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Abstract

Phenotyping with Partially Labeled, Partially Observed Data

Victor A. Rodriguez

Identifying a group of individuals that share a common set of characteristics is a

conceptually simple task, which is often difficult in practice. Such phenotyping problems

emerge in various settings, including the analysis of clinical data. In this setting,

phenotyping is often stymied by persistent data quality issues. These include a lack of

reliable labels to indicate the presence of absence of characteristics of interest, and

significant missingness in observed variables. This dissertation introduces methods for

learning phenotypes when the data contain missing values (partially observed) and labels

are scarce (partially labeled). Aim 1 utilizes an unsupervised probabilistic graphical model

to learn phenotypes from partially observed data. Aim 2 introduces a related

semi-supervised probabilistic graphical model for learning phenotypes from partially

labeled clinical data. Finally, Aim 3 describes a method for training deep generative

models when the training data contain missing values. The algorithm is then applied in a

semi-supervised setting where it accounts for partially labeled data as well.
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Chapter 1

Introduction

Problem Statement

The adoption of electronic health records has permitted the large scale collection and

analysis of observational clinical datasets. A wide variety of research has since emerged,

driven by the richness and scale these data possess. Common to many of these works is

a persistent bottleneck encountered early data processing: the phenotyping problem. In

simple terms, the phenotyping problem has to do with identifying the patients one, as a

researcher, is interested in studying. Patients in such a cohort may share a common disease,

or perhaps a common clinical intervention, whatever the researcher is interested in. At first

glance, phenotyping seems like no problem at all; just query the data for whatever clinical

feature is of interest and isolate all the patients that have it. However, this perspective does

not stand up to the realities of clinical data.

In essence, phenotyping is hard because of what clinical data are for; they are meant for

documentation, not research. Thus, they lack certain features that would otherwise make

phenotyping trivial. Most prominently, clinical data generally do not contain reliable, gold

standard labels for the things researchers are most often interested in (e.g. disease diagnoses).

These data also routinely contain significant amounts of missingness. Since clinicians record

only a subset of clinical variables for a given patient at a given time, most variables go

unobserved.

Given these obstacles, many researchers resort to defining phenotyping algorithms using

hand written rules. However, because phenotyping is essentially a classification task, there
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is much interest in using supervised models to learn phenotypes directly from data. Unfor-

tunately, supervised models commonly assume the labels and data are fully observed which

complicates their application to clinical problems, including phenotyping.

In this work we propose several methods for learning phenotypes from clinical data. We

develop models and algorithms for training them, which assume the data and labels are only

partially observed. By recognizing the realities of clinical data from the outset, we aim to

deliever effective phenotyping methods to the biomedical informatics community to alleviate

the bottleneck represented by the phenotyping problem.

Purpose of the Study

This work proposes methods for learning phenotypes from clinical data. Specifically,

it focuses on phenotyping when the data are partially observed and partially labeled — a

typical scenario when working with observational clinical data.

Aim 1 utilizes an unsupervised probabilistic graphical model to learn phenotypes from

partially observed, heterogeneous clinical data. Aim 2 builds on Aim 1 by proposing a

related semi-supervised probabilistic graphical model for learning interpretable phenotypes

from partially labeled clinical data. Finally, Aim 3 describes a method for training deep

generative models when the training data contain missing values. The algorithm is then

applied in a semi-supervised setting where training occurs on partially labeled data as well.
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Research Questions and Hypotheses

Aim 1. Implement a method for learning phenotypes from partially observed

data.

Aim 1A. Utilize the Multi-Channel Mixed Membership Model (MC3M) to learn

psychosocial-behavioral phenotypes from partially observed survey data

Research Question Can MC3M identify subgroups of individuals that exhibit

similar psycho-social traits?

Hypothesis Individuals with similar traits will have similar subsets of

active phenotypes; moreover, any individual’s observations

will be explained by a relatively small number of active phe-

notypes.

Aim 1B. Identify MC3M phenotypes associated with a health outcome.

Research Question Can MC3M phenotypes be used to predict the presence of a

targeted health outcome?

Hypothesis When used as covariates in a predictive model, a subset

of MC3M phenotypes will be predictive of elevated weight

status (EWS: BMI > 25kg/mg2)
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Aim 2. Develop a method for learning phenotypes from partially labeled clinical

data.

Aim 2A. Derive and implement the Semi-Supervised Mixed Membership Model

(SS3M) — a probabilistic graphical model for learning interpretable, disease-

specific phenotypes from partially labeled, multi-modal clinical data.

Research Question Can SS3M recover ground-truth phenotypes from partially

labeled data?

Hypothesis Given simulated data containing a subset of labeled exam-

ples, SS3M will recover the structure of ground-truth phe-

notypes. Moreover, the identity of each phenotype will cor-

rectly match the corresponding label.
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Aim 2B. Utilize SS3M to learn disease-specific phenotypes from partially labeled

observational clinical data.

Research Question Do SS3M phenotypes capture the clinical characteristics of

the diseases specified by the labels provided?

Hypothesis Clinical experts will find SS3M phenotypes better represent

specific diseases when compared to phenotypes learned using

an unsupervised baseline. In addition, experts will find the

content of SS3M phenotypes is representative of the diseases

specified by their labels.

Research Question Is SS3M an effective model for determining which patients

have a specific disease?

Hypothesis Relative to supervised baselines, SS3M will demonstrate

competitive or superior performance on disease label pre-

diction.
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Aim 3. Develop a method for learning phenotypes from partially observed,

partially labeled data.

Aim 3A.Derive and implement a Monte Carlo Expectation-Maximization (MCEM)

algorithm for training Variational Autoencoders (VAEs) on partially observed

data.

Research Question Is a VAE trained with MCEM an effective model for per-

forming missing value imputation?

Hypothesis Using MCEM, a VAE trained on data with simulated miss-

ingness will produce higher quality imputations than those

generated by baseline imputation algorithms.

Aim 3B. Develop a semi-supervised VAE which can be trained on partially ob-

served data using MCEM; use it for disease phenotyping on clinical data with

inherent missingness.

Research Question Does a VAE trained on partially labeled, partially observed

data yield an effective disease phenotyping model?

Hypothesis Relative to baselines comprising imputation followed by su-

pervised learning, an MCEM trained semi-supervised VAE

will yield superior or competitive performance.
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Experimental Design Associated with Hypotheses

Aim 1. Implement a method for learning phenotypes from partially observed

data.

Aim 1A. Utilize the Multi-Channel Mixed Membership Model (MC3M) to learn

psychosocial-behavioral phenotypes from partially observed survey data We uti-

lize an unsupervised phenotyping algorithm, MC3M, to learn phenotypes from partially

observed survey data. We detail the structure of MC3M’s probabilistic graphical and an

inference algorithm which uses Gibbs sampling to learn the structure of latent phenotypes.

We then train MC3M on tokenized survey data and interrogate the resultant phenotypes

for their ability to identify meaningful subgroups of individuals within the survey sample

population.

Aim 1B. Identify MC3M phenotypes associated with a health outcome. MC3M

summarizes an individual’s observations using a person-phenotype distribution — a proba-

bilty vector representing the degree to which each phenotype explains the individual’s data.

Using the person-phenotype distributions as covariates, we train logistic regression models

to predict a binary indicator for elevated weight status (EWS). We then use the regresssion

coefficients to identify a subset of phenotypes showing significant assocations to EWS.

Aim 2. Develop a method for learning phenotypes from partially labeled clinical

data.

Aim 2A. Derive and implement the Semi-Supervised Mixed Membership Model

(SS3M) — a probabilistic graphical model for learning interpretable, disease-spe-

cific phenotypes from partially labeled, multi-modal clinical data. Disease pheno-

typing can often be reduced to classification. However, training supervised phenotyping

models with electronic health records data is challenging due to the lack of gold standard la-
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bels. Though fully labeling a clinical dataset is generally infeasible, obtaining a small amount

of high-quality labels may be possible. Here we develop Semi-Supervised Mixed Membership

Models (SS3M) — a family of semi-supervised models for learning phenotypes from partially

labeled data. We build SS3M by incorporating a novel semi-supervision mechanism into an

otherwise fully unsupervised model previously proposed for learning interpretable phenotypes

from heterogenous clinical data. We derive and implement a Markov Chain Monte Carlo

sampler to perform posterior inference on the model’s latent variables. We then evaluate

SS3M in simulation. First we simulate data from SS3M’s generative model parameterized

with a set of ground truth phenotypes and their corresponding labels. We then fit these

data with a randomly initialized SS3M model and check to see if the model can recover the

ground truth phenotypes in both structure and identity.

Aim 2B. Utilize SS3M to learn disease-specific phenotypes from partially labeled

observational clinical data. We train SS3M on partially labled clinical data extracted

from the MIMIC-III critical care database. We also train a closely related, fully unsupservised

baseline on the same data, but without the labels. We recruit two clinical experts to evaluate

the quality and content of phenotypes learned by both models. In addition, we evaluate

SS3M’s predictive performance relative to common supervised baselines, and explore how

the performance is impacted by the amount of labeled data made available during training.

Aim 3. Develop a method for learning phenotypes from partially observed,

partially labeled data.

Aim 3A.Derive and implement a Monte Carlo Expectation-Maximization (MCEM)

algorithm for training Variational Autoencoders (VAEs) on partially observed

data. Clinical data commonly contain missing values. Meanwhile, popular deep genera-

tive modeling frameworks like Variational Autoencoders (VAEs), often assume the training

data are fully observed. Thus, the partially observed nature of clinical data complicates the
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use of VAEs in clinical modeling tasks. In this work, we develop an algorithm for train-

ing VAEs on partially observed data. We derive a Monte Carlo Expectation-Maximization

(MCEM) algorithm for VAEs, which (double) lower bounds the marginal log-likelihood of

the observed data. VAEs trained using this algorithm are evaluated on a suite of missing

value imputation tasks where imputation quality is evaluated by 1) visual inspection of im-

puted samples and 2) using two-sample Kolmogorov–Smirnov tests to measure the similarity

between samples of missing values generated by the model and samples from the true con-

ditional distributions p(xm|xo), where xo and xm refer to observed and missing variables,

respectively. VAE-based deep generative imputers serve as baselines for comparison.

Aim 3B. Develop a semi-supervised VAE which can be trained on partially ob-

served data using MCEM; use it for disease phenotyping on clinical data with

inherent missingness. Missingness in clinical datasets can occur in both the features and

the labels. To train disease phenotyping models in this setting, we combine MCEM with

semi-supervision. We show how to incorporate the training objective for a semi-supervised

VAE into our MCEM algorithm. Using the Women in Data Science Datathon 2020 critical

care dataset, we train the model to predict partially observed disease labels using clinical

features with inherent missingness. The predictive performance is compared to that of a

related deep generative baseline.

Significance

Phenotyping is a persistent problem in biomedical informatics. In most cases, the prob-

lem reduces to classification: we are merely interested in identifying which patients are cases

for a given clinical feature of interest. This framing suggests the use of supervised methods

for solving the phenotyping problem. However, clinical data typically lack the characteris-

tics needed for effective supervised learning. First, these data routinely contain significant

missingness. This is a byproduct of how the data are generated; not all clinical variables
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are measured for every patient at every encounter. Unfortunately, supervised learning al-

gorithms commonly assume the data are fully observed. More importantly, clinical data

suffer from a paucity of high quality, gold standard labels. This is also a byproduct of how

the data are generated; they are produced as a means of documentation, not research. The

work proposed herein attempts to address these realities by developing phenotyping methods

which assume the data, the labels, or both are only partially observed.

Contributions

Aim 1. Implement a method for learning phenotypes from partially observed

data. Multi-Channel Mixed Membership Models (MC3M) represent an unsupervised ap-

proach to phenotyping, which model different, but equally important sets of observations in

their own “data channels”. In this aim, we use MC3M to learn phenotypes from survey data

designed to assess a wide variety of mutable and immutable factors underlying the health of

individuals. Modeling the data associated with each such factor in their own separate chan-

nel gives all factors a fair opportunity to influence the structure of learned phenotypes and to

be noticeably represented within them. This property is significant since both mutable and

immutable factors play important roles in behavior, but only mutable factors offer targets

for intereventions. MC3M offers an opportunity to learn phenotypes which take both into

account and present them interpretably, on equal footing.

Aim 2. Develop a method for learning phenotypes from partially labeled clinical

data. Semi-Supervised Mixed Membership Models (SS3M) introduce a novel mechanism

for semi-supervision within a class of models developed for inferring phenotypes from multi-

modal clinical data. In this way, SS3M permits the researcher to specify which phenotypes

they would like the model to learn. Importantly, this added input is minimal: only a subset

of cases need to be labeled as positive or negative for the model to learn a disease-specific

phenotype. Moreover, SS3M’s phenotypes are straightforward to evalute both qualitatively
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and quantitatively. Since SS3M phenotypes are easily visualized, a domain expert may

visually inspect them to determine how well they represent a targeted disease. Meanwhile,

because SS3M performs multi-label classification, the model may be evaluated quantitatively

with the usual evaluation metrics for supervised models.

Aim 3. Develop a method for learning phenotypes from partially observed,

partially labeled data. Variational Autoencoders (VAEs) are a popular and powerful

framework for building deep generative models. However, many VAEs are not well suited

to modeling clinical data due to their missingness and label paucity. Our Monte Carlo

Expectation-Maximization (MCEM) algorithm addresses these issues by allowing VAEs to

train on partially observed data containing a heterogeneous mixture of continuous and dis-

crete values. By addressing both issues simulataneously, our approach facilitates the use of

VAEs for clinical classification tasks, in particular supervised disease phenotyping.
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Chapter 2

Background and Related Work

2.1 Historical Background

The present work focuses on clinical phenotyping. We have yet to succinctly define this

term, and, in fact, a consensus definition has eluded the biomedical informatics community

(Shivade et al. 2014; Banda et al. 2018). Here we will explore the evolution of topics which

undergird clinical phenotyping. Our aim is to provide an understanding of how and where

clinical phenotyping fits in this more general context.

As the name implies, clinical phenotyping is a specialization of a larger topic, namely

“phenotyping”. To better understand clinical phenotyping, it will be helpful to gain a handle

on phenotyping. To do that, of course, we may begin by exploring what is meant by the

term “phenotype”.

Of Phenotypes and Genotypes. Typically, one first encounters the term “phenotype”

in the context of genetics where it often appears alongside the term “genotype.” In Molecular

Biology of the Gene, James D. Watson provides concise, familiar definitions for both: “We

refer to the appearance (physical structure) of an individual as its phenotype, and to its

genetic composition as its genotype.” (Watson 1970)

This clean distinction between phenotype and genotype may seem obvious today, but it

was not always so. In the late 19th and early 20th centuries, during the early days of genetics,

practitioners routinely mixed phenotypic and genotypic concepts (Mayr 1973). Major dis-

agreements among the various schools of thought at the time — Darwinians, Mendelians, and
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biometricians most prominently — have been attributed to this confusion. Thus, the failure

to separate phenotype from genotype is thought to have delayed by decades the “modern

synthesis” which unified the field and formed the basis of modern genetics (Mayr 1973).

In 1909, during the pre-synthesis era, the Danish geneticist Wilhelm Johannsen originally

coined the terms “phenotype” and “genotype” (as well as the term “gene”) in the first edition

of his text, Elemente (Churchill 1974). Unfortunately, his attempt to establish these concepts

was muddled; we would have to wait until the third edition of Johannsen’s text in 1926 to

obtain definitions familiar to a reader today:

phenotype: The word phenotype . . . can simply be used as a designation of

personal charaters of any individual whatever. The phenotype of an individual

is thus the embodiment of all of his expressed characters. The single organism,

the individual plant, an animal, a man, — “What it is and what it does” —

has its phenotype, i.e., it appears as a sum of traits which are determined by the

interplay between “inherited [genes]” and elements of the environment. (Churchill

1974)

genotype: The basis for the entire development of an individual is . . . given by

the constitution of the two gametes, by the union of which the organism arises.

This constitution we thuse designate with the word genotype. (Churchill 1974)

The Extended Phenotype. In the years and decades following Johannsen’s Elemente

the genotype-phenotype division was firmly integrated into genetic theory. Though the

defintions continued to evolve, the core of the original phenotype concept remained intact:

an organism’s observable traits correspond to its phenotype. In 1982, Richard Dawkins

introduced a novel perspective which expanded the domain of the phenotype beyond the

physical limits of the organism. His “extended phenotype” broadened phenotypes to include

the effects organisms imposed on their environments (Dawkins 1982). That is, the pond a
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beaver creates by damming a river is a much a part of its phenotype as the color of its fur

or the width of its tail.

Phenotypes in Phenomes. In the last several decades various fields of study have

emerged sharing the suffix “-omics”: genomics, transcriptomics, proteomics, metabolomics,

etc., each focused on the collection and study of large quantities of phenotypic data. From

this literature, the idea of the phenome and its study — phenomics — has emerged (Freimer

and Sabatti 2003). The phenome is meant to connote the structured totality of an organism’s

phenotypic content. As such, the term is somewhat redundant to “phenotype.” However, it

does add a sense of organization. C. R. Scriver nicely illustrates the concept:

The phenome comprises layer upon layer of phenoytpes; it exists as compart-

ments within compartments in cellular and organismal anatomy. The . . . organ-

ism comprises molecules inside organelles inside cells inside organs, all enclosed

with an integument, all connected by plumbing, wiring and telecommunications,

the parts sending and receiving momnet-to-moment information; all resident in

the fluctuating traffice of temporal experience. (Scriver 2004)

The Digital Phenotype. The phenome communicates the idea that phenotypes can be

organized into intercommunicating phenotypic layers. The extended phenotype, adds to

these layers some that lay outside the physical limits of the organism. The digital pheno-

type (Jain et al. 2015; Loi 2019; Coghlan and D’Alfonso 2021) simply adds another extra-

organismal phenotypic layer to the phenome, a layer accessed via interactions with technol-

ogy (Coghlan and D’Alfonso 2021). Michele Loi defines the term as inherently human-centric:

Hence, I propose to characterize the human digital phenotype as an assemblage of

information in digital form, that humans produce intentionally or as a by-product

of other activities, and which affects human behavior. More succinctly (but less
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precisely), the human digital phenotype consists of digital information produced

by humans and affecting humans. (Loi 2019)

With the introduction of digital phenotypes, the phenotype — or equivalently, the phe-

nome (Mahner and Kary 1997) — concept has been updated to accommodate the full spec-

trum of (human) organism traits in modern times.

From Phenotype to Phenotyping. In general, “phenotyping” refers to task of identify-

ing individual organisms within a species which share a common phenotype (Shivade et al.

2014; Banda et al. 2018; Li, Zhang, and Huang 2014; Furbank and Tester 2011). In most

cases, the targeted “phenotype” is charecterized not by all observable traits, but rather by

a relatively, small manageable subset (Mahner and Kary 1997). For example, commercially

grown soy plants may be phenotyped according to leaf or root morphology or their total

yield (Li, Zhang, and Huang 2014; Furbank and Tester 2011). More relevant for our pur-

poses and as we discuss next, people may be phenotyped based on the digital artifacts they

create while interacting with technology.

