote g ~ N(0,1,). For s € {1,...,p}, suppose p/s — oo and slog(p/s) — oo.
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Define T(s) = {u € RP : ||lull, = 1, ||ullo < s}. Then, forVqg > 1,

o o = o) Tl )| <o

for some constant C > Q.

The proof of these two lemmas are presented after this proposition. Then, combining (3.38)
with the results of Lemmas 36 and 37 completes the proof.

O

Proof of Lemma 36. Throughout the proof, we fix s € {1,...,p} and let V := V for notational

simplicity. For some 0 < x = O(1) whose exact value will be determined later, we have

1

1 1
EW =E (WE(VSX)) +E (WH(V”)) . (339)

Since x is bounded, we have

1 1

Hence, in the rest of the proof, we aim to obtain an upper bound for E (%E(Vg))-

Towards this goal, we first construct a left-tail probabilistic bound. For V¢ € (0, 1/2), using the

union bound, we have

. . P . 2
P(V<I1-t :P(mln inf XAzsl—t)s()P( inf || X¢A Sl—t),
( ) Scipl 4l IXsAlly s) P AnL, IXsAll;
=s

where the right end of inequality is for some fixed S C [p], |S| = s. Consider N (&) to be the &-net
of § 1 = {A € R : ||A||» = 1}. Note that & can be set according to ¢. Then for VA € S°~!, there

exists a A’ € N (&) such that ||[A — A’||, < & and

I XsAll% = | XsA'|3 + (Xs(A = A), Xs(A+A))y > inf [ XsAl3 - V2 sup [|XsAl3. (3.41)
AGN((-)) Aess—l

*We can drop | - | in expectation since for symmetric 7'(s), SUPyeT(s) z"Xu > 0 and SUpP,er(s){& u) > 0.
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Consider A := {sup,cgs-1 || XsAl]2 < ﬁ} Let V2e = (1 — £)2, we have

P( inf || XsAl2 < 1- r)
AeSs—1

< P(Ae%f IXsAl2 < 2(1 - 1), A)+P(AC)
\/_
((13 ))ZS P(IXsAI3 < 2(1 = 1)) + P(A°),

where the last inequality uses the union bound and that [N (g)| < (3/¢)* = (3/((1 - 1)?/ \/5))Y
from Lemma 23. Note that the last expression holds for some fixed S C [p], |S| = s, and some

certain A € $5°1,

Thus, using the integrated tail bound expression for expectation, we have

1
E—1(v< —/ PV<1-0)r(1-0)""'dr
V 0<1-t<x

s/ (p)P( inf || XsA[13 < l—t)r(l N dr
0<l—t<x \S AeS

NG
(ls?) ‘/0<1—l§x %P(”XSA”% <2(1- t))r(l — 0l

|
+ (p)/ P( sup || XsAlR > )r(l—t)_r_ldt. (3.42)
S/ Jo<l-r<x Aess-1 1—1

Let I} denote the first line of the last expression, /> denote the second line.

Consider 0 < x < e~2. We first calculate /;. Note that n||XSA||§ ~ x?2, applying the deviation

in Lemma 25, we have

\/_ S
I < (’S’) /0<1_m %r(l — " lexp [g(Zl — 1 +log(2(1 - t)))]dt
- (‘s’) /0<1_tgx (3\/§)Sr(1 — )5 lexp [g(Zt ~1+log 2)]dt
(P)(3\/—) o3 (1+log2) 1(1 _ )3l
s 1-
= (i) (3\/_) re 3 (1+log2) ;_2 rr_z;s
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s o5(—1+log2)+r+4s
< (7)(3v2)
Ky 7~ r — 2S
< ¢C1(slog(p/s))=Con _ o(1), (3.43)

where Cy, C, > 0 are constants. The last equality is by the assumption (s log(p/s))/n — 0.
Then we calculate I>. Consider another ’-net N (g’) for §*~!. Following the same argument

as in (3.41), for certain S C [p], |S| = s, we have

sup [[XsAl3 < sup [|XsAl3+ V2¢/( sup [1XsAl13).
AeSs-1 AeN (&) AeSs-1

Thus,

1 2
sup || XsAll3 < ———— sup || XsAll3.
Aess-! 2 1 —V2¢ AEN (&) 2

Letl—V2¢/’=V1—t.ForO<1-t< x, by Lemmas 23 and 25, we have

1 1 -V2¢
P( sup ||XSA||§>1—) gP( sup ||XSA||§>1—)
Aess-! -1 AEN(&’) -1

1 3\ 5
) <3l

V2 | n
(13_\2/;) exp{—i( ll_t—l—log\/%)}.

Then let B := B; N Bs,

IA

N P(IXsAIB >

— 1 _ 1 i
Note that for V¢ € [1 —x, 1), Vx ( s 1) > log Nk Then, selecting x small enough such
that 1 — vx(1 + @) > 0, we have

125({:)(13_\/3)_6)s/0<1_tsxr(1—t)_r_lexp{—g(\/%—l—log ll—t)}dt
V2 \ n r
()R] Ll 4 e

\/_ n r
o A e B S R X
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()22 e 2 ()

< £C1(slog(p/s))=Con _ o(1), (3.44)

where Cy, C, > 0 are constants. The last equality is by the assumption (slog(p/s))/n — 0. Thus,

combing (3.42) with (3.43) and (3.44), for x > 0 being small enough constant, we have

|
E(WIL(VSX)) = o(1).

Therefore, from (3.39) and (3.40), we conclude that

E(%) < 0(1).

O

q12/q
Proof of Lemma 37. We first construct the upper bound for [E( SUPer(s) (&> u)) ] . Using Minkowski’s

inequality,
q12/4 q\2/4 2
[]E( sup (g,u)) < (E sup (g,u) —E sup (g,u) ) + (]E sup (g,u)) . (3.45)
ueT(s) ueT (s) ueT(s) ueT (s)

Note that the second term above is the Gaussian complexity on 7'(s). Following Exercise 5.7 in

[5], for some constant C > 0, we have

E sup (g,u) < +/Cslog(p/s). (3.46)

ueT (s)

To bound the first term in (3.45), let F(g) := sup,er(,) (8, u). Then, for any g, g" € R,

(gouy = (g =g u)+ (g'su) < llg = g'llo- ( sup llullz) + F(g").
uetT (s)

Thus, F is a 1-Lipschitz function. Using the concentration of Lipshitz function of Gaussians (e.g.,
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Theorem 2.2.6 in [5]), we obtain

q
| sup (g -2 sup g = [ art™P(1F () - EF ()] > 1)
ueT (s) uel (s) t>0
-1 12 a q
< 2q19 e~ dr = 28q1 (1) = ¢, (3.47)
>0 2

Here I'(-) is the Gamma function. C, > 0 is a constant only depend on g. Then, based on (3.45),

(3.46), (3.47), for some constant C > 0, we have

214 2
[E( sl;?)<g,u>) ] < (C,)7 +Cslog(p/s) < Cslog(p/s).

as slog(p/s) — oo.

Finally, from the moments of the y? distribution, for g < n,

q q
[E g 23T
E =n 2 —
NG

Therefore, for some constant C > 0,

g\
(E( sup ZTXu) ) < Cslog(p/s).
ueT (s)

Proof of Proposition 3

Proof of Proposition 3. We first bound the eigenvalues. Considering Lemma 39, let ¢+ > 0 in the

condition of Lemma 39 be small enough such that, for the 6, € (0, 1/2) stated in Proposition 3,

1 - 62 < Omin(X5, Xs.) < Omax(Xe Xs,) < 1462 (3.48)
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For example, select ¢ = \/ k*log(p/k*)/n in Lemma 39, then (3.48) holds with probability at least
1 - (Cek*/p)K as k*/p — 0 and k*log(p/k*)/n — O.
To show the second statement in Proposition 3, we resort to a lemma whose proof mostly

follows [21].

Lemma 38. Suppose k* > 2k, k*/p — 0 and (k*logp)/n — 0. Then

inf P(S, CS.)>1-exp| - cacky2log(p/k)| - cse™o",

l1Bllo<k

for some constants c4, cs,ce > 0.

The proof of this lemma is demonstrated after the current proof.

Then, combining (3.48) with Lemma 38, we conclude the statement in Proposition 3. |

Proof of Lemma 38. By construction, supp(8) C S. so we only need to show (1) supp(3~) C S.
and (2) supp(B89) C S..

We first demonstrate (1). Suppose bs_ is the solution to the reduced problem:

|
arg min = ||y — Xs,b|* + A||b]]1. (3.49)
heRIS: 2

The KKT condition of LASSO implies that if || X% (y — X5,bs.)ll < Ae. then B5 = by, and

,@é(; = 0. Hence, it’s sufficient to prove the following two conditions:

~ &
1X5: Xs. (Bs. = bs.)lleo < V2log(p/k). (3.50)

and

1X0e zlleo < (1 + ;)\/ZIOg(p/k). 3.51)

Before analyzing (3.50) and (3.51), we first illustrate a property of the resolvent set. Let Q € R™"
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be an orthogonal matrix such that

0z = (|IzII,0,....0).

In the proofs, Q can further be set to be measurable with respect to z. Q is independent of X. Let

@ e R*P, W e R=Dxp gpd

0 being independent of X implies that W is still a Gaussian random matrix, with i.i.d. N (0, 1/n)

entries. Note that

X! z=(0X)"(02) = |zIl(QX:)1 = ||zll@:. (3.52)

This indicates that S, is composed of the union of S and k* — k indices in {1,...,p} \ S of the
largest |@;|. Since @ and W are independent, W and S, are also independent. Thus, Wse and Wi,
are both Gaussian random matrices.

Show (3.50). Rearrange the objective term as

X§e Xs.(Bs. — bs,) = Xge Xs. (X5 Xs.) ™ (X§ (v — Xs5.bs,) — X 2)

= X5 0" QX5 (X§ Xs5.)™ (X5 (y — Xs.bs.) — X 2) .

