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Abstract

Signal-to-noise ratio aware minimaxity and its asymptotic expansion

Yilin Guo

Since its development, the minimax framework has been one of the corner stones of

theoretical statistics, and has contributed to the popularity of many well-known estimators, such

as the regularized M-estimators for high-dimensional problems. In this thesis, we will first show

through the example of sparse Gaussian sequence model, that the theoretical results under the

classical minimax framework are insufficient for explaining empirical observations. In particular,

both hard and soft thresholding estimators are (asymptotically) minimax, however, in practice

they often exhibit sub-optimal performances at various signal-to-noise ratio (SNR) levels. To

alleviate the descrepancy, we first demonstrate that this issue can be resolved if the signal-to-noise

ratio is taken into account in the construction of the parameter space. We call the resulting

minimax framework the signal-to-noise ratio aware minimaxity. Then, we showcase how one can

use higher-order asymptotics to obtain accurate approximations of the SNR-aware minimax risk

and discover minimax estimators. Theoretical findings obtained from this refined minimax

framework provide new insights and practical guidance for the estimation of sparse signals.

In a broader context, we investigated the same problem for sparse linear regression. We

assume the random design and allow the feature matrix to be high dimensional as 𝑋 ∈ R𝑛×𝑝 and

𝑝 ≫ 𝑛. This adds an extra layer of challenge to the estimation of coefficients. Previous studies

have largely relied on results expressed in rate-minimaxity, where estimators are compared based

on minimax risk with order-wise accuracy, without specifying the precise constant in the



approximation. This lack of precision contributes to the notable gap between theoretical

conclusions of the asymptotic minimax estimators and empirical findings of the sub-optimality.

This thesis addresses this gap by initially refining the classical minimax result, providing a

characterization of the constant in the first-order approximation. Subsequently, by following the

framework of SNR-aware minimaxity we introduced before, we derived improved

approximations of minimax risks under different SNR levels. Notably, these refined results

demonstrated better alignment with empirical findings compared to classical minimax outcomes.

As showcased in the thesis, our enhanced SNR-aware minimax framework not only offers a more

accurate depiction of sparse estimation but also unveils the crucial role of SNR in the problem.

This insight emerges as a pivotal factor in assessing the optimality of estimators.
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Chapter 1: Introduction

1.1 Objective and organization

The minimax framework is one of the most popular approaches for comparing the performance

of estimators and obtaining the optimal ones. Since its development, the minimax framework

has been used in a broad range of areas including, among others, classical statistical decision

theory [1, 2], non-parametric statistics [3, 4], high-dimensional statistics [5], and mathematical

data science [6]. Despite its popularity, when the parameter space is set too general, since the

minimax framework focuses on particular areas of the parameter space, its conclusions can be

misleading if translated and used in practice. Take the high-dimensional sparse linear regression

for example. It has been proved that the best subset selection is minimax rate-optimal over the

class of 𝑘-sparse parameters [7]. Nevertheless, recent empirical and theoretical works demonstrate

the inferior performance of the best subset selection in low signal-to-noise ratio (SNR) [8, 9, 10].

The key issue in this problem is that the parameter space in the minimax analysis only incorporates

sparsity structure and does not control the signal strength for non-zero components of the sparse

vector. In this thesis, we aim to answer the following question:

(*) How can we enhance the minimax framework to improve the accuracy of responses

concerning the optimality of estimators?

We address this question through two canonical examples: (1) sparse signal denoising, and (2)

sparse linear regression. We clarify these two problems as well as the thesis’s contributions in the

following sections.
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1.2 Sparse signal denoising

Let 𝑦𝑖 = \𝑖 + 𝜎𝑛𝑧𝑖, 𝑖 = 1, 2, . . . , 𝑛. where 𝑦 = (𝑦1, . . . , 𝑦𝑛) denote our observations of the

unknown parameters \ = (\1, . . . , \𝑛) corrupted by i.i.d. standard Gaussian noise 𝑧 = (𝑧1, . . . , 𝑧𝑛).

Let 𝜎𝑛 > 0 denote the noise level which may vary with 𝑛. The goal is to estimate \ assuming that

\ ∈ Θ(𝑘𝑛) =

{
\ ∈ R𝑛 : ∥\∥0 ≤ 𝑘𝑛

}
. Under the classical minimax framework, the following

minimax risk is often studied:

𝑅(Θ(𝑘𝑛), 𝜎𝑛) = inf
\̂

sup
\∈Θ(𝑘𝑛)

E\ ∥\̂ − \∥2
2. (1.1)

This estimation problem has been well studied in statistical decision theory since 1990s. To clarify

some of the existing results and the challenges they face, we first introduce soft and hard thresh-

olding estimators. Define the soft thresholding estimator [̂𝑆 (𝑦, _) ∈ R𝑛 and hard thresholding

estimator [̂𝐻 (𝑦, _) ∈ R𝑛 with coordinates:

[[̂𝑆 (𝑦, _)]𝑖 = arg min
`∈R

(𝑦𝑖 − `)2 + 2_ |` | = sign(𝑦𝑖) ( |𝑦𝑖 | − _)+, (1.2)

[[̂𝐻 (𝑦, _)]𝑖 = arg min
`∈R

(𝑦𝑖 − `)2 + _2𝐼 (` ≠ 0) = 𝑦𝑖 𝐼 ( |𝑦𝑖 | > _), (1.3)

where sign(𝑢), 𝑢+ represent the sign and positive part of 𝑢 respectively, 𝐼 (·) denotes the indicator

function, and _ ≥ 0 is a tuning parameter. Also, the subscript 𝑖 denotes the coordinate of a vector.

The following theorem states a classical asymptotic minimax result.

Theorem 1 ([11, 12, 3]). Assume the Gaussian sequence model and parameter space Θ(𝑘𝑛) with

𝑘𝑛/𝑛→ 0 as 𝑛→ ∞. Then the minimax risk, defined in (1.1), satisfies

𝑅(Θ(𝑘𝑛), 𝜎𝑛) = (2 + 𝑜(1)) · 𝜎2
𝑛 𝑘𝑛 log(𝑛/𝑘𝑛).

Moreover, both the soft and hard thresholding estimators with tuning _𝑛 = 𝜎𝑛
√︁

2 log(𝑛/𝑘) are
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asymptotically minimax, i.e., for \̂ = [̂𝑆 (𝑦, _𝑛) or [̂𝐻 (𝑦, _𝑛), it holds that

sup
\∈Θ(𝑘𝑛)

E\ ∥\̂ − \∥2
2 = (2 + 𝑜(1)) · 𝜎2

𝑛 𝑘𝑛 log(𝑛/𝑘𝑛).

This theorem indicates that both soft and hard thresholding estimators can achieve the asymp-

totic minimax risk when the sparsity satisfies 𝑘𝑛/𝑛→ 0. However, we will show in Chapter 2 that,

empirically, soft and hard thresholding estimators have divergent average mean squared errors in

different noise levels. Specifically, the experiment in Chapter 2 (Figure 2.2) shows that in low

noise level, hard thresholding performs better than both linear estimator and soft thresholding; as

the noise level increases, soft thresholding starts to outperform hard thresholding, and eventually

both hard and soft thresohlding are outperformed by the linear estimator. This implies that SNR

has significant impact on the sparse estimation. Such phenomenon is not clearly reflected under

classical minimax framework. This leads us to think about Question (*). Particularly, in Chapter 2,

we introduce the SNR-aware minimax framework, where we control the SNR level in addition to

the sparsity in the current minimax parameter space. As will be described in Chapter 2, this more

constrained minimax framework is capable of discovering SNR regimes under which estimators

show different behaviors.

In addition, one of the main challenges in minimax analysis is to estimate the minimax risk and

find the corresponding optimal estimators. As can be guessed, it is even more challenging to solve

this new constrained minimax framework than the original minimax problem. In response to the

difficulty of evaluating the minimax risk, [3] suggested finding an approximation of the minimax

estimator. This asymptotic approximation is also useful in our SNR-aware minimax analysis.

However, we will show in Chapter 2 that, the approximation proposed by [3] is not sufficiently

accurate to solve the SNR-aware minimaxity.

Hence, in Chapter 2, we introduce the higher-order asymptotic analysis to obtain more accurate

approximations of the minimax risk. We show that the combination of the SNR aware minimax

framework and higher order approximation provide much more accurate analysis of estimators.
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More specifically, in Chapter 2, we will show that when the SNR level approaches zero, the linear

estimator achieves up to the second-order minimax optimality whereas soft thresholding is proved

to be suboptimal. Furthermore, when the SNR level can be arbitrary large, hard thresholding is the

only optimal estimator in our second-order asymptotic analysis of the minimax risk. Finally, when

the SNR level is large but below a certain threshold, we prove that an optimally tuned combina-

tion of linear and soft thresholding estimators (resembles elastic net in linear regression) is much

closer to the optimal estimator than the soft or hard thresholding estimators. More interestingly,

the threshold dividing the SNR level that leads to different minimax conclusions turns out to be√︁
2 log(𝑛/𝑘𝑛), the threshold at which the signals in 𝑛/𝑘𝑛 density can be detected from i.i.d. stan-

dard normal noises. Therefore, our analysis of the new SNR aware minimax framework brings

new insights into the impact of SNR in sparse estimation.

1.3 Sparse linear regression

As one of the most recognized extensions of the sequence model discussed in previous section,

the linear regression model is considered:

𝑦𝑖 = 𝑥
𝑇
𝑖 𝛽 + 𝜎𝑧𝑖, 𝑖 = 1, . . . , 𝑛, (1.4)

where 𝑦𝑖 ∈ R denotes the response, 𝑥𝑖 ∈ R𝑝 represents the feature or covariate vector, 𝛽 ∈ R𝑝 is

the unknown signal vector to be estimated, and finally 𝑧1, . . . , 𝑧𝑛
𝑖.𝑖.𝑑.∼ N(0, 1) are standard normal

errors. The goal is to estimate 𝛽 ∈ R𝑝 given 𝑋 ∈ R𝑛×𝑝 and 𝑦 ∈ R𝑛, assuming the sparsity structure

𝛽 ∈ Θ(𝑘) := {𝛽 ∈ R𝑝 : ∥𝛽∥0 ≤ 𝑘}. The classical minimax framework defines the minimax risk as

𝑅(Θ(𝑘), 𝜎) := inf
𝛽

sup
𝛽∈Θ(𝑘)

E𝛽∥𝛽 − 𝛽∥2. (1.5)

Since considered, obtaining the exact minimax risk has remained mathematically challenging. As

alternatives, there arose a line of research finding the approximation of the minimax risk. To

review the prevailing results and develop our framework, in this thesis, we assume that {𝑥𝑖}𝑛𝑖=1
𝑖.𝑖.𝑑∼
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N(0, 1
𝑛
𝐼𝑝) and are independent with the noise errors {𝑧𝑖}𝑛𝑖=1. In approximation of the minimax

risk, previous literatures [13, 7, 14, 15] have studied the rate performance of the minimax risk

when 𝑛, 𝑝 → ∞. Following the setting of this thesis, it was shown by [14] that

𝑅(Θ(𝑘), 𝜎) ∼ 𝜎2𝑘 log(𝑝/𝑘), (1.6)

where the notation “∼" means that as 𝑛, 𝑝 → ∞ and (𝑘 log(𝑝/𝑘))/𝑛→ 0, the ratio 𝑅(Θ(𝑘), 𝜎)/(𝑘 log(𝑝/𝑘))

remains bounded. Furthermore, it has been studied in the literatures [13, 7, 14, 15] that many es-

timators, such as best subset selection [16, 17], Dantzig selector [18] and LASSO [19] achieve

this rate-optimal minimax criteria, meaning that their risks (under optimal tuning) divided by

𝑘 log(𝑝/𝑘) remain bounded.1

However, extensive simulation results reported in [8, 20] have confirmed that when the signal-

to-noise ratio is low, all these estimators exhibit suboptimal performance and adding an ℓ2-squared

regularizer can improve the performance of the estimators. Hence, the rate-optimal minimax re-

sults could become misleading guidelines for practitioners. To figure out the mismatching between

the rate-optimal and the simulation results, we propose the following conjectures:

• Conjecture 1: As is clear, the rate optimal minimax result does not evaluate the minimax risk

exactly. It ignores the constant in the minimax risk approximation and only captures the rate

behavior in view of 𝑘 and 𝑝 for mathematical simplicity. It is possible that if we calculate

the exact maximum risk for estimators, the differences between constants can explain the

discrepancies between the simulation studies and the rate-optimal minimax results.

• Conjecture 2: It could be that since the minimax framework only focuses on the spots of the

parameter space that are hard for the estimation problem, its theoretical implications will be

different from the simulation studies. Hence, the framework needs to be amended to provide

more informative results.

To settle Conjecture 1, [21] has contributed to characterizing the constant of the minimax risk
1In some of these results, the risk is stated with high probability and the rate is 𝑘 log 𝑝 instead of 𝑘 log(𝑝/𝑘).
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to obtain a better approximation of the minimax risk. As the abovementioned literatures, [21]

proved the result in a probabilistic statement, meaning that, fixing ∀𝛽 ∈ Θ(𝑘) and considering a

certain estimator 𝛽, 𝜎−2∥𝛽 − 𝛽∥2/(𝑘 log(𝑝/𝑘)) ≤ 2(1 + 𝑜(1)) holds only with high probability

tending to one. This expose the result of [21] to the doubt that there might exist some rare but

possible event, under which the “optimal" estimator has unbounded risk. In this sense, the overall

mean-squared error of the estimator might not achieve the exact constant characterized by [21]. As

a complement, we deliver a result that is proved in Chapter 3:

Theorem 2. Assume model (1.4) and parameter space Θ(𝑘). Suppose 𝑛, 𝑝 → ∞. If 𝑘/𝑝 → 0 and(
𝑘 log 𝑝

)
/𝑛→ 0, then the minimax risk defined in (1.5) satisfies

𝑅(Θ(𝑘), 𝜎) = 2𝜎2 · 𝑘 log(𝑝/𝑘)
(
1 + 𝑜(1)

)
.

First, compared to the rate minimax result in (1.6), Theorem 2 characterizes the constant in the

rate ∼ 𝑘 log(𝑝/𝑘), attaining more accurate approximation for the minimax risk. However, from

this point, we have shown that under the current minimax framework, the same estimator remains

optimal irrespective of different SNR settings in practice. This leads to a conclusion for Conjecture

1: By characterizing the exact constant on top of the current rate minimax results cannot explain

the discrepancy between simulation and theoretical findings.

Therefore, we turn to Conjecture 2 for potential interpretations. As we discussed in Section 1.2,

the disalignment between simulations and theories could result from these concerns of the classi-

cal minimaxity: (1) Since we do not impose any constraint on the signal strength, the minimax

framework only focuses on a particular signal-to-noise ratio that makes the estimation problem the

hardest. Hence, the factor of SNR affecting practical results is masked by the minimax framework.

(2) The approximations we obtain for the minimax risk in rate-optimal minimax framework, and

even in Theorem 2 are not accurate enough for distinguishing performances of different estimators

and hence more accurate approximations are required for this purpose. This leads us to think about

Question (*) under linear regression setting.
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To address those concerns and answer Question (*), as we introduced in previous section, we

add control of the SNR in the minimax framework by inserting a SNR constraint on the parameter

space such that Θ(𝑘, 𝜏) :=
{
𝛽 ∈ R𝑝 : ∥𝛽∥0 ≤ 𝑘, ∥𝛽∥2

2 ≤ 𝑘𝜏2
}
. On top of this, the SNR-aware

minimaxity is defined as the minimax risk over Θ(𝑘, 𝜏). With the new constrained framework, we

should expect that it is more challenging to mathematically solve the problem. In approximation,

we will present in Theorem 14, Chapter 3 a first-order asymptotic result for the SNR-aware mini-

max risk. As will be clarified in the theorem, the first-order accuracy is still insufficient to identify

the impact of SNR in the minimax risk. Finally, we will show that when we analyze the higher-

order asymptotics, the minimax risk is decreased by different quantities in different SNR settings,

which provides a clearer answer to the above question and becomes a more practical guideline for

empirical applications.
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Chapter 2: SNR-aware minimaxity in sparse signal denoising

In Chapter 2, we focus on the popular example of the sparse Gaussian sequence model – a

special case of the sparse linear regression model with an orthogonal design. We first discuss in

detail the limitations of classical minimaxity in Section 2.1. This is devoted to the development

of a much more informative minimax framework that alleviates major drawbacks of the classical

one. Then in Section 2.2, we introduces the SNR aware minimax framework by controlling and

monitoring the signal-to-noise ratio and sparsity level through the parameter space. As will be

discussed later, solving this new constrained minimax problem is much more challenging than the

original minimax analysis. Hence, we resort to higher-order asymptotic analysis to obtain approx-

imate minimax results. The conclusions of this signal-to-noise ratio aware minimax framework

turn out to provide new insights into the estimation of sparse signals.

2.1 Classical minimaxity and its limitations in sparse Gaussian sequence model

We consider the Gaussian sequence model:

𝑦𝑖 = \𝑖 + 𝜎𝑛𝑧𝑖, 𝑖 = 1, 2, . . . , 𝑛. (2.1)

Here, 𝑦 = (𝑦1, . . . , 𝑦𝑛) is the vector of observations, \ = (\1, . . . , \𝑛) is the unknown signal

consisting of 𝑛 unknown parameters, 𝑧𝑖’s are i.i.d. standard Gaussian error variables, and 𝜎𝑛 > 0

is the noise level that may vary with sample size 𝑛. The goal is to estimate \ from the sparse

parameter space

Θ(𝑘𝑛) =
{
\ ∈ R𝑛 : ∥\∥0 ≤ 𝑘𝑛

}
, (2.2)
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where ∥\∥0 denotes the number of non-zero components of \, and the sparsity 𝑘𝑛 is allowed to

change with 𝑛. The most popular approach for studying this estimation problem and obtaining

the optimal estimators is the minimax framework. Considering the squared loss, the minimax

framework aims to find the estimator that achieves the minimax risk given by

𝑅(Θ(𝑘𝑛), 𝜎𝑛) = inf
\̂

sup
\∈Θ(𝑘𝑛)

E\ ∥\̂ − \∥2
2, (2.3)

where E\ (·) is the expectation taken under (2.1) with true parameter value \.

Gaussian sequence model plays a fundamental role in non-parametric and high-dimensional

statistics. There exists extensive literature on the minimax estimation of \ or its functionals over

various structured parameter spaces such as Sobolev ellipsoids, hyperrectangles and Besov bod-

ies. These parameter spaces usually characterize the smoothness properties of functions in terms

of their Fourier or wavelet coefficients. We refer to [22, 3, 4] and references therein for a sys-

tematic treatment of this topic. The estimation problem over Θ(𝑘𝑛) has been also well studied in

statistical decision theory (e.g., with application to wavelet signal processing) since 1990s. Define

the soft thresholding estimator [̂𝑆 (𝑦, _) ∈ R𝑛 and hard thresholding estimator [̂𝐻 (𝑦, _) ∈ R𝑛 with

coordinates: for 1 ≤ 𝑖 ≤ 𝑛,

[[̂𝑆 (𝑦, _)]𝑖 = arg min
`∈R

(𝑦𝑖 − `)2 + 2_ |` | = sign(𝑦𝑖) ( |𝑦𝑖 | − _)+, (2.4)

[[̂𝐻 (𝑦, _)]𝑖 = arg min
`∈R

(𝑦𝑖 − `)2 + _2𝐼 (` ≠ 0) = 𝑦𝑖 𝐼 ( |𝑦𝑖 | > _), (2.5)

where sign(𝑢), 𝑢+ represent the sign and positive part of 𝑢 respectively, 𝐼 (·) denotes the indicator

function, and _ ≥ 0 is a tuning parameter. We summarize a classical asymptotic minimax result in

the following theorem.

Theorem 3 ([11, 12, 3]). Assume model (2.1) and parameter space (2.2) with 𝑘𝑛/𝑛→ 0 as 𝑛→ ∞.

9



Figure 2.1: Mean squared error comparison at different noise levels. Data is generated according to
(2.1) with 𝑘𝑛 = ⌊𝑛2/3⌋ and \ having 𝑘𝑛 components equal to 1.5. “linear" denotes the simple linear
estimator 1

1+_ 𝑦. All the three estimators are optimally tuned. MSE is averaged over 20 repetitions
along with standard error. Other details of the simulation can be found in Section 2.3.

Then the minimax risk, defined in (2.3), satisfies

𝑅(Θ(𝑘𝑛), 𝜎𝑛) = (2 + 𝑜(1)) · 𝜎2
𝑛 𝑘𝑛 log(𝑛/𝑘𝑛).

Moreover, both the soft and hard thresholding estimators with tuning _𝑛 = 𝜎𝑛
√︁

2 log(𝑛/𝑘) are

asymptotically minimax, i.e., for \̂ = [̂𝑆 (𝑦, _𝑛) or [̂𝐻 (𝑦, _𝑛), it holds that

sup
\∈Θ(𝑘𝑛)

E\ ∥\̂ − \∥2
2 = (2 + 𝑜(1)) · 𝜎2

𝑛 𝑘𝑛 log(𝑛/𝑘𝑛).

Theorem 3 shows that both soft and hard thresholding estimators are minimax optimal for es-

timating sparse signals (with small values of 𝑘𝑛/𝑛). Despite the mathematical beauty of the above

results, its practical implications seem not clear. We demonstrate this point by a simulation in

Figure 2.1. As is clear from the left panel, when the noise level is low, hard thresholding performs

the best among the three estimators; as the noise level increases, hard thresholding starts to be out-

performed by soft thresholding, and eventually both hard and soft thresohlding are outperformed

by the linear estimator. The same comparison holds in the right panel as the sample size increases

from 500 to 5000. This phenomenon can be widely observed for different types of sparse signals.

We provide more simulations in Section 2.3.
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In light of Theorem 3 and Figure 2.1, we would like to raise a few critical comments:

1. Despite their minimax optimality, both hard and soft thresholding estimators selected by the

classical minimaxity do not perform well compared to a simple linear estimator when the

noise is large.

2. The hard and soft thresholding estimators have distinct performances at different noise lev-

els, despite they are both asymptotically minimax.

3. Figure 2.1 implies that the signal-to-noise ratio (SNR) has a significant impact on the esti-

mation. However, the effect of SNR is not well captured in the classical minimax results

(Theorem 3).

These observations lead us to the following question: is it possible to develop a refined minimax

framework which addresses differences between hard and soft thresholding estimators and char-

acterizes the role of SNR in the recovery of sparse signals? Such a framework will provide more

proper insights and sound guidance for practical purpose.

2.2 SNR-aware minimaxity

To overcome the limitations of the classical minimaxity discussed in Section 2.1, in this chap-

ter, we aim to develop a signal-to-noise-ratio-aware minimax framework. This framework imposes

direct constraints on the signal strength over the parameter space and performs the corresponding

minimax analysis that accounts for the impact of signal-to-noise ratio (SNR). To obtain accurate

minimax results in the SNR-aware setting, we will derive higher-order asymptotics which provides

asymptotic approximations precise up to the second order. As will be discussed in detail in Section

2.2, our proposed framework reveals three regimes in which distinct estimators achieve minimax

optimality. In particular, hard-thresholding estimator outperforms soft-thresholding estimator and

remains (asymptotically) minimax optimal in the high SNR regime; as SNR decreases, new op-

timal estimators will emerge. These new theoretical findings offer much better explanations for
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what is happening in Figure 2.1, and are much more informative towards understanding the sparse

estimation problem in practice.

We collect the notations used throughout this chapter here for convenience. For a scalar 𝑥 ∈ R,

𝑥+ and sign(𝑥) denote the positive part of 𝑥 and its sign respectively; ⌊𝑥⌋ is the largest integer less

than or equal to 𝑥. For an integer 𝑛, [𝑛] = {1, 2, . . . , 𝑛}. We use 𝐼𝐴 and 𝐼 (𝐴) to represent the

indicator function of the set 𝐴 interchangeably. For a given vector 𝑣 = (𝑣1, . . . , 𝑣𝑝) ∈ R𝑝, ∥𝑣∥0 =

#{𝑖 : 𝑣𝑖 ≠ 0}, ∥𝑣∥∞ = max𝑖 |𝑣𝑖 |, and ∥𝑣∥𝑞 =
(∑𝑝

𝑖=1 |𝑣𝑖 |
𝑞
)1/𝑞

for 𝑞 ∈ (0,∞). We use the notation 𝛿`

as the point mass at ` ∈ R. We also use {𝑒 𝑗 }𝑝𝑗=1 to denote the natural basis in R𝑝. For two non-zero

real sequences {𝑎𝑛}∞𝑛=1 and {𝑏𝑛}∞𝑛=1, we use 𝑎𝑛 = 𝑜(𝑏𝑛) to represent |𝑎𝑛/𝑏𝑛 | → 0 as 𝑛 → ∞, and

𝑎𝑛 = 𝜔(𝑏𝑛) if and only if 𝑏𝑛 = 𝑜(𝑎𝑛); 𝑎𝑛 = 𝑂 (𝑏𝑛) means sup𝑛 |𝑎𝑛/𝑏𝑛 | < ∞, and 𝑎𝑛 = Ω(𝑏𝑛) if

and only if 𝑏𝑛 = 𝑂 (𝑎𝑛); 𝑎𝑛 = Θ(𝑏𝑛) denotes 𝑎𝑛 = 𝑂 (𝑏𝑛) and 𝑎𝑛 = Ω(𝑏𝑛). For a distribution 𝜋,

supp(𝜋) denotes its support. Finally, we reserve the notations 𝜙(𝑦) and Φ(𝑦) =
∫ 𝑦

−∞ 𝜙(𝑠)𝑑𝑠 for the

standard normal density and its cumulative distribution function respectively.

2.2.1 SNR-aware minimax framework

We focus on the above-mentioned Gaussian sequence model (2.1). To develop the SNR-aware

minimax framework, we start by inserting a notion of signal-to-noise ratio in the minimax setting.

To this end, we consider the following SNR-aware parameter space:

Θ(𝑘𝑛, 𝜏𝑛) =
{
\ ∈ R𝑛 : ∥\∥0 ≤ 𝑘𝑛, ∥\∥2

2 ≤ 𝑘𝑛𝜏
2
𝑛

}
. (2.6)

Here, as before, 𝑘𝑛 is the parameter that controls the number of nonzero components of the signal

\ ∈ R𝑛. The new parameter 𝜏𝑛 can be considered as a measure of signal strength (on average) for

each non-zero coordinate of \. Unlike Θ(𝑘𝑛), the new parameter space Θ(𝑘𝑛, 𝜏𝑛) is responsive to

changing signal strength. Minimax analysis based on it may thus provide a viable path for revealing

the impact of SNR on the estimation of sparse signals. Define the corresponding minimax risk (for
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squared loss):

𝑅(Θ(𝑘𝑛, 𝜏𝑛), 𝜎𝑛) = inf
\̂

sup
\∈Θ(𝑘𝑛,𝜏𝑛)

E\ ∥\̂ − \∥2
2. (2.7)

We aim to investigate the following problems:

1. Characterizing the minimax risk, 𝑅(Θ(𝑘𝑛, 𝜏𝑛), 𝜎𝑛), for different choices of sparsity level and

signal-to-noise ratio. This will help us understand the intertwined roles of SNR and sparsity

on signal recovery.

2. Obtaining minimax optimal estimators in the aforementioned settings, along with evaluating

the performance of some common estimators (e.g., soft thresholding).

The solutions to the above problems will help resolve the issues we raised before about the

classical minimax results. First, we introduce two critical quantities associated with the target

parameter space Θ(𝑘𝑛, 𝜏𝑛) introduced in (2.6) under the model (2.1). Denote

𝜖𝑛 =
𝑘𝑛

𝑛
, `𝑛 =

𝜏𝑛

𝜎𝑛
. (2.8)

It is clear that 𝜖𝑛 represents the sparsity level and `𝑛 is a form of signal-to-noise ratio over the

parameter space. We aim to study 𝑅(Θ(𝑘𝑛, 𝜏𝑛), 𝜎𝑛) for different values of (𝜖𝑛, `𝑛). Since an

explicit solution to exact minimaxity is very challenging to derive (it is not even available for

Θ(𝑘𝑛)), we focus on obtaining asymptotic minimaxity, and consider the following regimes: as

𝑛→ ∞,

Regime (I) Low signal-to-noise ratio: `𝑛 → 0, 𝜖𝑛 → 0;

Regime (II) Moderate signal-to-noise ratio: `𝑛 → ∞, 𝜖𝑛 → 0, `𝑛 = 𝑜(
√︁

log 𝜖−1
𝑛 );

Regime (III) High signal-to-noise ratio: 𝜖𝑛 → 0, `𝑛 = 𝜔(
√︁

log 𝜖−1
𝑛 ).

The condition 𝜖𝑛 → 0 is standard to model sparse signals. The above three regimes are clas-

sified according to the order of signal-to-noise ratio `𝑛. As will be shown in Section 2.2.3 via
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higher-order asymptotics, each regime exhibits unique minimaxity, and distinct minimax estima-

tors emerge in different regimes. But before that, we first derive similar first-order asymptotic

result as the classical one and reveal its limitations in the SNR-aware minimax setting.

2.2.2 First order analysis of SNR-aware minimaxity and its drawbacks

Our first theorem generalizes Theorem 3, to our SNR-aware minimax framework.

Theorem 4. Assume model (2.1) and parameter space (2.6). The following hold:

• Regime (I). When `𝑛 → 0, 𝜖𝑛 → 0,

𝑅(Θ(𝑘𝑛, 𝜏𝑛), 𝜎𝑛) = (1 + 𝑜(1)) · 𝑛𝜎2
𝑛 𝜖𝑛`

2
𝑛,

and the zero estimator is asymptotically minimax optimal (up to the first order).

• Regime (II). When `𝑛 → ∞, 𝜖𝑛 → 0, `𝑛 = 𝑜(
√︁

log 𝜖−1
𝑛 ),

𝑅(Θ(𝑘𝑛, 𝜏𝑛), 𝜎𝑛) = (1 + 𝑜(1)) · 𝑛𝜎2
𝑛 𝜖𝑛`

2
𝑛,

and the zero estimator is asymptotically minimax optimal (up to the first order).

• Regime (III). When 𝜖𝑛 → 0, `𝑛 = 𝜔(
√︁

log 𝜖−1
𝑛 ),

𝑅(Θ(𝑘𝑛, 𝜏𝑛), 𝜎𝑛) = (2 + 𝑜(1)) · 𝑛𝜎2
𝑛 𝜖𝑛 log(𝜖−1

𝑛 ).

Furthermore, both soft and hard thresholding estimators (2.4)-(2.5) with the tuning param-

eter _𝑛 = 𝜎𝑛
√︁

2 log 𝜖−1
𝑛 are asymptotically minimax optimal (up to the first order).

This theorem is covered as a special case of Theorems 5, 6, and 8 we present in Section 2.2.3.

Hence, the proof is skipped.

There are a few aspects of the above results that we would like to emphasize here:
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1. As is clear, first-order analysis under the SNR-aware minimax framework already provides

more information than in the previous framework. For instance, it implies that below a

certain signal-to-noise-ratio, i.e. when `𝑛 = 𝑜(
√︁

log 𝜖−1
𝑛 ), sparsity promoting estimators

such as hard or soft thresholding do not seem to have any advantage over the zero estimator.

In fact, the zero estimator is optimal up to the first order. Later in Section 2.2.3 we will argue

that even these theorems should be interpreted carefully, and that the current interpretation

is not fully accurate.

2. If we consider the rate of 𝜖𝑛 fixed and evaluate the minimax risk as a function of `𝑛,

we will see a phase transition happening in the first order term of the minimax risk. As

long as the first order is concerned, the trivial zero estimator is minimax optimal for any

`𝑛 = 𝑜(
√︁

log 𝜖−1
𝑛 ). Hence, it seems that unless `𝑛 = Ω(

√︁
log 𝜖−1

𝑛 ), even the optimal mini-

max estimators will miss the signal. Once `𝑛 = 𝜔(
√︁

log 𝜖−1
𝑛 ), the first order result implies

the optimality of non-trivial estimators, such as soft-thresholding. While it is challenging to

provide an intuitive argument for the phase transition occurring at
√︁

log 𝜖−1
𝑛 =

√︁
log(𝑛/𝑘𝑛),

the following explanation may offer some insight: Consider a 𝑘𝑛-sparse signal (with 𝑘𝑛 non-

zero components) in R𝑛 with Gaussian noises. On average, there exists one non-zero signal

component among 𝑛/𝑘𝑛 locations. The maximum absolute value of the noises at the 𝑛/𝑘𝑛

locations is on the order of
√︁

log(𝑛/𝑘𝑛). Consequently, from an intuitive perspective, it be-

comes easier to detect signals when their magnitudes exceed this threshold, but significantly

more challenging when they fall below this threshold. It’s important to note that heuristic

arguments like the one above have their limitations and should not be solely relied upon for

drawing conclusive results. This aspect will be further clarified in the next section, where

we will demonstrate that minimax estimators can outperform zero estimators even when

`𝑛 = 𝑜(
√︁

log 𝜖−1
𝑛 ).

One of the main issues in the above theorem is that the first-order asymptotic approximation of

minimax risk does not seem to always offer accurate information. For example, as the signal-to-

noise ratio significantly increases from Regime (I) to Regime (II), the first-order analysis falls short
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of capturing any difference and continues to generate the naive zero estimator as the optimal one.

Moreover, in Regime (III), the analysis is inadequate to explain the difference between hard and

soft thresholding estimators. In the next section, we push the analysis one step further to develop

second-order asymptotics. This refined version of the SNR-aware minimax analysis will provide a

much more accurate approximation of the minimax risk, and can provide more useful information

and resolve the confusing aspects of the first-order results presented above.

2.2.3 Second order analysis of SNR-aware minimaxity

In this section, we discuss how the analysis provided in Section 2.2.2 can be refined to resolve

the issues we raised in Section 2.1.

Results in Regime (I)

We start with Regime (I). As discussed in Theorem 4, as far as the first order of minimax risk

is concerned, the zero estimator is asymptotically optimal in this regime, and no other estimators

can outperform the zero estimator. The reason this peculiar feature arises is that since the exact

expression for 𝑅(Θ(𝑘𝑛, 𝜏𝑛), 𝜎𝑛) is very complicated, Theorem 4 resorts to an approximation that

is asymptotically accurate. However, this approximation is coarse when 𝑛 is not too large and/or

𝜖𝑛 is not too small. The conclusions that are based on such first order analysis are hence not

reliable. Therefore, we pursue a second-order asymptotic analysis of minimax risk to achieve

better approximations. This more delicate analysis turns out to be instructive for understanding the

three regimes of varying SNRs. We first present the result in Regime (I). Define the simple linear

estimator [̂𝐿 (𝑦, _) ∈ R𝑛 with coordinates:

[[̂𝐿 (𝑦, _)]𝑖 =
𝑦𝑖

1 + _ = arg min
`∈R

(𝑦𝑖 − `)2 + _`2, 1 ≤ 𝑖 ≤ 𝑛. (2.9)

Theorem 5. Consider model (2.1) and parameter space (2.6). For Regime (I) in which 𝜖𝑛 →
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0, `𝑛 → 0 as 𝑛→ ∞, we have

𝑅(Θ(𝑘𝑛, 𝜏𝑛), 𝜎𝑛) = 𝑛𝜎2
𝑛

(
𝜖𝑛`

2
𝑛 − 𝜖2

𝑛`
4
𝑛

(
1 + 𝑜(1)

) )
.

In addition, the linear estimator [̂𝐿 (𝑦, _𝑛) with tuning _𝑛 =

(
𝜖𝑛`

2
𝑛

)−1
is asymptotically minimax

up to the second order term, i.e.

sup
\∈Θ(𝑘𝑛,𝜏𝑛)

E\
[̂𝐿 (𝑦, _𝑛) − \2

2 = 𝑛𝜎2
𝑛

(
𝜖𝑛`

2
𝑛 − 𝜖2

𝑛`
4
𝑛

(
1 + 𝑜(1)

) )
.

The proof of this theorem can be found in Section 2.5.2. Compared with Theorem 4, Theorem

5 obtains the additional second dominating term in the minimax risk. This negative term quantifies

the amount of improvement that can be possibly achieved over the trivial zero estimator (whose

supremum risk exactly equals 𝑛𝜎2
𝑛 𝜖𝑛`

2
𝑛). Indeed, the non-trivial linear estimator [̂𝐿 (𝑦, _𝑛) has

supremum risk matching with the minimax risk up to the second order. Therefore, through the lens

of second-order asymptotics, we discover a new minimax optimal estimator that outperforms the

zero estimator recommended from the first-order analysis.

The second-order optimality of the linear estimator [̂𝐿 (𝑦, _𝑛) in Regime (I) raises the following

question: how do non-linear estimators compare with [̂𝐿 (𝑦, _𝑛)? For instance, the soft thresholding

estimator [̂𝑆 (𝑦, _) in (2.4) with _ = ∞ recovers the zero estimator and is hence first-order optimal.

Can [̂𝑆 (𝑦, _) with proper tuning become second-order asymptotically optimal in this regime? The

following theorem shows that the answer is negative.

Proposition 1. Consider model (2.1) and parameter space (2.6). In Regime (I) where 𝜖𝑛 →

0, `𝑛 → 0 as 𝑛 → ∞, the optimally tuned soft thresholding estimator [̂𝑆 (𝑦, _) has supremum

risk:

inf
_

sup
\∈Θ(𝑘𝑛,𝜏𝑛)

E\
[̂𝑆 (𝑦, _) − \2

2 = 𝑛𝜎2
𝑛

©«𝜖𝑛`2
𝑛 − exp

[
−1

2
1
`2
𝑛

(
log

1
𝜖𝑛

)2 (
1 + 𝑜(1)

) ]ª®¬ .
The proof of this proposition can be found in Section 2.5.3.
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It is straightforward to confirm that exp
[
− 1

2
1
`2
𝑛

(
log 1

𝜖𝑛

)2 (
1 + 𝑜(1)

) ]
/(𝜖2

𝑛`
4
𝑛) = 𝑜(1) under the

scaling 𝜖𝑛 → 0, `𝑛 → 0. Hence, soft thresholding [̂𝑆 (𝑦, _) is outperformed by the linear estimator

[̂𝐿 (𝑦, _𝑛) and is sub-optimal (up to second order). A similar result can be proved for the hard

thresholding estimator as well.

Proposition 2. Consider model (2.1) and parameter space (2.6). In Regime (I) where 𝜖𝑛 →

0, `𝑛 → 0 as 𝑛 → ∞, the optimally tuned hard thresholding estimator [̂𝐻 (𝑦, _) has supremum

risk:

inf
_

sup
\∈Θ(𝑘𝑛,𝜏𝑛)

E\
[̂𝐻 (𝑦, _) − \2

2 = 𝑛𝜎2
𝑛 𝜖𝑛`

2
𝑛.

The proof of this proposition is presented in Section 2.5.4.

The fact that [̂𝐿 (𝑦, _𝑛) is optimal and [̂𝑆 (𝑦, _) and [̂𝐻 (𝑦, _) are sub-optimal in Regime (I) is

intriguing. It says that the former non-sparse estimator is better than the latter sparse one for re-

covering sparse signals. In fact, the result further implies that any sparsity-promoting procedure

cannot improve over a simple linear shrinkage for the recovery of sparse signals. A high-level ex-

planation is that since Regime (I) has low signal-to-noise ratio in which variance is the dominating

factor of mean squared error, linear shrinkage achieves a better balance between bias and variance

than those more “aggressive" sparsity-inducing operations. These results demonstrate the practical

relevance of SNR-aware minimaxity as opposed to the classical minimax approach.

Results in Regime (II)

We now move on to discuss Regime (II) where new minimaxity results arise as the signal-to-

noise ratio increases. Introduce an estimator [̂𝐸 (𝑦, _, 𝛾) = [̂𝑆 (𝑦,_)
1+𝛾 ∈ R𝑛 with coordinates:

[[̂𝐸 (𝑦, _, 𝛾)]𝑖 =
[[̂𝑆 (𝑦, _)]𝑖

1 + 𝛾 = arg min
𝑢∈R

(𝑦𝑖 − 𝑢)2 + 2_ |𝑢 | + 𝛾𝑢2, 1 ≤ 𝑖 ≤ 𝑛. (2.10)
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The estimator [̂𝐸 (𝑦, _, 𝛾) is a composition of soft thresholding and linear shrinkage. It can be

considered as an "interpolation" between soft thresholding estimator and linear estimator.

Theorem 6. Consider model (2.1) and parameter space (2.6). For Regime (II) in which 𝜖𝑛 →

0, `𝑛 → ∞, `𝑛 = 𝑜(
√︁

log 𝜖−1
𝑛 ) as 𝑛→ ∞, we have

𝑅(Θ(𝑘𝑛, 𝜏𝑛), 𝜎𝑛) ≥ 𝑛𝜎2
𝑛

(
𝜖𝑛`

2
𝑛 −

1
2
𝜖2
𝑛`

2
𝑛𝑒
`2
𝑛
(
1 + 𝑜(1)

) )
.

In addition, based on the estimator [̂𝐸 (𝑦, _𝑛, 𝛾𝑛) with tuning parameters _𝑛 = 2𝜏𝑛, and 𝛾𝑛 =

(2𝜖𝑛`2
𝑛𝑒

3
2 `

2
𝑛)−1 − 1, we have

𝑅(Θ(𝑘𝑛, 𝜏𝑛), 𝜎𝑛) ≤ sup
\∈Θ(𝑘𝑛,𝜏𝑛)

E\
[̂𝐸 (𝑦, _𝑛, 𝛾𝑛) − \2

2 = 𝑛𝜎2
𝑛

(
𝜖𝑛`

2
𝑛 − (

√︁
2/𝜋 + 𝑜(1))𝜖2

𝑛`𝑛𝑒
`2
𝑛

)
.

The proof of this theorem can be found in Section 2.5.5.

Remark 1. Theorem 6 does not provide a tight upper or lower bound for the minimax risk ap-

proximation. However, the upper bound given by [̂𝐸 (𝑦, _𝑛, 𝛾𝑛) only differs from the lower bound

up to an order of `𝑛 in the second order term. Note that this difference is very small in view of

the occurrence of 𝑒`
2
𝑛 in the second order term. In this sense, the estimator [̂𝐸 (𝑦, _𝑛, 𝛾𝑛) is nearly

optimal in Regime (II). In this theorem, we believe that the upper bound is not necessarily sharp.

In fact, we anticipate that there may be other estimators capable of outperforming [̂𝐸 (𝑦, _𝑛, 𝛾𝑛).

Our next theorem (Theorem 7) gives an accurate second order term for the minimax risk in Regime

(II), under a uniform boundedness condition on parameter coordinates in the parameter space.

However, as will be elaborated in the proof, the technique employed to establish the upper bound

on the minimax risk is not constructive and does not identify the minimax estimator.

Theorem 7. Consider model (2.1) with the following parameter space:

Θ𝐴 (𝑘𝑛, 𝜏𝑛) :=
{
\ ∈ R𝑛 : ∥\∥0 ≤ 𝑘𝑛, ∥\∥2

2 ≤ 𝑘𝑛𝜏
2
𝑛 , ∥\∥∞ ≤ 𝐴𝜏𝑛

}
. (2.11)

For Regime (II) in which 𝜖𝑛 → 0, `𝑛 → ∞, `𝑛 = 𝑜(
√︁

log 𝜖−1
𝑛 ) as 𝑛 → ∞, we have that for any
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constant 𝐴 > 1,

𝑅(Θ𝐴 (𝑘𝑛, 𝜏𝑛), 𝜎𝑛) = 𝑛𝜎2
𝑛

(
𝜖𝑛`

2
𝑛 −

1
2
𝜖2
𝑛`

2
𝑛𝑒
`2
𝑛
(
1 + 𝑜(1)

) )
.

The theorem is proved in Section 2.5.6.

Now let us interpret the above results. First note that in Regime (II), compared to Regime (I),

the magnitude of the second order term (relative to the first order term) is much larger, so that the

possible improvement over the zero estimator is much more significant. This is expected as the

SNR is higher compared to Regime (I). Furthermore, the (near) optimality of [̂𝐸 (𝑦, _𝑛, 𝛾𝑛) showed

in Theorem 6 indicates that thresohlding and linear shrinkage together play an important role in

estimating sparse signals in Regime (II). To shed more light on it, the following two propositions

prove that neither soft thresohlding [̂𝑆 (𝑦, _) nor linear estimator [̂𝐿 (𝑦, _) alone is close to optimal.

To shed more light on it, the following three propositions prove that neither thresohlding estimators

[̂𝑆 (𝑦, _), [̂𝐻 (𝑦, _) nor linear estimator [̂𝐿 (𝑦, _) alone is close to optimal.

Proposition 3. Consider model (2.1) and parameter space (2.6). In Regime (II) where 𝜖𝑛 →

0, `𝑛 → ∞, `𝑛 = 𝑜(
√︁

log 𝜖−1
𝑛 ), as 𝑛 → ∞, the optimally tuned soft thresholding estimator has

supremum risk:

inf
_

sup
\∈Θ(𝑘𝑛,𝜏𝑛)

E\
[̂𝑆 (𝑦, _) − \2

2 = 𝑛𝜎2
𝑛

©«𝜖𝑛`2
𝑛 − exp

[
−1

2
1
`2
𝑛

(
log

1
𝜖𝑛

)2 (
1 + 𝑜(1)

) ]ª®¬ .
The proof of this proposition can be found in Section 2.5.7.

Proposition 4. Consider model (2.1) and parameter space (2.6). In Regime (II) where 𝜖𝑛 →

0, `𝑛 → ∞, `𝑛 = 𝑜(
√︁

log 𝜖−1
𝑛 ) as 𝑛→ ∞, the optimally tuned hard thresholding estimator [̂𝐻 (𝑦, _)

has supremum risk:

inf
_

sup
\∈Θ(𝑘𝑛,𝜏𝑛)

E\
[̂𝐻 (𝑦, _) − \2

2 = 𝑛𝜎2
𝑛 𝜖𝑛`

2
𝑛.

The proof of this proposition is presented in Section 2.5.8.
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Proposition 5. Consider model (2.1) and parameter space (2.6). In Regime (II) where 𝜖𝑛 →

0, `𝑛 → ∞, `𝑛 = 𝑜(
√︁

log 𝜖−1
𝑛 ), as 𝑛 → ∞, the optimally tuned linear estimator has supremum

risk:

inf
_

sup
\∈Θ(𝑘𝑛,𝜏𝑛)

E\
[̂𝐿 (𝑦, _) − \2

2 = 𝑛𝜎2
𝑛

(
𝜖𝑛`

2
𝑛 −

𝜖2
𝑛`

4
𝑛

1 + 𝜖𝑛`2
𝑛

)
.

The proof of this proposition can be easily followed by the discussion in Section 2.5.2.

Comparing the second order term in Theorem 6 and Propositions 3-5 under the scaling condi-

tion 𝜖𝑛 → 0, `𝑛 → ∞, `𝑛 = 𝑜(
√︁

log 𝜖−1
𝑛 ), it is straightforward to verify that the supremum risk of

[̂𝐸 (𝑦, _𝑛, 𝛾𝑛) is much smaller than that of optimally tuned soft thresholding and linear estimator.

In light of what we have discussed in Regime (I), the results in Regime (II) deliver an interesting

message: when SNR increases from low to moderate level, sparsity promoting operation becomes

effective in estimating sparse signals; on the other hand, since SNR is not sufficiently high yet, a

component of linear shrinkage towards zero still boosts the performance.

Results in Regime (III)

Finally, let us consider the high-SNR regime, i.e., Regime (III). As shown in Theorem 4, the

first-order approximation of minimax risk claims that both hard and soft thresholding estimators

are optimal. However, the refined second-order analysis will reveal that hard thresholding remains

optimal while soft thresholding is in fact sub-optimal, up to the second order term.

Theorem 8. Consider model (2.1) and parameter space (2.6). For Regime (III) in which 𝜖𝑛 →

0, `𝑛 = 𝜔(
√︁

log 𝜖−1
𝑛 ) as 𝑛→ ∞, we have

𝑅(Θ(𝑘𝑛, 𝜏𝑛), 𝜎𝑛) = 𝑛𝜎2
𝑛

(
2𝜖𝑛 log 𝜖−1

𝑛 − 2𝜖𝑛a𝑛
√︁

2 log a𝑛
(
1 + 𝑜(1)

) )
,

where a𝑛 :=
√︁

2 log 𝜖−1
𝑛 . In addition, the hard thresholding [̂𝐻 (𝑦, _𝑛) with tuning _𝑛 = 𝜎𝑛

√︁
2 log 𝜖−1

𝑛

is asymptotically minimax up to the second order term, i.e.

sup
\∈Θ(𝑘𝑛,𝜏𝑛)

E\
[̂𝐻 (𝑦, _𝑛) − \2

2 = 𝑛𝜎2
𝑛

(
2𝜖𝑛 log 𝜖−1

𝑛 − 2𝜖𝑛a𝑛
√︁

2 log a𝑛
(
1 + 𝑜(1)

) )
.
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The proof of this theorem can be found in Section 2.5.9. Before we interpret this result, let us

obtain the risk of the soft thresholding estimator as well.

Proposition 6. Consider model (2.1) and parameter space (2.6). In Regime (III) where 𝜖𝑛 →

0, `𝑛 = 𝜔(
√︁

log 𝜖−1
𝑛 ) as 𝑛→ ∞, the optimally tuned soft thresholding achieves the supremum risk:

inf
_

sup
\∈Θ(𝑘𝑛,𝜏𝑛)

E\
[̂𝑆 (𝑦, _) − \2

2 = 𝑛𝜎2
𝑛

(
2𝜖𝑛 log 𝜖−1

𝑛 − 6𝜖𝑛 log a𝑛
(
1 + 𝑜(1)

) )
,

where a𝑛 =
√︁

2 log 𝜖−1
𝑛 .

The proof of the proposition can be found in Section 2.5.10.

Proposition 7. Consider model (2.1) and parameter space (2.6). In Regime (III) where 𝜖𝑛 →

0, `𝑛 = 𝜔(
√︁

log 𝜖−1
𝑛 ) as 𝑛→ ∞, the optimally tuned linear estimator achieves the supremum risk:

inf
_

sup
\∈Θ(𝑘𝑛,𝜏𝑛)

E\
[̂𝐿 (𝑦, _) − \2

2 =
𝑛𝜎2

𝑛 𝜖𝑛`
2
𝑛

1 + 𝜖𝑛`2
𝑛

= 𝜔(𝑛𝜎2
𝑛 𝜖𝑛 log(𝜖−1

𝑛 )).

The proof of this proposition is presented in Section 2.5.11.

Combining the above two results, we can conclude that overall in Regime (III) hard thresh-

olding offers a better estimate than soft thresholding. The intuition is that Regime (III) has a high

SNR where bias becomes the dominating factor of mean squared error, therefore hard thresholding

has an edge on soft thresholding by not shrinking the above-threshold coordinates. Moreover, note

that the difference between the first order and second order terms in the minimax risk is smaller

than
√︁

log 𝜖−1
𝑛 . This implies that the second order term in our approximations can be relevant in a

wide range of sparsity levels.

2.3 Numerical experiments

As discussed in Section 2.1 through one simulation example, classical minimax results are

inadequate for characterizing the role of signal-to-noise ratio (SNR) in the estimation of sparse

signals. Hence, we developed the SNR-aware minimax framework in Section 2.2 to overcome
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the limitations of the classical minimaxity. In this section, we provide more empirical results to

evaluate the points we discussed above.

We generate the signal \ in the following way: for a sample size 𝑛, \ = (\1, . . . , \𝑛) is generated

by assigning 𝜏𝑛 to a random choice of 𝑘𝑛 coordinates and setting the others to zero. Then 𝑦 =

(𝑦1, . . . , 𝑦𝑛) and 𝑧 = (𝑧1, . . . , 𝑧𝑛) are generated according to Model (2.1) for a certain noise level

𝜎𝑛.

Given the sample size 𝑛, we consider three sparsity levels 𝑘𝑛 = ⌊𝑛2/3⌋, ⌊𝑛3/4⌋, ⌊𝑛1/2⌋, so that

𝜖𝑛 = 𝑘𝑛/𝑛 → 0 as 𝑛 → ∞. In addition, since SNR is decided by `𝑛 = 𝜏𝑛/𝜎𝑛, without the loss

of generality, we fix the value of the signal strength 𝜏𝑛 = 10. We demonstrate our findings in two

ways:

1. Let `𝑛 change from small to large values, and plot the mean squared error (MSE) of different

estimators as a function of `𝑛.

2. Let 𝜎𝑛 change from small to large values, and plot the MSE as a function of 𝜎𝑛.

In our experiments, we consider moderate sample size 𝑛 = 500 and large sample size 𝑛 = 5000.

We consider the four estimators that have been extensively discussed in the previous sections:

linear estimator [̂𝐿 defined in (2.9), soft thresholding [̂𝑆 defined in (2.4), hard thresholding [̂𝐻

defined in (2.5), and the soft-linear “interpolation" estimator [̂𝐸 defined in (2.10) (since [̂𝐸 is the

composition of soft thresholding and linear shrinkage, we refer to it as soft-linear “interpolation"

for convenience). We evaluate the performance of estimators using the empirical MSE scaled by

the total signal strength: ∥\∥−2
2 · ∑𝑛

𝑖=1(\̂𝑖 − \𝑖)2. The MSEs shown in Figures 2.2 and 2.3 are

averaged over 20 repetitions, plotted with 95% confidence intervals from t-distribution. For each

estimator, tuning parameters are chosen by grid search to obtain the minimum possible MSE.

From Figures 2.2, when 𝜎𝑛 changes from small to large values, we observed that: (1) When 𝜎𝑛

is near zero, hard thresholding achieves the minimum MSE among the four estimators discussed in

previous sections. This corresponds to Regime (III) in our theory. (2) When 𝜎𝑛 is in moderate area,

the soft-linear ‘interpolation’ estimator [̂𝐸 has the minimum empirical MSE. This corresponds to
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Figure 2.2: Mean squared error comparison at different noise levels. On each graph, the y-axis is
the scaled MSE, and the x-axis is the noise standard deviation 𝜎𝑛.
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Figure 2.3: Mean squared error comparison at different SNR levels. On each graph, the 𝑦-axis is
the scaled MSE, and the 𝑥-axis is the SNR `𝑛.
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Regime (II) in our theory. (3) When 𝜎𝑛 becomes large, the linear estimator [̂𝐿 as well as the

optimally tuned [̂𝐸 (since [̂𝐸 can achieve [̂𝐿 when optimally tuned) have the minimum empirical

MSE. Our theory in Regime (I) states that when SNR is small, [̂𝐿 becomes asymptotically minimax

optimal. The empirical studies align well with our current theory.

Figures 2.3 offer similar conclusions as the ones we mentioned above. The main difference is

that instead of revealing MSE as a function of the noise level, we view it as a function of SNR.

Due to this difference, the leftmost part of each graph corresponds to Regime (I). As `𝑛 increases,

the curves will correspond to Regime (II) and Regime (III). In particular, when `𝑛 is large, it

corresponds with the area of 𝜎𝑛 near zero in Figures 2.2. Here, it is shown more clearly that in the

large SNR regime, hard thresholding has the minimum empirical MSE among all the estimators.

2.4 Discussions

2.4.1 Summary

We introduced two new notions that can make the minimax results more meaningful and ap-

pealing for practical purposes: (i) signal-to-noise-ratio aware minimaxity, (ii) second-order asymp-

totic approximation of minimax risk. We showed that these two notions can alleviate the major

drawbacks of the classical minimax results. For instance, while the classical results prove that

the hard and soft thresholding estimators are minimax optimal, the new results reveal that in a

wide range of low signal-to-noise ratios the two estimators are in fact sub-optimal. Even when

the signal-to-noise ratio is high, only hard thresholding is optimal and soft thresholding remains

sub-optimal. Furthermore, our refined minimax analysis identified three optimal (or nearly opti-

mal) estimators in three regimes with varying SNR: hard thresholding [̂𝐻 (𝑦, _) of (2.5) in high

SNR; [̂𝐸 (𝑦, _, 𝛾) of (2.10) in moderate SNR; linear estimator [̂𝐿 (𝑦, _) of (2.9) in low SNR. As is

clear from the definition of the three estimators, they are induced by ℓ0-regularization, elastic net

regularization [23] and ℓ2-regularization, respectively. These regularization techniques have been

widely used in statistics and machine learning [24]. In the next section, we discuss some related

works.
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The concepts of signal-to-noise ratio aware minimaxity and higher-order asymptotic approx-

imations introduced in this thesis may open up new venues for investigating various estimation

problems. As will be shown in next chapter, we have used the same framework to revisit the

sparse estimation problem in high-dimensional linear regression and obtained new insights. That

being said, it is important to acknowledge that the additional insights gained from this framework

come with increased mathematical complexity when computing minimax estimators. Therefore,

one direction we plan to explore in the future is the development of simpler and more general

techniques for obtaining higher-order approximations of minimax risk or the supremum risk of

well-established estimators.

2.4.2 Related works

There are some recent works on the significance of SNR for sparse learning. The extensive

simulations conducted in the linear regression setting by [8] demonstrated that best subset selec-

tion (ℓ0-regularization) performs better than the lasso (ℓ1-regularization) in very high SNR, while

the lasso outperforms best subset selection in low SNR regimes. [25, 9] developed new variants

of subset selection that can perform consistently well in various levels of SNR. Some authors of

the current paper (with their collaborators) established sharp theoretical characterizations of ℓ𝑞-

regularization under varying SNR regimes in high-dimensional sparse regression and variable se-

lection problems [20, 26, 10]. In particular, their results revealed that among the ℓ𝑞-regularization

for 𝑞 ∈ [0, 2], as SNR decreases from high to low levels, the optimal value of 𝑞 for parame-

ter estimation and variable selection will move from 0 towards 2. All the aforementioned works

studied the impact of SNR on several or a family of popular estimators. Hence their comparison

conclusions are only applicable to a restricted set of estimators. In contrast, our work focused

on minimax analysis that led to stronger optimality-type conclusions. For example, the preceding

works showed that ℓ2-regularization outperforms other ℓ𝑞-regularization when SNR is low. We ob-

tained a stronger result that ℓ2-regularization is in fact (minimax) optimal among all the estimators

in low SNR.
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In a separate work, the first order minimax optimality is also proved for other estimators, such

as empirical Bayes estimators [27]. However, as we discussed before, first order minimax anal-

ysis is inherently incapable of evaluating the impact of the SNR on the performance of different

estimators.

The second-order analysis of the minimax risk of the Gaussian sequence model under the

sparsity constraint has been discussed in [28]. To compare this paper with our work, we have to

mention the following points: (1) Such analysis still suffers from the fact that it disregards the

effect of the signal-to-noise ratio. By restricting the signal-to-noise ratio, our SNR-aware minimax

framework provides much more refined information about the minimax estimators. (2) In terms

of the theoretical analysis, the SNR-aware minimax analysis requires much more delicate analysis

compared to the classical settings where there is no constraint on the SNR. In particular, construct-

ing and proving the least favorable distributions is more complicated in our settings compared to

the classical setting. As a result, all the following steps of the proof become more complicated too.

We should also emphasize that minimax analysis over classes of ℓ𝑝 balls (i.e., Θ = {\ : ∥\∥𝑝 ≤

𝐶𝑛}) for 𝑝 > 0 under Gaussian sequence model has been performed in [11, 3, 29]. These works

revealed that a notion of SNR involving 𝐶𝑛 and 𝜎𝑛 plays a critical role in characterizing the asymp-

totic minimax risk and the optimality of linear or thresholding estimators. Finally, see [30, 31] for

non-asymptotic minimax rate analysis of variable selection and functional estimation on sparse

Gaussian sequence models.

2.4.3 Future research

Several important directions are left open for future research:

• The thesis considered estimating signals with sparsity 𝑘𝑛/𝑛 → 0. The other denser regime

where 𝑘𝑛/𝑛→ 𝑐 > 0 is also important to study. This will provide complementary asymptotic

insights into the estimation of signals with varying sparsity. There exists classical minimax

analysis along this line (see Chapter 8 in [3]). A generalization of SNR-aware minimaxity

to this regime is an interesting future work.
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• The obtained minimax optimal estimators involve tuning parameters that depend on un-

known quantities such as sparsity 𝑘𝑛 and signal strength 𝜏𝑛 from the parameter space. It

is important to develop fully data-driven estimators that retain optimality for practical use.

Hence, adaptive minimaxity is the next step, and classical adaptivity results (e.g., [3]) may

be helpful for the development.

• In this thesis, we have focused on the parameter spaces that imposed the exact sparsity on \.

Sparsity promoting denoisers such as hard thresholding and soft thresholding have been also

used over other structured parameter spaces such as Sobolev ellipsoids and Besov bodies.