Digital Phenotyping. People interface with technology in myriad ways on a daily ba-

sis. Some of these technologies (e.g. personal computers, mobile phones, wearables), are

constantly collecting data that the user generates both actively and passively. “Digital phe-

notyping” refers to the identification of individuals expressing common digital phenotypes

within these data streams (Jain et al. 2015). Noteably, much of the literature on digital

phenotyping has focused on health, in particular mental health. Nevertheless, reliance on

digital technologies is ubiquitous, and so the term may be applicable more broadly.

(Digital) Clinical Phenotyping. We now have the context and concepts to define the

term “clinical phenotyping.” Clinical phenotyping is a type of digital phenotyping; it is used

to identify patients who express a common digital phenotype in digital health data such as
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electronic health records (EHRs) (Shivade et al. 2014; Banda et al. 2017). Most often, a

clinical phenotype is meant to herald the presence, within a patient, of a specific disease

of interest or an exposure to a specified clinical intervention (Banda et al. 2017). Novel

phenotypes may also be uncovered which may suggest disease subtypes.

2.2 Literature Review

Various methods have been used for clinical phenotyping. We review these here.

Rule-Based Methods. The use of rules to filter a patient population constitutes the

most traditional and most common approach to clinical phenotyping. The process usually

begins with a target (e.g. a disease or clinical intervention) and, in collaboration with clin-

ical experts, then proceeds to iteratively refine a set of inclusion and exclusion criteria for

constructing a cohort of cases. Commonly, these criteria are designed to operate on struc-

tured clincal data types such as lab values, medications, procedures, diagnosis codes, and

other metadata (Banda et al. 2018). For example, using note metadata, Essay, Mosier, and

Subbian 2020 constructed a phenotyping decision tree for identifying cases for any one of

seven distinct interventions applied in the context of respiratory failure.

Peformant rule-based phenotypes using only diagnosis codes have been developed for

many conditions including autoimmune disorders (Nicholson et al. 2013), pediatric metabolic

disorders (Lingren et al. 2016), and cardiovascular diseases (Fan et al. 2013; Morley et al.

2014; Esteban et al. 2017a). Similarly, performant phenotypes for cardiac interventions have

been built using just procedure codes (Petersen et al. 1999). However, phenotypes may

often benefit from inclusion of multiple data types. For example, Schmiedeskamp et al. 2009

found that phenotypes for Clostridium difficile infections performed best when containing

both diagnosis codes and medication data.

The rule-based approach to phenotyping is so commmon, that tools have emerged for

facilitating their development and validation (Xu et al. 2015). For example, the Observa-
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tional Health Data Sciences and Informations (OHDSI) collaborative have made their cohort

construction tool, ATLAS, publically available (Hripcsak et al. 2019). When paired with clin-

ical data formatted according to the Observational Medical Outcomes Partnership (OMOP)

common data model (Overhage et al. 2012; Hripcsak et al. 2015), ATLAS may be used to

implement rule-based queries and visualize cohort statistics in near real time.

Creating and validating rule-based phenotypes can be a difficult enterprise (Kirby et al.

2016). Thankfully, the biomedical informatics community has worked to make validated

phentoypes publically available. The Electronic Medical Records and Genomics (eMERGE)

network maintains a catalog of many phenotypes covering various conditions, drug responses,

and other clinical concepts (Kho et al. 2012; Denny et al. 2011; Ritchie et al. 2010). These

are made available through the Phenotype Knowledge Base (PheKB), a repository which

collects phenotyping algorithms from many sources (Kirby et al. 2016).

Rule-based phenotyping methods are straightforward conceptually, and can be relatively

simple to implement with modern tools; However, they have several limitations. First, it can

be difficult and time-consuming for experts to reach consensus on phenotyping criteria (New-

ton et al. 2013). This bottleneck is exacerbated if several rounds of criteria refining are

necessary. Exporting rule-based algorithms to other datasets may also be a challenge (Bay-

ley et al. 2013). Rules are usually encoded as database queries specialized to run on data

formatted according to specific data model, and thus cannot be easily applied to data for-

matted differently. For this reason, rule-based phenotypes are often shared in descriptive

formats including text, figures, and pseudocode. The lack of phenotype interoperability

across data models is a major driver behind the development and adoption of common data

models like those maintained by OHDSI (Hripcsak et al. 2015), Patient-Centered Clinical

Research Network (PCORnet) (Califf 2014), Informatics for Integrating Biology and the

Bedside (i2b2) (Murphy et al. 2010), and Mini-Sentinel (McGraw, Rosati, and Evans 2012).

Finally, rule-based phenotypes are informed but also constrained by expert clinical knowl-

edge. Since they encode clinical guidelines and clinical experience, they will miss potentially
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helpful correlations that may be detected and exploited by more data-driven methods.

Machine Learning. Instead of relying on experts to distill their knowledge into pheno-

typing rules, many authors use machine learning methods to learn phenotyping algorithms

directly from data. These methods may be grouped according to their reliance on labels;

they supervised, unsupervised, semi-supervised, inaccurately supervised methods; we explore

each group below.

Supervised Methods. When the data contain a full complement of labels encoding the

presence or absence of the target of interest, supervised methods are a natural choice for

phenotyping. In this setting phenotyping is reduced to classification: the objective is to

obtain a discriminative model which approximate P (Y |X) — the probability of the target

labels, Y , conditional on the features, X.

Many supervised models have been utilized for phenotype learning including logistic

regression (Liao et al. 2010; Heintzelman N.H. et al. 2013; Kumar V. et al. 2014; Kamkar et

al. 2015; Bhattacharya M. et al. 2017; Koola J.D. et al. 2017; Kummer B.R. et al. 2017; Zheng

et al. 2017; Rotmensch et al. 2017; Gustafson et al. 2017; Geva et al. 2017; Blecker et al.

2017; Koola et al. 2018), random forest (Kamkar et al. 2015; Zhou et al. 2016; Bhattacharya

M. et al. 2017; Teixeira P.L. et al. 2017; Chaganti et al. 2017; Turner et al. 2017; Koola et al.

2018), support vector machines (Wei et al. 2010; Carroll, Eyler, and Denny 2011; Kotfila

and Uzuner 2015; Zheng et al. 2017; Kagawa et al. 2017; Turner et al. 2017; Koola et al.

2018), naive bayes (Zheng et al. 2017; Rotmensch et al. 2017; Turner et al. 2017; Koola

et al. 2018; Orphanou et al. 2018), and neural networks (Che et al. 2015a; Che et al. 2015b;

Lipton, Kale, and Wetzel 2015; Geraci et al. 2017; Gehrmann et al. 2018) (see below). These

models are commonly trained using data extracted from structured EHR data fields. To

boost performance researchers may add features extracted from unstructured notes using

natural language processing (NLP) engines (Liao K.P. et al. 2015; Lin et al. 2015) such as

the Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES) (Savova et al.
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2010) or MetaMap (Aronson 2001; Aronson and Lang 2010).

Supervised phenotyping methods may also be developed to accomodate temporal infor-

mation. Lin et al. 2015 extract temporal features from longitudinal clinical time-series using

a custom NLP module. These features are then combined with structured and other NLP-

derived features and aggregated across the time-dimension to yield vectors consumed by a

penalized logistic regression model used to predict methotrexate-induced liver injury. Lipton,

Kale, and Wetzel 2016 use Recurrent Neural Networks (RNNs) to model patient trajecto-

ries. The RNN hidden states are then used for multilabel prediction of 128 condition labels

derived from diagnosis codes. Similarly, Harutyunyan et al. 2019 use RNNs for phenotyping

25 acute care conditions. Bejan et al. 2013 use features extracted from clinical reports to

phenotype pneumonia throughout patients’ inpatient trajectories. Note, this was possible

due their use of expert annotators who reviewed each report in each patient time-series for

presence of pneumonia.

Supervised machine learning algorithms share a common, major limitation: both the

training and validation data must be fully labeled. As such, most of the studies cited above

required extensive chart review by multiple clinical experts. Otherwise, researchers may

choose to model the raw diagnosis codes (Lipton, Kale, and Wetzel 2016; Miotto et al.

2016a) which may not accurately reflect patient state (Hogan and Wagner 1997) or use

labels generated using validated phentoyping algorithms as ground truth (Ding et al. 2019).

The need for expert review is a severe bottleneck that restricts the scalability of supervised

phenotyping in most circumstances. Later, we will review methods that attempt to alleviate

this constraint.

Unsupervised Methods. In the absence of reliable labels, unsupervised methods may be

used to identify similar subsets of patients. Patients in each subset may be understood to

be express a common phenotype.

Tensor factorization and mixed membership models are used to learn the structure of
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latent phenotypes from the data (Ho, Ghosh, and Sun 2014a; Ho et al. 2014a; Wang et

al. 2015a; Hui et al. 2015; Perros et al. 2015; Perros et al. 2017; Henderson et al. 2017;

Kim et al. 2017; Ruffini, Gavalda, and Limon 2017). In addition, these models learn low-

dimensional patient representations which encode how well each latent phenotype “explains”

each patient’s observations. Hierarchical clustering (Tamang and Parsons 2011; Marlin et al.

2012; King E. et al. 2014; Doshi-Velez, Ge, and Kohane 2014; Chubachi et al. 2016; Levoska

M. et al. 2017) and k-means/medioids (Hong S.B.N. et al. 2015; Vazquez Guillamet et al.

2016; Cerna A.E.U. et al. 2017) use distance metrics to calculate patient similarity and

group similar patients together. Probabilistic graphical models (Marlin et al. 2012; Tran

et al. 2015; Schulam, Wigley, and Saria 2015; Russo C. et al. 2017; Mayhew et al. 2018)

utilize latent variables to cluster similar patients, while autoencoders (Lasko, Denny, and

Levy 2013; Suresh, Szolovits, and Ghassemi 2017) use hidden layers in an analagous way.

Word embedding algorithms learn are used to learn low-dimensional vector representations of

clinical concepts which can be aggregated to generate embedded representations of patients;

proximity of patients to disease concepts can be used to phenotype (Gligorijevic, Stojanovic,

and Obradovic 2016; Glicksberg et al. 2018).

Several unsupervised phenotyping methods explicitly handle time. Tensor factorization

methods that model a temporal axis have been used to inform the structure of latent pheno-

types (Zhou et al. 2014; Perros et al. 2017; Zhao et al. 2019). Custom probabilistic graphical

models have been developed to learn phenotypes from physiologic time-series (Saria, Koller,

and Penn 2010; Saria, Duchi, and Koller 2011; Schulam, Wigley, and Saria 2015). RNNs

which model time-series naturally, have been employed to phenotype disease subtypes (Che

et al. 2017; Xu et al. 2020).

Relative to supervised phenotyping methods, unsupervised methods avoid the costs of

expert annotation; however, evaluation is often more complex. This is because unsupervised

methods oftern function by identifying clusters of similar patients, but these clusters may or

may not correspond to recognizable phenotypes.
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Semi-Supervised Methods. In semi-supervised learning, the data are assumed to be

only paritally labeled. That is, only a subset of the training instances are paired with labels.

As such, semi-supervised learning occupies a space between supervised and unsupervised

learning (Zhou 2018). When using these methods, the goal is to leverage information about

the unlabeled data distribution, P (X), to obtain a better estimate of P (Y |X) (Chapelle,

Schölkopf, and Zien 2006).

In the context of phenotyping, semi-supervised methods can limit the expense of expert

annotation, while still retaining some of the major benefits of supervised phenotyping: labels

specifying the target to phenotyped and ease of evaluation. As such, semi-supervised pheno-

typing has been proposed by some authors though not as many as have explored supervised

and unsupervised phenotyping. Garla, Taylor, and Brandt 2013 employed Laplacian SVMs

to detect malignant liver lesions in imaging reports. Roqueiro et al. 2015 use co-training to

distinguish between patients suffering from either of two classes of migraine. Dligach, Miller,

and Savova 2015 use expectation-maximixation to learn phenotypes for chronic conditions

including ulcerative colitis, crohn’s disease, multiple sclerosis, and type II diabetes. Hender-

son et al. 2018 leverage semi-supervised tensor factorization to learn phenotypes for type II

diabetes and resistant hypertension. Finally, Zhang et al. 2019 introduce PheCAP, a semi-

supervised pipeline for learning phenotypes which relies on unsupervised feature learning and

modeling a small set of expert-generated, gold standard labels using supervised classifiers.

Inaccurately Supervised Methods. Inaccurate supervision is a type of supervised learn-

ing in which the labels are assumed to contain errors (Zhou 2018). In the context of phe-

notyping, this type of learning relies upon imperfect, noisy labels which can be easily and

cheaply extracted in large quantities from structured data fields (e.g. diagnosis codes) or text

using NLP pipelines.

In a series of studies, Halpern et al. introduced the idea of anchors — variables that herald

a true state Y and which are conditionally independent of all other variables given Y — and
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used them as predictive targets to learn phenotypes using supervised classifiers (Halpern

et al. 2014; Halpern, Horng, and Sontag 2016; Halpern et al. 2016). In a similar fash-

ion, (Agarwal et al. 2016; Yu et al. 2017; Wagholikar et al. 2020) employed easily extracted

silver-standard labels to train supervised phenotyping algorithms. The popularity of this

approach even led to an automated phenotyping software package designed for the OMOP

common data model (Banda et al. 2017). Subsequent studies incorporated more elaborate

feature engineering to construct better, more interpretable classifiers trained with silver stan-

dards (Yu et al. 2018; Ahuja et al. 2020). Silver-standards have also been incorporated into

a temporal phenotyping algorithm for detecting onset of chronic and acute conditions in

clinical time-series (Ferté et al. 2021).

2.3 Review of Literature Gaps

In reviewing the literature, there emerged several desiderata for phenotyping algorithms:

(i) Target specification. Phenotyping algorithms are most commonly developed for

identifying patients who are likely cases of known clinical targets. As such, incorpora-

tion of a target specification mechanism (e.g. supervision) is often needed to construct

a useful phenotyping algorithm.

(ii) Minimizing chart review. Gold-standard labels are often needed to evaluate phe-

notyping algorithms; they also may be needed for training. Generating such labels

requires expert chart review which is difficult, time-intensive, and limits scalability.

As such, phenotyping algorithms should minimize reliance on gold-standard labels as

much as possible.

(iii) Robustness to missingness. Clinical data commonly suffer from missingness in

features and in labels. This missingness reflects the nature of clinical data: not all

variables are measured at all times for all patients (feature missingness), and the data
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are meant for documentation, not research (label missingness). Phenotyping algorithms

should recognize this reality and take feature and label missingness into account.

(iv) Interpretability. In the clinical domain, model interpretability is often desired: mod-

els should explain themselves if they’re going to influence decision making. Similarly,

interpretable phenotyping algorithms are often preferred over uninterpretable ones.

Many existent phenotyping methods address (i) and (ii); however, there is a lack of

methods that handle (iii) and (iv). Aim 1 of this dissertation addresses (ii-iv) with an

unsupervised, interpretable probabilitic graphical model which is robust to missingness. Aim

2 addresses (i-iv) incorporating semi-supervision into the model utilized in Aim 1. Finally,

Aim 3 addresses (iii) with an algorithm for training deep generative models on partially

observed data, and could be extended to cover (i) and (ii) by extending the algorithm to

related semi-supervised models.
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Chapter 3

Aim 1. Implement a method for learning

phenotypes from partially observed data.

When subjected to an intervention, different individuals will often experience different

responses. Such heterogeneity in treatment effect has been observed for various behavioral

interventions targeting a wide range of health outcomes (Burgermaster et al. 2017; Koch,

Contento, and Gray 2019; Rothman and Sheeran 2020; Bryan, Tipton, and Ds 2021). Much

of this variability may be attributed to differences in individuals’ underlying psychological

and social context. Thus, methods for identifying and characterizing these differences could

facilitate a transition from merely describing treatment effect heterogeneity to optimizing

treatment effect by tailoring interventions to better suit an individual’s context.

Phenotyping methods generally aim to identify subgroups of individuals who share ob-

servable similarities due, presumably, to a set of common, underlying factors (Dugger, Platt,

and Db 2018). Such methods are familiar tools in genetics and medicine where they have

contributed to the development of precision health — a field which aims to tailor medical

interventions to the specific biological and medical context of individual patients (Collins

and Varmus 2015). In the present work, we aim to extend the use of phenotyping methods

to identify subgroups with similar psychological, social, and environmental characteristics,

that is subgroups characterized by distinct “psychosocial-behavioral phenotypes”. We do

this in an effort to prospectively identify the potential behavioral, psychological, social, and

environmental factors which may be responsible for variability in response to a potential

health behavior change intervention.
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To this end we aim to construct psychosocial-behavioral phenotypes which 1) comprise

psychosocial determinants of health (e.g., emotions, attitudes, mental health, self-esteem,

social support integration, environmental stress, discrimination, among others (Matthews,

Gallo, and Se 2010)); 2) represent distinct, conceptually meaningful subgroups; 3) highlight

mutable factors that can be intervened upon (i.e. mediators) as well as immutable contextual

factors (i.e. moderators); and 4) are related to health outcome of interest (Hickey, Bakken,

and Byrne 2019; Kim et al. 2021). We take special care to note that while there does exist

prior work in this space (Fuentes, Brondeel, and Franco 2019; Boutelle et al. 2014; Bouhlal

et al. 2017; Burgermaster et al. 2018), none so far have modeled contextual factors alongside

potential intervention targets.

Machine learning methods developed for clinical phenotyping (Pivovarov et al. 2015a)

may be applicable to this problem. Specifically, Mixed Membership Models, a model family

which includes Latent Dirichlet Allocation (LDA), a popular method from the topic model-

ing literature (Blei, Ng, and Jordan 2003), could be used to identify psychosocial-behavioral

phenotypes. Here we apply Multi-Channel Mixed Membership Models (MC3M), a relative

of LDA which permits modeling of multiple data types in separate “channels.” In clinical

phenotyping, MC3M’s channels have previously been used to accommodate clinical note

text, laboratory tests, medications, and diagnosis codes (Pivovarov et al. 2015a; Lu, Wei,

and Hsiao 2016). In our work, MC3M’s channels are allocated to survey responses relating

to distinct psychosocial-behavioral constructs associated with health behaviors. By model-

ing multiple constructs together, we aim to generate phenotypes comprising behaviors and

psychosocial determinants of health that include both mediators and moderators. Modeling

these constructs jointly within a single model has the capacity to identify both potential in-

tervention targets and important contextual factors within previously unknown population

subgroups.

In this work, we apply MC3M to survey data gathered to investigate how psychosocial

determinants of health are associated with health status within an inner-city community
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burdened with health disparities including high levels of overweight and obesity. Next, using

predictive modeling, we identify the subset of MC3M phenotypes which carry a significant as-

sociation to elevated weight status (BMI ≥ 25kg/m2) — an important risk factor for chronic

disease driven by complex interactions among psychological, behavioral, social and environ-

mental determinants (Swinburn, Sacks, and Kevin D. Hall 2011; Calugi and Dalle Grave

2020). Our goal here is to demonstrate howMC3M can be used to proactively identify contex-

tual differences within a target population which could be subsequently incorporated within

a behavioral intervention design. We aimed first to identify unique subgroups of participants

with similar psychosocial characteristics that highlight potential intervention targets and

important contextual conditions (i.e., psychosocial-behavioral phenotypes). Then we aimed

to assess the potential utility of these phenotypes for intervention design by determining if

1) phenotypes were differently distributed among people in our dataset and 2) only some

phenotypes were related to a relevant health outcome, weight status, in our dataset.