=£

We first derive the bound for ||&]|. Since by, is the solution to the reduced Lasso problem (3.49),

its KKT condition implies that

1 Xs, (y = Xs5,b5,)le0 < A (3.53)

Then by Lemma 39, let r = 1/2 in the condition, we obtain

1Xs, (X7 Xs.)7'|| < (\/1 "1 n =k Jn - 1/2)_1 <201 (3.54)
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with probability at least 1 — e™/® for sufficiently large p, where in the last step we have used
k*/n — 0. In addition, we use Lemma 40 to bound ||XST*z||. Hence, from (3.53), (3.54) and

Lemma 40, we have

€1 < 11X, (X¢ Xs) 7 - 11X5, (v = Xs.bs,) — X§ 2|
< 2.01(\/@8 +4\/W)
< 2.01((1 +g)\/§+4\/§)«/W
< C-+k*log(p/k*) (3.55)

with probability at least 1 — e /2 — (V2ek* /p)¥ —e /8 =1 1 — P¢; where in the third line we have
used k* > k.
Now, write

X§eXs, (Bs, = bs,) = X307 & = (@, 0)€ + (0, Wi €. (3.56)

For the first term, we have

1(@ge, € lleo = &1 - 1 Bgelleo < N1€]12 - 1D lco- (3.57)

Based on (3.52), we recognize @< is a Gaussian vector excludes the k * —k largest (in absolute
value) coordinates from p — k indices of {1,...,p} \ S. Thus, suppose {1,..., - are i.i.d.

N(0, 1) variables and |{|(1) > ... > |{](p-k)- We have

-0 & 2(p — k) E\ [o1 P
\/ﬁ”(l)sfk”oo - |§|(k*—k+]) < (1 + Z) . \/210gm < (1 + g) 210g E, (358)

where we used Lemma 30 and note that it holds with probability at least

1 —exp [ — Cgk\/210g(p/k)] =1-Pq,
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for some constant C > 0; we used that k < k*—k+1and Cp/k < (p — k)/k < p/k. Thus, from
(3.57) and (3.58) and £* > k, we obtain

K K1
(&%, 0)éll0 < C - —log% V2logp < C-1[—2L [210g %, (3.59)
* n n

We continue to bound the second term in (3.56). From the discussion about (3.52), we note

that ¢ is independent of Wge, thus

i 2482
105l 2 [\ g

ii.d

1
= ||§||2%|§|(1),

with q, ..., Lok
we have [{|() < C - +/2log(p — k*), holds with probability at least 1 — exp[—-C+/log p] =: 1 = P>,

with some constant C > 0; we used k*/p — 0. Thus, with (3.55), we have

) i k1
100, WE)é [l < Cf = log %\/z log(p — k%) < Cy/——2L [210g % (3.60)
* n n

Combining (3.59) and (3.60), from (3.56) we have

N (0, 1) and |{|(1) denote the largest one in absolute value. From Lemma 28,

N _ - k*lo
1X5e Xs. (Bs. = B lloo < (@, 0)€]loo + [1(0, Wi )é]low < € 2P Plog(p/h),  (3.61)

n

with probability at least 1 — P — Py — P; for (3.55), (3.57), (3.60) to hold.
Show (3.51). Following the discussion about (3.52), under event (3.57) and that ||z||>/vn <

(1+¢&/3), we have

s £\2 2(p — k) €
1Kzl = Izl - s lloo < (1+3) \/zlogh <(1+2)\210e2  G62)

holds with probability at least 1 — P, — P¢ where

P(lilb/Vi = 1+8/3) < /1% = p.
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As a result, we have (1):

supp(,@L) cS.

holds with high probability 1 — Py — P, — P¢ — P, under events (3.55), (3.57), (3.60) and (3.62).
Back to show (2). In order to show supp(3°) C S., using the KKT condition for the convex

problem defined for the oracle esimator in (3.27), it is sufficient to see that
1X5ezlloo < A (3.63)

We mark this event holding under (3.62) with corresponding high probability 1 — P, — P¢.
As a conclusion of (3.61), (3.62) and (3.63), we have that for some constants c4, ¢35, cg > 0,

supp(BL) C S, holds with probability at least

1-P;— P —Py—P,=1-exp| - caeky2log(p/k)]| - c5e™o

In the previous proof, we have cited several properties of the random Gaussian matrix X €
R"™P, We state them as the following lemmas, which are auxiliaries proved by [21], so we skip

their proofs.

Lemma 39 (Lemma A.11 in [21]). Let k < k* < min{n, p} be any (deterministic) integer. Denote
by Omin and omax, respectively, the smallest and the largest singular value of Xs,. Then for any

t>0,

Omin > \/1 - l/n—\/k*/n—t

holds with probability at least 1 — e 2 F urthermore,

Omax < V1 = 1/n+\k*/n++/8k*log(p/k*)/n +1

holds with probability at least 1 — e™"/2 — (\2ek* | p)*".
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Lemma 40 (Lemma A.7 in [21]). Let 1 < k < p be any (deterministic) integer, then

sup X7zl < v/32k* log(p/k*)
T = £ 3

with probability at least 1 — e™? — (\2ek*/p)X". Above, the superemum is taken over all the

subsets of {1, ..., p} with cardinality k*.

Proof of Proposition 4

The basic proof idea of this section comes from [15]. Throughout the proof, we will use the fol-
lowing notation: Let (lul(l), cees |u|(p)) denote the non-increasing rearrangement of (|u1], ..., |u,|).

For given 63, 64, 05 € (0,1) and any u = (uy,...,u,) € RP, define

=k+1

k )4
H(w) 1= (1+6)( ) lulydlog2p/) + (1463) Y lul2log(p/b)),  (.64a)
J=1 J

G (u) := (1+64)85 " 'log(1/55) || Xull>. (3.64b)

In addition, let

5(1) = e %, o 2log(1/6() = A. (3.65)

We will use the following inequality: by using Stirling’s formula, for any s € [p], slog(s/e) <

log(s!) < slog(s). Hence,

slog(2p/s) < Zlog(Zp/j) = slog(2p) — log(s!) < slog(2ep/s). (3.66)
j=1

Proof of Proposition 4. Following [15], we first show a bound for the realization of the random

matrix X, i.e. fix X € R™”. We have the following lemma:

Lemma 41. Assume model (3.1) and let ||B||o < k. Given g, 6 € (0, 1), let 63, 84 be any positive
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numbers such that \'1 + 6o(1 + d4)(1 +63) < 1 + &. Assume the SRE (k, cy) condition holds with

(3.67)

Cco =

VI+60(1+64)4+V2 ) ( VI +60(1 +64)(1 +63)
+1)/(1- .
l+e& V2 l+e&

Consider the LASSO estimator with tuning parameter A satisfying (3.26). Then, on the event
(3.78), we have
IB* = Bll2 < C(k, A, 65) A Vk, (3.68)

where 65 € (0, 1) is a parameter in G (u) in event (3.78) and

C(k, Ag, 55) =

x/_1+60(1+64>4+*5+1)-(1 oetlfod) (3.69)

l+e V2 5_42‘k10g(1/6(/lg)) 62 (k. co) )’

The proof of this lemma is presented later in the section.

The above lemma relies on the event (3.78) which sets a limit for the randomness from z,
though it still assumes X is fixed. Then we refer to Lemma 44, which analyzes the probability for
the condition of the above lemma to hold, for every 5 € (0, 1). By integrating the tail bound, we

obtain the following lemma:

Lemma 42. Assume model (3.1) with ||B|lo < k. Let co > 0 be as in (3.67). Consider the LASSO

estimator BY (3.19) with tuning parameter A, in (3.26). Suppose the SRE (k, co) holds. Then, for

any q > 2,
51 - B¢ < \/1+50(1+54)4+\/§+1)‘7(Ag\/E)q[ L, Gy
2 = I+e 2 o3 ) 102 (k.co) ~ (63klog(p/k))eV

where C, = q/2 - I'(q) with Gamma function I'(-).

The proof of this lemma is presented later in the section.

Lemma 42 can be viewed as an uniform upper bound for the conditional expectation E(H B -
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B ||;’ | X ) for all X € A. Then, applying the tower property, we obtain

2|11 - B4 1a| = E[E(nﬁ—ﬁn;f |X)ﬂﬂ]

<(M(1+54)4+\/§+1)q(ﬂgﬁ)q[ LG
< T+e 2 52 ) LT=60) " (83K log(p/h))e )

The next lemma referring to Lemma A.2 in [15] describes an inequality useful for simplification

of LASSO problem.

Lemma 43. Let h : RP — R be a convex function. Let z € R", X be any n X p matrix, and
y = XB +z. If B is a solution of the minimization problem mingegp (%HX,B — y||§ + h(,B)), then
B satisfies for all B € R?

IX(B" - B)II5 < 2" X(B" - B) + h(B) — h(B").

Proof of Lemma 41. From Lemma 43, letting h(-) = A|| - ||; in the condition of Lemma 43, we

have that for all § € R”, the following holds almost surely:
IX(B" - BII; < &7, (3.70)

where

A= 2 X(BE = B) + AellBll = A:NB -

In the remaining proof, let u = B~ — 8 and define

_ : / N
H(u) := \/1+6O(1+64)(4||u||2(§ log(2p/j))12+(1+53)\/210g(l7/k) E Iulm)-
j=1 J

=k+1
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Using the Cauchy-Schwarz inequality and (3.66),

VI+60(1+64)4+V2
1 ANk ull2
+e& \2

p
e Z lul(j) = F(u), (3.71)

Jj=k+1

V1 +60H (1) < H(u) <
N V1 +6o(1+64)(1+63)

l1+&

where H (-) is defined in (3.64), and the last inequality follows from (3.26), (3.66) and 4+/2 log(2ep/k) <
(4+V2)/V2 - 2log(p/k). Let S := supp(B),

18111 = 1811 = 118111 = 1B +ully = 1Bll1 = IBs + uslli = lluselli < luslli = lusell;.  (3.72)

Then, on the event (3.78), using (3.71) and (3.72) we have

)4
A < 48(\/%||u||2 - ,‘:Z;m |u|(j)) + max (F(u), G (u)), (3.73)

where G (u) is defined in (3.64) and G (1) := VI + 6¢G (1). Transforming G () using (3.65), we

have

~ _ lOg(l/(55) 1+ 04
G(u)—\/1+60/18\/z\/k10g(1/6(/18)) 5 | X ul|.