These parameter spaces usually characterize the smoothness properties of functions in terms

of their Fourier or wavelet coefficients. We refer to [22, 3, 4] and references therein for a

systematic treatment of this topic. An interesting future research would be to explore the

implications of the SNR-aware minimaixty and higher-order approximation of the minimax

risk for such spaces.

• The current work focused on the classical sparse Gaussian sequence model. It would be

interesting to pursue a generalization to high-dimensional sparse linear regressions. Existing

works (see [32, 5] and references there) established minimax rate optimality (with loose

constants) which is not adequate to accurately capture the impact of SNR. Instead, the goal

is to derive asymptotic approximations with sharp constants as we did for Gaussian sequence

models. We believe that this is generally a very challenging problem without imposing

specific constraint on the design matrix. A good starting point is to consider the “compressed

sensing" model whose design rows follow independent isotropic Gaussian distribution. We

have made some major progress along this line and look forward to further development.
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2.5 Proofs of the main results

2.5.1 Preliminaries

Scale invariance

The minimax risk defined in (2.7) has the following scale invariance property

𝑅(Θ(𝑘𝑛, 𝜏𝑛), 𝜎𝑛) = 𝜎2
𝑛 · 𝑅(Θ(𝑘𝑛, `𝑛), 1),

where we recall that `𝑛 = 𝜏𝑛/𝜎𝑛. This can be easily verified by rescaling the Gaussian sequence

model to have unit variance. Moreover, similar invariance holds for the four estimators considered

in the chapter. We state it without proof in the following: ∀𝜎 > 0,

𝜎 · [̂𝑆 (𝑦, _) = [̂𝑆 (𝜎𝑦, 𝜎_), 𝜎 · [̂𝐻 (𝑦, _) = [̂𝑆 (𝜎𝑦, 𝜎_),

𝜎 · [̂𝐿 (𝑦, _) = [̂𝐿 (𝜎𝑦, _), 𝜎 · [̂𝐸 (𝑦, _, 𝛾) = [̂𝐸 (𝜎𝑦, 𝜎_, 𝛾).

These invariance properties will be frequently used in the proof to reduce a problem to a simpler

one under unit variance.

Gaussian tail bound

Recall the notation that 𝜙,Φ denote the probability density function and cumulative distribution

function of a standard normal random variable, respectively. The following Gaussian tail bound

will be extensively used in the proof.

Lemma 1 (Exercise 8.1 in [3]). Define

Φ̃𝑙 (_) := _−1𝜙(_)
𝑙∑︁
𝑘=0

(−1)𝑘
𝑘!

Γ(2𝑘 + 1)
2𝑘_2𝑘 ,
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where Γ(·) is the gamma function. Then, for each 𝑘 ≥ 0 and all _ > 0:

Φ̃2𝑘+1(_) ≤ 1 −Φ(_) ≤ Φ̃2𝑘 (_).

The minimax theorem

Consider the Gaussian sequence model:

𝑦𝑖 = \𝑖 + 𝜎𝑧𝑖, 𝑖 = 1, 2, . . . , 𝑛, (2.12)

where 𝑧1, 𝑧2, . . . , 𝑧𝑛
𝑖.𝑖.𝑑.∼ N(0, 1). If 𝜋 is a prior distribution of \ ∈ R𝑛, the integrated risk of

an estimator \̂ (with squared error loss) is 𝐵(\̂, 𝜋) = E𝜋E\ ∥\̂ − \∥2
2, and the Bayes risk of 𝜋 is

𝐵(𝜋) = inf \̂ 𝐵(\̂, 𝜋). We state a version of minimax theorem suited to the Gaussian sequence

model. The theorem allows to evaluate minimax risk by calculating the maximum Bayes risk over

a class of prior distributions.

Theorem 9 (Theorem 4.12 in [3]). Consider the Gaussian sequence model (2.12). Let P be a

convex set of probability measures on R𝑛. Then

inf
\̂

sup
𝜋∈P

𝐵(\̂, 𝜋) = sup
𝜋∈P

inf
\̂

𝐵(\̂, 𝜋) = sup
𝜋∈P

𝐵(𝜋).

A maximising 𝜋 is called a least favorable distribution (with respect to P).

Independence is less favorable

We present a useful result that can often help find the least favorable distributions. Let 𝜋

be an arbitrary prior, so that the \ 𝑗 are not necessarily independent. Denote by 𝜋 𝑗 the marginal

distribution of \ 𝑗 . Build a new prior �̄� by making the \ 𝑗 independent: �̄� =
∏

𝑗 𝜋 𝑗 . This product

prior has a larger Bayes risk.

Theorem 10 (Lemma 4.15 in [3]). 𝐵(�̄�) ≥ 𝐵(𝜋).
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A machinery for obtaining lower bounds for the minimax risk

In our results, we are often interested in finding lower bounds for the minimax risk. The

following elementary result taken from Chapter 4.3 of [3] will be useful in those cases.

Theorem 11. Consider the minimax risk of a risk function 𝑟 (·, ·) over a parameter set Θ:

𝑅(Θ) = inf
\̂

sup
\∈Θ

𝑟 (\̂, \).

Recall that 𝐵(𝜋) is the Bayes risk of prior 𝜋: 𝐵(𝜋) = inf \̂
∫
𝑟 (\̂, \)𝜋(𝑑\). Let P denote a collec-

tion of probability measure, and supp P denote the union of all supp 𝜋 for 𝜋 in P. If

𝐵(P) = sup
𝜋∈P

𝐵(𝜋),

then

supp P ⊂ Θ ⇒ 𝑅(Θ) ≥ 𝐵(P).

2.5.2 Proof of Theorem 5

To calculate the minimax risk 𝑅(Θ(𝑘𝑛, 𝜏𝑛), 𝜎𝑛), we first obtain an upper bound by computing

the supremum risk of the linear estimator [̂𝐿 (𝑦, _𝑛),

𝑅(Θ(𝑘𝑛, 𝜏𝑛), 𝜎𝑛) ≤ sup
\∈Θ(𝑘𝑛,𝜏𝑛)

E\ ∥[̂𝐿 (𝑦, _𝑛) − \∥2
2.

We then derive a matching lower bound based on Theorem 11. In particular, we construct a partic-

ular prior supported on Θ(𝑘𝑛, 𝜏𝑛) (that is the least favorable prior at the level of approximation we

require), and its corresponding Bayes risk leads to a sharp lower bound for the minimax risk. The

detailed derivation of the upper and lower bounds is presented below.
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Upper bound

Thanks to the simple form of the linear estimator [̂𝐿 (𝑦, _𝑛), its supremum risk under tuning

_𝑛 = (𝜖𝑛`2
𝑛)−1 can be computed in a straightforward way: for all \ ∈ Θ(𝑘𝑛, 𝜏𝑛),

E\ ∥[̂𝐿 (𝑦, _𝑛) − \∥2
2 = E\

𝑛∑︁
𝑖=1

(
1

1 + _𝑛
𝑦𝑖 − \𝑖

)2

=

𝑛∑︁
𝑖=1

[(
_𝑛

1 + _𝑛

)2
\2
𝑖 +

(
1

1 + _𝑛

)2
𝜎2
𝑛

]
≤
_2
𝑛𝑘𝑛𝜏

2
𝑛 + 𝑛𝜎2

𝑛

(1 + _𝑛)2 =
𝑛𝜎2

𝑛 𝜖𝑛`
2
𝑛

1 + 𝜖𝑛`2
𝑛

= 𝑛𝜎2
𝑛 𝜖𝑛`

2
𝑛 ·

(
1 − 𝜖𝑛`2

𝑛 (1 + 𝜖𝑛`2
𝑛)−1

)
= 𝑛𝜎2

𝑛 𝜖𝑛`
2
𝑛 ·

(
1 − 𝜖𝑛`2

𝑛 (1 + 𝑜(1))
)
,

where we have used the assumption 𝜖𝑛 = 𝑘𝑛/𝑛 → 0, `𝑛 = 𝜏𝑛/𝜎𝑛 → 0, and the constraint ∥\∥2
2 ≤

𝑘𝑛𝜏
2
𝑛 ,∀\ ∈ Θ(𝑘𝑛, 𝜏𝑛). As a result,

𝑅(Θ(𝑘𝑛, 𝜏𝑛), 𝜎𝑛) ≤ sup
\∈Θ(𝑘𝑛,𝜏𝑛)

E\ ∥[̂𝐿 (𝑦, _𝑛) − \∥2
2 = 𝑛𝜎2

𝑛 𝜖𝑛`
2
𝑛 ·

(
1 − 𝜖𝑛`2

𝑛 (1 + 𝑜(1))
)
.

Lower bound

First, due to the scale invariance property 𝑅(Θ(𝑘𝑛, 𝜏𝑛), 𝜎𝑛) = 𝜎2
𝑛 · 𝑅(Θ(𝑘𝑛, `𝑛), 1) (see Section

3.4.1), it is sufficient to obtain lower bound for 𝑅(Θ(𝑘𝑛, `𝑛), 1), i.e., the minimax risk under Gaus-

sian sequence model: 𝑦𝑖 = \𝑖 + 𝑧𝑖, 1 ≤ 𝑖 ≤ 𝑛, with 𝑧𝑖
𝑖.𝑖.𝑑.∼ N(0, 1). A general strategy for finding

lower bounds of minimax risk in sparse Gaussian sequence model, is to employ i.i.d. univariate

spike prior as the (asymptotically) least favorable prior. Although such product prior served as a

suitable tool to establish a sharp lower bound for proving Theorem 3, we have since recognized

its inadequacy in providing a sufficiently sharp lower bound for obtaining the second-order ap-

proximation of the minimax risk. Hence, in order to use Theorem 11, we utilize the family of

independent block priors [33, 3]. The specific independent block prior 𝜋𝐼𝐵 (\) on Θ(𝑘𝑛, `𝑛) for

our problem is constructed in the following steps:
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1. Divide \ ∈ R𝑛 into 𝑘𝑛 disjoint blocks of dimension 𝑚 = 𝑛/𝑘𝑛1:

\ = (\ (1) , \ (2) , . . . , \ (𝑘𝑛)).

2. Sample each block \ ( 𝑗) ∈ R𝑚 from the symmetric spike prior 𝜋`,𝑚
𝑆

: for 1 ≤ 𝑖 ≤ 𝑚,

𝜋
`,𝑚

𝑆

(
\ ( 𝑗) = `𝑒𝑖

)
= 𝜋

`,𝑚

𝑆

(
\ ( 𝑗) = −`𝑒𝑖

)
=

1
2𝑚

,

where ` ∈ (0, `𝑛] is a location parameter.

3. Combine independent blocks:

𝜋𝐼𝐵 (\) =
𝑘𝑛∏
𝑗=1

𝜋
`,𝑚

𝑆
(\ ( 𝑗))

.

In other words, the independent block prior 𝜋𝐼𝐵 picks a single spike (from 2𝑚 possible locations)

in each of 𝑘𝑛 non-overlapping blocks of \, with the spike location within each block being inde-

pendent and uniform. As is clear from the construction, supp 𝜋𝐼𝐵 ⊆ Θ(𝑘𝑛, `𝑛) so that

𝑅(Θ(𝑘𝑛, `𝑛), 1) ≥ 𝐵(𝜋𝐼𝐵) = 𝑘𝑛 · 𝐵(𝜋`,𝑚𝑆 ). (2.13)

Here, the last equation holds because when the prior has block independence and the loss function

is additive, the Bayes risk can be decomposed into the sum of Bayes risk of prior for each block

(see Chapter 4.5 in [3]).

As a result, the main goal of the rest of this section is to obtain a sharp lower bound (up to the

second order) for the Bayes risk 𝐵(𝜋`,𝑚
𝑆

), i.e., the risk of the posterior mean under the spike prior

𝜋
`,𝑚

𝑆
. The following two lemmas are instrumental in obtaining such a sharp lower bound.

1For simplicity, here we assume 𝑛/𝑘𝑛 is an integer. In the case when it is not, we can slightly adjust the block size
to obtain the same lower bound.
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Lemma 2. Consider the Gaussian sequence model: 𝑦𝑖 = \𝑖 + 𝑧𝑖, 1 ≤ 𝑖 ≤ 𝑚, with 𝑧𝑖
𝑖.𝑖.𝑑.∼ N(0, 1).

The Bayes risk of 𝜋`,𝑚
𝑆

takes the form

𝐵(𝜋`,𝑚
𝑆

) = E`𝑒1 (\̂1 − `)2 + (𝑚 − 1)E`𝑒2 \̂
2
1,

where E`𝑒1 (·) is taken with respect to 𝑦 ∼ N(`𝑒1, 𝐼) and E`𝑒2 (·) for 𝑦 ∼ N(`𝑒2, 𝐼); \̂1 is the

posterior mean for the first coordinate having the expression

\̂1 =
`(𝑒`𝑦1 − 𝑒−`𝑦1)∑𝑚
𝑖=1(𝑒`𝑦𝑖 + 𝑒−`𝑦𝑖 )

.

Proof. Let the posterior mean be \̂ = E[\ |𝑦]. Using Bayes’ Theorem we obtain

\̂1 = `P(\ = `𝑒1 | 𝑦) − `P(\ = −`𝑒1 | 𝑦)

=
`[P(𝑦 | \ = `𝑒1) − P(𝑦 | \ = −`𝑒1)]∑𝑚
𝑖=1 [P(𝑦 | \ = `𝑒𝑖) + P(𝑦 | \ = −`𝑒𝑖)]

=
`(𝑒`𝑦1 − 𝑒−`𝑦1)∑𝑚
𝑖=1(𝑒`𝑦𝑖 + 𝑒−`𝑦𝑖 )

.

Moreover, since both \𝑖’s (under the prior) and 𝑧𝑖’s are exchangeable, the pairs {(\̂𝑖, \𝑖)}𝑚𝑖=1 are

exchangeable as well. As a result,

𝐵(𝜋`,𝑚
𝑆

) = E
𝑚∑︁
𝑖=1

(\̂𝑖 − \𝑖)2 = 𝑚E(\̂1 − \1)2

=𝑚


1

2𝑚
E`𝑒1 (\̂1 − `)2 + 1

2𝑚
E−`𝑒1 (\̂1 + `)2 + 1

2𝑚

𝑚∑︁
𝑖=2

(
E`𝑒𝑖 \̂

2
1 + E−`𝑒𝑖 \̂

2
1

)
=

1
2

[
E`𝑒1 (\̂1 − `)2 + E−`𝑒1 (\̂1 + `)2

]
+ 1

2

𝑚∑︁
𝑖=2

[
E`𝑒𝑖 \̂

2
1 + E−`𝑒𝑖 \̂

2
1

]
=E`𝑒1 (\̂1 − `)2 + (𝑚 − 1)E`𝑒2 \̂

2
1,

where in the last equation we have used the facts that the distribution of \̂1 under \ = `𝑒1 equals

that of −\̂1 under \ = −`𝑒1, and \̂1 has the same distribution when \ = ±`𝑒𝑖, 𝑖 = 2, . . . , 𝑚. □
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Lemma 3. As ` → 0, 𝑚 → ∞, The Bayes risk of 𝜋`,𝑚
𝑆

has the lower bound

𝐵(𝜋`,𝑚
𝑆

) ≥ `2 − `4

𝑚
(1 + 𝑜(1)).

Proof. Denote 𝑝𝑚 = 𝑒`𝑦1−𝑒−`𝑦1∑𝑚
𝑖=1 (𝑒`𝑦𝑖+𝑒−`𝑦𝑖 )

. According to Lemma 2, the Bayes risk can be lower bounded

in the following way:

𝐵(𝜋`,𝑚
𝑆

) ≥ `2 ·
[
1 − 2E`𝑒1 𝑝𝑚 + (𝑚 − 1)E`𝑒2 𝑝

2
𝑚

]
.

It is thus sufficient to prove that E`𝑒1 𝑝𝑚 ≤ `2

𝑚
(1 + 𝑜(1)) and (𝑚 − 1)E`𝑒2 𝑝

2
𝑚 ≥ `2

𝑚
(1 + 𝑜(1)). We

first prove the former one. We have

E`𝑒1 𝑝𝑚 = E

[
𝑒`(`+𝑧1) − 𝑒−`(`+𝑧1)∑

𝑗≠1 [𝑒`𝑧 𝑗 + 𝑒−`𝑧 𝑗 ] + 𝑒`(`+𝑧1) + 𝑒−`(`+𝑧1)

]
= E

[
(𝑒`2 − 1)𝑒`𝑧1∑

𝑗≠1 [𝑒`𝑧 𝑗 + 𝑒−`𝑧 𝑗 ] + 𝑒`(`+𝑧1) + 𝑒−`(`+𝑧1)

]
+ E

[
(1 − 𝑒−`2)𝑒−`𝑧1∑

𝑗≠1 [𝑒`𝑧 𝑗 + 𝑒−`𝑧 𝑗 ] + 𝑒`(`+𝑧1) + 𝑒−`(`+𝑧1)

]
+ E

[
𝑒`𝑧1 − 𝑒−`𝑧1∑

𝑗≠1 [𝑒`𝑧 𝑗 + 𝑒−`𝑧 𝑗 ] + 𝑒`(`+𝑧1) + 𝑒−`(`+𝑧1)

]
=: 𝐸1 + 𝐸2 + 𝐸3.

We study 𝐸1, 𝐸2 and 𝐸3 separately. For 𝐸1, given that the numerator inside the expectation is

positive, we apply the basic inequality 𝑎 + 𝑏 ≥ 2
√
𝑎𝑏,∀𝑎, 𝑏 ≥ 0 to the denominator to obtain

𝐸1 ≤ 𝑒`
2 − 1
2𝑚

E𝑒`𝑧1 =
`2

2𝑚
· (𝑒

`2 − 1)𝑒`2/2

`2 =
`2(1 + 𝑜(1))

2𝑚
.

Similarly, for 𝐸2 we have

𝐸2 ≤ 1 − 𝑒−`2

2𝑚
E𝑒−`𝑧1 =

`2

2𝑚
· (1 − 𝑒−`2)𝑒`2/2

`2 =
`2(1 + 𝑜(1))

2𝑚
.
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To study 𝐸3, define

𝐴 :=
∑︁
𝑗≠1

[𝑒`𝑧 𝑗 + 𝑒−`𝑧 𝑗 ] + 𝑒`(`+𝑧1) + 𝑒−`(`+𝑧1) ,

𝐵 :=
∑︁
𝑗≠1

[𝑒`𝑧 𝑗 + 𝑒−`𝑧 𝑗 ] + 𝑒`(`−𝑧1) + 𝑒−`(`−𝑧1) .

The basic inequality 𝑎+𝑏 ≥ 2
√
𝑎𝑏 implies that 𝐴 ≥ 2𝑚, 𝐵 ≥ 2𝑚. This together with the symmetry

of standard normal distribution yields

𝐸3 = E
𝑒`𝑧1

𝐴
− E𝑒

−`𝑧1

𝐴
= E

𝑒`𝑧1

𝐴
− E𝑒

`𝑧1

𝐵
= E

[
(𝑒`2 − 𝑒−`2) (𝑒−`𝑧1 − 𝑒`𝑧1)𝑒`𝑧1

𝐴𝐵

]
≤ E


(𝑒`2 − 𝑒−`2) (1 − 𝑒2`𝑧1)𝐼(𝑧1≤0)

𝐴𝐵

 ≤ 𝑒`
2 − 𝑒−`2

4𝑚2 E
[
(1 − 𝑒2`𝑧1)1(𝑧1≤0)

]
= 𝑂

( `2

𝑚2

)

It remains to prove (𝑚 − 1)E`𝑒2 𝑝
2
𝑚 ≥ `2

𝑚
(1 + 𝑜(1)). Denote

𝐶 :=
[
𝑒`𝑏 + 𝑒−`𝑏 + 2(𝑚 − 2)𝑒

`2
2 + 𝑒 3

2 `
2 + 𝑒−

`2
2

]2
,

where 𝑏 > 0 is a scalar to be specified later. Then

E`𝑒2 𝑝
2
𝑚 = E

[
(𝑒`𝑧1 − 𝑒−`𝑧1)2[ ∑

𝑗≠2(𝑒`𝑧 𝑗 + 𝑒−`𝑧 𝑗 ) + 𝑒`(`+𝑧2) + 𝑒−`(`+𝑧2)
]2

]
(a)
≥ E

[
(𝑒`𝑧1 − 𝑒−`𝑧1)2

[𝑒`𝑧1 + 𝑒−`𝑧1 + 2(𝑚 − 2)𝑒
`2
2 + 𝑒 3

2 `
2 + 𝑒−

`2
2 ]2

]
≥ E


(𝑒`𝑧1 − 𝑒−`𝑧1)2𝐼( |𝑧1 |≤𝑏)

[𝑒`𝑏 + 𝑒−`𝑏 + 2(𝑚 − 2)𝑒
`2
2 + 𝑒 3

2 `
2 + 𝑒−

`2
2 ]2


=

2
𝐶

[
E𝑒2`𝑧1 𝐼( |𝑧1 |≤𝑏) − P( |𝑧1 | ≤ 𝑏)

]
=

2
𝐶

[
𝑒2`2

∫ 𝑏−2`

−𝑏−2`
𝜙(𝑧)𝑑𝑧 −

∫ 𝑏

−𝑏
𝜙(𝑧)𝑑𝑧

]
=

2
𝐶

[
(𝑒2`2 − 1)

∫ 𝑏−2`

−𝑏−2`
𝜙(𝑧)𝑑𝑧 −

∫ 𝑏

𝑏−2`
𝜙(𝑧)𝑑𝑧 +

∫ −𝑏

−𝑏−2`
𝜙(𝑧)𝑑𝑧

]
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(b)
=

2
𝐶

[
2`2(1 + 𝑜(1)) + 𝑜(`2) + 𝑜(`2)

]
(c)
≥ 2

4𝑚2𝑒2√` · 2`2(1 + 𝑜(1)) = `2

𝑚2 (1 + 𝑜(1)).

Inequality (a) is obtained by conditioning on 𝑧1 and applying Jensen’s inequality on the convex

function 1/(𝑥 + 𝑐)2 for 𝑥 > 0. Equality (b) holds by setting 𝑏 = 1/√`, for the purpose of matching

the asymptotic order `2

𝑚
(1 + 𝑜(1)). Finally, inequality (c) is because 𝐶 ≤ 4𝑚2𝑒2√` when ` is

sufficiently small. □

We are in the position to derive the matching lower bound for the minimax risk. Recall that in

the block prior we have 𝑚 = 𝑛/𝑘𝑛, ` ∈ (0, `𝑛]. Set ` = `𝑛. The assumption 𝜖𝑛 = 𝑘𝑛/𝑛→ 0, `𝑛 →

0 guarantees that the condition 𝑚 → ∞, ` → 0 in Lemma 3 is satisfied. We therefore combine

Lemma 3 and (2.13) to obtain

𝑅(Θ(𝑘𝑛, 𝜏𝑛), 𝜎𝑛) = 𝜎2
𝑛 · 𝑅(Θ(𝑘𝑛, `𝑛), 1) ≥ 𝑘𝑛𝜎

2
𝑛 · 𝐵(𝜋

`,𝑚

𝑆
)

≥ 𝑘𝑛𝜎
2
𝑛 ·

[
`2
𝑛 −

`4
𝑛𝑘𝑛

𝑛
(1 + 𝑜(1))

]
= 𝑛𝜎2

𝑛 ·
(
𝜖𝑛`

2
𝑛 − 𝜖2

𝑛`
4
𝑛 (1 + 𝑜(1))

)
.

2.5.3 Proof of Proposition 1

Define the supremum risk of optimally tuned soft thresholding estimator as

𝑅𝑠 (Θ(𝑘𝑛, 𝜏𝑛), 𝜎𝑛) = inf
_>0

sup
\∈Θ(𝑘𝑛,𝜏𝑛)

E\
[̂𝑆 (𝑦, _) − \2

2 ,

where 𝑦𝑖 = \𝑖 + 𝜎𝑛𝑧𝑖, with 𝑧𝑖
𝑖.𝑖.𝑑.∼ N(0, 1). It is straightforward to verify that

𝑅𝑠 (Θ(𝑘𝑛, 𝜏𝑛), 𝜎𝑛) = 𝜎2
𝑛 · 𝑅𝑠 (Θ(𝑘𝑛, `𝑛), 1). (2.14)

Hence, without loss of generality, in the rest of the proof we will assume that 𝜎𝑛 = 1.
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Since [̂𝑆 (𝑦, _) is the special case of [̂𝐸 (𝑦, _, 𝛾) with 𝛾 = 0, the supremum risk result stated

in Equation (2.43) for [̂𝐸 (𝑦, _, 𝛾) applies to [̂𝑆 (𝑦, _) as well. It shows that the supremum risk of

[̂𝑆 (𝑦, _) is attained on a particular boundary of the parameter space:

sup
\∈Θ(𝑘𝑛,`𝑛)

E
𝑛∑︁
𝑖=1

|[̂𝑆 (𝑦𝑖, _) − \𝑖 |22 = (𝑛 − 𝑘𝑛)𝑟𝑆 (_, 0) + 𝑘𝑛𝑟𝑆 (_, `𝑛)

= 𝑛
[
(1 − 𝜖𝑛)𝑟𝑆 (_, 0) + 𝜖𝑛𝑟𝑆 (_, `𝑛)

]
, (2.15)

with 𝜖𝑛 = 𝑘𝑛/𝑛 and 𝑟𝑆 (_, `) defined as

𝑟𝑆 (_, `) = E([̂𝑆 (` + 𝑧, _) − `)2, 𝑧 ∼ N(0, 1). (2.16)

To prove Proposition 1, we need to find the optimal _ that minimizes the supremum risk in (2.15),

or equivalently, the function

𝐹 (_) := (1 − 𝜖𝑛)𝑟𝑆 (_, 0) + 𝜖𝑛𝑟𝑆 (_, `𝑛). (2.17)

Lemma 4. Denote the optimal tuning by _∗ = arg min_≥0 𝐹 (_). It holds that

log 2𝜖−1
𝑛 +

`2
𝑛

2
− 2 log log

2
𝜖𝑛
< _∗`𝑛 < log 2𝜖−1

𝑛 +
`2
𝑛

2
, (2.18)

when 𝑛 is sufficiently large.

Proof. Using integration by parts, we first obtain a more explicit expression for 𝐹 (_):

𝐹 (_) = (1 − 𝜖𝑛)E[̂2
𝑆 (𝑧, _) + 𝜖𝑛`

2
𝑛 − 2𝜖𝑛`𝑛E[̂𝑆 (`𝑛 + 𝑧, _) + 𝜖𝑛E[̂2

𝑆 (`𝑛 + 𝑧, _), (2.19)

where the three expectations take the form

E[̂2
𝑆 (𝑧, _) =2(1 + _2)

∫ ∞

_

𝜙(𝑧)𝑑𝑧 − 2_𝜙(_) (2.20)
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E[̂𝑆 (`𝑛 + 𝑧, _) =𝜙(_ − `𝑛) + (`𝑛 − _)
∫ ∞

_−`𝑛
𝜙(𝑧)𝑑𝑧 − 𝜙(_ + `𝑛) + (`𝑛 + _)

∫ ∞

_+`𝑛
𝜙(𝑧)𝑑𝑧 (2.21)

E[̂2
𝑆 (`𝑛 + 𝑧, _) =

[ (
1 + (_ − `𝑛)2

) ∫ ∞

_−`𝑛
𝜙(𝑧)𝑑𝑧 − (_ − `𝑛)𝜙(_ − `𝑛)

]
+
[ (

1 + (_ + `𝑛)2
) ∫ ∞

_+`𝑛
𝜙(𝑧)𝑑𝑧 − (_ + `𝑛)𝜙(_ + `𝑛)

]
. (2.22)

Therefore, 𝐹 (_) is a differentiable function of _, and as long as the infimum of 𝐹 (_) is not achieved

at 0 or +∞, _∗ will satisfy 𝐹′(_∗) = 0. From Equations (2.19)-(2.22), it is direct to compute

𝐹 (0) = 1 > 𝐹 (+∞) = 𝜖𝑛`2
𝑛 for large 𝑛. Moreover, as we will show in the end of the proof, 𝐹 (_)

is increasing when _ is above a threshold. Hence, the optimal tuning _∗ ∈ (0,∞), and we can

characterize it through the derivative equation:

0 = 𝐹′(_∗) = (1 − 𝜖𝑛)
[
4_∗

∫ ∞

_∗

𝜙(𝑧)𝑑𝑧 − 4𝜙(_∗)
]

+ 𝜖𝑛

[
− 2𝜙(_∗ − `𝑛) − 2𝜙(_∗ + `𝑛) + 2_∗

(∫ ∞

_∗−`𝑛
𝜙(𝑧)𝑑𝑧 +

∫ ∞

_∗+`𝑛
𝜙(𝑧)𝑑𝑧

) ]
. (2.23)

First, we show that _∗ → ∞. Suppose this is not true. Then _∗ ≤ 𝐶 for some constant 𝐶 > 0

(take a subsequence if necessary). From (2.19), we have

𝐹 (_∗) ≥ (1 − 𝜖𝑛)𝑟𝑆 (𝐶, 0) = 2(1 − 𝜖𝑛)
[
(1 + 𝐶2)

∫ ∞

𝐶

𝜙(𝑧)𝑑𝑧 − 𝐶𝜙(𝐶)
]
> 𝜖𝑛`

2
𝑛 = 𝐹 (+∞),

when 𝑛 is large. This contradicts with the optimality of _∗.

Second, we prove that _∗`𝑛 → ∞. Otherwise, _∗`𝑛 = 𝑂 (1) (take a subsequence if necessary).

We will show that it leads to a contradiction in (2.23). Using the Gaussian tail bound
∫ ∞
𝑡
𝜙(𝑧)𝑑𝑧 =

( 1
𝑡
− 1+𝑜(1)

𝑡3
)𝜙(𝑡) as 𝑡 → ∞ from Section 2.5.1, since _∗ → ∞, `𝑛 → 0, _∗`𝑛 = 𝑂 (1), we obtain

−_∗
∫ ∞

_∗

𝜙(𝑧)𝑑𝑧 + 𝜙(_∗) = (1 + 𝑜(1)) · _−2
∗ 𝜙(_∗), (2.24)

−𝜙(_∗ + `𝑛) + _∗
∫ ∞

_∗+`𝑛
𝜙(𝑧)𝑑𝑧 = 𝑂 (_−2

∗ 𝜙(_∗)), (2.25)
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−𝜙(_∗ − `𝑛) + _∗
∫ ∞

_∗−`𝑛
𝜙(𝑧)𝑑𝑧 = 𝑂 (_−2

∗ 𝜙(_∗)). (2.26)

Given that 𝜖𝑛 → 0, combining the above results with (2.23) implies that 0 = 𝐹′(_∗) · _2
∗𝜙

−1(_∗) =

−4 + 𝑜(1), which is a contradiction.

Third, we show that _∗`𝑛 < log 2
𝜖𝑛

+ `2
𝑛

2 for large 𝑛. Now that we have proved _∗`𝑛 → ∞,

results in (2.25)-(2.26) can be strengthened:

− 𝜙(_∗ + `𝑛) + _∗
∫ ∞

_∗+`𝑛
𝜙(𝑧)𝑑𝑧 = 𝑜(`𝑛_−1

∗ 𝜙(_∗ − `𝑛)), (2.27)

− 𝜙(_∗ − `𝑛) + _∗
∫ ∞

_∗−`𝑛
𝜙(𝑧)𝑑𝑧 = (1 + 𝑜(1)) · `𝑛_−1

∗ 𝜙(_∗ − `𝑛). (2.28)

Plugging (2.24) and (2.27)-(2.28) into (2.23) gives (4+𝑜(1)) ·_−2
∗ 𝜙(_∗) = (2+𝑜(1)) ·𝜖𝑛`𝑛_−1

∗ 𝜙(_∗−

`𝑛), which can be further simplified as

2 + 𝑜(1) = 𝜖𝑛`𝑛_∗ exp(_∗`𝑛 − `2
𝑛/2). (2.29)

The above equation implies that _∗`𝑛 < log 2
𝜖𝑛
+ `2

𝑛

2 for large 𝑛. Otherwise, the right-hand side will

be no smaller than 2`𝑛_𝑛 → ∞ contradicting with the left-hand side term.

Fourth, we prove that _∗`𝑛 > log 2
𝜖𝑛

+ `2
𝑛

2 − 2 log log 2
𝜖𝑛

when 𝑛 is large. Otherwise, suppose

_∗`𝑛 ≤ log 2
𝜖𝑛

+ `2
𝑛

2 − 2 log log 2
𝜖𝑛

(take a subsequence if necessary). This leads to

0 ≤ 𝜖𝑛`𝑛_∗ exp(_∗`𝑛 − `2
𝑛/2) ≤ 2`𝑛_∗

(log 2
𝜖𝑛
)2
<

2 log 2
2𝜖𝑛 + `

2
𝑛

(log 2
𝜖𝑛
)2

= 𝑜(1),

where we have used the upper bound _∗`𝑛 < log 2
𝜖𝑛

+ `2
𝑛

2 derived earlier. The obtained result

contradicts with (2.29).

Finally, as mentioned earlier in the proof, we need to show that _∗ ≠ +∞ for large 𝑛. It is

sufficient to prove that 𝐹′(_) > 0,∀_ ∈ [ 2
`𝑛

log 1
𝜖𝑛
,∞), when 𝑛 is large. To this end, using the

Gaussian tail bound
∫ ∞
𝑡
𝜙(𝑧)𝑑𝑧 ≥ ( 1

𝑡
− 1

𝑡3
)𝜙(𝑡),∀𝑡 > 0 and the derivative expression (2.23), we
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have

𝐹′(_) ≥ 𝜙(_)
_2 ·

[
− 4 + 4𝜖𝑛 +

`𝑛 (_ − `𝑛)2 − _
(_ − `𝑛)3_−2 2𝜖𝑛𝑒_`𝑛−`

2
𝑛/2 + −`𝑛 (_ + `𝑛)2 − _

(_ + `𝑛)3_−2 2𝜖𝑛𝑒−_`𝑛−`
2
𝑛/2

]
≥ 𝜙(_)

_2 ·
[
− 4 + 4𝜖𝑛 + (2 + 𝑜(1)) · 𝜖𝑛𝑒−`

2
𝑛/2_`𝑛𝑒

_`𝑛
]
,

where we used that _ ≥ 2
`𝑛

log 1
𝜖𝑛

implies _`𝑛 = 𝜔(1). Note that the above asymptotic notion 𝑜(·)

is uniform for all _ ≥ 2
`𝑛

log 1
𝜖𝑛

when 𝑛 is large. Since _`𝑛 ≥ 2 log 1
𝜖𝑛

, we can easily continue from

the above inequality to obtain 𝐹′(_) > 0 for sufficiently large 𝑛. □

The next lemma turns 𝐹 (_∗) into a form that is more amenable to asymptotic analysis.

Lemma 5. Define

A = −`𝑛 (_∗ − `𝑛) + 1 + `𝑛 (_∗ − `𝑛)
3𝑒−2_∗`𝑛

(_∗ + `𝑛)2 + (_∗ − `𝑛)3𝑒−2_∗`𝑛

(_∗ + `𝑛)3 +𝑂
( `𝑛
_∗

)
,

B = `𝑛 (_∗ − `𝑛)2 − _∗ + (3 + 𝑜(1))_−1
∗ +

[−`𝑛_2
∗ − _∗(1 + 2`2

𝑛 (1 + 𝑜(1)))]
(_∗ + `𝑛)3 · (_∗ − `𝑛)3𝑒−2_∗`𝑛 .

As 𝜖𝑛 → 0, `𝑛 → 0, it holds that

𝐹 (_∗) = 𝜖𝑛`2
𝑛 +

4(1 − 𝜖𝑛)𝜙(_∗)
_3
∗

·
[
1 − 6_−2

∗ +𝑂 (_−4
∗ ) +

(
_∗ −

3 + 𝑜(1)
_∗

)A
B

]
.

Proof. We use Gaussian tail bounds to evaluate the three expectations (2.20)-(2.22) in the expres-

sion of 𝐹 (_∗) in (2.19). Note that as shown in Lemma 4, _∗`𝑛 = Θ(log 2𝜖−1
𝑛 ). The first expectation

is

E[̂2
𝑆 (𝑧, _∗) = 2𝜙(_∗)

[
2_−3

∗ − 12_−5
∗ +𝑂 (_−7

∗ )
]
. (2.30)

Regarding the second one, we obtain

𝜙(_∗ − `𝑛) − (_∗ − `𝑛)
∫ ∞

_∗−`𝑛
𝜙(𝑧)𝑑𝑧 =

[
(_∗ − `𝑛)−2 +𝑂

(
(_∗ − `𝑛)−4

)]
𝜙(_∗ − `𝑛),
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and

𝜙(_∗ + `𝑛) − (_∗ + `𝑛)
∫ ∞

_∗+`𝑛
𝜙(𝑧)𝑑𝑧 =

[
(_∗ + `𝑛)−2𝑒−2_∗`𝑛 +𝑂

(
(_∗ + `𝑛)−4𝑒−2_∗`𝑛

)]
· 𝜙(_∗ − `𝑛).

Therefore,

E[̂𝑆 (`𝑛 + 𝑧, _∗) =
[
(_∗ − `𝑛)−2 − (_∗ + `𝑛)−2𝑒−2_∗`𝑛 +𝑂

(
(_∗ − `𝑛)−4

)]
𝜙(_∗ − `𝑛). (2.31)

For the third expectation, we first have

(
1 + (_∗ − `𝑛)2

) ∫ ∞

_∗−`𝑛
𝜙(𝑧)𝑑𝑧 − (_∗ − `𝑛)𝜙(_∗ − `𝑛) =

[
2(_∗ − `𝑛)−3 +𝑂

(
(_∗ − `𝑛)−5

)]
𝜙(_∗ − `𝑛),(

1 + (_∗ + `𝑛)2
) ∫ ∞

_∗+`𝑛
𝜙(𝑧)𝑑𝑧 − (_∗ + `𝑛)𝜙(_∗ + `𝑛) =

[
2(_∗ + `𝑛)−3 +𝑂

(
(_∗ + `𝑛)−5

)]
𝜙(_∗ + `𝑛).

Thus,

E[̂2
𝑆 (`𝑛 + 𝑧, _∗) =

[
2(_∗ − `𝑛)−3 + 2(_∗ + `𝑛)−3𝑒−2_∗`𝑛 +𝑂

(
(_∗ − `𝑛)−5

) ]
𝜙(_∗ − `𝑛). (2.32)

Plugging (2.30)-(2.32) into (2.19), we have

𝐹 (_∗) = 2(1 − 𝜖𝑛)𝜙(_∗)
[
2_−3

∗ − 12_−5
∗ +𝑂 (_−7

∗ )
]
+ 𝜖𝑛`2

𝑛

−2𝜖𝑛`𝑛
[
(_∗ − `𝑛)−2 − (_∗ + `𝑛)−2𝑒−2_∗`𝑛 +𝑂

(
(_∗ − `𝑛)−4

) ]
𝜙(_∗ − `𝑛)

+𝜖𝑛
[
2(_∗ − `𝑛)−3 + 2(_∗ + `𝑛)−3𝑒−2_∗`𝑛 +𝑂

(
(_∗ − `𝑛)−5

) ]
𝜙(_∗ − `𝑛)

= 𝜖𝑛`
2
𝑛 + 2(1 − 𝜖𝑛)𝜙(_∗)

[
2_−3

∗ − 12_−5
∗ +𝑂 (_−7

∗ )
]
+ 2𝜖𝑛A𝜙(_∗ − `𝑛)

(_∗ − `𝑛)3 . (2.33)

Next, we utilize the derivative equation (2.23) to further simplify (2.33). We first list the asymptotic

approximations needed:

− _∗
∫ ∞

_∗

𝜙(𝑧)𝑑𝑧 + 𝜙(_∗) = (1 − (3 + 𝑜(1))_−2
∗ ) · _−2

∗ 𝜙(_∗),
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− 𝜙(_∗ + `𝑛) + _∗
∫ ∞

_∗+`𝑛
𝜙(𝑧)𝑑𝑧 =

[−`𝑛_2
∗ − _∗(1 + 2`2

𝑛 (1 + 𝑜(1)))]𝑒−2_∗`𝑛

(_∗ + `𝑛)3 𝜙(_∗ − `𝑛),

− 𝜙(_∗ − `𝑛) + _∗
∫ ∞

_∗−`𝑛
𝜙(𝑧)𝑑𝑧 = `𝑛 (_∗ − `𝑛)2 − _∗ [1 − (3 + 𝑜(1))_−2

∗ ]
(_∗ − `𝑛)3 𝜙(_∗ − `𝑛).

Plugging them into (2.23) yields

4(1 − 𝜖𝑛)
[ 1
_2
∗
− 3 + 𝑜(1)

_4
∗

]
𝜙(_∗) = 2𝜖𝑛

B𝜙(_∗ − `𝑛)
(_∗ − `𝑛)3 .

Obtaining the expression for 𝜙(_∗−`𝑛)(_∗−`𝑛)3 from the above equation and plugging it into (2.33) completes

the proof. □

We now apply Lemmas 4 and 5 to obtain the final form of 𝐹 (_∗). Referring to the expression of

𝐹 (_∗) in Lemma 5, the key term to compute is 1 +
(
_∗ − 3+𝑜(1)

_∗

)
A
B . Using the fact that _∗`𝑛 → ∞,

some direct calculations enable us to obtain

(
_∗ −

3 + 𝑜(1)
_∗

)
A + B = (−1 + 𝑜(1))_∗`2

𝑛, B = `𝑛_
2
∗ (1 + 𝑜(1)).

Therefore, the expression 𝐹 (_∗) in Lemma 5 can be simplified to

𝐹 (_∗) =𝜖𝑛`2
𝑛 +

4(1 − 𝜖𝑛)𝜙(_∗)
_3
∗

·
[
− 6_−2

∗ +𝑂 (_−4
∗ ) − `𝑛

_∗
(1 + 𝑜(1))

]
=𝜖𝑛`

2
𝑛 −

(4 + 𝑜(1))`𝑛𝜙(_∗)
_4
∗

.

Finally, Lemma 4 implies that _∗ = (1+𝑜(1)) log 𝜖−1
𝑛

`𝑛
. Replacing _∗ by this rate in the above equation

gives us the result in Proposition 1.

2.5.4 Proof of Proposition 2

Define the supremum risk of optimally tuned hard thresholding estimator as

𝑅𝐻 (Θ(𝑘𝑛, 𝜏𝑛), 𝜎𝑛) = inf
_>0

sup
\∈Θ(𝑘𝑛,𝜏𝑛)

E\
[̂𝐻 (𝑦, _) − \2

2 ,
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where 𝑦𝑖 = \𝑖 + 𝜎𝑛𝑧𝑖, with 𝑧𝑖
𝑖.𝑖.𝑑.∼ N(0, 1). It is straightforward to verify that

𝑅𝐻 (Θ(𝑘𝑛, 𝜏𝑛), 𝜎𝑛) = 𝜎2
𝑛 · 𝑅𝐻 (Θ(𝑘𝑛, `𝑛), 1). (2.34)

Without loss of generality, let 𝜎𝑛 = 1 in the model. We first obtain the lower bound, by calculating

the risk at a specific value of \ such that \
𝑖
= `𝑛 for 𝑖 ∈ {1, 2, . . . , 𝑘𝑛} and \

𝑖
= 0 for 𝑖 > 𝑘𝑛:

𝑅𝐻 (Θ(𝑘𝑛, `𝑛), 1) ≥ inf
_>0
E\ ∥[̂𝐻 (𝑦, _) − \∥2

2. (2.35)

Denote the one-dimensional risk:

𝑟𝐻 (_, `) := E
(
[̂𝐻 (` + 𝑧, _) − `

)2
, 𝑧 ∼ N(0, 1), ∀` ∈ R, _ ≥ 0.

It is then direct to confirm that

E\ ∥[̂𝐻 (𝑦, _) − \∥2
2 = 𝑛

[
(1 − 𝜖𝑛)𝑟𝐻 (_, 0) + 𝜖𝑛𝑟𝐻 (_, `𝑛)

]
. (2.36)

Let _∗𝑛 be the optimal choice of _ in E\ ∥[̂𝐻 (𝑦, _) − \∥2 so that

inf
_>0
E\ ∥[̂𝐻 (𝑦, _) − \∥2

2 = E\ ∥[̂𝐻 (𝑦, _∗𝑛) − \∥2
2.

To evaluate the lower bound in (2.35), we consider two scenarios for the optimal choice _∗𝑛 and in

each one we obtain a lower bound for E\ ∥[̂𝐻 (𝑦, _∗𝑛) − \∥2. But before considering these two cases,

we use the integration by part to find the following more explicit forms for 𝑟𝐻 (_, 0) and 𝑟𝐻 (_, `):

𝑟𝐻 (_, 0) = 2
∫ ∞

_

𝑧2𝜙(𝑧)𝑑𝑧 = 2_𝜙(_) + 2(1 −Φ(_)),

𝑟𝐻 (_, `) = `2
∫ _−`

−_−`
𝜙(𝑧)𝑑𝑧 +

∫ −_−`

−∞
𝑧2𝜙(𝑧)𝑑𝑧 +

∫ ∞

_−`
𝑧2𝜙(𝑧)𝑑𝑧

= (`2 − 1)
[
Φ(_ − `) −Φ(−_ − `)

]
+ 1 + (_ − `)𝜙(_ − `) + (_ + `)𝜙(_ + `), (2.37)
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where we recall that 𝜙(·) and Φ(·) denote the density and CDF of N(0, 1) respectively. Now we

consider two cases for the optimal choice _∗𝑛 and in each case find a lower bound for the risk.

• Case I _∗𝑛 = 𝑂 (1): we have _∗𝑛 ≤ 𝑐 for some constant 𝑐 > 0. Hence, from (2.36) we obtain

inf
_>0
E\ ∥[̂𝐻 (𝑦, _) − \∥2

2 = E\ ∥[̂𝐻 (𝑦, _∗𝑛) − \∥2
2

≥ 𝑛(1 − 𝜖𝑛)𝑟𝐻 (_∗𝑛, 0) = 𝑛(1 − 𝜖𝑛)
[
2_∗𝑛𝜙(_∗𝑛) + 2(1 −Φ(_∗𝑛))

]
≥ 𝑛(1 − 𝜖𝑛)

[
2(1 −Φ(_∗𝑛))

]
≥ 𝑛(1 − 𝜖𝑛)

[
2(1 −Φ(𝑐))

]
≥ 𝑛𝜖𝑛`2

𝑛.

The last inequality is because 𝜖𝑛`2
𝑛 = 𝑜(1) and (1 − 𝜖𝑛) [2(1 −Φ(𝑐))] = Θ(1).

• Case II _∗𝑛 = 𝜔(1): then _∗𝑛 → ∞ as 𝑛→ ∞. From (2.36) and (2.37), we have

inf
_>0
E\ ∥[̂𝐻 (𝑦, _) − \∥2

2 = E\ ∥[̂𝐻 (𝑦, _∗𝑛) − \∥2
2 ≥ 𝑘𝑛𝑟𝐻 (_∗𝑛, `𝑛)

= 𝑘𝑛 (`2
𝑛 − 1)

[
1 −

∫ ∞

_∗𝑛−`𝑛
𝜙(𝑧)𝑑𝑧 −

∫ ∞

_∗𝑛+`𝑛
𝜙(𝑧)𝑑𝑧

]
+ 𝑘𝑛

+ 𝑘𝑛 (_∗𝑛 − `𝑛)𝜙(_∗𝑛 − `𝑛) + 𝑘𝑛 (_∗𝑛 + `𝑛)𝜙(_∗𝑛 + `𝑛)
(𝑎)
= 𝑘𝑛`

2
𝑛 + 𝑘𝑛 (_∗𝑛 − `𝑛 + 𝑜(1))𝜙(_∗𝑛 − `𝑛) + 𝑘𝑛 (_∗𝑛 + `𝑛 + 𝑜(1))𝜙(_∗𝑛 + `𝑛)

≥ 𝑘𝑛`
2
𝑛 = 𝑛𝜖𝑛`

2
𝑛,

where to obtain (a), we have used the Gaussian tail bound in Lemma 1 under the scaling

_∗𝑛 → ∞ and `𝑛 → 0.

Note that since the two cases we have discussed above cover all the ranges of _∗𝑛, we conclude that

𝑅𝐻 (Θ(𝑘𝑛, `𝑛), 1) ≥ inf
_>0
E\ ∥[̂𝐻 (𝑦, _) − \∥2

2 ≥ 𝑛𝜖𝑛`2
𝑛,

for all sufficiently large 𝑛. To obtain the matching upper bound, we have

𝑅𝐻 (Θ(𝑘𝑛, `𝑛), 1)
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= inf
_>0

sup
\∈Θ(𝑘𝑛,`𝑛)

E\
[̂𝐻 (𝑦, _) − \2

2

≤ lim
_→∞

sup
\∈Θ(𝑘𝑛,`𝑛)

E\
[̂𝐻 (𝑦, _) − \2

2

≤ lim
_→∞

(
sup

\∈Θ(𝑘𝑛,`𝑛)
E\ ∥[̂𝐻 (𝑦, _)∥2

2 + sup
\∈Θ(𝑘𝑛,`𝑛)

E\ ⟨−2[̂𝐻 (𝑦, _), \⟩ + sup
\∈Θ(𝑘𝑛,`𝑛)

∥\∥2
2

)
≤𝑛𝜖𝑛`2

𝑛 + lim
_→∞

(
sup

\∈Θ(𝑘𝑛,`𝑛)
E\ ∥[̂𝐻 (𝑦, _)∥2

2 + 2
√︃
𝑛𝜖𝑛`

2
𝑛

√︂
sup

\∈Θ(𝑘𝑛,`𝑛)
E\ ∥[̂𝐻 (𝑦, _)∥2

2

)
. (2.38)

To obtain the last inequality, we have used Cauchy–Schwarz inequality and sup\∈Θ(𝑘𝑛,`𝑛) ∥\∥
2
2 =

𝑘𝑛`
2
𝑛. From (2.38), to show 𝑅𝐻 (Θ(𝑘𝑛, `𝑛), 1) ≤ 𝑛𝜖𝑛`2

𝑛, it is sufficient to prove

lim
_→∞

sup
\∈Θ(𝑘𝑛,`𝑛)

E\ ∥[̂𝐻 (𝑦, _)∥2
2 = 0.

Define 𝑓_ (`) := E|[̂𝐻 (` + 𝑧, _) |2, 𝑧 ∼ N(0, 1). It is not hard to verify that 𝑓_ (`), as a function of

`, is symmetric around zero and increasing over [0,∞) for all _ > 0. As a result,

lim
_→∞

sup
\∈Θ(𝑘𝑛,`𝑛)

E\ ∥[̂𝐻 (𝑦, _)∥2
2 ≤ lim

_→∞

[
(𝑛 − 𝑘𝑛) 𝑓_ (0) + 𝑘𝑛 𝑓_ (

√︁
𝑘𝑛`𝑛)

]
= (𝑛 − 𝑘𝑛) lim

_→∞
𝑓_ (0) + 𝑘𝑛 lim

_→∞
𝑓_ (

√︁
𝑘𝑛`𝑛)

= 0 + 0 = 0.

The last line holds because lim_→∞ 𝑓_ (`) = 0,∀` ∈ R from dominated convergence theorem. The

dominated convergence theorem can be used since |[̂𝐻 (` + 𝑧, _) |2 ≤ |` + 𝑧 |2 and lim_→∞ |[̂𝐻 (` +

𝑧, _) |2 = 0.

2.5.5 Proof of Theorem 6

Recall the scale invariance property in Section 3.4.1: 𝑅(Θ(𝑘𝑛, 𝜏𝑛), 𝜎𝑛) = 𝜎2
𝑛 · 𝑅(Θ(𝑘𝑛, `𝑛), 1),

where `𝑛 = 𝜏𝑛/𝜎𝑛. Moreover, the estimator [̂𝐸 (𝑦, _, 𝛾) := 1
1+𝛾 [̂𝑆 (𝑦, _) defined in Equation (2.10)

also preserves an invariance: 𝑡 · [̂𝐸 (𝑦, _, 𝛾) = [̂𝐸 (𝑡𝑦, 𝑡_, 𝛾),∀𝑡 ≥ 0. Therefore, to prove both the
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upper and lower bounds, in this section, it is sufficient to consider the simpler unit-variance model:

𝑦𝑖 = \𝑖 + 𝑧𝑖, 𝑖 = 1, . . . , 𝑛, (2.39)

where (𝑧𝑖) 𝑖.𝑖.𝑑∼ N(0, 1). We find an upper bound for the minimax risk by calculating the supremum

risk of [𝐸 (𝑦, _, 𝛾) with proper tuning. The lower bound is obtained by using Theorem 11 and con-

sidering the independent block prior again. Both steps are more challenging than the corresponding

steps in the proof of Theorem 5.

Upper bound

To analyze the supremum risk of [̂𝐸 (𝑦, _, 𝛾), it is important to understand its risk in one di-

mension. Define the one-dimensional risk function as:

𝑟𝑒 (`;_, 𝛾) = E
( 1
1 + 𝛾 [̂𝑆 (` + 𝑧, _) − `

)2
, 𝑧 ∼ N(0, 1). (2.40)

The following property of the risk function plays a pivotal role in our analysis.

Lemma 6. For any given tuning parameters _ > 0, 𝛾 ∈ [0, +∞], it holds that

(i) 𝑟𝑒 (`;_, 𝛾), as a function of `, is symmetric, and increasing over ` ∈ [0, +∞).

(ii) max(𝑥,𝑦):𝑥2+𝑦2=𝑐2 [𝑟𝑒 (𝑥;_, 𝛾) + 𝑟𝑒 (𝑦;_, 𝛾)] = 2𝑟𝑒 (𝑐/
√

2;_, 𝛾), ∀𝑐 > 0.

Proof. (i) Proving the symmetry of 𝑟𝑒 (`;_, 𝛾) is straightforward and is hence skipped. To prove

the monotonicity of 𝑟𝑒 (`;_, 𝛾), we will calculate its derivative and show that it is positive for all

` > 0. To this end, we first decompose 𝑟𝑒 (`;_, 𝛾) into three terms:

𝑟𝑒 (`;_, 𝛾) = 1
(1 + 𝛾)2E([̂𝑆 (` + 𝑧, _) − `)

2 + 𝛾2`2

(1 + 𝛾)2 + 2𝛾`
(1 + 𝛾)2E(` − [̂𝑆 (` + 𝑧, _)).
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Accordingly, the derivative of 𝑟𝑒 (`;_, 𝛾) takes the form:

𝜕𝑟𝑒 (`;_, 𝛾)
𝜕`

=
1

(1 + 𝛾)2
𝜕E([̂𝑆 (` + 𝑧, _) − `)2

`
+ 2𝛾2`

(1 + 𝛾)2

− 2𝛾
(1 + 𝛾)2

[
`
𝜕E([̂𝑆 (` + 𝑧, _) − `)

𝜕`
+ E([̂𝑆 (` + 𝑧, _) − `)

]
. (2.41)

Using the explicit expression [̂𝑆 (` + 𝑧, _) = sign(` + 𝑧) ( |` + 𝑧 | − _)+, we can calculate

𝜕E([̂𝑆 (` + 𝑧, _) − `)
𝜕`

=
𝜕

𝜕`
E
[
(−`)𝐼( |`+𝑧 |≤_) + (𝑧 − _)𝐼(𝑧+`>_) + (𝑧 + _)𝐼(𝑧+`<−_)

]
= − P( |𝑧 + ` | ≤ _) − `[−𝜙(_ − `) + 𝜙(−_ − `)] − `𝜙(_ − `) + `𝜙(−_ − `)

= − P( |𝑧 + ` | ≤ _),

and

𝜕E([̂𝑆 (` + 𝑧, _) − `)2

`
=
𝜕

𝜕`
E

[
`2𝐼( |`+𝑧 |≤_) + (𝑧 − _)2𝐼(𝑧+`>_) (𝑧 + _)2𝐼(𝑧+`<−_)

]
=2`P( |` + 𝑧 | ≤ _) + `2 [−𝜙(_ − `) + 𝜙(−_ − `)] + `2𝜙(_ − `) − `2𝜙(−_ − `)

=2`P( |` + 𝑧 | ≤ _).

Putting the above two results into (2.41), we obtain, ∀` > 0,

𝜕𝑟𝑒 (`;_, 𝛾)
𝜕`

=
2`

(1 + 𝛾)2P( |𝑧 + ` | ≤ _) +
2𝛾2`

(1 + 𝛾)2

+ 2𝛾
(1 + 𝛾)2

[
`P( |𝑧 + ` | ≤ _) + E(` − [̂𝑆 (` + 𝑧, _))

]
> 0, (2.42)

where the derivative is positive as all the terms on the right-hand side are non-negative and at least

one of them is positive for all ` > 0. To verify this, all others are obvious and only the last term

E(` − [̂𝑆 (` + 𝑧, _)) needs be checked: this term is positive because it is an odd function and has

positive derivative.

(ii) Since the case where 𝛾 = +∞ is trivial, we consider 𝛾 ∈ [0,∞) in the rest of the proof. Let

49



𝐻 (𝑥) := 𝑟𝑒 (𝑥;_, 𝛾) + 𝑟𝑒 (
√
𝑐2 − 𝑥2;_, 𝛾) and consider max0≤𝑥≤𝑐 𝐻 (𝑥). Since 𝐻 (𝑥) is continuous

over [0, 𝑐], we find the maximum by evaluating the derivative of 𝐻 (𝑥) over (0, 𝑐). Using the

derivative calculation (2.42), we have

𝐻
′ (𝑥) = 𝑟 ′𝑒 (𝑥;_, 𝛾) − 𝑥

√
𝑐2 − 𝑥2

𝑟
′
𝑒 (

√︁
𝑐2 − 𝑥2;_, 𝛾) = 2𝑥

1 + 𝛾 𝑓1(𝑥) +
2𝛾𝑥

(1 + 𝛾)2 𝑓2(𝑥),

where

𝑓1(𝑥) := P( |𝑥 + 𝑧 | ≤ _) − P( |
√︁
𝑐2 − 𝑥2 + 𝑧 | ≤ _),

𝑓2(𝑥) :=
1

√
𝑐2 − 𝑥2

E[̂𝑆 (
√︁
𝑐2 − 𝑥2 + 𝑧, _) − 1

𝑥
E[̂𝑆 (𝑥 + 𝑧, _).

We now show that 𝐻
′ (𝑥) > 0 for 𝑥 ∈ (0, 𝑐√

2
), 𝐻 ′ ( 𝑐√

2
) = 0, and 𝐻

′ (𝑥) < 0 for 𝑥 ∈ ( 𝑐√
2
, 𝑐). It is

straightforward to confirm that 𝐻
′ ( 𝑐√

2
) = 0. Hence, it is sufficient to show both 𝑓1(𝑥) and 𝑓2(𝑥)

are positive over (0, 𝑐√
2
) and negative over ( 𝑐√

2
, 𝑐). This can be proved if we show that both 𝑓1(𝑥)

and 𝑓2(𝑥) are strictly decreasing over (0, 𝑐), given that 𝑓1(𝑐/
√

2) = 𝑓2(𝑐/
√

2) = 0.

Regarding 𝑓1(𝑥), it is direct to verify that P( |𝑥 + 𝑧 | ≤ _) is strictly decreasing over (0, 𝑐),

and accordingly P( |
√
𝑐2 − 𝑥2 + 𝑧 | ≤ _) is strictly increasing over (0, 𝑐). Hence 𝑓1(𝑥) is strictly

decreasing over (0, 𝑐). It remains to prove the monotonicity of 𝑓2(𝑥). By the structure of 𝑓2(𝑥), it

is sufficient to show E[ 1
𝑥
[̂𝑆 (𝑥 + 𝑧, _)] is a strictly increasing function of 𝑥 for 𝑥 > 0. We compute

the derivative:

𝜕E1
𝑥
[̂𝑆 (𝑥 + 𝑧, _)
𝜕𝑥

= − 1
𝑥2E[̂𝑆 (𝑥 + 𝑧, _) +

1
𝑥
P( |𝑥 + 𝑧 | > _)

= − 1
𝑥2

(
E

[
(𝑥 + 𝑧 − _)𝐼(𝑥+𝑧>_) + (𝑥 + 𝑧 + _)𝐼(𝑥+𝑧<−_)

]
− 𝑥

∫ ∞

_−𝑥
𝜙(𝑧)𝑑𝑧 − 𝑥

∫ ∞

_+𝑥
𝜙(𝑧)𝑑𝑧

)
= − 1

𝑥2

[
𝜙(_ − 𝑥) − _

∫ ∞

_−𝑥
𝜙(𝑧)𝑑𝑧 + _

∫ ∞

_+𝑥
𝜙(𝑧)𝑑𝑧 − 𝜙(_ + 𝑥)

]
︸                                                                    ︷︷                                                                    ︸

ℎ(𝑥)

.