3.1 Aim 1A. Utilize the Multi-Channel Mixed Membership Model

(MC3M) to learn psychosocial-behavioral phenotypes from par-

tially observed survey data

Background

Treatment effect heterogeneity is routinely observed in response to interventions meant

to improve health outcomes. This heterogenity is likely contributed to by differences in

psychological and social context among treated individuals. Thus, identifying and charac-

terizing these differences via psychosocial-behavioral phenotyping could improve intervention

design by taking contextual information into account. Here we utilize Multi-Channel Mixed

Membership Models (MC3M) to learn psycho-social phenotypes from survey data. First, we

describe the survey response dataset we use throughout the present aim. Then we detail the

structure of MC3M’s probabilistic graphical model as well as an inference algorithm which
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allows the model to learn phenotypes from partially observed data. Finally we train MC3M

on tokenized survey response data and inspect the extent to which MC3M’s phenotypes

identify distinct subgroups within the survey sample population.

Research Question

Can MC3M identify subgroups of individuals that exhibit similar psycho-social traits?

Methods

Data. The Washington Heights Informatics Infrastructure for Comparative Effectiveness

Research (WICER) project was created to improve health equity within immigrant commu-

nitys in Manhattan’s Washington Heights and Inwood neighborhoods (Lee et al. 2015; Lor

et al. 2019; Masterson Creber et al. 2017; Sepulveda-Pacsi and Bakken 2017; Yoon, Suero-

Tejeda, and Bakken 2015). WICER participants were recruited from community households

and ambulatory care clinics affiliated with NewYork Presbyterian Hospital – Columbia Uni-

versity Medical Center between 2010 to 2013 (Lee et al. 2015; Lor et al. 2019). Data were

collected for 5,883 adult participants who were 18 years of age or older (Masterson Creber

et al. 2017).

This work, uses the WICER Community Health Surveys, which contains each partici-

pant’s responses to questions about health behaviors, healthcare interactions, health, mental

health, physical activity and diet, sleep, stress, social network, attitudes, neighborhood, and

health literacy. Detailed information about the questionnaire was previously published (Lee

et al. 2015). We include surveys that assessed psychosocial and behavioral constructs po-

tentially relevant to health behavior intervention design. We grouped questions according

to the construct they were developed to target (e.g., diet, neighborhood food environment,

stress). Table 3.1 summarizes the constructs targeted by surveys included in WICER.

WICER also includes height (meters [m]) and weight (kilograms [kg]) measurements.

From these, we calculated each participant’s body mass index (BMI). A BMI ≥ 25kg/m2 is
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a positive indicator for elevated weight status (i.e., overweight or obesity). We encoded each

participant’s weight status as a binary variable reflecting BMI < 25kg/m2 or ≥ 25kg/m2.

MC3M is a model for tokenized data. To apply MC3M, we translated the WICER survey

data into survey response tokens which are unique combinations of question-answer pairs

(e.g., Q:FruitVegetablesAvailableInNeighborhood_A:Somewhat) or validated composite

scale scores (e.g. perceivedStressScore_moderate). These tokens were then manually

translated to be more easily interpreted (e.g. perceivedStressScore_moderate became

some stress). Preprocessed survey data and weight status indicators were aggregated to

form our full preprocessed datasets which we then split into training (80%), validation (10%),

and test (10%) partitions.

Model. Let D, C, and P be the total number of persons, constructs, and phenotypes

respectively. Let W represent our complete dataset of discrete observations. We may sub-

divide W into observations associated with each person: W = {W1, . . . ,WD}. Furthermore,

each person’s observations, Wd, may be subdivided by construct: Wd = {Wd1, . . . ,WdC}.

Finally, each Wdc may be further decomposed into a set of individual observations: Wdc =

{wdc1, . . . , wdc(Ndc)}, where Ndc is the total number of observations of construct c associated

with person d.

MC3M assumes the existence of a set of phenotypes, Φ = {φ1, ..., φP}, each of which

has a component dedicated to each construct: φp = {φp1, ..., φpC}. Phenotypes are modeled

as a set of C independent discrete probability vectors. Each of these vectors is a discrete

probability distribution over the corresponding construct’s survey response tokens. These

phenotype-token distributions are sampled from a set of Dirichlet distributions with fixed

parameters, β = {β1, ..., βC}.

P (Φ; β) =
P∏

p=1

C∏
c=1

Dir(φpc; βc) (3.1)

MC3M also assumes a set of person-specific distributions over phenotypes or person-
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phenotype distributions: Θ = {θ1, ..., θD}. These distributions are modeled as samples from

a single Dirichlet distribution with fixed parameter α.

P (Θ;α) =
D∏

d=1

Dir(θd;α) (3.2)

In MC3M, the observations in W are assumed to be generated by interactions among the

probability vectors in Θ and Φ. To illustrate, consider the observations for a single person,

d′ and construct c′, Wd′c′ . Each individual observation wd′c′n inWd′c′ = {wd′c′1, ..., wd′c′(Nd′c′ )
}

is modeled as a sample from the c′ th component of one of the phenotypes in Φ. The identity

of this phenotype is obtained by sampling a phenotype assignment, zd′c′n from θd′ , where

zd′c′n ∈ {1, ..., P}. Thus, MC3M assumes that each observation in W is obtained by first

sampling an assignment from a person-phenotype distribution in Θ, picking out the assigned

phenotype from Φ, and finally sampling the observation from one of the phenotype-token

distributions. This allows us to write out the conditional probabilities of all the assignments,

Z, and observations, W , as follows.

P (Z|Θ) =
C∏
c=1

D∏
d=1

Ndc∏
n=1

θd(zcdn) P (W |Φ) =
C∏
c=1

D∏
d=1

Ndc∏
n=1

φ(zcdn)c(wcdn) (3.3)

Taken together, the probability distributions in equations 3.1, 3.2, and 3.3 fully specify

the generative model for MC3M.

Inference. Here we describe the inference algorithm we implement to obtain estimates of

the variables Θ and Φ given our training data, W .

We adopt a Bayesian inference approach, and seek to obtain posterior estimates of Θ

and Φ. Unfortunately, these posteriors require we estimate the marginal likelihood of our

data, which is intractable. Therefore, we make use of Markov chain Monte Carlo approx-

imate inference methods, which do not necessitate estimation of this marginal likelihood.

Specifically, we implement a collapsed Gibbs sampling algorithm for our model as decribed

by Pivovarov et al. 2015a.
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Briefly, we integrate out of the model’s joint distribution the latent variables Θ and Φ.

We then iteratively sample each of the the assignment variables in Z from its complete

conditional distribution which is the distribution of the assignment variable conditioned on

the values of all other remaining variables in the model. We repeat this sampling procedure

until observing convergence in the model’s collapsed likelihood. At this point, we may recover

the values of Θ and Φ as Monte Carlo estimates of their expectations with respect to the

collapsed likelihood.

Model Selection. To optimize the total number of phenotypes, P , we carry out three

independent Gibbs sampling runs for a range of values: 10, 15, 20, 25, 30, 35, and 50.

We utilize a Chib-style estimator (Wallach et al. 2009; Murray and Rr 2008) to estimate the

held-out posterior likelihood of our validation set under each model. We then select the value

of P that yields the maximum average held-out likelihood as the number of phenotypes for

this study.

Identifying informative constructs. To be useful, MC3M should learn phenotypes

which differ in how they distribute probability mass over survey response tokens. More-

over, different phenotypes should “emphasize” distinct constructs, because it is probable

that only a subset of constructs will be relevant to each phenotype. To identify such con-

structs, we calculated the entropy of their corresponding phenotype-token distributions. Low

entropy constructs have distributions which peak over a relatively small number of tokens.

Conversely, high entropy constructs have nearly uniform distributions which indicate the

construct as a whole is irrelevant to the phenotype. We normalized each construct’s en-

tropy to compare entropies across distributions with varying numbers of tokens. Normalized

entropy was calculated by dividing the entropy by the maximum possible entropy. For a

construct containing V survey response tokens, the maximum entropy is equal to log V .
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Active and inactive phenotypes. In MC3M, each person in the dataset is described

to some extent by every phenotype. Ideally, an individual’s person-phenotype distribution

should place high probability upon only a small number of phenotypes that explain the

large majority of the individual’s observations. To identify these active phenotypes, we set

a threshold of one standard deviation above the mean of the person-phenotype prior distri-

bution. Phenotypes with probability above this threshold were considered active; otherwise,

they were inactive.

Visualizing Phenotypes. We developed a text-based visualization to interpret the infor-

mation captured by a phenotype. For a given phenotype, we first identified the 20 constructs

whose phenotype-token distributions had the lowest normalized entropy. For each such con-

struct, we then selected all survey response tokens with probability at least equal to the

phenotype-token distribution’s prior mean probability plus 50% of the prior standard devia-

tion. For each such token, we calculated a relative probability equal to the token probability

divided by the maximum token probability under the present phenotype and construct’s

phenotype-token distribution. As in previous related work (Pivovarov et al. 2015a; Ro-

driguez and Perotte 2019), we visualized these tokens with word clouds in which (1) token

font sizes were proportional to their relative probabilities and (2) font colors were unique to

each construct. This visualization is useful for interpreting phenotypes because it illustrates

the variation in relative probabilities within each phenotype-token distribution. Since even

the largest token probabilities within a phenotype-token distribution can be quite small when

the total number of tokens is large, relative probabilities communicate the most interpretable

information captured by each phenotype.

Results

Sample Population The mean age of participants was 50 years (SD=17) and nearly

three-quarters of participants were female. Nearly all participants (96%) reported Hispanic
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ethnicity and two-thirds completed the surveys in Spanish. Most participants were insured

by Medicaid and had an elevated weight status (BMI ≥ 25 kg/m2).

Phenotype Learning Models trained with P = 20 obtained the maximum held-out log-

likelihood averaged over all runs (Figure 3.1). Therefore, we used MC3M person-phenotype

and phenotype-token distributions learned, setting P=20 in all subsequent analyses.

Figure 3.1: Model selection. Shown are held-out posterior likelihood estimates of the vali-
dation set data under for P ∈ {10, 15, 20, 25, 30, 35, 50}. Error bars correspond to standard
error over mutliple runs of the Chib-style estimator. The maximum value was observed at
P = 20.

Psychosocial-Behavioral Phenotypes A subset of the 20 psychosocial-behavioral phe-

notypes is presented in Figures 3.2 and 3.3. The word clouds are presented so that each

color represents a different construct (See Table 3.1 for details on each construct). In each

word cloud, constructs are ordered by increasing entropy so that the most discriminative

constructs are presented first. Within each construct, tokens that contribute the most prob-

ability mass to the phenotype are presented with each token’s font size corresponding to its
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relative probability. Although some phenotypes include tokens in common, the combination

of tokens is unique across phenotypes.
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Constructs and Measures Included in Psychosocial-Behavioral Phenotypes

Construct Scale(s) Tokens Example Concepts

Diet NYC HANESa 63 Fruit/vegetable intake, beverage intake, restaurant meal frequency

Alcohol Consumption NHANESb 2 Frequency and quantity of alcohol consumption

Smoking NHANESb 2 Cigarette smoking

Physical Activity NYC HANESa 15 Weekly minutes of walking, moderate and vigorous physical activity

Sedentary Behavior NYC HANESa 12 Computer, TV screentime

Sleep MOSc, PROMISd 12 Quantity of sleep, napping

Attitudes Bodene, CPSf , MEPSg, WICER CHSh 1772 Health worries, medical skepticism, medical decision making

Outcome Expectations MEPSg 43 Future discounting, life/health expectancy

Health Literacy NVSi, Chewj 10 Newest Vital Sign score, medical literacy

Health Locus of Control MHLCk 12 Internal/external/powerful others locus of control

Health Information Seeking NHCS-HITl 10 Use of internet for health information

Self-perception Donahuem 5 Perception of activity/weight compared to peers

Physical Activity Barriers Donahuem 25 Physical activity environment

Social Support NTCn, PROMISo, Duke SSIp 113 Neighborhood perceptions, social relations, social network, social support

Food Environment Mooreq 15 Access to vegetables, healthy food options

Chronic stress chronic burden of stressr 9 Financial stress, job stress, health stress, relational stress

Demographics WICERh, Marins, MacArthurt, Duke SSIp 257 Gender, household, nativity, race, ethnicity, education, language, age

Health Status HRQOL SF-8u, CDC HRQOL14v, BRFSSw 91 Self-reported cancer, diabetes, stroke, mental health diagnosis

John Henryism John Henryismx 3 Level of high-effort coping

Mental Health CES-Dy, PHQ-9z, PROMISaa 75 Anxiety, depression, sleep disturbance, quality of life, pain

Perceived Stress PSSbb 3 High/mid/low composite perceived stress score

Sleep Quality HRQOL SF-8u 15 Sleep difficulty, satisfaction

Socioeconomic Status CCHScc, NHANESs, MacArthurt, Duke SSIp 1378 Insurance, occupation, food insecurity, social position, income source

Self-Advocacy MEPSg 38 Willingness to communicate assertively with healthcare system

Table 3.1: Notes: a) New York City Health and Nutrition Examination Survey (Thorpe et al. 2006)
b)National Health and Nutrition Examination Survey (Health Statistics et al. 2014) c) Medical Outcome
Study Sleep Scale (Ware and Sherbourne 1992) d) Patient Reported Outcomes Measurement Information
System (PROMIS-sleep disturbance) (Buysse, Yu, and Moul 2010) e) Boden-Albala et al. 2011 f) Control
Preferences Scale (Degner, Sloan, and Venkatesh 1997) g) Medical Expenditure Panel Survey, Household
Component (J. 1997) h) WICER Community Health Survey (Yoon, Wilcox, and Bakken 2013) i) Newest
Vital Sign (Weiss, Mays, and Martz 2005) j) Chew, Griffin, and Partin 2008 k) Multidimensional Health
Locus of Control (Ka 2005) l) Health Information National Trends Survey (Nelson, Kreps, and Hesse 2004;
Cantor et al. 2009)[REF 67,68] m) Donahue et al. 2004 n) Neighborhood Trust and Cohesion (Garcia, Tay-
lor, and Ba 2007) o) Patient-Reported Outcomes Measurement Information System – Social Role (Hahn,
DeVellis, and Bode 2010) p) Duke Social Support Index (Landerman et al. 1989) q) Moore et al. 2008
r) Chronic burden of stress sum score (Yj 2013) s) Short Acculturation Scale for Hispanics (Marin et al.
1987) t) MacArthur Sociodemographic Questionnaire (Lachman and Sl 1998) u) Heath-related quality of life
Short Form 8 (Ware et al. 2001) v) Centers for Disease Control and Prevention Health-related quality of life
Healthy Days Measures, core and symptom module (Centers for Disease Control and Prevention Behavioral
Risk Factor Surveillance System 2010) w) Centers for Disease Control and Prevention Behavioral Risk Factor
Surveillance System (Centers for Disease Control and Prevention Behavioral Risk Factor Surveillance Sys-
tem 2010) x) John Henryism Scale (James et al. 1987) y) Center for Epidemiologic Studies Depression Scale
(Eaton et al. 2004) z) Modified Patient Heath Questionnaire-9 (Kroenke et al. 2010) aa) Patient Reported
Outcomes Measurement Information System – Emotional Distress (Pilkonis et al. 2011) bb) Perceived Stress
Scale (Cohen, Kamarck, and Mermelstein 1983) cc) Canadian Community Health Survey Food Insecurity
Measure (Kirkpatrick and Tarasuk 2008)
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CS: No chronic stressors SQ: 46-60 min to fall sleep JH: Extreme
coping efforts SL: Insufficient sleep HLC: Doctors control
health a bit OE: Expects poor health starts at 50s SA: Wouldn’t
get second opinion if it might insult doctor SS: No social media
SMK: Non-smoker SES: Medicaid enrollee PA: No vigorous
activity No moderate activity Limited walking HS: No
psychiatric diagnosis No stroke diagnosis No cancer diagnosis No
kidney failure diagnosis No heart disease diagnosis No diabetes

diagnosis AT: Cancer is second health worry Diabetes is second
health worry Cancer is top health worry SP: Less active than peers
FE: Very good produce access Very good low fat food access Very good quality

produce available HIS: Internet not used for health info No internet use

SB: <1 hr computing daily 3 hrs TV daily DT: Eats out weekly HL: Somewhat
confident filling medical forms

Phenotype 10

SQ: Poor sleep HLC: Fate doesn’t control health SL: Naps
frequently JH: Some coping effort OE: Expects to live to 80s
SA: Would self-advocate if doctor was too busy SS: No social
media Uses social mediaSES: Medicaid enrollee Other insurance AT: Desires
shared decision making in healthcare Desires shared decision
making about risks and benefits Desires shared decision making
about treatments Desires shared decision making about medical care
Wants to know all choices for health decisions Wants all good and bad health
info Only wants info needed for care FE: Good produce access Good low fat food
access Good quality produce available Low quality produce available Inadequate low fat food

access SMK: Non-smoker PA: No vigorous activity SB: <1 hr computing
daily HL: High health literacy CS: Three chronic stressors One

chronic stressor SP: Less active than peers

Phenotype 18

Figure 3.2: Psychosocial Phenotypes Positively Associated with Elevated Weight Status.
Phenotypes 10 and 18 were found to be positively associated with elevated weight status.
Each word cloud depicts the 20 constructs with lowest normalized entropy for that phenotype
and the survey response tokens associated with each construct are shown. The font size is
proportional to a token’s probability within the given phenotype. The font color is unique
to each construct. Only tokens with probability greater than or equal to the phenotype-
token prior mean plus 0.5 times the phenotype-token prior standard deviation are shown.
Constructs lacking tokens meeting this threshold are omitted. Constructs are visualized in
order of increasing normalized entropy. AC, alcohol consumption; PA, physical activity; SB,
sedentary behavior; SL, sleep; SMK, smoking; DT, diet; OE, outcome expectations; FE,
food environment; HL, health literacy; PAB, physical activity barriers; SS, social support;
AT, attitudes; SP, self-perception; HIS, health information seeking; SA, self-advocacy; HLC,
health locus of control; CS, chronic stress; DM, demographics; HS, health status; SES,
socioeconomic status; MH, mental health; SQ, sleep quality; PS, perceived stress; JH, John
Henryism.