From (3.73), we have the following discussion:

 If G(u) > F(u), this implies

V2 1 log(1/65)
lJull2 < 4+\/5(1 +8)6_4\/k10g(1/6(/18))”Xullz' (3.74)

Therefore,

A* < AVk|ullz2 + G (u)

V2 1 log(1/65)
<AV s *8)6_4\/ Klog(1/0(4) <1 l2
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1
64 \ klog(1/6(¢))

! log(1/35)
548@\/,{@(1/6(&8» Xl

+ VAT +60(1 + 54)—\/ log(1/95) vy,

V1+60(1+684) + 41/5\/5(1 + &)

Combining the above with (3.70),

V1+60(1+084) + 4:_/E\/E(l + &)

[ Xull2 <

! log(1/65)
5_4*8@\/ Flog(1/6(4:))

Then, connecting the above with (3.74), we have

(Hg)i\/ log(1/65)

V2
Y 84 \ klog(1/5(A,))

N 1 log(1/65)
V1+60(1+64) + . \5(1 +&) aﬂa@\/klog(l/ﬂh))
\2

V2 1 log(1/6s)
T V1T+60(1+64) + - \5(1 +8)]6—iklog(l/6(ﬂ£))ﬂg@.

(3.75)

1B = Bl <

(1+e¢)

 If G(u) < F(u), replacing the maximum with F(u), we obtain

)4
8" < 2e(Vllull = Y luly)

Jj=k+1

VI +0(1+64)4+V2 VT +0(1+64)(1+6 P
N o 4) AVEul + o 4)( 3)/1,9 Z el
l1+¢ \/E l+¢ i“h

~ VI+60(1+64)4+V2 V1 +060(1+064)(1 +3) C
= (1+ Tao N )/lg\/EHqu—(l— T+ 2 )/13 Z |ul )

j=k+1

= A.

From (3.70), we know A > A™ > 0 almost surely. As a result, from the above equations,
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U= BL — B € Csre(k, co), where

. ( m(1+54)4+«5) ( \/_1+50(1+54)(1+53))
co = 1+ / 1- ’
l+e& V2 l+e

Note that by the assumption of this lemma, we have selected 63, d4 such that the above

co > 0.Thus, we can apply SRE (k, ¢) and have

5 Xulla _ (VI+60(1+54)4+V2 | Xull>
L_ g, < ! < + 1| A V= —— 3.76
157 = Bl < 0(k,co) ~ l+e \2 CT02(k, o)’ (3.76)
where the second inequality is due to
V1I+060(1+64)4+V2 X
1Xull2 < a* < (YEFO0L+3) *V2 VR Xl
l+e V2 6(k, co)
Combining (3.75) and (3.76), we have
with
V1+0p(1+64)4+V2 1 log(l/6 1
Clko g, 05) 1= (VIFOU #0044 V2 ) (1 logljos) ,
I+s V2 52 klog(1/6(1,) 02 (k, co)
m]

Lemma 44 (Bound on the stochastic error). Let 65 € (0,1) and z ~ N(0,1,) and X € R™? be a

fixed matrix such that max e[| || Xe;|l2 < V1 + 6o, then
{zTXu < 1+ 60 - max (H(u), G(u)), Yu € RP} (3.78)

holds with probability at least 1 — §5/2.
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Proof. Because of the scalability, we prove it for max e[, [|Xe;|[> < 1. For 63 € (0, 1), let
k )4
N(u) =) Jul(y4vlog2p/j) + (1+63) > lul;2log(p/k).
j=1 J=k+1

Letg; =z Xej, j=1...,p. We have

T |g|]
sup z' Xu < sup [ 4log(2p/j) luljy ————
N(u)<l N(u<l Z 4+/log(2p/j)

lgl()
+ (1+683)y2log(p/k) |ul; ]
,;1 RN TE R W Ty

< ( max gl ) ( max il )
1912k 2flog(2p] ) K115 (14 69)yZlog(p/K)
( 12l () ) y 18l(k+1)

172k 4flog2p/7) (1 +63)y2log(p/k)

For L > 0 to be determined, let 7 := {u € R” : max (N(u), %llXqu) < 1}. Note that
f(v) = sup,cr v! Xu is a Lipschitz function with Lipschitz constant L. By the concentration of
the Lipschitz function of Gaussian distribution around the median (for example, Inequality (1.4) in

[45]), we have with probability at least 1 — d5/2,

sup z/ Xu < Med [supzTXu + L+/210og(1/d5)

ueTl ueTl

SMed[ sup 2/ Xul| + L+/21og(1/65)

N@u)<1

< 1+ d4,

where in the last inequality we have let L = 64/+/21og(1/d5) and used Lemma 47. O

Proof of Lemma 42. From (3.69),

\/1+50(1+54)4+«5+1 1

C(k,A,,85) > .
(k, 4, 65) l+e NG 02(k, co)

(3.79)
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2
Then 07 := exp (% log(l/é(/lg))) is the smallest 65 > 0 such that the equality in (3.79) holds.

From (3.68), for t > 10g(1/6§) =T,

AL
18" =Bl <1,

. (\/1 T 00(1+64) 4+V2 N 1)‘16% log(1/6(2))
o l+¢ \2 A:Vk

with probability at least 1 — (e~")/2. Thus, for any g > 2,
0o T 00 e—t q
EZ9 = / gt 'P(Z > 1)dt < / qt?7dr +/ qtq_ljdt <T9+ El—‘(q) =T7+C,,
0 0 T

where I'(+) is the Gamma function. Thus, under the SRE (k, c¢) condition, we obtain

. VI +60(1+64)4+V2 2Nk \4 1 C,
o
Bl - Bl s( e 2 +1) ( ; ) [eﬂcz(k,co)*(5gk10g(p/k))q .

O

The following lemmas are auxiliary to prove Lemmas 41 and 42 and Proposition 4. Some of
them are based on [15]. We skip those proofs to prevent duplicate work.
The following lemma guarantees that SRE (s, ¢() holds for Gaussian random matrix with high

probability.

Lemma 45. Let X € R™? have the random Gaussian design with i.i.d. N (0, %) entries. Consider
the SRE (k,co) with co > 0 and k € {1,...,p}. There exist absolute constants C,C’ > 0 such
that the following holds. For ¥y € (0, 1), if

n > Ccidyk log(2ep/k) (3.80)
then with probability at least 1 — 3 exp ( — C'ndj) we have

XA
max || Xe;||* < 1+ do, n IXAll2 >
j=1,...p AeCsre (k.co):A20  ||A]l2

1 - . (3.81)
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Proof. The statement of the second inequality in (3.81) follows from the proof of Theorem 8.3 in
[15]. We derive that for the first inequality. Applying the Bernstein type of concentration of y>
distribution (for example, Lemma 1 in [46]), we have for some constant C > 0, with probability at
least 1 — exp(—Cné(z)),

1 Xe;|l3 < 1+ do.

,,,,,

1 _pe—Cmsg > 1 — o~ Cndj/2

ifn > Céaz log p. Note that k log(ep/k) > logp forall k € {1, ..., p}. The conclusion holds for

the second inequality in (3.81). O
Lemma 46 (Proposition E.1 in [15]). Let gi,...,g, be standard Gaussian random variables.
Denote by (|g|(1), cee |g|(p)) the non-increasing rearrangement of (|g1 ..., |g[,|). Then for any

se{l...,p}andallt > 0, we have

! LY leP p 1-31/8
(s Z; lgl{;) > 11og(2 /S)) < (2p/s) .
J:

The proof of the next lemma follows that of Proposition E.2 in [15].

Lemma 47. Under the assumptions of Lemma 46, assume k/p — 0, then

P(( 12l )\/ 12| (k+1) <1

2%k 1Tog2pl))) | (1+03)y2log(p/k)
>1- % — exp [ -C- 63k\/210g(p/k)] > %

for any 63 > C/(k+/21log(p/k)) with some C > 0.

Proof. Lemma 46 with t = 16/3 and the inequality | glﬁj) < % {:1 | glé) imply

16 . i
Pllslly < 3 log@p/D) 21 =70, j=1....p. (3.82)
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Let g > 0 be an integer such that 29 < k < 29*!. Applying (3.82)to j =2/ for/ =0,...,q - 1

and using the union bound, we obtain that the event

o - { |g|(21)\/_ <1}
0 -=
[= O ..... q 14‘/log(2p/21

satisfies P(Qp) > 1 — Z?z_ol % =1- 2;; > 1 - %. For any j < 29, there exists [ € {0,...,g—1}

such that 2! < j < 2/*1. On the event Q,

4 { .
|g|(j)S|g|(21)S\/§ 21 —\/_ g—<4 IOg— Vj <29,

And for 29 < j < k,

4 2p 4 8p 2p
1gl(/) < |glra-1 £ —=[log — < —,|log — < 4, [log —.

Thus, on the event Qy we have |g|(;) < 4+/log(2p/j) forall j =1,... k.

In addition, using Lemma 30, we have

P( gloen 1) < exp [ - kC63\/210g(p/k)].

(1+63)/2log %

3.4.4 Proof of Theorem 14

As discussed in Section 3.4.1, without of loss of generality, it’s equivalent to prove the theorem
in the case of o = 1 in model (3.1). We will see that up to first order approximation of the minimax
risk, there is no additional proof technique for different regimes. So we will state the upper bounds

of the three regimes in one subsection and state the lower bounds in the other subsection.
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Upper bound

The upper bounds for Regime (/) and (/1) can be simply established from the risk of the zero

estimator, as such:

R(®(k,p),1) =inf sup E|B-BII° < sup E|0-BI* < kp?,
B peolip) BeO(k )

where the last equality follows naturally from the SNR constraint in @ (k, ).
The upper bound for Regime (//1) follows the upper bound in Theorem 13. This is obvious

because
Ok, 1) € O(k) = R(O(k, ), 1) < R(O(k), 1) = 2k log(p/k)(l + 0(1)).

Lower bound

The proof of lower bound follows the same roadmap of the proof of lower bound for Theorem
13: Suppose 7 is a prior distribution for 8. Let B(r) be the Bayes risk of 7 for squared loss. Based

on the definition of the minimax risk in (3.3), if supp(7) C O(k, 7), then

B(m) <infE||B - BII* <inf sup E|f - BII* = R(O(k, ), 1).
B B peO(k,u)

Therefore, the lower bound of the minimax risk can be provided by the Bayes risk of a prior x
whose support is contained in the parameter space O (k, u).

As previously introduced in Section 3.4.2, we still consider the independent block prior 7;5(4; p, k).
From the construction steps, it already implies that 7;5(A; p, k) is supported on @ (k), i.e. satisfy-

ing the sparsity constraint in ®(k, i). Consider additionally:
If || < i, then supp(r;z(A; p, k) € O(k, ). (3.83)

Thus, the indepedent block prior with 0 < 4 < u can provide a lower bound for the minimax risk
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over O(k, u).