50



Therefore, for 𝑥 > 0, 𝜕E
1
𝑥
[̂𝑆 (𝑥+𝑧,_)
𝜕𝑥

> 0 if and only if ℎ(𝑥) < 0. In fact,

ℎ
′ (𝑥) = (_ − 𝑥)𝜙(_ − 𝑥) + (_ + 𝑥)𝜙(_ + 𝑥) − _𝜙(_ − 𝑥) − _𝜙(_ + 𝑥)

= 𝑥(𝜙(_ + 𝑥) − 𝜙(_ − 𝑥)) < 0, ∀𝑥 > 0.

Also, it is straightforward to confirm that ℎ(0) = 0. Thus ℎ(𝑥) < 0 for 𝑥 > 0. □

The one-dimensional risk function properties in Lemma 6 will enable us to locate the parameter

value at which the supremum risk of [̂𝐸 (𝑦, _, 𝛾) over the parameter space Θ(𝑘𝑛, `𝑛) is achieved.

The following lemma provides the detailed supremum risk calculation for a carefully-picked choice

of the tuning.

Lemma 7. Consider model (2.39). Suppose 𝜖𝑛 = 𝑘𝑛/𝑛 → 0, `𝑛 → ∞, and `𝑛 = 𝑜(
√︁

log 𝜖−1
𝑛 ),

as 𝑛 → ∞. Then the estimator [̂𝐸 (𝑦, _𝑛, 𝛾𝑛) = 1
1+𝛾𝑛 [̂𝑆 (𝑦, _𝑛), with 𝛾𝑛 = (2𝜖𝑛`2

𝑛𝑒
3
2 `

2
𝑛)−1 − 1 and

_𝑛 = 2`𝑛, has supremum risk:

sup
\∈Θ(𝑘𝑛,`𝑛)

E\ ∥[̂𝐸 (𝑦, _𝑛, 𝛾𝑛) − \∥2
2 = 𝑘𝑛`

2
𝑛 − (

√︁
2/𝜋 + 𝑜(1)) ·

𝑘2
𝑛

𝑛
`𝑛𝑒

`2
𝑛 .

Proof. Using the one-dimensional risk function in (2.40), we can write:

sup
\∈Θ(𝑘𝑛,`𝑛)

E\ ∥[̂𝐸 (𝑦, _𝑛, 𝛾𝑛) − \∥2
2 = sup

\∈Θ(𝑘𝑛,`𝑛)

𝑛∑︁
𝑖=1

𝑟𝑒 (\𝑖;_𝑛, 𝛾𝑛).

According to the properties proved in Lemma 6, it is clear that the above supremum is attained at

the parameter vector \ in which there are 𝑘𝑛 non-zero components and they are all equal to `𝑛 (it

occurs at a particular boundary of the parameter space Θ(𝑘𝑛, `𝑛)). Therefore, the supremum risk

can be simplified to

sup
\∈Θ(𝑘𝑛,`𝑛)

E\ ∥[̂𝐸 (𝑦, _𝑛, 𝛾𝑛) − \∥2
2 = 𝑛

[
(1 − 𝜖𝑛)𝑟𝑒 (0;_𝑛, 𝛾𝑛) + 𝜖𝑛𝑟𝑒 (`𝑛;_𝑛, 𝛾𝑛)

]
(2.43)

=𝑛

[
1 − 𝜖𝑛

(1 + 𝛾𝑛)2E[̂
2
𝑆 (𝑧, _𝑛) +

𝜖𝑛

(1 + 𝛾𝑛)2E[̂
2
𝑆 (`𝑛 + 𝑧, _𝑛) −

2𝜖𝑛`𝑛
1 + 𝛾𝑛

E[̂𝑆 (`𝑛 + 𝑧, _𝑛) + 𝜖𝑛`2
𝑛

]
.
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To further calculate the supremum risk, we evaluate the three expectations in the above expression,

using the Gaussian tail bound
∫ ∞
𝑡
𝜙(𝑧)𝑑𝑧 =

(
1
𝑡
− 1
𝑡3
+ 3+𝑜(1)

𝑡5

)
𝜙(𝑡) as 𝑡 → ∞. For the particular

choice _𝑛 = 2`𝑛 → ∞, we have

E[̂2
𝑆 (𝑧, _𝑛) = 2

[
(1 + _2

𝑛)
∫ ∞

_𝑛

𝜙(𝑧)𝑑𝑧 − _𝑛𝜙(_𝑛)
]
=

1 + 𝑜(1)
2`3

𝑛

𝜙(2`𝑛). (2.44)

Furthermore,

E[̂2
𝑆 (`𝑛 + 𝑧, _𝑛) =

[
(1 + (`𝑛 − _𝑛)2)

∫ ∞

_𝑛−`𝑛
𝜙(𝑧)𝑑𝑧 − (_𝑛 − `𝑛)𝜙(_𝑛 − `𝑛)

]
+

[
(1 + (`𝑛 + _𝑛)2)

∫ ∞

_𝑛+`𝑛
𝜙(𝑧)𝑑𝑧 − (_𝑛 + `𝑛)𝜙(_𝑛 + `𝑛)

]
=

2 + 𝑜(1)
(_𝑛 − `𝑛)3 𝜙(_𝑛 − `𝑛) +

2 + 𝑜(1)
(_𝑛 + `𝑛)3 𝜙(_𝑛 + `𝑛) =

2 + 𝑜(1)
`3
𝑛

𝜙(`𝑛), (2.45)

and

E[̂𝑆 (`𝑛 + 𝑧, _𝑛) =𝜙(_𝑛 − `𝑛) − (_𝑛 − `𝑛)
∫ ∞

_𝑛−`𝑛
𝜙(𝑧)𝑑𝑧 − 𝜙(_𝑛 + `𝑛) + (`𝑛 + _𝑛)

∫ ∞

_𝑛+`𝑛
𝜙(𝑧)𝑑𝑧

=
1 + 𝑜(1)
(_𝑛 − `𝑛)2 𝜙(_𝑛 − `𝑛) −

1 + 𝑜(1)
(_𝑛 + `𝑛)2 𝜙(_𝑛 + `𝑛) =

1 + 𝑜(1)
`2
𝑛

𝜙(`𝑛). (2.46)

Plugging (2.44)-(2.46) into (2.43) with the particular choice 𝛾𝑛 = (2𝜖𝑛`2
𝑛𝑒

3
2 `

2
𝑛)−1 − 1 considered in

the lemma, we obtain

sup
\∈Θ(𝑘𝑛,`𝑛)

E\ ∥[̂𝐸 (𝑦, _𝑛, 𝛾𝑛) − \∥2
2

= 𝑘𝑛`
2
𝑛 + (2 + 𝑜(1)) · 𝑛𝜖2

𝑛`𝑛𝑒
3
2 `

2
𝑛𝜙(`𝑛)

+(8 + 𝑜(1)) · 𝑛𝜖3
𝑛`𝑛𝑒

3`2
𝑛𝜙(`𝑛) − (4 + 𝑜(1)) · 𝑛𝜖2

𝑛`𝑛𝑒
3
2 `

2
𝑛𝜙(`𝑛)

= 𝑘𝑛`
2
𝑛 − (2 + 𝑜(1)) · 𝑛𝜖2

𝑛`𝑛𝑒
3
2 `

2
𝑛𝜙(`𝑛).

The last equation holds because `𝑛 = 𝑜(
√︁

log 𝜖−1
𝑛 ) implies 𝜖𝑛𝑒

3
2 `

2
𝑛 = 𝑜(1), so that the third term on
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the right-hand side of the first equation is negligible. □

Now we can combine the preceding results we proved to obtain an upper bound for the minimax

risk: with 𝛾𝑛 = (2𝜖𝑛`2
𝑛𝑒

3
2 `

2
𝑛)−1 − 1 and _𝑛 = 2`𝑛, it holds that

𝑅(Θ(𝑘𝑛, 𝜏𝑛), 𝜎𝑛) = 𝜎2
𝑛 · 𝑅(Θ(𝑘𝑛, `𝑛), 1)

≤ 𝜎2
𝑛 · sup

\∈Θ(𝑘𝑛,`𝑛)
E\ ∥[̂𝐸 (𝑦, _𝑛, 𝛾𝑛) − \∥2

2 = sup
\∈Θ(𝑘𝑛,𝜏𝑛)

E\ ∥[̂𝐸 (𝑦, 𝜎𝑛_𝑛, 𝛾𝑛) − \∥2
2

= 𝜎2
𝑛

(
𝑘𝑛`

2
𝑛 − (

√︁
2/𝜋 + 𝑜(1)) ·

𝑘2
𝑛

𝑛
`𝑛𝑒

`2
𝑛

)
= 𝑛𝜎2

𝑛

(
𝜖𝑛`

2
𝑛 − (

√︁
2/𝜋 + 𝑜(1))𝜖2

𝑛`𝑛𝑒
`2
𝑛

)
.

Lower bound

The derivation of the lower bound follows the same roadmap of proof for the lower bound in

Theorem 5. It relies on the independent block prior constructed in Section 2.5.2. According to

Equation (2.13), the key step is to calculate the Bayes risk 𝐵(𝜋`,𝑚
𝑆

) of the symmetric spike prior

`
`,𝑚

𝑆
for (` ∈ (0, `𝑛]), in the regime 𝑚 = 𝑛/𝑘𝑛 → ∞, `𝑛 → ∞, `𝑛 = 𝑜(

√︁
log 𝜖−1

𝑛 ). It turns out that

setting ` = `𝑛 will lead to a sharp lower bound. We summarize the result in the next lemma.

Lemma 8. As 𝑚 = 𝑛/𝑘𝑛 → ∞, `𝑛 → ∞, `𝑛 = 𝑜(
√︁

log 𝜖−1
𝑛 ), the Bayes risk 𝐵(𝜋`𝑛,𝑚

𝑆
) satisfies

𝐵(𝜋`𝑛,𝑚
𝑆

) ≥ `2
𝑛

[
1 − 𝑒`

2
𝑛

2𝑚
(1 + 𝑜(1))

]
.

Proof. The result is an analog of Lemma 3 in Regime (II). Adopt the same notation from the proof

of Lemma 3: 𝑝𝑚 = 𝑒`𝑦1−𝑒−`𝑦1∑𝑚
𝑖=1 (𝑒`𝑦𝑖+𝑒−`𝑦𝑖 )

. In light of Lemma 2, it is sufficient to show that

(i) E`𝑛𝑒1 (𝑝𝑚 − 1)2 ≥ 1 − 1
𝑚
𝑒`

2
𝑛 (1 + 𝑜(1)),

(ii) (𝑚 − 1)E`𝑛𝑒2 𝑝
2
𝑚 ≥ 1

2𝑚 𝑒
`2
𝑛 (1 + 𝑜(1)).

Regarding Part (i), we have

E`𝑛𝑒1 [𝑝𝑚 − 1]2
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≥1 − 2 · E
(

𝑒`𝑛 (`𝑛+𝑧1) − 𝑒−`𝑛 (`𝑛+𝑧1)∑
𝑗≠1(𝑒`𝑛𝑧 𝑗 + 𝑒−`𝑛𝑧 𝑗 ) + 𝑒`𝑛 (`𝑛+𝑧1) + 𝑒−`𝑛 (`𝑛+𝑧1)

)
≥1 − 2 · E

(
𝑒`𝑛 (`𝑛+𝑧1)∑

𝑗≠1(𝑒`𝑛𝑧 𝑗 + 𝑒−`𝑛𝑧 𝑗 ) + 𝑒`𝑛 (`𝑛+𝑧1) + 𝑒−`𝑛 (`𝑛+𝑧1)

)
.

Thus, (i) will be proved by showing that

E

(
𝑒`𝑛 (`𝑛+𝑧1)∑

𝑗≠1(𝑒`𝑛𝑧 𝑗 + 𝑒−`𝑛𝑧 𝑗 ) + 𝑒`𝑛 (`𝑛+𝑧1) + 𝑒−`𝑛 (`𝑛+𝑧1)

)
≤ 1

2𝑚
𝑒`

2
𝑛 (1 + 𝑜(1)).

The expectation on the left-hand side of the above can be splitted into a summation of two truncated

expectations according to the following condition:

𝑒`𝑛 (`𝑛+𝑧1) + 𝑒−`𝑛 (`𝑛+𝑧1) ≥ 𝑒`𝑛𝑧1 + 𝑒−`𝑛𝑧1

⇔ (𝑒`2
𝑛 − 1)

(
𝑒`𝑛𝑧1 − 𝑒−`𝑛𝑧1−`2

𝑛

)
≥ 0 ⇔ `𝑛𝑧1 ≥ −`𝑛𝑧1 − `2

𝑛 ⇔ 𝑧1 ≥ −1
2
`𝑛.

In the first case,

E
©«

𝑒`𝑛 (`𝑛+𝑧1) 𝐼(𝑧1≥− 1
2 `𝑛)∑

𝑗≠1(𝑒`𝑛𝑧 𝑗 + 𝑒−`𝑛𝑧 𝑗 ) + 𝑒`𝑛 (`𝑛+𝑧1) + 𝑒−`𝑛 (`𝑛+𝑧1)
ª®¬

≤E ©«
𝑒`𝑛 (`𝑛+𝑧1) 𝐼(𝑧1≥− 1

2 `𝑛)∑𝑚
𝑗=1(𝑒`𝑛𝑧 𝑗 + 𝑒−`𝑛𝑧 𝑗 )

ª®¬ ≤ 𝑒`2
𝑛E

(
𝑒`𝑛𝑧1∑𝑚

𝑗=1(𝑒`𝑛𝑧 𝑗 + 𝑒−`𝑛𝑧 𝑗 )

)
=
𝑒`

2
𝑛

2
E

(
𝑒`𝑛𝑧1 + 𝑒−`𝑛𝑧1∑𝑚

𝑗=1(𝑒`𝑛𝑧 𝑗 + 𝑒−`𝑛𝑧 𝑗 )

)
=
𝑒`

2
𝑛

2𝑚
,

where in the last two equations we have used the symmetry and exchangeability of i.i.d. standard

normal variables {𝑧𝑖}𝑚𝑗=1. In the second case,

E
©«

𝑒`𝑛 (`𝑛+𝑧1) 𝐼(𝑧1≤− 1
2 `𝑛)∑

𝑗≠1(𝑒`𝑛𝑧 𝑗 + 𝑒−`𝑛𝑧 𝑗 ) + 𝑒`𝑛 (`𝑛+𝑧1) + 𝑒−`𝑛 (`𝑛+𝑧1)
ª®¬

≤𝑒`2
𝑛E

(
𝑒`𝑛𝑧1 𝐼(𝑧1≤− 1

2 `𝑛)∑𝑚
𝑗=1 𝑒

`𝑛𝑧 𝑗

)
=
𝑒`

2
𝑛

𝑚
E

(∑𝑚
𝑗=1 𝑒

`𝑛𝑧 𝑗1(𝑧 𝑗≤− 1
2 `𝑛)∑𝑚

𝑗=1 𝑒
`𝑛𝑧 𝑗

)
, (2.47)
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where the last equality is again due to exchangeability of {𝑧 𝑗 }𝑚𝑗=1. Denoting

𝑌𝑛 :=
1

𝑚𝑒
1
2 `

2
𝑛

𝑚∑︁
𝑗=1
𝑒`𝑛𝑧 𝑗 , 𝑍𝑛 :=

1
𝑚𝑒

1
2 `

2
𝑛

𝑚∑︁
𝑗=1
𝑒`𝑛𝑧 𝑗 𝐼(𝑧 𝑗≤− 1

2 `𝑛)
,

then the last expectation in (2.47) can be written as E(𝑍𝑛/𝑌𝑛), and it remains to show E(𝑍𝑛/𝑌𝑛) =

𝑜(1). It is straightforward to check that E𝑌𝑛 = 1. Furthermore, since `𝑛 = 𝑜(
√︁

log 𝜖−1
𝑛 ), it is direct

to verify that Var(𝑌𝑛) ≤ 𝑚

𝑚2𝑒`
2
𝑛
𝑒2`2

𝑛 = 𝑜(1). Hence, 𝑌𝑛 → 1 in probability. In addition,

E(𝑍𝑛) =E
(
𝑒`𝑛𝑧1 𝐼𝑧1≤− 1

2 `𝑛
· 𝑒− 1

2 `
2
𝑛

)
=

∫ − 1
2 `𝑛

−∞

1
√

2𝜋
𝑒−

𝑧2
2 +`𝑛𝑧− 1

2 `
2
𝑛𝑑𝑧

=

∫ − `𝑛
2

−∞

1
√

2𝜋
𝑒−

1
2 (𝑧−`𝑛)

2
𝑑𝑧 =

∫ − 3
2 `𝑛

−∞

1
√

2𝜋
𝑒−

1
2 𝑧

2
𝑑𝑧 = 𝑜(1).

Thus, 𝑍𝑛 → 0 in probability. As a result, 𝑍𝑛/𝑌𝑛 → 0 in probability. Since |𝑍𝑛/𝑌𝑛 | ≤ 1, dominated

convergence theorem guarantees that E(𝑍𝑛/𝑌𝑛) → 0.

To prove Part (ii), it is equivalent to prove

E
(𝑒`𝑛𝑧1 − 𝑒−`𝑛𝑧1)2

[∑ 𝑗≠2(𝑒`𝑛𝑧 𝑗 + 𝑒−`𝑛𝑧 𝑗 ) + 𝑒`𝑛 (`𝑛+𝑧2) + 𝑒−`𝑛 (`𝑛+𝑧2)]2 ≥ 1
2𝑚2 𝑒

`2
𝑛 (1 + 𝑜(1)).

Towards this goal, we have

E
(𝑒`𝑛𝑧1 − 𝑒−`𝑛𝑧1)2

[∑ 𝑗≠2(𝑒`𝑛𝑧 𝑗 + 𝑒−`𝑛𝑧 𝑗 ) + 𝑒`𝑛 (`𝑛+𝑧2) + 𝑒−`𝑛 (`𝑛+𝑧2)]2

(a)
≥E (𝑒`𝑛𝑧1 − 𝑒−`𝑛𝑧1)2

[2(𝑚 − 2)𝑒
`2
𝑛

2 + 𝑒 3
2 `

2
𝑛 + 𝑒−

`2
𝑛

2 + 𝑒`𝑛𝑧1 + 𝑒−`𝑛𝑧1]2

(b)
≥ E

(𝑒`𝑛𝑧1 − 𝑒−`𝑛𝑧1)2𝐼( |𝑧1 |≤3`𝑛)

[2(𝑚 − 2)𝑒
`2
𝑛

2 + 4
√
𝑚𝑒

`2
𝑛

2 ]2

(c)
=

2
𝑒`

2
𝑛 (2𝑚 − 4 + 4

√
𝑚)2

·
[
E𝑒2`𝑛𝑧1 𝐼 |𝑧1 |≤3`𝑛 − P( |𝑧1 | ≤ 3`𝑛)

]
=

2
𝑒`

2
𝑛 (2𝑚 − 4 + 4

√
𝑚)2

·
(
𝑒2`2

𝑛

∫ `𝑛

−5`𝑛
𝜙(𝑧)𝑑𝑧 −

∫ 3`𝑛

−3`𝑛
𝜙(𝑧)𝑑𝑧

)
=

1
2𝑚2 𝑒

`2
𝑛 (1 + 𝑜(1)).

Here, Inequality (a) is by applying the Jensen’s inequality with respect to 𝑧2, . . . , 𝑧𝑚 (conditioned

on 𝑧1), as 1/(𝑥 + 𝑐)2 (𝑐 > 0) is a convex function of 𝑥 > 0. Inequality (b) holds because 𝑒
3
2 `

2
𝑛 +
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𝑒−
`2
𝑛

2 +𝑒`𝑛𝑧1 +𝑒−`𝑛𝑧1 ≤ 4𝑒3`2
𝑛 when |𝑧1 | ≤ 3`𝑛, and 𝑒3`2

𝑛 ≤
√
𝑚𝑒

`2
𝑛

2 (for large 𝑛) under the condition

`𝑛 = 𝑜(
√︁

log𝑚). Equality (c) is due to the symmetry of 𝑧1 ∼ N(0, 1). □

Our goal now is to use Lemma 8 to finish the proof of the lower bound in Theorem 6:

𝑅(Θ(𝑘𝑛, 𝜏𝑛), 𝜎𝑛)) =𝜎2
𝑛 · 𝑅(Θ(𝑘𝑛, `𝑛), 1) ≥ 𝑘𝑛𝜎

2
𝑛 · 𝐵(𝜋

`𝑛,𝑚

𝑆
)

≥𝑘𝑛𝜎2
𝑛 `

2
𝑛

[
1 − 𝑒`

2
𝑛

2𝑚
(1 + 𝑜(1))

]
= 𝑛𝜎2

𝑛

[
𝜖𝑛`

2
𝑛 −

1
2
𝜖2
𝑛`

2
𝑛𝑒
`2
𝑛 (1 + 𝑜(1))

]
.

2.5.6 Proof of Theorem 7

Like in the proof of Theorems 5 and 6, we calculate the minimax risk by deriving matching

upper and lower bounds. However, a notable difference of the proof of Theorem 7 is that the tight

upper bound is obtained not by analyzing the supremum risk of a given estimator, but rather by a

Bayesian approach. In this approach, we establish a uniform upper bound for the Bayes risk of an

arbitrary distribution supported on average on the parameter space, and use the minimax theorem

(i.e. Theorem 9) to connect the result to the matching upper bound of the minimax risk. We present

the details of the upper and lower bounds in Sections 2.5.6 and 2.5.6, respectively.

Upper bound

Consider the univariate Gaussian model:

𝑌 = \ + 𝑍, (2.48)

where \ ∈ R and 𝑍 ∼ N(0, 1). For a given constant 𝐴 > 1, define a class of priors for \:

Γ𝐴 (𝜖, `) :=
{
𝜋 ∈ P(R) : 𝜋({0}) ≥ 1 − 𝜖, E𝜋\2 ≤ 𝜖 `2, supp(𝜋) ∈ [−𝐴`, 𝐴`]

}
, (2.49)

where P(R) denotes the class of all probability measures defined on R, and 𝜖 ∈ [0, 1], ` > 0. Note

that 𝜋 ∈ Γ𝐴 (𝜖, `) implies that 𝜋 = (1−𝜖)𝛿0+𝜖𝐺, for some distribution𝐺 satisfying E𝐺\2 ≤ `2 and
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supp(𝐺) ⊆ [−𝐴`, 𝐴`]. The worst-case Bayes risk (i.e., the one of the least favorable distribution),

under this univariate Gaussian model with squared error loss, is defined as

𝐵𝐴 (𝜖, `, 1) := sup
{
𝐵(𝜋) : 𝜋 ∈ Γ𝐴 (𝜖, `)

}
, (2.50)

where

𝐵(𝜋) = E(E(\ |𝑌 ) − \)2, \ ∼ 𝜋, 𝑌 | \ ∼ N(\, 1).

The following lemma allows us to obtain an upper bound for 𝑅(Θ𝐴 (𝑘𝑛, 𝜏𝑛), 𝜎𝑛) in terms of

𝐵𝐴 (𝜖, `, 1).

Lemma 9. The minimax risk satisfies the following inequality:

𝑅(Θ𝐴 (𝑘𝑛, 𝜏𝑛), 𝜎𝑛) ≤ 𝑛𝜎2
𝑛 · 𝐵𝐴 (𝜖𝑛, `𝑛, 1).

Proof. The proof closely follows the arguments in the proof of Theorem 8.21 of [3]. However,

since the parameter space we consider is different, we cover a full proof here for completeness.

For notational simplicity, let Θ𝑛 := Θ𝐴 (𝑘𝑛, 𝜏𝑛). Consider the class of priors

M𝑛 := M(𝑘𝑛, 𝜏𝑛, 𝐴) =
{
𝜋 ∈ P(R𝑛) : E𝜋∥\∥0 ≤ 𝑘𝑛, E𝜋∥\∥2

2 ≤ 𝑘𝑛𝜏
2
𝑛 , supp(𝜋) ⊆ [−𝐴𝜏𝑛, 𝐴𝜏𝑛]𝑛

}
,

where P(R𝑛) denotes the set of all probability measures on R𝑛. Let M𝑒
𝑛 := M𝑒 (𝑘𝑛, 𝜏𝑛, 𝐴) ⊆

M(𝑘𝑛, 𝜏𝑛, 𝐴) be its exchangeable subclass, consisting of the distributions 𝜋 ∈ M𝑛 that are permu-

tation invariant over the 𝑛 coordinates. Using notation 𝐵(𝜋,M) := sup𝜋∈M 𝐵(𝜋), we will show

that

𝑅(Θ𝑛, 𝜎𝑛) ≤ 𝐵(𝜋,M𝑛) = 𝐵(𝜋,M𝑒
𝑛) ≤ 𝑛𝜎2

𝑛 · 𝐵𝐴 (𝜖𝑛, `𝑛, 1). (2.51)

We start with equality in (2.51).

𝑅(Θ𝑛, 𝜎𝑛) = inf
\̂

sup
\∈Θ𝑛

E∥\̂ − \∥2
2
(𝑎)
≤ inf

\̂

sup
𝜋∈M𝑛

E𝜋∥\̂ − \∥2
2
(𝑏)
= sup

𝜋∈M𝑛

inf
\̂

E𝜋∥\̂ − \∥2
2 = 𝐵(𝜋, 𝑀𝑛).
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Inequality (a) is due to the fact that M𝑛 contains all point mass priors 𝛿\ , for every \ ∈ Θ𝑛. To

obtain Equality (b) we have used the minimax theorem, i.e. Theorem 9, as M𝑛 is a convex set of

probability measures. To prove the second inequality in (2.51), note that for any 𝜋 ∈ M𝑛, we can

construct a corresponding prior:

𝜋𝑒 =
1
𝑛!

∑︁
𝜎:[𝑛]→[𝑛]

𝜋 ◦ 𝜎,

where 𝜎 denotes a permutation of the coordinates of \, and 𝜋 ◦ 𝜎 is the distribution after permu-

tation. In other words, 𝜋𝑒 is the distribution averaged over all the permutations, thus 𝜋𝑒 ∈ M𝑒
𝑛.

Given that 𝐵(𝜋) is a concave function (it is the infimum of linear functions), we have 𝐵(𝜋,M𝑛) ≤

𝐵(𝜋,M𝑒
𝑛) which implies 𝐵(𝜋,M𝑛) = 𝐵(𝜋,M𝑒

𝑛) since M𝑒
𝑛 ⊆ M𝑛.

To show the last inequality in (2.51), for any exchangeable prior 𝜋 ∈ M𝑒
𝑛, let 𝜋1 be its univariate

marginal distribution. Using the constraints on 𝜋 from M𝑛 and the fact that 𝜋 is symmetric over

its 𝑛 coordinates, we have

𝜋1(\1 = 0) ≥ 1 − 𝜖𝑛, E𝜋1\
2
1 ≤ 𝜖𝑛𝜏2

𝑛 , supp 𝜋1 ⊆ [−𝐴𝜏𝑛, 𝐴𝜏𝑛]

Hence 𝜋1 ∈ Γ𝐴 (𝜖𝑛, 𝜏𝑛) defined in (2.49). Furthermore, according to Theorem 10, the product prior

𝜋𝑛1 is less favorable than 𝜋𝑒, namely, 𝐵(𝜋) ≤ 𝐵(𝜋𝑛1) = 𝑛𝐵(𝜋1). Rescaling the noise level to one

and maximizing over 𝜋1 ∈ Γ𝐴 (𝜖𝑛, `𝑛) completes the proof. □

Lemma 9 reduces the problem of obtaining the upper bound for frequentist minimax risk (under

Gaussian sequence model) to the problem of upper bounding the worst-case Bayes risk (under a

univariate Gaussian model). Our next goal is to find an upper bound for 𝐵𝐴 (𝜖𝑛, `𝑛, 1). Towards

this end, we first state a useful lemma.

Lemma 10. Under model (2.48), consider prior 𝜋 = (1 − 𝜖)𝛿0 + 𝜖𝐺 ∈ Γ𝐴 (𝜖, `), as defined in

(2.49). Then,

E(E(\ |𝑌 ))2 =

∫
𝜖2(

∫
𝑡𝑒𝑡𝑧−

𝑡2
2 𝑑𝐺 (𝑡))2

1 − 𝜖 + 𝜖
∫
𝑒𝑡𝑧−

𝑡2
2 𝑑𝐺 (𝑡)

𝜙(𝑧)𝑑𝑧,

where 𝜙(·) denotes the density function of standard normal random variable.
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Proof. Given the prior 𝜋 = (1 − 𝜖)𝛿0 + 𝜖𝐺, the posterior mean of \ is given by

E(\ |𝑌 = 𝑦) =
𝜖
∫
\𝜙(𝑦 − \)𝑑𝐺 (\)

(1 − 𝜖)𝜙(𝑦) + 𝜖
∫
𝜙(𝑦 − \)𝑑𝐺 (\)

.

Thus,

E(E(\ |𝑌 ))2 =(1 − 𝜖)
∫ [

𝜖
∫
𝑡𝜙(𝑧 − 𝑡)𝑑𝐺 (𝑡)

(1 − 𝜖)𝜙(𝑧) + 𝜖
∫
𝜙(𝑧 − 𝑡)𝑑𝐺 (𝑡)

]2

𝜙(𝑧)𝑑𝑧

+ 𝜖
∬ [

𝜖
∫
𝑡𝜙(\ + 𝑧 − 𝑡)𝑑𝐺 (𝑡)

(1 − 𝜖)𝜙(\ + 𝑧) + 𝜖
∫
𝜙(\ + 𝑧 − 𝑡)𝑑𝐺 (𝑡)

]2

𝜙(𝑧)𝑑𝑧𝑑𝐺 (\)

=

∫ [
𝜖
∫
𝑡𝜙(𝑧 − 𝑡)𝑑𝐺 (𝑡)

(1 − 𝜖)𝜙(𝑧) + 𝜖
∫
𝜙(𝑧 − 𝑡)𝑑𝐺 (𝑡)

]2

·
[
(1 − 𝜖)𝜙(𝑧) + 𝜖

∫
𝜙(𝑧 − \)𝑑𝐺 (\)

]
𝑑𝑧

=

∫ 
𝜖
∫
𝑡𝑒𝑡𝑧−

𝑡2
2 𝑑𝐺 (𝑡)

(1 − 𝜖) + 𝜖
∫
𝑒𝑡𝑧−

𝑡2
2 𝑑𝐺 (𝑡)


2

·
[
(1 − 𝜖) + 𝜖

∫
𝑒𝑡𝑧−

𝑡2
2 𝑑𝐺 (𝑡)

]
𝜙(𝑧)𝑑𝑧

=

∫
𝜖2(

∫
𝑡𝑒𝑡𝑧−

𝑡2
2 𝑑𝐺 (𝑡))2

1 − 𝜖 + 𝜖
∫
𝑒𝑡𝑧−

𝑡2
2 𝑑𝐺 (𝑡)

𝜙(𝑧)𝑑𝑧,

where the second equality is by a simple change of variable. □

We can now obtain a sharp upper bound for 𝐵𝐴 (𝜖𝑛, `𝑛, 1).

Lemma 11. Consider 𝜖𝑛 → 0, `𝑛 → ∞, `𝑛 = 𝑜(
√︁

log 𝜖−1
𝑛 ). Under model (2.48), the worst-case

Bayes risk 𝐵𝐴 (𝜖𝑛, `𝑛, 1) defined in (2.50) satisfies that for any 𝐴 > 1,

𝐵𝐴 (𝜖𝑛, `𝑛, 1) ≤ 𝜖𝑛`2
𝑛 −

1 + 𝑜(1)
2

𝜖2
𝑛`

2
𝑛𝑒
`𝑛 .

Proof. For prior 𝜋 ∈ Γ𝐴 (𝜖, `), using the law of total expectation,

E(E(\ |𝑌 ) − \)2 = E\2 − E(E(\ |𝑌 ))2. (2.52)

We first obtain a lower bound for the term E(E(\ |𝑌 ))2. We start with the expression derived in
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Lemma 10 and develop a series of lower bounds,

E(E(\ |𝑌 ))2 =

∫
𝜖2(

∫
𝑡𝑒𝑡𝑧−

𝑡2
2 𝑑𝐺 (𝑡))2

1 − 𝜖 + 𝜖
∫
𝑒𝑡𝑧−

𝑡2
2 𝑑𝐺 (𝑡)

𝜙(𝑧)𝑑𝑧 ≥
∫
|𝑧 |≤

√
log 1/𝜖

𝜖2(
∫
𝑡𝑒𝑡𝑧−

𝑡2
2 𝑑𝐺 (𝑡))2

1 − 𝜖 + 𝜖
∫
𝑒𝑡𝑧−

𝑡2
2 𝑑𝐺 (𝑡)

𝜙(𝑧)𝑑𝑧

(a)
≥ 𝜖2

1 − 𝜖 + 𝜖 1
2

∫
|𝑧 |≤

√
log 1/𝜖

(∫
𝑡𝑒𝑡𝑧−

𝑡2
2 𝑑𝐺 (𝑡)

)2
𝜙(𝑧)𝑑𝑧

(b)
=

𝜖2

1 − 𝜖 + 𝜖 1
2

∬ [
𝑡𝑡′𝑒𝑡𝑡

′
∫ √

log 1/𝜖−(𝑡+𝑡′)

−
√

log 1/𝜖−(𝑡+𝑡′)
𝜙(𝑧)𝑑𝑧

]
𝑑𝐺 (𝑡)𝑑𝐺 (𝑡′)

=
𝜖2

1 − 𝜖 + 𝜖 1
2

∬
𝑡𝑡′≥0

[
𝑡𝑡′𝑒𝑡𝑡

′
∫ √

log 1/𝜖−(𝑡+𝑡′)

−
√

log 1/𝜖−(𝑡+𝑡′)
𝜙(𝑧)𝑑𝑧

]
𝑑𝐺 (𝑡)𝑑𝐺 (𝑡′)

+ 𝜖2

1 − 𝜖 + 𝜖 1
2

∬
𝑡𝑡′<0

[
𝑡𝑡′𝑒𝑡𝑡

′
∫ √

log 1/𝜖−(𝑡+𝑡′)

−
√

log 1/𝜖−(𝑡+𝑡′)
𝜙(𝑧)𝑑𝑧

]
𝑑𝐺 (𝑡)𝑑𝐺 (𝑡′)

(c)
≥ 𝜖2

1 − 𝜖 + 𝜖 1
2

(∬
𝑡𝑡′≥0

[
𝑡𝑡′𝑒𝑡𝑡

′
∫ √

log 1/𝜖−(𝑡+𝑡′)

−
√

log 1/𝜖−(𝑡+𝑡′)
𝜙(𝑧)𝑑𝑧

]
𝑑𝐺 (𝑡)𝑑𝐺 (𝑡′) − |𝐴` |2

)
(d)
≥ 𝜖2

1 − 𝜖 + 𝜖 1
2

©«
∫ √

log 1/𝜖−2𝐴`

−
√

log 1/𝜖−2𝐴`
𝜙(𝑧)𝑑𝑧 ·

∬
𝑡𝑡′≥0

𝑡𝑡′𝑒𝑡𝑡
′
𝑑𝐺 (𝑡)𝑑𝐺 (𝑡′) − |𝐴` |2ª®¬ . (2.53)

Inequality (a) holds because for |𝑧 | ≤
√︁

log 1/𝜖 ,

𝜖

∫
𝑒𝑡𝑧−

𝑡2
2 𝑑𝐺 (𝑡) = 𝜖𝑒 1

2 𝑧
2
∫

𝑒−
1
2 (𝑧−𝑡)

2
𝑑𝐺 (𝑡) ≤ 𝜖𝑒 1

2 𝑧
2 ≤ 𝜖 1

2 .

To obtain Equality (b) we do the following simple calculations:

∫
|𝑧 |≤

√
log 1/𝜖

(∫
𝑡𝑒𝑡𝑧−

𝑡2
2 𝑑𝐺 (𝑡)

)2
𝜙(𝑧)𝑑𝑧

=

∫
|𝑧 |≤

√
log 1/𝜖

[∬
𝑡𝑡′𝑒𝑧𝑡−𝑡

2/2𝑒𝑧𝑡
′−𝑡′2/2𝑑𝐺 (𝑡)𝑑𝐺 (𝑡′)

]
𝜙(𝑧)𝑑𝑧

=

∬ [
𝑡𝑡′𝑒𝑡𝑡

′
∫
|𝑧 |≤

√
log 1/𝜖

1
√

2𝜋
𝑒−

1
2 (𝑧−(𝑡+𝑡

′))2
𝑑𝑧

]
𝑑𝐺 (𝑡)𝑑𝐺 (𝑡′)

=

∬ [
𝑡𝑡′𝑒𝑡𝑡

′
∫ √

log 1/𝜖−(𝑡+𝑡′)

−
√

log 1/𝜖−(𝑡+𝑡′)

1
√

2𝜋
𝑒−

1
2 𝑧

2
𝑑𝑧

]
𝑑𝐺 (𝑡)𝑑𝐺 (𝑡′)

Inequality (c) holds because 𝑒−|𝑡𝑡
′ | ≤ 1 and supp𝐺 ⊆ [−𝐴`, 𝐴`]. Inequality (d) is due to
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the fact that supp𝐺 ⊆ [−𝐴`, 𝐴`] and
∫ √

log 1/𝜖−𝑎
−
√

log 1/𝜖−𝑎
𝜙(𝑧)𝑑𝑧 (as a function of 𝑎) is symmetric and

decreasing over [0,∞). To continue from (2.53), we further lower bound
∬
𝑡𝑡′≥0 𝑡𝑡

′𝑒𝑡𝑡
′
𝑑𝐺 (𝑡)𝑑𝐺 (𝑡′).

To simplify notation, define two random variables 𝑡, 𝑡′ 𝑖.𝑖.𝑑.∼ 𝐺. We have

∬
𝑡𝑡′≥0

𝑡𝑡′𝑒𝑡𝑡
′
𝑑𝐺 (𝑡)𝑑𝐺 (𝑡′) = E[𝑡𝑡′𝑒𝑡𝑡′ 𝐼(𝑡𝑡′≥0)]

=

∞∑︁
𝑘=0
E

1
𝑘!

(𝑡𝑡′)𝑘+1(𝐼(𝑡>0,𝑡′>0) + 𝐼(𝑡<0,𝑡′<0))

=

∞∑︁
𝑘=0

1
𝑘!

(
E[𝑡𝑘+1𝐼(𝑡>0)] · E[(𝑡′)𝑘+1𝐼(𝑡′>0)] + E[𝑡𝑘+1𝐼(𝑡<0)] · E[(𝑡′)𝑘+1𝐼(𝑡′<0)]

)
=

∞∑︁
𝑘=0

1
𝑘!

(
(E𝑡𝑘+1𝐼(𝑡>0))2 + (E𝑡𝑘+1𝐼(𝑡<0))2

)
=

∞∑︁
𝑘=0

1
𝑘!

(
(E|𝑡 |𝑘+1𝐼(𝑡>0))2 + (E|𝑡 |𝑘+1𝐼(𝑡<0))2

)
(a)
≥

∞∑︁
𝑘=0

1
𝑘!

1
2

(
E|𝑡 |𝑘+1𝐼(𝑡>0) + E|𝑡 |𝑘+1𝐼(𝑡<0)

)2

=
1
2

∞∑︁
𝑘=0

1
𝑘!

(
E|𝑡 |𝑘+1

)2 (b)
≥ 1

2
(E|𝑡 |)2 + 1

2

∞∑︁
𝑘=1

1
𝑘!

(
E|𝑡 |2

) 𝑘+1
≥ 1

2

(
E|𝑡 |2𝑒E|𝑡 |2 − E|𝑡 |2

)
,

where (a) is due to the basic inequality 2(𝑥2 + 𝑦2) ≥ (𝑥 + 𝑦)2, and (b) is by Hölder’s inequality

(E|𝑡 |2)𝑘+1 ≤ (E|𝑡 |𝑘+1)2, 𝑘 ≥ 1. Combining the above inequality with (2.52) and (2.53) gives

𝐵𝐴 (𝜖𝑛, `𝑛, 1) = sup
𝜋∈Γ𝐴(𝜖𝑛,`𝑛)

E(E(\ |𝑌 ) − \)2

≤ sup
E|𝑡 |2≤`2

𝑛

(
𝜖𝑛 +

𝜖2
𝑛Δ𝑛

2(1 − 𝜖𝑛 +
√
𝜖𝑛)

)
E|𝑡 |2 −

𝜖2
𝑛Δ𝑛

2(1 − 𝜖𝑛 +
√
𝜖𝑛)
E|𝑡 |2𝑒E|𝑡 |2 +

𝜖2𝐴2`2
𝑛

1 − 𝜖 +
√
𝜖
, (2.54)

where Δ𝑛 =
∫ √

log 1/𝜖𝑛−2`𝑛𝐴

−
√

log 1/𝜖𝑛−2`𝑛𝐴
𝜙(𝑧)𝑑𝑧. The results we obtained so far are non-asymptotic. We now

make use of the conditions 𝜖𝑛 → 0, `𝑛 → ∞, `𝑛 = 𝑜(
√︁

log 𝜖−1
𝑛 ) to derive the final asymptotic

result. Under such scaling conditions, it is straightforward to confirm that the expression on the

right-hand side of (2.54) is increasing in E|𝑡 |2 when 𝑛 is sufficiently large (by calculating its deriva-
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tive). As a result,

𝐵𝐴 (𝜖𝑛, `𝑛, 1) ≤
(
𝜖𝑛 +

𝜖2
𝑛Δ𝑛

2(1 − 𝜖𝑛 +
√
𝜖𝑛)

)
`2
𝑛 −

𝜖2
𝑛Δ𝑛

2(1 − 𝜖𝑛 +
√
𝜖𝑛)

`2
𝑛𝑒
`2
𝑛 +

𝜖2𝐴2`2
𝑛

1 − 𝜖 +
√
𝜖

= 𝜖𝑛`
2
𝑛 +

1 + 𝑜(1)
2

𝜖2
𝑛`

2
𝑛 −

1 + 𝑜(1)
2

𝜖2
𝑛`

2
𝑛𝑒
`2
𝑛 +𝑂 (𝜖2

𝑛`
2
𝑛)

= 𝜖𝑛`
2
𝑛 −

1
2
𝜖2
𝑛`

2
𝑛𝑒
`2
𝑛 (1 + 𝑜(1)).

□

Combing Lemmas 9 and 11 provides the upper bound for the minimax risk:

𝑅(Θ𝐴 (𝑘𝑛, 𝜏𝑛), 𝜎𝑛) ≤ 𝑛𝜎2
𝑛

(
𝜖𝑛`

2
𝑛 −

1
2
𝜖2
𝑛`

2
𝑛𝑒
`2
𝑛 (1 + 𝑜(1))

)
.

Lower bound

Recall that in the lower bound derivation for Theorem 6, in Section 2.5.5, the proof is based

on the independent block prior 𝜋𝐼𝐵 with single spike distribution 𝜋`𝑛,𝑚
𝑆

which is first introduced in

Section 2.5.2. Since the spike locations are at ±`𝑛, which are contained in [−𝐴`𝑛, 𝐴`𝑛] for any

𝐴 > 1, this implies that supp 𝜋𝐼𝐵 ⊆ Θ𝐴 (𝑘𝑛, `𝑛) as well. As a result, the proof in Section 2.5.5 also

works for the new parameter space Θ𝐴 (𝑘𝑛, `𝑛) and it yields the same lower bound:

𝑅(Θ𝐴 (𝑘𝑛, 𝜏𝑛), 𝜎𝑛) ≥ 𝑛𝜎2
𝑛

(
𝜖𝑛`

2
𝑛 −

1
2
𝜖2
𝑛`

2
𝑛𝑒
`2
𝑛 (1 + 𝑜(1))

)
.

2.5.7 Proof of Proposition 3

Comparing the results in Propositions 1 and 3, we can see that the supremum risk of optimally

tuned soft thresholding has the same second-order asymptotic approximation in Regimes (I) and

(II). Thus, the proof of Proposition 3 shares a lot of similarity with that of Proposition 1. For

simplicity we will not repeat every detail. Referring to the proof of Proposition 1 in Section 2.5.3,

the key is to obtain the accurate order of the optimal tuning _∗ and evaluate the function value
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𝐹 (_∗), where we recall the definitions: _∗ = arg min_≥0 𝐹 (_), 𝑧 ∼ N(0, 1) and

𝐹 (_) = (1 − 𝜖𝑛)E[̂2
𝑆 (𝑧, _) + 𝜖𝑛E([̂𝑆 (`𝑛 + 𝑧, _) − `𝑛)

2.

We first address the order of _∗.

Lemma 12. Consider 𝜖𝑛 → 0, `𝑛 → ∞, `𝑛 = 𝑜
(√︁

log 𝜖−1
𝑛

)
, as 𝑛→ ∞. It holds that

log 2𝜖−1
𝑛 +

`2
𝑛

2
− 2 log log

2
𝜖𝑛
< _∗`𝑛 < log 2𝜖−1

𝑛 +
`2
𝑛

2
, (2.55)

for sufficiently large 𝑛.

Proof. This lemma is an analog of Lemma 4 (comparing Equation (2.18) with (2.55)). The proof

is thus similar too. We will skip equivalent calculations and only highlight the differences.

First, we show that _∗`−1
𝑛 → ∞. Otherwise, _∗`−1

𝑛 ≤ 𝐶 for some constant 𝐶 > 0 (take a

subsequence if necessary). Then when 𝑛 is large,

𝐹 (_∗) ≥ (1 − 𝜖𝑛)E[̂2
𝑆 (𝑧, _∗) ≥ (1 − 𝜖𝑛)E[̂2

𝑆 (𝑧, 𝐶`𝑛)

= 2(1 − 𝜖𝑛)
[
(1 + (𝐶`𝑛)2)

∫ ∞

𝐶`𝑛

𝜙(𝑧)𝑑𝑧 − 𝐶`𝑛𝜙(𝐶`𝑛)
]

(𝑎)
=

4 + 𝑜(1)
`3
𝑛

𝜙(𝐶`𝑛)
(𝑏)
> 𝜖𝑛`

2
𝑛 = 𝐹 (+∞),

where (a) is by the Gaussian tail bound, and (b) is due to `𝑛 = 𝑜

(√︁
log 𝜖−1

𝑛

)
. The result 𝐹 (_∗) >

𝐹 (+∞) contradicts with the optimality of _∗.

Second, we utilize the derivative equation 𝐹′(_∗) = 0 in Equation (2.23) to obtain more accu-

rate order information of _∗. The results `𝑛 → ∞, _∗`−1
𝑛 → ∞ imply that _∗ → ∞, _∗ − `𝑛 →

∞, _∗`𝑛 → ∞. This is all needed to obtain Equation (2.24) and Equations (2.27)-(2.28). As a

result, Equation (2.29) holds here as well:

2 + 𝑜(1) = 𝜖𝑛`𝑛_∗ exp(_∗`𝑛 − `2
𝑛/2). (2.56)
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To reach (2.55) under the scaling `𝑛 = 𝑜(
√︁

log 𝜖−1
𝑛 ), the rest of the argument is exactly the same as

the one in the proof of Lemma 4 . □

The next lemma characterizes 𝐹 (_∗).

Lemma 13. Consider 𝜖𝑛 → 0, `𝑛 → ∞, `𝑛 = (
√︁

log 𝜖−1
𝑛 ), as 𝑛→ ∞. It holds that

𝐹 (_∗) = 𝜖𝑛`2
𝑛 − exp

[
−1

2
1
`2
𝑛

(
log

1
𝜖𝑛

)2 (
1 + 𝑜(1)

) ]
.

Proof. This proof deviates a bit from the one of Lemma 5. We will more directly utilize the order

information of _∗ proved in Lemma 12 to calculate 𝐹 (_∗). Before that, we need a refinement of

(2.56). This is achieved by refining Equation (2.24) and Equations (2.27)-(2.28) with higher-order

approximations:

−_∗
∫ ∞

_∗

𝜙(𝑧)𝑑𝑧 + 𝜙(_∗) =
1 +𝑂 (_−2

∗ )
_2
∗

𝜙(_∗),

−𝜙(_∗ − `𝑛) + _∗
∫ ∞

_∗−`𝑛
𝜙(𝑧)𝑑𝑧 =

[
`𝑛

_∗ − `𝑛
− _∗ +𝑂 (_−1

∗ )
(_∗ − `𝑛)3

]
𝜙(_∗ − `𝑛),

−𝜙(_∗ + `𝑛) + _∗
∫ ∞

_∗+`𝑛
𝜙(𝑧)𝑑𝑧 = 𝑜

(
1
_4
∗

)
𝜙(_∗ − `𝑛).

Plugging the above into Equation (2.23) and arranging terms gives

𝑒_∗`𝑛−
`2
𝑛

2
𝜖𝑛`𝑛_

2
∗

2(_∗ − `𝑛)
− 1 =

(1 − 𝜖𝑛) (1 +𝑂 (_−2
∗ ))`𝑛

`𝑛 − (_∗ − `𝑛)−2(_∗ +𝑂 (_−1
∗ ))

− 1

=
_∗(_∗ − `𝑛)−2 +𝑂 (_−2

∗ `𝑛)
`𝑛 − (_∗ − `𝑛)−2(_∗ +𝑂 (_−1

∗ ))
=

1 + 𝑜(1)
_∗`𝑛

, (2.57)

where in the second equality we have used 𝜖𝑛_2
∗ = 𝑜(1) and _−1

∗ `𝑛 = 𝑜(1) which are implied by

the order of _∗ from Lemma 12.

Now we are ready to evaluate 𝐹 (_∗). We first use Gaussian tail bound to approximate the three
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expectations (i.e. Equations (2.20)-(2.22)) in the expression of 𝐹 (_∗) (i.e. Equation (2.19)):

E[̂2
𝑆 (𝑧, _∗) =

4 +𝑂 (_−2
∗ )

_3
∗

𝜙(_∗),

E[̂𝑆 (`𝑛 + 𝑧, _∗) =
1 +𝑂 (_−2

∗ )
(_∗ − `𝑛)2 𝜙(_∗ − `𝑛),

E[̂2
𝑆 (`𝑛 + 𝑧, _∗) =

2 +𝑂 (_−2
∗ )

(_∗ − `𝑛)3 𝜙(_∗ − `𝑛).

Using these three approximations in Equation (2.19), we obtain

𝐹 (_∗) = (1 − 𝜖𝑛)
4 +𝑂 (_−2

∗ )
_3
∗

𝜙(_∗) + 𝜖𝑛`2
𝑛 − 2𝜖𝑛`𝑛

1 +𝑂 (_−2
∗ )

(_∗ − `𝑛)2 𝜙(_∗ − `𝑛) + 𝜖𝑛
2 +𝑂 (_−2

∗ )
(_∗ − `𝑛)3 𝜙(_∗ − `𝑛)

= 𝜖𝑛`
2
𝑛 − 𝜙(_∗)


−4 +𝑂 (𝜖𝑛 + _−2

∗ )
_3
∗

+ 2𝜖𝑛`𝑛
(_∗ − `𝑛)2 · 𝑒_∗`𝑛−

`2
𝑛

2

(
1 +𝑂

(
1

_∗`𝑛

)) .
We further replace 𝑒_∗`𝑛−

`2
𝑛

2 in the above with the result from (2.57) to have

𝐹 (_∗) = 𝜖𝑛`2
𝑛 − 𝜙(_∗) ·


−4 +𝑂 (𝜖𝑛 + _−2

∗ )
_3
∗

+ 4
_2
∗ (_∗ − `𝑛)

(
1 +𝑂

(
1

_∗`𝑛

))
(𝑎)
= 𝜖𝑛`

2
𝑛 − 𝜙(_∗)

4`𝑛
_3
∗ (_∗ − `𝑛)

©«1 +𝑂
(

1
`2
𝑛

)ª®¬ = 𝜖𝑛`
2
𝑛 −

4 + 𝑜(1)
√

2𝜋
𝑒−

_2∗
2 · `𝑛

_4
∗

(𝑏)
= 𝜖𝑛`

2
𝑛 − exp

[
−1

2
1
`2
𝑛

(
log

1
𝜖𝑛

)2 (
1 + 𝑜(1)

) ]
.

Here, to obtain (𝑎) we have used 𝜖𝑛_2
∗ = 𝑜(1) and _−1

∗ `𝑛 = 𝑜(1) implied by Lemma 12; (𝑏) is due

to the order _∗ = `−1
𝑛 log 𝜖−1

𝑛 (1 + 𝑜(1)) again from Lemma 12. □

Lemma 13 readily leads to the supremum risk of optimally tuned soft thresholding:

inf
_

sup
\∈Θ(𝑘𝑛,𝜏𝑛)

E\ ∥[̂𝑆 (𝑦, _) − \∥2
2 = 𝑛𝜎2

𝑛𝐹 (_∗) = 𝑛𝜎2
𝑛

(
𝜖𝑛`

2
𝑛 − exp

[
− 1

2
1
`2
𝑛

(
log

1
𝜖𝑛

)2 (
1 + 𝑜(1)

) ] )
.
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2.5.8 Proof of Proposition 4

The proof of this proposition is similar to the proof of Proposition 2 presented in Section 2.5.4.

Hence, for the sake of brevity we adopt the same notation from Section 2.5.4 and only discuss the

differences. If 𝑅𝐻 (Θ(𝑘𝑛, 𝜏𝑛), 𝜎𝑛) denotes the supremum risk of optimally tuned hard thresholding

estimator, then we will have

𝑅𝐻 (Θ(𝑘𝑛, 𝜏𝑛), 𝜎𝑛) = 𝜎2
𝑛 · 𝑅𝐻 (Θ(𝑘𝑛, `𝑛), 1). (2.58)

Without loss of generality, let 𝜎𝑛 = 1 in the model. As in the proof of Proposition 2, we obtain

a lower bound by calculating the risk at the following specific value of \ such that \
𝑖
= `𝑛 for

𝑖 ∈ {1, 2, . . . , 𝑘𝑛} and \
𝑖
= 0 for 𝑖 > 𝑘𝑛. We have

E\ ∥[̂𝐻 (𝑦, _) − \∥2
2 = 𝑛

[
(1 − 𝜖𝑛)𝑟𝐻 (_, 0) + 𝜖𝑛𝑟𝐻 (_, `𝑛)

]
. (2.59)

To evaluate inf_>0 E\ ∥[̂𝐻 (𝑦, _) − \∥2, we consider three scenarios for the optimal choice of _𝑛,

denoted by _∗𝑛.

• Case I _∗𝑛 = 𝑂 (1): In this case, _∗𝑛 ≤ 𝑐 for some constant 𝑐 > 0. Using the same argument

as the one presented for Case I in the proof of Proposition 2, we have

inf
_>0
E\ ∥[̂𝐻 (𝑦, _) − \∥2

2 ≥ 2𝑛(1 − 𝜖𝑛) (1 −Φ(𝑐)).

Since 𝜖𝑛`2
𝑛 → 0 and (1−𝜖𝑛)2(1−Φ(𝑐)) = Θ(1), we conclude that inf_>0 E\ ∥[̂𝐻 (𝑦, _)−\∥2

2 =

𝜔(𝑛𝜖𝑛`2
𝑛).

• Case II _∗𝑛 = 𝜔(1) and _∗𝑛 = 𝑂 (`𝑛): Let 𝑐1 be a fixed number larger than 1. There exists 𝑐2

such that for large enough 𝑛, 𝑐1 < _
∗
𝑛 ≤ 𝑐2`𝑛. We thus obtain

inf
_>0
E\ ∥[̂𝐻 (𝑦, _) − \∥2

2 = E\ ∥[̂𝐻 (𝑦, _∗𝑛) − \∥2
2
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= 𝑛

[
(1 − 𝜖𝑛)𝑟𝐻 (_∗𝑛, 0) + 𝜖𝑛𝑟𝐻 (_∗𝑛, `𝑛)

]
≥ 𝑛(1 − 𝜖𝑛)𝑟𝐻 (_∗𝑛, 0)

= 𝑛(1 − 𝜖𝑛)
[
2_∗𝑛𝜙(_∗𝑛) + 2(1 −Φ(_∗𝑛))

]
≥ 2𝑛(1 − 𝜖𝑛)_∗𝑛𝜙(_∗𝑛)

≥ 2𝑛(1 − 𝜖𝑛)
𝑐1√
2𝜋

e−
𝑐2

2`
2
𝑛

2 ≥ 𝑛𝜖𝑛`2
𝑛,

where the last inequality is due to the scaling `𝑛 = 𝑜(
√︁

log 𝜖−1
𝑛 ) in the current regime.

• Case III _∗𝑛 = 𝜔(`𝑛): In a similar way as in the proof of Case II of Proposition 2, we can

conclude that

inf
_>0
E\ ∥[̂𝐻 (𝑦, _) − \∥2

2

≥𝑘𝑛`2
𝑛 + 𝑘𝑛 (_∗𝑛 − `𝑛 + 𝑜(_∗𝑛)) · 𝜙(_∗𝑛 − `𝑛) + 𝑘𝑛 (_∗𝑛 + `𝑛 + 𝑜(_∗𝑛)) · 𝜙(_∗𝑛 + `𝑛)

≥𝑘𝑛`2
𝑛 = 𝑛𝜖𝑛`

2
𝑛.

Note that since the three cases we have discussed above cover all the ranges of _∗𝑛, we conclude

that

𝑅𝐻 (Θ(𝑘𝑛, `𝑛), 1) ≥ inf
_>0
E\ ∥[̂𝐻 (𝑦, _) − \∥2

2 ≥ 𝑛𝜖𝑛`2
𝑛.

The proof of the upper bound is the same as the proof of the upper bound for Proposition 2 and is

hence skipped here.
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2.5.9 Proof of Theorem 8

Based on the scale invariance property of minimax risk mentioned in Section 3.4.1, it is equiv-

alent to prove

𝑅(Θ(𝑘𝑛, `𝑛), 1) = 2𝑛𝜖𝑛 log 𝜖−1
𝑛 − 2𝑛𝜖𝑛a𝑛

√︁
2 log a𝑛

(
1 + 𝑜(1)

)
,

where a𝑛 =
√︁

2 log 𝜖−1
𝑛 . As in the proof of Theorems 5 and 6, we first obtain an upper bound

by analyzing the supremum risk of hard thresholding, and then develop a matching lower bound

via the Bayesian approach. Before proceeding with the proof, we cover a few properties of the

one-dimensional risk function of hard thresholding that becomes useful in the proof of Theorem 8.

Properties of the risk of hard thresholding estimator

Consider the one-dimensional risk of hard thresholding for ` ∈ R and _ > 0,

𝑟𝐻 (_, `) := E
(
[̂𝐻 (` + 𝑧, _) − `

)2
, 𝑧 ∼ N(0, 1).

The following lemma from [3] gives simple and yet accurate bounds for 𝑟𝐻 (_, `). Let

𝑟𝐻 (_, `) =


min{𝑟𝐻 (_, 0) + 1.2`2, 1 + `2} 0 ≤ ` ≤ _

1 + `2(1 −Φ(` − _)) ` ≥ _,

where Φ(·) is the CDF of standard normal random variable.

Lemma 14 (Lemma 8.5 in [3]).

(a) For _ > 0 and ` ∈ R,

(5/12)𝑟𝐻 (_, `) ≤ 𝑟𝐻 (_, `) ≤ 𝑟𝐻 (_, `).
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(b) The large ` component of 𝑟𝐻 has the bound

sup
`≥_

`2(1 −Φ(` − _)) ≤


_2/2 if _ ≥

√
2𝜋

_2 if _ ≥ 1.

Our main goal in this section is to derive accurate approximations for sup`≥0 𝑟𝐻 (_, `). The

next lemma provides an accurate characterization of the risk for two different choices of `. The

importance of these choices becomes clear when we analyze sup`≥0 𝑟𝐻 (_, `) later in this section.

Lemma 15. As _ → ∞, the risk of the hard thresholding, 𝑟𝐻 (_, `), satisfies

𝑟𝐻 (_, _) =
1 + 𝑜(1)

2
_2, 𝑟𝐻 (_, _ −

√︁
2 log_) = _2 − (2

√
2 + 𝑜(1))_

√︁
log_.