To assess between-subject variability, we identified phenotypes above a set threshold for

each person in our dataset. Each person had at most three active phenotypes, with most
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AC: Consumes alcohol SMK: Non-smoker SP: More active than peers
CS: No chronic stressors SL: Sufficient sleep HL: Adequate
health literacy JH: Some coping effort PS: Some stress
SA: Patients should follow doctor’s orders HIS: Internet not
used for health info FE: Very good low fat food access Very good
produce access SQ: Good sleep Falls asleep quickly PA: Limited
walking OE: Expects poor health starts before 30 Expects poor health
starts at 50s HLC: Doctors control health a bit Somewhat controls own health

HS: No heart disease diagnosis No diabetes diagnosis No psychiatric

diagnosis No stroke diagnosis SB: 2 hrs computing daily >5 hrs computing daily MH: Never
depressed Never anxious Mental health challenges haven’t limited activities

SES: Works for pay Much better off than others of same ethnicity Better off than others of

same ethnicity

Phenotype 2

AC: Consumes alcohol SMK: Non-smoker SP: More active than peers
JH: Normal coping SQ: Falls asleep quickly HLC: Fully controls
own health PS: Some stress OE: Life is going well enough to worry
about longevity Wouldn’t worry more about longevity if life were going better

SA: Wouldn’t tell doctor wait is too long Doesn’t expect busy doctor
to answer questions SL: Insufficient sleep Naps frequently SS: Uses social
media CS: No chronic stressors HS: No diabetes diagnosis No
kidney failure diagnosis No stroke diagnosis No heart disease
diagnosis No cancer diagnosis No psychiatric diagnosis SES: Medicaid
enrollee DM: More than 2 adults in household Latinx HL: Adequate
health literacy Limited health literacy Difficulty filling medical forms FE: Very good
produce access Very good low fat food access Very good quality produce available

MH: Always peak mental health

Phenotype 8

SQ: Less than 5 hrs sleep nightly HLC: Controls own health
SL: Naps often SA: Doctors not expected to help with lifestyle
SS: Uses social media No social media HS: No kidney failure diagnosis No
cancer diagnosis No stroke diagnosis No diabetes diagnosis No
psychiatric diagnosis No heart disease diagnosis SES: Medicaid
enrollee Other insurance SMK: Non-smoker AT: Desires shared
decision making in healthcare Desires shared decision making
about treatments Desires shared decision making about medical care
Desires shared decision making about risks and benefits Wants all good
and bad health info Wants to know all choices for health decisions Only wants
info needed for care CS: No chronic stressors One chronic stressor FE: Good
produce access Good quality produce available Good low fat food access

Inadequate low fat food access PAB: Has time for activity Access to places for
activity Has time for activity Activity is not too expensive Place for
activity SP: About as active as peers HL: High health literacy
PA: No vigorous activity No moderate activity Frequent walking

Phenotype 9

SL: Insufficient sleep HLC: Fate doesn’t control health
SQ: Sleeps 5 hours nightly JH: Extreme coping efforts
OE: Expects to live past 100 SS: No social media Uses social media CS: No
chronic stressors HS: No psychiatric diagnosis No heart disease
diagnosis No stroke diagnosis No kidney failure diagnosis No cancer
diagnosis No diabetes diagnosis SMK: Non-smoker SES: Medicaid
enrollee DM: Latinx Heterosexual Immigrated in adulthood More than 2
adults in household Immigrated in childhood SP: About as active as peers
More active than peers PA: No vigorous activity FE: Good produce access
Good quality produce available Good low fat food access HIS: Internet
not used for health info HL: High health literacy

Phenotype 15

Figure 3.3: Psychosocial Phenotypes Negatively Associated with Elevated Weight Status.
Phenotypes 2, 8, 9, and 15 were negatively associated with elevated weight status. Each
word cloud depicts the 20 constructs with lowest normalized entropy for that phenotype
and the survey response tokens associated with each construct are shown. The font size is
proportional to a token’s probability within the given phenotype. The font color is unique
to each construct. Only tokens with probability greater than or equal to the phenotype-
token prior mean plus 0.5 times the phenotype-token prior standard deviation are shown.
Constructs lacking tokens meeting this threshold are omitted. Constructs are visualized in
order of increasing normalized entropy. AC, alcohol consumption; PA, physical activity; SB,
sedentary behavior; SL, sleep; SMK, smoking; DT, diet; OE, outcome expectations; FE,
food environment; HL, health literacy; PAB, physical activity barriers; SS, social support;
AT, attitudes; SP, self-perception; HIS, health information seeking; SA, self-advocacy; HLC,
health locus of control; CS, chronic stress; DM, demographics; HS, health status; SES,
socioeconomic status; MH, mental health; SQ, sleep quality; PS, perceived stress; JH, John
Henryism.
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people having only one, as illustrated in Figure 3.4 (top). This suggests that phenotypes

differentiated between people in most cases. In addition, there was wide variability in how

often each phenotype was active across the study population, as illustrated in Figure 3.4

(bottom). This eliminates the possibility that a small number of phenotypes describes all or

most of the people in the dataset.

Figure 3.4: Active Phenotypes. For a given individual, a phenotype is considered active if
it has probability greater than or equal to the person-phenotype prior probability plus 1
prior standard deviation. Top: Shown is the number of individuals with 1, 2, or 3 active
phenotypes; no individuals were found to have 4 or more active phenotypes. Bottom: Shown
is the total number of individuals each phenotype is active for.

37



Discussion

Conceptually meaningful population subgroups The goal of our work was to uncover

conceptually meaningful groupings of psychosocial and behavioral characteristics, which

could be used to identify and characterize distinct subgroups of individuals within a pop-

ulation. To achieve this goal, we adopted an inductive perspective, using an unsupervised

model to find previously unidentified groups of characteristics, or psycho-social phenotypes.

This approach constrasts with previous work which takes a deductive, hypothesis-driven

approach to claim adverse and favorable “psychosocial profiles of obesity” are unrelated to

socioeconomic status (Fuentes, Brondeel, and Franco 2019). Similarly, within the clinical

domain, inductive phenotyping methods have been used to move beyond recovering known

diagnoses from electronic health records (e.g., Shang, Liu, and Rasmussen 2019) to uncover-

ing previously unknown disease subtypes through modeling patient-generated data (Li et al.

2015; Urteaga, McKillop, and Elhadad 2020). This highlights an inherent tradeoff. MC3M

helped us identify novel combinations of psychosocial, behavioral, and contextual factors in

the form of psychosocial-behavioral phenotypes. However, as is true for all inductive meth-

ods, the model output is completely dependent upon the characteristics of the dataset used

for training. Deductive approaches are needed to confirm relationships among intervention

strategies, psychosocial-behavioral phenotypes, and behavior targets (Rothman and Sheeran

2020).

Whereas prior work used qualitative methods to discover psychosocial-behavioral pheno-

types from in-depth interviews (Burgermaster et al. 2018), the use of MC3M for psychosocial-

behavioral phenotyping described here has enabled us to identify psychosocial-behavioral

phenotypes in an automated manner. The resulting phenotypes are both novel and plau-

sible. They represent logical and reasonable combinations of psychosocial characteristics,

while variations among phenotypes suggest their utility in differentiating meaningful sub-

groups. Identifying active phenotypes for each individual and assessing the frequency of

individuals with an active phenotype across the set of phenotypes (see Figure 3.4) could aid
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in prioritizing intervention targets and contextual factors.

Only some of the phenotypes were significantly related to elevated weight status, which

suggests the value of approaches that combine psychosocial factors at this level of granu-

larity. Although several phenotypes have features in common, they are present in different

combinations. For example, “extreme coping effort” is a survey response token from the John

Henryism construct. John Henryism describes the phenomenon of individuals who engage in

“high-effort coping” more frequently experiencing hypertension or obesity (Sa 1994; Booth

and Cr 2016). Although this phenomenon has been demonstrated to occur among Hispanic

Americans (Amw et al. 2015), it was originally identified among Black Americans of low

socioeconomic status in the South (Sa 1994). Extreme coping is only present in Phenotypes

10 and 15 and co-occurs with “Medicaid” (a proxy for low-income status) in both cases.

However, while Phenotype 10 was positively associated with elevated weight status, Pheno-

type 15 was not. This could be explained by differences in health literacy between the two

phenotypes as John Henryism is characterized by high-effort coping among disadvantaged

groups with limited access to tools and assistance. High health literacy could plausibly pro-

tect against elevated weight status in Phenotype 15, a hypothesis that could be tested in

future work using deductive methods.

Intervention targets in context Behavioral health interventions commonly target mod-

ifiable psychosocial and behavioral factors (Glanz, Rimer, and Theory 2015; research 2016).

Thus, such interventions may be made more effective if they are designed to take subgroup

differences in these factors into account. However, because effect modification is a consistent

issue in behavioral interventions (Rothman and Sheeran 2020; Bryan, Tipton, and Ds 2021),

the invididual context in which an intervention is applied is also important. Our approach

aims to simplify the identification of potential intervention targets while simultaneously

presenting them in context. In our case, Phenotype 10 and Phenotype 18 were positively

associated with elevated weight status, and also indicated low levels of physical activity
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and poor sleep. However, these potential intervention targets should be informed by the

contextual factors also present in the phenotypes. For example, both phenotypes highlight

low-income status and no computer, internet, or social media use suggesting potential in-

terventions should minimize reliance upon digital media. Meanwhile, concern about chronic

disease, good food access, and locus of control oriented to powerful others differentiate Phe-

notype 10 from Phenotype 18 which is characterized by internal locus of control, high health

literacy, and chronic stress. Importantly, the differences in these two phenotypes point to

contextual factors on the level of systems and environment that could be better addressed

by policy. This underscores both the potential for these types of moderators to influence

intervention effects as well as the heterogeneity of psychosocial-behavioral and contextual

factors, even within the geographically and ethnically constrained WICER cohort.

Limitations

This work has several limitations. To begin, the dataset used here was obtained from a

demographically and geographically constrained cohort. Thus, it is unlikely that the pheno-

types we uncovered will generalize to other populations. Nevertheless, our phenotypes did

appear to meaningfully cluster individuals within this cohort suggesting that our approach

could be useful for tailoring interventions within the community of origin. A second limita-

tion pertains to our use of secondary data. Since we did not collect our data prospectively,

we were unable to select the constructs to be measured. Though we applied out method to

data representing a relatively large set of psychosocial, behavioral and social determinants

of health, these did not comprehensively represent all psychosocial-behavioral constructs of

interest. We would expect that expanding the dataset to incorporate such constructs would

result in learning a different set of phenotypes.
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3.2 Aim 1B. Identify MC3M phenotypes associated with a health

outcome.

Research Question

Can MC3M phenotypes be used to predict the presence of a targeted health outcome?

Methods

Predictive Modeling. To determine which MC3M phenotypes were associated with ele-

vated weight status, we first use MC3M’s person-phenotype distributions as covariate vectors

in a binary prediction model targeting elevated weight status. We then rely on significance

testing to identify which phenotypes were positively and negatively associated with elevated

weight status.

For our predictive model we use logistic regression with an elastic net (EN) penalty

(Zou and T. 2005). We tune the EN logistic regression hyperparameters with 10-fold cross-

validation. We then use the best performing hyperparameters to train a model on the full

training set, and significant odds ratios are used to determine which phenotypes are positively

or negatively associated with elevated weight status. Because the values of our covariates are

constrained to the interval [0, 1], we first apply a log transformation to the person-phenotype

distributions. This removes the constraint and results in more stable training.

EN logistic regression has several hyperparameters including the regularization strength,

λ, and the L1/L2 elastic net mixing parameter, γ. We optimize λ and γ using 10-fold cross

validation and grid search: λ ∈ {0.01, 0.5, 0.1, 1.0, 5.0, 10.0}, γ ∈ {0.0, 0.1, 0.2, . . . , 0.9, 1.0}.

The areas under the ROC (AUROC) and Precision-Recall (AUPRC) curves were used as

target metrics. For each hyperparameter setting, we generate a point estimate for each

metric and bootstrapped 95% confidence intervals (CIs). Bootstrapped metric distributions

are generated by pooling true labels and label predictions over all held-out folds, sampling

from this pool with replacement, and calculating the metric for each sample (10,000 samples
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for each hyperparameter setting).

We use the following bootstrapping procedure to identify significant regression coeffi-

cients. First, we sample instances with replacement from the training set such that the

number of positive and negative cases is preserved. Next, we train an EN logistic regres-

sion model, and recorded the fitted coefficient values. This process is repeated 10,000 times

yielding bootstrap distributions for each coefficient. We used these distributions to define

bootstrapped 95% CIs. Significant coefficients were taken as those whose 95% CIs were

non-overlapping with the null value, 0.

Results

Psychosocial-Behavioral Phenotypes and Weight Status Figure 3.5 shows relation-

ships between phenotypes and weight status according to our EN logistic regression. The

bootstrap 95% CIs for the model odds ratios from our best performing EN logistic regression

indicated that six phenotypes – 2, 8, 9, 10, 15, and 18 – had coefficients significantly different

from the null. Two (Phenotypes 10 and 18) were significantly positively associated with ele-

vated weight status while the remaining four (Phenotypes 2, 8, 9, and 15) were significantly

negatively associated with weight status.

Phenotype 10 and Phenotype 18 were positively associated with elevated weight status.

These phenotypes are described here and presented in Figure 3.2. Phenotype 10 (n=695,

13%) was positively associated with elevated weight status (OR= 1.02; 95% CI = 1.01,

1.03). This phenotype was characterized by a perception of low stress along with extreme

coping in the face of discrimination (i.e., John Henryism), poor sleep, little physical activity,

low income, worry about chronic disease, and being unlikely to self-advocate within the

healthcare system. Phenotype 18 (n=588, 11%) was also positively associated with elevated

weight status (OR= 1.03; 95% CI = 1.02, 1.04). This phenotype was characterized by poor

sleep, little physical activity, low income, good food access, high health literacy, willingness

to self-advocate and interest in shared decision making within the healthcare system, and
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Figure 3.5: Odds Ratios for Elevated Weight Status Predictive Model. Points and error bars
represent bootstrap means and 95% CIs, respectively, for EN logistic regression odds ratios.
Log-transformed person-phenotype distributions were used as covariates. Elevated weight
status was used as the predictive target. Stars indicate coefficients odds ratios whose 95%
CIs do not contain the null.

high stress.

Four psychosocial-behavioral phenotypes were negatively associated with elevated weight

status; they are described here and presented in Figure 3.3. Phenotype 15 (n=946, 18%)

was negatively associated with elevated weight status (OR= 0.98 95% CI = 0.97, 0.99).

This phenotype was characterized by poor sleep; no chronic stressors, but extreme coping

in the face of discrimination; Hispanic immigrant to the US with more than two adults

living in their household; self-perception as active, but no vigorous activity reported; no

chronic disease diagnoses, very high life expectancy; good food access; and low income.

Phenotype 9 (n=601, 11%) was negatively associated with elevated weight status (OR=0.98;

95% CI=0.97, 0.99). This phenotype was characterized by poor sleep, internal health locus

of control; willingness to self-advocate and interest in shared decision making within the

healthcare system; low stress; no barriers to physical activity, self-perception as comparably

active to peers, walking but no vigorous activity reported; social media use; low income; high
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health literacy; and good food access. Phenotype 8 (n=294, 6%) was negatively associated

with elevated weight status (OR=0.98; 95% CI0.97, 0.99). This phenotype was characterized

by alcohol consumption; self-perception as more active than peers; positive outlook on health,

no chronic disease diagnoses, very high internal locus of control in health and low willingness

to self-advocate within the healthcare system; more than two adults living in their household;

low income; very good food access; and no mental health issues. Phenotype 2 (n=50, 1%)

was negatively associated with elevated weight status (OR=0.96; 95% CI=0.94, 0.98). This

phenotype was characterized by alcohol consumption; self-perception as more active than

peers, but little physical activity reported; very good food access; good sleep quality; low

expectations for a long, healthy life; no mental health issues; computer and social media use,

though not for health information seeking; and working for pay.

Discussion

Linking Phenotypes to Weight Status Our approach yielded 20 phenotypes, of which

six were positively or negatively related to weight status. Each phenotype includes features

that have previously been associated with risk for or protection from elevated weight status.

For example, multiple chronic stressors are present only in Phenotype 18, which was posi-

tively related to elevated weight status. Chronic stress has been directly related to obesity

among Latinas (Stanhope, Picon, and Schlusser 2021), and a mechanistic pathway relating

stress to elevated weight status has been established (Xiao et al. 2020). This highlights

the potential value of psychosocial-behavioral phenotyping for understanding within-group

heterogeneity. We note that the magnitude of associations between phenotypes and elevated

weight status, though significant, are relatively small. Nevertheless, they remain potentially

meaningful in the context of population health interventions (Matthay, Hagan, and Gottlieb

2021). Conditional upon confirmatory deductive analysis, weight-loss interventions targeting

phenotypes positively associated with elevated weight status could result in health benefits

on a sub-population level.
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Limitations

This work had several limitations. First, BMI is at best a proxy measure for individual

health. We rely on BMI to assess weight status, primarily due to convenience; weight and

height measurements are available for everyone in the sample population. Though linking

psychosocial-behavioral phenotypes to BMI-derived weight status is convenient and helpful

for demonstrating the potential utility of psychosocial-behavioral phenotypes in designing

interventions, we would not encourage others to rely on BMI in this way.
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Chapter 4

Aim 2. Develop a method for learning

phenotypes from partially labeled clinical data.

Phenotypes are powerful tools for working with observational clinical data in the absence

of reliable disease labels (Hripcsak and Albers 2012). Disease-specific phentoypes allow re-

searchers to sift through large-scale clinical data stores to identify patients with evidence

of specific clinical conditions. By answering the question of who has what disease, pheno-

types power essential tasks such as cohort selection, trial recruitment and clinical outcome

prediction (Hripcsak and Albers 2012; Richesson et al. 2013; Richesson et al. 2016).

Traditionally, phenotypes were developed by groups of clinical experts who painstak-

ingly hand-tuned rule-based algorithms. The limited scalability of this approach has led to

the development of automated methods for learning phenotypes directly from clinical data.

Many studies in this vein utilize supervised machine learning methods to build phenotyping

algorithms (Bergquist et al. 2017; Esteban et al. 2017b). Though this approach avoids labo-

rious expert knowledge engineering, it requires significant amounts of labeled clinical data

generated by manual chart review.

To avoid costly, expert-generated disease labels, many authors have utilized unsupervised

methods to cluster patients according to underlying patterns in their clincal data (Joshi et al.

2016; Ho et al. 2014b; Ho, Ghosh, and Sun 2014b; Wang et al. 2015b; Miotto et al. 2016b)i. In

this setting, such patterns play the role of phenotypes. Unsupervised phenotyping methods

often learn multiple phenotypes simultaneouly, which may confer evidence of specific diseases.

However, such phenotypes are generally not guaranteed to represent single disease concepts.
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This complicates their evaluation and use in downstream tasks.

In this aim, we propose the Semi-Supervised Mixed Membership Model (SS3M), a prob-

abilistic graphical model which utilizes relatively few disease labels to learn multiple disease-

specific phenotypes from multi-modal observational clinical data. SS3M addresses the limi-

tations of supervised phenotyping by reducing the amount of labeled data needed to learn

disease phenotypes; disease labels are not required for all patients, and labeled patients need

not possess labels for all diseases. SS3M also addresses the limitations of unsupervised phe-

notyping by associating disease labels with the phenotypes to be learned; a label specifies

which disease a phenotype is meant to represent. This simplifies both the qualitative and

quantitative evaluation of SS3M phenotypes. Qualitatively, phenotype labels inform us as

to what content we should expect to be well represented within a learned phenotype. Quan-

titatively, we can evaluate how well learned phenotypes predict labels on a held-out patient

cohort using standard performance metrics.