As we discussed in Section 3.4.2, Proposition 1 provides a lower bound for the Bayes risk of
the independent block prior matching with the minimax upper bound in Theorem 13. In view of
R(O(k, ), 1), it turns out that Proposition 1 can also provide lower bounds for B(m;5(4; p, k))
with spike location satisfying (3.83). This includes the considerations of all three regimes stated in

Theorem 13. In fact, from Prosposition 1, we obtain:

* For Regime (/), let A = u — 0, then

B(rmip(4; p, k) 2 kit (1+0(1)).

* For Regime (I1),let A = u, then A = 0(\/210g(p/k)) and

B(rip(4; p, k) = kgt (1+0(1)).

* For Regime (I11),let 2 = y2log(p/k)(1 + 0(1)) and y/210og(p/k) — A — +oo, then

B(rip(4; p, k) = 2k log(p/k)(1+0(1)).

3.4.5 Proof of Theorem 15

Based on the scalability of the model discussed in Section (3.4.1), it is equivalent to prove the

theorem for o = 1.

Upper bound

The following lemma constructs the upper bound from the ridge estimator. Let A% denote the

ridge estimator:

B = arg[fnin Iy = XbI> + Allp|>
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= (XX +AD)7'xTy.

Lemma 48. Assume model (3.1). Suppose k/p — 0 and k/n — 0. As u — 0, the ridge estimator

with A = (ku?)~" has superemum risk

2 2

A k k
sup E[% - BII* < k,,lz(l ke O(L))_
BE®(k.u) p p

Proof. The ridge estimator risk is

E|IB* - BIF =B (X" X + A X" (XB+2) - BII°
= E|(XTX+AD"(XTX+ADB - (XTX +AD) A8+ (XTX +AD) ' X7z - B|?
= El|-(X"X+AD""A8+ (XTX +AD ' XT¢|)?

= E||(XTX+AD7" 8|7 +E|(XTX + AD) ' X7 7||%, (3.84)

where the last step used EABT (X7 X + AI)72XTz = 0. To deal with the first term, we assume
XTX = QTAQ, where Q € RP*P is orthogonal and A = diag (0‘1(XTX), e ,O'p(XTX)). Here,

o1 > ... 2 0 denote the eigenvalues of X" X. Using that the function f(x) := ﬁ —(1—-2x+

3x?) < £(0) =0, Vx > 0, we have

-2
(1XTX + 1) - (1 _2x7Tx 4 i(XTX)Z)
A A A2
(1 - 2 3,

o [i(%). - (%)

Q <0,

Therefore,

E(X"X + D" AB|I> < E

2 T vT yv\2

A A2
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2], 2 3EﬁT(XTX)2ﬁ]
2 2 2 T T 2
i P p 18112
[ 2 2
S B2 |1 28 (B (14 22
T p p n
2 2
< kuz[l —2ki+o(ki)]. (3.85)
p p

The first equality uses that (n/]|8]|?)-||X8]|> ~ x?2. In the second equality, we adopt A = (ku?/p)~"

EBT(XTX)?8 = o(1). By directly calculating the element of (X7 X)?2,

and we will show || ﬁllz

E(XTX)? = (1+ 201,

p+l

EBT(X"X)*B = (1+——) - |IBII*.

Then, the second term in (3.84) can be calculated by

S IXT2P ~ x2.

1 1
BII(X7X +AD ' X7 Z|* < —EIX"z|? = — - LBzl = kpe (3.86)
A2 A2 n
Combining (3.85) and (3.86), we conclude
. k2 k2
sup EJIBR - B < kﬂ2(1 e o(i))
BEO(k,u) p p

O

Lower bound

We construct the lower bound from the independent block prior described in Section 3.4.2 ex-
cept that the signal can now be evenly positive or negative. Denote 7.;5(7; p, k) as the symmetric
independent block prior: divide (1,..., p) into k blocks; For each block j, let m = [p/k] and
randomly select anindex /; € {(j —1)m+1,...,j-m}; Set ﬁ(f) = (B(j=ym+1s -+ > Bjm) = tTey;

evenly with probability %; The selection in different blocks of coordinates are independent.

Proposition 5. Assume model (3.1) and parameter space (3.4). Suppose n — oo and p/k — oo.
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If u = t/o — 0, then the Bayes risk of the symmetric independent block prior satisfies

B(mip(t,p,k)) > k72(1 - %ﬂz +0(k7/12)).

The proof follows the argument of (3.8) and (3.9) in the proof of Proposition 1 and the following

lemma. Throughout the proof, we let m = [p/k].

Lemma 49. Assume model (3.1). Consider the symmetric spike prior (ns(u,m))(B = tue;) = 5~

j=1,...,m. Suppose n,m — oo and u — 0. Then the Bayes risk satisfies

4

Blrs(u,m) 2 1 = £ (1+0(1)).
m

Proof. Using the symmetry of the spike prior distribution, the Bayes risk
B(”S(,u’ m)) = E,uel (Bl - /1)2 +(m - 1)Eyezﬁ,\%
> 12(1 = 2By, p+ (m = DBy, (3.87)
where the Bayesian estimator of 2 at the first coordinate is 81 = (8;)1 = upm. Here we denote

exp(ux]y — @2 llx1112/2) — exp(—px]y — p?(lx1112/2)
Pm = . (3.88)

iy [ exp(ux]y = @21Ixill?/2) + exp(—px] y = p2llxi]12/2)

Under B = uej,

exp(uxy (px1 +2) = @2llxi[1?/2) — exp(—px{ (px1 +2) = 2|1 [1%/2)

m

iy | exp(ux] (uxy +2) = p?llxl|2/2) + exp(—px] (x1 +2) = p?[lxil12/2)

Pm =

Let D, ,, denote the denominator of the above equation. We write

1 2 3
Pm = an) +P1(n) +pr(n)’
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W ePena)| exp(iellin ) - exp(=hilnlP)

m = , (3.89)
b Do
exp(~pu12)| exp(=322l1 ) = exp(-3u 11 |
2 ._
P = , (3.90)
Dn,m
3 exp(ux]z = 3P| [1?) — exp(—px] z = 3?1 1)
Pm = . (3.91)
Dn,m
Then from Lemmas 50 and 51, we have
1 2 2 Hz ,U2
Eue,Pm = Ep( ) +]Ep( ) < (1 + 0(1)) + —(1 +0(1)) = —(1 + 0(1)).
2m 2m m
And from Lemma 52,
2 2
(m =B}y = (m=1) - Ex(140(1)) = & (140(1)).
Thus, from (3.87),
4
Blrs(u,m) 2 1 = E-(1+0(1)).
m
O

Lemma 50. Assume model (3.1). Suppose n,m — oo and u — 0. Then p(l) and p,, (2) defined in
(3.89) and (3.90) satisfy

2 2
HEPY < X 11001)),  (i)Ep? < K (1+0(1)).
m m

Proof. The technique in proving (i) and (i1) will be similar. Since the numerators in both p( ) and

2
an) are nonnegatlve weE can use

m
D 22 ) exp(—?||xill?/2). (3.92)

148



Show (i). First, we show
(1)

Pm p
-1 0. 3.93
2/2m - (3.93)
We have
> exp(—ptllxill?/2) p
> — 1.
me's
Because

2 2\ -5
« Bexp (- &lnlP) = (1-£) .

s 2 2014112 s NG
» Var(exp (= S-ll1?)) = Eexp (= i lill?) - (Bexp (- Sl
2 2

(1) =1 E) ok -0

n n

Then we can apply the weak law of large numbers. And we have

exp (2211 117) = exp (- 22llP)

5 -1,

u
exp (uxTz) 5 1.

Thus, (3.93) follows.

Second, we show anpz(nl ) is dominated by L' random variable. Since p{\’ > 0,
2y _ exn(—L 21 12
2y 2m O] 19| exp(32 i) = exp(=5 i )|
S Pm =
2 2 2
257 exp (= 5 lxill?)

u
@ 2m XPCHx] T2)| exp3u2 et ) - exp(=512ln 1P|

u

e -
" 2mexp (- & 2, &l
1 1 u
:—zexp(— —||xl||) exp (- pxl2) - | exp(pelber ) = exp(— bl
u m 2
_ 1 T, (1 T L2 < 2
—EGXP[—ﬂxlz"'(%“‘l)?”xl” |- (55 2 1sP)
1 T Lo 1> < 2 .
- e | == (1= D IF ] exp (55 ) =
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where Inequality (a) used the arithmetic-geometric inequality of the denominator. Using xsz =

llx1]|z1 and by conditioning on ||x1]| first,

! 2 ]l T
L )12
sBexp (K3 (L)l -
1 22 1 u2 2 T
oo - L)1 )

e exp 5 ( m) ) [l m

1 2 n(m-1) 2 1 _n 2 2,_n
- 20 ) 0-28))
u nm n 2m n2m

1

— - (1+o(1) (1 + o))

,u

=0(1).
Thus, by dominated convergence theorem,
Epp < <1+o<1>>
Show (ii). First, we show
(2)
Pm p
-1—-0. 3.94
w2iom 659
Because
exp (—%M2IIXI IIZ)—eXp (—%ﬂzllxl ||2) »
. > — 1.

u
* exp(—puxlz) 4 exp(uxlz) 2.

Py
2/2

Second, we show that is dominated by a L' random variable. Since p(z) >0,

m ) 2m exp(—pux]2) | exp(~ 52 i) - exp(=3u2 1 2)]
—Pm =
2 o 2
H 25 exp (— 4 [lxill?)
2 P47 )| exp(=i2 1 P) - exp(=3u2 1 2)]

2
H 2mexp (- & 2t S lll?)

u
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12 < 2 T Lo o
= o (g D) - exp ] = (1= )P

NS 2)] _
exp( uxiz— (3 m)2||xl|| =T
And
Ly pdy-umh T Lya2 e
Br= (1 20)7 T Be (Sl - (1= )5 )
2 2
R T R Y 2]
exp (-l = (3= ) &l P
2 _n(m-1) 2. _n -5
e I (G R G
u nm n2m n 2m
1
= a(1+o(D) - (4 +0(4s%)
= 0(1).