Proof. First note that the risk of hard thresholding can be written as

𝑟𝐻 (_, `) =`2 [
Φ(_ − `) −Φ(−_ − `)

]
+

∫
|𝑧+` |>_

𝑧2𝜙(𝑧)𝑑𝑧

=(`2 − 1)
[
Φ(_ − `) −Φ(−_ − `)

]
+ 1 + (_ − `)𝜙(_ − `) + (_ + `)𝜙(_ + `). (2.60)

Let ` = _ −
√︁

2 log_. As _ → ∞, we analyze the order of each term in the above expression:

𝑟𝐻 (_, _ −
√︁

2 log_)

= [(_ −
√︁

2 log_)2 − 1] ·
(
1 − 1 + 𝑜(1)√︁

2 log_
𝜙(

√︁
2 log_)

)
+ 1

+
√︁

2 log_ · 𝜙(
√︁

2 log_) + (2_ −
√︁

2 log_)𝜙(2_ −
√︁

2 log_)

=

(
_ −

√︁
2 log_

)2
+𝑂

(
_√︁

log_

)
= _2 − (2

√
2 + 𝑜(1))_

√︁
log_,

where in the first equality we have applied the Gaussian tail bound: 1−Φ(𝑥) = (1 + 𝑜(1))𝑥−1𝜙(𝑥)

69



as 𝑥 → ∞. To prove the first part of the lemma, let ` = _. From (2.60) we have

𝑟𝐻 (_, _) = (_2 − 1)
(
1
2
−Φ(−2_)

)
+ 1 + 2_𝜙(2_) = _2/2

(
1 + 𝑜(1)

)
.

□

We now obtain the asymptotic approximation of sup`≥0 𝑟𝐻 (_, `) in the next lemma.

Lemma 16. As _ → ∞, the supremum risk satisfies

sup
`≥0

𝑟𝐻 (_, `) = _2 − 2
√

2_
√︁

log_ + 𝑜(_
√︁

log_).

Proof. Define

`∗ = arg max
`≥0

𝑟𝐻 (_, `).

Comparing the upper bounds from Lemma 14 and the risk at _ −
√︁

2 log_ in Lemma 15, we

can conclude that the superemum risk is attained at ` = `∗ ≤ _ (when _ is large). To evaluate

𝑟𝐻 (_, `∗), it is important to derive an accurate approximation for `∗. We first claim that `∗/_ → 1.

Suppose this is not true. Then `∗ ≤ 𝑐_ for some constant 𝑐 ∈ [0, 1) (take a sequence if necessary).

According to Lemma 14 (a), for large enough values of _, we have

𝑟𝐻 (_, `∗) ≤ 𝑟𝐻 (_, `∗) ≤ 1 + (`∗)2 ≤ 𝑐_2, 𝑐 ∈ (0, 1).

However, the above upper bound is strictly smaller than the risk 𝑟𝐻 (_, _ −
√︁

2 log_) calculated in

Lemma 15, contradicting with the definition of `∗.

Second, we show that _−`∗ → ∞, while (_−`∗)/_ → 0. Otherwise, it satisfies 0 ≤ _−`∗ ≤ 𝑐

for some finite constant 𝑐 ≥ 0 (take a sequence if necessary). Then from (2.60) we have

𝑟𝐻 (_, `∗) ≤ Φ(𝑐)_2 (
1 + 𝑜(1)

)
.
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Comparing this with 𝑟𝐻 (_, _ −
√︁

2 log_) from Lemma 15 leads to the same contradiction.

Third, we prove that for any given 𝑐 > 1, _−`∗ ≤ 𝑐
√︁

2 log_ for sufficiently large _. Otherwise,

there exists some constant 𝑐 > 1 such that _𝑛−`∗𝑛 > 𝑐
√︁

2 log_𝑛 for a sequence _𝑛 → ∞ as 𝑛→ ∞.

As a result, using Equation (2.60), and the result proved earlier that _𝑛 − `∗𝑛 → ∞, we obtain that

for large 𝑛,

𝑟𝐻 (_𝑛, `∗𝑛) ≤ (`∗𝑛)2 + 1 + (_𝑛 − `∗𝑛)𝜙(_𝑛 − `∗𝑛) + (_𝑛 + `∗𝑛)𝜙(_𝑛 + `∗𝑛)

≤
(
_𝑛 − 𝑐

√︁
2 log_𝑛

)2
+𝑂 (1) = _2

𝑛 − (2𝑐 + 𝑜(1))_𝑛
√︁

2 log_𝑛.

Again, comparing the above with 𝑟𝐻 (_𝑛, _𝑛 −
√︁

2 log_𝑛) = _2
𝑛 − (2 + 𝑜(1))_𝑛

√︁
2 log_𝑛 in Lemma

15, we see that 𝑟𝐻 (_𝑛, `∗𝑛) < 𝑟𝐻 (_𝑛, _𝑛 −
√︁

2 log_𝑛) when 𝑛 is large, which is a contradiction.

Finally, we prove that (_ − `∗)/
√︁

2 log_ → 1 as _ → ∞. Suppose this is not true. Given

the result proved in the last paragraph, then there exists some constant 𝑐 < 1 such that _𝑛 − `∗𝑛 <

𝑐
√︁

2 log_𝑛 for a sequence _𝑛 → ∞ as 𝑛 → ∞. Using Equation (2.60) and Gaussian tail bound

1 −Φ(𝑥) = 1+𝑜(1)
𝑥

𝜙(𝑥) as 𝑥 → ∞, we have

𝑟𝐻 (_𝑛, `∗𝑛) = (`∗𝑛)2 [
Φ(_𝑛 − `∗𝑛) −Φ(−_𝑛 − `∗𝑛)

]
+𝑂 (1)

≤ (`∗𝑛)2Φ(_𝑛 − `∗𝑛) +𝑂 (1)

= (`∗𝑛)2
[
1 − 1 + 𝑜(1)

_𝑛 − `∗𝑛
𝜙(_𝑛 − `∗𝑛)

]
+𝑂 (1).

Because 𝜙(_𝑛 − `∗𝑛) ≥ 1/
√

2𝜋 · exp
(
−2𝑐2 log_𝑛

2

)
= 1/(

√
2𝜋_𝑐2

𝑛 ), we continue with

𝑟𝐻 (_𝑛, `∗𝑛) ≤ (`∗𝑛)2 −
(_𝑛 − 𝑐

√︁
2 log_𝑛)2

𝑐
√︁

2 log_𝑛

1
√

2𝜋_𝑐2
𝑛

·
(
1 + 𝑜(1)

)
+𝑂 (1)

≤ _2
𝑛 −

_2−𝑐2
𝑛√︁

log_𝑛
·
( 1
2𝑐
√
𝜋
+ 𝑜(1)

)
.

Note that for 𝑐 < 1, _2−𝑐2
𝑛 /

√︁
log_𝑛 = 𝜔(_𝑛

√︁
log_𝑛). Hence 𝑟𝐻 (_𝑛, `∗𝑛) < 𝑟𝐻 (_𝑛, _𝑛 −

√︁
2 log_𝑛)

when 𝑛 is sufficiently large. The same contradiction arises.
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Having the precise order that `∗ = _−(1+𝑜(1))
√︁

2 log_, we can easily evaluate sup`≥0 𝑟𝐻 (_, `)

from (2.60): as _ → ∞,

𝑟𝐻 (_, _ −
√︁

2 log_) ≤ sup
`≥0

𝑟𝐻 (_, `) = 𝑟𝐻 (_, `∗)

= (`∗)2(Φ(_ − `∗) −Φ(−_ − `∗)) +𝑂 (1)

≤ (`∗)2 +𝑂 (1) = (_ − (1 + 𝑜(1))
√︁

2 log_)2 +𝑂 (1)

= _2 − 2
√

2_
√︁

log_ + 𝑜(_
√︁

log_).

Combining this result with Lemma 15 completes the proof. □

Upper bound

We are in the position to compute the supremum risk of [̂𝐻 (𝑦, _𝑛) with _𝑛 = 𝜎𝑛
√︁

2 log 𝜖−1
𝑛 in

Theorem 8. First of all, due to the scale invariance of hard thresholding, the supremum risk can be

written in the form:

sup
\∈Θ(𝑘𝑛,𝜏𝑛)

E\
[̂𝐻 (𝑦, _𝑛) − \2

2 = 𝜎2
𝑛

[
(𝑛 − 𝑘𝑛)𝑟𝐻 (a𝑛, 0) + sup

∥\̃∥2
2≤𝑘𝑛`

2
𝑛

𝑘𝑛∑︁
𝑖=1

𝑟𝐻 (a𝑛, \̃𝑖)
]
,

where \̃ ∈ R𝑘𝑛 and a𝑛 =
√︁

2 log 𝜖−1
𝑛 . Given that the one-dimensional risk function 𝑟𝐻 (a𝑛, \̃𝑖) is

symmetric in \̃𝑖, if its maximizer satisfies arg max\̃𝑖≥0 𝑟𝐻 (a𝑛, \̃𝑖) ≤ `𝑛, then we will have

sup
\∈Θ(𝑘𝑛,𝜏𝑛)

E\
[̂𝐻 (𝑦, _𝑛) − \2

2 = 𝜎2
𝑛

[
(𝑛 − 𝑘𝑛)𝑟𝐻 (a𝑛, 0) + 𝑘𝑛 sup

`≥0
𝑟𝐻 (a𝑛, `)

]
. (2.61)

This will allow us to focus on finding the supremum risk of hard thresholding in the univariate

setting that we discussed in the last section. In the proof of Lemma 16, we already showed that

arg max\̃𝑖≥0 𝑟𝐻 (a𝑛, \̃𝑖) ≤ a𝑛 when 𝑛 is large. It is then clear that in the current regime `𝑛 =

𝜔(
√︁

2 log 𝜖−1
𝑛 ), it holds that arg max\̃𝑖≥0 𝑟𝐻 (a𝑛, \̃𝑖) ≤ `𝑛 for large 𝑛. Therefore, the supremum risk

of hard thresholding over Θ(𝑘𝑛, 𝜏𝑛) can be simplified as in (2.61). We can apply Lemma 16 to
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continue from (2.61):

sup
\∈Θ(𝑘𝑛,𝜏𝑛)

E\
[̂𝐻 (𝑦, _𝑛) − \2

2

= 𝑛𝜎2
𝑛

[
(1 − 𝜖𝑛)𝑟𝐻 (a𝑛, 0) + 𝜖𝑛 sup

`≥0
𝑟𝐻 (a𝑛, `)

]
= 𝑛𝜎2

𝑛

[
(1 − 𝜖𝑛)𝑟𝐻 (a𝑛, 0) + 𝜖𝑛

(
a2
𝑛 − 2a𝑛

√︁
2 log a𝑛 + 𝑜(a𝑛

√︁
log a𝑛)

)]
, (2.62)

where a𝑛 =
√︁

2 log 𝜖−1
𝑛 . We now identify the dominating terms in the above expression. First,

𝑟𝐻 (a𝑛, 0) = 2
∫ ∞

a𝑛

𝑧2𝜙(𝑧)𝑑𝑧 = 2a𝑛𝜙(a𝑛) + 2(1 −Φ(a𝑛)) = (2 + 𝑜(1))a𝑛𝜙(a𝑛) = 𝑂 (𝜖𝑛a𝑛),

(2.63)

where the last two equations are due to the Gaussian tail bound 1 − Φ(𝑥) = 1+𝑜(1)
𝑥

𝜙(𝑥) as 𝑥 → ∞

and a𝑛 =
√︁

2 log 𝜖−1
𝑛 . Therefore, from (2.62) we obtain

sup
\∈Θ(𝑘𝑛,𝜏𝑛)

E\
[̂𝐻 (𝑦, _𝑛) − \2

2

= 𝑛𝜎2
𝑛

[
𝜖𝑛a

2
𝑛 − 2𝜖𝑛a𝑛

√︁
2 log a𝑛 + 𝑜(𝜖𝑛a𝑛

√︁
log a𝑛)

]
= 𝑛𝜎2

𝑛 𝜖𝑛

(
2 log 𝜖−1

𝑛 − (2 + 𝑜(1))a𝑛
√︁

2 log a𝑛
)
.

This completes our proof of the upper bound in Theorem 8.

The sharp upper bound we have derived is from the hard thresholding estimator [̂𝐻 (𝑦, _𝑛) with

tuning _𝑛 = 𝜎𝑛a𝑛. To shed more light on the performance of hard thresholding, we provide a

discussion on the optimal choices of _𝑛. The lemma below characterizes the possible choices of

_𝑛 that leads to optimal supremum risk (up to second order).

Lemma 17. Consider model (2.1), and parameter space (2.6) under Regime (III), in which 𝜖𝑛 → 0,

`𝑛 → ∞, `𝑛 = 𝜔(
√︁

log 𝜖−1
𝑛 ), as 𝑛 → ∞. Let a𝑛 =

√︁
2 log 𝜖−1

𝑛 . Consider the tuning regime
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_𝑛𝜎
−1
𝑛 → ∞ and _𝑛𝜎−1

𝑛 ≤ `𝑛. If _𝑛 satisfies:

(a2
𝑛 − 𝑐1 log log a𝑛) ≤ _2

𝑛𝜎
−2
𝑛 ≤ (a2

𝑛 + 𝑐2a𝑛
√︁

2 log a𝑛)

when 𝑛 is large, for some constant 𝑐1 < 1 and every 𝑐2 > 0, then

inf
_

sup
\∈Θ(𝑘𝑛,𝜏𝑛)

E\
[̂𝐻 (𝑦, _) − \2

2 = sup
\∈Θ(𝑘𝑛,𝜏𝑛)

E\
[̂𝐻 (𝑦, _𝑛) − \2

2 + 𝑜
(
𝑛𝜎2

𝑛 𝜖𝑛a𝑛
√︁

log a𝑛
)
. (2.64)

On the other hand, if (a2
𝑛 − 𝑐1 log log a𝑛) ≥ _2

𝑛𝜎
−2
𝑛 for a constant 𝑐1 ≥ 1 or if _2

𝑛𝜎
−2
𝑛 ≥ (a2

𝑛 +

𝑐2a𝑛
√︁

2 log a𝑛) for some 𝑐2 > 0, then the conclusion (2.64) will not hold.

Proof. Denote _̃𝑛 = _𝑛𝜎−1
𝑛 . Given that we focus on the tuning regime _̃𝑛 → ∞ and _̃𝑛 ≤ `𝑛, the

result (2.62) continues to hold here:

sup
\∈Θ(𝑘𝑛,𝜏𝑛)

E\
[̂𝐻 (𝑦, _𝑛) − \2

2 = 𝑛𝜎2
𝑛 ·

[
(1 − 𝜖𝑛)𝑟𝐻 (_̃𝑛, 0) + 𝜖𝑛

(
_̃2
𝑛 − 2_̃𝑛

√︃
2 log _̃𝑛 + 𝑜(_̃𝑛

√︃
log _̃𝑛)

)]
.

Hence, we define

𝐴(_) := (1 − 𝜖𝑛)𝑟𝐻 (_, 0) + 𝜖𝑛
[
_2 − 2_

√︁
2 log_ + 𝑜

(
_
√︁

log_
) ]
, (2.65)

where the notation 𝑜(·) is understood as _ → ∞. We proved before that 𝐴(a𝑛) = 𝜖𝑛 (a2
𝑛 − (2 +

𝑜(1))a𝑛
√︁

2 log a𝑛). Now we consider four different regions for _̃𝑛 (when 𝑛 is large):

• Case _̃2
𝑛 ≤ a2

𝑛 − 2𝑐 log(a𝑛/
√

2𝜋) for some constant 𝑐 > 1. Equation (2.63) implies

𝐴(_̃𝑛) ≥(1 − 𝜖𝑛)𝑟𝐻 (_̃𝑛, 0) ≥ (1 − 𝜖𝑛)𝑟𝐻
((
a2
𝑛 − 2𝑐 log(a𝑛/2𝜋)

)1/2
, 0

)
=(2 + 𝑜(1))

(
a2
𝑛 − 2𝑐 log(a𝑛/2𝜋)

)1/2
· 𝜙

((
a2
𝑛 − 2𝑐 log(a𝑛/

√
2𝜋)

)1/2
)

=
2 + 𝑜(1)
√

2𝜋
a𝑛 exp ©«−

a2
𝑛 − 2𝑐 log a𝑛√

2𝜋
2

ª®¬ = Θ
(
𝜖𝑛 (a𝑛)1+𝑐

)
.
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Note that 𝐴(_̃𝑛) = 𝜔(𝐴(a𝑛)), and hence _̃𝑛 does not satisfy (2.64).

• Case a2
𝑛 − 2𝑐1 log(a𝑛/

√
2𝜋) ≤ _̃2

𝑛 ≤ a2
𝑛 − 𝑐2 log log a𝑛 for any constant 𝑐1 ≤ 1 and some

constant 𝑐2 ≥ 1. Since _̃2
𝑛 ≤ a2

𝑛 − 𝑐2 log log a𝑛, the same argument as in the previous case

gives

(1 − 𝜖𝑛)𝑟𝐻 (_̃𝑛, 0) ≥
2 + 𝑜(1)
√

2𝜋

(
𝜖𝑛a𝑛

(√︁
log a𝑛

)𝑐2
)
. (2.66)

Moreover, using the upper and lower bounds we set for _̃𝑛, we obtain

𝜖𝑛

(
_̃2
𝑛 − 2_̃𝑛

√︃
2 log _̃𝑛 + 𝑜

(
_̃𝑛

√︃
log _̃𝑛

))
≥𝜖𝑛

[
a2
𝑛 − 2𝑐1 log

a𝑛√
2𝜋

− 2a𝑛
√︁

2 log a𝑛 + 𝑜
(
a𝑛

√︁
log a𝑛

)]
=𝜖𝑛

[
a2
𝑛 − 2a𝑛

√︁
2 log a𝑛 + 𝑜

(
a𝑛

√︁
log a𝑛

)]
. (2.67)

Combining (2.66)-(2.67) yields

𝐴(_̃𝑛) ≥ 𝜖𝑛
[
a2
𝑛 + a𝑛

√︁
2 log a𝑛

(
− 2 + 𝑜(1) + 2 + 𝑜(1)

2
√
𝜋

(
√︁

log a𝑛)𝑐2−1
)]
.

Since 𝑐2 ≥ 1, it is clear that 𝐴(_̃𝑛) − 𝐴(a𝑛) = Ω(𝜖𝑛a𝑛
√︁

log a𝑛). Therefore, this choice of _̃𝑛

does not satisfy (2.64).

• Case a2
𝑛−𝑐1 log log a𝑛 ≤ _̃2

𝑛 ≤ a2
𝑛+𝑐2a𝑛

√︁
2 log a𝑛 for some constant 𝑐1 < 1 and every 𝑐2 > 0.

With the lower bound of _̃𝑛, similar calculations as in the previous two cases lead to

(1 − 𝜖𝑛)𝑟𝐻 (_̃𝑛, 0) ≤ 𝑟𝐻
((
a2
𝑛 − 𝑐1 log log a𝑛

)1/2
, 0

)
= Θ

(
𝜖𝑛a𝑛

(√︁
log a𝑛

)𝑐1
)
.

Furthermore, the upper and lower bounds of _̃𝑛 for some 𝑐1 < 1 and every 𝑐2 > 0 imply that
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_̃2
𝑛 − a2

𝑛 = 𝑜(a𝑛
√︁

log a𝑛). Thus,

𝜖𝑛

(
_̃2
𝑛 − 2_̃𝑛

√︃
2 log _̃𝑛 + 𝑜

(
_̃𝑛

√︃
2 log _̃𝑛

))
≤ 𝜖𝑛

(
a2
𝑛 − 2a𝑛

√︁
2 log a𝑛 + 𝑜

(
a𝑛

√︁
log a𝑛

))
.

Putting together the above two results into (2.65), we have

𝐴(_̃𝑛) ≤ Θ

(
𝜖𝑛a𝑛

(√︁
log a𝑛

)𝑐1
)
+ 𝜖𝑛

(
a2
𝑛 − 2a𝑛

√︁
2 log a𝑛 + 𝑜

(
a𝑛

√︁
log a𝑛

))
= 𝜖𝑛

(
a2
𝑛 − (2 + 𝑜(1))a𝑛

√︁
2 log a𝑛

)
.

Thus, 𝐴(_̃𝑛) ≤ 𝐴(a𝑛) + 𝑜(𝜖𝑛a𝑛
√︁

log a𝑛), and _̃𝑛 satisfies (2.64).

• Case _̃2
𝑛 ≥ a2

𝑛 + 𝑐a𝑛
√︁

2 log a𝑛 for some constant 𝑐 > 0. We only need consider _̃𝑛 = (1 +

𝑜(1))a𝑛, because for larger values of _𝑛, (2.65) implies that 𝐴(_̃𝑛)/𝐴(a𝑛) > 1 for large 𝑛.

When _̃𝑛 = (1 + 𝑜(1))a𝑛, we have

𝐴(_̃𝑛) ≥ 𝜖𝑛

(
_̃2
𝑛 − 2_̃𝑛

√︃
2 log _̃𝑛 + 𝑜

(
_̃𝑛

√︃
2 log _̃𝑛

))
≥ 𝜖𝑛

(
a2
𝑛 − (2 − 𝑐)a𝑛

√︁
2 log a𝑛 + 𝑜

(
a𝑛

√︁
2 log a𝑛

))
.

Since 𝑐 > 0, the above implies that 𝐴(_̃𝑛) − 𝐴(a𝑛) = Ω(𝜖𝑛a𝑛
√︁

log a𝑛). Hence _̃𝑛 does not

satisfy (2.64).

□

Lower bound

As in the proof of lower bound in Theorems 5-7, we will apply Theorem 11 and utilize the

independent block prior that is first described in Section 2.5.2. To simplify the calculations a bit

here, we will use the block prior with one minor modification: adopting the notation from Section
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2.5.2, the spike prior 𝜋`,𝑚
𝑆

in use is now changed to a one-sided spike prior:

𝜋
`,𝑚

𝑆
(\ ( 𝑗) = `𝑒𝑖) =

1
𝑚
, 1 ≤ 𝑖 ≤ 𝑚, (2.68)

where ` ∈ (0, `𝑛]. The key is to calculate the Bayes risk 𝐵(𝜋`,𝑚
𝑆

) and obtain a result like Lemma

3. To this end, we first mention a lemma that will become useful later in the proof.

Lemma 18. Let 𝑧1, . . . , 𝑧𝑚
𝑖.𝑖.𝑑∼ N(0, 1) and a𝑚 =

√︁
2 log𝑚. Suppose 2` > a𝑚 and 𝛿 < Φ(a𝑚− `).

Then

P
©«𝑚−1𝑒−

1
2 `

2
𝑚∑︁
𝑗=1
𝑒`𝑧 𝑗 ≤ 𝛿ª®¬ ≤ 1

√
2𝜋a𝑚

+ 1
√

2𝜋
1[

Φ(a𝑚 − `) − 𝛿
]2

1
2` − a𝑚

𝑒−(`−a𝑚)
2
.

Proof. Define the notation:

𝑋𝑚 𝑗 = 𝑒
`𝑧 𝑗 , �̄�𝑚 𝑗 = 𝑋𝑚 𝑗 𝐼(𝑋𝑚𝑗≤𝑒`a𝑚 ) ,

𝑆𝑚 =

𝑚∑︁
𝑗=1

𝑋𝑚 𝑗 , 𝑆𝑚 =

𝑚∑︁
𝑗=1

�̄�𝑚 𝑗 ,

𝑎𝑚 = E𝑆𝑚 = 𝑚𝑒`
2/2Φ(a𝑚 − `).

Then

P
(
𝑚−1𝑒−

1
2 `

2
𝑚∑︁
𝑗=1
𝑒`𝑧 𝑗 ≤ 𝛿

)
= P

{
𝑎𝑚 − 𝑆𝑚 ≥

[
Φ(a𝑚 − `) − 𝛿

]
· 𝑚𝑒 1

2 `
2
}
= P

(
𝑎𝑚 − 𝑆𝑚
𝑒`a𝑚

≥ 𝑡
)
,

where 𝑡 :=
[
Φ(a𝑚 − `) − 𝛿

]
· 𝑚𝑒 1

2 `
2−`a𝑚 . Clearly,

P

(
𝑎𝑚 − 𝑆𝑚
𝑒`a𝑚

≥ 𝑡
)
≤ P

(
𝑆𝑚 ≠ 𝑆𝑚

)
+ P

(�����𝑆𝑚 − 𝑎𝑚
𝑒`a𝑚

����� > 𝑡
)
.

For the following calculation, we will use Gaussian tail bound 1 − Φ(𝑥) ≤ 𝑥−1𝜙(𝑥) for 𝑥 > 0. To
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obtain a proper upper bound for the first term, we note that

P
(
𝑆𝑚 ≠ 𝑆𝑚

)
≤P

(
∪𝑚𝑗=1{�̄�𝑚 𝑗 ≠ 𝑋𝑚 𝑗 }

)
≤

𝑚∑︁
𝑗=1
P

(
𝑋𝑚 𝑗 > 𝑒

`a𝑚
)

=

𝑚∑︁
𝑗=1
P

(
𝑒`𝑧 𝑗 > 𝑒`a𝑚

)
= 𝑚(1 −Φ(a𝑚)) ≤

𝑚

a𝑚
𝜙(a𝑚) =

1
√

2𝜋a𝑚
.

For the second term, we use Chebyshev’s inequality and the fact that 𝑎𝑚 = E𝑆𝑚 and Var(𝑋) ≤ E𝑋2,

P

(�����𝑆𝑚 − 𝑎𝑚
𝑒`a𝑚

����� > 𝑡
)
≤ 𝑡−2𝑒−2`a𝑚E(𝑆𝑚 − 𝑎𝑚)2 ≤ (𝑡𝑒`a𝑚)−2

𝑚∑︁
𝑗=1
E�̄�2

𝑚 𝑗

≤ 1[
Φ(a𝑚 − `) − 𝛿

]2
1

√
2𝜋

1
2` − a𝑚

𝑒−(`−a𝑚)
2
.

The last inequality is based on the following calculation:

E�̄�2
𝑚 𝑗 =E

(
𝑒`𝑧 𝑗 𝐼(𝑒`𝑧 𝑗 ≤𝑒`a𝑚 )

)2
=

∫
𝑧≤a𝑚

𝑒2`𝑧𝜙(𝑧)𝑑𝑧 = 𝑒2`2 (1 −Φ(2` − a𝑚))

≤ 1
√

2𝜋
1

2` − a𝑚
𝑒2`2− 1

2 (2`−a𝑚)
2
=

1
√

2𝜋
1

2` − a𝑚
𝑒−

1
2 a

2
𝑚+2`a𝑚 ,

and

(𝑡𝑒`a𝑚)−2𝑚 · 1
√

2𝜋
1

2` − a𝑚
𝑒−

1
2 a

2
𝑚+2`a𝑚

=
1[

Φ(a𝑚 − `) − 𝛿
]2

1
𝑚2 𝑒

−`2
𝑚

1
√

2𝜋
1

2` − a𝑚
𝑒−

1
2 a

2
𝑚+2`a𝑚

=
1[

Φ(a𝑚 − `) − 𝛿
]2

1
√

2𝜋
1

2` − a𝑚
𝑒−(`−a𝑚)

2
.

□

We are now ready to calculate the Bayes risk 𝐵(𝜋`,𝑚
𝑆

) in the following lemma.

Lemma 19. Let a𝑚 =
√︁

2 log𝑚 and ` = a𝑚−1 −
√︁

2 log a𝑚−1. As 𝑚 → ∞, the Bayes risk 𝐵(𝜋`,𝑚
𝑆

)
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satisfies

𝐵(𝜋`,𝑚
𝑆

) ≥ a2
𝑚 − 2a𝑚

√︁
2 log a𝑚

(
1 + 𝑜(1)

)
.

Proof. For the one-sided spike prior 𝜋`,𝑚
𝑆

introduced in (2.68), doing similar calculations as in the

proof of Lemma 2, we can obtain the expression for the Bayes risk:

𝐵(𝜋`,𝑚
𝑆

) = `2E`𝑒1 (𝑝𝑚 − 1)2 + (𝑚 − 1)`2E`𝑒2 𝑝
2
𝑚 ≥ `2 − 2`2E`𝑒1 𝑝𝑚, (2.69)

where 𝑝𝑚 = 𝑒`𝑦1∑𝑚
𝑗=1 𝑒

`𝑦 𝑗 ; E`𝑒1 (·) is taken with respect to 𝑦 ∼ N(`𝑒1, 𝐼) and E`𝑒2 (·) for 𝑦 ∼ N(`𝑒2, 𝐼).

Now the goal is to upper bound E`𝑒1 𝑝𝑚. We have

E`𝑒1 𝑝𝑚 = E
𝑒`(`+𝑧1)∑

𝑗≠1 𝑒
`𝑧 𝑗 + 𝑒`(`+𝑧1)

= E
(𝑚 − 1)−1𝑒

1
2 `

2+`𝑧1

(𝑚 − 1)−1𝑒
1
2 `

2+`𝑧1 + (𝑚 − 1)−1𝑒−
1
2 `

2 ∑
𝑗≠1 𝑒

`𝑧 𝑗
, (2.70)

where 𝑧1, . . . , 𝑧𝑚
𝑖.𝑖.𝑑.∼ N(0, 1). Define the following two events:

F1 =

{
(𝑚 − 1)𝑒− 1

2 `
2−`𝑧1 ≥ 𝑀

}
, F2 =

{
(𝑚 − 1)−1𝑒−

1
2 `

2 ∑︁
𝑗≠1

𝑒`𝑧 𝑗 ≥ 𝛿
}
,

where 𝛿 and 𝑀 are two positive constants to be determined later. Since the ratio inside the expec-

tation of (2.70) is smaller than one, and on the event F1 ∩F2 it is smaller than 1
𝑀𝛿

, we can continue

from (2.70) to obtain

E`𝑒1 𝑝𝑚 ≤ 1
𝑀 · 𝛿 + P(F 𝑐

1 ) + P(F
𝑐

2 ). (2.71)

Hence, we aim to find upper bounds for P(F 𝑐
1 ) and P(F 𝑐

2 ). For the first probability, using Gaussian

tail bound that 1 −Φ(𝑥) ≤ 1
𝑥
𝜙(𝑥) for 𝑥 > 0, and that 𝑒a

2
𝑚−1/2 = 𝑚 − 1, we have

P(F 𝑐
1 ) = P

(
(𝑚 − 1)𝑒− 1

2 `
2−`𝑧 < 𝑀

)
= P

(
𝑧 > −1

2
` − 1

`
log

𝑀

𝑚 − 1

)
= 1 −Φ

(
− 1
`

log𝑀 + 1
2`

(a2
𝑚−1 − `

2)
)

≤ 1
− 1
`

log𝑀 + 1
2` (a2

𝑚−1 − `2)
1

√
2𝜋

· exp

(
− 1

2`2

[
1
2
(a2
𝑚−1 − `

2) − log𝑀
]2

)
:= 𝑈1,
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as long as a2
𝑚−1 − `

2 > 2 log𝑀 . Regarding P(F 𝑐
2 ), if we limit our choice of 0 < 𝛿 < Φ(a𝑚−1 − `),

then from Lemma 18,

P(F 𝑐
2 ) ≤

1
√

2𝜋
1

a𝑚−1
+ 1
√

2𝜋
1[

Φ(a𝑚−1 − `) − 𝛿
]2 · 1

2` − a𝑚−1
𝑒−(`−a𝑚−1)2 := 𝑈2.

Now we set 𝑀 = a𝑚−1 and recall ` = a𝑚−1 −
√︁

2 log a𝑚−1. We will show that 𝑈1 = 𝑜(a−1
𝑚−1)

and𝑈2 = 𝑂 (a−1
𝑚−1). First, for𝑈1,

1
2`2

[
1
2
(a2
𝑚−1 − `

2) − log𝑀
]2

=
1

2`2

[
1
2
(2a𝑚−1

√︁
2 log a𝑚−1 − 2 log a𝑚−1) − log a𝑚−1

]2

=
1

2`2

[
a𝑚−1

√︁
2 log a𝑚−1 − 2 log a𝑚−1

]2

=
a2
𝑚−1
`2 log a𝑚−1 −

2
√

2a𝑚−1

`2
(
log a𝑚−1

)3/2 + 2
`2

(
log a𝑚−1

)2 ≥ log a𝑚−1 + 𝑜(1),

where in the last inequality we used `2 < a2
𝑚−1 (for large 𝑚). Therefore,

𝑒
− 1

2`2

[
1
2 (a

2
𝑚−1−`

2)−log𝑀
]2

≤ a−1
𝑚−1

(
1 + 𝑜(1)

)
,

and

1
− 1
`

log𝑀 + 1
2` (a2

𝑚−1 − `2)
=

1
1
`
·
(
a𝑚−1

√︁
2 log a𝑚−1 − 2 log a𝑚−1

)
≤

(√︁
2 log a𝑚−1 −

2 log a𝑚−1
a𝑚−1

)−1
= 𝑜(1).

In combination,

𝑈1 ≤ 𝑜(1) · a−1
𝑚−1

(
1 + 𝑜(1)

)
= 𝑜(a−1

𝑚−1). (2.72)

For 𝑈2, we set 𝛿 to be any fixed constant between (0, 1). Since a𝑚−1 − ` → +∞, it holds that

Φ(a𝑚−1 − `) − 𝛿 > 𝛿
′

for some constant 𝛿
′
> 0, when 𝑚 is large. Also, we have the identity

80



𝑒−(`−a𝑚−1)2
= 𝑒−2 log a𝑚−1 = a−2

𝑚−1. So the second term in𝑈2 is of order 𝑂 (a−3
𝑚−1). Thus,

𝑈2 =
1 + 𝑜(1)
√

2𝜋a𝑚−1
. (2.73)

Note that we have set 𝑀 = a𝑚−1. Hence, 1/(𝑀 · 𝛿) = 𝑂 (1/a𝑚−1). Combining (2.71)-(2.73), we

have

E`𝑒1 𝑝𝑚 ≤ 𝑂 (1/a𝑚−1).

Finally, the above together with (2.69) shows that

𝐵(𝜋`,𝑚
𝑆

) ≥ `2 − 2`2𝑂
(
a−1
𝑚−1

)
= a2

𝑚−1 − 2a𝑚−1
√︁

2 log a𝑚−1
(
1 + 𝑜(1)

)
= a2

𝑚 − 2a𝑚
√︁

2 log a𝑚
(
1 + 𝑜(1)

)
.

□

Now, we aim to apply Lemma 19 to derive the minimax lower bound. First note that in the

current regime 𝜖𝑛 → 0, `𝑛 = 𝜔(
√︁

log 𝜖−1
𝑛 ), the choice of ` with 𝑚 = 𝑛/𝑘𝑛 = 𝜖−1

𝑛 in Lemma 19

satisfies ` < `𝑛 when 𝑛 is large. Thus, the constructed block prior is supported on the parameter

space Θ(𝑘𝑛, `𝑛) so that we can use Equation (2.13) and Lemma 19 to conclude

𝑅(Θ(𝑘𝑛, 𝜏𝑛), 𝜎𝑛) = 𝜎2
𝑛 · 𝑅(Θ(𝑘𝑛, `𝑛), 1) ≥ 𝑘𝑛𝜎

2
𝑛 · 𝐵(𝜋

`,𝑚

𝑆
)

≥ 𝑘𝑛𝜎2
𝑛 ·

(
a2
𝑚 − 2a𝑚

√︁
2 log a𝑚 (1 + 𝑜(1)

)
= 𝑛𝜎2

𝑛

(
2𝜖𝑛 log 𝜖−1

𝑛 − 2𝜖𝑛a𝑚
√︁

2 log a𝑚 (1 + 𝑜(1)
)
,

where a𝑚 =
√︁

2 log𝑚 =
√︁

2 log 𝜖−1
𝑛 .
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2.5.10 Proof of Proposition 6

Roadmap of the proof

Propositions 1 and 3 have derived the supremum risk of optimally tuned soft thresholding in

Regimes (I) and (II) respectively. Proposition 6 continues to obtain it in Regime (III). Hence, we

will use some existing results from the proof of Propositions 1 and 3 to simplify the present proof.

First of all, referring to Equations (2.58)-(2.17) in the proof of Proposition 1, the supremum risk

can be expressed as

inf
_

sup
\∈Θ(𝑘𝑛,𝜏𝑛)

E\
[̂𝑆 (𝑦, _) − \2

2 = 𝑛𝜎2
𝑛 · inf

_

[
(1 − 𝜖𝑛)E[̂2

𝑆 (𝑧, _) + 𝜖𝑛E([̂𝑆 (𝑧 + `𝑛, _) − `𝑛)
2
]

︸                                                         ︷︷                                                         ︸
:=𝐹 (_)

,

with 𝑧 ∼ N(0, 1). Define the optimal tuning _∗ = arg min_≥0 𝐹 (_). Then it is equivalent to prove

𝐹 (_∗) = 2𝜖𝑛 log 𝜖−1
𝑛 − (6 + 𝑜(1))𝜖𝑛 log a𝑛,

where a𝑛 =
√︁

2 log 𝜖−1
𝑛 . To reach the above, we will first find the tight upper bound for 𝐹 (_∗) in

Section 2.5.10, and then obtain the matching lower bound in Section 2.5.10. Before we do these

two parts, let us prove a lemma that provides an approximation for 𝐹 (_). This approximation will

help us in the calculation of both the upper and lower bounds.

Lemma 20. Consider 𝜖𝑛 → 0, `𝑛 = 𝜔(
√︁

log 𝜖−1
𝑛 ), as 𝑛→ ∞. If _ → ∞ and `𝑛 − _ → +∞, then

𝐹 (_) = 2(1 − 𝜖𝑛)
[
(1 + _2) (1 −Φ(_)) − _𝜙(_)

]
+ 𝜖𝑛

[
_2 + 1 − (2 + 𝑜(1))`𝑛

(`𝑛 − _)2 𝜙(`𝑛 − _)
]
.

Furthermore, when _ is large, it holds that

𝐶 (_) ≤ 𝐹 (_) ≤ 𝐷 (_),
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where

𝐶 (_) := 2(1 − 𝜖𝑛) ·
(

2
_3 − 12

_5

)
1

√
2𝜋
𝜖𝑛 · 𝑒

1
2 (a

2
𝑛−_2) (2.74)

+ 𝜖𝑛
[
_2 + 1 − (2 + 𝑜(1))`𝑛

(`𝑛 − _)2 𝜙(`𝑛 − _)
]
,

and

𝐷 (_) := 𝜖𝑛

{
(1 − 𝜖𝑛)

4
√

2𝜋_3
𝑒

1
2 (a

2
𝑛−_2) + _2 + 1

}
. (2.75)

Proof. Throughout the proof, we will use the Gaussian tail bound in Lemma 1 to do calculations.

With the expression of 𝐹 (_) calculated in Equations (2.19)-(2.22), we have that as _ → ∞, `𝑛 −

_ → +∞,

𝐹 (_) = 2(1 − 𝜖𝑛) ·
[
(1 + _2) (1 −Φ(_)) − _𝜙(_)

]
+ 𝜖𝑛 ·

{
(_2 + 1) +

[
(`2

𝑛 − _2 − 1) (1 −Φ(`𝑛 − _)) − (`𝑛 + _)𝜙(`𝑛 − _)
]

−
[
(`2

𝑛 − _2 − 1) · (1 −Φ(`𝑛 + _)) − (`𝑛 − _)𝜙(`𝑛 + _)
]}

= 2(1 − 𝜖𝑛)
[
(1 + _2) (1 −Φ(_)) − _𝜙(_)

]
+ 𝜖𝑛

[
_2 + 1 − (2 + 𝑜(1))`𝑛

(`𝑛 − _)2 𝜙(`𝑛 − _)
]
,

where in the last equation we have used 1 −Φ(𝑥) =
(

1
𝑥
− 1+𝑜(1)

𝑥3

)
𝜙(𝑥) as 𝑥 → ∞.

As _ → ∞, we obtain

(1 + _2) (1 −Φ(_)) − _𝜙(_)

=

[
(1 + _2)

(
1
_
− 1
_3 + 3

_5 − 15
_7 + 105

_9

)
− _

]
𝜙(_) +𝑂

(
𝜙(_)
_9

)
=

(
2
_3 − 12

_5 + 90
_7

)
𝜙(_) +𝑂

(
𝜙(_)
_9

)
.
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Thus,

𝐹 (_) = 2(1 − 𝜖𝑛) ·
(

2
_3 − 12

_5 + 90
_7 +𝑂

(
1
_9

))
· 1
√

2𝜋
𝜖𝑛 · 𝑒

1
2 (a

2
𝑛−_2) + 𝜖𝑛

[
_2 + 1 − (2 + 𝑜(1))`𝑛

(`𝑛 − _)2 𝜙(`𝑛 − _)
]
.

As a result, it is straightforward to verify that 𝐶 (_) and 𝐷 (_) defined in (2.74)-(2.75) provide

lower and upper bounds for 𝐹 (_). □

Upper bound

Consider _ =
√︁
a2
𝑛 − 6 log a𝑛, then _ → ∞ and `𝑛 − _ → ∞. From Lemma 20,

𝐹 (_∗) ≤ 𝐹 (_) ≤ 𝐷 (_)

=𝜖𝑛

{
(1 − 𝜖𝑛)

4
√

2𝜋
𝑒

1
2 [(a2

𝑛−_2)−6 log_] + _2 + 1

}
=𝜖𝑛

{
4 + 𝑜(1)
√

2𝜋
+ _2 + 1

}
= 𝜖𝑛a

2
𝑛 − 6𝜖𝑛 log a𝑛

(
1 + 𝑜(1)

)
. (2.76)

Lower bound

We now derive a matching lower bound for 𝐹 (_∗). This requires a careful analysis of the order

of the optimal tuning _∗. We break it down in several steps:

Step 1. First, we show that _∗ → ∞, `𝑛 − _∗ → +∞. We will need the following lemma.

Lemma 21 (Lemma 8.3 in [3]). Define 𝑟𝑆 (_, `) = E([̂𝑆 (`+𝑧, _)−`)2, and 𝑟𝑆 (_, `) = min{𝑟𝑆 (_, 0)+

`2, 1 + _2}. For all _ > 0 and ` ∈ R,

1
2
𝑟𝑆 (_, `) ≤ 𝑟𝑆 (_, `) ≤ 𝑟𝑆 (_, `).

Suppose _∗ → ∞ is not true. Then _∗ ≤ 𝑐 for some finite constant 𝑐 ≥ 0 (take a subsequence
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if necessary). Then, from the definition of 𝐹 (_∗) we have

𝐹 (_∗) ≥ (1 − 𝜖𝑛)E[̂2
𝑆 (𝑧, _∗) ≥ (1 − 𝜖𝑛)E[̂2

𝑆 (𝑧, 𝑐) = Ω(1) = 𝜔(𝜖𝑛a2
𝑛),

which contradicts with (2.76). Further suppose `𝑛 − _∗ → +∞ is not true. Then _∗ ≥ `𝑛 − 𝑐 for

some finite constant 𝑐 (take a subsequence if necessary). From Lemma 21 we obtain for large 𝑛,

𝐹 (_∗) ≥ 𝜖𝑛𝑟𝑆 (_∗, `𝑛) ≥
1
2
𝜖𝑛 min(`2

𝑛, _
2
∗) ≥

1
4
𝜖𝑛`

2
𝑛 = 𝜔(𝜖𝑛a2

𝑛),

where we used `𝑛 = 𝜔(
√︁

2 log 𝜖−1
𝑛 ) = 𝜔(a𝑛). The same contradiction arises.

Step 2. We next claim that _∗ = (1 + 𝑜(1))a𝑛. Otherwise, _∗ = (𝑐 + 𝑜(1))a𝑛 for some constant

𝑐 ≠ 1 (take a subsequence if necessary). For 𝑐 > 1, given that we have proved _∗ → ∞, `𝑛 −_∗ →

+∞, we can apply Lemma 20 to reach

𝐹 (_∗) ≥ 𝜖𝑛
[
_2
∗ + 1 − (2 + 𝑜(1))`𝑛

(`𝑛 − _∗)2 𝜙(`𝑛 − _∗)
]
= 𝜖𝑛_

2
∗ (1 + 𝑜(1)) = (𝑐2 + 𝑜(1)) · 𝜖𝑛a2

𝑛.

This contradicts with (2.76). For 𝑐 < 1, we have the same contradiction by applying Lemma 20

again:

𝐹 (_∗) =
4 + 𝑜(1)
_3
∗

𝜙(_∗) + 𝜖𝑛_2
∗ (1 + 𝑜(1)) = 𝜔(𝜖𝑛a2

𝑛).

Here, the last inequality holds because _∗ ≤ (1−𝛾)a𝑛 for some constant 𝛾 ∈ (0, 1) when 𝑛 is large,

so that

1
_3
∗
𝑒−

_2∗
2 ≥ 1

(1 − 𝛾)3a3
𝑛

𝑒−
(1−𝛾)2

2 a2
𝑛 = 𝜖𝑛

1
(1 − 𝛾)3a3

𝑛

𝑒(𝛾−
𝛾2
2 )a2

𝑛 = 𝜔(𝜖𝑛a2
𝑛).

Step 3. Finally, we prove that a2
𝑛 − _2

∗ = (6 + 𝑜(1)) log a𝑛. Suppose this is not true. Then

a2
𝑛−_2

∗ = (𝑐+𝑜(1)) log a𝑛 for some 𝑐 ≠ 6 (take a subsequence if necessary). Since we have proved
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_∗ = (1 + 𝑜(1))a𝑛, we can use the lower bound in Lemma 20 and simplify it to

𝐹 (_∗) ≥ 𝐶 (_∗) =
(4 + 𝑜(1))𝜖𝑛√

2𝜋
𝑒

1
2 (a

2
𝑛−_2

∗)

_3
∗

+ 𝜖𝑛
(
_2
∗ + 1 + 𝑜(1)

)
. (2.77)

For the case 𝑐 > 6, since

1
_3
∗
𝑒

1
2 (a

2
𝑛−_2

∗) = 𝑒
1
2 (a

2
𝑛−_2

∗−6 log a𝑛)+3 log a𝑛
_ = a𝑐𝑛,

with 𝑐 = 𝑐−6+𝑜(1)
2 > 0, (2.77) implies that

𝐹 (_∗) ≥ Θ(𝜖𝑛a𝑐𝑛) + 𝜖𝑛a2
𝑛 − (𝑐 + 𝑜(1))𝜖𝑛 log a𝑛,

contradicting with (2.76). Regarding the case 𝑐 < 6, (2.77) directly leads to

𝐹 (_∗) ≥ 𝜖𝑛a2
𝑛 − (𝑐 + 𝑜(1))𝜖𝑛 log a𝑛 + (1 + 𝑜(1))𝜖𝑛.

No mater what value 𝑐 ∈ [−∞, 6) takes, the above lower bound is larger than the upper bound in

(2.76), resulting in the same contradiction.

Now that we have derived the accurate order information for _∗: _2
∗ = a2

𝑛 − (6 + 𝑜(1)) log a𝑛,

we can plug it into (2.77) to obtain the sharp lower bound:

𝐹 (_∗) ≥ 𝜖𝑛
(
a2
𝑛 − (6 + 𝑜(1)) log a𝑛

)
.

2.5.11 Proof of Proposition 7

Using the simple form of [̂𝐿 (𝑦, _), the calculation is straightforward:

inf
_

sup
\∈Θ(𝑘𝑛,𝜏𝑛)

E\ ∥[̂𝐿 (𝑦, _) − \∥2
2 = inf

_
sup

\∈Θ(𝑘𝑛,𝜏𝑛)
E\

𝑛∑︁
𝑖=1

(
1

1 + _ 𝑦𝑖 − \𝑖
)2
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= inf
_

sup
\∈Θ(𝑘𝑛,𝜏𝑛)

𝑛∑︁
𝑖=1

[(
_

1 + _

)2
\2
𝑖 +

(
1

1 + _

)2
𝜎2
𝑛

]
= inf

_

_2𝑘𝑛𝜏
2
𝑛 + 𝑛𝜎2

𝑛

(1 + _)2 =
𝑛𝜎2

𝑛 𝜖𝑛`
2
𝑛

1 + 𝜖𝑛`2
𝑛

.
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Chapter 3: SNR-aware minimaxity in sparse linear regression

3.1 Introduction

Consider the linear regression model

𝑦𝑖 = 𝑥
𝑇
𝑖 𝛽 + 𝜎𝑧𝑖, 𝑖 = 1, . . . , 𝑛, (3.1)

in which 𝑦𝑖 ∈ R denotes the response, 𝑥𝑖 ∈ R𝑝 represents the feature or covariate vector, 𝛽 ∈ R𝑝 is

the unknown signal vector to be estimated, and finally 𝑧1, . . . , 𝑧𝑛
𝑖.𝑖.𝑑.∼ N(0, 1) are standard normal

errors. We are interested in studying this problem for broad range of 𝑝 considering 𝑝 comparable

with 𝑛, or even larger than 𝑛. To ease one of the major concerns that linear regression procedures

remain inconsistent unless 𝑝/𝑛 → 0, following the rich literature of sparse linear regression [24,

32, 34, 5, 6], we consider the sparsity structure of the signal in this paper. Specifically, we assume

that the true regression coefficients are 𝑘-sparse:

𝛽 ∈ Θ(𝑘) := {𝛽 ∈ R𝑝 : ∥𝛽∥0 ≤ 𝑘}, (3.2)

where ∥𝛽∥0 denotes the number of non-zero components of 𝛽. In evaluating the performance of

estimators, the minimax framework has been one of the most popular approaches, aiming to obtain

an optimal estimator which has the best worst-case performance among all estimators. In other

words, estimators are measured by the minimax risk:

𝑅(Θ(𝑘), 𝜎) := inf
𝛽

sup
𝛽∈Θ(𝑘)

E𝛽∥𝛽 − 𝛽∥2. (3.3)
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However, obtaining the exact minimax risk is mathematically challenging and has remained open.

Hence, researchers have explored approaches that aim to “approximate" the minimax risk. One

of these approaches is known as the rate optimal minimaxity. To witness the existing results and

clarify the limitations, let us assume that the feature vectors satisfy {𝑥𝑖}𝑛𝑖=1
𝑖.𝑖.𝑑∼ N(0, 1

𝑛
𝐼𝑝) and are

independent with the noise errors {𝑧𝑖}𝑛𝑖=1. The noise level 𝜎 > 0 may vary with the sample size 𝑛.

By translating the result of [14] in this setting we obtain

𝑅(Θ(𝑘), 𝜎) ∼ 𝜎2𝑘 log(𝑝/𝑘),

where the notation “∼" means that as 𝑛, 𝑝 → ∞ and (𝑘 log(𝑝/𝑘))/𝑛→ 0, the ratio 𝑅(Θ(𝑘), 𝜎)/(𝑘 log(𝑝/𝑘))

remains bounded. Furthermore, it has been shown in the literature [13, 7, 14, 15] that many estima-

tors, such as best subset selection [16, 17], Dantzig selector [18] and LASSO [19] achieve this rate-

optimal minimax criteria, meaning that their risks (under optimal tuning) divided by 𝑘 log(𝑝/𝑘)

remain bounded1.

Despite the rate-optimal minimaxity of the aforementioned estimators, extensive simulation

results reported in [8, 20] have confirmed that when the signal-to-noise ratio (SNR) is low, all

these estimators exhibit suboptimal performance and adding an ℓ2-squared regularizer can improve

the performance of the estimators. Hence, the rate-optimal minimax results lead to misleading

guidelines for practitioners.

There could be two explanations for the mismatch between the rate-optimal minimax frame-

work and the simulation studies:

• Explanation 1: As is clear, the rate optimal minimax result does not evaluate the minimax

risk exactly. It ignores the constant in the minimax risk approximation and only captures the

rate behavior in view of 𝑘 and 𝑝 for mathematical simplicity. It is possible that if we calculate

the exact maximum risk for estimators, the differences between constants can explain the

discrepancies between the simulation studies and the rate-optimal minimax results.

1In some of these results, the risk is stated with high probability and the rate is 𝑘 log 𝑝 instead of 𝑘 log(𝑝/𝑘).
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• Explanation 2: It could be that since the minimax framework only focuses on the spots of the

parameter space that are hard for the estimation problem, its theoretical implications will be

different from the simulation studies. Hence, the framework needs to be amended to provide

more informative results.

To pinpoint the correct explanation for the discrepancy between the minimax studies and simu-

lation results, [21] considered the asymptotic framework 𝑛, 𝑝 → ∞, 𝑘/𝑝 → 0 and (𝑘 log 𝑝)/𝑛→ 0

and tried to find a better approximation of the minimax risk. The result in [21] is based on the

Sorted L-One Penalized Estimator (SLOPE) introduced in [35]. For _1 ≥ _2 ≥ . . . ≥ _𝑝 ≥ 0, the

SLOPE is defined as the solution of

𝛽𝑆𝐿𝑂𝑃𝐸 := arg min
𝑏∈R𝑝

1
2
∥𝑦 − 𝑋𝑏∥2 + _(1) |𝑏 | (1) + _2 |𝑏 | (2) + · · · + _𝑝 |𝑏 | (𝑝) ,

where |𝑏 | (1) ≥ |𝑏 | (2) ≥ . . . |𝑏 | (𝑝) are the order statistics of |𝑏1 |, |𝑏2 |, . . . , |𝑏𝑝 |. The following result

from [21] aims to provide a better approximation of the minimax risk.

Theorem 12 (Theorem 1.2 & 1.3 in [21]). Assume model (3.1) with random Gaussian designs

{𝑥𝑖}𝑛𝑖=1
𝑖.𝑖.𝑑∼ N(0, 1

𝑛
𝐼𝑝) and parameter space (3.2). Suppose 𝑘/𝑝 → 0 and (𝑘 log 𝑝)/𝑛 → 0. For

any 𝜖 > 0,

inf
𝛽

sup
𝛽∈Θ(𝑘)

𝑃

(
∥𝛽 − 𝛽∥2

2𝜎2𝑘 log(𝑝/𝑘)
> 1 − 𝜖

)
→ 1.

In addition, fix 0 < 𝑞 < 1 and set _𝑖 = 𝜎(1 + 𝜖)Φ−1(1 − 𝑖𝑞/2𝑝), where Φ is the CDF of standard

Gaussian. Then, the SLOPE achieves the above asymptotic minimax risk in that:

sup
𝛽∈Θ(𝑘)

𝑃

(
∥𝛽𝑆𝐿𝑂𝑃𝐸 − 𝛽∥2

2𝜎2𝑘 log(𝑝/𝑘)
> 1 + 3𝜖

)
→ 0.

In view of the above theorem, we have the following comments.

Remark 2. Theorem 12 does not exactly characterize the minimax risk and the minimax estimator.

However, in spirit, it is similar to the minimax result. Intuitively speaking, it can be interpreted
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in that as 𝑛, 𝑝 → ∞ and 𝑘/𝑝 → 0, the minimax risk is approximately 2𝜎2𝑘 log(𝑝/𝑘), and that

SLOPE achieves the minimax risk. Hence, as the first contribution of this paper, we prove in the

following theorem for one part of this intuitive statement. Besides, compared to the probabilistic

statement in Theorem 12, we proved in the conventional form of minimax risk as in (3.3), which

alleviates some of the concern that under unrealized rare events, risks of estimators become un-

bounded.

Theorem 13. Assume model (3.1) and parameter space (3.2). Suppose 𝑛, 𝑝 → ∞. If 𝑘/𝑝 → 0

and
(
𝑘 log 𝑝

)
/𝑛→ 0, then the minimax risk defined in (3.3) satisfies

𝑅(Θ(𝑘), 𝜎) = 2𝜎2 · 𝑘 log(𝑝/𝑘)
(
1 + 𝑜(1)

)
.

Remark 3. Compared to the rate-optimal minimax results, Theorem 12 has the advantage of char-

acterizing the constant of the minimax risk accurately. This is confirmed by Theorem 13 that the

constant is indeed for the minimax risk defined in (3.3). However, it still suffers from the same issue

as the rate-optimal minimax risk. The same estimator is optimal irrespective of the signal-to-noise

ratio. This implies that Explanation 1 is not the proper reasoning.

As will be clarified in this paper, there are two main issues causing the discrepancy between the

theoretical and simulation results: (1) Since we do not impose any constraint on the signal strength,

the minimax framework only focuses on a particular signal-to-noise ratio that makes the estimation

problem the hardest. Hence, the factor of SNR affecting practical results is masked by the mini-

max framework. (2) The approximations we obtain for the minimax risk in rate-optimal minimax

framework, and even in Theorem 12 are not accurate enough for distinguishing performances of

different estimators and hence more accurate approximations are required for this purpose.

To address the first issue, we incorporate the notion of SNR into the minimax framework, and

introduce the notion of SNR-aware minimaxity. We will discuss this framework in Section 3.2.

In view of the second issue of current minimax results, we will consider and analyze a higher-

order expansion of the minimax risk. As will be clarified later, these two changes create a more
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insightful minimax framework that can offer results consistent with the simulation studies per-

formed elsewhere.

3.2 SNR-aware minimaxity

As discussed in the previous section, one of the main reasons of the minimax framework to

produce misguidance for practitioners, is that the signal strength is not controlled and hence the

minimax framework sets the signal strength to a level that makes the estimation problem the hard-

est. As a result, the framework in an indirect way becomes blind to the changes in the signal-

to-noise ratio. To develop the SNR-aware minimax framework, we start by inserting a notion of

signal-to-noise ratio in the minimax setting. To this end, we consider the following SNR-aware

parameter space:

Θ(𝑘, 𝜏) :=
{
𝛽 ∈ R𝑝 : ∥𝛽∥0 ≤ 𝑘, ∥𝛽∥2

2 ≤ 𝑘𝜏2
}
. (3.4)

The new parameter introduced in this model, i.e. 𝜏 is a measure of signal strength. Compared

to the basic sparse parameter space in (3.2), Θ(𝑘, 𝜏) can monitor the changes in SNR. Hence, the

minimax framework we develop with this parameter space can reveal the impact of the SNR on

the sparse linear regression problem.

Given this new parameter space, the corresponding minimax risk is defined as

R(Θ(𝑘, 𝜏), 𝜎) := inf
𝛽

sup
𝛽∈Θ(𝑘,𝜏)

E𝛽∥𝛽 − 𝛽∥2. (3.5)

As discussed in the last section, characterizing the exact minimax risk for 𝑅(Θ(𝑘), 𝜎) is math-

ematically hard. It is even more challenging to obtaining exact R(Θ(𝑘, 𝜏), 𝜎). Hence, we aim to

find accurate approximations for this quantity. Following the approach proposed for sparse linear

regression problems [12, 21], we consider the sparsity parameter defined as

𝜖 :=
𝑘

𝑝
,
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and assume that 𝜖 → 0 as 𝑛, 𝑝 → ∞. Given that we have also introduced the notion of signal

strength to our framework, we expect the SNR level, defined as

` :=
𝜏

𝜎
,

to affect the final results as well. Specifically, we aim to study 𝑅(Θ(𝑘, 𝜏), 𝜎) for different values

of (𝜖, `). Due to the mathematical challenges in identifying exact minimax risk, we focus on

obtaining asymptotic minimaxity, and consider the following regimes: as 𝑛, 𝑝 → ∞,

Regime (I) Low signal-to-noise ratio: ` → 0, 𝜖 → 0;

Regime (II) Moderate signal-to-noise ratio: ` → ∞, 𝜖 → 0, ` = 𝑜(
√︁

log 𝜖−1);

Regime (III) High signal-to-noise ratio: 𝜖 → 0, ` = 𝜔(
√︁

log 𝜖−1).

As will be discussed later in the paper, each regime exhibits unique minimaxity, and distinct

minimax estimators emerge in different regimes. But before that, we first derive first-order asymp-

totic result similar as the classical one and reveal its limitations in the SNR-aware minimax setting.

3.2.1 First-order asymptotics

Theorem 14. Assume model (3.1) and parameter space (3.4). The following hold:

• Regime (𝐼): When 𝑘/𝑝 → 0, (𝑘 log(𝑝/𝑘))/𝑛→ 0 and ` = 𝜏/𝜎 → 0,

𝑅(Θ(𝑘, 𝜏)) = 𝑘𝜏2
(
1 + 𝑜(1)

)
.

• Regime (𝐼 𝐼): When 𝑘/𝑝 → 0, (𝑘 log(𝑝/𝑘))/𝑛→ 0 and ` = 𝜏/𝜎 = 𝑜

(√︁
log(𝑝/𝑘)

)
,

𝑅(Θ(𝑘, 𝜏)) = 𝑘𝜏2
(
1 + 𝑜(1)

)
.
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• Regime (𝐼 𝐼 𝐼): When 𝑘/𝑝 → 0, (𝑘 log(𝑝/𝑘))/𝑛→ 0 and ` = 𝜏/𝜎 = 𝜔

(√︁
log(𝑝/𝑘)

)
,

𝑅(Θ(𝑘, 𝜏)) = 𝑘𝜎2 · 2 log(𝑝/𝑘)
(
1 + 𝑜(1)

)
.

One of the main issues in the above theorem is that the first-order asymptotic approximation of

minimax risk does not seem to always offer accurate information. For example, as the signal-to-

noise ratio significantly increases from Regime (I) to Regime (II), the first-order analysis falls short

of capturing any difference and continues to generate the naive zero estimator as the optimal one.2

Moreover, in Regime (III), the result is indistinguishable with the minimax result unconscious to

the SNR as in Theorem 12. In the next section, we push the analysis one step further to develop

second-order asymptotics. This refined version of the SNR-aware minimax analysis will provide a

much more accurate approximation of the minimax risk, and can provide more useful information

and resolve the confusing aspects of the first-order results presented above.