4.1 Aim 2A.Derive and implement the Semi-Supervised Mixed Mem-

bership Model (SS3M) — a probabilistic graphical model for

learning interpretable, disease-specific phenotypes from partially

labeled, multi-modal clinical data.

Background

Disease phenotyping can often be reduced to classification. However, training supervised

phenotyping models with electronic health records data is challenging due to the lack of gold

standard labels. Though fully labeling a clinical dataset is generally infeasible, obtaining a

small amount labeled data may be possible. Here we develop Semi-Supervised Mixed Mem-

bership Models (SS3M) — a family of semi-supervised models for learning phenotypes from

partially labeled data. We build SS3M by incorporating a novel semi-supervision mechanism
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into an otherwise fully unsupervised model previously proposed for learning interpretable

phenotypes from heterogenous clinical data. We derive and implement a Markov Chain

Monte Carlo sampler to perform posterior inference on the model’s latent variables. We

then evaluate SS3M in simulation. First we simulate data from SS3M’s generative model

parameterized with a set of ground truth phenotypes and their corresponding labels. We

then fit these data with a randomly initialized SS3M model and check to see if the model

can recover the ground truth phenotypes in both structure and identity.

Research Question

Can SS3M recover ground-truth phenotypes from partially labeled data?

Methods

Model. Here we provide a detailed description of SS3M’s structure. The model’s gener-

ative process and graphical model provide complementary perspectives and are detailed in

Algorithm 1 and Figure 4.1 respectively. Table 4.1 provides descriptions of all model vari-

ables. Here and in the rest of the text, we use bold capital letters to indicate groups of

variables and indices to refer to subsets or specific elements. A bold capital letter without

indices indicates all variables within the group. A colon within a variable subscript indicates

all elements within the corresponding dimension.

Let D, S, and P be the number of patients, clinical data sources and phenotypes, re-

spectively. Each patient d ∈ {1, . . . , D} is associated with several sets of tokenized clinical

observations Wsd: (e.g. medication names), one for each data source s ∈ {1, .., S}. In addi-

tion, each patient has a set of partially observed binary labels. Patient d’s labels specify the

values of their phenotype activations, Ad:, thereby indicating for them which phenotypes

p ∈ {1, . . . , P} are set to be “on” or “off”. A latent phenotype assignment, Zsdn, is assigned

to each observation, Wsdn. Each assignment is drawn from a categorical patient-phenotype

distribution parameterized by a normalized P -dimensional vector, Θd. A phenotype assign-
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ment specifies which phenotype-token distribution an observation was drawn from. Each

phenotype-token distribution is parameterized by a normalized Vs-dimensional vector, Φsp,

where Vs is the size of the vocabulary for data source s.

Algorithm 1 Generative process for SS3M
Initialize: α, β, β∗, {γs}Ss=1

# Sample global variables
Sample B∗ ∼ Gamma(β∗)
for each phenotype p = 1 to P do

Sample Bp ∼ Gamma(β)
Sample Cp ∼ Beta(α)

for each data source s = 1 to S do
Sample Φsp ∼ Dirichlet(γs)

end
end

# Sample local variables
for each patient d = 1 to D do

for each phenotype p = 1 to P do
Sample Adp ∼ Bernoulli(Cp)

end

Sample Θd ∼ Dirichlet(Ad:�B: +(1−Ad:)B
∗)

for each data source s = 1 to S do
for each observation n = 1 to Nsd do

Sample Zsdn ∼ Categorical(Θd)
Sample Wsdn ∼ Categorical(ΦsZsdn

)
end

end
end

ZsdnΘd

B∗

Bp Adp

Cp

β

β∗

α

Wsdn Φsp γs

Nsd

D

P

P

S

Figure 4.1: Graphical model for SS3M

Variable Description

D Number of patients
S Number of data sources
P Number of phenotypes
Nsd Number of tokens of source s for patient d
Vs Size of vocabulary for source s
A Phenotype activations (partially observed)
B Active phenotype parameters
B∗ Inactivate phenotype parameter
C Phenotype prevalences
Θ Patient-phenotype distribution parameters
Φ Phenotype-token distribution parameters
Z Phenotype assignments
W Token observations

α

Hyperparametersβ
β∗

γ

Table 4.1: SS3M variable descriptions

A patient’s label set directly impacts their patient-phenotype distribution, and thereby

all their assignments. This is due to the roles ofA, B and B∗ in parameterizing the Dirichlet

distributions on the elements of Θ:

Θd ∼ Dirichlet(Ad: �B: + (1−Ad:)B
∗)
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where � indicates element-wise multiplication. When Adp = 1, patient d has phenotype p

“on”; Bp is used to parameterize the pth dimension of the Dirichlet on Θd. When Adp = 0,

the phenotype is “off”, and B∗ is used instead. The hyperparameters β and β∗ parameterize

the gamma distributions on B and B∗ such that the model is encouraged to sample values

of Bp and B∗ to maintain Bp > 1 and B∗ < 1. In this setting, when Adp = 1 the values

of Θd push the patient-phenotype distribution toward allocating more probablity mass for

phenotype p. This in turn, results in a larger proportion of patient d’s observations being

assigned to phenotype p. During inference, this mechansim forms the connection between

labels, activations and the content of phenotypes. Labels set phenotype activations “on” or

“off” for each patient. For each patient, phenotypes that are “on” account for the majority of

phenotype assignments. Thus, labels, by way of activations, strongly influence the quantity

of observations that are funneled toward learning any given phenotype.

Activations are partially observed. If a patient d has an observed binary label for pheno-

type p, then the value of Adp is held fixed at the observed value. If the label is unobserved,

then the model samples the value of Adp during inference. In this latter case, Adp is mod-

eled as a binary variable drawn from a Bernoulli distribution parameterized by Cp — a

beta-distributed latent variable controlling the likelihood of phenotype p being “on” within

the patient population (i.e. Cp estimates the prevalence of phenotype p). This handling of

partially observed labels is what allows SS3M to function as a semi-supervised model.

SS3M can handle both semi-supervised phenotypes for which we have some number of

labels, as well as unsupervised phenotypes that lack labels all together. This is a useful

property when applying the model to clinical data. In this setting we are unlikely to have

labels for all the conditions represented in our dataset. The structure of the conditions we

lack labels for can be targeted by SS3M’s unsupervised phenotypes during inference. Since

the set of phenotypes underlying the data need not be limited to the labeled set, including

unsupervised phenotypes can help semi-supervised phenotypes “focus” on capturing those

phenotypes which best align with their labels.
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Inference. We implement a collapsed Gibbs sampler to obtain posterior estimates of our

model’s latent variables. The variables C, Θ, and Φ are easily integrated out of the joint dis-

tribution due to conjugate relationships between their distributions and those on A, Z, and

W , respectively. The collapsed joint’s complete conditional distributions for the elements

of A and Z are discrete, easily normalized, and can be sampled from directly. However, the

complete conditionals for B and B∗ do not have closed forms. We use Hamiltonian Monte

Carlo to sample from these (Neal 2011). We set our path length to L = 15 and step size

to ε = 10−3, as these parameters yielded stable trajectories with high acceptance rates in

preliminary experiments.

Below we derive the necessary components for our collapsed Gibbs samples: the collapsed

joint distribution, complete conditionals, and the potential gradients used in HMC.

Collapsed Joint. The joint distribution for SS3M is

p(A,B, B∗,C,Θ,Φ,Z,W ;α, β, β∗, γ) = p(B∗; β∗)
P∏

p=1

p(Bp; β) (4.1)

× p(Cp;α)
D∏

d=1

p(Θd|Ad:,B, B
∗)p(Adp|Cp)

S∏
s=1

p(Φsp; γs)

Nsd∏
n=1

(4.2)

× p(Wsdn|Zsdn,Φs:)p(Zsdn|Θd).

The distribution for each factor on the RHS is given in the generative process described

in Algorithm 1. We integrate C,Θ and Φ out of SS3M’s joint distribution to obtain the
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collapsed joint:

p(A,B, B∗,Z,W ;α, β, β∗, γ) (4.3)

= p(B∗; β∗)
P∏

p=1

p(Bp; β)
S∏

s=1

D∏
d=1

Nsd∏
n=1

∫
Cp

p(Adp|Cp)p(Cp;α)dCp (4.4)

×
∫

Θd

p(Zsdn|Θd)p(Θd|Ad:,B, B
∗)dΘd

∫
Φsp

p(Φsp; γs)p(Wsdn|Zsdn,Φs:)dΦsp

= p(B∗; β∗)
P∏

p=1

p(Bp; β)
D∏

d=1

Γ(α1 + α2)

Γ(α1)Γ(α2)

Γ(α1 +
∑

dAdp)Γ(α2 +D −
∑

dAdp)

Γ(α1 + α2 +D)
(4.5)

×
Γ(
∑

p rdp)∏
p Γ(rdp)

∏
p Γ(rdp + ndp)

Γ(
∑

p rdp + ndp)

S∏
s=1

Γ(
∑

v γsv)∏
v Γ(γsv)

∏
v Γ(γsv + nspv)

Γ(
∑

v γsv + nspv)
,

where Γ(·) indicates the Gamma function, rdp = Adp�Bp + (1−Adp)B
∗, ndp is the number

of patient d’s observations assigned to phenotype p, and nspv is the number of times token v

from data source s has been assigned to phenotype p.

Complete Conditionals. Here we obtain proportionalities for the complete conditional

distributions of each latent variable in our collapsed joint. Note we use “−” to indicate all

variables in the joint excluding that which appears on the left side of the conditioning bar.

p(Adp|−) ∝ Γ(α1 +
∑
d′

Ad′p)Γ(α1 +D −
∑
d′

Ad′p)
Γ(
∑

p′ rdp′)

Γ(rdp)

Γ(rdp + ndp)

Γ(
∑

p′ rdp′ + ndp′)
(4.6)

p(Bp|−) ∝ Gamma(Bp; β)
D∏

d=1

Γ(
∑

p′ rdp′)

Γ(rdp)

Γ(rdp + ndp)

Γ(
∑

p′ rdp′ + ndp′)
(4.7)

p(B∗|−) ∝ Gamma(B∗; β∗)
D∏

d=1

Γ(
∑

p rdp)∏
p Γ(rdp)

∏
p Γ(rdp + ndp)

Γ(
∑

p rdp + ndp)
(4.8)

p(Zsdn|−) ∝ (rdp + n−sdndp )
γsv + n−sdnspv∑
v′ γsv′ + n−sdnspv′

(4.9)

In the proportionality for p(Zsdn|−), the n−sdn· terms indicate total token assignment counts

excluding the current assignment, Zsdn. The index v refers to the observed value of Wsdn.

The proportionalities for p(Adp|−) and p(Zsdn|−) are simple to normalize, and can be sam-
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pled from directly afterward. This is not the case for p(Bp|−) and p(B∗|−), which we sample

from using Hamiltonian Monte Carlo (HMC).

Hamiltonian Monte Carlo. To use HMC we must calculate a potential energy function

proportional to our target distribution and calculate its gradient with respect to the corre-

sponding random variable. Note that the B and B∗ are constrained to R+. We remove this

constraint by applying a change of variables to sample in log space.

p(B̂p|−) ∝ exp(B̂pβ1 − exp(B̂p)/β2)
D∏

d=1

Γ(
∑

p′ r̂dp′)

Γ(r̂dp)

Γ(r̂dp + ndp)

Γ(
∑

p′ r̂dp′ + ndp′)
(4.10)

p(B̂∗|−) ∝ exp(B̂∗β∗1 − exp(B̂∗)/β∗1)
D∏

d=1

Γ(
∑

p r̂
∗
dp)∏

p Γ(r̂∗dp)

∏
p Γ(r̂∗dp + ndp)

Γ(
∑

p r̂
∗
dp + ndp)

, (4.11)

where B̂p = logBp, B̂∗ = logB∗, r̂dp = Adp � exp(B̂p) + (1 − Adp)B
∗, and r̂∗dp = Adp �

Bp + (1−Adp) exp(B̂∗).

The potentials we require are obtained by negating the log of our transformed target

distributions.

U(B̂p) = − log p(B̂p|−) (4.12)

∝ exp(B̂p)/β2 − B̂pβ1 (4.13)

−
D∑

d=1

log Γ(
∑
p′

r̂dp′)− log Γ(r̂dp) + log Γ(r̂dp + ndp)− log Γ(
∑
p′

r̂dp′ + ndp′)

U(B̂∗) = − log p(B̂∗|−) (4.14)

∝ exp(B̂∗)/β∗1 − B̂∗β∗1 (4.15)

−
D∑

d=1

log Γ(
∑
p

r̂∗dp)− log Γ(
∑
p

r̂∗dp + ndp) +
D∑

d=1

P∑
p=1

log Γ(r̂∗dp)− log Γ(r̂∗dp + ndp)

53



Their gradients are as follows.

∂U(B̂p)

∂B̂p

= −β1 + exp(B̂p)[
1

β2

+
D∑

d=1

{Ψ(r̂dp)−Ψ(
∑
p′

r̂dp′) + Ψ(
∑
p′

r̂dp′ + ndp′)−Ψ(r̂dp + ndp)}Adp] (4.16)

∂U
(
B̂∗
)

∂B̂∗
= −β∗1 + exp

(
B̂∗
) [ 1

β∗2

+
D∑

d=1

P∑
p=1

{
Ψ
(
r̂∗dp
)
−Ψ

(∑
p′

r̂∗dp′

)
+ Ψ

(∑
p′

r̂∗dp′ + ndp′

)
−Ψ

(
r̂∗dp + ndp

)}
(1−Adp)

]
,

(4.17)

where Ψ(·) indicates the Digamma function.

As detailed in Neal 2011, given a step size, ε, and path length, L, these gradients allow

us to integrate trajectories in log space to arrive at new candidate states for our random

variables. We then evaluate the total energy change using our potential energy functions to

decide whether to accept or reject our candidate states.

Collapsed Gibbs Sampler. We now have all the necessary elements to construct a col-

lapsed Gibbs sampler for SS3M. The procedure is described below in Algorithm 2.
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Algorithm 2 Collapsed Gibbs Sampler for SS3M
Intialize: α, β, β∗, {γs}Ss=1

Sample: A,B, B∗,Z from their priors in the complete joint
Load: tokenized observations into W & labels into A
for each iteration do

for each patient d ∈ {1, . . . , D} do
for each data source s ∈ {1, . . . , S} do

for each observation n ∈ {1, . . . , Nsd} do
Sample Zsdn ∼ p(Zsdn|−)

end
end
for each phenotype p ∈ {1, . . . , P} do

if Adp does not have a fixed label then
Sample Adp ∼ p(Adp|−)

end
end

end
for each phenotype p ∈ {1, . . . , P} do
Bp ← exp(HMC(B̂p, U(B̂p),∇B̂p

U(B̂p), ε, L))

end
B∗ ← exp(HMC(B̂∗, U(B̂∗),∇B̂∗U(B̂∗), ε, L))

end
Return: Samples of A,B, B∗,Z

Data. We create simulated patient cohorts by using ancestral sampling to draw observa-

tions and labels from our model. To begin, we define 10 ground truth phenotypes, Φtrue, in a

manner inspired by Griffiths and Steyvers 2004. Each phenotype is a set of three categorical

distributions defined over three separate vocabularies each of length 25. This allows us to

visualize each phenotype as a set of three 5×5 grids. Each component of a phenotype places

uniform probability mass over 5 tokens corresponding to a row or column in the grid. Next,

we simulate ground truth labels for each patient. This is done by first drawing values for C

from Beta distributions parameterized with γ = (102, 103). This ensures each phenotype is

active in about 10% of the cohort. We then use the values of C to draw an array of ground

truth labels, Atrue. The values of B and B∗ are set to (10., . . . , 10.) and 10−2, respectively.

These values ensure observations are highly likely to be drawn from active phenotypes. Fi-
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nally, we draw values forΘ and Z which, along withΦtrue, are used to generate our simulated

observations, W .

Evaluation. We expose SS3M to simulated cohort data and run our inference algorithm

to recover the ground truth phenotypes. Our evaluation is qualitative in nature. We check

to confrim that (1) the SS3M’s phenotypes are similar in structure to the ground truth

phenotypes and (2) the identities of each phenotype (i.e. the label index values) match the

ground phenotype identities.

We use the same training set of observations for each of our experiments. For each

experiment, we produce a label set by downsampling ground truth labels in Atrue. We run

2 experiments in which we retain 1% and 5% of positive labels. We then sample negative

labels to match the total number of positive lables for a given phenotype.

Results & Discussion

Figure 4.2 shows the results of our simulated studies. When training on 1% of available

labels, SS3M struggles to recover ground truth. Some of the inferred phenotypes appear

to be superpositions of multiple ground truth phenotypes. Though some of the phenotype-

token distributions do indeed mirror ground truth, many of the indices are mismatched.

Full recovery of ground truth requires both the recovery of phenotype structure as well as

phenotype identity. Both of these requirements are met when SS3M is exposed to just 5%

of available labels. For our dataset of 1000 simulated patients, 5% of labels corresponds to

14-15 labeled patients per phenotype – half labeled positive and half labeled negative.

Limitations

The inference algorithm we have developed for SS3M relies on MCMC, which can take

many iterations to converge, particularly as the number of observations grows large. This

limits the applicability of SS3M to very large clinical data sets where more efficient algorithms
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1% 

5% 

Training
label %

Figure 4.2: Phenotype inference for simulated patient cohort. Top row: Ground truth
phenotypes. Middle & Bottom rows: Phenotypes inferred using 1% and 5% of ground
truth labels for training. When training on 5% of available labels, SS3M recovers ground
truth phenotypes; phenotype-token distributions are recovered and in the correct order.

which can leverage data subsampling and stochastic gradients may be useful. In addition,

though our experiments with simulated data demonstrate SS3M is capable of recovering

ground truth phenotypes, it is also true that the data generating distribution and the model

belong to the same family. This match works to the benefit of the model, and we may expect

the recovery of ground truth phenotypes to suffer when the data generating distribution

belongs to a distinct family.
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4.2 Aim 2B. Utilize SS3M to learn disease-specific phenotypes from

partially labeled observational clinical data.

Background

The previous subaim describes SS3M and demonstrates it’s ability to recover ground

truth phenotypes in simulation. We now interrogate SS3M’s ability to learn phenotypes from

partially labeled clinical data. We train SS3M on partially labled clinical data extracted from

the MIMIC-III critical care database. We also train a closely related, fully unsupservised

baseline on the same data, but without the labels. We recruit two clinical experts to evaluate

the quality and content of phenotypes learned by both models. In addition, we evaluate

SS3M’s predictive performance relative to common supervised baselines, and explore how

this performance is impacted by the amount of labeled data made available during training.

Research Questions

Do SS3M phenotypes capture the clinical characteristics of the diseases specified by the

labels provided?

Is SS3M an effective model for determining which patients have a specific disease?

Methods

Data. We train all our models using clinical data extracted from the Medical Information

Mart for Intensive Care version III (MIMIC-III) (Johnson et al. 2016). Our dataset is

restricted to adult patients where adults are defined as patients who are 18 years of age

or older upon admission. Age upon admission is calculated by subtracting each patient’s

recorded date of birth from their time of admission. This constraint yields a cohort of 38,549

individual patients.