Thus, by dominated convergence theorem,
@) :“2
Ep,,’ < 1+o0(1)).
pi) < S=(1+o(D)

O
Lemma 51. Assume model (3.1). Suppose n,m — oo and u — 0. Then pﬁ,f) defined in (3.91)

satisfies
2

Ep,(,f) = 0(”—).
m

. d
Proof. Since z = —z, let

exp(ux]z = 32 I0l?)  exp(ux]z - 32 x0l)

Dn,m A ’
exp(—ux{z = 32 I0l?)  exp(ux{z - 312 x1)
Dy B B ’
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where

1 3
A= exp (a2 + ux]z) + exp (= Sutln I - 2
+ 3 exp (] Gaxt +2) = Sl + exp (= o s +2) = Sl ?),

d 1 3
B £ exp a2l - ux]z) + exp (= Sullb | + pux] 2)

2

m 2 2
+ 3 exp (] (o = 2) = S lll2) + exp = ] (s = 2) = - il
i=2

1 3
= exp ( = 262l 1) exp (52 1P + e 2) + exp (242t 1) exp ( = Sl I - ]2
m ,U2
+ 3 | exp (=26 x1 ) exp (1] (s +2) = -l
=2
2

+ exp (Zu X; xl) exp ( - ,uxl.T(uxl +2) - %”%‘”2)]-

Then,
B 3) _ (B—A)exp (,leTZ - %/JZHXIHZ)
Pm = BA ’
__Texp (uxlz = 32 b |1) + 1T - exp (uxt z = 42 x |1%)
B BA
A A
—E—L 52,
BA  BA
where

1
B-A=|exp (= 2nlP) — 1| - exp (420t 2+ x]2)

v =1
3
+ [ exp @) = 1] - exp (= Sp |12 = ] )
m /~l2
) [exp (= 202T1) = 1 - exp (] e +2) = - )
b =11

2
| exp (2uafe) <1 - exp (= pd Gt +.2) = -l
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and

1 1
Api=1eexp (uxiz = splall), Ao =11 -exp (uxjz = Sl ).

First, we show
A
E-L = o(“—). (3.95)

We have

A1 = [exp (= 26201 112) = 1 - exp (2407 2) + | exp (2421 P) = 1] - exp (= 2421 1)

. [1 —exp (2,ux{z)]

—_—

= 1= exp (- 22001 1?)

< |1 - exp (=242 lP) |1 = exp (= 2621 1P) |- Lirco)
The last line is non-negative, so we can use the lower bound of BA.

[1=exp(=242llx1|P)] - [1 = exp2ux{2)]| - Lpr.<q)

E— < —<E
W2 B e [2mexp (- %%2 p ||Xi||2)]2
m
= —Bexp (Y lP) B exp (-alllal?) —exp (— 2~ -l
dmu? m m "

: [1 - eXP(ZﬂxlTZ)] : ﬂ(x{st)}
dmu? nm

_n@m=1)

" B[exp () - exp (- 2= ol P)|

2u(=2]2) Lt e -

T
where the last inequality is using 1 —e™ < t,Vt > 0. Let cosd = ”xﬁﬂ (llx1 1, 11zll, cos 8) are
mutually independent. Conditioned on {xsz < 0}, 6 is uniformly distributed in [-7, -3

The expectation in the last line is

1 1
B{ | exp (- wlil?) = exp (= 2= Dullea )| - 20(=]2) - Lroco |

= B [exp (- lulP) ~exp (~ 2= D)l lP)| - 2ulal
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B ll2l] - B{ (- cos ) 1 3.0 |
_ 1%{[1_%]-%“_[H%(z_n%)ﬂz]—%ﬂ} V(s

NRYO nm YO
3
- ol
Thus,
% 1?711 < o(m’i/ﬁ) = o(1).

Second, we show
2
255 =o(%)

We have

2

1
B = exp (uxz = 3ulal) - Y | (exp (= 2427 x1) = 1) - exp (] (1 +2) = Sl

|(exp (ulr) = 1) - exp (= ] (1 +2) - ‘§||x,~||2)].

s 10

Il
[\

1
+oxp (ux]z = sl )

1

We let Aél) denote the first line and Agz) denote the second line of the above equation. Agl) 4 A;z)

by x; 4 —x; foreachi=2,...,m. Then,

m_ Ay 2m A(Q) _2m o

2t -2 <20 sl - et

i=

exp (= ol (a1 +.2) = K P) 8|

2m(m — 1 2
22D gl exp (ux{z — el - [exp (2utebe) 1] - exp - el s +.2) — )P

<
u
1w 2
.IL(szxle) / [2m exp ( - Z ||xl-||2)] }
i=1
= S Blew (un - Te = 24l - el - Sl

1 m
| exp@utelxn) — 1] - exp 42 Zl ey
J:
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-1 2 _n(m-2) /JZ 5 1 ) ) S 1 , ,
= 2m,u2 . [ —%,Ll ] -E{CXP (7||)C1 - x| - E,U lx1]]” — w X1X2 — E'u (]2 ]| )

1 1
[ expuslnn) - 1] exp (2 P+ —i2lalP) - 1m0

m—1 1 2 =" ) IO

= S [T B[ e [ e (Ll + L) T |
m—1 1 2 =" 1 1

< S|l B|2s Il - el - cos 01 gaie) - exp (— i 12+ — sl |
mpr L nm" m m
m-1 1 2 =" ol

= 2 Tt [Ee-exp (i )|
mu> L nm" | 4

1
- of3)
n
where in the last equality we used

2
u
Bkl - exp (£ ?)

0 1 | 1, 2u?
/ e exp(——(l—i)r)dr
o 2"2T(n/2)+n 2 nm

(sl 2)-mt
- 221—‘(2) \/1_(1_%)
- o)

N

Thus,

mpha 0(1) = o(1).

Lemma 52. Assume model (3.1). Suppose n,m — oo and u — 0. Then under B = ue,, p,, defined
in (3.88) satisfies

Eye, P2 “—2(1 +o(1)).
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Proof. Under B = ue,

2
| exp (1T (uxz +.2) = S22t 1P) = exp (= pua] (e + 2) = 2l P)|

2 _
Eﬂezpm =" m T 1 T 1 2
| S exp (unf ez + 2) = Sy bll?) + exp (= pual (s +2) = Syl |

Observe that the numerator is free from (x3, . . ., x;;). By conditioning on (x1, x5, z), apply Jensen’s

1

m,x>0,

inequality on f(x) :=

8| D exp (] (xa +.2) = SuPll?) + exp = px] (xz +.2) = Sl (a1.x2, )|
i=3
2

p\ -5 1 u?/n >
4] g (),
(m=2){1+=) ~exp 21+'uz/nllﬂxzﬂll

Thus,

1 1 2
Bueaply > E| exp (] (2 + 2) = 32017 = exp = ] ez + 2) = S0l )|
1 1
[exp (1 ez + 20 = SPal) + exp (= g Gz + ) = 34 P)
1 3
+oxp (uxhz + SpPllall?) + exp (= pdz = il

2

Ho\"2 1 u?/n 5172
2m=2)(1+ ) "o (3 e <)
+2(m - 2) t-) e 21+,uz/n”'ux2+ZH

To further simplify the denominator, we note that the numerator depends on x, and z only through
uxy + z. We construct a random variable v := —%xz + z being independent of ux, + z, and take
conditional expectation of v on other variables in the denominator by applying Jensen’s inequality

on function f(x) = ﬁ,

1 1 2
BuesPin 2 E{[exp (] (pxz +2) = 52 ) = exp (= o] uxa + 2) = 4l 2
1 1
- (Ev[exp (] Gz + 2) = 52l + exp ( = px] (o + ) = 3%l )

1 3
+oxp (uxlz+ i Iall?) +exp (= pdz = 4 e ?)
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2

\-% 1 P n )
a2 e )

(@) ! ! ?
z E{[exp (1ex! (o2 4 2) = 42 bt |P) = exp = g v +.2) = 4l ) )

1 1
[exp (s Gz + 20 = SPal) + exp (= ] G+ 2) = 34 P)
n 2 n
3(}7) +5l7 +2

+(1+ n)_jexp( >
I+5 2(1+ )72+ %)

x> + 2|2

+(1+ ! )_%e ( L+ ||2)
xp | — ————||ux2 + 2
1+ 4 P 2(1+ %) 2
u
2, _n 2 _
P\ 3 1 u/n 2\172
+2(m=-2)(1+ " exp 21+Mz/nll,uxz+z||

(b) 2
> E{M (<7 (w2 +2)) " exp (- 211

T 1 2 2 T 1 2 2
[exp (1] Gz +.2) = Salxr 1) + exp (= o] ez + 2) = S0l )

3(2)% +5% +2

s + 2|

1
- sl + 2IP)
+ 2]

_ -2
+2(m—2)(1+'u—) exp(—%ll,uxz+z|lz)] }
n + u?/n
2

> {4(x] 4] exp (- il
. [exp (,uxlT(,uxz + z)) + exp ( — pxt (o + z))
3 2
+oxp (5w +2I) + 1
2n
1u? =2
+2(m—2)CXP(§%H#X2+Z”2)] }

° 2,,2 2 2
¢ E{4ﬂ2Wf||qu +z|Per el

. [exp (,uwlllyxz+zll) +eXP(—,UW1||ﬂX2+Z||)
3 2

+oxp (55w +2I) + 1
2 n

1 p? -2
+2(m —2) exp (E%nyz + z||2)] }
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22 ) .
e’ Wlﬂuwl'Sb/‘/ﬁ)] 'E[”/JX2+Z|| ]l(||ﬂx2+zll<6‘/—)] 'E[e weal ]

b 1+2L

(e) 41> 2 N\ 1 2b
> L(l+ #2) ’ [— e B+ ) - ¢(x)dx
M )

==,
Van \/HT e
e el
L %(1+0(1))

9 1 ot).

Equality (a) uses for Ya € R", b ~ N (0, 0'21,,), €1 and e being two constants,

2.2

1 _n o€
Eb[exp ( - EEl”b”Z - ezaTb)‘a] = (1 + 610’2) 2 exXp (2(1—)” || )

Inequality (b) uses that (¢* — ¢™¥)? > (2x)? for all x € R. In Equality (c), we let Q € R™" be an
orthogonal matrix such that Q(ux; + z) = (||uxz + 2,0, ...,0). Denote Qx| =2 w = (w1, w_1),
w1 € R, w_y € R""!. Then, xT (ux; + 2) = willuxa + zl|, lx1[1* = [lwi]1%, and w ~ N'(0, 11,)), w is
independent of ||ux; + z||. In Inequality (d), M := [e”bc L S 2(m — 2)e%"262]2.