3.2.2 Second-order asymptotics

We first demonstrate the result in Regime (I). As discussed in previous section, the first order

approximation of 𝑅(Θ(𝑘, 𝜏)) is 𝑘𝜏2. Indeed, this is the exact superemum risk of zero estimator

achieved at the boundary of Θ(𝑘, 𝜏). This seems to suggest when the signal-to-noise ratio is low,

no other estimator can outperform the naïve estimator. However, we will show this conclusion is

hasty when we go to higher order analysis. In fact, consider the ridge estimator [36] defined as:

for _ > 0, let

𝛽𝑅 (_) := arg min
𝑏∈R𝑝

∥𝑦 − 𝑋𝑏∥2
2 + _∥𝑏∥

2
2.

The following theorem indicates that up to second order approximation, the ridge estimator is

asymptotically minimax.

Theorem 15. Assume model (3.1) and parameter space (3.4). Suppose 𝑛, 𝑝 → ∞ and 𝑘/𝑝 → 0
2The zero estimator has the exact risk of 𝑘𝜏2, referring to the proof in Section 3.4.4.
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and 𝑘/𝑛→ 0. In Regime (𝐼) where ` = 𝜏/𝜎 → 0, the minimax risk defined in (3.5) satisfies

𝑅(Θ(𝑘, 𝜏), 𝜎) = 𝑘𝜏2
(
1 − 𝑘`2

𝑝

(
1 + 𝑜(1)

) )
.

In addition, the ridge estimator 𝛽𝑅 with tuning _ = 𝑝/(𝑘`2) is asymptotically minimax up to the

second order term, i.e.

sup
𝛽∈Θ(𝑘,𝜏)

E𝛽∥𝛽𝑅 (_) − 𝛽∥2 = 𝑘𝜏2
(
1 − 𝑘`2

𝑝

(
1 + 𝑜(1)

) )
.

The proof of this theorem can be found in Section 3.4.5. The direct result of this theorem

implies that the naïve zero estimator is sub-optimal because its exact superemum risk only corre-

sponds with the first order of the minimax. In addition, note that the Gaussian sequence model

is a special case of the linear regression model, the simulation results in Chapter 2 Section 2.3 is

relevant to the discussion here. As indicated by Figure 2.2 and 2.3, when the SNR level is low, the

ridge estimator (equals the linear estimator in Gaussian sequence model case) outperforms other

estimators on the plot. This corresponds with the conclusion of Theorem 15 here.

Along the discussion, the next theorem aims to obtain second-order approximation of 𝑅(Θ(𝑘, 𝜏))

in Regime (II). However, as we present of proof of Theorem 13, even the first-order upper bound of

the classical 𝑅(Θ(𝑘)) is not trivial to be obtained. Obtaining the upper bound up to second-order

of the extra constrained 𝑅(Θ(𝑘, 𝜏)) is even more challenging. We leave the upper bound proof in

the following theorem to future work of studies.

Theorem 16. Assume model (3.1) and parameter space (3.4). Suppose 𝑛, 𝑝 → ∞ and 𝑘/𝑝 →

0 and (𝑘 log(𝑝/𝑘))/𝑛 → 0. In Regime (𝐼 𝐼) where ` = 𝜏/𝜎 → ∞ and ` = 𝑜(
√︁

log(𝑝/𝑘)),

additionally assuming `4/𝑛→ 0, then the minimax risk defined in (3.5) satisfies

𝑅(Θ(𝑘, 𝜏)) ≥ 𝑘𝜏2
(
1 − 𝑘`2

2𝑝
· 𝑒`2 (

1 + 𝑜(1)
) )
.

The proof of this theorem can be found in Section proof:sec:linear-model-second-order-med-
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snr. Combining this theorem with Theorem 14 in Regime (II), we obtain that 𝑘𝜏2
(
1− 𝑘`2

2𝑝 · 𝑒`2 (1+
𝑜(1)

) )
≤ 𝑅(Θ(𝑘, 𝜏)) ≤ 𝑘𝜏2 (1 + 𝑜(1)

)
. As we expected, the SNR-aware minimax result up to

second-order approximation are consistent with the results in Gaussian sequence model in Chapter

2. This confirms our method in studying minimax problem of sparse estimation. The obtained

results already show that the underlying SNR level intrinsically affects the minimax result and the

optimality of estimators under which.

Remark 4.

In Theorem 16, besides the asymptotic setting in Regime (𝐼 𝐼), we made another assumption that

`4/𝑛 → 0. Note that this additional assumption does not exclude too much region of (𝜖, `) from

Regime (𝐼 𝐼). This is because by original assumption of Regime (𝐼 𝐼), ` = 𝑜(
√︁

log(𝑝/𝑘)) already

implies that `2 ≪ log(𝑝/𝑘) ≪ 𝑛, it is of large possibility that `4 ≪ 𝑛 is also satisfied in practical

setting.

3.3 Discussions

3.3.1 Summary

The estimation problem in sparse linear regression is more challenging compared to Gaus-

sian sequence model. Along the studies, researchers have developed results mostly stated in rate-

minimaxity. The accurate constant of the classical minimax is still hard to be characterized. Based

on this, many estimators including Lasso and best subset are proved to achieve the rate-optimality.

However, as revealed by empirical studies in extensive research, Lasso and best subset exhibits

sub-optimally in different SNR settings compared to each other. This raises the discrepancy be-

tween the theoretical results and the simulation implications. To mitigate this gap, we first provide

the first-order approximation of the classical minimax with accurate constant. However, this is

still insufficient to explain the discrepancy as the the classical minimax framework will output

the same minimax estimator irrespective of the SNR levels, which is against the empirical find-

ings. This calls for the enhancement of the current minimax framework to let it incorporate the
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information of the important factor – SNR into the framework. Along this line, we introduce the

SNR-aware minimaxity which adds additional control of the SNR level in the parameter space and

monitors the minimax risk accordingly. As we introduced in Chapter 2, we split the SNR level in

three different regimes. We first obtain the first-order approximations of the SNR-aware minimax

in all three regimes. Then we show that in low and moderate SNR regimes, the first-order approx-

imations are the same and can be achieved by the zero estimator. Then, we go to the second-order

analysis. We show that the asymptotic minimax estimator in low SNR regime is actually ridge

estimator up to second-order minimax. However, the second-order analysis in moderate and high

SNR regimes are still yet to be completed. The remaining difficulty is to find the minimax es-

timators in these regimes to obtain the upper bounds. So far, we have shown that the low SNR

regime and the moderate SNR regime lower bound results are correspondence with that in Gaus-

sian sequence model. The obtained results already demonstrate that the SNR level intrinsically

affects the minimax results in sparse linear regression problem and the corresponding optimality

of estimators. The analysis of the SNR-aware minimax framework provides new perspectives of

the sparse estimation and more practical guidance for empirical studies.

3.3.2 Future research

• This thesis provides the second-order approximations for the SNR-aware minimax in low

SNR regime and lower bound second-order approximation in moderate SNR regime. The

second-order upper bound in moderate SNR regime and the approximation in high SNR

regime are still missing. It will complete the work if these results are obtained.

• This thesis analyzes the linear regression model under the Gaussian random design of feature

matrix 𝑋 . It will be interesting to study the minimax as well as the SNR-aware minimax

problem for other common designs, e.g., the fixed design under additional assumptions, the

correlated design with the correlation of 𝑖-th and 𝑗-th column of 𝑋 in the form 𝜌 |𝑖− 𝑗 | and

e.t.c..
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• The classical minimax result in Theorem 13 does not reveal a single estimator to be asymp-

tically minimax such as Lasso or best subset. This does not eliminate the possibility that one

of them can attain the asymptotic minimax. It leaves us to think about more efficient proof

method to obtain more accurate risk upper bound for each estimator.

• The current results rely on the assumptions that 𝑘/𝑝 → 0 and (𝑘 log 𝑝)/𝑛 → 0. This

characterizes the sparse signals and high dimensional asymptotic when 𝑝 ≪ 𝑒𝑛. It will be

interesting to explore the topic when the signal is denser 𝑘/𝑝 ≥ 𝑐 and ultra high dimensional

setting 𝑛 = 𝑂 (log 𝑝).

3.4 Proofs of the main results

Throughout the proof sections, we adopt the following notations: We use the uppercase al-

phabets for matrices and lowercase alphabets for vectors. ∥ · ∥𝑙 is the 𝐿𝑙 norm on the vector

space. If without any subscript, the default ∥ · ∥ stands for the 𝐿2 norm. Sometimes, we denote

[𝑝] = {1, . . . , 𝑝} for tidiness. In the proof sections of lower bounds, for 𝑖 ∈ [𝑝], let 𝑥𝑖 denote

the 𝑖-th column of the matrix 𝑋 ∈ R𝑛×𝑝; let 𝑥𝑖,1 ∈ R and 𝑥𝑖,−1R
𝑛−1 denote the first and the rest of

coordinates of column vector 𝑥𝑖.

3.4.1 Preliminaries

Scale invariance

The minimax risks defined in Equations (3.3) and (3.5) of the main text have the following

scale invariance property

𝑅(Θ(𝑘), 𝜎) = 𝜎2 · 𝑅(Θ(𝑘), 1),

𝑅(Θ(𝑘, 𝜏), 𝜎) = 𝜎2 · 𝑅(Θ(𝑘, `), 1),
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where we recall that ` = 𝜏/𝜎. This can be easily verified by rescaling the linear regression model

to have unit variance.

Preliminary probability results

Lemma 22 (Weak law for triangular arrays, Theorem 2.2.6 in [37]). For each 𝑛 let 𝑋𝑛,𝑘 , 1 ≤ 𝑘 ≤ 𝑛,

be independent. Let 𝑏𝑛 > 0 with 𝑏𝑛 → ∞, and let �̄�𝑛,𝑘 = 𝑋𝑛,𝑘1( |𝑋𝑛,𝑘 |≤𝑏𝑛) . Suppose that as 𝑛→ ∞

(i)
∑𝑛
𝑘=1 𝑃( |𝑋𝑛,𝑘 | > 𝑏𝑛) → 0, and

(ii) 𝑏−2
𝑛

∑𝑛
𝑘=1 E�̄�

2
𝑛,𝑘

→ 0.

If we let 𝑆𝑛 = 𝑋𝑛,1 + . . . + 𝑋𝑛,𝑛 and put 𝑎𝑛 =
∑𝑛
𝑘=1 E�̄�𝑛,𝑘 then

(𝑆𝑛 − 𝑎𝑛)/𝑏𝑛 → 0 in probability.

The following lemma is stated in Corollary 4.2.13 in [38].

Lemma 23 (Covering number of the unit sphere). The covering numbers of the unit Euclidean

sphere 𝑆𝑛−1 satisfy, for any 𝜖 ∈ (0, 1], we have

N(𝑆𝑛−1, 𝜖) ≤
(
3
𝜖

)𝑛
.

For 𝜖 > 1, the unit sphere can be covered by just one 𝜖-ball, so N(𝑆𝑛−1, 𝜖) = 1.

The following lemma states a simple concentration for 𝜒 distribution. The proof follows from

the concentration of the Lipschitz function of Gaussians (Theorem 2.26 in [5]) and that the ℓ2 norm

is 1-Lipschitz function of a Gaussian vector.

Lemma 24. Let 𝑧1, . . . , 𝑧𝑛
𝑖.𝑖.𝑑∼ N(0, 1), then for every 𝑡 ≥ 0,

𝑃

(
∥𝑧∥ ≤ (1 + 𝑡)

√
𝑛

)
≥ 1 − 𝑒− 𝑛𝑡2

2 .
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The following result is Lemma 2 of [39].

Lemma 25 (𝜒2-concentration). Fix 𝜏 > 0, and let 𝑍𝑖 ∼ N(0, 1), 𝑖 = 1, . . . , 𝑑. Then,

𝑃

( 𝑑∑︁
𝑖=1

𝑍2
𝑖 < 𝑑 (1 − 𝜏)

)
≤ 𝑒 𝑑

2

(
𝜏+log(1−𝜏)

)
,

and

𝑃

( 𝑑∑︁
𝑖=1

𝑍2
𝑖 > 𝑑 (1 + 𝜏)

)
≤ 𝑒−

𝑑
2

(
𝜏−log(1+𝜏)

)
.

Let 𝜒2
𝑝 (_) denote the non-central chisquare of degrees of freedom 𝑝 and the noncentrality

parameter _, we have:

Lemma 26 (Non-central chisquare, Theorem 3 & 4 in [40]). Suppose 𝑋 ∼ 𝜒2
𝑝 (_). Then

(i) for 𝑐 > 0, 𝑃(𝑋 > 𝑝 + _ + 𝑐) ≤ exp
[
− 𝑝𝑐2

4(𝑝+2_) (𝑝+2_+𝑐)

]
;

(ii) for 0 < 𝑐 < 𝑝 + _, 𝑃(𝑋 < 𝑝 + _ − 𝑐) ≤ exp
[
− 𝑝𝑐2

4(𝑝+2_)2

]
.

The following lemma can be proved following Exercise 2.5.10 in [38].

Lemma 27 (𝐿1 bound of the maximum of sub-gaussians). Let 𝑋1, 𝑋2, . . . , be an infinite sequence

of sub-gaussian random variables which are note necessarily independent. Let 𝐾 = max𝑖 ∥𝑋𝑖∥𝜓2

be the maximum sub-gaussian norm. Then for every 𝑁 ≥ 2 we have

Emax
𝑖≤𝑁

|𝑋𝑖 | ≤ 𝐶𝐾
√︁

log 𝑁.

The following lemma states the Gaussian maxima result in tail probability.

Lemma 28 (Concentration of the maximum of Gaussians). Let Z1, . . . , Z𝑝
𝑖.𝑖.𝑑∼ N(0, 1). For all

𝑢 > 0, we have

𝑃

(
max
1≤𝑖≤𝑝

|Z𝑖 | ≥
√︁

2 log 𝑝 + 𝑢
)
≤ 𝑒−

𝑢2
2 .
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Proof. Using union bound and Gaussian tail bound, for 𝑢 ≥ 1,

𝑃
(

max
1≤𝑖≤𝑝

|Z𝑖 | ≥ 𝑢
)
≤

𝑝∑︁
𝑖=1

𝑃
(
|Z𝑖 | ≥ 𝑢

)
≤ 2𝑝

1
𝑢

1
√

2𝜋
𝑒−

𝑢2
2 ≤ 2𝑝

√
2𝜋
𝑒−

𝑢2
2 ≤ 𝑝𝑒−

𝑢2
2 .

Let 𝑢 =
√︁

2(log 𝑝 + 𝑡), then
√︁

2(𝑡 + log 𝑝) ≥ 1 for all 𝑡 > 0 since 𝑝 ≥ 2,

𝑃

(
max
1≤𝑖≤𝑝

|Z𝑖 | ≥
√︁

2(𝑡 + log 𝑝)
)
≤ 𝑒−𝑡 .

Thus,

𝑃

(
max
1≤𝑖≤𝑝

|Z𝑖 | ≥
√︁

2 log 𝑝 + 𝑢
)
≤ 𝑒− 𝑢2

2 −𝑢
√

2 log 𝑝 ≤ 𝑒− 𝑢2
2 .

□

In proving most of the upper bound of our results, we will constantly use the concentration of

the Gaussian order statisics. We construct a Bernstein-type tail bound based on the exponential

Efron-Stein inequality for order-statistics. The following result is from [41].

Lemma 29 (Theorem 2.9 in [41]). Let 𝑋1, . . . , 𝑋𝑝 be independently distributed according to 𝐹, let

𝑋(1) ≥ . . . ≥ 𝑋(𝑝) be the order statistics and let Δ𝑘 = 𝑋(𝑘) − 𝑋(𝑘+1) be the 𝑘 𝑡ℎ spacing. Then for

𝑡 ≥ 0 and 1 ≤ 𝑘 ≤ 𝑝/2,

logE𝑒𝑡 (𝑋(𝑘 )−E𝑋(𝑘 ) ) ≤ 𝑡 𝑘
2
E[Δ𝑘 (𝑒𝑡Δ𝑘 − 1)] .

Based on the above lemma, we show the following properties of Gaussian order statistics con-

centration:

Lemma 30. Let 𝑋1, . . . , 𝑋𝑝
𝑖.𝑖.𝑑∼ N(0, 1).

(i) For all 2 ≤ 𝑘 ≤ 𝑝, E|𝑋 | (𝑖) ≤
√︁

2 log(2𝑝/𝑖).
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(ii) For all 𝑢 > 0, 1 ≤ 𝑘 ≤ 𝑝/2, and some constant 𝑐 > 0,

𝑃

(
|𝑋 | (𝑘) − E|𝑋 | (𝑘) ≥ 𝑢

)
≤ exp

(
− 𝑘

(𝑢
𝑐
∧

(𝑢
𝑐

)2))
.

Proof. Prove (𝑖). Since 1
𝑚
≤

∫ 𝑚

𝑚−1
1
𝑥
𝑑𝑥 = log𝑚−log(𝑚−1), ∑𝑝

𝑚=𝑖
1
𝑚
≤ log 𝑝−log(𝑖−1) ≤ log(𝑝/𝑖).

E|𝑋 |2(𝑖) = E
[
Φ−1(1 −𝑈(𝑖)/2)

]
≤ E

[
2 log

2
𝑈(𝑖)

]
= 2 log 2 + 2

𝑝∑︁
𝑗=𝑖

1
𝑗
≤ 2 log

2𝑝
𝑖
,

where 𝑈(𝑖) is the 𝑖-th largest among 𝑝 i.i.d. uniform random variables. Then (𝑖) follows from(
E|𝑋 | (𝑖)

)2 ≤ E|𝑋 |2(𝑖) .

Prove (𝑖𝑖). Let the C.D.F of the absolute value of the standard normal be Φ̃, then Φ̃(𝑥) =

2Φ(𝑥) − 1. The C.D.F. of Exp(1) is 1− 𝑒−𝑥 . Let 𝑌1, . . . , 𝑌𝑝
𝑖.𝑖.𝑑∼ Exp(1) and 𝑌(1) ≥ 𝑌(2) ≥ . . . , 𝑌(𝑝) .

Then

|𝑋 |𝑖 ∼ Φ̃−1(1 − 𝑒−𝑌𝑖 ) = Φ−1(1 − 1
2
𝑒−𝑌𝑖 ) ⇒ |𝑋 | (𝑖) ∼ Φ−1(1 − 1

2
𝑒−𝑌(𝑖) ).

Let �̃� (𝑡) := Φ−1(1− 1
2𝑡 ), |𝑋 | (𝑖) ∼ �̃� (𝑒𝑌(𝑖) ). The spacing of exponentials satisfies 𝑌(𝑘) −𝑌(𝑘+1) ∼ 𝐸1

𝑘
,

where 𝐸1 ∼ Exp(1) is independent of all 𝑌𝑖’s and 𝑋𝑖’s. Thus,

Δ𝑘 := |𝑋 | (𝑘) − |𝑋 | (𝑘+1) ∼ �̃�
(
𝑒

𝐸1
𝑘
+𝑌(𝑘+1)

)
− �̃�

(
𝑒𝑌(𝑘+1)

)
.

By Proposition 4.1 in [41], the property of �̃� ◦ exp satisfies

Δ𝑘 ≤
√

2𝐸1

𝑘
√︁

log 2 + 𝑌(𝑘+1)
.

The integration of the exponential has, for 0 ≤ ` < 1/2,

∫ ∞

0
`𝑥(𝑒`𝑥 − 1)𝑒−𝑥𝑑𝑥 = `2(2 − `)

(1 − `)2 ≤ 2`2

1 − 2`
.
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Thus,

E
[
𝑡Δ𝑘 (𝑒𝑡Δ𝑘 − 1) |𝑌(𝑘+1)

]
≤ 4𝑡2

𝑘2(log 2 + 𝑌(𝑘+1))
1

1 − 2
√

2𝑡
𝑘
√

log 2+𝑌(𝑘+1)

≤ 4𝑡2

𝑘2 log 2
1

1 − 2
√

2𝑡
𝑘
√

log 2

.

Therefore,

log
(
E𝑒𝑡 ( |𝑋 | (𝑘 )−E|𝑋 | (𝑘 ) )

)
≤ 𝑡𝑘

2
E[Δ𝑘 (𝑒𝑡Δ𝑘 − 1)] ≤ 2𝑡2

𝑘 log 2
1

1 − 2
√

2𝑡
𝑘
√

log 2

.

Let 𝑣𝑘 = 4
log 2·𝑘 , then

log
(
E𝑒𝑡 ( |𝑋 | (𝑘 )−E|𝑋 | (𝑘 ) )

)
≤ 𝑣𝑘 𝑡

2

2(1 − 𝑡
√︁

2𝑣𝑘/𝑘)
.

The Bernstein inequality follows

𝑃

(
|𝑋 | (𝑘) − E|𝑋 | (𝑘) ≥

√︁
2𝑣𝑘 𝑡 +

√︁
2𝑣𝑘/𝑘𝑡

)
≤ 𝑒−𝑡 .

Write it in another form, we obtain (𝑖𝑖). □

3.4.2 Proof of lower bound in Theorem 13

As discussed in Section 3.4.1, the minimax risk in (3.3) is scale-invariant of noise variance.

Hence, without loss of generality, we prove the theorem under 𝜎 = 1 in model (3.1).

Suppose that we have a prior distribution 𝜋 on the regression coefficients whose support is

contained in Θ(𝑘). For any estimator 𝛽, it is straightforward to see that

E𝜋∥𝛽 − 𝛽∥2 ≤ sup
𝛽∈Θ(𝑘)

E∥𝛽 − 𝛽∥2, (3.6)

where the expectation on the left is with respect to the randomness in (𝑋, 𝑧, 𝛽), while the expecta-

tion on the right is with respect to (𝑋, 𝑧) only. Let 𝐵(𝜋) be the Bayes risk of 𝜋 for squared loss.
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By taking the infimum with respect to 𝛽, we conclude that

𝐵(𝜋) ≤ inf
𝛽

sup
𝛽∈Θ(𝑘)

E∥𝛽 − 𝛽∥ = 𝑅(Θ(𝑘), 1). (3.7)

Hence, in order to obtain a lower bound for the minimax risk, one can use a particular prior distri-

bution and calculate the Bayes risk for that specific distribution.

The proof of lower bound of Theorem 13 relies on the independent block prior, which was once

introduced in Chapter 8.6 of [3]. The independent block prior 𝜋𝐼𝐵 (_; 𝑝, 𝑘) [3, 33] is constructed

in the following way: divide (1, . . . , 𝑝) into 𝑘 blocks, for block 𝑗 , randomly select an index 𝐼 𝑗 ∈

{( 𝑗 − 1)𝑚 + 1, . . . , 𝑗 · 𝑚}, 𝑚 = ⌈𝑝/𝑘⌉ and set 𝛽( 𝑗) = (𝛽( 𝑗−1)𝑚+1, . . . , 𝛽 𝑗𝑚) = _𝑒𝐼 𝑗 . The selection

between different blocks are independent. Note that the spike choice _ = _𝑛,𝑝,𝑘 can depend on

𝑛, 𝑝, 𝑘 . Sometimes for notational simplicity, throughout the proof, we drop the dependency of _

on the asymptotic parameters without ambiguity.

The following proposition states a lower bound of the Bayes risk under 𝜋𝐼𝐵 if the spike _

is below some threshold. This proposition is sufficient to provide a lower bound matching with

the upper bound up to first order asymptotics. In fact, let _ =
√︁

2 log(𝑝/𝑘) ·
(
1 + 𝑜(1)

)
. Then

Proposition 1 indicates that

E𝜋∥𝛽𝜋 − 𝛽∥2 ≥ 2𝑘𝜎2 log(𝑝/𝑘)
(
1 + 𝑜(1)

)
.

Indeed, the condition of choice of _ in Proposition 1 is weaker, covering a broader bandwidth

of _ from near zero to as large as
√︁

2 log(𝑝/𝑘) → ∞. We will discuss in Section 3.4.4 that this

relaxation will provide a more general lower bound for even SNR-aware minimax.

Proposition 1. Assume model (3.1) and suppose (log(𝑝/𝑘))/𝑛 → 0 and 𝑝/𝑘 → ∞. Let _ > 0

and 𝜋 := 𝜋𝐼𝐵 (_; 𝑝, 𝑘) be the independent block prior of 𝛽. Denote 𝛽𝜋 as the Bayesian estimator

(posterior mean) under 𝜋. For _ > 0 satisfying
√︁

2 log(𝑝/𝑘) − _ → +∞, we have

E𝜋∥𝛽𝜋 − 𝛽∥2 ≥ 𝑘𝜎2_2 (
1 + 𝑜(1)

)
.
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Proof. Because of the scalability of the risk function, described in Section 3.4.1, we can prove the

conclusion for 𝜎 = 1 without loss of generality. Hence, in the rest of the proof, we assume that

𝜎 = 1. Given that we have used the independent block prior, the Bayes risk satisfies the following

property:

E𝜋∥𝛽𝜋 − 𝛽∥2 = 𝑘E𝜋∥𝛽(1)𝜋 − 𝛽(1) ∥2, (3.8)

where 𝛽(1) denotes a part of 𝛽 whose coordinates belong to the first block. Similarly, 𝛽(1)𝜋 denotes

a part of the posterior mean 𝛽𝜋 whose indices correspond to the first block.

In the rest of the proof, we will also use the notation 𝛽(−1) to denote the part of 𝛽 whose indices

do not belong to the first block. As a result, we have 𝛽 = (𝛽(1) , 𝛽(−1)). We will also use the notation

�̃� = 𝑦 − 𝑋 (−1)𝛽(−1) in which 𝑋 (−1) is a subset of matrix 𝑋 whose column indices do not belong to

the first block. We have

�̃� = 𝑦 − 𝑋 (−1)𝛽(−1) = 𝑋 (1)𝛽(1) + 𝑧.

Hence, we can conclude that ( �̃� |𝑋 (1)) ∼ N (𝑋 (1)𝛽(1) , 𝐼𝑛). As is clear from (3.8), to obtain a lower

bound for the Bayes risk, we need to find a lower bound for E𝜋∥𝛽(1)𝜋 − 𝛽(1) ∥2. We have

E𝜋∥E𝜋
(
𝛽(1)

��� 𝑦, 𝑋)
− 𝛽(1) ∥2

= E𝜋∥E𝛽 (−1)

[
E𝜋

(
𝛽(1)

��� 𝑦, 𝑋, 𝛽(−1)
) ]

− 𝛽(1) ∥2

(𝑎)
≥ E𝜋∥E𝜋

(
𝛽(1)

��� 𝑦, 𝑋, 𝛽(−1)
)
− 𝛽(1) ∥2

(𝑏)
= E𝜋∥E𝜋

(
𝛽(1)

��� �̃�, 𝑋 (1) , 𝑋 (−1) , 𝛽(−1)
)
− 𝛽(1) ∥2

(𝑐)
= E𝜋∥E𝜋

(
𝛽(1)

��� �̃�, 𝑋 (1)
)
− 𝛽(1) ∥2. (3.9)

To obtain Inequality (a), we note that if allowing additional condition on 𝛽(−1) , the posterior

mean E𝜋 (𝛽(1) |𝑦, 𝑋, 𝛽(−1)) minimizes the expected squared loss compared to other functions of

(𝑦, 𝑋, 𝛽(−1)). Equality (b) is due to the fact that by knowing the values of 𝑦, 𝑋, 𝛽(−1) we can cal-

culate �̃�, 𝑋 (1) , 𝑋 (−1) , 𝛽(−1) and vice versa. Finally, Equality (c) is due to the fact that (𝑋 (−1) , 𝛽(−1))

are independent of 𝛽(1) and ( �̃�, 𝑋 (1)).
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As is clear from (3.9) to obtain a lower bound, we have to find a lower bound for E𝜋∥E𝜋
(
𝛽(1)

���̃�, 𝑋 (1) )−
𝛽(1) ∥2. Focusing on the first block for 𝛽(1) ∈ R𝑚, the independent block prior is reduced to the

single spike prior 𝜋𝑆 (_;𝑚) [3] defined as: select an index 𝐼 ∈ {1, . . . , 𝑚} uniformly at random and

set 𝛽 = _𝑒𝐼 ∈ R𝑚. The following lemma provides a lower bound for E𝜋∥E𝜋
(
𝛽(1)

���̃�, 𝑋 (1) ) − 𝛽(1) ∥2

based on the single spike prior.

Lemma 31. Consider model (3.1) with 𝜎 = 1 and 𝛽 ∈ R𝑚. Suppose 𝑛, 𝑚 → ∞ and (log𝑚)/𝑛 →

0. Let 𝜋 = 𝜋𝑆 (_;𝑚) be the single spike prior of 𝛽. Denote 𝛽𝜋 as the Bayesian estimator under 𝜋.

For _ > 0 satisfying
√︁

2 log𝑚 − _ → ∞, we have

E𝜋∥𝛽𝜋 − 𝛽∥2 ≥ _2(1 + 𝑜(1)).

We can then conclude from Lemma 31 that

E𝜋∥E𝜋
(
𝛽(1)

���̃�, 𝑋 (1) ) − 𝛽(1) ∥2 ≥ _2(1 + 𝑜(1)).

Thus, combining this equation with (3.8) and (3.9) proves

E𝜋∥𝛽𝜋 − 𝛽∥2 ≥ 𝑘_2 (
1 + 𝑜(1)

)
.

□

Proof of Lemma 31

Under 1-spike prior, denote 𝐼 by the index of the spike coordinate and the posterior probability

by 𝑝𝑖 (𝑦, 𝑋) = 𝑃(𝐼 = 𝑖 |𝑦, 𝑋), 𝑖 ∈ [𝑝], we have

E𝜋∥𝛽𝜋 − 𝛽∥2
2 = _2E_𝑒1 (𝑝1(𝑦, 𝑋) − 1)2 + _2(𝑝 − 1)E_𝑒2 (𝑝1(𝑦, 𝑋))2

≥ _2E_𝑒1 (𝑝1(𝑦, 𝑋) − 1)2. (3.10)
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Note that in the above equation, the notation E_𝑒𝑖 means that we are taking the expecatation as-

suming that the spike has happened at the 𝑖th coordinate of 𝛽, and that the posterior probability

𝑝1(𝑦, 𝑋) is given by

𝑝1(𝑦, 𝑋) = 𝑃(𝐼 = 1 | 𝑦, 𝑋) =
exp(_𝑥𝑇1 𝑦 − _

2∥𝑥1∥2/2)
exp(_𝑥𝑇1 𝑦 − _2∥𝑥1∥2/2) + ∑𝑚

𝑖=2 exp(_𝑥𝑇
𝑖
𝑦 − _2∥𝑥𝑖∥2/2)

.

For notational simplicity, in the rest of the proof we use the simplified notation 𝑝1 instead

of 𝑝1(𝑦, 𝑋). Also, the notation 𝑃_𝑒1 denotes the joint probability of 𝑋, 𝑦 assuming that the first

coordinate of 𝛽 is equal to _ and the rest are zero. Since 0 ≤ 𝑝1 ≤ 1, if we can show that

𝑝1 → 0 in 𝑃_𝑒1- probability, (3.11)

then by combining the continuous mapping and the dominated convergence theorems with (3.10),

we will obtain

E𝜋∥𝛽𝜋 − 𝛽∥2 ≥ _2(1 + 𝑜(1)).

Let 𝑝 (_𝑒1)
𝑖

denote the expression for 𝑝𝑖 (𝑦, 𝑋) under the assumption that 𝛽 = _𝑒1. Also, use the

notation 𝑥𝑖,1 and 𝑥𝑖,−1 for the first coordinate of 𝑥𝑖 and the vector that has all the elements of 𝑥𝑖

except for 𝑥𝑖,1. Then, we have

𝑝
(_𝑒1)
1 =

[
1 +

∑𝑚
𝑖=2 exp

(
_𝑥𝑇

𝑖
(_𝑥1 + 𝑧) − _2∥𝑥𝑖∥2/2

)
exp

(
_2∥𝑥1∥2/2 + _𝑥𝑇1 𝑧

) ]−1

𝑑
=

[
1 +

∑𝑚
𝑖=2 exp

(
∥_𝑥1 + 𝑧∥_𝑥𝑖,1 − _2𝑥2

𝑖,1/2 − _2∥𝑥𝑖,−1∥2/2
)

exp
(
_2∥𝑥1∥2/2 + _𝑥𝑇1 𝑧

) ]−1

,

where we have used the notation 𝐴
𝑑
= 𝐵 to denote the fact that random varibales 𝐴 and 𝐵

have exactly the same distributions. Also, to obtain the second equality, we have used the fact

that since 𝑥𝑖 is independent of _𝑥1 + 𝑧, we have _𝑥𝑇
𝑖
(_𝑥1 + 𝑧)

𝑑
= ∥_𝑥1 + 𝑧∥_𝑥𝑖,1 (this can be easily
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confirmed by for instance conditioning on 𝑥1 and seeing that the distribution of 𝜏𝑥𝑇
𝑖
(𝜏𝑥1 + 𝑧) is

N(0, _2∥_𝑥1 + 𝑧∥2). Write

𝑝1 =
(
1 + A𝑛,𝑚B𝑛,𝑚

)−1
,

where

A𝑛,𝑚 =

∑𝑚
𝑖=2 exp

(
∥_𝑥1 + 𝑧∥_𝑥𝑖,1 − _2

2 𝑥
2
𝑖,1 −

_2

2 ∥𝑥𝑖,−1∥2
)

(𝑚 − 1) (1 + _2

𝑛
)− 𝑛

2 exp
(

1
2

1
1+𝑛/_2 ∥𝑧 + _𝑥1∥2

) , (3.12)

B𝑛,𝑚 =

(𝑚 − 1) (1 + _2

𝑛
)− 𝑛

2 exp
(

1
2

1
1+𝑛/_2 ∥𝑧 + _𝑥1∥2

)
exp

(
_2

2 ∥𝑥1∥2 + _𝑥𝑇1 𝑧
) . (3.13)

In order to show (3.11), our goal is to first show that A𝑛,𝑚

𝑝
→ 1 and B𝑛,𝑚

𝑝
→ ∞. This will be done

in the next two lemmas.

Lemma 32. Consider model (3.1) with 𝜎 = 1 and 𝛽 ∈ R𝑚. Suppose that (log𝑚)/𝑛→ 0. Consider

the random variable B𝑛,𝑚 defined in (3.13). If _ > 0 and
√︁

2 log𝑚 − _ → +∞, then

B𝑛,𝑚
𝑝
→ ∞.

Proof. Throughout this proof, for notational simplicity we use the notation 𝜏 instead of 𝜏𝑛,𝑝. We

can rewrite B𝑛,𝑝 in the following form:

B𝑛,𝑚 = (𝑚 − 1)
(
1 + _

2

𝑛

)− 𝑛
2

exp


1
2(1 + 𝑛/_2)

∥𝑧∥2 −
(
1 − 1

1 + 𝑛/_2

) (
_𝑥𝑇1 𝑧 +

_2

2
∥𝑥1∥2

) .
Using the central limit theorem, we have the following estimate:

• ∥𝑧∥2 = 𝑛 +𝑂𝑝 (
√
𝑛),

• _2

2 ∥𝑥1∥2 + _𝑥𝑇1 𝑧 =
_2

2

(
1 +𝑂𝑝 ( 1√

𝑛
)
)
+ _ · 𝑂𝑝 (1).
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Then, we have

B𝑛,𝑚 =
(
1 + 𝑜𝑝 (1)

)
exp

[
log(𝑚 − 1) − _

2

2
+ 1

2(1 + 𝑛/_2)

(
𝑛 +𝑂𝑝 (

√
𝑛)

)
− 𝑛/_2

1 + 𝑛/_2

(_2

2
+𝑂𝑝

(√︁
log𝑚 + log𝑚

√
𝑛

))]
=

(
1 + 𝑜𝑝 (1)

)
exp

[
log(𝑚 − 1) − _

2

2
+𝑂𝑝

(√︁
log𝑚

)]
,

where in the second equality, we have used that (log𝑚)/𝑛→ 0 implies (log𝑚)/
√
𝑛 = 𝑜(

√︁
log𝑚).

Then to show B𝑛,𝑚
𝑝
→ +∞, using the above expression and the continuous mapping theorem, it’s

sufficient to argue

log(𝑚 − 1) − _
2

2
=

(√︁
log(𝑚 − 1) − _

√
2

) (√︁
log(𝑚 − 1) + _

√
2

)
→ +∞.

Note that the assumption
√︁

2 log𝑚 − _ → +∞ implies log(𝑚 − 1) − _2

2 = 𝜔(
√︁

log(𝑚 − 1)). Then

as 𝑚 → ∞, log(𝑚 − 1) − _2

2 = 𝜔(
√︁

log(𝑚 − 1)) → +∞. Therefore,

B𝑛,𝑚
𝑝
→ +∞.

□

Lemma 33. Consider model (3.1) with 𝜎 = 1 and 𝛽 ∈ R𝑚. Suppose that (log𝑚)/𝑛→ 0. Consider

the random variable A𝑛,𝑝 defined in (3.12). If _ > 0 and
√︁

2 log𝑚 − _ → +∞, then

A𝑛,𝑚

𝑝
→ 1.

Proof. The proof is based on the weak law of triangular arrays, one version of which is stated in

Lemma 22. Define

𝑆𝑛,𝑚 :=
𝑚∑︁
𝑖=2

exp
[
∥_𝑥1 + 𝑧∥_𝑥𝑖,1 −

_2

2
𝑥2
𝑖,1 −

_2

2
∥𝑥𝑖,−1∥2

]
.
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Let

𝑌𝑚,𝑖 := exp
[
∥_𝑥1 + 𝑧∥_𝑥𝑖,1 −

_2

2
𝑥2
𝑖,1 −

_2

2
∥𝑥𝑖,−1∥2

]
.

Note that {𝑌𝑚,𝑖 : 𝑖 = 2, . . . , 𝑛} are independent only if conditioning on ∥_𝑥1 + 𝑧∥. Hence, instead,

we will prove, for certain 𝑏𝑛,𝑚 to be determined,

(i)
∑𝑚
𝑖=2 𝑃

(
𝑌𝑚,𝑖 > 𝑏𝑛,𝑚

���∥_𝑥1 + 𝑧∥
)
→ 0 a.s.

(ii) 𝑏−2
𝑛,𝑚

∑𝑚
𝑖=2 E

[
𝑌2
𝑚,𝑖
1(𝑌𝑚,𝑖≤𝑏𝑛,𝑚)

���∥_𝑥1 + 𝑧∥
]
→ 0 a.s.

For simplicity, without ambiguity, we write 𝑏 = 𝑏𝑛,𝑚 in the following proof.

To prove condition (i), using Lemma 34 (i) and applying the non-central 𝜒2 inequality in

Lemma 26,

𝑚∑︁
𝑖=2

𝑃

(
𝑌𝑚,𝑖 > 𝑏

���∥_𝑥1 + 𝑧∥
)

= (𝑚 − 1)𝑃
[(√

𝑛𝑥𝑖,1 −
√
𝑛

_
∥_𝑥1 + 𝑧∥

)2
+

(√
𝑛∥𝑥𝑖,−1∥

)2
<
𝑛

_2

(
∥_𝑥1 + 𝑧∥2 − 2 log 𝑏

) ���∥_𝑥1 + 𝑧∥
]

= (𝑚 − 1)𝑃
(
𝜒2
𝑛 (𝛾1) <

𝑛

_2
(
∥_𝑥1 + 𝑧∥2 − 2 log 𝑏

) ���∥_𝑥1 + 𝑧∥
)

≤ (𝑚 − 1) exp
[
−

𝑛𝑐2
1

4(𝑛 + 2𝛾1)2

]
= exp

[
− 𝑛

4(𝑛 + 2𝛾1)2

(
𝑐1 −

2(𝑛 + 2𝛾1)√
𝑛

√︁
log(𝑚 − 1)

) (
𝑐1 +

2(𝑛 + 2𝛾1)√
𝑛

√︁
log(𝑚 − 1)

)]
. (3.14)

where 𝑐1 = 𝑛 + 𝑛/_2 · 2 log 𝑏 and 𝛾1 = 𝑛/_2 · ∥_𝑥1 + 𝑧∥2. Since _2 = 𝑜(𝑛), by strong law of large

numbers,
1
𝑛
∥_𝑥1 + 𝑧∥2 → 1 a.s..

Thus, 𝑛 + 2𝛾1 = 𝑛 · 𝑛
_2

(
1 + 𝑜𝑝 (1)

)
. A sufficient condition for the upper bound in (3.14) goes to zero

a.s. is

[
𝑛

4(𝑛 + 2𝛾1)2
2(𝑛 + 𝛾1)√

𝑛

√︁
log(𝑚 − 1)

]−1
= 𝑜𝑝

(
𝑐1 −

2(𝑛 + 2𝛾1)√
𝑛

√︁
log(𝑚 − 1)

)
,
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or

4
√︂

𝑛

log(𝑚 − 1) = 𝑜𝑝

(
2 log 𝑏 − 2(_2 + 2∥_𝑥1 + 𝑧∥2)

√
𝑛

√︁
log(𝑚 − 1)

)
. (3.15)

There exists such choice of 𝑏 since

2(_2 + 2𝛾1)√
𝑛

√︁
log(𝑚 − 1)_

2

𝑛
=

2(_2 + 2∥_𝑥1 + 𝑧∥2)
√
𝑛

√︁
log(𝑚 − 1) = 4

√︁
𝑛 log(𝑚 − 1)

(
1 + 𝑜𝑝 (1))

(3.16)

as _2 = 𝑜(𝑛) and log(𝑚 − 1) → ∞. Therefore, condition (i) is satisfied.

To prove condition (ii), using Lemma 34 (ii) and applying Lemma 26, we have

𝑏−2
𝑚∑︁
𝑖=2
E
[
𝑌2
𝑚,𝑖1(𝑌𝑚,𝑖≤𝑏)

���∥_𝑥1 + 𝑧∥
]

= 𝑏−2(𝑚 − 1)
(
1 + 2_2

𝑛

)−𝑛/2
exp

(
2∥_𝑥1 + 𝑧∥2

2 + 𝑛/_2

)
·𝑃

[(
𝑍 − 𝑛/_2√︁

2 + 𝑛/_2
∥𝑧 + _𝑥1∥

)2
+ 𝜒2

𝑛−1 ≥
(
2 + 𝑛/_2

) (
∥_𝑥1 + 𝑧∥2 − 2 log 𝑏

) ���∥_𝑥1 + 𝑧∥
]

≤ 𝑏−2(𝑚 − 1)
(
1 + 2_2

𝑛

)−𝑛/2
exp

(
2∥_𝑥1 + 𝑧∥2

2 + 𝑛/_2

)
= exp

[
− 2 log 𝑏 + log(𝑚 − 1) − _2 + 2∥_𝑥1 + 𝑧∥2

2 + 𝑛/_2

]
.

Since _ = 𝑂 (
√︁

log𝑚) and log𝑚 = 𝑜(𝑛), we have ∥_𝑥1+𝑧∥2

2+𝑛/_2 = _2 (1+ 𝑜𝑝 (1)) , _2 = 𝑜(
√︁
𝑛 · log𝑚) and

log(𝑚 − 1) = 𝑜(
√︁
𝑛 log𝑚). For 𝑏 satisfying (3.15), (3.16),

√︁
𝑛 · log𝑚 = 𝑂𝑝 (2 log 𝑏). Therefore,

exp
[
− 2 log 𝑏 + log(𝑚 − 1) − _2 + 2∥_𝑥1 + 𝑧∥2

2 + 𝑛/_2

]
→ 0 a.s..

Thus, condition (ii) is satisfied.

Finally, we calibrate

𝑎𝑛,𝑚 :=
𝑚∑︁
𝑖=2
E
[
𝑌𝑚,𝑖1(𝑌𝑚,𝑖≤𝑏)

���∥_𝑥1 + 𝑧∥
]
.
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From Lemma 34 (iii), we have

𝑎𝑛,𝑚 = (𝑚 − 1)
(
1 + _2/𝑛

)−𝑛/2
exp

(
∥_𝑥1 + 𝑧∥2

2(1 + 𝑛/_2)

) (
1 − 𝑃

[
𝜒2
𝑛 (𝛾2) ≤ 𝑛 + 𝛾2 − 𝑐2

���∥_𝑥1 + 𝑧∥
] )
,

where 𝑐2 = (1 + 𝑛/_2) · 2 log 𝑏 + 𝑛 − 1+2𝑛/_2

1+𝑛/_2 ∥_𝑥1 + 𝑧∥2 and 𝛾2 =
(𝑛/_2)2

1+𝑛/_2 ∥_𝑥1 + 𝑧∥2. We will show

that

𝑃

[
𝜒2
𝑛 (𝛾2) ≤ 𝑛 + 𝛾2 − 𝑐2

���∥_𝑥1 + 𝑧∥
]
→ 0 a.s..

Using Lemma 26, we have

𝑃

[
𝜒2
𝑛 (𝛾2) ≤ 𝑛 + 𝛾2 − 𝑐2

���∥_𝑥1 + 𝑧∥
]
≤ exp

[
−

( √
𝑛𝑐2

2(𝑛 + 𝛾2)

)2]
.

As 1
𝑛
∥_𝑥1 + 𝑧∥2 → 1 a.s., 𝛾2 = 𝑛

_2

(
1 + 𝑜𝑝 (1)

)
. Using the selection of 𝑏 in (3.15) and (3.16),

𝑛

_2

√︁
𝑛 log𝑚 = 𝑂𝑝 (𝑐2). Thus,

√︁
log𝑚 = 𝑂𝑝

( √
𝑛𝑐2

2(𝑛+𝛾2)

)
. As 𝑚 → ∞, we have

exp
[
−

( √
𝑛𝑐2

2(𝑛 + 𝛾2)

)2]
→ 0 a.s..

Thus,

𝑎𝑛,𝑚 = (𝑚 − 1)
(
1 + _

2

𝑛

)− 𝑛
2

exp
(
∥_𝑥1 + 𝑧∥2

2(1 + 𝑛/_2)

)
·
(
1 + 𝑜𝑝 (1)

)
.

Now, we use Lemma 22 with the bounded convergence theorem to obtain, ∀𝜖 > 0,

𝑃

(����𝑆𝑛,𝑚 − 𝑎𝑛,𝑚
𝑏𝑛,𝑚

���� > 𝜖 ) = E𝑃

(����𝑆𝑛,𝑚 − 𝑎𝑛,𝑚
𝑏𝑛,𝑚

���� > 𝜖 ����∥_𝑥1 + 𝑧∥
)
→ 0.

Therefore, we conclude

A𝑛,𝑚

𝑝
→ 1.

□

Lemma 34. Assume 𝑥1, . . . , 𝑥𝑚
𝑖.𝑖.𝑑∼ N(0, 1

𝑛
𝐼𝑛), 𝑧 ∼ N(0, 𝐼𝑛) and {𝑥𝑖 : 𝑖 = 1, . . . , 𝑚} being
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independent with 𝑧. Let

𝑌𝑚,𝑖 := exp
[
∥_𝑥1 + 𝑧∥_𝑥𝑖,1 −

_2

2
𝑥2
𝑖,1 −

_2

2
∥𝑥𝑖,−1∥2

]
, 𝑖 = 2, . . . , 𝑛.

Let 𝑍 ∼ N(0, 1), 𝜒2
𝑛−1 denote the chi-squared variable with degrees of freedom 𝑛 − 1. (𝑍, 𝜒2

𝑛−1)

are independent with (𝑥1, 𝑧). Then for ∀_ > 0 and ∀𝑏 > 0,

(i)
𝑚∑︁
𝑖=2

𝑃(𝑌𝑚,𝑖 > 𝑏 |∥_𝑥1 + 𝑧∥) = (𝑚 − 1)

· 𝑃
((√

𝑛𝑥2,1 −
√
𝑛

_
∥_𝑥1 + 𝑧∥

)2
+ (

√
𝑛∥𝑥2,−1∥)2 <

𝑛

_2 (∥_𝑥1 + 𝑧∥2 − 2 log 𝑏)
����∥_𝑥1 + 𝑧∥

)
.

(ii)
𝑚∑︁
𝑖=2
E

[
𝑌2
𝑚,𝑖1(𝑌𝑚,𝑖≤𝑏) |∥_𝑥1 + 𝑧∥

]
=(𝑚 − 1)

(
1 + 2_2

𝑛

)− 𝑛
2

exp

(
2∥_𝑥1 + 𝑧∥2

2 + 𝑛/_2

)
·

𝑃


(
𝑍 − 𝑛/_2√︁

2 + 𝑛/_2
∥𝑧 + _𝑥1∥

)2

+ 𝜒2
𝑛−1 ≥ (2 + 𝑛

_2 ) (∥_𝑥1 + 𝑧∥2 − 2 log 𝑏)

������ ∥_𝑥1 + 𝑧∥
 .

(iii)
𝑚∑︁
𝑖=2
E

[
𝑌𝑚,𝑖1(𝑌𝑚,𝑖≤𝑏)

��� ∥𝑧 + _𝑥1∥
]

=(𝑚 − 1)
(
1 + _2/𝑛

)− 𝑛
2 exp

(
∥𝑧 + _𝑥1∥2

2(1 + 𝑛/_2)

)
·

𝑃


(
𝑍 − 𝑛/_2∥𝑧 + _𝑥1∥√︁

1 + 𝑛/_2

)2

+ 𝜒2
𝑛−1 ≥

(
1 + 𝑛

_2

) (
∥𝑧 + _𝑥1∥2 − 2 log 𝑏

) .
Proof. 𝑌𝑚,𝑖 ≤ 𝑏 is equivalent to

exp
[
−1

2
(_𝑥𝑖,1 − ∥_𝑥1 + 𝑧∥)2 − 1

2
_2∥𝑥𝑖,−1∥2 + 1

2
∥_𝑥1 + 𝑧∥2

]
≤ 𝑏

⇔ (_𝑥𝑖,1 − ∥_𝑥1 + 𝑧∥)2 + (_∥𝑥𝑖,−1∥)2 ≥ ∥_𝑥1 + 𝑧∥2 − 2 log 𝑏.

Thus, Equality (i) follows.

To show Equality (ii), we first take extra condition on 𝑥𝑖,−1 and integrate with 𝑥𝑖,1. By combin-
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ing the exponential function with the normal density function of 𝑥𝑖,1, we obtain

E
[
𝑌2
𝑚,𝑖1𝑌𝑚,𝑖≤𝑏

��� 𝑥𝑖,−1, ∥𝑧 + _𝑥1∥
]

= E

[
exp

(
2_∥_𝑥1 + 𝑧∥𝑥𝑖,1 − _2𝑥2

𝑖,1 − _
2∥𝑥𝑖,−1∥2

)
·1{

(_𝑥𝑖,1−∥_𝑥1+𝑧∥)2+(_∥𝑥𝑖,−1∥)2≥∥_𝑥1+𝑧∥2−2 log 𝑏
}���� 𝑥𝑖,−1, ∥𝑧 + _𝑥1∥

]
=

1√︁
1 + 2_2/𝑛

exp

(
2∥𝑧 + _𝑥1∥2

2 + 𝑛/_2

)
· exp

(
−_2∥𝑥𝑖,−1∥2

)
·1{(

𝑍− 𝑛/_2√
2+𝑛/_2

∥𝑧+_𝑥1∥
)2
≥
(
2+ 𝑛

_2

)
(∥_𝑥1+𝑧∥2−2 log 𝑏−_2∥𝑥𝑖,−1∥2)

} , (3.17)

where 𝑍 ∼ N(0, 1) and 𝜒2
𝑛−1 denote the Chi-squared random variable with degrees of freedom

𝑛−1. (𝑍, 𝜒2
𝑛−1 are independent with (𝑥1, 𝑥𝑖,−1, 𝑧) for each 𝑖 = 1, . . . 𝑛. Then, taking the expectation

of 𝑥𝑖,−1 and using 𝑛∥𝑥𝑖,−1∥2 ∼ 𝜒2
𝑛−1,

E

𝑒
−_2∥𝑥𝑖,−1∥2 · 1{(

𝑍− 𝑛/_2√
2+𝑛/_2

∥𝑧+_𝑥1∥
)2
≥
(
2+ 𝑛

_2

)
(∥_𝑥1+𝑧∥2−2 log 𝑏−_2∥𝑥𝑖,−1∥2)

}����∥_𝑥1 + 𝑧∥


= E

𝑒
− _2

𝑛
·𝑛∥𝑥𝑖,−1∥2 · 1{

𝑛∥𝑥𝑖,−1∥2≥ 𝑛

_2 (∥_𝑥1+𝑧∥2−2 log 𝑏)− 𝑛/_2

2+𝑛/_2

(
𝑍− 𝑛/_2√

2+𝑛/_2
∥_𝑥1+𝑧∥

)2}����∥_𝑥1 + 𝑧∥


= 𝑃

{
𝜒2
𝑛−1 ≥

(
1 + 2_2

𝑛

) [
𝑛

_2

(
∥_𝑥1 + 𝑧∥2 − 2 log 𝑏

)
− 𝑛/_2

2 + 𝑛/_2

(
𝑍 − 𝑛/_2√︁

2 + 𝑛/_2
∥𝑧 + _𝑥1∥

)2
] ����∥_𝑥1 + 𝑧∥

}
= 𝑃

{(
𝑍 − 𝑛/_2√︁

2 + 𝑛/_2
∥𝑧 + _𝑥1∥

)2
+ 𝜒2

𝑛−1 ≥
(
2 + 𝑛

_2

) (
∥_𝑥1 + 𝑧∥2 − 2 log 𝑏

)����∥_𝑥1 + 𝑧∥
}
.(3.18)

Equality (ii) follows by taking expectation with 𝑥𝑖,−1 of equation (3.17) and using (3.18).

The argument of Equality (iii) follows similarly from Equality (ii). □
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3.4.3 Proof of upper bound in Theorem 13

As we discussed in Section 3.4.2, using the scale invariance property 3.4.1 of the minimax

risk, it’s equivalent to prove for the case of 𝜎 = 1 in model (3.1). In the following proof, we will

make this unit variance assumption without loss of generality. Throughout the proof, for notational

simplicity, everytime we use constant notation𝐶 > 0, we mean it is a constant that does not depend

on any variable or parameter, but whose value may change at each occurrence. For 𝑋 ∈ R𝑛×𝑝, let

𝑖 ∈ {1, . . . , 𝑝} and 𝑋𝑖 stand for the 𝑖-th column of 𝑋; let 𝑇 ⊆ [𝑝] and 𝑋𝑇 stand for the submatirx

consists of the columns with indices contained in 𝑇 .

Proof of upper bound in Theorem 13

Obtaining constant-sharp upper bounds for the minimax risk of the sparse linear regression is

quite challenging and for that reason it has remained open, despite the existing extensive literature

on the topic. To obtain an upper bound matching the lower bound we derived in the last section,

we aim to construct an estimator that combines the maximum likelihood estimator and LASSO.

More specifically, consider the following two estimates:

• LASSO:

𝛽𝐿 (_) := arg min
𝑏∈R𝑝

1
2
∥𝑦 − 𝑋𝑏∥2

2 + _∥𝑏∥1. (3.19)

• Maximum likelihood estimator:

𝛽𝑀 := arg min
𝑏∈Θ(𝑘)

∥𝑦 − 𝑋𝑏∥2
2. (3.20)

Here, LASSO depends on the regularization parameter _ > 0. We will clarify later in the proof

of the selection of _. At this point, we assume _ may vary with the asymptotic parameters as

𝑛 → ∞. For notational simplicity, throughout the proof, we write 𝛽𝐿 (_) =: 𝛽𝐿 in appropriate

context without ambiguity.
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Furthermore, define the cone

C𝑆𝑅𝐸 (𝑘, 𝑐0) := {Δ ∈ R𝑝 : ∥Δ∥1 ≤ (1 + 𝑐0)
√
𝑘 ∥Δ∥2},

with 𝑐0 determined later in the proof. Consider the observable event

A := A(𝛿0) :=
{
𝑋 ∈ R𝑛×𝑝 : max

𝑗=1,...,𝑝
∥𝑋𝑒 𝑗 ∥2

2 ≤ 1 + 𝛿0, inf
Δ∈C𝑆𝑅𝐸 (𝑘,𝑐0):Δ≠0

∥𝑋Δ∥2
∥Δ∥2

≥
√︁

1 − 𝛿0

}
,

(3.21)

where 0 < 𝛿0 is a constant that will be determined later. Define the new estimator

ˆ̂𝛽 := 𝛽𝐿1A + 𝛽𝑀1A𝑐 . (3.22)

Our goal is to show that

sup
𝛽∈Θ(𝑘)

E∥ ˆ̂𝛽 − 𝛽∥2
2 = 2𝑘 log(𝑝/𝑘) (1 + 𝑜(1)).

From the construction of ˆ̂𝛽, the risk consists of two parts

E∥ ˆ̂𝛽 − 𝛽∥2 = E∥𝛽𝐿 − 𝛽∥2
1A + E∥𝛽𝑀 − 𝛽∥2

1A𝑐 . (3.23)

We will show that: (1) E∥𝛽𝑀 − 𝛽∥2
1A𝑐 = 𝑜

(
𝑘 log(𝑝/𝑘)

)
; (2) EE∥𝛽𝐿 − 𝛽∥2

1A = 2𝑘 log(𝑝/𝑘)
(
1 +

𝑜(1)
)
. To see (1), we use the Cauchy-Schwartz inequality and obtain

E∥𝛽𝑀 − 𝛽∥2 ≤
(
E∥𝛽𝑀 − 𝛽∥𝑟2

) 2
𝑟

𝑃(A𝑐). (3.24)

We have the following proposition:

Proposition 2. Assume model (3.1) with 𝜎 = 1. Suppose 𝑘/𝑝 → 0 and (𝑘 log(𝑝/𝑘))/𝑛 → 0.

116



Then, for ∀𝑚 ≥ 2, there exists a constant 𝐶 = 𝐶 (𝑚) > 0, such that

(
E∥𝛽 − 𝛽∥𝑚2

) 2
𝑚 ≤ 𝐶𝑘 log(𝑝/𝑘).

Besides, Lemma 45 indicates that A holds with probability tending to one. Then, from (3.24),

we have

E∥𝛽𝑀 − 𝛽∥2 ≤ 𝑜(𝑘 log(𝑝/𝑘)). (3.25)

To demonstrate (1), note that it is not trivial to directly bound the expected loss of LASSO with

accurate constant not assuming additional structures of the design matrix 𝑋 such as the mutual

incoherence condition [42] and the restricted eigenvalue condition [43]. Largely motivated by

[21], we resort to an oracle estimator to draw out the accurate constant of the minimax risk and

show that it is close to LASSO with further analysis. For LASSO defined in (3.19), given Y > 0,

choose the regularization parameter as

_ = _Y := (1 + Y)
√︁

2 log(𝑝/𝑘). (3.26)

Let [_ (𝑦) := arg min𝑏∈R𝑝
1
2 ∥𝑦 − 𝑏∥

2
2 + _∥𝑏∥1 and consider the oracle estimator

𝛽𝑂 := [_
(
𝛽 + 𝑋𝑇 𝑧

)
, (3.27)

with the same choice of _ = _Y.

We will show that as Y → 0, the expected loss of the oracle estimator can be as close to

2𝑘 log(𝑝/𝑘) as we want. In fact, we have obtained a mean-squared error (MSE) upper bound for

the oracle estimator under orthogonal design of 𝑋 . 3 in a previous study in [44] (Theorem 1). With

this, consider an event

B1 :=
{
∥𝑧∥2 ≤ (1 + Y)/

√
𝑛

}
.

3Under orthogonal design, the model is simplified as the Gaussian sequence model, and the oracle estimator in
(3.27) becomes a real estimator not depending on any latent variables as 𝑧 anymore.
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Then for every 0 < 𝑐 ≤ 1 + Y, conditional on ∥𝑧∥ = 𝑐
√
𝑛, 𝑋𝑇 𝑧 ∼ N(0, 𝑐2𝐼𝑝) and

∥[_Y (𝛽 + 𝑋𝑇 𝑧) − 𝛽∥
𝑑
= 𝑐∥[_Y′ (𝛽/𝑐 + N(0, 𝐼𝑝)) − 𝛽/𝑐∥,

where Y′ = (1 + Y)/𝑐 − 1 ≥ 0. Hence, based on Theorem 1 in [44], for arbitrarily small 𝛿1 > 0, we

have

E

[
∥𝛽𝑂 − 𝛽∥2

1B1

]
≤ E

[
∥𝑧∥2

𝑛
E
(
∥[Y′

(
𝛽/𝑐 + N(0, 𝐼𝑝)

)
− 𝛽/𝑐∥2

���∥𝑧∥ = 𝑐√𝑛)1{∥𝑧∥≤(1+Y)√𝑛}]
≤ E

[
∥𝑧∥2

𝑛
2(1 + Y′)2𝑘 log(𝑝/𝑘) ·

(
1 + 𝑜(1)

)
1{∥𝑧∥≤(1+Y)

√
𝑛}

]
≤ (1 + Y)2(1 + 𝛿1) · 2𝑘 log(𝑝/𝑘), (3.28)

where the last inequality is due to (1+ Y)2/𝑐2 = (1+ Y′)2. Thus, under B1, we have the MSE of the

oracle estimator upper bounded by 2𝑘 log(𝑝/𝑘) · (1 + 𝑜(1)), as Y, 𝛿1 → 0. In addition, B1 holds

with probability at least 1 − exp(−𝑛Y2/2).