For each patient in our cohort, we extract observations from clinical notes, labs and

medications. We refer to these data types as “data sources.” Notes were restricted to
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the following types: “Physician”, “General”, and “Discharge Summary”; no restrictions were

placed on clinical labs and medications.

Each patient is represented by multiple sets of clinical observations (one set per data

source) and a set of labels (possibly empty). We limit ourselves to the clinical observations

and labels associated with each patient’s first hopsital admission.

In this work, we lack a set of true, expert-generated, gold-standard disease labels for

our patient cohort. For this reason we make use of readily availble ICD9 diagnosis codes

to contstruct our label set. Our labels correspond to a variety of disease conditions from

the single-level definitions of the Health Cost and Utilization (HCUP) Clinical Classification

Software (CCS). The HCUP CCS conditions are defined by groups of related ICD9 diagnosis

codes. Relative to raw ICD9 codes, HCUP CCS code groups are significantly less noisy,

which makes them attractive for phenotype prediction tasks in the absence of a true gold-

standard. We apply all HCUP CCS single-level definitions to the ICD9 codes for our cohort

and consider conditions with a least 103 positive cases (prevalence ≈ 2.5%). As MIMIC-III is

a critical care database, we further limit ourselves to well represented acute conditions. This

process led us to retain a total of 40 conditions for use in our experiments (See Table 4.3 and

Figure 4.5 for our full list of HCUP CCS conditions). For each patient, we record a binary

label for each of these disease conditions specifying its presence (1) or absence (0). We treat

this label set as ground truth.

For a given patient, we concatenate all associated clinical observations within each data

source. These observations are tokenized to yield a patient’s raw token representation in

terms of words (from notes), lab names and medication names.

Tokenized notes are further preprocessed to remove English stop words as well as any

word token with 20 appearances or less over the entire notes corpus. This latter step is

intended to a filter out the large quantity of misspelled words observed in the unfiltered

token vocabulary.

The notes vocabularly is further constrainted by applying a term-frequency/inverse-
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document-frequence (TF-IDF) filter. For each patient d, and each token t observed in their

tokenized set of notes we calculate a tf-idf weight wdt as follows.

wdt = Ndt log2

D

Nt

, (4.18)

where Ndt is the number of times token t appears in patient d’s tokenized notes, Nd is the

total number of patient d’s note tokens, and D is the total number of patients. Next, we

average these weights over all patients and retain the top 104 mean weighted tokens. No

additional preprocessing was applied to clinical labs and medications post-tokenization.

We are interested in evaluating SS3M’s ability to learn clincally meaningful phenotypes

and perform phentoype prediction on held-out patient data. Moreover, we aim to evaluate

SS3M’s performance in these tasks when trained on various proportions of labeled patient

data.

In the present setting, each patient has a full set of binary labels for each of our 40 HCUP

CCS condition targets. These labels are treated as ground truth, and we train SS3M with

subsets of them. To obtain each subset, we first specify a percentage of the training cohort

for which we wish to retain labels. We then sample the corresponding number of patients

from the training cohort and ensure the prevalence of each label in the labeled subset is

similar to that in the total training cohort. During training, we use the full set of labels for

each patient in the labeled subset. We carry out this process for various percentages of the

training cohort including 1%, 5%, 25%, 50%, 75%, and 100%.

As described in Aim 2A, SS3M handles both semi-supervised and unsupervised pheno-

types. In preliminary experiments, we observed SS3M’s performance depended in part on

the total number of phenotypes modeled, P . To characterize this dependency, we train SS3M

on the label subsets described above with P set to 40 (i.e. no unsupervised phenotypes), 80

or 160.

Our total training cohort is comprised of 60% of the patient cohort described above. The
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remaining 40% is reserved for validation (20%) and testing (20%).

Qualitative evaluation. Here we ask clinical experts to asses the quality of SS3M phe-

notypes relative to phenotypes inferred with a Multi-Channel Mixed Membership Model

(MC3M), a closely related unsupervised model developed for phenotype inference (Pivo-

varov et al. 2015b). Like SS3M, MC3M learns mulitple phenotypes jointly from multi-source

clinical data. We implement a collapsed Gibbs sampler for MC3M, and run inference on

note, lab and medication data for the full training cohort.

We evaluate the quality of phenotypes learned with each model along three axis: co-

herence, granularity, and label quality. These axis and the methods for their evaluation are

detailed in Pivovarov et al.

• Coherence. A coherent phenotype is defined as a phenotype containing observations

typical of a single disease while omitting observations atypical of said disease. The

clinical expert was asked to rate the coherence of individual phenotypes using a five-

point Likert scale, with 1 and 5 signifying low and and high coherence, respectively.

• Granularity. Phenotype granularity is defined in terms of three categories: (1) non-

disease, (2) mixture of diseases, (3) single disease. We asked our expert to assign each

phenotype to one of these categories.

• Label quality. We asked our clinical expert to generate a label for each phenotype. If

no such label came to mind, the expert was asked to omit this step. If the phenotype

in question was learned using SS3M, the expert was asked if their label was equivalent

to the phenotype’s true label. In addition, the expert was asked to specify how well

the true label matched its learned phenotype using a five-point Likert scale with 1

indicating no match and 5 a perfect match.

The phenotypes for our qualitative evaluations are learned using SS3M and MC3Mmodels

with P = 160. For SS3M, we use phenotypes learned using a labeled subset containing 75%
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of the training cohort. Individual phenotypes from each model are visualized as sets of three

word clouds, one for each data source (See Figures 4.4 and 4.5). Word clouds are generated

using the WordCloud Python library (Mueller 2019).

We collaborate with two clinical experts to carry out our evaluation. Both evaluators are

medical doctors who have completed or are near completing residency training in internal

medicine.

To set up our evaluation we first randomly mix together the individual visualizations of

the 40 semi-supervised SS3M phenotypes and 40 randomly chosen MC3M phenotypes, mak-

ing sure to anonymize their model of origin. These visualizations are then given separately

to each clinical expert along with a set of instructions. Each evaluator is also provided a

spreadsheet for recording their evaluations. This spreadsheet specifies the order in which

phenotypes are to be evaluated, and, for SS3M phenotypes, contains all the ground truth

phenotype labels. Where applicable, we ensure evaluators are not exposed to a phenotype’s

ground truth label until they have completed its granularity and coherence assessments and

suggested their own expert label.

We aggregate evaluations from each of our clinical experts and use Cohen’s Kappa to

calculate their interrater reliability within each evaluative task.

Quantitative evaluation. For each labeled subset and value of P , we obtain posterior

estimates of SS3M’s global latent variables (B, B∗, C, and Φ) by running our collapsed

Gibbs sampler on the training data. These global variables are then passed to untrained

SS3M models for which we run a partially collapsed Gibbs sampler (only Θ is integrated

out of the joint distribution) over the local latent variables (A, W , and Z) on the test set.

Within the held out set, the complete conditional likelihoods on each activation (Adp) are

used as label prediction probabilities which we evaluate using the areas under the receiver

operating characteristic and precision-recall curves (AUC-ROC, AUC-PR).

We compare SS3M’s predictive performance to that of several commonly used baselines.
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These include k-nearest neighbors (KNN) and random forests (RF), which we train as mul-

tilabel classifiers. We also compare against L1-regularized logistic regression (LR) trained as

a set of 40 one-versus-rest classifiers, one for each target. Unlike, SS3M, our baselines were

not developed to handle partially labeled training data. Thus, for any given configuration

of the training cohort, we train baselinee on data for only those patients whose labels are

included within the labeled subset.

Performance curves and baselines are estimated using the Scikit-learn Python library

(Pedregosa et al. 2011a).

Results & Discussion

Qualitative Results. Figure 4.3 summarizes the results of our qualitative evaluation. On

average, SS3M outperforms MC3M in terms of phenotype coherence and granularity. Over

90% of SS3M semi-supervised phenotypes showed high coherence (scores of 4 or 5) and nearly

80% were considered to have single-disease granularity. Meanwhile, unsupervised MC3M

phenotypes had a more uniform distribution over all levels of coherence and granularity. In

terms of label quality, about 75% of SS3M phenotypes were found to match well with their

ground truth labels (scores of 4 or 5). Noteably, for nearly 80% of SS3M phenotypes, our

expert evaluators were able to suggest a label that matched the ground truth label. This

finding suggests that the large majority of SS3M semi-supervised phenotypes communicated

the characteristics of the conditions described by their ground truth labels. Over all evalua-

tive tasks, our expert evaluators demonstrate a fair degree of interrater reliability. Figure 4.4

displays a sample of phenotypes which received strong qualitative evaluations from both ex-

pert reviewers. Figure 4.5 shows the full set of semi-supervised phenotypes employed in the

qualitative evaluation.
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Figure 4.3: Qualitative evaluation results. Evaluator responses are aggregated within each
evaluation type. Shown are the proportions of each possible response (as defined in Section
4.2). Means, where appropriate, are shown with vertical hashed lines. Interrater reliabilities
(Cohen’s κ): Coherence - 0.28; Granularity - 0.14; True label matches phenotype? - 0.04;
True label matches expert’s? - 0.50.

C: 5|5 G: 3|3 MP: 3|4 ME: Y|Y C: 5|4 G: 3|3 MP: 5|4 ME: Y|Y

C: 5|5 G: 3|3 MP: 5|5 ME: Y|Y

C: 4|5 G: 3|3 MP: 5|5 ME: Y|Y

C: 5|5 G: 3|3 MP: 5|5 ME: Y|Y

C: 4|5 G: 2|3 MP: 3|5 ME: Y|Y

C: 4|5 G: 2|3 MP: 4|5 ME: Y|Y

C: 5|5 G: 3|3 MP: 5|5 ME: Y|Y

C: 5|5 G: 3|3 MP: 5|5 ME: Y|Y

TL: Acute cerebrovascular disease TL: Acute myocardial infarction TL: Chronic kidney disease TL: Chronic obstructive pulmonary 
disease

TL: Aortic, peripheral, and visceral 
artery aneurysms

TL: Epilepsy, convulsions TL: Gastrointestinal hemorrhage TL: Spondylosis, intervertebral disc 
disorders, other back problems

TL: Thyroid disordersTL: Congestive heart failure, 
nonhypertensive

C: 4|5 G: 3|3 MP: 5|5 ME: Y|Y

Figure 4.4: Sample of evaluated SS3M phenotypes. Token size is proportional to token
likelihood within a phenotype. Red - words from clinical notes; Green - clinical lab names;
Blue - medication names. Evaluations from both clincal experts are presented below each
phenotype. TL - True label; C - Coherence; G - Granularity; MP - True label matches
phenotype?; ME - True label matches expert’s?
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Acute and unspecified
renal failure

Acute cerebrovascular
disease

Acute myocardial
infarction

Acute posthemorrhagic
anemia Alcohol-related disorders

Aortic, peripheral, and
visceral artery aneurysms

Aspiration pneumonitis,
food/vomitus Asthma

Bacterial infection,
unspecified site

Cardiac arrest and
ventricular fibrillation

Cardiac dysrhythmias Chronic kidney disease
Chronic obstructive pulmonary

disease and bronchiectasis
Coagulation and

hemorrhagic disorders
Congestive heart failure,

nonhypertensive

Crushing injury or
internal injury

Delirium, dementia, and amnestic
and other cognitive disorders

Diabetes mellitus with
complications Epilepsy, convulsions

Gastrointestinal
hemorrhage

Heart valve disorders Hepatitis Intracranial injury Mood disorders Mycoses

Open wounds of head,
neck, and trunk

Pancreatic disorders (not
diabetes) Paralysis

Phlebitis, thrombophlebitis and
thromboembolism

Pleurisy, pneumothorax,
pulmonary collapse

Pneumonia Pulmonary heart disease
Respiratory failure, insufficiency,

arrest (adult) Secondary malignancies
Septicemia (except in

labor)

Shock
Spondylosis, intervertebral disc
disorders, other back problems

Substance-related
disorders Thyroid disorders Urinary tract infections

Figure 4.5: SS3M semi-supervised phenotypes. Phenotypes learned with P=160, and 75%
labels retained for training. Token size is proportional to token likelihood within a phenotype.
Red - words from clinical notes; Green - clinical lab names; Blue - medication names.
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Quantitative Results. Table 4.2 summarizes the results of our quantitative evaluation.

In general, SS3M’s phenotype prediction performance, as measured by macro and micro

averaged AUC-ROC and AUC-PR, grows for all values of P as the percentage of labeled

patients increases from 1% to 100% of the training cohort. Moreover, performance appears

to increase as P increases, particularly for larger amounts of labeled training data.

SS3M demonstrated competitive predictive performance relative to our baselines. In

nearly all cases, SS3M with P ≥ 80 outperforms our multilabel classification baselines (RF

and KNN) once 25% of total labels are made available for training. In all cases, the set of 40

one-versus-rest L1-regularized logistic regression (LR) models outperformed all competitors.

However, SS3M was the only multilabel classifier that approached LR’s performance in at

least a subset of cases (e.g. micro averaged AUC-ROC for P = 160 and 100% training

labels).

Table 4.3 illustrates SS3M’s per-label predictive performance for various proportions of

labeled training data. As with the averaged predictive performance, per-label predictive

performance tends to increase as more labels are made available for training. However, this

trend is not entirely consistent. For some labels, performance increases for a time with the

percentage of training labels, but then suddenly suffers a steep drop, possibly followed by a

similarly steep rise. This volatility may be due in part to SS3M’s MCMC inference algorithm

which may get caught in similar but distinct posterior modes.
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AUC-ROC (Training label %) AUC-PR (Training label %)

Average Model 1% 5% 25% 50% 75% 100% 1% 5% 25% 50% 75% 100%

Macro

SS3M (P=40) 0.557 0.653 0.723 0.73 0.723 0.737 0.156 0.22 0.29 0.305 0.286 0.302
SS3M (P=80) 0.48 0.622 0.717 0.766 0.787 0.802 0.117 0.226 0.313 0.381 0.389 0.401
SS3M (P=160) 0.445 0.54 0.702 0.781 0.798 0.813 0.0955 0.162 0.331 0.412 0.444 0.464

RF (ML) 0.643 0.687 0.721 0.734 0.744 0.75 0.171 0.206 0.246 0.269 0.281 0.291
KNN (ML) 0.605 0.641 0.679 0.695 0.701 0.704 0.15 0.184 0.228 0.246 0.256 0.263
LR (OVR) 0.711 0.812 0.843 0.844 0.846 0.846 0.336 0.471 0.526 0.531 0.53 0.53

Micro

SS3M (P=40) 0.627 0.676 0.76 0.783 0.787 0.804 0.143 0.188 0.233 0.24 0.266 0.304
SS3M (P=80) 0.629 0.699 0.786 0.837 0.847 0.858 0.18 0.241 0.329 0.431 0.442 0.465
SS3M (P=160) 0.621 0.658 0.787 0.841 0.858 0.866 0.157 0.187 0.341 0.441 0.478 0.521

RF (ML) 0.716 0.751 0.779 0.788 0.796 0.8 0.239 0.296 0.345 0.369 0.38 0.389
KNN (ML) 0.657 0.693 0.725 0.74 0.743 0.746 0.193 0.239 0.288 0.309 0.319 0.325
LR (OVR) 0.766 0.842 0.864 0.865 0.867 0.867 0.407 0.533 0.576 0.578 0.576 0.572

Table 4.2: Quantitative evaluation summary. Macro and micro averages are calculated for
each model over all label targets. ML - multilabel classifier; OVR - one-versus-rest classifier.

Prevalence AUC-ROC (Training label %) AUC-PR (Training label %)

Label Train (full) Test 1% 5% 25% 50% 75% 100% 1% 5% 25% 50% 75% 100%

Acute and unspecified renal failure 0.205 0.207 0.505 0.483 0.808 0.569 0.841 0.856 0.242 0.246 0.64 0.362 0.681 0.671
Acute cerebrovascular disease 0.0841 0.0859 0.474 0.567 0.928 0.941 0.943 0.939 0.0834 0.123 0.599 0.711 0.714 0.744
Acute myocardial infarction 0.117 0.119 0.555 0.53 0.859 0.846 0.87 0.907 0.141 0.127 0.642 0.587 0.656 0.701
Acute posthemorrhagic anemia 0.0869 0.0939 0.616 0.484 0.499 0.729 0.746 0.766 0.141 0.108 0.107 0.311 0.367 0.379
Alcohol-related disorders 0.0866 0.0892 0.445 0.836 0.884 0.902 0.899 0.902 0.0811 0.563 0.636 0.652 0.68 0.665
Aortic, peripheral, and visceral artery aneurysms 0.0441 0.0419 0.502 0.434 0.888 0.907 0.906 0.871 0.0427 0.0344 0.52 0.459 0.545 0.5
Aspiration pneumonitis, food/vomitus 0.0706 0.0687 0.458 0.81 0.811 0.82 0.729 0.45 0.0639 0.268 0.39 0.271 0.219 0.0722
Asthma 0.0634 0.0659 0.478 0.475 0.906 0.891 0.894 0.898 0.0624 0.0634 0.383 0.349 0.371 0.354
Bacterial infection, unspecified site 0.0863 0.09 0.346 0.446 0.406 0.689 0.631 0.505 0.0684 0.0998 0.0822 0.254 0.249 0.142
Cardiac arrest and ventricular fibrillation 0.0339 0.0362 0.456 0.545 0.666 0.916 0.908 0.909 0.0389 0.055 0.104 0.396 0.323 0.298
Cardiac dysrhythmias 0.321 0.32 0.605 0.826 0.541 0.802 0.853 0.86 0.486 0.785 0.401 0.763 0.821 0.825
Chronic kidney disease 0.104 0.103 0.389 0.649 0.652 0.721 0.747 0.663 0.084 0.302 0.303 0.36 0.391 0.329
Chronic obstructive pulmonary disease and bronchiectasis 0.117 0.116 0.5 0.445 0.861 0.857 0.858 0.816 0.122 0.104 0.511 0.509 0.523 0.444
Coagulation and hemorrhagic disorders 0.109 0.102 0.332 0.671 0.447 0.732 0.756 0.757 0.0739 0.271 0.106 0.368 0.39 0.384
Congestive heart failure, nonhypertensive 0.241 0.233 0.545 0.45 0.832 0.79 0.805 0.85 0.328 0.214 0.727 0.655 0.688 0.745
Crushing injury or internal injury 0.0409 0.0424 0.513 0.604 0.903 0.873 0.877 0.895 0.0475 0.0633 0.456 0.457 0.481 0.538
Delirium, dementia, and amnestic and other cognitive disorders 0.0703 0.0687 0.394 0.419 0.83 0.855 0.871 0.874 0.0538 0.0575 0.448 0.434 0.369 0.419
Diabetes mellitus with complications 0.0757 0.08 0.444 0.401 0.932 0.942 0.935 0.918 0.068 0.0614 0.567 0.597 0.599 0.619
Epilepsy, convulsions 0.0643 0.063 0.448 0.917 0.933 0.92 0.931 0.919 0.0557 0.556 0.575 0.582 0.645 0.59
Gastrointestinal hemorrhage 0.0686 0.0732 0.407 0.472 0.921 0.914 0.902 0.897 0.0583 0.0775 0.579 0.559 0.612 0.611
Heart valve disorders 0.151 0.153 0.528 0.614 0.543 0.678 0.833 0.834 0.159 0.237 0.195 0.33 0.618 0.668
Hepatitis 0.0467 0.0482 0.417 0.746 0.858 0.794 0.842 0.801 0.0418 0.289 0.316 0.297 0.338 0.335
Intracranial injury 0.0633 0.0601 0.572 0.766 0.784 0.931 0.938 0.936 0.0811 0.185 0.257 0.552 0.595 0.565
Mood disorders 0.101 0.106 0.424 0.433 0.694 0.788 0.432 0.857 0.0896 0.0955 0.298 0.418 0.0972 0.486
Mycoses 0.0327 0.0358 0.301 0.425 0.552 0.481 0.572 0.559 0.0254 0.0378 0.073 0.0533 0.0906 0.0905
Open wounds of head, neck, and trunk 0.0283 0.0246 0.522 0.605 0.569 0.912 0.919 0.916 0.0294 0.0381 0.0323 0.236 0.252 0.235
Pancreatic disorders (not diabetes) 0.0283 0.0283 0.308 0.464 0.69 0.945 0.961 0.952 0.0192 0.032 0.216 0.416 0.502 0.426
Paralysis 0.0248 0.0298 0.39 0.44 0.533 0.555 0.655 0.585 0.0232 0.0267 0.0423 0.06 0.117 0.0756
Phlebitis, thrombophlebitis and thromboembolism 0.0584 0.0585 0.391 0.385 0.45 0.468 0.478 0.804 0.0494 0.0508 0.0581 0.0676 0.0727 0.35
Pleurisy, pneumothorax, pulmonary collapse 0.0949 0.101 0.432 0.495 0.622 0.69 0.679 0.616 0.0966 0.12 0.285 0.371 0.35 0.278
Pneumonia 0.133 0.142 0.348 0.48 0.754 0.778 0.791 0.81 0.111 0.171 0.498 0.509 0.506 0.541
Pulmonary heart disease 0.0635 0.0629 0.415 0.439 0.669 0.618 0.691 0.676 0.0519 0.0569 0.186 0.221 0.294 0.262
Respiratory failure, insufficiency, arrest (adult) 0.219 0.211 0.369 0.466 0.733 0.773 0.587 0.792 0.179 0.246 0.496 0.547 0.421 0.642
Secondary malignancies 0.0611 0.0611 0.463 0.482 0.958 0.959 0.959 0.958 0.0617 0.0616 0.617 0.647 0.625 0.615
Septicemia (except in labor) 0.136 0.133 0.362 0.549 0.534 0.705 0.506 0.778 0.111 0.216 0.204 0.422 0.183 0.52
Shock 0.0801 0.0791 0.406 0.583 0.531 0.852 0.876 0.859 0.0783 0.134 0.15 0.447 0.498 0.458
Spondylosis, intervertebral disc disorders, other back problems 0.0448 0.0468 0.439 0.478 0.721 0.748 0.761 0.804 0.0432 0.0505 0.211 0.226 0.228 0.254
Substance-related disorders 0.0419 0.0409 0.455 0.441 0.466 0.609 0.848 0.792 0.0375 0.0376 0.0383 0.101 0.288 0.3
Thyroid disorders 0.103 0.105 0.431 0.497 0.47 0.952 0.947 0.953 0.0895 0.11 0.105 0.664 0.691 0.68
Urinary tract infections 0.125 0.123 0.472 0.436 0.483 0.435 0.833 0.843 0.129 0.114 0.134 0.116 0.558 0.544