Inequality (e) uses that

. D Pw? 1 2b ,-3(1 b 1 b
Ew7e H W1]1(|w1|sb/\/ﬁ) T a2t [ T Var® e ) \/quz /b\/l 22 ¢(X)dx]
2 2
4 cn
* Ellux + 217 (unyecyzeyi) = ( +1 ” P Xn+1 = 2/n+1)

(1+—) [l—exp - \J?—\[

Equality (f) holds by setting b = ¢ = u i = w(1). Finally, Inequality (g) holds because M <

4m?*eVF for all u being sufficiently small. O
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3.4.6 Proof of Theorem 16
Lower bound

Due to the scalability discussion in Section 3.4.1, we present the proof for o = 1. Let m;p
be the symmetric independent block prior described in Section 3.4.5. The following proposition

states the lower bound.

Proposition 6. Assume model (3.1). Suppose n — oo, p/k — oo and log(p/k)/n — 0. Let
u=1/o — o and u = o(+/log(p/k)). Additionally, assume u*/n — 0. Then the Bayes risk of

the symmetric independent block prior satisfies

2
Blrarn(r:p. k) = k(1 ’;ip e (1+0(D)),

The proof directly follows the argument of (3.8) and (3.9) in the proof of Proposition 1 and the

following lemma.

Lemma 53. Assume model (3.1). Suppose n — oo, p/k — oo and log(p/k)/n — 0. Let u :=
7/0 — oo and p = o(4/log(p/k)). Additionally, assume u*/n — 0. Then the Bayes risk of the

symmetric spike prior (ns(p, m))(B = tue;) = ﬁ, j=1,...,m satisfies

2
p*et

- (1+o(1)).

B(ns(p,m)) > p* -

Proof. Using the symmetry of the spike prior distribution, the Bayes risk

B(rs(p,m)) = E,uel(,BAl - /1)2 +(m — I)Euezﬁ%

> ,u2(1 — 2B, P + (1 = DEpe, pfn), (3.96)
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where the Bayesian estimator of 3 at the first coordinate is 8 = (8,)1 = up,.. Here we denote

exp(ux]y — @2 llx1112/2) — exp(—uxly — p?|lx1112/2)
D 1= . (3.97)

0Ly [ exp(uxly = p2llx;112/2) +exp(—pxly = p?|lx;112/2)

Then from Lemmas 54 and 60, we have

2 2
p2et

; (1 + 0(1)).

B(ms(p,m)) = p* -

Lemma 54. Assume model (3.1). Letm := [p/k]. Suppose n,m — oo, t — oo and u* = o(log m).

Additionally, assume u*/n — 0. Then under B = pei, py defined in (3.97) satisfies

2

et
E,uelpm < %(1 +0(1))
Proof. Under 8 = ue;,

2 2
H 3u
BuePn = E[exp(ux{z+—||x1||2)—exp(—ux{z—Tnxlnz)]

m 2 2
u
-[Z (exp (1 Gt +.2) = S s 112) + exp (= ] (e + 2) - 7||x,-||2))

Jj=2

3u? -
+exp (x z+—||x1||)+exp(—ux{z—7||x1||2)] .

m

o

Eexp (uxl 7+ —||x1|| ) [Z (exp (,ux]T.(um +27) - %ZHXJ'HZ)
(-
st

IA

j=2
- 2
+oxp (- (ux1+z)——||x,||)

3u? -
exp sz + 2l )+exp(—ux{z—7||x1||2)]

We will show that me ™" - Pm is dominated by an L' integrable random variable and then prove by

the dominated convergence theorem that E,., p,, < et /(2m) - (1 +o( 1)). We first construct such
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integrable upper bound. Observe that x; and x; are tangled through ux; +z. Let y = ux; + z and

Vo= ( - ﬁxl + z)/\/n (1 +n/u?) ~ N(O, %). y is independent of v, furthermore (y, v, {xj}Tzz)

are mutual independent. In exchange of variables from (x1, z) to (v, v), we have

2 2+ /n ylI? BTy K |
3w in) Qe fm) ~ (2 ” Y ™ 22 )

2
Ellxill? + px] z = %,

2 243 /n |yl 14244% /n u? 2
~H St i)  H Y Y~ s VI

3 2
—px{z = |l ll? =

Thus,
Eje,pm < EU, (3.98)
with
2+ u?/n lIy]? u T u
U =exp (40 Jewp ( ’)
xp 2142/ 01+ 2T s !

m 2
J7i
[Z (exp (157 = £ ) - exp (= s - 7||xj||2))

j=2
2+p%n |ylI? [ p? )
2 T
+e + _
@ (W s e T s
2+3u*/n |yl 1+24%/n s ) -
2 T 2
+e - - -— ,
@ (B S e e i
(3.99)
where we have used v £ —v. Following Lemma 55, we obtain
2
eM
EU < — - (1+0(1)). (3.100)
m

2
Now, we show E e, pim = % . (1 + 0(1)) through dominated converge theorem. Consider the

truncation on the following events:

: llyll> 2(1+42/n) log?2
(l) n(1+u?/n) 2 2+u2/n T
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.. va u? u Z—yz/n
() 1+ 5 2 =550 a7

From (3.98), we have
Epe,pm < E[UT((n&(iny] + ELUL(@)eugiie)]-
Lemma 57 indicates that
E[UT((hagn] < e /(2m) - (1+0(1)).

By Lemma 59,

Ul(@yeutine) = ——=% p”

d e“zB e“2
=on("r)
m A

Then using (3.100) and the dominated convergence theorem, we have

2
eM

E[Uﬂ((i)cu(ii)f)] < 0(7)

As a result,
2

et
]E,uelpm < %(1 +0(1))

Lemma 55. Assume model (3.1) with B = uey. Let m = [p/k]. Suppose n,m — oo and
u? = o(logm). Additionally, assume u*/n — 0. Then U defined in (3.99) with v := ( - ﬁxl +

Z)/\/n - (1 +n/u?) satisfies

2

Eye,U < (1 + 0(1)).

e
m

2 2
Proof. Using that e®+e™* > eb+e7" for |a| > |b|, exp (,uxJT.y—%lllelz)+exp (—,uxJT.y—%lllelz) >
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T T
MX Y 2 2 MXL Y 2 2
oxp g = S IP) + ex - et = P,

2 203/ |yl 1 T 1 2
s Uen P (¥ sttt ) &2 (e ~ ot 1)
Hel - T
uxty 2 2
B 050 (g = SllR) + e (et - st I1P)
2+p%n yIP Ty
<Bexp (15— ) exp - 1)
(1 + w?/n)n(1+ u?/n) 2n(1 + u?/n) 2<]<m
T 2
b (i = s M)
uxTy 2 2
2jop OXP ((1+u2?n)3/2 = K ”xf”z) T exp (WVT)) B m”v”z)
2+p%n yIP Ty 2
SEex(2 )ex( max (v Vv ||x ))
P 2(1 + p?/n) n(1 + p?/n) P 2n(1+,u2/n) 2<j<m IVl i
b (i = s M)
m pjy u? 12 K T u? 2\
2 e (e — g I 12) + exp (Y = st v

(3.101)

Let the fraction in the last line be F(v,x»,...,X,). Based on the independence and homogeneity

of distributions of v and {x;}"" ,, conditional on y and max{||v|%, [|x2]|% . ... llxn]l*},

j=2’

u . e d ,UXJTJ’ p
(s~ a2

||x,||2). (3.102)

Hence,
—E[F(V,xz,---,xm) (v max (1P v ||x,-||2))].
2<j<m

Thus,

1 2+u/n |yl? ' 2 2
Bull < Bexp (4 oo (5 s g mas, (WP v i)

Hel mo P 2(1+ p?/n) n(1 + u?/n) P 2n(1 + u?/n) 2r<n]a<x IVl
1 2+4%n |yll? pt >
= e (i ) Bexp (g max, (WP Il )
mo P K 2(1 + u2/n) n(1 + u?/n) xp 2n(1 + p?/n) 2<]<n IVl

4

1 2 5, 2+u*/n 1%
_[1__ ZL/’/Z] 2.Eexp( H

2 12
m n" 20+ 12 n) max (IIVII AER )) (3.103)

2n(1 + u?/n) 2<j<m
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Applying Lemma 58, we have

[ 25 2+4%n ]_%ex ( (1+c)u ).(1+0(1))

1
Bpe, U < m ! 2(1+ u?/n) 2n(1 + p?/n)
4 2
- %exp (,ﬂ+0(%)) (1+0(1)) = :1 (1+o(1), (3.104)
O

where the last equality uses the assumption u*/n = o(1).