Then, we show that the oracle estimator falls close to LASSO in a negligible distance compared

to 2𝑘 log(𝑝/𝑘). We have this lemma:

Lemma 35. Let 𝑆∗ ⊆ {1, . . . , 𝑝} be a subset of columns assumed to contain the supports of 𝛽𝐿 , 𝛽𝑂

and 𝛽, i.e. 𝑆∗ ⊇ supp(𝛽𝐿) ∪ supp(𝛽𝑂) ∪ supp(𝛽). Suppose for some 𝛿2 < 1/2, all the eigenvalues

of 𝑋𝑇
𝑆∗
𝑋𝑆∗ lie in [1 − 𝛿2, 1 + 𝛿2]. Then

∥𝛽𝑂 − 𝛽𝐿 ∥2
2 ≤ 3𝛿2

1 − 2𝛿2
∥𝛽𝑂 − 𝛽∥2

2.

The proof of this lemma follows by exact mirroring the proof of Lemma 4.2 in [21], so we skip

the argument. Then assume there exists some 𝑆∗ ⊇ supp(𝛽𝐿) ∪ supp(𝛽𝑂) ∪ supp(𝛽) and let

B2 := B2(𝛿2) :=
{

supp(𝛽𝐿) ∪ supp(𝛽𝑂) ∪ supp(𝛽) ⊆ 𝑆∗,

all eigenvalues of 𝑋𝑇𝑆∗𝑋𝑆∗ lie in [1 − 𝛿2, 1 + 𝛿2]
}
. (3.29)
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Lemma 35 implies that

E∥𝛽𝐿 − 𝛽𝑂 ∥2
1B1∩B2 ≤ 3𝛿2

1 − 2𝛿2
E∥𝛽𝑂 − 𝛽∥2

1B1 ≤ 3𝛿2
1 − 2𝛿2

(1 + 𝛿1) (1 + Y)2 · 2𝑘 log(𝑝/𝑘). (3.30)

The right end is 2𝑘 log(𝑝/𝑘) · (1 + 𝑜(1)) as 𝛿2, Y → 0. Then we wonder if such 𝑆∗ exists to satisfy

the condition of Lemma 35.

Following [21], we consider a constructed resolvent set developed by [21]:

Definition 1 (Resolvent set of Lasso). Fix 𝑆 = supp(𝛽) of cardinality at most 𝑘 , and an integer 𝑘∗

obeying 𝑘 < 𝑘∗ < 𝑝. The set 𝑆∗ = 𝑆∗(𝑆, 𝑘∗) is said to be a resolvent set if it is the union of 𝑆 and

the 𝑘∗ − 𝑘 indicies with the largest values of |𝑋𝑇
𝑖
𝑧 | among all 𝑖 ∈ {1, . . . , 𝑝} \ 𝑆.

Though designed for SLOPE in [21], it turns out the resolvent set and the following procedure

in [21] works for LASSO as well. Denote 𝑆⋄ := supp(𝛽) ∪ supp(𝛽𝐿) ∪ supp(𝛽𝑂), we have

Proposition 3. Assume model (3.1). Consider the LASSO estimator 𝛽𝐿 (3.19) and the oracle

estimator 𝛽𝑂 (3.27) with the same regularization _ > 0 as (3.26). Let 𝑆∗ be the resolvent set in

Definition 1 and 𝑘 < 𝑘∗ < 𝑝 be its cardinality. Suppose 𝑘∗ ≥ 2𝑘 , 𝑘∗/𝑝 → 0 and (𝑘∗ log 𝑝)/𝑛→ 0.

Then for arbitrary small 𝛿2 ∈ (0, 1/2),

(3.29) holds w.h.p. 1 − exp
[
− 𝑐1Y𝑘

√︁
2 log(𝑝/𝑘)

]
− 𝑐5𝑒

−𝑐6𝑛Y
2
,

for some constants 𝑐1, 𝑐4, 𝑐5, 𝑐6 > 0.

At this point, let B := B1 ∩ B2, we have proved that

𝑃(B) ≥ 1 − exp(−𝑛Y2/2) − exp
[
− 𝑐1Y𝑘

√︁
2 log(𝑝/𝑘)

]
− 𝑐5𝑒

−𝑐6𝑛Y
2 → 1, (3.31)

and (3.28) and (3.30) imply that

E∥𝛽𝐿 − 𝛽∥2
1A = E∥𝛽𝑂 − 𝛽∥2

1A∩B + 2E(𝛽𝐿 − 𝛽𝑂)𝑇 (𝛽𝑂 − 𝛽)1A∩B (3.32)
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+ E∥𝛽𝐿 − 𝛽𝑂 ∥2
1A∩B + E∥𝛽𝐿 − 𝛽∥2

1A∩B𝑐

≤ E∥𝛽𝑂 − 𝛽∥2
1A∩B + 2

√︃
E∥𝛽𝐿 − 𝛽𝑂 ∥21A∩B ·

√︃
E∥𝛽𝑂 − 𝛽∥21A∩B

+ E∥𝛽𝐿 − 𝛽𝑂 ∥2
1A∩B +

(
E∥𝛽𝐿 − 𝛽∥𝑞1A

) 2
𝑞

𝑃(B𝑐)

≤ E∥𝛽𝑂 − 𝛽∥2
1B1 + 2

√︃
E∥𝛽𝐿 − 𝛽𝑂 ∥21B2 ·

√︃
E∥𝛽𝑂 − 𝛽∥21B1

+ E∥𝛽𝐿 − 𝛽𝑂 ∥2
1B2 +

(
E∥𝛽𝐿 − 𝛽∥𝑞1A

) 2
𝑞

𝑃(B𝑐)

= 2𝑘 log(𝑝/𝑘) ·
(
1 +𝑂

(
Y + 𝛿1 +

√︁
𝛿2

))
+

(
E∥𝛽𝐿 − 𝛽∥𝑞1A

) 2
𝑞

𝑃(B𝑐); (3.33)

we have used Hölder’s inequality with a power factor 𝑞 ≥ 2. Therefore, as Y, 𝛿1, 𝛿2 → 0, the first

term in the last line is the dominating term.

It remains to derive an upper bound for . We refer to [15] that it has been shown that under a

condition similar to the restricted eigenvalue condition that LASSO can achieve the sparse mini-

max risk up to rate optimality. The condition introduced in [15] is called the Strong Eigenvalue

Condition defined below. This leads us to consider event A.

Definition 2. Let 𝑐0 > 0 and 𝑠 ∈ {1, . . . , 𝑝}. We call a design matrix 𝑋 ∈ R𝑛×𝑝 satisfying the

𝑆𝑅𝐸 (𝑠, 𝑐0) condition if ∥𝑋𝑒 𝑗 ∥2 ≤ 1 for all 𝑗 = 1, . . . , 𝑝, and

\ (𝑠, 𝑐0) := min
Δ∈C𝑆𝑅𝐸 (𝑠,𝑐0):Δ≠0

∥𝑋Δ∥2
∥Δ∥2

> 0,

where C𝑆𝑅𝐸 (𝑠, 𝑐0) := {Δ ∈ R𝑝 : ∥Δ∥1 ≤ (1 + 𝑐0)
√
𝑠∥Δ∥2} is a cone in R𝑝.

However, the result (Theorem 4.2 in [15]) requires the regularization of LASSO satisfying

_ ≥ 𝐶
√︁

2 log(𝑝/𝑘) for a constant 𝐶 > 4 +
√

2 > (1 + Y). Compared to our choice in (3.26), larger

_ will cause the constant in the risk upper bound of the oracle estimator (3.28) being larger than 2.

From (3.33), since the risk from the oracle estimator is the dominating term, it then results in an

upper bound of the minimax risk with worse constant (larger than 2). Therefore, in the following

proposition, we intend to amend this result such that it can adapt to the choice of _ in (3.26).

Consider A (3.21), let the constant in A be 𝑐0 = 𝑐0(𝛿3, 𝛿4, 𝛿0) defined by (3.67), we have
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Proposition 4. Assume model (3.1) and Y > 0. Consider LASSO estimator 𝛽𝐿 (3.19) with

regularization _Y as in (3.26). Let A(𝑐0, 𝛿0) be the event in (3.21). If 𝛿3, 𝛿4 > 0 such that
√

1 + 𝛿0(1 + 𝛿4) (1 + 𝛿3) < 1 + Y. Then, for 𝑞 > 2 and some constant 𝐶𝑞 > 0, we have

E
[
∥𝛽𝐿 − 𝛽∥𝑞2 1A

]
≤

(√
1 + 𝛿0(1 + 𝛿4)

1 + Y
4 +

√
2

√
2

+ 1
)𝑞 (_Y√𝑘

𝛿2
4

)𝑞 [ 1
(1 − 𝛿0)𝑞

+
𝐶𝑞

(𝛿2
4𝑘 log(𝑝/𝑘))𝑞

]
.

To demonstrate
(
E∥𝛽𝐿 − 𝛽∥𝑞1A

) 2
𝑞

𝑃(B𝑐) ≤ 𝑜(𝑘 log(𝑝/𝑘)), we have the following argument:

First, fix Y, 𝛿0 > 0. Second, select and fix 𝛿3, 𝛿4 > 0 such that
√

1 + 𝛿0(1 + 𝛿4) (1 + 𝛿3) < 1 + Y.

Then, from (3.31) and Proposition 4, if 𝑛 ≥ Y−3 and 𝑘
√︁

2 log(𝑝/𝑘) ≥ Y−2,

(
E∥𝛽𝐿 − 𝛽∥𝑞1A

) 2
𝑞

𝑃(B𝑐)

≤
(√

1 + 𝛿0(1 + 𝛿4)
1 + Y

4 +
√

2
√

2
+ 1

)2 (_Y√𝑘
𝛿2

4

)2 [ 1
(1 − 𝛿0)2 +

𝐶
2/𝑞
𝑞

(𝛿2
4𝑘 log(𝑝/𝑘))2

]
· 𝑃(B𝑐)

≤ 𝐶𝑘 log(𝑝/𝑘) · Y−4 ·
[
𝑐2 exp

(
− 𝑐3𝑛Y

2
)
+ exp

(
− 𝑐1Y𝑘

√︁
2 log(𝑝/𝑘)

)]
≤ 𝑜

(
𝑘 log(𝑝/𝑘)

)
. (3.34)

Review (3.23), (3.25), (3.33) and (3.34), we have completed the proof.

Proof of Proposition 2

Proof of Proposition 2. Recall the definition of the maximum likelihood estimator (MLE). For

𝑘 = | supp(𝛽) |,

𝛽𝑀 = arg min
𝑏∈Θ(𝑘)

∥𝑦 − 𝑋𝑏∥2
2. (3.35)

Note that the MLE is the minimizer of (3.35), for ∀𝛽 ∈ Θ(𝑘),

∥𝑦 − 𝑋𝛽∥2
2 ≤ ∥𝑦 − 𝑋𝛽𝑀 ∥2

2
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With 𝑦 = 𝑋𝛽 + 𝑧, this implies

∥𝑋 (𝛽 − 𝛽𝑀)∥2
2 ≤ 2𝑧𝑇𝑋 (𝛽𝑀 − 𝛽). (3.36)

Fix 𝑠 ∈ {1, . . . , 𝑝}, let

𝑉𝑠 := inf{∥𝑋Δ∥2
2 : ∥Δ∥2 = 1, ∥Δ∥0 = 𝑠}. (3.37)

Since both 𝛽 and 𝛽𝑀 are in Θ(𝑘), from (3.36) we have

𝑉2𝑘 · ∥𝛽 − 𝛽𝑀 ∥2
2 ≤ ∥𝑋 (𝛽 − 𝛽𝑀)∥2

2 ≤ 2𝑧𝑇𝑋 (𝛽𝑀 − 𝛽) ≤ 2∥𝛽𝑀 − 𝛽∥2 · sup
∥𝑢∥2=1
∥𝑢∥0=2𝑘

𝑧𝑇𝑋𝑢.

Hence,

0 ≤ ∥𝛽 − 𝛽𝑀 ∥2 ≤ 2
𝑉2𝑘

· sup
∥𝑢∥2=1
∥𝑢∥0=2𝑘

𝑧𝑇𝑋𝑢.

Then, using Hölder’s inequality, we have

E∥𝛽 − 𝛽∥𝑚2 ≤ 2𝑚
(
E

1
𝑉𝑟2𝑘

) 𝑚
𝑟
(
E
(

sup
∥𝑢∥2=1
∥𝑢∥0=2𝑘

𝑧𝑇𝑋𝑢

)𝑞) 𝑚
𝑞

, (3.38)

where 𝑟, 𝑞 > 0 and 𝑚
𝑟
+ 𝑚

𝑞
= 1. Hence, we need to bound the two terms on the right hand side of

(3.38). First, we have the following bound for the first term.

Lemma 36. Suppose the Gaussian random design 𝑋 ∈ R𝑛×𝑝 in model (3.1). For 𝑠 ∈ {1, . . . , 𝑝},

let 𝑉𝑠 be defined as in (3.37). If (𝑠 log(𝑝/𝑠))/𝑛→ 0, then, for ∀𝑟 > 0,

E
1
𝑉𝑟𝑠

= 𝑂 (1).

In addition, we have the following upper bound for
[
E
(

sup ∥𝑢∥2=1
∥𝑢∥0=2𝑘

𝑧𝑇𝑋𝑢

)𝑞] 1
𝑞

.

Lemma 37. Suppose the standard normal vector 𝑧 ∈ R𝑛 and the Gaussian design 𝑋 ∈ R𝑛×𝑝 in

model (3.1). Denote 𝑔 ∼ N(0, 𝐼𝑝). For 𝑠 ∈ {1, . . . , 𝑝}, suppose 𝑝/𝑠 → ∞ and 𝑠 log(𝑝/𝑠) → ∞.
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Define 𝑇 (𝑠) = {𝑢 ∈ R𝑝 : ∥𝑢∥2 = 1, ∥𝑢∥0 ≤ 𝑠}. Then, for ∀𝑞 ≥ 1,

[
E
(

sup
𝑢∈𝑇 (𝑠)

𝑧𝑇𝑋𝑢

)𝑞]2/𝑞
=

[
E

(
∥𝑧∥2√
𝑛

)𝑞 ]2/𝑞
·
(
E
(

sup
𝑢∈𝑇 (𝑠)

⟨𝑔, 𝑢⟩
)𝑞)2/𝑞

≤ 𝐶𝑠 log(𝑝/𝑠), 4

for some constant 𝐶 > 0.

The proof of these two lemmas are presented after this proposition. Then, combining (3.38)

with the results of Lemmas 36 and 37 completes the proof.

□

Proof of Lemma 36. Throughout the proof, we fix 𝑠 ∈ {1, . . . , 𝑝} and let 𝑉 := 𝑉𝑠 for notational

simplicity. For some 0 < 𝑥 = 𝑂 (1) whose exact value will be determined later, we have

E
1
𝑉𝑟

= E

(
1
𝑉𝑟

1(𝑉≤𝑥)

)
+ E

(
1
𝑉𝑟

1(𝑉>𝑥)

)
. (3.39)

Since 𝑥 is bounded, we have

E

(
1
𝑉𝑟

1(𝑉>𝑥)

)
<

1
𝑥𝑟
. (3.40)

Hence, in the rest of the proof, we aim to obtain an upper bound for E
(

1
𝑉𝑟 1(𝑉≤𝑥)

)
.

Towards this goal, we first construct a left-tail probabilistic bound. For ∀𝑡 ∈ (0, 1/2), using the

union bound, we have

𝑃(𝑉 ≤ 1 − 𝑡) = 𝑃
(

min
𝑆⊆[𝑝]
|𝑆 |=𝑠

inf
∥Δ∥2=1

∥𝑋𝑆Δ∥2
2 ≤ 1 − 𝑡

)
≤

(
𝑝

𝑠

)
𝑃

(
inf

∥Δ∥2=1
∥𝑋𝑆Δ∥2

2 ≤ 1 − 𝑡
)
,

where the right end of inequality is for some fixed 𝑆 ⊆ [𝑝], |𝑆 | = 𝑠. Consider N(Y) to be the Y-net

of 𝑆𝑠−1 = {Δ ∈ R𝑠 : ∥Δ∥2 = 1}. Note that Y can be set according to 𝑡. Then for ∀Δ ∈ 𝑆𝑠−1, there

exists a Δ′ ∈ N (Y) such that ∥Δ − Δ′∥2 ≤ Y and

∥𝑋𝑆Δ∥2
2 = ∥𝑋𝑆Δ′∥2

2 + ⟨𝑋𝑆 (Δ − Δ′), 𝑋𝑆 (Δ + Δ′)⟩ ≥ inf
Δ∈N (Y)

∥𝑋𝑆Δ∥2
2 −

√
2Y sup

Δ∈𝑆𝑠−1
∥𝑋𝑆Δ∥2

2. (3.41)

4We can drop | · | in expectation since for symmetric 𝑇 (𝑠), sup𝑢∈𝑇 (𝑠) 𝑧
𝑇𝑋𝑢 ≥ 0 and sup𝑢∈𝑇 (𝑠) ⟨𝑔, 𝑢⟩ ≥ 0.
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Consider 𝐴 := {supΔ∈𝑆𝑠−1 ∥𝑋𝑆Δ∥2
2 ≤ 1

1−𝑡 }. Let
√

2Y = (1 − 𝑡)2, we have

𝑃

(
inf

Δ∈𝑆𝑠−1
∥𝑋𝑆Δ∥2

2 ≤ 1 − 𝑡
)

≤ 𝑃

(
inf

Δ∈N (Y)
∥𝑋𝑆Δ∥2

2 ≤ 2(1 − 𝑡), 𝐴
)
+ 𝑃(𝐴𝑐)

≤

(
3
√

2
) 𝑠

(1 − 𝑡)2𝑠 𝑃
(
∥𝑋𝑆Δ∥2

2 ≤ 2(1 − 𝑡)
)
+ 𝑃(𝐴𝑐),

where the last inequality uses the union bound and that |N (Y) | ≤ (3/Y)𝑠 =
(
3/((1 − 𝑡)2/

√
2)

) 𝑠
from Lemma 23. Note that the last expression holds for some fixed 𝑆 ⊆ [𝑝], |𝑆 | = 𝑠, and some

certain Δ ∈ 𝑆𝑠−1.

Thus, using the integrated tail bound expression for expectation, we have

E
1
𝑉𝑟

1(𝑉≤𝑥) =

∫
0<1−𝑡≤𝑥

𝑃(𝑉 ≤ 1 − 𝑡)𝑟 (1 − 𝑡)−𝑟−1𝑑𝑡

≤
∫

0<1−𝑡≤𝑥

(
𝑝

𝑠

)
𝑃

(
inf

Δ∈𝑆𝑠−1
∥𝑋𝑆Δ∥2

2 ≤ 1 − 𝑡
)
𝑟 (1 − 𝑡)−𝑟−1𝑑𝑡

≤
(
𝑝

𝑠

) ∫
0<1−𝑡≤𝑥

(
3
√

2
) 𝑠

(1 − 𝑡)2𝑠 𝑃
(
∥𝑋𝑆Δ∥2

2 ≤ 2(1 − 𝑡)
)
𝑟 (1 − 𝑡)−𝑟−1𝑑𝑡

+
(
𝑝

𝑠

) ∫
0<1−𝑡≤𝑥

𝑃

(
sup

Δ∈𝑆𝑠−1
∥𝑋𝑆Δ∥2

2 >
1

1 − 𝑡

)
𝑟 (1 − 𝑡)−𝑟−1𝑑𝑡. (3.42)

Let 𝐼1 denote the first line of the last expression, 𝐼2 denote the second line.

Consider 0 < 𝑥 ≤ 𝑒−2. We first calculate 𝐼1. Note that 𝑛∥𝑋𝑆Δ∥2
2 ∼ 𝜒2

𝑛 , applying the deviation

in Lemma 25, we have

𝐼1 ≤
(
𝑝

𝑠

) ∫
0<1−𝑡≤𝑥

(
3
√

2
) 𝑠

(1 − 𝑡)2𝑠 𝑟 (1 − 𝑡)−𝑟−1 exp
[𝑛
2

(
2𝑡 − 1 + log(2(1 − 𝑡))

)]
𝑑𝑡

=

(
𝑝

𝑠

) ∫
0<1−𝑡≤𝑥

(
3
√

2
) 𝑠
𝑟 (1 − 𝑡) 𝑛

2 −𝑟−2𝑠−1 exp
[𝑛
2

(
2𝑡 − 1 + log 2

)]
𝑑𝑡

≤
(
𝑝

𝑠

) (
3
√

2
) 𝑠
𝑟𝑒

𝑛
2 (1+log 2)

∫ 1

1−𝑥
(1 − 𝑡) 𝑛

2 −𝑟−2𝑠−1𝑑𝑡

=

(
𝑝

𝑠

) (
3
√

2
) 𝑠
𝑟𝑒

𝑛
2 (1+log 2) 𝑥

𝑛
2 −𝑟−2𝑠

𝑛
2 − 𝑟 − 2𝑠
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≤
(
𝑝

𝑠

) (
3
√

2
) 𝑠
𝑟
𝑒

𝑛
2 (−1+log 2)+𝑟+4𝑠

𝑛
2 − 𝑟 − 2𝑠

≤ 𝑒𝐶1 (𝑠 log(𝑝/𝑠))−𝐶2𝑛 = 𝑜(1), (3.43)

where 𝐶1, 𝐶2 > 0 are constants. The last equality is by the assumption (𝑠 log(𝑝/𝑠))/𝑛→ 0.

Then we calculate 𝐼2. Consider another Y′-net N(Y′) for 𝑆𝑠−1. Following the same argument

as in (3.41), for certain 𝑆 ⊆ [𝑝], |𝑆 | = 𝑠, we have

sup
Δ∈𝑆𝑠−1

∥𝑋𝑆Δ∥2
2 ≤ sup

Δ∈N (Y′)
∥𝑋𝑆Δ∥2

2 +
√

2Y′
(

sup
Δ∈𝑆𝑠−1

∥𝑋𝑆Δ∥2
2

)
.

Thus,

sup
Δ∈𝑆𝑠−1

∥𝑋𝑆Δ∥2
2 ≤ 1

1 −
√

2Y′
sup

Δ∈N (Y′)
∥𝑋𝑆Δ∥2

2.

Let 1 −
√

2Y′ =
√

1 − 𝑡. For 0 < 1 − 𝑡 ≤ 𝑥, by Lemmas 23 and 25, we have

𝑃

(
sup

Δ∈𝑆𝑠−1
∥𝑋𝑆Δ∥2

2 >
1

1 − 𝑡

)
≤ 𝑃

(
sup

Δ∈N (Y′)
∥𝑋𝑆Δ∥2

2 >
1 −

√
2Y′

1 − 𝑡

)
≤ |N (Y′) | · 𝑃

(
∥𝑋𝑆Δ∥2

2 >
1

√
1 − 𝑡

)
≤

(
3
Y′

) 𝑠
· 𝑃

(
∥𝑋𝑆Δ∥2

2 >
1

√
1 − 𝑡

)
≤

(
3
√

2
1 −

√
𝑥

) 𝑠
exp

{
− 𝑛

2

( 1
√

1 − 𝑡
− 1 − log

1
√

1 − 𝑡

)}
.

Then let B := B1 ∩ B2,

Note that for ∀𝑡 ∈ [1 − 𝑥, 1),
√
𝑥

(
1√
1−𝑡

− 1
)
≥ log 1√

1−𝑡
. Then, selecting 𝑥 small enough such

that 1 −
√
𝑥(1 + 4(𝑟+1)

𝑛
) > 0, we have

𝐼2 ≤
(
𝑝

𝑠

) (
3
√

2
1 −

√
𝑥

) 𝑠 ∫
0<1−𝑡≤𝑥

𝑟 (1 − 𝑡)−𝑟−1 exp
{
− 𝑛

2

( 1
√

1 − 𝑡
− 1 − log

1
√

1 − 𝑡

)}
𝑑𝑡

=

(
𝑝

𝑠

) (
3
√

2
1 −

√
𝑥

) 𝑠
𝑟

∫
0<1−𝑡≤𝑥

exp
{
− 𝑛

2

[ 1
√

1 − 𝑡
− 1 −

(
1 + 4(𝑟 + 1)

𝑛

)
log

1
√

1 − 𝑡

]}
𝑑𝑡

≤
(
𝑝

𝑠

) (
3
√

2
1 −

√
𝑥

) 𝑠
𝑟

∫
0<1−𝑡≤𝑥

exp
{
− 𝑛

2

[
1 −

√
𝑥

(
1 + 4(𝑟 + 1)

𝑛

)]
·
( 1
√

1 − 𝑡
− 1

)}
𝑑𝑡
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≤
(
𝑝

𝑠

) (
3
√

2
1 −

√
𝑥

) 𝑠
𝑟𝑥 · exp

{
− 𝑛

2

[
1 −

√
𝑥

(
1 + 4(𝑟 + 1)

𝑛

)]
·
( 1
√
𝑥
− 1

)}
≤ 𝑒𝐶1 (𝑠 log(𝑝/𝑠))−𝐶2𝑛 = 𝑜(1), (3.44)

where 𝐶1, 𝐶2 > 0 are constants. The last equality is by the assumption (𝑠 log(𝑝/𝑠))/𝑛→ 0. Thus,

combing (3.42) with (3.43) and (3.44), for 𝑥 > 0 being small enough constant, we have

E
( 1
𝑉𝑟

1(𝑉≤𝑥)
)
= 𝑜(1).

Therefore, from (3.39) and (3.40), we conclude that

E
( 1
𝑉𝑟

)
≤ 𝑂 (1).

□

Proof of Lemma 37. We first construct the upper bound for
[
E
(

sup𝑢∈𝑇 (𝑠) ⟨𝑔, 𝑢⟩
)𝑞]2/𝑞

. Using Minkowski’s

inequality,

[
E
(

sup
𝑢∈𝑇 (𝑠)

⟨𝑔, 𝑢⟩
)𝑞]2/𝑞

≤
(
E
��� sup
𝑢∈𝑇 (𝑠)

⟨𝑔, 𝑢⟩ − E sup
𝑢∈𝑇 (𝑠)

⟨𝑔, 𝑢⟩
���𝑞)2/𝑞

+
(
E sup
𝑢∈𝑇 (𝑠)

⟨𝑔, 𝑢⟩
)2
. (3.45)

Note that the second term above is the Gaussian complexity on 𝑇 (𝑠). Following Exercise 5.7 in

[5], for some constant 𝐶 > 0, we have

E sup
𝑢∈𝑇 (𝑠)

⟨𝑔, 𝑢⟩ ≤
√︁
𝐶𝑠 log(𝑝/𝑠). (3.46)

To bound the first term in (3.45), let 𝐹 (𝑔) := sup𝑢∈𝑇 (𝑠) ⟨𝑔, 𝑢⟩. Then, for any 𝑔, 𝑔′ ∈ R𝑝,

⟨𝑔, 𝑢⟩ = ⟨𝑔 − 𝑔′, 𝑢⟩ + ⟨𝑔′, 𝑢⟩ ≤ ∥𝑔 − 𝑔′∥2 ·
(

sup
𝑢∈𝑇 (𝑠)

∥𝑢∥2

)
+ 𝐹 (𝑔′).

Thus, 𝐹 is a 1-Lipschitz function. Using the concentration of Lipshitz function of Gaussians (e.g.,

126



Theorem 2.2.6 in [5]), we obtain

E
��� sup
𝑢∈𝑇 (𝑠)

⟨𝑔, 𝑢⟩ − E sup
𝑢∈𝑇 (𝑠)

⟨𝑔, 𝑢⟩
���𝑞 = ∫

𝑡>0
𝑞𝑡𝑞−1𝑃

(
|𝐹 (𝑔) − E𝐹 (𝑔) | > 𝑡

)
𝑑𝑡

≤
∫
𝑡>0

2𝑞𝑡𝑞−1𝑒−
𝑡2
2 𝑑𝑡 = 2

𝑞

2 𝑞Γ( 𝑞
2
) := 𝐶𝑞 . (3.47)

Here Γ(·) is the Gamma function. 𝐶𝑞 > 0 is a constant only depend on 𝑞. Then, based on (3.45),

(3.46), (3.47), for some constant 𝐶 > 0, we have

[
E
(

sup
𝑢∈𝑇 (𝑠)

⟨𝑔, 𝑢⟩
)2𝑞

]1/𝑞
≤ (𝐶𝑞)

2
𝑞 + 𝐶𝑠 log(𝑝/𝑠) ≤ 𝐶𝑠 log(𝑝/𝑠),

as 𝑠 log(𝑝/𝑠) → ∞.

Finally, from the moments of the 𝜒2 distribution, for 𝑞 < 𝑛,

E

(
∥𝑧∥2√
𝑛

)𝑞
= 𝑛−

𝑞

2 ·
2

𝑞

2 · Γ( 𝑛+𝑞2 )
Γ( 𝑛2 )

≤ 2
𝑞

2 = 𝑂 (1).

Therefore, for some constant 𝐶 > 0,

(
E
(

sup
𝑢∈𝑇 (𝑠)

𝑧𝑇𝑋𝑢

)𝑞)2/𝑞
≤ 𝐶𝑠 log(𝑝/𝑠).

□

Proof of Proposition 3

Proof of Proposition 3. We first bound the eigenvalues. Considering Lemma 39, let 𝑡 > 0 in the

condition of Lemma 39 be small enough such that, for the 𝛿2 ∈ (0, 1/2) stated in Proposition 3,

1 − 𝛿2 ≤ 𝜎min(𝑋𝑇𝑆∗𝑋𝑆∗) ≤ 𝜎max(𝑋𝑇𝑆∗𝑋𝑆∗) ≤ 1 + 𝛿2. (3.48)
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For example, select 𝑡 =
√︁
𝑘∗ log(𝑝/𝑘∗)/𝑛 in Lemma 39, then (3.48) holds with probability at least

1 − (𝐶𝑒𝑘∗/𝑝)𝑘∗ as 𝑘∗/𝑝 → 0 and 𝑘∗ log(𝑝/𝑘∗)/𝑛→ 0.

To show the second statement in Proposition 3, we resort to a lemma whose proof mostly

follows [21].

Lemma 38. Suppose 𝑘∗ ≥ 2𝑘 , 𝑘∗/𝑝 → 0 and (𝑘∗ log 𝑝)/𝑛→ 0. Then

inf
∥𝛽∥0≤𝑘

𝑃(𝑆⋄ ⊆ 𝑆∗) ≥ 1 − exp
[
− 𝑐4Y𝑘

√︁
2 log(𝑝/𝑘)

]
− 𝑐5𝑒

−𝑐6𝑛Y
2
,

for some constants 𝑐4, 𝑐5, 𝑐6 > 0.

The proof of this lemma is demonstrated after the current proof.

Then, combining (3.48) with Lemma 38, we conclude the statement in Proposition 3. □

Proof of Lemma 38. By construction, supp(𝛽) ⊆ 𝑆∗ so we only need to show (1) supp(𝛽𝐿) ⊆ 𝑆∗

and (2) supp(𝛽𝑂) ⊆ 𝑆∗.

We first demonstrate (1). Suppose �̂�𝑆∗ is the solution to the reduced problem:

arg min
𝑏∈R |𝑆∗ |

1
2
∥𝑦 − 𝑋𝑆∗𝑏∥2 + _Y∥𝑏∥1. (3.49)

The KKT condition of LASSO implies that if ∥𝑋𝑇
𝑆𝑐∗
(𝑦 − 𝑋𝑆∗ �̂�𝑆∗)∥∞ ≤ _Y, then 𝛽𝐿

𝑆∗
= �̂�𝑆∗ and

𝛽𝐿
𝑆𝑐∗

= 0. Hence, it’s sufficient to prove the following two conditions:

∥𝑋𝑇𝑆𝑐∗ 𝑋𝑆∗ (𝛽𝑆∗ − �̂�𝑆∗)∥∞ ≤ Y

2
√︁

2 log(𝑝/𝑘), (3.50)

and

∥𝑋𝑇𝑆𝑐∗ 𝑧∥∞ ≤
(
1 + Y

2

)√︁
2 log(𝑝/𝑘). (3.51)

Before analyzing (3.50) and (3.51), we first illustrate a property of the resolvent set. Let 𝑄 ∈ R𝑛×𝑛
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be an orthogonal matrix such that

𝑄𝑧 =
(
∥𝑧∥, 0, . . . , 0

)
.

In the proofs, 𝑄 can further be set to be measurable with respect to 𝑧. 𝑄 is independent of 𝑋 . Let

�̃� ∈ R1×𝑝, �̃� ∈ R(𝑛−1)×𝑝 and

𝑊 =


�̃�

�̃�

 := 𝑄𝑋.

𝑄 being independent of 𝑋 implies that 𝑊 is still a Gaussian random matrix, with i.i.d. N(0, 1/𝑛)

entries. Note that

𝑋𝑇𝑖 𝑧 = (𝑄𝑋𝑖)𝑇 (𝑄𝑧) = ∥𝑧∥(𝑄𝑋𝑖)1 = ∥𝑧∥�̃�𝑖 . (3.52)

This indicates that 𝑆∗ is composed of the union of 𝑆 and 𝑘∗ − 𝑘 indices in {1, . . . , 𝑝} \ 𝑆 of the

largest |�̃�𝑖 |. Since �̃� and �̃� are independent, �̃� and 𝑆∗ are also independent. Thus, �̃�𝑆𝑐∗ and �̃�𝑆∗

are both Gaussian random matrices.

Show (3.50). Rearrange the objective term as

𝑋𝑇𝑆𝑐∗
𝑋𝑆∗ (𝛽𝑆∗ − �̂�𝑆∗) = 𝑋𝑇𝑆𝑐∗ 𝑋𝑆∗ (𝑋

𝑇
𝑆∗
𝑋𝑆∗)−1 (𝑋𝑇𝑆∗ (𝑦 − 𝑋𝑆∗ �̂�𝑆∗) − 𝑋𝑇𝑆∗𝑧)

= 𝑋𝑇𝑆𝑐∗
𝑄𝑇 𝑄𝑋𝑆∗ (𝑋𝑇𝑆∗𝑋𝑆∗)

−1 (𝑋𝑇𝑆∗ (𝑦 − 𝑋𝑆∗ �̂�𝑆∗) − 𝑋𝑇𝑆∗𝑧)︸                                                  ︷︷                                                  ︸
:=b

.

We first derive the bound for ∥b∥. Since �̂�𝑆∗ is the solution to the reduced Lasso problem (3.49),

its KKT condition implies that

∥𝑋𝑆∗ (𝑦 − 𝑋𝑆∗ �̂�𝑆∗)∥∞ ≤ _Y . (3.53)

Then by Lemma 39, let 𝑡 = 1/2 in the condition, we obtain

∥𝑋𝑆∗ (𝑋𝑇𝑆∗𝑋𝑆∗)
−1∥ ≤

(√︁
1 − 1/𝑛 −

√︁
𝑘∗/𝑛 − 1/2

)−1
< 2.01 (3.54)
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with probability at least 1 − 𝑒−𝑛/8 for sufficiently large 𝑝, where in the last step we have used

𝑘∗/𝑛 → 0. In addition, we use Lemma 40 to bound ∥𝑋𝑇
𝑆∗
𝑧∥. Hence, from (3.53), (3.54) and

Lemma 40, we have

∥b∥ ≤ ∥𝑋𝑆∗ (𝑋𝑇𝑆∗𝑋𝑆∗)
−1∥ · ∥𝑋𝑇𝑆∗ (𝑦 − 𝑋𝑆∗ �̂�𝑆∗) − 𝑋

𝑇
𝑆∗
𝑧∥

≤ 2.01
(√
𝑘∗_Y + 4

√︁
2𝑘∗ log(𝑝/𝑘∗)

)
≤ 2.01

(
(1 + Y)

√
2 + 4

√
2
)√︁
𝑘∗ log(𝑝/𝑘∗)

≤ 𝐶 ·
√︁
𝑘∗ log(𝑝/𝑘∗) (3.55)

with probability at least 1− 𝑒−𝑛/2 − (
√

2𝑒𝑘∗/𝑝)𝑘∗ − 𝑒−𝑛/8 =: 1− 𝑃b ; where in the third line we have

used 𝑘∗ ≥ 𝑘 .

Now, write

𝑋𝑇𝑆𝑐∗
𝑋𝑆∗ (𝛽𝑆∗ − �̂�𝑆∗) = 𝑋𝑇𝑆𝑐∗𝑄

𝑇b =
(
�̃�𝑇𝑆𝑐∗

, 0
)
b +

(
0, �̃�𝑇

𝑆𝑐∗

)
b. (3.56)

For the first term, we have

∥(�̃�𝑇𝑆𝑐∗ , 0)b∥∞ = b1 · ∥�̃�𝑇𝑆𝑐∗ ∥∞ ≤ ∥b∥2 · ∥�̃�𝑇𝑆𝑐∗ ∥∞. (3.57)

Based on (3.52), we recognize �̃�𝑆𝑐∗ is a Gaussian vector excludes the 𝑘 ∗ −𝑘 largest (in absolute

value) coordinates from 𝑝 − 𝑘 indices of {1, . . . , 𝑝} \ 𝑆. Thus, suppose Z1, . . . , Z𝑝−𝑘 are i.i.d.

N(0, 1) variables and |Z | (1) ≥ . . . ≥ |Z | (𝑝−𝑘) . We have

√
𝑛∥�̃�𝑆𝑐∗ ∥∞ = |Z | (𝑘∗−𝑘+1) ≤

(
1 + Y

4

)
·
√︂

2 log
2(𝑝 − 𝑘)
𝑘∗ − 𝑘 + 1

≤
(
1 + Y

3

)√︂
2 log

𝑝

𝑘
, (3.58)

where we used Lemma 30 and note that it holds with probability at least

1 − exp
[
− 𝐶Y𝑘

√︁
2 log(𝑝/𝑘)

]
=: 1 − 𝑃1,

130



for some constant 𝐶 > 0; we used that 𝑘 ≤ 𝑘∗ − 𝑘 + 1 and 𝐶𝑝/𝑘 ≤ (𝑝 − 𝑘)/𝑘 ≤ 𝑝/𝑘 . Thus, from

(3.57) and (3.58) and 𝑘∗ ≥ 𝑘 , we obtain

∥(�̃�𝑇𝑆𝑐∗ , 0)b∥∞ ≤ 𝐶 ·
√︂
𝑘∗

𝑛
log

𝑝

𝑘∗
·
√︁

2 log 𝑝 ≤ 𝐶 ·
√︂
𝑘∗ log 𝑝
𝑛

√︂
2 log

𝑝

𝑘
, (3.59)

We continue to bound the second term in (3.56). From the discussion about (3.52), we note

that b is independent of �̃�𝑆𝑐∗ , thus

∥(0, �̃�𝑇
𝑆𝑐∗
)b∥∞

𝑑
=

√︄b2
2 + · · · + b2

𝑛

𝑛
(Z1, . . . , Z𝑝−𝑘∗)


∞
≤ ∥b∥2

1
√
𝑛
|Z | (1) ,

with Z1, . . . , Z𝑝−𝑘∗
𝑖.𝑖.𝑑∼ N(0, 1) and |Z | (1) denote the largest one in absolute value. From Lemma 28,

we have |Z | (1) ≤ 𝐶 ·
√︁

2 log(𝑝 − 𝑘∗), holds with probability at least 1 − exp[−𝐶
√︁

log 𝑝] =: 1 − 𝑃2,

with some constant 𝐶 > 0; we used 𝑘∗/𝑝 → 0. Thus, with (3.55), we have

∥(0, �̃�𝑇
𝑆𝑐∗
)b∥∞ ≤ 𝐶

√︂
𝑘∗

𝑛
log

𝑝

𝑘∗

√︁
2 log(𝑝 − 𝑘∗) ≤ 𝐶

√︂
𝑘∗ log 𝑝
𝑛

√︂
2 log

𝑝

𝑘
. (3.60)

Combining (3.59) and (3.60), from (3.56) we have

∥𝑋𝑇𝑆𝑐∗ 𝑋𝑆∗ (𝛽𝑆∗ − 𝛽
𝐿
𝑆∗
)∥∞ ≤ ∥(�̃�𝑇𝑆𝑐∗ , 0)b∥∞ + ∥(0, �̃�𝑇

𝑆𝑐∗
)b∥∞ ≤ 𝐶

√︂
𝑘∗ log 𝑝
𝑛

√︁
2 log(𝑝/𝑘), (3.61)

with probability at least 1 − 𝑃b − 𝑃1 − 𝑃2 for (3.55), (3.57), (3.60) to hold.

Show (3.51). Following the discussion about (3.52), under event (3.57) and that ∥𝑧∥2/
√
𝑛 ≤

(1 + Y/3), we have

∥𝑋𝑇𝑆𝑐∗ 𝑧∥∞ = ∥𝑧∥2 · ∥�̃�𝑆𝑐∗ ∥∞ ≤
(
1 + Y

3

)2
√︂

2 log
2(𝑝 − 𝑘)
𝑘∗ − 𝑘 + 1

≤
(
1 + Y

2

)√︂
2 log

𝑝

𝑘
(3.62)

holds with probability at least 1 − 𝑃𝑧 − 𝑃b where

𝑃

(
∥𝑧∥2/

√
𝑛 ≥ 1 + Y/3

)
≤ 𝑒−𝑛Y2/18 := 𝑃𝑧 .
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As a result, we have (1):

supp(𝛽𝐿) ⊆ 𝑆∗

holds with high probability 1 − 𝑃1 − 𝑃2 − 𝑃b − 𝑃𝑧 under events (3.55), (3.57), (3.60) and (3.62).

Back to show (2). In order to show supp(𝛽𝑂) ⊆ 𝑆∗, using the KKT condition for the convex

problem defined for the oracle esimator in (3.27), it is sufficient to see that

∥𝑋𝑇𝑆𝑐∗ 𝑧∥∞ ≤ _Y . (3.63)

We mark this event holding under (3.62) with corresponding high probability 1 − 𝑃𝑧 − 𝑃b .

As a conclusion of (3.61), (3.62) and (3.63), we have that for some constants 𝑐4, 𝑐5, 𝑐6 > 0,

supp(𝛽𝐿) ⊆ 𝑆∗ holds with probability at least

1 − 𝑃b − 𝑃1 − 𝑃2 − 𝑃𝑧 = 1 − exp
[
− 𝑐4Y𝑘

√︁
2 log(𝑝/𝑘)

]
− 𝑐5𝑒

−𝑐6𝑛Y
2
.

□

In the previous proof, we have cited several properties of the random Gaussian matrix 𝑋 ∈

R𝑛×𝑝. We state them as the following lemmas, which are auxiliaries proved by [21], so we skip

their proofs.

Lemma 39 (Lemma A.11 in [21]). Let 𝑘 < 𝑘∗ < min{𝑛, 𝑝} be any (deterministic) integer. Denote

by 𝜎min and 𝜎max, respectively, the smallest and the largest singular value of 𝑋𝑆∗ . Then for any

𝑡 > 0,

𝜎min >
√︁

1 − 1/𝑛 −
√︁
𝑘∗/𝑛 − 𝑡

holds with probability at least 1 − 𝑒−𝑛𝑡2/2. Furthermore,

𝜎max <
√︁

1 − 1/𝑛 +
√︁
𝑘∗/𝑛 +

√︁
8𝑘∗ log(𝑝/𝑘∗)/𝑛 + 𝑡

holds with probability at least 1 − 𝑒−𝑛𝑡2/2 − (
√

2𝑒𝑘∗/𝑝)𝑘∗ .
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Lemma 40 (Lemma A.7 in [21]). Let 1 ≤ 𝑘 < 𝑝 be any (deterministic) integer, then

sup
|𝑇 |=𝑘∗

∥𝑋𝑇𝑇 𝑧∥ ≤
√︁

32𝑘∗ log(𝑝/𝑘∗)

with probability at least 1 − 𝑒−𝑛/2 − (
√

2𝑒𝑘∗/𝑝)𝑘∗ . Above, the superemum is taken over all the

subsets of {1, . . . , 𝑝} with cardinality 𝑘∗.

Proof of Proposition 4

The basic proof idea of this section comes from [15]. Throughout the proof, we will use the fol-

lowing notation: Let
(
|𝑢 | (1) , . . . , |𝑢 | (𝑝)

)
denote the non-increasing rearrangement of ( |𝑢1 |, . . . , |𝑢𝑝 |).

For given 𝛿3, 𝛿4, 𝛿5 ∈ (0, 1) and any 𝑢 = (𝑢1, . . . , 𝑢𝑝) ∈ R𝑝, define

𝐻 (𝑢) := (1 + 𝛿4)
( 𝑘∑︁
𝑗=1

|𝑢 | ( 𝑗)4
√︁

log(2𝑝/ 𝑗) + (1 + 𝛿3)
𝑝∑︁

𝑗=𝑘+1
|𝑢 | ( 𝑗)

√︁
2 log(𝑝/𝑘)

)
, (3.64a)

𝐺 (𝑢) := (1 + 𝛿4)𝛿−1
5

√︁
log(1/𝛿5)∥𝑋𝑢∥2. (3.64b)

In addition, let

𝛿(_) := 𝑒−
_2
2 , ⇔

√︁
2 log(1/𝛿(_)) = _. (3.65)

We will use the following inequality: by using Stirling’s formula, for any 𝑠 ∈ [𝑝], 𝑠 log(𝑠/𝑒) ≤

log(𝑠!) ≤ 𝑠 log(𝑠). Hence,

𝑠 log(2𝑝/𝑠) ≤
𝑠∑︁
𝑗=1

log(2𝑝/ 𝑗) = 𝑠 log(2𝑝) − log(𝑠!) ≤ 𝑠 log(2𝑒𝑝/𝑠). (3.66)

Proof of Proposition 4. Following [15], we first show a bound for the realization of the random

matrix 𝑋 , i.e. fix 𝑋 ∈ R𝑛×𝑝. We have the following lemma:

Lemma 41. Assume model (3.1) and let ∥𝛽∥0 ≤ 𝑘 . Given Y, 𝛿0 ∈ (0, 1), let 𝛿3, 𝛿4 be any positive
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numbers such that
√

1 + 𝛿0(1 + 𝛿4) (1 + 𝛿3) < 1 + Y. Assume the 𝑆𝑅𝐸 (𝑘, 𝑐0) condition holds with

𝑐0 :=
(√

1 + 𝛿0(1 + 𝛿4)
1 + Y

4 +
√

2
√

2
+ 1

)
/
(
1 −

√
1 + 𝛿0(1 + 𝛿4) (1 + 𝛿3)

1 + Y

)
. (3.67)

Consider the LASSO estimator with tuning parameter _Y satisfying (3.26). Then, on the event

(3.78), we have

∥𝛽𝐿 − 𝛽∥2 ≤ 𝐶 (𝑘, _Y, 𝛿5)_Y
√
𝑘, (3.68)

where 𝛿5 ∈ (0, 1) is a parameter in 𝐺 (𝑢) in event (3.78) and

𝐶 (𝑘, _Y, 𝛿5) :=
(√

1 + 𝛿0(1 + 𝛿4)
1 + Y

4 +
√

2
√

2
+ 1

)
·
(

1
𝛿2

4

log(1/𝛿5)
𝑘 log(1/𝛿(_Y))

∨ 1
\2(𝑘, 𝑐0)

)
. (3.69)

The proof of this lemma is presented later in the section.

The above lemma relies on the event (3.78) which sets a limit for the randomness from 𝑧,

though it still assumes 𝑋 is fixed. Then we refer to Lemma 44, which analyzes the probability for

the condition of the above lemma to hold, for every 𝛿5 ∈ (0, 1). By integrating the tail bound, we

obtain the following lemma:

Lemma 42. Assume model (3.1) with ∥𝛽∥0 ≤ 𝑘 . Let 𝑐0 > 0 be as in (3.67). Consider the LASSO

estimator 𝛽𝐿 (3.19) with tuning parameter _Y in (3.26). Suppose the 𝑆𝑅𝐸 (𝑘, 𝑐0) holds. Then, for

any 𝑞 > 2,

E∥𝛽𝐿 − 𝛽∥𝑞2 ≤
(√

1 + 𝛿0(1 + 𝛿4)
1 + Y

4 +
√

2
√

2
+ 1

)𝑞 (_Y√𝑘
𝛿2

4

)𝑞 [ 1
\2𝑞 (𝑘, 𝑐0)

+
𝐶𝑞

(𝛿2
4𝑘 log(𝑝/𝑘))𝑞

]
,

where 𝐶𝑞 = 𝑞/2 · Γ(𝑞) with Gamma function Γ(·).

The proof of this lemma is presented later in the section.

Lemma 42 can be viewed as an uniform upper bound for the conditional expectation E
(
∥𝛽 −
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𝛽∥𝑞2 |𝑋
)

for all 𝑋 ∈ A. Then, applying the tower property, we obtain

E
[
∥𝛽 − 𝛽∥𝑞2 1A

]
= E

[
E
(
∥𝛽 − 𝛽∥𝑞2 |𝑋

)
1A

]
≤

(√
1 + 𝛿0(1 + 𝛿4)

1 + Y
4 +

√
2

√
2

+ 1
)𝑞 (_Y√𝑘

𝛿2
4

)𝑞 [ 1
(1 − 𝛿0)𝑞

+
𝐶𝑞

(𝛿2
4𝑘 log(𝑝/𝑘))𝑞

]
.

□

The next lemma referring to Lemma A.2 in [15] describes an inequality useful for simplification

of LASSO problem.

Lemma 43. Let ℎ : R𝑝 → R be a convex function. Let 𝑧 ∈ R𝑛, 𝑋 be any 𝑛 × 𝑝 matrix, and

𝑦 = 𝑋𝛽 + 𝑧. If 𝛽𝐿 is a solution of the minimization problem min𝛽∈R𝑝

(
1
2 ∥𝑋𝛽 − 𝑦∥

2
2 + ℎ(𝛽)

)
, then

𝛽𝐿 satisfies for all 𝛽 ∈ R𝑝

∥𝑋 (𝛽𝐿 − 𝛽)∥2
2 ≤ 𝑧𝑇𝑋 (𝛽𝐿 − 𝛽) + ℎ(𝛽) − ℎ(𝛽𝐿).

Proof of Lemma 41. From Lemma 43, letting ℎ(·) = _Y∥ · ∥1 in the condition of Lemma 43, we

have that for all 𝛽 ∈ R𝑝, the following holds almost surely:

∥𝑋 (𝛽𝐿 − 𝛽)∥2
2 ≤ △∗, (3.70)

where

△∗ := 𝑧𝑇𝑋 (𝛽𝐿 − 𝛽) + _Y∥𝛽∥1 − _Y∥𝛽𝐿 ∥1.

In the remaining proof, let 𝑢 = 𝛽𝐿 − 𝛽 and define

�̃� (𝑢) :=
√︁

1 + 𝛿0(1 + 𝛿4)
(
4∥𝑢∥2

( 𝑘∑︁
𝑗=1

log(2𝑝/ 𝑗)
)1/2

+ (1 + 𝛿3)
√︁

2 log(𝑝/𝑘)
𝑝∑︁

𝑗=𝑘+1
|𝑢 | ( 𝑗)

)
.
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Using the Cauchy-Schwarz inequality and (3.66),

√︁
1 + 𝛿0𝐻 (𝑢) ≤ �̃� (𝑢) ≤

√
1 + 𝛿0(1 + 𝛿4)

1 + Y
4 +

√
2

√
2

_Y
√
𝑘 ∥𝑢∥2

+
√

1 + 𝛿0(1 + 𝛿4) (1 + 𝛿3)
1 + Y _Y

𝑝∑︁
𝑗=𝑘+1

|𝑢 | ( 𝑗) := 𝐹 (𝑢), (3.71)

where𝐻 (·) is defined in (3.64), and the last inequality follows from (3.26), (3.66) and 4
√︁

2 log(2𝑒𝑝/𝑘) ≤

(4 +
√

2)/
√

2 ·
√︁

2 log(𝑝/𝑘). Let 𝑆 := supp(𝛽),

∥𝛽∥1 − ∥𝛽𝐿 ∥1 = ∥𝛽∥1 − ∥𝛽 + 𝑢∥1 = ∥𝛽∥1 − ∥𝛽𝑆 + 𝑢𝑆∥1 − ∥𝑢𝑆𝑐 ∥1 ≤ ∥𝑢𝑆∥1 − ∥𝑢𝑆𝑐 ∥1. (3.72)

Then, on the event (3.78), using (3.71) and (3.72) we have

△∗ ≤ _Y
(√
𝑘 ∥𝑢∥2 −

𝑝∑︁
𝑗=𝑘+1

|𝑢 | ( 𝑗)
)
+ max

(
𝐹 (𝑢), �̃� (𝑢)

)
, (3.73)

where 𝐺 (𝑢) is defined in (3.64) and �̃� (𝑢) :=
√

1 + 𝛿0𝐺 (𝑢). Transforming �̃� (𝑢) using (3.65), we

have

�̃� (𝑢) =
√︁

1 + 𝛿0_Y
√
𝑘

√︄
log(1/𝛿5)

𝑘 log(1/𝛿(_Y))
1 + 𝛿4
𝛿4

∥𝑋𝑢∥2.

From (3.73), we have the following discussion:

• If �̃� (𝑢) > 𝐹 (𝑢), this implies

∥𝑢∥2 ≤
√

2
4 +

√
2
(1 + Y) 1

𝛿4

√︄
log(1/𝛿5)

𝑘 log(1/𝛿(_Y))
∥𝑋𝑢∥2. (3.74)

Therefore,

△∗ ≤ _Y
√
𝑘 ∥𝑢∥2 + �̃� (𝑢)

≤ _Y
√
𝑘

√
2

4 +
√

2
(1 + Y) 1

𝛿4

√︄
log(1/𝛿5)

𝑘 log(1/𝛿(_Y))
∥𝑋𝑢∥2
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+ _Y
√
𝑘
√︁

1 + 𝛿0(1 + 𝛿4)
1
𝛿4

√︄
log(1/𝛿5)

𝑘 log(1/𝛿(_Y))
∥𝑋𝑢∥2

=

[√︁
1 + 𝛿0(1 + 𝛿4) +

√
2

4 +
√

2
(1 + Y)

]
1
𝛿4
_Y
√
𝑘

√︄
log(1/𝛿5)

𝑘 log(1/𝛿(_Y))
∥𝑋𝑢∥2.

Combining the above with (3.70),

∥𝑋𝑢∥2 ≤
[√︁

1 + 𝛿0(1 + 𝛿4) +
√

2
4 +

√
2
(1 + Y)

]
1
𝛿4
_Y
√
𝑘

√︄
log(1/𝛿5)

𝑘 log(1/𝛿(_Y))
.

Then, connecting the above with (3.74), we have

∥𝛽𝐿 − 𝛽∥2 ≤
√

2
4 +

√
2
(1 + Y) 1

𝛿4

√︄
log(1/𝛿5)

𝑘 log(1/𝛿(_Y))

·
[√︁

1 + 𝛿0(1 + 𝛿4) +
√

2
4 +

√
2
(1 + Y)

]
1
𝛿4
_Y
√
𝑘

√︄
log(1/𝛿5)

𝑘 log(1/𝛿(_Y))

=

√
2

4 +
√

2
(1 + Y)

[√︁
1 + 𝛿0(1 + 𝛿4) +

√
2

4 +
√

2
(1 + Y)

]
1
𝛿2

4

log(1/𝛿5)
𝑘 log(1/𝛿(_Y))

_Y
√
𝑘.

(3.75)

• If �̃� (𝑢) ≤ 𝐹 (𝑢), replacing the maximum with 𝐹 (𝑢), we obtain

△∗ ≤ _Y
(√
𝑘 ∥𝑢∥2 −

𝑝∑︁
𝑗=𝑘+1

|𝑢 | ( 𝑗)
)

+
√

1 + 𝛿0(1 + 𝛿4)
1 + Y

4 +
√

2
√

2
_Y
√
𝑘 ∥𝑢∥2 +

√
1 + 𝛿0(1 + 𝛿4) (1 + 𝛿3)

1 + Y _Y

𝑝∑︁
𝑗=𝑘+1

|𝑢 | ( 𝑗)

=

(
1 +

√
1 + 𝛿0(1 + 𝛿4)

1 + Y
4 +

√
2

√
2

)
_Y
√
𝑘 ∥𝑢∥2 −

(
1 −

√
1 + 𝛿0(1 + 𝛿4) (1 + 𝛿3)

1 + Y

)
_Y

𝑝∑︁
𝑗=𝑘+1

|𝑢 | ( 𝑗)

=: △.

From (3.70), we know △ ≥ △∗ ≥ 0 almost surely. As a result, from the above equations,
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𝑢 = 𝛽𝐿 − 𝛽 ∈ C𝑆𝑅𝐸 (𝑘, 𝑐0), where

𝑐0 :=
(
1 +

√
1 + 𝛿0(1 + 𝛿4)

1 + Y
4 +

√
2

√
2

)
/
(
1 −

√
1 + 𝛿0(1 + 𝛿4) (1 + 𝛿3)

1 + Y

)
.

Note that by the assumption of this lemma, we have selected 𝛿3, 𝛿4 such that the above

𝑐0 > 0.Thus, we can apply 𝑆𝑅𝐸 (𝑘, 𝑐0) and have

∥𝛽𝐿 − 𝛽∥2 ≤ ∥𝑋𝑢∥2
\ (𝑘, 𝑐0)

≤
(√

1 + 𝛿0(1 + 𝛿4)
1 + Y

4 +
√

2
√

2
+ 1

)
_Y
√
𝑘

∥𝑋𝑢∥2

\2(𝑘, 𝑐0)
, (3.76)

where the second inequality is due to

∥𝑋𝑢∥2
2 ≤ △∗ ≤

(√
1 + 𝛿0(1 + 𝛿4)

1 + Y
4 +

√
2

√
2

+ 1
)
_Y
√
𝑘
∥𝑋𝑢∥2
\ (𝑘, 𝑐0)

.

Combining (3.75) and (3.76), we have

∥𝛽𝐿 − 𝛽∥2 ≤ 𝐶 (𝑘, _Y, 𝛿5)_Y
√
𝑘, (3.77)

with

𝐶 (𝑘, _Y, 𝛿5) :=
(√

1 + 𝛿0(1 + 𝛿4)
1 + Y

4 +
√

2
√

2
+ 1

)
·
(

1
𝛿2

4

log(1/𝛿5)
𝑘 log(1/𝛿(_Y))

∨ 1
\2(𝑘, 𝑐0)

)
.

□

Lemma 44 (Bound on the stochastic error). Let 𝛿5 ∈ (0, 1) and 𝑧 ∼ N(0, 𝐼𝑛) and 𝑋 ∈ R𝑛×𝑝 be a

fixed matrix such that max 𝑗∈[𝑝] ∥𝑋𝑒 𝑗 ∥2 ≤
√

1 + 𝛿0, then

{
𝑧𝑇𝑋𝑢 ≤

√︁
1 + 𝛿0 · max

(
𝐻 (𝑢), 𝐺 (𝑢)

)
, ∀𝑢 ∈ R𝑝

}
(3.78)

holds with probability at least 1 − 𝛿5/2.
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Proof. Because of the scalability, we prove it for max 𝑗∈[𝑝] ∥𝑋𝑒 𝑗 ∥2 ≤ 1. For 𝛿3 ∈ (0, 1), let

𝑁 (𝑢) :=
𝑘∑︁
𝑗=1

|𝑢 | ( 𝑗)4
√︁

log(2𝑝/ 𝑗) + (1 + 𝛿3)
𝑝∑︁

𝑗=𝑘+1
|𝑢 | ( 𝑗)

√︁
2 log(𝑝/𝑘).