Macro Average 0.445 0.54 0.702 0.781 0.798 0.813 0.0955 0.162 0.331 0.412 0.444 0.464
Micro Average 0.622 0.658 0.788 0.842 0.858 0.866 0.158 0.188 0.341 0.44 0.476 0.518

Table 4.3: SS3M per-label predictive performance. Shown are results for P = 160, and 75%
labels retained for training.
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Limitations

SS3M’s predictive performance is competitive, but not clearly superior to that of base-

lines. This is not surprising; discriminitive models are known to outperform generative

models when training data are large (Ng and Jordan 2002); however, a more performant

model would be desirable. Furthermore, our experiments are limited by our choice of labels.

Since gold-standard labels are not available, we use aggregated HCUP CCS codes to iden-

tify cases for each of our target diseases. These aggregated codes are less noisy than raw

diagnosis codes, but they are, at best, a silver standard.
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Chapter 5

Aim 3. Develop a method for learning

phenotypes from partially observed, partially

labeled data.

Interest in modeling clinical data stores has surged in recent years as electronic capture of

clinical observations continues to expand. Nevertheless, clinical data, by its nature, presents

significant modeling challenges which most machine learning algorithms are not suited to

overcome. These challenges derive from the significant data quality issues which persistently

characterize observational health data (Weiskopf and Weng 2013; Weiskopf et al. 2013). Clin-

ical observations are made and recorded in a manner consistent with efficacious health care

delivery; they are generally not gathered meticulously, or systematically for secondary use

(Hripcsak, Albers, and Perotte 2015). This observation alone points to the chasm that exists

between the research grade data-sets commonly used within the general machine learning

(ML) community and the data that emerges from the healthcare system. This is before we

consider the sporadic nature of clinical encounters, and the limited tools available for artic-

ulating patient state when such encounters do occur. In fact, even under the most vigilant

clinical scenarios, we would be unlikely to capture the full spectrum of clinically informative

observations for a patient, let alone record them for large patient cohorts on a longitudinal

basis. (Newton et al. 2013)

Since clinical observations often occur infrequently, noisily, or not at all, missingness

is salient in most clinical datasets. Furthermore, as outlined above, this characteristic is

likely to persist in healthcare data for the foreseeable future. Therefore, it is crucial for the
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machine learning in healthcare community to develop models and inference algorithms that

can handle missing data with robustness.

Among the most exciting and broadly applicable research areas in modern machine learn-

ing is the work on deep generative models such as Variational Autoencoders (VAE) (Rezende,

Mohamed, and Wierstra 2014; Kingma and Welling 2014). Much of this work has focused on

modeling complete, dense, richly correlated image data-sets. However, in recent years sev-

eral authors have begun adapting these frameworks specifically to handle lower-dimensional

data with missing values. Among these approaches, some rely upon access to fully observed

training data (Rezende, Mohamed, and Wierstra 2014), while others fill missing values with

suitable placeholders during training (Nazábal et al. 2020; Mattei and Frellsen 2019; Ipsen,

Mattei, and Frellsen 2021). Ideally, a deep generative model for use on healthcare data would

assume partially observed training data. In addition, a model built to focus specifically on

the pure observed data signal would be beneficial, as any artificial signal injected into the

training routine may distract our models from the learning task at hand.

In this work we introduce a simple Monte Carlo Expectation-Maximization (MCEM)

algorithm for training VAEs on partially observed data. Our model does not require complete

data to train, nor does it rely on placeholder values for missing data. To illustrate the

utility of our approach, we evaluate VAEs trained with our MCEM algorithm on a set of

data imputation tasks. We compare against several baseline imputers, and demonstrate

our method consistently produces superior results. We then apply our method in a semi-

supervised setting where the data contain partially observed binary labels. We evaluate how

well the resultant models predict missing labels using standard supervised learning metrics.

In experiments with clinical data, labels correspond to binary patient states (e.g. patient

is intubated, patient has type II diabetes). In this case, our approach yields a probabilistic

phenotyping algorithm based on multi-label classification.

70



5.1 Aim 3A. Derive and implement a Monte Carlo Expectation-

Maximization (MCEM) algorithm for training Variational Au-

toencoders (VAEs) on partially observed data.

Background

Clinical data often contain missing values, which presents a challenge when using deep

generative modeling frameworks like Variational Autoencoders (VAEs) that assume fully

observed data during training. To address this issue, we develop an algorithm for training

VAEs on partially observed clinical data. Our approach employs a Monte Carlo Expectation-

Maximization (MCEM) algorithm which maximizes a double lower bound on the marginal

log-likelihood of the observed data.

We evaluate the performance of VAEs trained using our algorithm on a set of missing

value imputation tasks. In our experiments, we compare our method to other deep generative

imputers, which we consistently outperform.

Research Question

Is a VAE trained with MCEM an effective model for performing missing value imputa-

tion?

Methods

Model. In this research we consider VAEs as described by Kingma and Welling 2014.

Assume a dataset X = {xi}Ni=1 consisting of N i.i.d. samples from some unspecified data

generating distribution. The VAE models the data along with a set of latent variables

Z = {zi}Ni=1 using a joint distribution pθ(X,Z) =
∏N

i=1 pθ(xi|zi)p(zi) parameterized by a

neural network θ. Because posterior inference in this model is intractable, VAEs introduce

a variational approximation to the posterior qφ(Z|X) =
∏N

i=1 qφ(zi|xi) where φ are neural
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network parameters. The parameters {θ,φ} are optimized jointly using Auto-Encoding

Variational Bayes (AEVB), an inference algorithm we discuss further below. Hereafter we

drop instance indices wherever context renders them unnecessary.

Inference. As originally proposed, VAEs assume fully observed data; however, often the

data are only partially observed. In this case, each instance may be partitioned into observed

and missing components: x = (xo,xm) where xo = {x ∈ x : x is observed} and xm =

{x ∈ x : x is missing}. Our goal is to develop a simple inference algorithm to train VAEs

in this setting. To do so we will show how AEVB may be incorporated into an MCEM

algorithm which maximizes a lower bound on the marginal log-likelihood of the observed

data, log pθ(xo). We begin by reviewing Expectation-Maximization (EM).

Expectation-Maximization. EM is an iterative algorithm used to find maximum likeli-

hood solutions for models containing observed variables, x, unobserved (i.e. latent or miss-

ing) variables z, and parameters, θ. Each iteration includes an expectation step (E-step)

and a maximization step (M-step) (Dempster, Laird, and Rubin 1977).

E-step: QEM(θ′,θ) = Epθ′ (z|x) [log pθ(x, z)] (5.1)

M-step: θ′′ = argmax
θ

QEM(θ′,θ) (5.2)

Here, θ′ is the value of the θ at the end of the previous iteration, while θ′′ is the value of θ

at the end of the current iteration.

We can derive the EM algorithm following Bishop 2006. Our goal is to maximize the

marginal log-likelihood, log pθ(x), which is also called the log evidence. To do so, we first

calculate an expectation w.r.t. an auxiliary distribution over the latent variables, q(z).

log pθ(x) = Eq(z)

[
log

pθ(x, z)

pθ(z|x)

]
= Eq(z)

[
log

pθ(x, z)

q(z)

]
+Eq(z)

[
log

q(z)

pθ(z|x)

]
(5.3)

= LEM(θ;x) + KL(q(z) || pθ(z|x)) (5.4)
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Because KL(q(z) || pθ(z|x)) ≥ 0, it must be the case that the first term, LEM(θ;x), lower

bounds the log evidence. Hence, it is often referred to as the Evidence Lower BOund or the

ELBO.

Note that setting q(z) equal to the posterior pθ′(z|x) yields an ELBO which is equivalent

to the EM objective, QEM (up to an entropy term which has no θ-dependence).

LEM(θ;x,θ′) = Epθ′ (z|x) [log pθ(x, z)] +Hθ′ [z|x] = QEM(θ′,θ) + const. (5.5)

Thus, maximizing QEM w.r.t. θ also maximizes the ELBO, LEM. Maximizing LEM, in turn,

maximizes the marginal log-likelihood, log pθ(x) which the ELBO lower bounds.

Monte Carlo Expectation-Maximization. MCEM uses a Monte Carlo estimate to ap-

proximate the expectation in the EM algorithm’s E-step.

E-step: Q̂MCEM(θ′,θ) =
L∑
l=1

log pθ(x, z
(l)) ; z(l) ∼ pθ′(z|x) (5.6)

M-step: θ′′ = argmax
θ

Q̂MCEM(θ′,θ) (5.7)

MCEM is useful when calculating expectations w.r.t. the posterior is difficult but sampling

from it is simple.

Variational Inference. VI is closely related to EM (Blei, Kucukelbir, and McAuliffe

2017; Bishop 2006). In VI, the auxiliary distribution is replaced with a variationl distribution,

qφ(z), embued with its own parameters, φ. The ELBO in this case may be written as follows.

LVI(φ;x,θ) = log pθ(x)−KL(qφ(z) || pθ(z|x)) (5.8)

Since the marginal log-likelihood has no φ-dependence, maximizing the ELBO w.r.t. φ

necessarily minimizes the KL term. Thus, the variational parameters, φ, are optimized such
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that qφ(z) approximates the posterior pθ(z|x).

Auto-Encoding Variational Bayes. AEVB is a variant of VI in which the variational

distribution is conditioned on the observed variables, qφ(z|x), and the likelihood and vari-

ational parameters, θ and φ, are assumed to be neural networks (Kingma and Welling

2014). Most commonly, the joint likelihood is assumed to factorize as follows pθ(x, z) =

pθ(x|z)p(z). Here the “decoder”, pθ(x|z), relies on the neural network paramters, θ, to

ingest samples of the latent variable z and output distribution parameters appropriate for

modeling x (e.g. location and scale for continuous x modeled using a normal distribu-

tion). Similarly, the “encoder”, qφ(z|x), uses neural network parameters φ to ingest x and

generate distribution parameters for z (typically normally distributed). The prior, p(z), is

usually set to standard normal, though this framework permits priors with their own train-

able parameters as we will discuss later. This configuration of distributions and parameters

is commonly referred to as a Variational Autoencoder or VAE (Kingma and Welling 2014;

Rezende, Mohamed, and Wierstra 2014). To fit the model, the parameters θ and φ are

optimized simultaneously to maximize the ELBO, LVAE(θ,φ;x):

LVAE(θ,φ;x) = Eqφ(z|x)

[
log

pθ(x, z)

qφ(z|x)

]
= Eqφ(z|x) [pθ(x|z)]−KL(qφ(z|x) || p(z)) (5.9)

Imputation with VAEs. Rezende, Mohamed, and Wierstra 2014 introduce a method

for using a trained VAE to impute missing values. Assume we have trained VAE parameters

{θ,φ} using fully observed data. Now, we obtain a partially observed test instance, x =

(xo,xm). To impute missing values, we randomly initialize xm, and push x through our

trained VAE, overwriting xm with samples from the VAE’s likelihood. This process is iterated

until the imputed values stabilize.

This procedure induces a Markov chain with the following transition kernel.

T{θ,φ}(x
′
m|xo,xm) =

∫ ∫
pθ(x

′
o,x

′
m|z)qφ(z|xo,xm) dx′o dz (5.10)
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If qφ(z|x) closely approximates pθ(z|x), then T{θ,φ} closely approximates the following kernel

Tθ(x
′
m|xo,xm) =

∫ ∫
pθ(x

′
o,x

′
m|z)pθ(z|xo,xm) dx′o dz. (5.11)

As Rezende, Mohamed, and Wierstra 2014 show, this kernel has pθ(xm|xo) as its equi-

librium distribution. We will also show this to be true below, but, for now, it is worth

pausing to consider this distribution. For the purposes of data imputation, this conditional

is ideal; under our model, it represents everything we could possibly know about xm given

our knowledge of xo. As such, one could consider a “good” imputation model to be one

which induces a pθ(xm|xo) that, in some way, approximates the true conditional p(xm|xo)

(e.g. by generating samples drawn, approximately, from p(xm|xo)). We will return this idea

later when discussing our evaluation strategy for the current subaim.

As promised, we now show that Tθ(x′m|xo,xm) has pθ(xm|xo) as its equilibrium distri-

bution. To do so, we demonstrate that, when applied to pθ(xm|xo), Tθ obeys the sufficient

(but not necessary) detailed balance condition,

Tθ(x
′
m|xo,xm)pθ(xm|xo) = Tθ(xm|xo,x

′
m)pθ(x

′
m|xo), (5.12)

or equivalently, ∫
Tθ(x

′
m|xo,xm)pθ(xm|xo) dxm = pθ(x

′
m|xo). (5.13)

We need only expand and evaluate the integral above:

∫
Tθ(x

′
m|xo,xm)pθ(xm|xo) dxm =

∫ ∫ ∫
pθ(x

′
o,x

′
m|z)pθ(z|xo,xm)pθ(xm|xo) dx

′
o dxm dz

(5.14)

=

∫ ∫ ∫
pθ(x

′
o,x

′
m,xm, z|xo) dx

′
o dxm dz (5.15)

= pθ(x
′
m|xo). (5.16)
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Moreover, the smoothness of the VAE’s likelihood guarantee Tθ(x′m|xo,xm) > 0 for any

x′m,xo,xm (Rezende, Mohamed, and Wierstra 2014). By the fundamental theorem for

Markov chains, these two properties combine to ensure repeated sampling from Tθ will

eventually yield samples from pθ(xm|xo) (Neal 1993). Thus, repeated sampling from T{θ,φ}

will yield approximate samples from pθ(xm|xo) when qφ(z|x) ≈ pθ(z|x).

Training VAEs on Partially Observed Data with MCEM. We now have all the

pieces needed to describe our MCEM algorithm for training VAEs on partially observed

data. Our objective is to maximize the log-likelihood of the observed data, log pθ(xo); we

employ the EM algorithm using an auxiliary distribution over the missing data, q(xm).

log pθ(xo) = Eq(xm)

[
log

pθ(xo,xm)

pθ(xm|xo)

]
= Eq(xm)

[
log

pθ(xo,xm)

q(xm)

]
+Eq(xm)

[
log

q(xm)

pθ(xm|xo)

]
(5.17)

= LEM(θ;xo) + KL(q(xm) || pθ(xm|xo)) (5.18)

For the time being, let’s assume we have access to the conditional distribution pθ′(xm|xo)

and can calculate expectations w.r.t. it. We can set our auxillary distribution equal to this

conditional to write LEM as a function of the EM objective, QEM.

LEM(θ;xo,θ
′) = Epθ′ (xm|xo) [log pθ(xo,xm)] +Hθ′ [xm|xo] = QEM(θ′,θ) + const. (5.19)

Now, let’s consider QEM in integral form.

QEM(θ′,θ) =

∫
pθ′(xm|xo) log pθ(xo,xm) dxm . (5.20)

We don’t actually know pθ′(xm|xo), so estimating this integral is difficult. However, we can

obtain (approximate) samples from pθ′(xm|xo) by using a VAE to construct the transition

kernel, T{θ,φ}. The ELBO for this VAE may be obtained as a lower bound to the log-
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likelihood of x = (xo,xm).

log pθ(xo,xm) = logEqφ(z|x)

[
pθ(x, z)

qφ(z|x)

]
≥ Eqφ(z|x)

[
log

pθ(x, z)

qφ(z|x)

]
≡ LVAE(θ,φ;xo,xm) ,

(5.21)

where we’ve used Jensen’s inequality to establish the bound. We can substitute this inequal-

ity into 5.20 to obtain a lower bound on QEM.

QEM(θ′,θ) ≥
∫
pθ′(xm|xo)LVAE(θ,φ;xo,xm) dxm ≡ QEM-VAE(θ′, {θ,φ}) , (5.22)

Finally, we may obtain a Monte Carlo estimate of this integral with samples from T{θ′,φ′}.