Lemma 56. Assume v,y € R". Let u > 0 and ,uz/n < 1. Then the conditions (i) and (ii) described

in Lemma 57 imply that

2

242/n_ IbIP u
2 T
+ PR T, 3.105
P S gt s wre ) (3.105)
243200 |ylP L+ 242/ 2
— 42 _ T, _ 2
i SR I R R TI C rpyrami
2

H T s u T
(T~ ae )+ o0 (= ™~ 5 )

Proof. We start from transforming (3.105). Multipling by exp ( 0 22)3 R 1+:2 T )||v|| ) on both

sides and reorganizing, we obtain

exp(uz 24 yI® 2u va)_l
2(1+p2/myn(1+ 2 /n) ~ (1+ u2/n)3/2
2 2433 yl*> 2uPn va)] -0

-[ex (—2" VT )—ex (-
P U+ 2 ) P\ 2y n (U 2 m) ~ (U + 2 )32

2+ /n lIylI? 2u )
2 T
s + -1
o ST i a+gm * Tr
2+4%/n lyll? 2u
2 T
+ -1
[0 sy i a s s T )
1 exp ( 2 24 /n lIylI? L 244 /n va)]
20+ 2 /myn(1+12m) (U @2 fn)? P2
'eXP(—u2 2+ /n yll? ) s
2(1 + u2/n) n(1 + u?/n)
2 2+l )_ 1]

) 2+ n IyIP %
= [ (u 20+ @2 fm) n(L+ 2 fm) (142 fmp" ) 1] Lo 2(1+42/m) n(1 + 1i2/n)
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2u?/n IyII? 2u?/n
>1—-ex (— 2 - r )
PR a2y w2y~ M 2y
Then if
» 2+ p%/n IyII?
exp (,u ) > 2,
2(1 + u2/n) n(1 + u?/n)

a sufficient condition for (3.106) to hold is

2+ u*/n lIyll? 2
2 U Y H T )
ex + -1
P s i) * T
2 2 2 2 2
Zl—exp(—,uz H/n Iyl .y Kon
2(1+p2/nyn(1+p2/n) = (1+ p?/n)32
Suppose additionally
2 _ 2 2 2(1 - 2
22l P a2 g
200+ p2/n)n(1+p2/n) " (1 + p2[n)3/?
or equivalently
viy oop 1 2—42/n
I~ 20T+ p2/n2(1 = p2/n)’
Note that the above implies
2 2+ p*/n lIy]1? + 2p va >0
20+ p?/myn(1+p2/n) (1 +p?/n)32° =~
vy S _H 1 2+ 12/n
IvI2 ~ 2p\1+p2/n 2 .
Under condition (3.109), if case I:
2 2 2
s 2n Iyl 2lin oo

ez my n (e et
then (3.108) holds naturally. If case II:

» 2u%/n lIyII? 2u?/n 4
—u —u v
2(1+ p?/n) n(1 + p?/n) (1+ p?/n)3?

y <0,
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then combining this with condition (3.109),

2 2442 /n lyll? 2u T )
+ vyl -1

2(1+p2/n) n(1+p2/n) (14 p?/n)32

2 2 2 2 2
2 2u/n [l o2t /n va)—l
201+ p2/n)yn(1+p2/n) = (1+ u2/n)3/?

24 /n lIylI® o 2p* /n va)
200+ @2 /)y n(1+p2/n) " (1+ pu?/n)32 ’

ex o

ex o

> l—exp(—,u2

i.e. (3.108) holds. In summary, the sufficient conditions for (3.105) to hold are

: Iyl 2(1+4°/n) log2
> -l
(1) n(1+u2/n) = 2+u?/n  u ’

.. va /42 H 2—#2/}’1
(i1) Wm/l + 5= > S

Lemma 57. Assume model (3.1) with B = uey. Let m = [p/k]. Suppose n,m — oo and
u* = o(logm). Additionally, assume p*/n — 0. Let U be defined in (3.99) with v := ( - ﬁxl +

z)/\/n - (1 +n/u?). Consider conditions:

: Iyl 2(1+%/n) log2
> -t
(l) n(1+p2/n) = 2+u%/n u’

vy [ e u_2-p/n
i) —5n4/l1+= > -5 .
(i) iyl n 22(1-p2/n)

Then

! e . (1+0(1)).

E[ULy&(in] < m

Proof. From (3.99) and since Lemma 56, we have

> 24423 n Iyl )ex( why — @vIP )
2(1+ p2/n) n(1 + p2/n) (L+u2/n)3% 21+ p?/n)

m T T
. [Z ox ( Gy .uzlllelz) T ex (_ Gy ﬂzlllelz)
p= PN+ 2/npr 2 P\ v i2myi 2

E[UT (&) <Eexp (H

-1
( wly w2 vl ) ( wly w2 vI? )]
+exp +ex

(1+u2/n)32 2(1+ 12/n) L+ 2/ 2(1+2/n)
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(?Eex ( 5 2+u?/n M )ex (ﬂ4maX2§j3m(||V||2V||Xj||2))
P\ S+ 2/n) n(1+ 12 /) 20(1 + 12 /n)
exp( wly @ vl? )
(1+u2/n)32  2(1 + p2/n)
[i ol T 71§ )+ - T a1 &
S\ TP w2 " 2 2/ (T2 fm) 2~ 2(T+ /)
T 2 2 T 2 2 -
+exp( w'y vl )+exp(_ wiy vl )
(1+u2/n)32  2(1 + p?/n) (1+pu2/n)3%  2(1 + p2/n)
Uy (20Dt maasan PV Py 1
2(1+ p2/n) n(1 + u?/n) 2n(1 + u?/n) 2m

(© 1 2 5, 2+u*/n 1% (1+c)u?
I rrorrmi ]

TR 0T w2 2n(1+ﬂ2/n))'(1+0(1))

= ﬁe“z (1+0(1)).

Inequality (a) is derived by comparing the coefficients of ||x; ||I> and |[|v]|? in the exponentials in the
numerator and the denominator in (3.99). To show Equality (b), note that v and (x», ..., x,) are

independently and identically distributed. Define

T 2 2
uv'y Il
eR"— + =€ (i B ),
v fe(v) = exp (1+u2/n)32 21 + 2/n)

Then f,(v) 4 f-(v) and fi(v) 4 fe(x;), j =2,...,m. Equality (b) follows by

f+(v) i)+ f2(v) L

E _1g =—.
Y () + fo(xep)) + W)+ f2(v) 20 B, (feCe) + fo(x) + fo() + f(v)  2m

Inequality (c) uses the independence of y and (v, {xj}J"?:z) and the result in Lemma 58. The last

Equality (d) uses the assumption u*/n — 0. O
Lemma 58. Suppose v, x>, ...,x, Hd N (O, }lln). If u*/n — 0 and (logm)/n — 0, then there

exists some constant ¢ > 0 such that

E[exp (2n(+12/n) 2rsnjas)fﬂ (||v||2 % ||xj||2))] < exp (2r1((11++—c,11)él;rz)) (1+0(1)).
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Proof. We use the integrated tail probability to calculate the expectation. For some constant ¢ > 0,

A 4
ool s () oo 2 )

B ./I>OP(6XP(2,1(+12/”) 2<]<m(||V||2 VIl )) exp(zn((ll-:—%) > t)dt

&

= ./x; P(zrr;ax (”V”ZV“)CJ” ) > 1+x)2(+4ﬂz/n)exp (2]1(+4;12/]1)(1+X))dx

a 4

(S) xp 2n(1+,u2/n) 2n(1+,u2/n) / " exp Z[(l—m)x—log(l+x)]}dx
4

(é) exp mexp{ Z . %(1 - m)x}dx

4 4

4u n H
" exp{logm—— l - ————5— c}
n2(1+ 12 /) (1 = mitrs) 4( n*(L+p /n))

[ )
(a0 +,12/n)) T2 o
(2n<1+,,z/n))
()

o(1).

The above Inequality (a) uses the union bound and the deviation in Lemma 25. In the above

. 4 4 4
Inequality (b), we adopt ¢ = (l+m)/(l—m) such that (I—W)x—log(lﬂc) >
%(1 - ;12(+;2/n))x for Vx > c. The last Equality (c) is because wo = o(1) and logm = o(n).

Therefore,

4

E[exp(mg (||v||2V ||x,||2))] < exp(zn((ll-:_—%) (1+0(D)).

O

Lemma 59. Suppose vi,vo,...,vp HA N (O, %In) and y ~ N(0,1 + ”72) with y independent
of {vj}?’zl. Consider the conditions (i) and (ii) defined in Lemma 55. Then if m — oo, y =

o(+logm), (logm)/n — 0 and u*/n — 0, we have

n

= 1 ’\? 2 Iy m wly 2R P
(a= E(1 * %) =P ( pACTIT: n(1+yu2/n>) " 2j=1 XP ((1+ﬂ2J/n)3/2 -7 ) -1
2\% 2+ u? 1 2
(2) B::e‘“2(1+'u—)2€xp (uz( ,u2/n - - 2) ||y||2 )
n 2(1+p2/n)  2(1+p2/n)?) n(1 + p?/n)
MLy v |2 :
(1+u2/n) 2(1 + u2/n)) v
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Proof. First, one can directly follow the proof in Lemma 33 to derive (1). We omit the proof of (1)

here. Second, to prove (2), it’s sufficient to prove

( 2( 2+ p%/n 1 ) IylI? ) ( uviy 1212 )
Eexp |u — exp - et
2(1+p2/n)  2(1+u2/n)2) n(1 + p2/n) (1+ @232~ 2(1+ 2/n)) [@reudi]
2+ 4% /n 1 Iyl uvyy 1212
<E (2 ) ( - )(n.cm..c)
P (2<1+y2/n> 2(1+ 122 /n)? n<1+u2/n>)e"p (L4 @2 /)32~ 2(1 4 2 m) ) 1O T L]

= ofer (145 7)

We first evaluate the truncated expectation on (i)¢. Conditional on y,

Bexp (17 242 1 ) Iyl )eso Ay uzuvluz) N
21+ 2/n) 21+ p2/n)? ) n(1+ 2 /n) (1 +@2/n)3 2 2(1+ a2y ) 1]
(3.110)
_ 2 J_n 2 2
H 2 2 2+p7/n llyll
B TP T EPra——.
L n(1+ 2 /n) 201+ 2 /m) n(1+ g2 fm) | [ <2 et
_ s u? -—%[l 2u> 242 /n ]—% [1 2<(1 2u> 242 /n )2(1+u2/n)10g2
B n(1+u2/n) ] n 2(1+u2/n) n*" n 2(1+u2/n)) 2+u2/n  u
2 q-n 2 2 2 2 _n 1
< |re—Ht 2[1— Ho_2H ] 2exp[——(log —z)], 3.111)
n(1+u?/n) ! n 2(1+ u?/n) 2 1—1t

where in the last inequality we used the deviation in Lemma 25 and

21> 2+ 1% /n )2(1 + 1% /n) 10g2

-ri=(1-
n 2(1+u?/n)) 2+u®/n

o(1),
under the assumptions ¢ — oo and p?/n — 0. Thus, %(logﬁ — t) > cn = w(u?), for some

constant ¢ > 0. Note that

2 _n 2 2 _n 2 4
[l+n(l f/ﬂ/n)] [1_ 2': 2(21-:512//?;)] = oxP [%+0(%)]
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Therefore, an upper for (3.110) is

2, _n
0(6%(“—0(]))) = 0(6”2 . (1 + /J—) 2)-
n
Then, we evaluate the truncated expectation on (ii)¢. Conditional on ||y|| and using vfy 4
vyl
e vy 2l 1161 [151]
(1 +,u2/n)3/2 2(1 +,u2/ ) [(D)°]
T
- e (L R a1 |11
(1 + /Jz/n)3/2 2(1 + ,uz/n) 2(1 + ,uz/n) [‘/EVLK_\/H(:‘ﬂz/n) %2(21_—1;42//’:1)]
2 _n 2
:[1+ 1/12 ]zex [ oIyl - ]
I’l( + U /n) 2n(1+/12/n)3(1+n(]+N2/n))
Iy pop 2-p2n K
P[vo.n < ( 2y 2201 2fn) (142 ramal
,/n(1+ ”(1+7) (1+ )(1+n<1+u2/n>)
2