Let 𝑔 𝑗 = 𝑧𝑇𝑋𝑒 𝑗 , 𝑗 = 1 . . . , 𝑝. We have

sup
𝑁 (𝑢)≤1

𝑧𝑇𝑋𝑢 ≤ sup
𝑁 (𝑢)≤1

[ 𝑘∑︁
𝑗=1

4
√︁

log(2𝑝/ 𝑗) |𝑢 | ( 𝑗)
|𝑔 | 𝑗

4
√︁

log(2𝑝/ 𝑗)

+
𝑝∑︁

𝑗=𝑘+1
(1 + 𝛿3)

√︁
2 log(𝑝/𝑘) |𝑢 | ( 𝑗)

|𝑔 | ( 𝑗)
(1 + 𝛿3)

√︁
2 log(𝑝/𝑘)

]
≤

(
max

1≤ 𝑗≤𝑘

|𝑔 | ( 𝑗)
4
√︁

log(2𝑝/ 𝑗)

)
∨

(
max

𝑘+1≤ 𝑗≤𝑝

|𝑔 | ( 𝑗)
(1 + 𝛿3)

√︁
2 log(𝑝/𝑘)

)
=

(
max

1≤ 𝑗≤𝑘

|𝑔 | ( 𝑗)
4
√︁

log(2𝑝/ 𝑗)

)
∨

|𝑔 | (𝑘+1)

(1 + 𝛿3)
√︁

2 log(𝑝/𝑘)
.

For 𝐿 > 0 to be determined, let 𝑇 := {𝑢 ∈ R𝑝 : max
(
𝑁 (𝑢), 1

𝐿
∥𝑋𝑢∥2

)
≤ 1}. Note that

𝑓 (𝑣) := sup𝑢∈𝑇 𝑣𝑇𝑋𝑢 is a Lipschitz function with Lipschitz constant 𝐿. By the concentration of

the Lipschitz function of Gaussian distribution around the median (for example, Inequality (1.4) in

[45]), we have with probability at least 1 − 𝛿5/2,

sup
𝑢∈𝑇

𝑧𝑇𝑋𝑢 ≤ Med
[

sup
𝑢∈𝑇

𝑧𝑇𝑋𝑢

]
+ 𝐿

√︁
2 log(1/𝛿5)

≤ Med
[

sup
𝑁 (𝑢)≤1

𝑧𝑇𝑋𝑢

]
+ 𝐿

√︁
2 log(1/𝛿5)

≤ 1 + 𝛿4,

where in the last inequality we have let 𝐿 = 𝛿4/
√︁

2 log(1/𝛿5) and used Lemma 47. □

Proof of Lemma 42. From (3.69),

𝐶 (𝑘, _Y, 𝛿5) ≥
(√

1 + 𝛿0(1 + 𝛿4)
1 + Y

4 +
√

2
√

2
+ 1

)
1

\2(𝑘, 𝑐0)
. (3.79)
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Then 𝛿∗5 := exp
(

𝑘𝛿2
4

\2 (𝑘,𝑐0)
log(1/𝛿(_Y))

)
is the smallest 𝛿5 > 0 such that the equality in (3.79) holds.

From (3.68), for 𝑡 ≥ log(1/𝛿∗5) := 𝑇 ,

𝑍 :=
(√

1 + 𝛿0(1 + 𝛿4)
1 + Y

4 +
√

2
√

2
+ 1

)−1 𝛿2
4𝑘 log(1/𝛿(_Y))

_Y
√
𝑘

∥𝛽𝐿 − 𝛽∥2 ≤ 𝑡,

with probability at least 1 − (𝑒−𝑡)/2. Thus, for any 𝑞 > 2,

E𝑍𝑞 =

∫ ∞

0
𝑞𝑡𝑞−1𝑃(𝑍 > 𝑡)𝑑𝑡 ≤

∫ 𝑇

0
𝑞𝑡𝑞−1𝑑𝑡 +

∫ ∞

𝑇

𝑞𝑡𝑞−1 𝑒
−𝑡

2
𝑑𝑡 ≤ 𝑇𝑞 + 𝑞

2
Γ(𝑞) = 𝑇𝑞 + 𝐶𝑞,

where Γ(·) is the Gamma function. Thus, under the 𝑆𝑅𝐸 (𝑘, 𝑐0) condition, we obtain

E∥𝛽 − 𝛽∥𝑞2 ≤
(√

1 + 𝛿0(1 + 𝛿4)
1 + Y

4 +
√

2
√

2
+ 1

)𝑞 (_Y√𝑘
𝛿2

4

)𝑞 [ 1
\2𝑞 (𝑘, 𝑐0)

+
𝐶𝑞

(𝛿2
4𝑘 log(𝑝/𝑘))𝑞

]
.

□

The following lemmas are auxiliary to prove Lemmas 41 and 42 and Proposition 4. Some of

them are based on [15]. We skip those proofs to prevent duplicate work.

The following lemma guarantees that 𝑆𝑅𝐸 (𝑠, 𝑐0) holds for Gaussian random matrix with high

probability.

Lemma 45. Let 𝑋 ∈ R𝑛×𝑝 have the random Gaussian design with i.i.d. N(0, 1
𝑛
) entries. Consider

the 𝑆𝑅𝐸 (𝑘, 𝑐0) with 𝑐0 > 0 and 𝑘 ∈ {1, . . . , 𝑝}. There exist absolute constants 𝐶,𝐶′ > 0 such

that the following holds. For ∀𝛿0 ∈ (0, 1), if

𝑛 ≥ 𝐶𝑐2
0𝛿

−2
0 𝑘 log(2𝑒𝑝/𝑘) (3.80)

then with probability at least 1 − 3 exp
(
− 𝐶′𝑛𝛿2

0
)

we have

max
𝑗=1,...,𝑝

∥𝑋𝑒 𝑗 ∥2 ≤ 1 + 𝛿0, inf
Δ∈C𝑆𝑅𝐸 (𝑘,𝑐0):Δ≠0

∥𝑋Δ∥2
∥Δ∥2

≥
√︁

1 − 𝛿0. (3.81)
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Proof. The statement of the second inequality in (3.81) follows from the proof of Theorem 8.3 in

[15]. We derive that for the first inequality. Applying the Bernstein type of concentration of 𝜒2

distribution (for example, Lemma 1 in [46]), we have for some constant 𝐶 > 0, with probability at

least 1 − exp(−𝐶𝑛𝛿2
0),

∥𝑋𝑒 𝑗 ∥2
2 ≤ 1 + 𝛿0.

Then using the union bound, we have max 𝑗=1,...,𝑝 ∥𝑋𝑒 𝑗 ∥2
2 ≤ 1 + 𝛿0 holds with probability at least

1 − 𝑝𝑒−𝐶𝑛𝛿2
0 ≥ 1 − 𝑒−𝐶𝑛𝛿2

0/2,

if 𝑛 ≥ 𝐶𝛿−2
0 log 𝑝. Note that 𝑘 log(𝑒𝑝/𝑘) ≥ log 𝑝 for all 𝑘 ∈ {1, . . . , 𝑝}. The conclusion holds for

the second inequality in (3.81). □

Lemma 46 (Proposition E.1 in [15]). Let 𝑔1, . . . , 𝑔𝑝 be standard Gaussian random variables.

Denote by
(
|𝑔 | (1) , . . . , |𝑔 | (𝑝)

)
the non-increasing rearrangement of

(
|𝑔1 |, . . . , |𝑔𝑝 |

)
. Then for any

𝑠 ∈ {1 . . . , 𝑝} and all 𝑡 > 0, we have

𝑃

(
1
𝑠

𝑠∑︁
𝑗=1

|𝑔 |2( 𝑗) > 𝑡 log(2𝑝/𝑠)
)
≤ (2𝑝/𝑠)1−3𝑡/8.

The proof of the next lemma follows that of Proposition E.2 in [15].

Lemma 47. Under the assumptions of Lemma 46, assume 𝑘/𝑝 → 0, then

𝑃

((
max

1≤ 𝑗≤𝑘

|𝑔 | ( 𝑗)
4
√︁

log(2𝑝/ 𝑗)

)
∨

|𝑔 | (𝑘+1)

(1 + 𝛿3)
√︁

2 log(𝑝/𝑘)
≤ 1

)
≥ 1 − 𝑘

2𝑝
− exp

[
− 𝐶 · 𝛿3𝑘

√︁
2 log(𝑝/𝑘)

]
≥ 1

2
,

for any 𝛿3 ≥ 𝐶/(𝑘
√︁

2 log(𝑝/𝑘)) with some 𝐶 > 0.

Proof. Lemma 46 with 𝑡 = 16/3 and the inequality |𝑔 |2( 𝑗) ≤
1
𝑗

∑ 𝑗

𝑙=1 |𝑔 |
2
(𝑙) imply

𝑃

(
|𝑔 |2( 𝑗) ≤

16
3

log(2𝑝/ 𝑗)
)
≥ 1 − 𝑗

2𝑝
, 𝑗 = 1, . . . , 𝑝. (3.82)
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Let 𝑞 ≥ 0 be an integer such that 2𝑞 ≤ 𝑘 < 2𝑞+1. Applying (3.82) to 𝑗 = 2𝑙 for 𝑙 = 0, . . . , 𝑞 − 1

and using the union bound, we obtain that the event

Ω0 :=
{

max
𝑙=0,...,𝑞−1

|𝑔 | (2𝑙)
√

3

4
√︁

log(2𝑝/2𝑙)
≤ 1

}
satisfies 𝑃(Ω0) ≥ 1 −∑𝑞−1

𝑙=0
2𝑙
2𝑝 = 1 − 2𝑞−1

2𝑝 ≥ 1 − 𝑘
2𝑝 . For any 𝑗 < 2𝑞, there exists 𝑙 ∈ {0, . . . , 𝑞 − 1}

such that 2𝑙 ≤ 𝑗 < 2𝑙+1. On the event Ω0,

|𝑔 | ( 𝑗) ≤ |𝑔 | (2𝑙) ≤
4
√

3

√︂
log

2𝑝
2𝑙

≤ 4
√

3

√︄
log

4𝑝
𝑗

≤ 4

√︄
log

2𝑝
𝑗
, ∀ 𝑗 < 2𝑞 .

And for 2𝑞 ≤ 𝑗 ≤ 𝑘 ,

|𝑔 | ( 𝑗) ≤ |𝑔 |2𝑞−1 ≤ 4
√

3

√︂
log

2𝑝
2𝑞−1 <

4
√

3

√︄
log

8𝑝
𝑗

≤ 4

√︄
log

2𝑝
𝑗
.

Thus, on the event Ω0 we have |𝑔 | ( 𝑗) ≤ 4
√︁

log(2𝑝/ 𝑗) for all 𝑗 = 1, . . . , 𝑘 .

In addition, using Lemma 30, we have

𝑃

( |𝑔 | (𝑘+1)

(1 + 𝛿3)
√︃

2 log 𝑝

𝑘

≥ 1
)
≤ exp

[
− 𝑘𝐶𝛿3

√︁
2 log(𝑝/𝑘)

]
.

□

3.4.4 Proof of Theorem 14

As discussed in Section 3.4.1, without of loss of generality, it’s equivalent to prove the theorem

in the case of 𝜎 = 1 in model (3.1). We will see that up to first order approximation of the minimax

risk, there is no additional proof technique for different regimes. So we will state the upper bounds

of the three regimes in one subsection and state the lower bounds in the other subsection.
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Upper bound

The upper bounds for Regime (𝐼) and (𝐼 𝐼) can be simply established from the risk of the zero

estimator, as such:

𝑅(Θ(𝑘, `), 1) = inf
𝛽

sup
𝛽∈Θ(𝑘,`)

E∥𝛽 − 𝛽∥2 ≤ sup
𝛽∈Θ(𝑘,`)

E∥0 − 𝛽∥2 ≤ 𝑘`2,

where the last equality follows naturally from the SNR constraint in Θ(𝑘, `).

The upper bound for Regime (𝐼 𝐼 𝐼) follows the upper bound in Theorem 13. This is obvious

because

Θ(𝑘, `) ⊆ Θ(𝑘) ⇒ 𝑅(Θ(𝑘, `), 1) ≤ 𝑅(Θ(𝑘), 1) = 2𝑘 log(𝑝/𝑘)
(
1 + 𝑜(1)

)
.

Lower bound

The proof of lower bound follows the same roadmap of the proof of lower bound for Theorem

13: Suppose 𝜋 is a prior distribution for 𝛽. Let 𝐵(𝜋) be the Bayes risk of 𝜋 for squared loss. Based

on the definition of the minimax risk in (3.3), if supp(𝜋) ⊆ Θ(𝑘, 𝜏), then

𝐵(𝜋) ≤ inf
𝛽

E𝜋∥𝛽 − 𝛽∥2 ≤ inf
𝛽

sup
𝛽∈Θ(𝑘,`)

E∥𝛽 − 𝛽∥2 = 𝑅(Θ(𝑘, `), 1).

Therefore, the lower bound of the minimax risk can be provided by the Bayes risk of a prior 𝜋

whose support is contained in the parameter space Θ(𝑘, `).

As previously introduced in Section 3.4.2, we still consider the independent block prior 𝜋𝐼𝐵 (_; 𝑝, 𝑘).

From the construction steps, it already implies that 𝜋𝐼𝐵 (_; 𝑝, 𝑘) is supported on Θ(𝑘), i.e. satisfy-

ing the sparsity constraint in Θ(𝑘, `). Consider additionally:

If |_ | ≤ `, then supp(𝜋𝐼𝐵 (_; 𝑝, 𝑘)) ⊆ Θ(𝑘, `). (3.83)

Thus, the indepedent block prior with 0 < _ ≤ ` can provide a lower bound for the minimax risk
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over Θ(𝑘, `).

As we discussed in Section 3.4.2, Proposition 1 provides a lower bound for the Bayes risk of

the independent block prior matching with the minimax upper bound in Theorem 13. In view of

𝑅(Θ(𝑘, `), 1), it turns out that Proposition 1 can also provide lower bounds for 𝐵(𝜋𝐼𝐵 (_; 𝑝, 𝑘))

with spike location satisfying (3.83). This includes the considerations of all three regimes stated in

Theorem 13. In fact, from Prosposition 1, we obtain:

• For Regime (𝐼), let _ = ` → 0, then

𝐵(𝜋𝐼𝐵 (_; 𝑝, 𝑘)) ≥ 𝑘`2
(
1 + 𝑜(1)

)
.

• For Regime (𝐼 𝐼), let _ = `, then _ = 𝑜

(√︁
2 log(𝑝/𝑘)

)
and

𝐵(𝜋𝐼𝐵 (_; 𝑝, 𝑘)) ≥ 𝑘`2
(
1 + 𝑜(1)

)
.

• For Regime (𝐼 𝐼 𝐼), let _ =
√︁

2 log(𝑝/𝑘)
(
1 + 𝑜(1)

)
and

√︁
2 log(𝑝/𝑘) − _ → +∞, then

𝐵(𝜋𝐼𝐵 (_; 𝑝, 𝑘)) ≥ 2𝑘 log(𝑝/𝑘)
(
1 + 𝑜(1)

)
.

3.4.5 Proof of Theorem 15

Based on the scalability of the model discussed in Section (3.4.1), it is equivalent to prove the

theorem for 𝜎 = 1.

Upper bound

The following lemma constructs the upper bound from the ridge estimator. Let 𝛽𝑅 denote the

ridge estimator:

𝛽𝑅 := arg min
𝑏

∥𝑦 − 𝑋𝑏∥2 + _∥𝑏∥2
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= (𝑋𝑇𝑋 + _𝐼)−1𝑋𝑇 𝑦.

Lemma 48. Assume model (3.1). Suppose 𝑘/𝑝 → 0 and 𝑘/𝑛→ 0. As ` → 0, the ridge estimator

with _ = (𝑘`2)−1 has superemum risk

sup
𝛽∈Θ(𝑘,`)

E∥𝛽𝑅 − 𝛽∥2 ≤ 𝑘`2
(
1 − 𝑘`2

𝑝
+ 𝑜

( 𝑘`2

𝑝

))
.

Proof. The ridge estimator risk is

E∥𝛽𝑅 − 𝛽∥2 = E∥(𝑋𝑇𝑋 + _𝐼)−1𝑋𝑇 (𝑋𝛽 + 𝑧) − 𝛽∥2

= E∥(𝑋𝑇𝑋 + _𝐼)−1(𝑋𝑇𝑋 + _𝐼)𝛽 − (𝑋𝑇𝑋 + _𝐼)−1_𝛽 + (𝑋𝑇𝑋 + _𝐼)−1𝑋𝑇 𝑧 − 𝛽∥2

= E∥ − (𝑋𝑇𝑋 + _𝐼)−1_𝛽 + (𝑋𝑇𝑋 + _𝐼)−1𝑋𝑇 𝑧∥2

= E∥(𝑋𝑇𝑋 + _𝐼)−1_𝛽∥2 + E∥(𝑋𝑇𝑋 + _𝐼)−1𝑋𝑇 𝑧∥2, (3.84)

where the last step used E_𝛽𝑇 (𝑋𝑇𝑋 + _𝐼)−2𝑋𝑇 𝑧 = 0. To deal with the first term, we assume

𝑋𝑇𝑋 = 𝑄𝑇Λ𝑄, where 𝑄 ∈ R𝑝×𝑝 is orthogonal and Λ = diag
(
𝜎1(𝑋𝑇𝑋), . . . , 𝜎𝑝 (𝑋𝑇𝑋)

)
. Here,

𝜎1 ≥ . . . ≥ 𝜎𝑝 denote the eigenvalues of 𝑋𝑇𝑋 . Using that the function 𝑓 (𝑥) := 1
(1+𝑥)2 − (1 − 2𝑥 +

3𝑥2) ≤ 𝑓 (0) = 0, ∀𝑥 > 0, we have

(
1
_
𝑋𝑇𝑋 + 𝐼

)−2
−

(
𝐼 − 2

_
𝑋𝑇𝑋 + 3

_2 (𝑋
𝑇𝑋)2

)
= 𝑄𝑇

[(
1
_
Λ + 𝐼

)−2
−

(
𝐼 − 2

_
Λ + 3

_2Λ
2
)]
𝑄

= 𝑄𝑇 diag
[
𝑓

(𝜎1
_

)
, . . . , 𝑓

(𝜎𝑝
_

)]
𝑄 ≤ 0𝑝×𝑝 .

Therefore,

E∥(𝑋𝑇𝑋 + _𝐼)−1_𝛽∥2 ≤ E
[
∥𝛽∥2 − 2∥𝑋𝛽∥2

_
+ 3𝛽𝑇 (𝑋𝑇𝑋)2𝛽

_2

]

145



= ∥𝛽∥2 ·
[
1 − 2

_
+ 3E𝛽𝑇 (𝑋𝑇𝑋)2𝛽

_2∥𝛽∥2

]
= ∥𝛽∥2 ·

[
1 − 2

𝑘`2

𝑝
+ 3𝑘`2

𝑝
· (𝑘`

2/𝑝) · E𝛽𝑇 (𝑋𝑇𝑋)2𝛽

∥𝛽∥2

]
= ∥𝛽∥2 ·

[
1 − 2

𝑘`2

𝑝
+ 3

( 𝑘`2

𝑝

)2
·
(
1 + 𝑝 + 1

𝑛

)]
≤ 𝑘`2

[
1 − 2

𝑘`2

𝑝
+ 𝑜

( 𝑘`2

𝑝

)]
. (3.85)

The first equality uses that (𝑛/∥𝛽∥2) · ∥𝑋𝛽∥2 ∼ 𝜒2
𝑛 . In the second equality, we adopt _ = (𝑘`2/𝑝)−1

and we will show 𝑘`2

𝑝∥𝛽∥2 E𝛽
𝑇 (𝑋𝑇𝑋)2𝛽 = 𝑜(1). By directly calculating the element of (𝑋𝑇𝑋)2,

E(𝑋𝑇𝑋)2 = (1 + 𝑝+1
𝑛
)𝐼𝑝.

E𝛽𝑇 (𝑋𝑇𝑋)2𝛽 = (1 + 𝑝 + 1
𝑛

) · ∥𝛽∥2.

Then, the second term in (3.84) can be calculated by 𝑛

∥𝑧∥2 ∥𝑋𝑇 𝑧∥2 ∼ 𝜒2
𝑝.

E∥(𝑋𝑇𝑋 + _𝐼)−1𝑋𝑇 𝑧∥2 ≤ 1
_2E∥𝑋

𝑇 𝑧∥2 =
1
_2 · 𝑝

𝑛
E∥𝑧∥2 = 𝑘`2 · 𝑘`

2

𝑝
. (3.86)

Combining (3.85) and (3.86), we conclude

sup
𝛽∈Θ(𝑘,`)

E∥𝛽𝑅 − 𝛽∥2 ≤ 𝑘`2
(
1 − 𝑘`2

𝑝
+ 𝑜

( 𝑘`2

𝑝

))
.

□

Lower bound

We construct the lower bound from the independent block prior described in Section 3.4.2 ex-

cept that the signal can now be evenly positive or negative. Denote 𝜋±𝐼𝐵 (𝜏; 𝑝, 𝑘) as the symmetric

independent block prior: divide (1, . . . , 𝑝) into 𝑘 blocks; For each block 𝑗 , let 𝑚 = ⌈𝑝/𝑘⌉ and

randomly select an index 𝐼 𝑗 ∈ {( 𝑗 − 1)𝑚 + 1, . . . , 𝑗 · 𝑚}; Set 𝛽( 𝑗) := (𝛽( 𝑗−1)𝑚+1, . . . , 𝛽 𝑗𝑚) = ±𝜏𝑒𝐼 𝑗
evenly with probability 1

2 ; The selection in different blocks of coordinates are independent.

Proposition 5. Assume model (3.1) and parameter space (3.4). Suppose 𝑛 → ∞ and 𝑝/𝑘 → ∞.
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If ` = 𝜏/𝜎 → 0, then the Bayes risk of the symmetric independent block prior satisfies

𝐵(𝜋±𝐼𝐵 (𝜏, 𝑝, 𝑘)) ≥ 𝑘𝜏2
(
1 − 𝑘`2

𝑝
+ 𝑜

( 𝑘`2

𝑝

))
.

The proof follows the argument of (3.8) and (3.9) in the proof of Proposition 1 and the following

lemma. Throughout the proof, we let 𝑚 = ⌈𝑝/𝑘⌉.

Lemma 49. Assume model (3.1). Consider the symmetric spike prior
(
𝜋𝑆 (`, 𝑚)

)
(𝛽 = ±`𝑒 𝑗 ) = 1

2𝑚 ,

𝑗 = 1, . . . , 𝑚. Suppose 𝑛, 𝑚 → ∞ and ` → 0. Then the Bayes risk satisfies

𝐵(𝜋𝑆 (`, 𝑚)) ≥ `2 − `4

𝑚

(
1 + 𝑜(1)

)
.

Proof. Using the symmetry of the spike prior distribution, the Bayes risk

𝐵(𝜋𝑆 (`, 𝑚)) = E`𝑒1 (𝛽1 − `)2 + (𝑚 − 1)E`𝑒2𝛽
2
1

≥ `2
(
1 − 2E`𝑒1 𝑝𝑚 + (𝑚 − 1)E`𝑒2 𝑝

2
𝑚

)
, (3.87)

where the Bayesian estimator of 𝛽 at the first coordinate is 𝛽1 = (𝛽𝜋)1 = `𝑝𝑚. Here we denote

𝑝𝑚 :=
exp(`𝑥𝑇1 𝑦 − `

2∥𝑥1∥2/2) − exp(−`𝑥𝑇1 𝑦 − `
2∥𝑥1∥2/2)∑𝑚

𝑖=1

[
exp(`𝑥𝑇

𝑖
𝑦 − `2∥𝑥𝑖∥2/2) + exp(−`𝑥𝑇

𝑖
𝑦 − `2∥𝑥𝑖∥2/2)

] . (3.88)

Under 𝛽 = `𝑒1,

𝑝𝑚 =
exp(`𝑥𝑇1 (`𝑥1 + 𝑧) − `2∥𝑥1∥2/2) − exp(−`𝑥𝑇1 (`𝑥1 + 𝑧) − `2∥𝑥1∥2/2)∑𝑚

𝑖=1

[
exp(`𝑥𝑇

𝑖
(`𝑥1 + 𝑧) − `2∥𝑥𝑖∥2/2) + exp(−`𝑥𝑇

𝑖
(`𝑥1 + 𝑧) − `2∥𝑥𝑖∥2/2)

] .
Let 𝐷𝑛,𝑚 denote the denominator of the above equation. We write

𝑝𝑚 = 𝑝
(1)
𝑚 + 𝑝 (2)𝑚 + 𝑝 (3)𝑚 ,
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𝑝
(1)
𝑚 :=

exp(`𝑥1𝑧)
[

exp( 1
2`

2∥𝑥1∥2) − exp(−1
2`

2∥𝑥1∥2)
]

𝐷𝑛,𝑚

, (3.89)

𝑝
(2)
𝑚 :=

exp(−`𝑥1𝑧)
[

exp(−1
2`

2∥𝑥1∥2) − exp(−3
2`

2∥𝑥1∥2)
]

𝐷𝑛,𝑚

, (3.90)

𝑝
(3)
𝑚 :=

exp(`𝑥𝑇1 𝑧 −
1
2`

2∥𝑥1∥2) − exp(−`𝑥𝑇1 𝑧 −
1
2`

2∥𝑥1∥2)
𝐷𝑛,𝑚

. (3.91)

Then from Lemmas 50 and 51, we have

E`𝑒1 𝑝𝑚 = E𝑝
(1)
𝑚 + E𝑝 (2)𝑚 ≤ `2

2𝑚

(
1 + 𝑜(1)

)
+ `2

2𝑚

(
1 + 𝑜(1)

)
=
`2

𝑚

(
1 + 𝑜(1)

)
.

And from Lemma 52,

(𝑚 − 1)E`𝑒2 𝑝
2
𝑚 ≥ (𝑚 − 1) · `

2

𝑚2

(
1 + 𝑜(1)

)
=
`2

𝑚

(
1 + 𝑜(1)

)
.

Thus, from (3.87),

𝐵(𝜋𝑆 (`, 𝑚)) ≥ `2 − `4

𝑚

(
1 + 𝑜(1)

)
.

□

Lemma 50. Assume model (3.1). Suppose 𝑛, 𝑚 → ∞ and ` → 0. Then 𝑝 (1)𝑚 and 𝑝 (2)𝑚 defined in

(3.89) and (3.90) satisfy

(i) E𝑝 (1)𝑚 ≤ `2

2𝑚
(1 + 𝑜(1)), (ii) E𝑝 (2)𝑚 ≤ `2

2𝑚
(1 + 𝑜(1)).

Proof. The technique in proving (i) and (ii) will be similar. Since the numerators in both 𝑝 (1)𝑚 and

𝑝
(2)
𝑚 are nonnegative, we can use

𝐷𝑛,𝑚 ≥ 2
𝑚∑︁
𝑖=1

exp(−`2∥𝑥𝑖∥2/2). (3.92)
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Show (i). First, we show
𝑝
(1)
𝑚

`2/2𝑚
− 1

𝑝
→ 0. (3.93)

We have ∑𝑚
𝑖=1 exp(−`2∥𝑥𝑖∥2/2)

𝑚𝑒
`2
2

𝑝
→ 1.

Because

• E exp
(
− `2

2 ∥𝑥𝑖∥2
)
=

(
1 − `2

𝑛

)− 𝑛
2
.

• Var
(

exp
(
− `2

2
∥𝑥𝑖∥2) ) = E exp

(
− `2∥𝑥𝑖∥2) − (

E exp
(
− `2

2
∥𝑥𝑖∥2) )2

=

(
1 − 2

`2

𝑛

)− 𝑛
2 −

(
1 − `2

𝑛

)−𝑛
= 𝑜

(
𝑒`

2 )
= 𝑂 (1).

Then we can apply the weak law of large numbers. And we have

exp
(

1
2`

2∥𝑥1∥2
)
− exp

(
− 1

2`
2∥𝑥𝑖∥2

)
`2

𝑝
→ 1,

exp
(
`𝑥𝑇1 𝑧

) 𝑝
→ 1.

Thus, (3.93) follows.

Second, we show 2𝑚
`2 𝑝

(1)
𝑚 is dominated by 𝐿1 random variable. Since 𝑝 (1)𝑚 ≥ 0,

2𝑚
`2 𝑝

(1)
𝑚 ≤ 2𝑚

`2

exp(−`𝑥𝑇1 𝑧)
[

exp( 1
2`

2∥𝑥1∥2) − exp(−1
2`

2∥𝑥1∥2)
]

2
∑𝑚
𝑖=1 exp

(
− `2

2 ∥𝑥𝑖∥2)
(𝑎)
≤ 2𝑚

`2

exp(−`𝑥𝑇1 𝑧)
[

exp( 1
2`

2∥𝑥1∥2) − exp(−1
2`

2∥𝑥1∥2)
]

2𝑚 exp
(
− 1
𝑚

∑𝑚
𝑖=1

`2

2 ∥𝑥𝑖∥2
)

=
1
`2 exp

( 1
𝑚

𝑚∑︁
𝑖=1

`2

2
∥𝑥𝑖∥2

)
· exp

(
− `𝑥𝑇1 𝑧

)
·
[

exp(1
2
`2∥𝑥1∥2) − exp(−1

2
`2∥𝑥1∥2)

]
=

1
`2 exp

[
− `𝑥𝑇1 𝑧 +

( 1
𝑚

+ 1
) `2

2
∥𝑥1∥2

]
· exp

( 1
𝑚

`2

2

𝑚∑︁
𝑖=2

∥𝑥𝑖∥2
)

− 1
`2 exp

[
− `𝑥𝑇1 𝑧 −

(
1 − 1

𝑚

) `2

2
∥𝑥1∥2

]
· exp

( 1
𝑚

`2

2

𝑚∑︁
𝑖=2

∥𝑥𝑖∥2
)

:= Δ,
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where Inequality (a) used the arithmetic-geometric inequality of the denominator. Using 𝑥𝑇1 𝑧
𝑑
=

∥𝑥1∥𝑧1 and by conditioning on ∥𝑥1∥ first,

EΔ =
1
`2E exp

( `2∥𝑥1∥2

2
+

( 1
𝑚

+ 1
) `2

2
∥𝑥1∥2

)
·
(
1 − `2

𝑛𝑚

)− 𝑛(𝑚−1)
2

− 1
`2E exp

( `2∥𝑥1∥2

2
−

(
1 − 1

𝑚

) `2

2
∥𝑥1∥2

)
·
(
1 − `2

𝑛𝑚

)− 𝑛(𝑚−1)
2

=
1
`2 ·

(
1 − `2

𝑛𝑚

)− 𝑛(𝑚−1)
2 ·

[(
1 − 2

𝑛

(
1 + 1

2𝑚
)
`2

)− 𝑛
2 −

(
1 − 2

𝑛

`2

2𝑚

)− 𝑛
2
]

=
1
`2 · (1 + 𝑜(1))

(
`2 + 𝑜(`2)

)
= 𝑂 (1).

Thus, by dominated convergence theorem,

E𝑝
(1)
𝑚 ≤ `2

2𝑚
(1 + 𝑜(1)).

Show (ii). First, we show
𝑝
(2)
𝑚

`2/2𝑚
− 1

𝑝
→ 0. (3.94)

Because

•
exp

(
− 1

2 `
2∥𝑥1∥2

)
−exp

(
− 3

2 `
2∥𝑥1∥2

)
`2

𝑝
→ 1.

• exp(−`𝑥𝑇1 𝑧)
𝑑
= exp(`𝑥𝑇1 𝑧)

𝑝
→ 1.

Second, we show that 𝑝
(2)
𝑚

`2/2𝑚 is dominated by a 𝐿1 random variable. Since 𝑝 (2)𝑚 ≥ 0,

2𝑚
`2 𝑝

(2)
𝑚 ≤ 2𝑚

`2

exp(−`𝑥𝑇1 𝑧)
[

exp(−1
2`

2∥𝑥1∥2) − exp(−3
2`

2∥𝑥1∥2)
]

2
∑𝑚
𝑖=1 exp

(
− `2

2 ∥𝑥𝑖∥2)
≤ 2𝑚
`2

exp(−`𝑥𝑇1 𝑧)
[

exp(−1
2`

2∥𝑥1∥2) − exp(−3
2`

2∥𝑥1∥2)
]

2𝑚 exp
(
− 1
𝑚

∑𝑚
𝑖=1

`2

2 ∥𝑥𝑖∥2
)
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=
1
`2 exp

( 1
𝑚

`2

2

𝑚∑︁
𝑖=2

∥𝑥𝑖∥2
)
·
[

exp
(
`𝑥𝑇1 𝑧 −

(
1 − 1

𝑚

) `2

2
∥𝑥1∥2

)
− exp

(
− `𝑥𝑇1 𝑧 −

(
3 − 1

𝑚

) `2

2
∥𝑥1∥2

)]
:= Γ.

And

EΓ =
1
`2

(
1 − `2

𝑛𝑚

)− 𝑛(𝑚−1)
2
E
[

exp
( `2

2
∥𝑥1∥2 −

(
1 − 1

𝑚

) `2

2
∥𝑥1∥2

)
− exp

( `2

2
∥𝑥1∥2 −

(
3 − 1

𝑚

) `2

2
∥𝑥1∥2

)]
=

1
`2

(
1 − `2

𝑛𝑚

)− 𝑛(𝑚−1)
2

[(
1 − 2

𝑛

`2

2𝑚

)− 𝑛
2 −

(
1 − 2

𝑛

(
− 1 + 1

2𝑚
)
`2

)− 𝑛
2
]

=
1
`2

(
1 + 𝑜(1)

)
·
(
`2 + 𝑜(`2)

)
= 𝑂 (1).

Thus, by dominated convergence theorem,

E𝑝
(2)
𝑚 ≤ `2

2𝑚
(
1 + 𝑜(1)

)
.

□

Lemma 51. Assume model (3.1). Suppose 𝑛, 𝑚 → ∞ and ` → 0. Then 𝑝
(3)
𝑚 defined in (3.91)

satisfies

E𝑝
(3)
𝑚 = 𝑜

( `2

𝑚

)
.

Proof. Since 𝑧 𝑑
= −𝑧, let

exp(`𝑥𝑇1 𝑧 −
1
2`

2∥𝑥1∥2)
𝐷𝑛,𝑚

=
exp(`𝑥𝑇1 𝑧 −

1
2`

2∥𝑥1∥2)
𝐴

,

exp(−`𝑥𝑇1 𝑧 −
1
2`

2∥𝑥1∥2)
𝐷𝑛,𝑚

=
exp(`𝑥𝑇1 𝑧 −

1
2`

2∥𝑥1∥2)
𝐵

,
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where

𝐴 := exp
(1
2
`2∥𝑥1∥2 + `𝑥𝑇1 𝑧

)
+ exp

(
− 3

2
`2∥𝑥1∥2 − `𝑥𝑇1 𝑧

)
+

𝑚∑︁
𝑖=2

exp
(
`𝑥𝑇𝑖 (`𝑥1 + 𝑧) −

`2

2
∥𝑥𝑖∥2

)
+ exp

(
− `𝑥𝑇𝑖 (`𝑥1 + 𝑧) −

`2

2
∥𝑥𝑖∥2

)
,

𝐵 :𝑑= exp
(1
2
`2∥𝑥1∥2 − `𝑥𝑇1 𝑧

)
+ exp

(
− 3

2
`2∥𝑥1∥2 + `𝑥𝑇1 𝑧

)
+

𝑚∑︁
𝑖=2

exp
(
`𝑥𝑇𝑖 (`𝑥1 − 𝑧) −

`2

2
∥𝑥𝑖∥2

)
+ exp

(
− `𝑥𝑇𝑖 (`𝑥1 − 𝑧) −

`2

2
∥𝑥𝑖∥2

)
= exp

(
− 2`2∥𝑥1∥2

)
exp

(1
2
`2∥𝑥1∥2 + `𝑥𝑇1 𝑧

)
+ exp

(
2`2∥𝑥1∥2

)
exp

(
− 3

2
`2∥𝑥1∥2 − `𝑥𝑇1 𝑧

)
+

𝑚∑︁
𝑖=2

[
exp

(
− 2`2𝑥𝑇𝑖 𝑥1

)
exp

(
`𝑥𝑇𝑖 (`𝑥1 + 𝑧) −

`2

2
∥𝑥𝑖∥2

)
+ exp

(
2`2𝑥𝑇𝑖 𝑥1

)
exp

(
− `𝑥𝑇𝑖 (`𝑥1 + 𝑧) −

`2

2
∥𝑥𝑖∥2

)]
.

Then,

E𝑝
(3)
𝑚 =

(𝐵 − 𝐴) exp
(
`𝑥𝑇1 𝑧 −

1
2`

2∥𝑥1∥2)
𝐵𝐴

,

= E
𝐼 · exp

(
`𝑥𝑇1 𝑧 −

1
2`

2∥𝑥1∥2) + 𝐼 𝐼 · exp
(
`𝑥𝑇1 𝑧 −

1
2`

2∥𝑥1∥2)
𝐵𝐴

= E
Δ1
𝐵𝐴

+ E Δ2
𝐵𝐴

,

where

𝐵 − 𝐴 =

[
exp

(
− 2`2∥𝑥1∥2) − 1

]
· exp

(1
2
`2∥𝑥1∥2 + `𝑥𝑇1 𝑧

)
+

[
exp

(
2`2∥𝑥1∥2) − 1

]
· exp

(
− 3

2
`2∥𝑥1∥2 − `𝑥𝑇1 𝑧

)
+

𝑚∑︁
𝑖=2

[
exp

(
− 2`2𝑥𝑇𝑖 𝑥1

)
− 1

]
· exp

(
`𝑥𝑇𝑖 (`𝑥1 + 𝑧) −

`2

2
∥𝑥𝑖∥2)

+
[

exp
(
2`2𝑥𝑇𝑖 𝑥1

)
− 1

]
· exp

(
− `𝑥𝑇𝑖 (`𝑥1 + 𝑧) −

`2

2
∥𝑥𝑖∥2)

 := 𝐼


:= 𝐼 𝐼
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and

Δ1 := 𝐼 · exp
(
`𝑥𝑇1 𝑧 −

1
2
`2∥𝑥1∥2) , Δ2 := 𝐼 𝐼 · exp

(
`𝑥𝑇1 𝑧 −

1
2
`2∥𝑥1∥2) .

First, we show

E
Δ1
𝐵𝐴

= 𝑜

( `2

𝑚

)
. (3.95)

We have

Δ1 =

[
exp

(
− 2`2∥𝑥1∥2) − 1

]
· exp

(
2`𝑥𝑇1 𝑧

)
+

[
exp

(
2`2∥𝑥1∥2) − 1

]
· exp

(
− 2`2∥𝑥1∥2)

=

[
1 − exp

(
− 2`2∥𝑥1∥2) ] · [1 − exp

(
2`𝑥𝑇1 𝑧

) ]
≤

[
1 − exp

(
− 2`2∥𝑥1∥2) ] [1 − exp

(
− 2`2∥𝑥1∥2) ] · 1(𝑥𝑇1 𝑧≤0) .

The last line is non-negative, so we can use the lower bound of 𝐵𝐴.

𝑚

`2E
Δ1
𝐵𝐴

≤ 𝑚

`2E

[
1 − exp(−2`2∥𝑥1∥2)

]
·
[
1 − exp(2`𝑥𝑇1 𝑧)

]
· 1(𝑥𝑇1 𝑧≤0)[

2𝑚 exp
(
− 1
𝑚

`2

2
∑𝑚
𝑖=1 ∥𝑥𝑖∥2) ]2

=
1

4𝑚`2E exp
( 1
𝑚
`2

𝑚∑︁
𝑖=2

∥𝑥𝑖∥2) · E{[ exp
( 1
𝑚
`2∥𝑥𝑖∥2) − exp

(
− (2 − 1

𝑚
)`2∥𝑥1∥2) ]

·
[
1 − exp(2`𝑥𝑇1 𝑧)

]
· 1(𝑥𝑇1 𝑧≤0)

}
≤ 1

4𝑚`2 ·
[
1 − 2

𝑛𝑚
`2

]− 𝑛(𝑚−1)
2 · E

{[
exp

( 1
𝑚
`2∥𝑥𝑖∥2) − exp

(
− (2 − 1

𝑚
)`2∥𝑥1∥2) ]

· 2`
(
− 𝑥𝑇1 𝑧

)
· 1(𝑥𝑇1 𝑧≤0)

}
,

where the last inequality is using 1 − 𝑒−𝑡 ≤ 𝑡, ∀𝑡 ≥ 0. Let cos \ =
𝑥𝑇1 𝑧

∥𝑥1∥∥𝑧∥ . (∥𝑥1∥, ∥𝑧∥, cos \) are

mutually independent. Conditioned on {𝑥𝑇1 𝑧 ≤ 0}, \ is uniformly distributed in [−𝜋,− 𝜋
2 ] ∪ [ 𝜋2 , 𝜋].

The expectation in the last line is

E
{[

exp
( 1
𝑚
`2∥𝑥𝑖∥2) − exp

(
− (2 − 1

𝑚
)`2∥𝑥1∥2) ] · 2`

(
− 𝑥𝑇1 𝑧

)
· 1(𝑥𝑇1 𝑧≤0)

}
= E

{[
exp

( 1
𝑚
`2∥𝑥𝑖∥2) − exp

(
− (2 − 1

𝑚
)`2∥𝑥1∥2) ] · 2`∥𝑥1∥

}
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·E
[
∥𝑧∥

]
· E

{
(− cos \)1( |\ |∈[ 𝜋2 ,𝜋])

}
=

1
√
𝑛

√
2Γ( 𝑛+1

2 )
Γ( 𝑛2 )

{[
1 − 2`2

𝑛𝑚

]− 𝑛+1
2 −

[
1 + 2

𝑛
(2 − 1

𝑚
)`2

]− 𝑛+1
2
}
·
√

2Γ( 𝑛+1
2 )

Γ( 𝑛2 )
· 1
𝜋

= 𝑂

( `3
√
𝑛

)
.

Thus,
𝑚

`2E
Δ1
𝐵𝐴

≤ 𝑂
( `

𝑚
√
𝑛

)
= 𝑜(1).

Second, we show

E
Δ2
𝐵𝐴

= 𝑜

( `2

𝑚

)
.

We have

Δ2 = exp
(
`𝑥𝑇1 𝑧 −

1
2
`2∥𝑥1∥2

)
·
𝑚∑︁
𝑖=2

[(
exp

(
− 2`2𝑥𝑇𝑖 𝑥1

)
− 1

)
· exp

(
`𝑥𝑇𝑖 (`𝑥1 + 𝑧) −

`2

2
∥𝑥𝑖∥2

)]
+ exp

(
`𝑥𝑇1 𝑧 −

1
2
`2∥𝑥1∥2

)
·
𝑚∑︁
𝑖=2

[(
exp

(
2`2𝑥𝑇𝑖 𝑥1

)
− 1

)
· exp

(
− `𝑥𝑇𝑖 (`𝑥1 + 𝑧) −

`2

2
∥𝑥𝑖∥2

)]
.

We let Δ(1)
2 denote the first line and Δ

(2)
2 denote the second line of the above equation. Δ(1)

2
𝑑
= Δ

(2)
2

by 𝑥𝑖
𝑑
= −𝑥𝑖 for each 𝑖 = 2, . . . , 𝑚. Then,

𝑚

`2E
Δ2
𝐵𝐴

=
2𝑚
`2 E

Δ
(2)
2
𝐵𝐴

≤ 2𝑚
`2

𝑚∑︁
𝑖=2
E
[

exp
(
`𝑥𝑇1 𝑧 −

1
2
`2∥𝑥1∥2

) (
exp

(
2`2𝑥𝑇𝑖 𝑥1

)
− 1

)
· exp

(
− `𝑥𝑇𝑖 (`𝑥1 + 𝑧) −

`2

2
∥𝑥𝑖∥2

)
/(𝐵𝐴)

]
≤ 2𝑚(𝑚 − 1)

`2 · E
{

exp
(
`𝑥𝑇1 𝑧 −

1
2
`2∥𝑥1∥2

)
·
[

exp
(
2`2𝑥𝑇2 𝑥1

)
− 1

]
· exp

(
− `𝑥𝑇2 (`𝑥1 + 𝑧) −

`2

2
∥𝑥2∥2

)
·1(𝑥𝑇2 𝑥1≥0)

/ [
2𝑚 exp

(
− 1
𝑚

`2

2

𝑚∑︁
𝑖=1

∥𝑥𝑖∥2
)]2}

=
𝑚 − 1
2𝑚`2 · E

{
exp

(
`(𝑥1 − 𝑥2)𝑇 𝑧 −

1
2
`2∥𝑥1∥2 − `2𝑥𝑇1 𝑥2 −

1
2
`2∥𝑥2∥2

)
·
[

exp(2`2𝑥𝑇1 𝑥2) − 1
]
· exp

( 1
𝑚
`2

𝑚∑︁
𝑗=1

∥𝑥𝑖∥2
)
1(𝑥𝑇1 𝑥2≥0)

}
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=
𝑚 − 1
2𝑚`2 ·

[
1 − 2

𝑛𝑚
`2

]− 𝑛(𝑚−2)
2 · E

{
exp

( `2

2
∥𝑥1 − 𝑥2∥2 − 1

2
`2∥𝑥1∥2 − `2𝑥𝑇1 𝑥2 −

1
2
`2∥𝑥2∥2

)
·
[

exp(2`2𝑥𝑇1 𝑥2) − 1
]

exp
( 1
𝑚
`2∥𝑥1∥2 + 1

𝑚
`2∥𝑥2∥2

)
· 1(𝑥𝑇1 𝑥2≥0)

}
=

𝑚 − 1
2𝑚`2 ·

[
1 − 2

𝑛𝑚
`2

]− 𝑛(𝑚−2)
2 · E

{[
1 − exp(−2`2𝑥𝑇1 𝑥2)

]
· exp

( 1
𝑚
`2∥𝑥1∥2 + 1

𝑚
`2∥𝑥2∥2

)
· 1(𝑥𝑇1 𝑥2≥0)

}
≤ 𝑚 − 1

2𝑚`2 ·
[
1 − 2

𝑛𝑚
`2

]− 𝑛(𝑚−2)
2 · E

[
2`2∥𝑥1∥ · ∥𝑥2∥ · cos \1( |\ |≤ 𝜋

2 ) · exp
( 1
𝑚
`2∥𝑥1∥2 + 1

𝑚
`2∥𝑥2∥2

)]
=

𝑚 − 1
2𝑚`2 ·

[
1 − 2

𝑛𝑚
`2

]− 𝑛(𝑚−2)
2 · 2`2

𝜋
·
[
E∥𝑥1∥ · exp

( `2

𝑚
∥𝑥1∥2

)]2

= 𝑂

(1
𝑛

)
,

where in the last equality we used

E∥𝑥1∥ · exp
( `2

𝑚
∥𝑥1∥2

)
=

∫ ∞

0

1
2𝑛/2Γ(𝑛/2)

1
√
𝑛
𝑟

𝑛+1
2 −1 exp

(
− 1

2
(
1 − 2`2

𝑛𝑚

)
𝑟

)
𝑑𝑟

=
2 𝑛+1

2 Γ( 𝑛+1
2 )

2 𝑛
2 Γ( 𝑛2 )

1
√
𝑛

(
1 − 2`2

𝑛𝑚

)− 𝑛+1
2

= 𝑂

( 1
√
𝑛

)
.

Thus,
𝑚

`2E
Δ2
𝐵𝐴

≤ 𝑂
(1
𝑛

)
= 𝑜(1).

□

Lemma 52. Assume model (3.1). Suppose 𝑛, 𝑚 → ∞ and ` → 0. Then under 𝛽 = `𝑒2, 𝑝𝑚 defined

in (3.88) satisfies

E`𝑒2 𝑝
2
𝑚 ≥ `2

𝑚2

(
1 + 𝑜(1)

)
.
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Proof. Under 𝛽 = `𝑒2,

E`𝑒2 𝑝
2
𝑚 = E

[
exp

(
`𝑥𝑇1 (`𝑥2 + 𝑧) − 1

2`
2∥𝑥1∥2) − exp

(
− `𝑥𝑇1 (`𝑥2 + 𝑧) − 1

2`
2∥𝑥1∥2) ]2[ ∑𝑚

𝑖=1 exp
(
`𝑥𝑇

𝑖
(`𝑥2 + 𝑧) − 1

2`
2∥𝑥𝑖∥2) + exp

(
− `𝑥𝑇

𝑖
(`𝑥2 + 𝑧) − 1

2`
2∥𝑥𝑖∥2) ]2 .

Observe that the numerator is free from (𝑥3, . . . , 𝑥𝑚). By conditioning on (𝑥1, 𝑥2, 𝑧), apply Jensen’s

inequality on 𝑓 (𝑥) := 1
(𝑥+𝑐)2 , 𝑥 > 0,

E
[ 𝑚∑︁
𝑖=3

exp
(
`𝑥𝑇𝑖 (`𝑥2 + 𝑧) −

1
2
`2∥𝑥𝑖∥2

)
+ exp

(
− `𝑥𝑇𝑖 (`𝑥2 + 𝑧) −

`2

2
∥𝑥𝑖∥2

)���(𝑥1, 𝑥2, 𝑧)
]

= 2(𝑚 − 2)
(
1 + `

2

𝑛

)− 𝑛
2 exp

(1
2

`2/𝑛
1 + `2/𝑛

∥`𝑥2 + 𝑧∥2
)
.

Thus,

E`𝑒2 𝑝
2
𝑚 ≥ E

[
exp

(
`𝑥𝑇1 (`𝑥2 + 𝑧) −

1
2
`2∥𝑥1∥2

)
− exp

(
− `𝑥𝑇1 (`𝑥2 + 𝑧) −

1
2
`2∥𝑥1∥2

)]2

·
[

exp
(
`𝑥𝑇1 (`𝑥2 + 𝑧) −

1
2
`2∥𝑥1∥2

)
+ exp

(
− `𝑥𝑇1 (`𝑥2 + 𝑧) −

1
2
`2∥𝑥1∥2

)
+ exp

(
`𝑥𝑇2 𝑧 +

1
2
`2∥𝑥2∥2

)
+ exp

(
− `𝑥𝑇2 𝑧 −

3
2
`2∥𝑥2∥2

)
+ 2(𝑚 − 2)

(
1 + `

2

𝑛

)− 𝑛
2 exp

(1
2

`2/𝑛
1 + `2/𝑛

∥`𝑥2 + 𝑧∥2
)]−2

.

To further simplify the denominator, we note that the numerator depends on 𝑥2 and 𝑧 only through

`𝑥2 + 𝑧. We construct a random variable 𝑣 := − 𝑛
`
𝑥2 + 𝑧 being independent of `𝑥2 + 𝑧, and take

conditional expectation of 𝑣 on other variables in the denominator by applying Jensen’s inequality

on function 𝑓 (𝑥) = 1
(𝑥+𝑐)2 ,

E`𝑒2 𝑝
2
𝑚 ≥ E

{[
exp

(
`𝑥𝑇1 (`𝑥2 + 𝑧) −

1
2
`2∥𝑥1∥2

)
− exp

(
− `𝑥𝑇1 (`𝑥2 + 𝑧) −

1
2
`2∥𝑥1∥2

)]2

·
(
E𝑣

[
exp

(
`𝑥𝑇1 (`𝑥2 + 𝑧) −

1
2
`2∥𝑥1∥2

)
+ exp

(
− `𝑥𝑇1 (`𝑥2 + 𝑧) −

1
2
`2∥𝑥1∥2

)
+ exp

(
`𝑥𝑇2 𝑧 +

1
2
`2∥𝑥2∥2

)
+ exp

(
− `𝑥𝑇2 𝑧 −

3
2
`2∥𝑥2∥2

)
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+ 2(𝑚 − 2)
(
1 + `

2

𝑛

)− 𝑛
2 exp

(1
2

`2/𝑛
1 + `2/𝑛

∥`𝑥2 + 𝑧∥2
)] )−2}

(𝑎)
= E

{[
exp

(
`𝑥𝑇1 (`𝑥2 + 𝑧) −

1
2
`2∥𝑥1∥2

)
− exp

(
− `𝑥𝑇1 (`𝑥2 + 𝑧) −

1
2
`2∥𝑥1∥2

))]2

·
[

exp
(
`𝑥𝑇1 (`𝑥2 + 𝑧) −

1
2
`2∥𝑥1∥2

)
+ exp

(
− `𝑥𝑇1 (`𝑥2 + 𝑧) −

1
2
`2∥𝑥1∥2

)
+

(
1 + 1

1 + 𝑛

`2

)− 𝑛
2 exp

( 3
(
𝑛

`2

)2 + 5 𝑛

`2 + 2

2
(
1 + 𝑛

`2

)2 (2 + 𝑛

`2

) ∥`𝑥2 + 𝑧∥2
)

+
(
1 + 1

1 + 𝑛

`2

)− 𝑛
2 exp

(
− 1

2
(
1 + 𝑛

`2

) ∥`𝑥2 + 𝑧∥2
)

+ 2(𝑚 − 2)
(
1 + `

2

𝑛

)− 𝑛
2 exp

(1
2

`2/𝑛
1 + `2/𝑛

∥`𝑥2 + 𝑧∥2
)]−2

}
(𝑏)
≥ E

{
4`2

(
𝑥𝑇1 (`𝑥2 + 𝑧)

)2
exp

(
− `2∥𝑥1∥2

)
·
[

exp
(
`𝑥𝑇1 (`𝑥2 + 𝑧) −

1
2
`2∥𝑥1∥2

)
+ exp

(
− `𝑥𝑇1 (`𝑥2 + 𝑧) −

1
2
`2∥𝑥1∥2

)
+

(
1 + 1

1 + 𝑛

`2

)− 𝑛
2 exp

( 3
(
𝑛

`2

)2 + 5 𝑛

`2 + 2

2
(
1 + 𝑛

`2

)2 (2 + 𝑛

`2

) ∥`𝑥2 + 𝑧∥2
)

+
(
1 + 1

1 + 𝑛

`2

)− 𝑛
2 exp

(
− 1

2
(
1 + 𝑛

`2

) ∥`𝑥2 + 𝑧∥2
)

+ 2(𝑚 − 2)
(
1 + `

2

𝑛

)− 𝑛
2 exp

(1
2

`2/𝑛
1 + `2/𝑛

∥`𝑥2 + 𝑧∥2
)]−2

}
≥ E

{
4`2

(
𝑥𝑇1 (`𝑥2 + 𝑧)

)2
exp

(
− `2∥𝑥1∥2

)
·
[

exp
(
`𝑥𝑇1 (`𝑥2 + 𝑧)

)
+ exp

(
− `𝑥𝑇1 (`𝑥2 + 𝑧)

)
+ exp

(3
2
`2

𝑛
∥`𝑥2 + 𝑧∥2

)
+ 1

+ 2(𝑚 − 2) exp
(1
2
`2

𝑛
∥`𝑥2 + 𝑧∥2

)]−2
}

(𝑐)
= E

{
4`2𝑤2

1∥`𝑥2 + 𝑧∥2𝑒−`
2𝑤2

1𝑒−`
2∥𝑤−1∥2

·
[

exp
(
`𝑤1∥`𝑥2 + 𝑧∥

)
+ exp

(
− `𝑤1∥`𝑥2 + 𝑧∥

)
+ exp

(3
2
`2

𝑛
∥`𝑥2 + 𝑧∥2

)
+ 1

+ 2(𝑚 − 2) exp
(1
2
`2

𝑛
∥`𝑥2 + 𝑧∥2

)]−2
}
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(𝑑)
≥ 4`2

𝑀
E
[
𝑤2

1𝑒
−`2𝑤2

11( |𝑤1 |≤𝑏/
√
𝑛)

]
· E

[
∥`𝑥2 + 𝑧∥2

1(∥`𝑥2+𝑧∥≤𝑐
√
𝑛)

]
· E

[
𝑒−`

2∥𝑤−1∥2
]

(𝑒)
≥ 4`2

𝑀

(
1 + 2

𝑛
`2

)− 𝑛−1
2 1

𝑛
(
1 + 2 `

2

𝑛

) [ − 2𝑏
√

2𝜋
𝑒−

1
2 (1+

2`2
𝑛

)𝑏2 + 1√︃
1 + 2`2

𝑛

∫ 𝑏

√︃
1+ 2`2

𝑛

−𝑏
√︃

1+ 2`2
𝑛

𝜙(𝑥)𝑑𝑥
]

· 𝑛
(
1 + `

2

𝑛

)
·
[
1 − exp

(
− 1

2

(√√ 𝑐2𝑛

1 + `2

𝑛

− 𝑑

2
−

√︂
𝑑

2

)2
)]

( 𝑓 )
=

4`2

𝑀

(
1 + 𝑜(1)

)
(𝑔)
=
`2

𝑚2

(
1 + 𝑜(1)

)
.

Equality (a) uses for ∀𝑎 ∈ R𝑛, 𝑏 ∼ N(0, 𝜎2𝐼𝑛), 𝜖1 and 𝜖2 being two constants,

E𝑏

[
exp

(
− 1

2
𝜖1∥𝑏∥2 − 𝜖2𝑎

𝑇𝑏

)���𝑎] = (
1 + 𝜖1𝜎

2)− 𝑛
2 exp

( 𝜎2𝜖2
2

2(1 + 𝜖1𝜎2)
∥𝑎∥2

)
.

Inequality (b) uses that (𝑒𝑥 − 𝑒−𝑥)2 ≥ (2𝑥)2 for all 𝑥 ∈ R. In Equality (c), we let 𝑄 ∈ R𝑛×𝑛 be an

orthogonal matrix such that 𝑄(`𝑥2 + 𝑧) = (∥`𝑥2 + 𝑧∥, 0, . . . , 0). Denote 𝑄𝑥1 =: 𝑤 = (𝑤1, 𝑤−1),

𝑤1 ∈ R, 𝑤−1 ∈ R𝑛−1. Then, 𝑥𝑇1 (`𝑥2 + 𝑧) = 𝑤1∥`𝑥2 + 𝑧∥, ∥𝑥1∥2 = ∥𝑤1∥2, and 𝑤 ∼ N(0, 1
𝑛
𝐼𝑛), 𝑤 is

independent of ∥`𝑥2 + 𝑧∥. In Inequality (d), 𝑀 :=
[
𝑒`𝑏𝑐 + 𝑒−`𝑏𝑐 + 𝑒 3

2 `
2𝑐2 + 1 + 2(𝑚 − 2)𝑒 1

2 `
2𝑐2

]2
.

Inequality (e) uses that

• E𝑤2
1𝑒

−`2𝑤2
11( |𝑤1 |≤𝑏/

√
𝑛) =

1
𝑛(1+2 `2

𝑛
)

[
− 2𝑏√

2𝜋
𝑒−

1
2 (1+

2`2
𝑛

)𝑏2 + 1√︃
1+ 2`2

𝑛

∫ 𝑏

√︃
1+ 2`2

𝑛

−𝑏
√︃

1+ 2`2
𝑛

𝜙(𝑥)𝑑𝑥
]
.

• E∥`𝑥2 + 𝑧∥2
1(∥`𝑥2+𝑧∥≤𝑐

√
𝑛) =

( `2

𝑛
+ 1

)
𝑛 · 𝑃

(
𝜒2
𝑛+1 ≤ 𝑐2𝑛

`2/𝑛 + 1

)
≥ 𝑛

(
1 + `

2

𝑛

)
·
[
1 − exp

(
− 1

2

(√√ 𝑐2𝑛

1 + `2

𝑛

− 𝑑

2
−

√︂
𝑑

2

)2
)] .

Equality (f) holds by setting 𝑏 = 𝑐 = `−
1
4 = 𝜔(1). Finally, Inequality (g) holds because 𝑀 ≤

4𝑚2𝑒
√
` for all ` being sufficiently small. □
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3.4.6 Proof of Theorem 16

Lower bound

Due to the scalability discussion in Section 3.4.1, we present the proof for 𝜎 = 1. Let 𝜋±𝐼𝐵

be the symmetric independent block prior described in Section 3.4.5. The following proposition

states the lower bound.

Proposition 6. Assume model (3.1). Suppose 𝑛 → ∞, 𝑝/𝑘 → ∞ and log(𝑝/𝑘)/𝑛 → 0. Let

` := 𝜏/𝜎 → ∞ and ` = 𝑜
(√︁

log(𝑝/𝑘)
)
. Additionally, assume `4/𝑛 → 0. Then the Bayes risk of

the symmetric independent block prior satisfies

𝐵(𝜋±𝐼𝐵 (𝜏; 𝑝, 𝑘)) ≥ 𝑘𝜏2
(
1 − 𝑘`2

2𝑝
· 𝑒`2 (

1 + 𝑜(1)
) )
.

The proof directly follows the argument of (3.8) and (3.9) in the proof of Proposition 1 and the

following lemma.

Lemma 53. Assume model (3.1). Suppose 𝑛 → ∞, 𝑝/𝑘 → ∞ and log(𝑝/𝑘)/𝑛 → 0. Let ` :=

𝜏/𝜎 → ∞ and ` = 𝑜
(√︁

log(𝑝/𝑘)
)
. Additionally, assume `4/𝑛 → 0. Then the Bayes risk of the

symmetric spike prior (𝜋𝑆 (`, 𝑚)) (𝛽 = ±`𝑒 𝑗 ) = 1
2𝑚 , 𝑗 = 1, . . . , 𝑚 satisfies

𝐵(𝜋𝑆 (`, 𝑚)) ≥ `2 − `2𝑒`
2

2𝑚

(
1 + 𝑜(1)

)
.