>
= [Hm] ) [2n(1+y2/€z)!(y1”+n(l+:z/n))]
2112 2 2o
'\/%exf’ [ B %%( t n(lli ) 4(1 _%) ' (1+£)(1 +1n(1+,,:2/n))1/2)2]
= eXP[—%u2(1+0(1))+%u2(1+0(1))'n(!y—ll;)‘z 1+ (1)),1(21”1)]
= exp[—%,uz(l+0(l))—%,uzn(Ty—ll;)(l"‘O(l))]’

n

where the inequality uses the Gaussian tail bound. Hence, it follows by the moment generating

function formula of y? distribution that

o 2+ 12/n 1 & vy LAl
Fexp (“ (2(1 T2 201 +,ﬂ/n)2)n(1 +,12/n)) =P ((1 + 232 2(1 +,ﬂ/n))1[(”’c]
_ 1 1, 5, Iyl
< exp [ —5H (1 +0(1))]]Eexp [(E,u (1+0(1)) - gH (1 +0(1))) ]

n(1+”72)

= exp [ - %,uz(l +0(1))] - exp ( - é,uz(l +0(1)))
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Lemma 60. Assume model (3.1). Let m = [p/k]. Suppose n,m — oo, u — oo and u =
o(\log m). Additionally, assume u*/n — 0. Then under B = pes, p,, defined in (3.97) satisfies

2

/1621 m

2 2 2
M H
EpiesPm =E[ exp (,UXIT(#xz +2) - 7llx1 ||2) — exp ( — px] (px2 +2) — 7”)51”2)]

2 2
7 )z
- [ > (exp (1] Gz +2) = Sl 1) + exp ( = ] (o +2) - Euxjuz))
j#2

2 2 -2
)7 3u
+oxp (w2 + S beall?) + exp (-l z - 2= ||x2||2)] .

HUX2+Z—V

2
Hty

Letv = —/ﬂlxz + z, then v is independent of ux, + z. Replace x; = such that the above

expression of p2, consists of (X1, v, ux2 +2,X3, . . ., X,;). Conditional on (ux +z, x1), then p2, is in

the form of a convex function f(x) := ﬁ, where c is a constant or depends only on (ux;+z, x1).

Then applying Jensen’s inequality on E[ f(x) |( uxs +z,v)|, we obtain

2

2 2
Ejue:Pin 2B exp (/»lxlT(ﬂxz +2) - %nxlnz) ~exp ( — ] (2 +2) - %nxlnz)]
2, _n 2 2
. 2(m—2)(1+'u—) 2 ex K Nl + 217
n 2n 1+ u?/n

2 2
K 7
+exp (uﬁ(uxz +2) = >l ||2) +exp ( — px] (pxy +2) — Il ||2)

3(2)*+52% +2

1 -5
+(1+ - ) exp(
1+-5 2(1+/%)2(2+l%)

lhwxs + 2]

b1+ =) e (- s e + ||2)]_2
X - X
r+z) TPy T
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T #2 2 T /12 2 ?
exp (ux1 (pxz +2) = -l ) ~exp ( - ] (w2 +2) = - )]

2, _n 2 2
2 +
. z(m_z)(Hﬂ_) ? exp [ 12 2+ 2l
n 2n 1+ u?/n

>E

2 2
+exp (ux{wxz +2) = Sl ||2) +exp ( - x| (w2 + ) = Sl ||2)
2, _n 2 2 2, _n 2 2\12
3 + +
+(1+ﬂ_) exp [2HC I+ 2l +(1+#_) Fexp [ = AR AT T
n 2n 1+u?/n n 2n(1 + u?/n)

Let the denominator of the last expression above be D?. Considering upper bounding the denomi-

nator constrained on the following conditions:
. llpea+2]l
@) Valxl < 3ugEiss

(i) |lx;_1]|*> = 1 — ¢, for some constant ¢ € (0, 1).

ooy o] _
(iii) s m S 6 for some constant ¢ = O(1).

. d . ) :
Using xlT(,uxz +2) = x11||ux2 + z|| and under the above conditions, the denominator is upper

bounded by

2 2 2 2 2

3
DSZ(m—Z)eXP(ﬂ_M_ﬂ_)+4eXp( ©e Nl +2l?
2n 1+ u?/n 2 n 1+u2/n 3

2

(1-1))

2 2 2
ulpxa + 2|17 u
< 2(m—2+\/n_1)exp (E—l-'-,uz/n —7),

_n 2

-
where in the first inequality, we used (l+“7) T<e'T

and ||x1]|? > |lx1.—1]|*> = 1—¢. In the second
2
inequality, we assume constants ¢ and ¢ in conditions (if) and (iii) satisfy log?2 + % urc + %t <

% log m, which is possible since > = o(logm). Then,

s 2 u? e
| exp (sl + 2ll = Sl 1) = exp (= vz + 20l = Sl 2) | Loeanaqn
2~ 24 V) exp (L1l 2}
m m) exp | 5, "1 5
2exp (2011 llaxa + 2l = 21k |2) = 2exp ( = g2

2m -2 2 lweorel? 2\ ]2
(m + \/%) CXP\2a 1+u?/n 2

Euezpi > E
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2exp (21l + 2ll = g2l ) Lreuineuine)

—E 3
2 2 2
-2 o (1252 - )]

In the last expression above, let the first expectation be E; and the second expectation be E;. We

2
will show that E| = glze“z . (1 + 0(1)). And E, = o(fn%). We first calculate E, in which

2 2
u” || pxa + 2|
n 1+u*/n

220 2 2 + -2
= (1+L) 2]E,exp(2ﬂ—||,ux2+z||2—'u——”'ux2 il + 2)
n n n 1+u?/n
2 2, _n 2 2 1 _n
- (1+L) 2[1——;3(2(1#‘—)——)] s
n n n 1+ u2/n

— e—#2+/12+0(/14/n) . eﬂz = eﬂz . (1 + 0(1))5

where the last equality uses u*/n = o(1). The negative term in E; is of higher order, since

2 W llpxa + 21>,
Eex (— 2P = D2 T2, )
m—2+yn? P wilkall” == 1+ 12/n
1 2,_n 2 2,_n 12
— [1+2”—] 2.[1+L] 2-6“2:0(6—).
2(m — 1 ++/m/2)? n n m?

Thus,

2

et
E| = ﬁ . (1 +0(1))
To calculate E,, we consider the constraints on (i), (ii)“ and (iii)“ one by one. First,

2 || uxz + 22
Eexp (2pxyilpxs + 2| — il || - - FE2 X
n 1+4+u*/n

2 2
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22_2 22 2 2 2
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Second,
2 2
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2
where in (a) we denote 1 — ¢’ := (1 + 2%)%(1 —1t) < 1, thus log(1 —¢') +1 < ¢’ < 0O for some
constant ¢’ < 0. The last equality follows by e 1i=ean () for arbitrary constants ¢y, ¢y > 0, since
w2 /n — 0. Third,

2 2
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where in Equality (a), t” := c(l - 2%2 (zl(zﬁ ZZ) - 1)) > ¢’ > 1 for some constant ¢’. And Equality

(b) uses as n — oo, u*/n = o(u?) = o(n). O
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Chapter 4: Discussions

We studied the minimax problem of two canonical models: sparse signal denoising and sparse
linear regression. We showed that the minimaxity in its current form is not informative enough
to reflect the important factor of the sparse estimation problem, as indicated in empirical studies,
the SNR level. We have shown that the classical minimax sugguests asymptotic minimax esti-
mator irrespective of the underlying SNR level. However, sub-optimality of these estimators is
demonstrated in empirical performance under different SNRs. To interpret the results and mitigate
the discrepancy, we introduced two notions that can make the minimax results more meaningful
and appealing for practical purposes: (i) signal-to-noise-ratio aware minimaxity, (ii) second-order
asymptotic approximation of minimax risk. We showed that these two notions can alleviate the
major drawbacks of the classical minimax results. For instance, in sparse signal denoising prob-
lem in Chapter 2, while the classical results prove that the hard and soft thresholding estimators are
minimax optimal, the new results reveal that in a wide range of low signal-to-noise ratios the two
estimators are in fact sub-optimal. Even when the signal-to-noise ratio is high, only hard thresh-
olding is optimal and soft thresholding remains sub-optimal. Furthermore, our refined minimax
analysis identified three optimal (or nearly optimal) estimators in three regimes with varying SNR:
hard thresholding 7jg(y, 4) of (2.5) in high SNR; 7z (y, 4,y) of (2.10) in moderate SNR; linear
estimator 77z (y, 4) of (2.9) in low SNR. As is clear from the definition of the three estimators, they
are induced by {p-regularization, elastic net regularization [23] and £,-regularization, respectively.
These regularization techniques have been widely used in statistics and machine learning [24].

The concepts of signal-to-noise ratio aware minimaxity and higher-order asymptotic approx-
imations introduced in this thesis may open up new venues for investigating various estimation
problems. We have used the same framework to revisit the sparse estimation problem in high-

dimensional linear regression and obtained new insights. However, the analysis of minimax in
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sparse linear regression is more challenging in the high dimensional setting. The current progress
of this line of research has been arounded the rate-minimaxity. We completed the classical mini-
max result by characterizing the accurate constant. And we established the SNR-aware minimax
results up to first and second-order accurate. It’s yet to be finished of the second-order approxima-
tions in moderate and high SNR regimes. However, the obtained results in low SNR regime already
demonstrates a non-trivial estimator — ridge outperforms the zero estimator in extreme low SNR
(goes to zero). This explains and verifies the finding in empirical result and provide evidence that
our method of higher order approximation of SNR-aware minimax result is impactful in studying
sparse estimation problem. That being said, it is important to acknowledge that the additional in-
sights gained from this framework come with increased mathematical complexity when computing
minimax estimators. Therefore, one direction we plan to explore in the future is the development
of simpler and more general techniques for obtaining higher-order approximations of minimax risk

or the supremum risk of well-established estimators.
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