Proof. Using the symmetry of the spike prior distribution, the Bayes risk

𝐵(𝜋𝑆 (`, 𝑚)) = E`𝑒1 (𝛽1 − `)2 + (𝑚 − 1)E`𝑒2𝛽
2
1

≥ `2
(
1 − 2E`𝑒1 𝑝𝑚 + (𝑚 − 1)E`𝑒2 𝑝

2
𝑚

)
, (3.96)
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where the Bayesian estimator of 𝛽 at the first coordinate is 𝛽1 = (𝛽𝜋)1 = `𝑝𝑚. Here we denote

𝑝𝑚 :=
exp(`𝑥𝑇1 𝑦 − `

2∥𝑥1∥2/2) − exp(−`𝑥𝑇1 𝑦 − `
2∥𝑥1∥2/2)∑𝑚

𝑗=1

[
exp(`𝑥𝑇

𝑗
𝑦 − `2∥𝑥 𝑗 ∥2/2) + exp(−`𝑥𝑇

𝑗
𝑦 − `2∥𝑥 𝑗 ∥2/2)

] . (3.97)

Then from Lemmas 54 and 60, we have

𝐵(𝜋𝑆 (`, 𝑚)) ≥ `2 − `2𝑒`
2

2𝑚

(
1 + 𝑜(1)

)
.

□

Lemma 54. Assume model (3.1). Let𝑚 := ⌈𝑝/𝑘⌉. Suppose 𝑛, 𝑚 → ∞, ` → ∞ and `2 = 𝑜(log𝑚).

Additionally, assume `4/𝑛→ 0. Then under 𝛽 = `𝑒1, 𝑝𝑚 defined in (3.97) satisfies

E`𝑒1 𝑝𝑚 ≤ 𝑒`
2

2𝑚
(
1 + 𝑜(1)

)
.

Proof. Under 𝛽 = `𝑒1,

E`𝑒1 𝑝𝑚 = E

[
exp

(
`𝑥𝑇1 𝑧 +

`2

2
∥𝑥1∥2

)
− exp

(
− `𝑥𝑇1 𝑧 −

3`2

2
∥𝑥1∥2

)]
·
[ 𝑚∑︁
𝑗=2

(
exp

(
`𝑥𝑇𝑗 (`𝑥1 + 𝑧) −

`2

2
∥𝑥 𝑗 ∥2

)
+ exp

(
− `𝑥𝑇𝑗 (`𝑥1 + 𝑧) −

`2

2
∥𝑥 𝑗 ∥2

))
+ exp

(
`𝑥𝑇1 𝑧 +

`2

2
∥𝑥1∥2

)
+ exp

(
− `𝑥𝑇1 𝑧 −

3`2

2
∥𝑥1∥2

)]−1
.

≤ E exp
(
`𝑥𝑇1 𝑧 +

`2

2
∥𝑥1∥2

)
·
[ 𝑚∑︁
𝑗=2

(
exp

(
`𝑥𝑇𝑗 (`𝑥1 + 𝑧) −

`2

2
∥𝑥 𝑗 ∥2

)
+ exp

(
− `𝑥𝑇𝑗 (`𝑥1 + 𝑧) −

`2

2
∥𝑥 𝑗 ∥2

)
+ exp

(
`𝑥𝑇1 𝑧 +

`2

2
∥𝑥1∥2

)
+ exp

(
− `𝑥𝑇1 𝑧 −

3`2

2
∥𝑥1∥2

)]−1
.

We will show that 𝑚𝑒−`
2 · 𝑝𝑚 is dominated by an 𝐿1 integrable random variable and then prove by

the dominated convergence theorem that E`𝑒1 𝑝𝑚 ≤ 𝑒`2/(2𝑚) ·
(
1 + 𝑜(1)

)
. We first construct such
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integrable upper bound. Observe that 𝑥 𝑗 and 𝑥1 are tangled through `𝑥1 + 𝑧. Let 𝑦 = `𝑥1 + 𝑧 and

𝑣 :=
(
− 𝑛

`
𝑥1 + 𝑧

)
/
√︁
𝑛 · (1 + 𝑛/`2) ∼ N (0, 1

𝑛
). 𝑦 is independent of 𝑣, furthermore (𝑦, 𝑣, {𝑥 𝑗 }𝑚𝑗=2)

are mutual independent. In exchange of variables from (𝑥1, 𝑧) to (𝑦, 𝑣), we have

`2

2 ∥𝑥1∥2 + `𝑥𝑇1 𝑧 = `
2 2+`2/𝑛

2(1+`2/𝑛)
∥𝑦∥2

𝑛(1+`2/𝑛) −
`

(1+`2/𝑛)3/2 𝑣
𝑇 𝑦 − `2

2(1+`2/𝑛) ∥𝑣∥
2,

−`𝑥𝑇1 𝑧 −
3`2

2 ∥𝑥1∥2 = −`2 2+3`2/𝑛
2(1+`2/𝑛)

∥𝑦∥2

𝑛(1+`2/𝑛) + `
1+2`2/𝑛

(1+`2/𝑛)3/2 𝑣
𝑇 𝑦 − `2

2(1+`2/𝑛) ∥𝑣∥
2.

Thus,

E`𝑒1 𝑝𝑚 ≤ E𝑈, (3.98)

with

𝑈 := exp
(
`2 2 + `2/𝑛

2(1 + `2/𝑛)
∥𝑦∥2

𝑛(1 + `2/𝑛)

)
exp

( `

(1 + `2/𝑛)3/2 𝑣
𝑇 𝑦 − `2

2(1 + `2/𝑛)
∥𝑣∥2

)
·
[ 𝑚∑︁
𝑗=2

(
exp

(
`𝑥𝑇𝑗 𝑦 −

`2

2
∥𝑥 𝑗 ∥2

)
+ exp

(
− `𝑥𝑇𝑗 𝑦 −

`2

2
∥𝑥 𝑗 ∥2

))
+ exp

(
`2 2 + `2/𝑛

2(1 + `2/𝑛)
∥𝑦∥2

𝑛(1 + `2/𝑛)
+ `

(1 + `2/𝑛)3/2 𝑣
𝑇 𝑦 − `2

2(1 + `2/𝑛)
∥𝑣∥2

)
+ exp

(
− `2 2 + 3`2/𝑛

2(1 + `2/𝑛)
∥𝑦∥2

𝑛(1 + `2/𝑛)
− ` 1 + 2`2/𝑛

(1 + `2/𝑛)3/2 𝑣
𝑇 𝑦 − `2

2(1 + `2/𝑛)
∥𝑣∥2

)]−1
,

(3.99)

where we have used 𝑣 𝑑
= −𝑣. Following Lemma 55, we obtain

E𝑈 ≤ 𝑒`
2

𝑚
·
(
1 + 𝑜(1)

)
. (3.100)

Now, we show E`𝑒1 𝑝𝑚 = 𝑒`
2

2𝑚 ·
(
1 + 𝑜(1)

)
through dominated converge theorem. Consider the

truncation on the following events:

(i) ∥𝑦∥2

𝑛(1+`2/𝑛) ≥
2(1+`2/𝑛)

2+`2/𝑛
log 2
`

.
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(ii) 𝑣𝑇 𝑦

∥𝑦∥2𝑛

√︃
1 + `2

𝑛
≥ − `

2
2−`2/𝑛

2(1−`2/𝑛) .

From (3.98), we have

E`𝑒1 𝑝𝑚 ≤ E[𝑈1((𝑖)&(𝑖𝑖))] + E[𝑈1((𝑖)𝑐∪(𝑖𝑖)𝑐)] .

Lemma 57 indicates that

E[𝑈1((𝑖)&(𝑖𝑖))] ≤ 𝑒`
2/(2𝑚) ·

(
1 + 𝑜(1)

)
.

By Lemma 59,

𝑈1((𝑖)𝑐∪(𝑖𝑖)𝑐)
𝑑
=
𝑒`

2

𝑚

𝐵

𝐴
= 𝑜𝑝

( 𝑒`2

𝑚

)
.

Then using (3.100) and the dominated convergence theorem, we have

E[𝑈1((𝑖)𝑐∪(𝑖𝑖)𝑐)] ≤ 𝑜
( 𝑒`2

𝑚

)
.

As a result,

E`𝑒1 𝑝𝑚 ≤ 𝑒`
2

2𝑚
(
1 + 𝑜(1)

)
.

□

Lemma 55. Assume model (3.1) with 𝛽 = `𝑒1. Let 𝑚 := ⌈𝑝/𝑘⌉. Suppose 𝑛, 𝑚 → ∞ and

`2 = 𝑜(log𝑚). Additionally, assume `4/𝑛 → 0. Then 𝑈 defined in (3.99) with 𝑣 :=
(
− 𝑛

`
𝑥1 +

𝑧

)
/
√︁
𝑛 · (1 + 𝑛/`2) satisfies

E`𝑒1𝑈 ≤ 𝑒`
2

𝑚

(
1 + 𝑜(1)

)
.

Proof. Using that 𝑒𝑎+𝑒−𝑎 ≥ 𝑒𝑏+𝑒−𝑏 for |𝑎 | ≥ |𝑏 |, exp
(
`𝑥𝑇

𝑗
𝑦− `2

2 ∥𝑥 𝑗 ∥2
)
+exp

(
−`𝑥𝑇

𝑗
𝑦− `2

2 ∥𝑥 𝑗 ∥2
)
≥
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exp
(

`𝑥𝑇
𝑗
𝑦

(1+`2/𝑛)3/2 −
`2

2 ∥𝑥 𝑗 ∥2
)
+ exp

(
− `𝑥𝑇

𝑗
𝑦

(1+`2/𝑛)3/2 −
`2

2 ∥𝑥 𝑗 ∥2
)
,

E`𝑒1𝑈 ≤E
exp

(
`2 2+`2/𝑛

2(1+`2/𝑛)
∥𝑦∥2

𝑛(1+`2/𝑛)

)
exp

(
`

(1+`2/𝑛)3/2 𝑣
𝑇 𝑦 − `2

2(1+`2/𝑛) ∥𝑣∥
2
)

∑𝑚
𝑗=2 exp

(
`𝑥𝑇

𝑗
𝑦

(1+`2/𝑛)3/2 −
`2

2 ∥𝑥 𝑗 ∥2
)
+ exp

(
`

(1+`2/𝑛)3/2 𝑣
𝑇 𝑦 − `2

2(1+`2/𝑛) ∥𝑣∥2
)

≤E exp
(
`2 2 + `2/𝑛

2(1 + `2/𝑛)
∥𝑦∥2

𝑛(1 + `2/𝑛)

)
exp

( `4

2𝑛(1 + `2/𝑛)
max

2≤ 𝑗≤𝑚
∥𝑥 𝑗 ∥2

)
·

exp
(

`

(1+`2/𝑛)3/2 𝑣
𝑇 𝑦 − `2

2(1+`2/𝑛) ∥𝑣∥
2
)

∑𝑚
𝑗=2 exp

(
`𝑥𝑇

𝑗
𝑦

(1+`2/𝑛)3/2 −
`2

2(1+`2/𝑛) ∥𝑥 𝑗 ∥2
)
+ exp

(
`

(1+`2/𝑛)3/2 𝑣
𝑇 𝑦 − `2

2(1+`2/𝑛) ∥𝑣∥2
)

≤E exp
(
`2 2 + `2/𝑛

2(1 + `2/𝑛)
∥𝑦∥2

𝑛(1 + `2/𝑛)

)
exp

( `4

2𝑛(1 + `2/𝑛)
max

2≤ 𝑗≤𝑚

(
∥𝑣∥2 ∨ ∥𝑥 𝑗 ∥2

))
·

exp
(

`

(1+`2/𝑛)3/2 𝑣
𝑇 𝑦 − `2

2(1+`2/𝑛) ∥𝑣∥
2
)

∑𝑚
𝑗=2 exp

(
`𝑥𝑇

𝑗
𝑦

(1+`2/𝑛)3/2 −
`2

2(1+`2/𝑛) ∥𝑥 𝑗 ∥2
)
+ exp

(
`

(1+`2/𝑛)3/2 𝑣
𝑇 𝑦 − `2

2(1+`2/𝑛) ∥𝑣∥2
) .
(3.101)

Let the fraction in the last line be 𝐹 (𝑣, 𝑥2, . . . , 𝑥𝑚). Based on the independence and homogeneity

of distributions of 𝑣 and {𝑥 𝑗 }𝑚𝑗=2, conditional on 𝑦 and max{∥𝑣∥2, ∥𝑥2∥2, . . . , ∥𝑥𝑚 ∥2},

exp
( `

(1 + `2/𝑛)3/2 𝑣
𝑇 𝑦− `2

2(1 + `2/𝑛)
∥𝑣∥2

)
𝑑
= exp

( `𝑥𝑇
𝑗
𝑦

(1 + `2/𝑛)3/2 −
`2

2(1 + `2/𝑛)
∥𝑥 𝑗 ∥2

)
. (3.102)

Hence,
1
𝑚

= E

[
𝐹 (𝑣, 𝑥2, . . . , 𝑥𝑚)

���(𝑦, max
2≤ 𝑗≤𝑚

(
∥𝑣∥2 ∨ ∥𝑥 𝑗 ∥2

))]
.

Thus,

E`𝑒1𝑈 ≤ 1
𝑚
E exp

(
`2 2 + `2/𝑛

2(1 + `2/𝑛)
∥𝑦∥2

𝑛(1 + `2/𝑛)

)
exp

( `4

2𝑛(1 + `2/𝑛)
max

2≤ 𝑗≤𝑚

(
∥𝑣∥2 ∨ ∥𝑥 𝑗 ∥2

))
=

1
𝑚
E exp

(
`2 2 + `2/𝑛

2(1 + `2/𝑛)
∥𝑦∥2

𝑛(1 + `2/𝑛)

)
· E exp

( `4

2𝑛(1 + `2/𝑛)
max

2≤ 𝑗≤𝑚

(
∥𝑣∥2 ∨ ∥𝑥 𝑗 ∥2

))
=

1
𝑚

[
1 − 2

𝑛
`2 2 + `2/𝑛

2(1 + `2/𝑛)

]− 𝑛
2 · E exp

( `4

2𝑛(1 + `2/𝑛)
max

2≤ 𝑗≤𝑚

(
∥𝑣∥2 ∨ ∥𝑥 𝑗 ∥2

))
. (3.103)
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Applying Lemma 58, we have

E`𝑒1𝑈 ≤ 1
𝑚

·
[
1 − 2

𝑛
`2 2 + `2/𝑛

2(1 + `2/𝑛)

]− 𝑛
2 exp

( (1 + 𝑐)`4

2𝑛(1 + `2/𝑛)

)
·
(
1 + 𝑜(1)

)
=

1
𝑚

exp
(
`2 +𝑂

( `4

𝑛

))
·
(
1 + 𝑜(1)

)
=
𝑒`

2

𝑚
·
(
1 + 𝑜(1)

)
, (3.104)

where the last equality uses the assumption `4/𝑛 = 𝑜(1). □

Lemma 56. Assume 𝑣, 𝑦 ∈ R𝑛. Let ` > 0 and `2/𝑛 < 1. Then the conditions (i) and (ii) described

in Lemma 57 imply that

exp
(
`2 2 + `2/𝑛

2(1 + `2/𝑛)
∥𝑦∥2

𝑛(1 + `2/𝑛)
+ `

(1 + `2/𝑛)3/2 𝑣
𝑇 𝑦 − `2

2(1 + `2/𝑛)
∥𝑣∥2

)
(3.105)

+ exp
(
− `2 2 + 3`2/𝑛

2(1 + `2/𝑛)
∥𝑦∥2

𝑛(1 + `2/𝑛)
− ` 1 + 2`2/𝑛

(1 + `2/𝑛)3/2 𝑣
𝑇 𝑦 − `2

2(1 + `2/𝑛)
∥𝑣∥2

)
≥ exp

( `

(1 + `2/𝑛)3/2 𝑣
𝑇 𝑦 − `2

2(1 + `2/𝑛)
∥𝑣∥2

)
+ exp

(
− `

(1 + `2/𝑛)3/2 𝑣
𝑇 𝑦 − `2

2(1 + `2/𝑛)
∥𝑣∥2

)
.

Proof. We start from transforming (3.105). Multipling by exp
(

`𝑣𝑇 𝑦

(1+`2/𝑛)3/2 +
`2

2(1+`2/𝑛) ∥𝑣∥
2
)

on both

sides and reorganizing, we obtain

exp
(
`2 2 + `2/𝑛

2(1 + `2/𝑛)
∥𝑦∥2

𝑛(1 + `2/𝑛)
+ 2`
(1 + `2/𝑛)3/2 𝑣

𝑇 𝑦

)
− 1

−
[

exp
( 2`
(1 + `2/𝑛)3/2 𝑣

𝑇 𝑦

)
− exp

(
− `2 2 + 3`2/𝑛

2(1 + `2/𝑛)
∥𝑦∥2

𝑛(1 + `2/𝑛)
− ` 2`2/𝑛

(1 + `2/𝑛)3/2 𝑣
𝑇 𝑦

)]
≥ 0

⇔ exp
(
`2 2 + `2/𝑛

2(1 + `2/𝑛)
∥𝑦∥2

𝑛(1 + `2/𝑛)
+ 2`
(1 + `2/𝑛)3/2 𝑣

𝑇 𝑦

)
− 1

−
[

exp
(
`2 2 + `2/𝑛

2(1 + `2/𝑛)
∥𝑦∥2

𝑛(1 + `2/𝑛)
+ 2`
(1 + `2/𝑛)3/2 𝑣

𝑇 𝑦

)
− 1

+ 1 − exp
(
− `2 2`2/𝑛

2(1 + `2/𝑛)
∥𝑦∥2

𝑛(1 + `2/𝑛)
− ` 2`2/𝑛

(1 + `2/𝑛)3/2 𝑣
𝑇 𝑦

)]
· exp

(
− `2 2 + `2/𝑛

2(1 + `2/𝑛)
∥𝑦∥2

𝑛(1 + `2/𝑛)

)
≥ 0

⇔
[

exp
(
`2 2 + `2/𝑛

2(1 + `2/𝑛)
∥𝑦∥2

𝑛(1 + `2/𝑛)
+ 2`
(1 + `2/𝑛)3/2 𝑣

𝑇 𝑦

)
− 1

]
·
[

exp
(
`2 2 + `2/𝑛

2(1 + `2/𝑛)
∥𝑦∥2

𝑛(1 + `2/𝑛)

)
− 1

]
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≥ 1 − exp
(
− `2 2`2/𝑛

2(1 + `2/𝑛)
∥𝑦∥2

𝑛(1 + `2/𝑛)
− ` 2`2/𝑛

(1 + `2/𝑛)3/2 𝑣
𝑇 𝑦

)
. (3.106)

Then if

exp
(
`2 2 + `2/𝑛

2(1 + `2/𝑛)
∥𝑦∥2

𝑛(1 + `2/𝑛)

)
≥ 2, (3.107)

a sufficient condition for (3.106) to hold is

exp
(
`2 2 + `2/𝑛

2(1 + `2/𝑛)
∥𝑦∥2

𝑛(1 + `2/𝑛)
+ 2`
(1 + `2/𝑛)3/2 𝑣

𝑇 𝑦

)
− 1

≥1 − exp
(
− `2 2`2/𝑛

2(1 + `2/𝑛)
∥𝑦∥2

𝑛(1 + `2/𝑛)
− ` 2`2/𝑛

(1 + `2/𝑛)3/2 𝑣
𝑇 𝑦

)
. (3.108)

Suppose additionally

`2 2 − `2/𝑛
2(1 + `2/𝑛)

∥𝑦∥2

𝑛(1 + `2/𝑛)
+ ` 2(1 − `2/𝑛)

(1 + `2/𝑛)3/2 𝑣
𝑇 𝑦 ≥ 0, (3.109)

or equivalently
𝑣𝑇 𝑦

∥𝑦∥2 ≥ −`
2

1
𝑛
√︁

1 + `2/𝑛
2 − `2/𝑛

2(1 − `2/𝑛)
.

Note that the above implies

`2 2 + `2/𝑛
2(1 + `2/𝑛)

∥𝑦∥2

𝑛(1 + `2/𝑛)
+ 2`
(1 + `2/𝑛)3/2 𝑣

𝑇 𝑦 ≥ 0

⇔ 𝑣𝑇 𝑦

∥𝑦∥2 ≥ −`
2

1
𝑛
√︁

1 + `2/𝑛
2 + `2/𝑛

2
.

Under condition (3.109), if case I:

−`2 2`2/𝑛
2(1 + `2/𝑛)

∥𝑦∥2

𝑛(1 + `2/𝑛)
− ` 2`2/𝑛

(1 + `2/𝑛)3/2 𝑣
𝑇 𝑦 ≥ 0,

then (3.108) holds naturally. If case II:

−`2 2`2/𝑛
2(1 + `2/𝑛)

∥𝑦∥2

𝑛(1 + `2/𝑛)
− ` 2`2/𝑛

(1 + `2/𝑛)3/2 𝑣
𝑇 𝑦 < 0,
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then combining this with condition (3.109),

exp
(
`2 2 + `2/𝑛

2(1 + `2/𝑛)
∥𝑦∥2

𝑛(1 + `2/𝑛)
+ 2`
(1 + `2/𝑛)3/2 𝑣

𝑇 𝑦

)
− 1

≥ exp
(
`2 2`2/𝑛

2(1 + `2/𝑛)
∥𝑦∥2

𝑛(1 + `2/𝑛)
+ ` 2`2/𝑛

(1 + `2/𝑛)3/2 𝑣
𝑇 𝑦

)
− 1

≥ 1 − exp
(
− `2 2`2/𝑛

2(1 + `2/𝑛)
∥𝑦∥2

𝑛(1 + `2/𝑛)
− ` 2`2/𝑛

(1 + `2/𝑛)3/2 𝑣
𝑇 𝑦

)
,

i.e. (3.108) holds. In summary, the sufficient conditions for (3.105) to hold are

(i) ∥𝑦∥2

𝑛(1+`2/𝑛) ≥
2(1+`2/𝑛)

2+`2/𝑛
log 2
`

,

(ii) 𝑣𝑇 𝑦

∥𝑦∥2𝑛

√︃
1 + `2

𝑛
≥ − `

2
2−`2/𝑛

2(1−`2/𝑛) .

□

Lemma 57. Assume model (3.1) with 𝛽 = `𝑒1. Let 𝑚 := ⌈𝑝/𝑘⌉. Suppose 𝑛, 𝑚 → ∞ and

`2 = 𝑜(log𝑚). Additionally, assume `4/𝑛 → 0. Let 𝑈 be defined in (3.99) with 𝑣 :=
(
− 𝑛

`
𝑥1 +

𝑧

)
/
√︁
𝑛 · (1 + 𝑛/`2). Consider conditions:

(i) ∥𝑦∥2

𝑛(1+`2/𝑛) ≥
2(1+`2/𝑛)

2+`2/𝑛
log 2
`

,

(ii) 𝑣𝑇 𝑦

∥𝑦∥2𝑛

√︃
1 + `2

𝑛
≥ − `

2
2−`2/𝑛

2(1−`2/𝑛) .

Then

E[𝑈1((𝑖)&(𝑖𝑖))] ≤
1

2𝑚
𝑒`

2 ·
(
1 + 𝑜(1)

)
.

Proof. From (3.99) and since Lemma 56, we have

E[𝑈1((𝑖)&(𝑖𝑖))] ≤E exp
(
`2 2 + `2/𝑛

2(1 + `2/𝑛)
∥𝑦∥2

𝑛(1 + `2/𝑛)

)
exp

( `𝑣𝑇 𝑦

(1 + `2/𝑛)3/2 − `2∥𝑣∥2

2(1 + `2/𝑛)

)
·
[ 𝑚∑︁
𝑗=2

(
exp

( `𝑥𝑇
𝑗
𝑦

(1 + `2/𝑛)3/2 −
`2∥𝑥 𝑗 ∥2

2

)
+ exp

(
−

`𝑥𝑇
𝑗
𝑦

(1 + `2/𝑛)3/2 −
`2∥𝑥 𝑗 ∥2

2

))
+ exp

( `𝑣𝑇 𝑦

(1 + `2/𝑛)3/2 − `2∥𝑣∥2

2(1 + `2/𝑛)

)
+ exp

(
− `𝑣𝑇 𝑦

(1 + `2/𝑛)3/2 − `2∥𝑣∥2

2(1 + `2/𝑛)

)]−1
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(𝑎)
≤E exp

(
`2 2 + `2/𝑛

2(1 + `2/𝑛)
∥𝑦∥2

𝑛(1 + `2/𝑛)

)
exp

( `4 max2≤ 𝑗≤𝑚 (∥𝑣∥2 ∨ ∥𝑥 𝑗 ∥2)
2𝑛(1 + `2/𝑛)

)
· exp

( `𝑣𝑇 𝑦

(1 + `2/𝑛)3/2 − `2∥𝑣∥2

2(1 + `2/𝑛)

)
·
[ 𝑚∑︁
𝑗=2

(
exp

( `𝑥𝑇
𝑗
𝑦

(1 + `2/𝑛)3/2 −
`2∥𝑥 𝑗 ∥2

2(1 + `2/𝑛)

)
+ exp

(
−

`𝑥𝑇
𝑗
𝑦

(1 + `2/𝑛)3/2 −
`2∥𝑥 𝑗 ∥2

2(1 + `2/𝑛)

))
+ exp

( `𝑣𝑇 𝑦

(1 + `2/𝑛)3/2 − `2∥𝑣∥2

2(1 + `2/𝑛)

)
+ exp

(
− `𝑣𝑇 𝑦

(1 + `2/𝑛)3/2 − `2∥𝑣∥2

2(1 + `2/𝑛)

)]−1

(𝑏)
= E exp

(
`2 2 + `2/𝑛

2(1 + `2/𝑛)
∥𝑦∥2

𝑛(1 + `2/𝑛)

)
exp

( `4 max2≤ 𝑗≤𝑚 (∥𝑣∥2 ∨ ∥𝑥 𝑗 ∥2)
2𝑛(1 + `2/𝑛)

)
· 1

2𝑚
(𝑐)
≤ 1

2𝑚

[
1 − 2

𝑛
`2 2 + `2/𝑛

2(1 + `2/𝑛)

]− 𝑛
2 exp

( (1 + 𝑐)`4

2𝑛(1 + `2/𝑛)

)
·
(
1 + 𝑜(1)

)
(𝑑)
=

1
2𝑚

𝑒`
2 ·

(
1 + 𝑜(1)

)
.

Inequality (a) is derived by comparing the coefficients of ∥𝑥 𝑗 ∥2 and ∥𝑣∥2 in the exponentials in the

numerator and the denominator in (3.99). To show Equality (b), note that 𝑣 and (𝑥2, . . . , 𝑥𝑚) are

independently and identically distributed. Define

𝑣 ∈ R𝑛 ↦→ 𝑓±(𝑣) := exp
(
± `𝑣𝑇 𝑦

(1 + `2/𝑛)3/2 − `2∥𝑣∥2

2(1 + `2/𝑛)

)
,

Then 𝑓+(𝑣)
𝑑
= 𝑓−(𝑣) and 𝑓±(𝑣)

𝑑
= 𝑓±(𝑥 𝑗 ), 𝑗 = 2, . . . , 𝑚. Equality (b) follows by

E
𝑓+(𝑣)∑𝑚

𝑗=2
(
𝑓+(𝑥 𝑗 ) + 𝑓−(𝑥 𝑗 )

)
+ 𝑓+(𝑣) + 𝑓−(𝑣)

=
1
2
E

𝑓+(𝑣) + 𝑓−(𝑣)∑𝑚
𝑗=2

(
𝑓+(𝑥 𝑗 ) + 𝑓−(𝑥 𝑗 )

)
+ 𝑓+(𝑣) + 𝑓−(𝑣)

=
1

2𝑚
.

Inequality (c) uses the independence of 𝑦 and
(
𝑣, {𝑥 𝑗 }𝑚𝑗=2

)
and the result in Lemma 58. The last

Equality (d) uses the assumption `4/𝑛→ 0. □

Lemma 58. Suppose 𝑣, 𝑥2, . . . , 𝑥𝑚
𝑖.𝑖.𝑑∼ N(0, 1

𝑛
𝐼𝑛). If `2/𝑛 → 0 and (log𝑚)/𝑛 → 0, then there

exists some constant 𝑐 > 0 such that

E
[

exp
( `4

2𝑛(1 + `2/𝑛)
max

2≤ 𝑗≤𝑚

(
∥𝑣∥2 ∨ ∥𝑥 𝑗 ∥2

))]
≤ exp

( (1 + 𝑐)`4

2𝑛(1 + `2/𝑛)

)
·
(
1 + 𝑜(1)

)
.
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Proof. We use the integrated tail probability to calculate the expectation. For some constant 𝑐 > 0,

E
[

exp
( `4

2𝑛(1 + `2/𝑛)
max

2≤ 𝑗≤𝑚

(
∥𝑣∥2 ∨ ∥𝑥 𝑗 ∥2

))
− exp

( (1 + 𝑐)`4

2𝑛(1 + `2/𝑛)

)]
=

∫
𝑡>0

𝑃

(
exp

( `4

2𝑛(1 + `2/𝑛)
max

2≤ 𝑗≤𝑚

(
∥𝑣∥2 ∨ ∥𝑥 𝑗 ∥2

))
− exp

( (1 + 𝑐)`4

2𝑛(1 + `2/𝑛)

)
> 𝑡

)
𝑑𝑡

=

∫
𝑥>𝑐

𝑃

(
max

2≤ 𝑗≤𝑚

(
∥𝑣∥2 ∨ ∥𝑥 𝑗 ∥2

)
> 1 + 𝑥

) `4

2𝑛(1 + `2/𝑛)
exp

( `4

2𝑛(1 + `2/𝑛)
(1 + 𝑥)

)
𝑑𝑥

(𝑎)
≤ exp

( `4

2𝑛(1 + `2/𝑛)

)
· `4

2𝑛(1 + `2/𝑛)

∫
𝑥>𝑐

𝑚 exp
{
− 𝑛

2

[(
1 − `4

𝑛2(1 + `2/𝑛)

)
𝑥 − log(1 + 𝑥)

]}
𝑑𝑥

(𝑏)
≤ exp

( `4

2𝑛(1 + `2/𝑛)

)
· `4

2𝑛(1 + `2/𝑛)

∫
𝑥>𝑐

𝑚 exp
{
− 𝑛

2
· 1

2

(
1 − `4

𝑛2(1 + `2/𝑛)

)
𝑥

}
𝑑𝑥

= exp
( `4

2𝑛(1 + `2/𝑛)

)
· 4`4

𝑛2(1 + `2/𝑛)
(
1 − `4

𝑛2 (1+`2/𝑛)
) exp

{
log𝑚 − 𝑛

4

(
1 − `4

𝑛2(1 + `2/𝑛)

)
𝑐

}
(𝑐)
= exp

( `4

2𝑛(1 + `2/𝑛)

)
· 𝑜(1).

The above Inequality (a) uses the union bound and the deviation in Lemma 25. In the above

Inequality (b), we adopt 𝑐 =
(
1+ `4

𝑛2 (1+`2/𝑛)

)
/
(
1− `4

𝑛2 (1+`2/𝑛)

)
such that

(
1− `4

𝑛2 (1+`2/𝑛)

)
𝑥−log(1+𝑥) ≥

1
2

(
1 − `4

𝑛2 (1+`2/𝑛)

)
𝑥 for ∀𝑥 > 𝑐. The last Equality (c) is because `4

𝑛2 = 𝑜(1) and log𝑚 = 𝑜(𝑛).

Therefore,

E
[

exp
( `4

2𝑛(1 + `2/𝑛)
max

2≤ 𝑗≤𝑚

(
∥𝑣∥2 ∨ ∥𝑥 𝑗 ∥2

))]
≤ exp

( (1 + 𝑐)`4

2𝑛(1 + `2/𝑛)

)
·
(
1 + 𝑜(1)

)
.

□

Lemma 59. Suppose 𝑣1, 𝑣2, . . . , 𝑣𝑚
𝑖.𝑖.𝑑∼ N(0, 1

𝑛
𝐼𝑛) and 𝑦 ∼ N(0, 1 + `2

𝑛
) with 𝑦 independent

of {𝑣 𝑗 }𝑚𝑗=1. Consider the conditions (𝑖) and (𝑖𝑖) defined in Lemma 55. Then if 𝑚 → ∞, ` =

𝑜
(√︁

log𝑚
)
, (log𝑚)/𝑛→ 0 and `4/𝑛→ 0, we have

(1) 𝐴 := 1
𝑚

(
1 + `2

𝑛

) 𝑛
2 exp

(
− `2

2
1

(1+`2/𝑛)2
∥𝑦∥2

𝑛(1+`2/𝑛)

)
· ∑𝑚

𝑗=1 exp
(

`𝑣𝑇
𝑗
𝑦

(1+`2/𝑛)3/2 −
`2∥𝑣 𝑗 ∥2

2

)
𝑝
→ 1.

(2) 𝐵 :=𝑒−`
2
(
1 + `

2

𝑛

) 𝑛
2 exp

(
`2

( 2 + `2/𝑛
2(1 + `2/𝑛)

− 1
2(1 + `2/𝑛)2

) ∥𝑦∥2

𝑛(1 + `2/𝑛)

)
· exp

( `𝑣𝑇1 𝑦

(1 + `2/𝑛)3/2 − `2∥𝑣1∥2

2(1 + `2/𝑛)

)
1[

(𝑖)𝑐∪(𝑖𝑖)𝑐
] 𝑝
→ 0.
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Proof. First, one can directly follow the proof in Lemma 33 to derive (1). We omit the proof of (1)

here. Second, to prove (2), it’s sufficient to prove

E exp
(
`2

( 2 + `2/𝑛
2(1 + `2/𝑛)

− 1
2(1 + `2/𝑛)2

) ∥𝑦∥2

𝑛(1 + `2/𝑛)

)
exp

( `𝑣𝑇1 𝑦

(1 + `2/𝑛)3/2 − `2∥𝑣1∥2

2(1 + `2/𝑛)

)
1[

(𝑖)𝑐∪(𝑖𝑖)𝑐
]

≤ E exp
(
`2

( 2 + `2/𝑛
2(1 + `2/𝑛)

− 1
2(1 + `2/𝑛)2

) ∥𝑦∥2

𝑛(1 + `2/𝑛)

)
exp

( `𝑣𝑇1 𝑦

(1 + `2/𝑛)3/2 − `2∥𝑣1∥2

2(1 + `2/𝑛)

) (
1[(𝑖)𝑐] + 1[(𝑖𝑖)𝑐]

)
= 𝑜

(
𝑒`

2 ·
(
1 + `

2

𝑛

)− 𝑛
2
)
.

We first evaluate the truncated expectation on (𝑖)𝑐. Conditional on 𝑦,

E exp
(
`2

( 2 + `2/𝑛
2(1 + `2/𝑛)

− 1
2(1 + `2/𝑛)2

) ∥𝑦∥2

𝑛(1 + `2/𝑛)

)
exp

( `𝑣𝑇1 𝑦

(1 + `2/𝑛)3/2 − `2∥𝑣1∥2

2(1 + `2/𝑛)

)
1[(𝑖)𝑐]

(3.110)

=

[
1 + `2

𝑛(1 + `2/𝑛)

]− 𝑛
2
E exp

[
`2 2 + `2/𝑛

2(1 + `2/𝑛)
∥𝑦∥2

𝑛(1 + `2/𝑛)

]
1[

∥𝑦 ∥2

𝑛(1+`2/𝑛)
<

2(1+`2/𝑛)
2+`2/𝑛

log 2
`

]
=

[
1 + `2

𝑛(1 + `2/𝑛)

]− 𝑛
2
[
1 − 2`2

𝑛

2 + `2/𝑛
2(1 + `2/𝑛)

]− 𝑛
2
𝑃

[1
𝑛
𝜒2
𝑛 <

(
1 − 2`2

𝑛

2 + `2/𝑛
2(1 + `2/𝑛)

) 2(1 + `2/𝑛)
2 + `2/𝑛

log 2
`

]
≤

[
1 + `2

𝑛(1 + `2/𝑛)

]− 𝑛
2
[
1 − 2`2

𝑛

2 + `2/𝑛
2(1 + `2/𝑛)

]− 𝑛
2 exp

[
− 𝑛

2

(
log

1
1 − 𝑡 − 𝑡

)]
, (3.111)

where in the last inequality we used the deviation in Lemma 25 and

1 − 𝑡 :=
(
1 − 2`2

𝑛

2 + `2/𝑛
2(1 + `2/𝑛)

) 2(1 + `2/𝑛)
2 + `2/𝑛

log 2
`

= 𝑜(1),

under the assumptions ` → ∞ and `2/𝑛 → 0. Thus, 𝑛
2

(
log 1

1−𝑡 − 𝑡
)
≥ 𝑐𝑛 = 𝜔(`2), for some

constant 𝑐 > 0. Note that

[
1 + `2

𝑛(1 + `2/𝑛)

]− 𝑛
2
[
1 − 2`2

𝑛

2 + `2/𝑛
2(1 + `2/𝑛)

]− 𝑛
2
= exp

[ `2

2
+𝑂

( `4

𝑛

)]
.
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Therefore, an upper for (3.110) is

𝑜

(
𝑒

`2
2

(
1+𝑜(1)

) )
= 𝑜

(
𝑒`

2 ·
(
1 + `

2

𝑛

)− 𝑛
2
)
.

Then, we evaluate the truncated expectation on (𝑖𝑖)𝑐. Conditional on ∥𝑦∥ and using 𝑣𝑇1 𝑦
𝑑
=

𝑣1,1∥𝑦∥,

E
[

exp
( `𝑣𝑇1 𝑦

(1 + `2/𝑛)3/2 − `2∥𝑣1∥2

2(1 + `2/𝑛)

)
1[(𝑖𝑖)𝑐]

���∥𝑦∥]
= E

[
exp

( `𝑣𝑇1,1∥𝑦∥
(1 + `2/𝑛)3/2 −

`2𝑣2
1,1

2(1 + `2/𝑛)
− `2∥𝑣1,−1∥2

2(1 + `2/𝑛)

)
1[√

𝑛𝑣1,1<− ∥𝑦 ∥√
𝑛(1+`2/𝑛)

`

2
2−`2/𝑛

2(1−`2/𝑛)

] ���∥𝑦∥]
=

[
1 + `2

𝑛(1 + `2/𝑛)

]− 𝑛
2 exp

[ `2∥𝑦∥2

2𝑛(1 + `2/𝑛)3 (1 + `2

𝑛(1+`2/𝑛)
) ]

·𝑃
[
N(0, 1) < − ∥𝑦∥√︃

𝑛(1 + `2

𝑛
)

(√√
1 + `2

𝑛(1 + `2

𝑛
)
`

2
2 − `2/𝑛

2(1 − `2/𝑛)
+ `

(1 + `2

𝑛
)
(
1 + `2

𝑛(1+`2/𝑛)
)1/2

)]
≤

[
1 + `2

𝑛(1 + `2/𝑛)

]− 𝑛
2 exp

[ `2∥𝑦∥2

2𝑛(1 + `2/𝑛)3 (1 + `2

𝑛(1+`2/𝑛)
) ]

· 1
√

2𝜋
exp

[
− 1

2
`2∥𝑦∥2

𝑛(1 + `2

𝑛
)

(√√
1 + `2

𝑛(1 + `2

𝑛
)

2 − `2

𝑛

4(1 − `2

𝑛
)
+ 1

(1 + `2

𝑛
)
(
1 + `2

𝑛(1+`2/𝑛)
)1/2

)2]
= exp

[
− 1

2
`2 (1 + 𝑜(1)

)
+ 1

2
`2 (1 + 𝑜(1)

)
· ∥𝑦∥2

𝑛(1 + `2

𝑛
)
− 9

8
`2 (1 + 𝑜(1)

) ∥𝑦∥2

𝑛(1 + `2

𝑛
)

]
= exp

[
− 1

2
`2 (1 + 𝑜(1)

)
− 5

8
`2 ∥𝑦∥2

𝑛(1 + `2

𝑛
)

(
1 + 𝑜(1)

) ]
,

where the inequality uses the Gaussian tail bound. Hence, it follows by the moment generating

function formula of 𝜒2 distribution that

E exp
(
`2

( 2 + `2/𝑛
2(1 + `2/𝑛)

− 1
2(1 + `2/𝑛)2

) ∥𝑦∥2

𝑛(1 + `2/𝑛)

)
exp

( `𝑣𝑇1 𝑦

(1 + `2/𝑛)3/2 − `2∥𝑣1∥2

2(1 + `2/𝑛)

)
1[(𝑖𝑖)𝑐]

≤ exp
[
− 1

2
`2 (1 + 𝑜(1)

) ]
E exp

[(1
2
`2 (1 + 𝑜(1)

)
− 5

8
`2 (1 + 𝑜(1)

) ) ∥𝑦∥2

𝑛(1 + `2

𝑛
)

]
= exp

[
− 1

2
`2 (1 + 𝑜(1)

) ]
· exp

(
− 1

8
`2 (1 + 𝑜(1)

) )
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= 𝑜

(
𝑒`

2 ·
(
1 + `

2

𝑛

)− 𝑛
2
)
.

□

Lemma 60. Assume model (3.1). Let 𝑚 := ⌈𝑝/𝑘⌉. Suppose 𝑛, 𝑚 → ∞, ` → ∞ and ` =

𝑜(
√︁

log𝑚). Additionally, assume `4/𝑛→ 0. Then under 𝛽 = `𝑒2, 𝑝𝑚 defined in (3.97) satisfies

E`𝑒2 𝑝
2
𝑚 ≥ 𝑒`

2

2𝑚2
(
1 + 𝑜(1)

)
.

Proof. Under 𝛽 = `𝑒2,

E`𝑒2 𝑝
2
𝑚 =E

[
exp

(
`𝑥𝑇1 (`𝑥2 + 𝑧) −

`2

2
∥𝑥1∥2

)
− exp

(
− `𝑥𝑇1 (`𝑥2 + 𝑧) −

`2

2
∥𝑥1∥2

)]2

·
[∑︁
𝑗≠2

(
exp

(
`𝑥𝑇𝑗 (`𝑥2 + 𝑧) −

`2

2
∥𝑥 𝑗 ∥2

)
+ exp

(
− `𝑥𝑇𝑗 (`𝑥2 + 𝑧) −

`2

2
∥𝑥 𝑗 ∥2

))
+ exp

(
`𝑥𝑇2 𝑧 +

`2

2
∥𝑥2∥2

)
+ exp

(
− `𝑥𝑇2 𝑧 −

3`2

2
∥𝑥2∥2

)]−2
.

Let 𝑣 := − 𝑛
`
𝑥2 + 𝑧, then 𝑣 is independent of `𝑥2 + 𝑧. Replace 𝑥2 =

`𝑥2+𝑧−𝑣
`+ 𝑛

`

such that the above

expression of 𝑝2
𝑚 consists of (𝑥1, 𝑣, `𝑥2 + 𝑧, 𝑥3, . . . , 𝑥𝑚). Conditional on (`𝑥2 + 𝑧, 𝑥1), then 𝑝2

𝑚 is in

the form of a convex function 𝑓 (𝑥) := 1
(𝑥+𝑐)2 , where 𝑐 is a constant or depends only on (`𝑥2+𝑧, 𝑥1).

Then applying Jensen’s inequality on E[ 𝑓 (𝑥)
��(`𝑥2 + 𝑧, 𝑣)], we obtain

E`𝑒2 𝑝
2
𝑚 ≥E

[
exp

(
`𝑥𝑇1 (`𝑥2 + 𝑧) −

`2

2
∥𝑥1∥2

)
− exp

(
− `𝑥𝑇1 (`𝑥2 + 𝑧) −

`2

2
∥𝑥1∥2

)]2

·
[
2(𝑚 − 2)

(
1 + `

2

𝑛

)− 𝑛
2 exp

(
`2

2𝑛
∥`𝑥2 + 𝑧∥2

1 + `2/𝑛

)
+ exp

(
`𝑥𝑇1 (`𝑥2 + 𝑧) −

`2

2
∥𝑥1∥2

)
+ exp

(
− `𝑥𝑇1 (`𝑥2 + 𝑧) −

`2

2
∥𝑥1∥2

)
+

(
1 + 1

1 + 𝑛

`2

)− 𝑛
2 exp

( 3
(
𝑛

`2

)2 + 5 𝑛

`2 + 2

2
(
1 + 𝑛

`2

)2 (2 + 𝑛

`2

) ∥`𝑥2 + 𝑧∥2
)

+
(
1 + 1

1 + 𝑛

`2

)− 𝑛
2 exp

(
− 1

2
(
1 + 𝑛

`2

) ∥`𝑥2 + 𝑧∥2
)]−2
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≥E
[

exp
(
`𝑥𝑇1 (`𝑥2 + 𝑧) −

`2

2
∥𝑥1∥2

)
− exp

(
− `𝑥𝑇1 (`𝑥2 + 𝑧) −

`2

2
∥𝑥1∥2

)]2

·
[
2(𝑚 − 2)

(
1 + `

2

𝑛

)− 𝑛
2 exp

(
`2

2𝑛
∥`𝑥2 + 𝑧∥2

1 + `2/𝑛

)
+ exp

(
`𝑥𝑇1 (`𝑥2 + 𝑧) −

`2

2
∥𝑥1∥2

)
+ exp

(
− `𝑥𝑇1 (`𝑥2 + 𝑧) −

`2

2
∥𝑥1∥2

)
+

(
1 + `

2

𝑛

)− 𝑛
2 exp

(
3
2
`2

𝑛

∥`𝑥2 + 𝑧∥2

1 + `2/𝑛

)
+

(
1 + `

2

𝑛

)− 𝑛
2 exp

(
− `2∥`𝑥2 + 𝑧∥2

2𝑛(1 + `2/𝑛)

)]−2
.

Let the denominator of the last expression above be 𝐷2. Considering upper bounding the denomi-

nator constrained on the following conditions:

(i)
√
𝑛|𝑥1,1 | ≤ 3` ∥`𝑥2+𝑧∥√

𝑛(1+`2/𝑛) .

(ii) ∥𝑥1,−1∥2 ≥ 1 − 𝑡, for some constant 𝑡 ∈ (0, 1).

(iii) ∥`𝑥2+𝑧∥2

𝑛(1+`2/𝑛) ≤ 𝑐, for some constant 𝑐 = 𝑂 (1).

Using 𝑥𝑇1 (`𝑥2 + 𝑧) 𝑑
= 𝑥1,1∥`𝑥2 + 𝑧∥ and under the above conditions, the denominator is upper

bounded by

𝐷 ≤ 2(𝑚 − 2) exp
( `2

2𝑛
∥`𝑥2 + 𝑧∥2

1 + `2/𝑛
− `2

2

)
+ 4 exp

(3`2

𝑛

∥`𝑥2 + 𝑧∥2

1 + `2/𝑛
− `2

2
(1 − 𝑡)

)
≤ 2(𝑚 − 2 +

√
𝑚) exp

( `2

2𝑛
∥`𝑥2 + 𝑧∥2

1 + `2/𝑛
− `2

2

)
,

where in the first inequality, we used
(
1+ `2

𝑛

)− 𝑛
2 ≤ 𝑒−

`2
2 and ∥𝑥1∥2 ≥ ∥𝑥1,−1∥2 ≥ 1−𝑡. In the second

inequality, we assume constants 𝑐 and 𝑡 in conditions (𝑖𝑖) and (𝑖𝑖𝑖) satisfy log 2 + 5
2`

2𝑐 + `2

2 𝑡 ≤
1
2 log𝑚, which is possible since `2 = 𝑜(log𝑚). Then,

E`𝑒2 𝑝
2
𝑚 ≥ E

[
exp

(
`𝑥1,1∥`𝑥2 + 𝑧∥ − `2

2 ∥𝑥1∥2
)
− exp

(
− `𝑥1,1∥`𝑥2 + 𝑧∥ − `2

2 ∥𝑥1∥2
)]2

1[(𝑖)&(𝑖𝑖)&(𝑖𝑖𝑖)][
2(𝑚 − 2 +

√
𝑚) exp

(
`2

2𝑛
∥`𝑥2+𝑧∥2

1+`2/𝑛 − `2

2

)]2

≥ E
2 exp

(
2`𝑥1,1∥`𝑥2 + 𝑧∥ − `2∥𝑥1∥2

)
− 2 exp

(
− `2∥𝑥1∥2

)
[
2(𝑚 − 2 +

√
𝑚) exp

(
`2

2𝑛
∥`𝑥2+𝑧∥2

1+`2/𝑛 − `2

2

)]2
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− E
2 exp

(
2`𝑥1,1∥`𝑥2 + 𝑧∥ − `2∥𝑥1∥2

)
1[(𝑖)𝑐∪(𝑖𝑖)𝑐∪(𝑖𝑖𝑖)𝑐][

2(𝑚 − 2 +
√
𝑚) exp

(
`2

2𝑛
∥`𝑥2+𝑧∥2

1+`2/𝑛 − `2

2

)]2 .

In the last expression above, let the first expectation be 𝐸1 and the second expectation be 𝐸2. We

will show that 𝐸1 = 1
2𝑚2 𝑒

`2 ·
(
1 + 𝑜(1)

)
. And 𝐸2 = 𝑜

(
𝑒`

2

𝑚2

)
. We first calculate 𝐸1, in which

E exp
(
2`𝑥1,1∥`𝑥2 + 𝑧∥ − `2∥𝑥1∥2 − `2

𝑛

∥`𝑥2 + 𝑧∥2

1 + `2/𝑛
+ `2

)
=

(
1 + 2`2

𝑛

)− 𝑛
2
E exp

(
2
`2

𝑛
∥`𝑥2 + 𝑧∥2 − `2

𝑛

∥`𝑥2 + 𝑧∥2

1 + `2/𝑛
+ `2

)
=

(
1 + 2`2

𝑛

)− 𝑛
2
[
1 − 2

𝑛
`2

(
2(1 + `

2

𝑛
) − 1

1 + `2/𝑛

)]− 𝑛
2
𝑒`

2

= 𝑒−`
2+`2+𝑂 (`4/𝑛) · 𝑒`2

= 𝑒`
2 ·

(
1 + 𝑜(1)

)
,

where the last equality uses `4/𝑛 = 𝑜(1). The negative term in 𝐸1 is of higher order, since

2
(2𝑚 − 2 +

√
𝑛)2 E exp

(
− `2∥𝑥1∥2 − `2

𝑛

∥`𝑥2 + 𝑧∥2

1 + `2/𝑛
+ `2

)
=

1
2(𝑚 − 1 +

√
𝑚/2)2

[
1 + 2

`2

𝑛

]− 𝑛
2 ·

[
1 + 2`2

𝑛

]− 𝑛
2 · 𝑒`2

= 𝑜

( 𝑒`2

𝑚2

)
.

Thus,

𝐸1 =
𝑒`

2

2𝑚2 ·
(
1 + 𝑜(1)

)
.

To calculate 𝐸2, we consider the constraints on (𝑖)𝑐, (𝑖𝑖)𝑐 and (𝑖𝑖𝑖)𝑐 one by one. First,

E exp
(
2`𝑥1,1 |`𝑥2 + 𝑧 | − `2∥𝑥1∥2 − `2

𝑛

∥`𝑥2 + 𝑧∥2

1 + `2/𝑛

)
1[(𝑖)𝑐]

= E exp
(
2`𝑥1,1 |`𝑥2 + 𝑧 | − `2∥𝑥1∥2 − `2

𝑛

∥`𝑥2 + 𝑧∥2

1 + `2/𝑛

)
1[

√
𝑛|𝑥1,1 |>3` ∥`𝑥2+𝑧 ∥√

𝑛(1+`2/𝑛)

]
=

(
1 + 2`2

𝑛

)− 𝑛
2
E exp

(2`2

𝑛

∥`𝑥2 + 𝑧∥2

1 + 2`2/𝑛

)
· exp

(
− `2

𝑛

∥`𝑥2 + 𝑧∥2

1 + `2/𝑛

)
·𝑃

[
N(0, 1) ≤ −

√︂
1 + 2`2

𝑛
· 3`∥`𝑥2 + 𝑧∥√
𝑛(1 + `2/𝑛)

− 2`
√
𝑛

∥`𝑥2 + 𝑧∥√︁
1 + 2`2/𝑛

,
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or N(0, 1) ≥
√︂

1 + 2`2

𝑛
· 3`∥`𝑥2 + 𝑧∥√
𝑛(1 + `2/𝑛)

− 2`
√
𝑛

∥`𝑥2 + 𝑧∥√︁
1 + 2`2/𝑛

]
≤

(
1 + 2`2

𝑛

)− 𝑛
2
E exp

(
`2

𝑛

∥`𝑥2 + 𝑧∥2

1 + `2/𝑛

(2(1 + `2/𝑛)
1 + 2`2/𝑛

− 1
))

· 2
√

2𝜋
exp

[
− `2

2
∥`𝑥2 + 𝑧∥2

𝑛(1 + `2/𝑛)

(
3
√︃

1 + 2`2/𝑛 − 2
√︁

1 + `2/𝑛√︁
1 + 2`2/𝑛

)2
]

=
2

√
2𝜋

exp
[
− `2

(
1 + 𝑜(1)

)
+ `2

(
1 + 𝑜(1)

)
− 1

2
`2

(
1 + 𝑜(1)

)]
=

2
√

2𝜋
𝑒−

`2
2

(
1+𝑜(1)

)
= 𝑜(1).

Second,

E exp
(
2`𝑥1,1 |`𝑥2 + 𝑧 | − `2∥𝑥1∥2 − `2

𝑛

∥`𝑥2 + 𝑧∥2

1 + `2/𝑛

)
1[(𝑖𝑖)𝑐]

= E exp
(
2`𝑥1,1 |`𝑥2 + 𝑧 | − `2∥𝑥1∥2 − `2

𝑛

∥`𝑥2 + 𝑧∥2

1 + `2/𝑛

)
1[

∥𝑥1,−1∥2<1−𝑡
]

=

(
1 + 2`2

𝑛

)− 1
2
E exp

(2`2

𝑛

∥`𝑥2 + 𝑧∥2

1 + 2`2/𝑛

)
exp

(
− `2∥𝑥1,−1∥2

)
1[

∥𝑥1,−1∥2<1−𝑡
]

=

(
1 + 2`2

𝑛

)− 1
2
(
1 − 2`2

𝑛

2(1 + `2/𝑛)
1 + 2`2/𝑛

)− 𝑛
2
E exp

(
− `2∥𝑥1,−1∥2

)
1[

∥𝑥1,−1∥2<1−𝑡
]

=

(
1 + 2`2

𝑛

)− 𝑛
2
(
1 − 2`2

𝑛

2(1 + `2/𝑛)
1 + 2`2/𝑛

)− 𝑛
2
𝑃

(
1
𝑛
𝜒2
𝑛−1 <

(
1 + 2`2

𝑛

)
· (1 − 𝑡)

)
(𝑎)
≤

(
1 + 2`2

𝑛

)− 𝑛
2
(
1 − 2`2

𝑛

2(1 + `2/𝑛)
1 + 2`2/𝑛

)− 𝑛
2 exp

[
𝑛 − 1

2

(
log

(
1 − 𝑡′

)
+ 𝑡′

)]
= 𝑜(1),

where in (𝑎) we denote 1 − 𝑡′ :=
(
1 + 2`2

𝑛

)
𝑛
𝑛−1 (1 − 𝑡) < 1, thus log(1 − 𝑡′) + 𝑡′ < 𝑐′ < 0 for some

constant 𝑐′ < 0. The last equality follows by 𝑒𝑐1`
2−𝑐2𝑛 → 0 for arbitrary constants 𝑐1, 𝑐2 > 0, since

`2/𝑛→ 0. Third,

E exp
(
2`𝑥1,1 |`𝑥2 + 𝑧 | − `2∥𝑥1∥2 − `2

𝑛

∥`𝑥2 + 𝑧∥2

1 + `2/𝑛

)
1[(𝑖𝑖𝑖)𝑐]

= E exp
(
2`𝑥1,1 |`𝑥2 + 𝑧 | − `2∥𝑥1∥2 − `2

𝑛

∥`𝑥2 + 𝑧∥2

1 + `2/𝑛

)
1[

∥`𝑥2+𝑧 ∥2

𝑛(1+`2/𝑛)
>𝑐

]
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=

(
1 + 2`2

𝑛

)− 𝑛
2
E exp

(2`2

𝑛

∥`𝑥2 + 𝑧∥2

1 + 2`2/𝑛
− `2

𝑛

∥`𝑥2 + 𝑧∥2

1 + `2/𝑛

)
1[

∥`𝑥2+𝑧 ∥2

𝑛(1+`2/𝑛)
>𝑐

]
=

(
1 + 2`2

𝑛

)− 𝑛
2 ·

[
1 − 2`2

𝑛

(2(1 + `2/𝑛)
1 + 2`2/𝑛

− 1
)]− 𝑛

2

·𝑃
[
1
𝑛
𝜒2
𝑛 > 𝑐

(
1 − 2`2

𝑛

(2(1 + `2/𝑛)
1 + 2`2/𝑛

− 1
))]

(𝑎)
= exp

(
𝑂

( `4

𝑛

))
· exp

[
− 𝑛

2

[
𝑡′′ − 1 − log 𝑡′′

] ] (𝑏)
= 𝑜(1),

where in Equality (a), 𝑡′′ := 𝑐
(
1− 2`2

𝑛

(
2(1+`2/𝑛)
1+2`2/𝑛 − 1

))
> 𝑐′ > 1 for some constant 𝑐′. And Equality

(b) uses as 𝑛→ ∞, `4/𝑛 = 𝑜(`2) = 𝑜(𝑛). □
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Chapter 4: Discussions

We studied the minimax problem of two canonical models: sparse signal denoising and sparse

linear regression. We showed that the minimaxity in its current form is not informative enough

to reflect the important factor of the sparse estimation problem, as indicated in empirical studies,

the SNR level. We have shown that the classical minimax sugguests asymptotic minimax esti-

mator irrespective of the underlying SNR level. However, sub-optimality of these estimators is

demonstrated in empirical performance under different SNRs. To interpret the results and mitigate

the discrepancy, we introduced two notions that can make the minimax results more meaningful

and appealing for practical purposes: (i) signal-to-noise-ratio aware minimaxity, (ii) second-order

asymptotic approximation of minimax risk. We showed that these two notions can alleviate the

major drawbacks of the classical minimax results. For instance, in sparse signal denoising prob-

lem in Chapter 2, while the classical results prove that the hard and soft thresholding estimators are

minimax optimal, the new results reveal that in a wide range of low signal-to-noise ratios the two

estimators are in fact sub-optimal. Even when the signal-to-noise ratio is high, only hard thresh-

olding is optimal and soft thresholding remains sub-optimal. Furthermore, our refined minimax

analysis identified three optimal (or nearly optimal) estimators in three regimes with varying SNR:

hard thresholding [̂𝐻 (𝑦, _) of (2.5) in high SNR; [̂𝐸 (𝑦, _, 𝛾) of (2.10) in moderate SNR; linear

estimator [̂𝐿 (𝑦, _) of (2.9) in low SNR. As is clear from the definition of the three estimators, they

are induced by ℓ0-regularization, elastic net regularization [23] and ℓ2-regularization, respectively.

These regularization techniques have been widely used in statistics and machine learning [24].

The concepts of signal-to-noise ratio aware minimaxity and higher-order asymptotic approx-

imations introduced in this thesis may open up new venues for investigating various estimation

problems. We have used the same framework to revisit the sparse estimation problem in high-

dimensional linear regression and obtained new insights. However, the analysis of minimax in
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sparse linear regression is more challenging in the high dimensional setting. The current progress

of this line of research has been arounded the rate-minimaxity. We completed the classical mini-

max result by characterizing the accurate constant. And we established the SNR-aware minimax

results up to first and second-order accurate. It’s yet to be finished of the second-order approxima-

tions in moderate and high SNR regimes. However, the obtained results in low SNR regime already

demonstrates a non-trivial estimator – ridge outperforms the zero estimator in extreme low SNR

(goes to zero). This explains and verifies the finding in empirical result and provide evidence that

our method of higher order approximation of SNR-aware minimax result is impactful in studying

sparse estimation problem. That being said, it is important to acknowledge that the additional in-

sights gained from this framework come with increased mathematical complexity when computing

minimax estimators. Therefore, one direction we plan to explore in the future is the development

of simpler and more general techniques for obtaining higher-order approximations of minimax risk

or the supremum risk of well-established estimators.
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