QEM-VAE(θ′, {θ,φ}) ≈
L∑
l=1

LVAE(θ,φ;xo,x
(l)
m ) , x(l)

m ∼ T{θ′,φ′}(x
′
m|xo,xm) (5.23)

≡ Q̂MCEM-VAE({θ′,φ′}, {θ,φ}) (5.24)

This objective provides an accessible double lower bound to the observed marginal log-

likelihood.

log pθ(xo) ≥ QEM(θ′,θ + const. ≥ QEM-VAE(θ′, {θ,φ}) + const. (5.25)

≈ Q̂MCEM-VAE({θ′,φ′}, {θ,φ}) + const. (5.26)

Thus, maximizing Q̂MCEM-VAE within an MCEM algorithm maximizes log pθ(xo) as was

originally desired.

E-step: Q̂MCEM-VAE({θ′,φ′}, {θ,φ}) =
L∑
l=1

LVAE(θ,φ;xo,x
(l)
m ) , x(l)

m ∼ T{θ′,φ′}(x
′
m|xo,xm)

(5.27)

M-step: {θ′′,φ′′} = argmax
{θ,φ}

Q̂MCEM-VAE({θ′,φ′}, {θ,φ}) (5.28)
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Note that maximizing the VAE paramters, {θ,φ}, in the M-step is straightforward; we just

need to run AEVB which maximizes LVAE and, therefore, Q̂MCEM-VAE as well.

Sampling Importance Resampling. When the data are multimodal, multiple regions

of the latent space may be needed to fully explain a given data point. This may be a

common occurrence when the latent space may also be mutlimodal as we discuss later.

However, Markov chains are known to have difficulty mixing across modes (Robert, Casella,

and Casella 2010). This presents a challenge to our MCEM algorithm, which we address

by incorporating sampling importance resampling (SIR) (Gelman et al. 1995; Bishop 2006).

Briefly, for each data point, x = (xo,xm), we sample from the prior, p(z), to obtain L latent

variables, {z(l)}Ll=1, distributed throughout the latent space. We then use the conditional

likelihood, p(x|z), to test how well each sample explains the observed data, xo. These

likelihoods are then used to instantiate a resampling distribution over the latent samples.

Samples that better explain the data are more likely to be resampled, regardless of which

region of the latent space they originate from.

To use SIR, we first sample L′ � L latent variables and define a set of importance

weights, {wl}L
′

l=1, which take the form of self-normalized likelihood ratios between target and

proposal distributions. We set the target and proposal to the joint, pθ(xo, z), and the prior,

p(z), respectively.

wl =
rl∑L′

l=1 rl
, rl =

pθ(xo, z
(l))

p(z(l))
= pθ(xo|z(l)) (5.29)

These importance weights are then used to instantiate a discrete resampling distribution

over our latent variables, which we sample from with replacement to obtain a final set of L

samples.

At each training interation, we use SIR to intialize missing values prior to running MCEM.

First, we use SIR to obtain a set of L latent variables for each data point. Then, for each

latent variable, z(l), we sample x(l) = (x
(l)
o ,x

(l)
m ) from pθ(x|z = z(l)), and use the x(l)

m to
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instantiate the missing values. Finally, the full set of initialized samples, {xo,x
(l)
m }Ll=1, is run

through MCEM.

VAE Architecture. We use multilayer perceptrons (MLPs) with ReLU nonlinearities in

all VAE encoders and decoders. In addition, we find that adding trainable parameters to the

prior on z often improves the quality of imputations. Thus, instead of modeling the prior as

a fixed standard normal distribution, we use a normalizing flow (NF) (Papamakarios et al.

2021; Kobyzev, Prince, and Brubaker 2020). Briefly, a NF is a generative model which uses an

invertible function, Tξ, with trainable parameters, ξ, to transform a simple base distribution,

p(u′) (e.g. standard normal), into a more complex one, pξ(u). This transformation relies

upon the change of variables formula:

pξ(u) = p(Tξ(u))

∣∣∣∣det∂Tξ(u)

∂u

∣∣∣∣ = p(u′)

∣∣∣∣∣det∂T−1ξ (u′)

∂u′

∣∣∣∣∣
−1

. (5.30)

Usually, NFs are trained using maximum likelihood. In our case, the NF parameters are op-

timized alongside the encoder and decoder parameters using AEVB. The ELBO incorporates

the flow parameters as follows:

LVAE(θ,φ, ξ;x) = Eqφ(z|x)

[
log

pθ,ξ(x, z)

qφ(z|x)

]
= Eqφ(z|x)

[
log

pθ(x|z)pξ(z)

qφ(z|x)

]
. (5.31)

We note that previous works have explored modeling the prior, p(z), using NFs (Xu et al.

2019). To date, these works have focused primarily on improving generative modeling with

VAEs, and have not explored the utility of this kind of VAE for modeling partially observed

data or missing value imputation.

The prior distribution influences the structure of the latent space via the negated KL

term in LVAE: KL(qφ(z|x) || p(z)). When the prior is set to standard normal, this term

functions as a regularizer encouraging qφ to push probability mass to high likelihood regions

under standard normal. When the prior is modeled with an NF, this regularization effect
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evolves during training as both the NF and encoder parameters are updated. This permits

learning a latent space which can be more complex than standard normal and which may

contain multiple modes. As such, the SIR algorithm we discuss above plays an important

role when using an NF prior, as it allows our MCEM training scheme to leverage multiple

latent modes to explain the observed data.

Generally, different NFs are defined based on their specification of Tξ. In the present work

we experimented with Masked Autoregressive Flows (MAF) (Papamakarios, Pavlakou, and

Murray 2018) and Real-Valued Non-Volume Preserving (RealNVP) (Dinh, Sohl-Dickstein,

and Bengio 2022) flows. We find MAF consistently outperformed RealNVP, thus we use

MAF throughout. In all cases, we use the standard normal as our base distribution.

Baselines. We compare our imputation method to two VAE-based imputers. The first

of these is MVAE (Nazábal et al. 2020), which trains on partially observed data by simply

initializing missing values to zero and maximizing a modified version of the ELBO in which

the conditonal likelihood term is limited to only the observed subset of variables:

LMVAE(θ,φ;xo) = Eqφ(z|xo,x0
m)

[
log

pθ(xo|z)p(z)

qφ(z|xo,x0
m)

]
, (5.32)

where we use x0
m to denote zero-imputed missing values.

The second VAE-based baseine is the Missingness Importance Weighted AutoEncoder

(MIWAE) (Mattei and Frellsen 2019). MIWAE generates multiple latent samples per data

point to optimizes an importance weighted objective targeting the marginal likelihood of the

observed data. Like MVAE, MIWAE uses zero-imputation to initialize missing values:

LMIWAE(θ,φ;xo) = Eqφ(z|xo,x0
m)

[
log

1

L

L∑
l=1

pθ(xo|z(l))p(z(l))

qφ(z(l)|xo,x0
m)

]
(5.33)

Ablations. Our full model trains using MCEM and SIR and models the VAE prior using

a NF. To explore the value addded by each of these components, we run a series of ablation
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studies in which VAEs are trained using MCEM, SIR, or both with or without a NF prior.

Training and Hyperparameter Tuning. Each imputer has a number of hyperparam-

eters which must be fixed prior to training. As these settings may significantly impact

training dynamics and final imputation quality, we use the Asynchronous Successive Halv-

ing Algorithm (ASHA) (Li et al. 2020) to efficiently identify performant hyperparameter

settings. For each model, we define a search space comprising the hyperparameters we wish

to tune. ASHA explores this space by training multiple instances of the model in parallel,

monitoring their performance on held-out loss minimization, eliminating weak performers,

and instantiating new models with hyperparameters sampled from promising regions of the

search space.

For fairness, we run ASHA for each model keeping the computational budget uniform

across models. We note briefly that the search spaces for more complex models (e.g. those

including NFs) are larger and therefore more challenging to explore relative to the more

constrained search spaces for our baselines. At test time, we report results for each imputer

using the most performant checkpoint identifed while tuning.

Data. We use publicly available datasets to train imputers. Specifically, we focus here on

two-dimensional, benchmark datasets including two moons, circles, and blobs (Pedregosa

et al. 2011b). Though these data are relatively simple, they have interesting and useful prop-

erties which make them suitable for our studies. First, they are multimodal which implies the

true conditionals, p(xm|xo), are often multimodal as well. This makes imputation challenging

since good imputers will need to approximate a wide range of multimodal conditionals and

avoid simplistic, low-likelihood solutions such as mean imputation. Second, sampling new

observations for these datasets is fast and efficient. This allows us to easily obtain approx-

imate samples from p(xm|xo = x′o) for any pair of missing and observed variables (x′o, x
′
m).

Below we describe how these samples are obtained and how they are used to evaluate the

quality of imputations generated by our imputers. Finally, these two-dimensional datasets
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are easily visualized. This allows us to assess imputations qualitatively via visual inspection.

For each dataset we sample 6 × 104 instances retaining 5 × 104 for training, 5 × 103 for

validation, and 5× 103 for testing. To generate partially observed data, we apply synthetic

missingness masks to each dataset. These masks are constructed by first randomly selecting

20% of instances, and, for each, randomly assigning one feature as missing. We ensure the

missingness rate is uniform across all dataset partitions.

For each pair of missing and observed values, (x′o, x
′
m), we obtain 2.5× 103 approximate

samples from the corresponding conditional p(xm|xo = x′o). This is done by a simple rejection

sampling scheme in which we sample candidate instances (xco, x
c
m), and retain only those

samples satisfying |xco − x′o| < δ. We set δ = 10−3 for all datasets. Next, we describe how

these samples are used to evaluate our imputers.

Evaluation. We are interested in evaluating how well VAEs trained using our algorithm

perform as imputers relative to other models. A good imputer should generate samples of

missing values which appear to be drawn from the true conditionals p(xm|xo). Furthermore,

a good imputation model should produce imputed instances which appear to be drawn from

the true data distribution.

Quantitative Evaluation. Every imputation model we consider generates samples of

xm by conditioning on observations xo. Thus, an imputation model induces a family of

conditional distribution pθ(xm|xo), and the optimal imputation model corresponds to the

family of true conditionals, p(xm|xo). We evalute imputation models based on how closely

their samples approximate samples from the true conditionals. This is done using the two-

sample Kolmogorov-Smirnov (KS) test, which compares the empirical CDFs (ECDFs) of two

sets of samples to estimate the likelihood that they were drawn from a common distribution.

For each missing value in a dataset, we obtain 2.5× 103 samples from the imputation model

and the corresponding (approximate) true conditional as described above. We then apply

the KS test to each set of samples and record all the KS statistics. We use boxplots to
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visualize and compare the KS test statistic distributions across imputation models (lower

values are better).

Qualitative Evaluation. Ideally, imputed data should appear as though it were sampled

from the true data distribution, p(x). As such, for each imputer, we plot imputed samples

alongside samples drawn from p(x) for visual comparison.

Results

Figure 5.1 summarizes our qualitative evaluation by showing fully observed data sampled

from the true data distributions alongside samples of imputed data generated by each impu-

tation model. Imputation quality varies greatly across models. MVAE often imputes near

the data’s center of mass (COM) where the true data distributions lack support. MIWAE

also displays this problem, though less severely. Models without a NF prior also impute

away from the true data support. Training with MCEM alone results in imputations at the

COM and also in non-central areas intermodal regions as can be seen in the imputed two

moons data. Training with SIR alone generates imputations in both low density intermodal

and non-intermodal regions, such as the lower left and upper right corners in the two moons

figure. Combining MCEM and SIR seems to attenuate the problems each method shows

in isolation; imputations for all datasets more closely mirror the true data distribution and

seem qualitatively better and slightly worse than imputations generated by MVAE and MI-

WAE, respectively. Adding a NF prior seems to generally improve imputation quality. When

combined with MCEM, imputations near the COM are greatly reduced, but imputing in non-

intermodal areas with no true support can be seen as in the two moons data. Combining

the NF prior with SIR nearly completely eliminates imputations away from the true support

and, though some artifacts remain as in the corners of the two moons data. Finally, our full

model combining MCEM, SIR, and the NF prior imputes nearly always within the support

of the true data distribution for all datasets, and thus appear qualitatively superior to all
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our ablated models and baselines.

The results of our quantitative evaluation are summarized in Figure 5.2. This evaluation

is designed to measure how well each imputer approximates the true conditonal distribution

p(xm|xo = x′o) for each partially observed data point, x = (x′o, x
′
m) in our test set. To better

illustrate this process, we focus on just one such data point in the first two columns of Figure

5.2. For each dataset we choose a point with missingness in x0 and where the observed value

of x1 is near 0. This choice ensures that the true conditional, p(x0|x1 = x′1), contains at

least two modes. The second column shows the ECDFs for samples from the true conditonal

and imputers given x′o = x′1 as input. The more similar these ECDFs appear, the better the

imputer. MVAE, which often imputes near the COM, produces sigmoidal ECDFs that do

not resemble any of the true sample ECDFs. MIWAE does significantly better, capturing

each mode in the true conditonal and weighting them appropriately. Meawhile, the ablated

models show a trend similar to that seen in then qualitative evaluation: models perform

better as more components are added, and the full model using MCEM, SIR, and the NF

prior appears to do the best.

The two-sample KS test also measures the similarity between two distributions by com-

paring the ECDFs produced by their samples. For each imputer, we calculate the KS test

statistic for every missing value in the test set using samples from the corresponding true

conditional and the imputer. This generates a set of KS test distributions which we visualize

in the third column of Figure 5.2. The two-sample KS test statistic resides within the interval

[0, 1], and lower values correspond to lower likelihood of rejecting the null hypothesis both

sets of samples originated from a common distribution. Thus KS test distributions that skew

toward 0 are considered better. For all datasets, MVAE appears to do worse than MIWAE,

which performs well against most models. The ablated models show a loose trend suggesting

improvments in performance as more components are added to the model. The full model

appears to do best overall, though its KS test distribution for the circles dataset overlaps

significantly with those for MIWAE and the ablated models which use the NF prior.
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Figure 5.2: Imputation Quality. First column: Complete data for two moons, circles,
and blobs datasets in row order. Contour lines are estimated using Gaussian kernel density
estimates. Solid black lines are drawn at x1 = x′1. Second column: ECDFs for samples
from the true conditional p(x0|x1 = x′1) (solid black line) and samples generated by imputers
given observed data, xo = x′1. Third column: Distributions of Two-sample KS test statis-
tics generated for each imputer by comparing true conditional and imputed samples for all
missing values in the test set (lower is better). Boxplots show medians bounded within
interquartile regions (IQRs). Maximum whisker lengths are set to 1.5× IQR beyond which
data are considered outliers and are shown as black points.
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Discussion

In this subaim, we describe a MCEM algorithm for training VAEs on partially observed

data and evaluate the resultant model on a set of low-dimensional imputation tasks. In

additon, we describe two additonal components — a SIR algorithm and the incorporation of

a trainable NF prior — designed to improve models trained with MCEM. Training models

using all three components, yields imputers which consistently outperform baseline methods

in terms of both the visual quality of imputations and their ability to approximate an ideal

imputation model defined by the conditionals, p(xm|xo).

Importantly, our results suggest that MCEM, SIR, and NF priors each contribute mean-

ingfully to the final model. Across all our experiments, we observe a recurring trend in

which the addition of a component results in a noticeably better imputer; no single com-

ponent or subset thereof does as well all three combined. Combining SIR and MCEM may

be better than using either in isolation since SIR is designed to search the latent space for

regions that are better able to explain the observed data, while MCEM works to explain

missing values based on the observed data by iteratively approaching the equilibrium dis-

tribution, pθ(xm|xo). Futhermore, SIR is able to sample for many regions in latent space,

which can help MCEM avoid getting stuck in a single mode. Meanwhile, the NF prior adds

expressivity to the VAE generative model, by adding additional parameters and removing

the regularization imposed by using a standard normal prior. A multimodal latent space

may be more likely when using an NF prior. This could explain why combining NF priors

with just SIR seems to always improve imputation quality, but only sometimes helps when

using just MCEM; the former can exploit and guide identification of multiple latent modes,

while the latter is prone to sticking in single modes. Finally, combining all three results in

a model that can learn a latent spaces with mutiple modes, which are identified and ex-

ploited in accordance with their ability to explain the observed data and in service of better

approximating the arbitrary conditional distributions which best model the missing data.
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Limitations

The generalizability of our results is limited due to our reliance upon low-dimensional

data throughout our experiments. These data permit us to carry out our evaluation strategy

which requires visualization, and more significantly, access to approximate samples from the

true conditionals, p(xm|xo). Future work should utilize alternative evaluation metrics to

explore the utility of our method in higher-dimensional settings where results may better

translate to general use cases for imputation. We are also limited by our use of complete

data and synthetic missingness. Again, access to complete data allowed us to move forward

with our evaluation strategy, but this also required that we introduce our own scheme for

generating partially observed data. Since we do not condition on either the observed or

missing values when deciding which values go misssing, our data are misssing completely

at random (MCAR). This is the simplest kind of missingness, and it also it’s use justifies

training models to maximize the observed data likelihood (or a lower bound on it) (Rubin

1976). Unfortunately, MCAR missingness is rarely, if ever, found in real data, which are more

likely go missing conditonal on the observed data (i.e. missing at random (MAR)), or, more

likely still, the missing values themselves (ie. missing not at random (MNAR)). Future work

evaluationg imputation quality will likely still need to use complete datasets, but synthetic

MAR and MNAR missignness could be applied. Aside from the type of missingness used,

we also only experiment with missignness in 20% of the data. Real data may have more or

less severe missigneess, and future work should experiment with a range of missigness rates.
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5.2 Aim 3B. Develop a semi-supervised VAE which can be trained

on partially observed data using MCEM; use it for disease phe-

notyping on clinical data with inherent missingness.

Background

Classification problems are defined for datasets whose instances comprise two disjoint

sets — features, xc and labels, yc — where the latter are constrained to discrete values (e.g.

binary, categorical). Typically, the goal is to obtain a model which conditions on features to

estimate the likelihood of the labels, p(yc|xc). Alternatively, one may choose to model the

features and labels jointly, p(xc,yc). Here, we adopt the latter approach.

VAEs handle heterogeneous data naturally. Since the likelihood function specified by

the decoder assumes conditional independence among the variables xj ∈ x (i.e pθ(x|z) =∏
j pθ(xj|z)) one may simply model each conditional factor using a suitable likelihood (e.g.

normal for continuous variables, Bernoulli for binary variables). In the present subaim, we

combine this feature with MCEM to solve classification problems where both xc and yc

contain missing values. As such, our VAEs achieve semi-supervised learning (missingness in

yc) while requiring only partially observed features (missingness in xc).

As in the previous subaim, we first illustrate the utility of our approach using low-

dimensional data. We then experiment with semi-supervised phenotyping: we train VAEs

on partially observed clinical data and use the resultant models to predict a set of labels

encoding multiple, binary patient states.

Research Question

Does a VAE trained on partially labeled, partially observed data yield an effective disease

phenotyping model?
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Methods

Models. For VAEs trained using MCEM, we use SIR and employ architectures contain-

ing a normalizing flow prior (MAF). We compare against VAEs trained using the MIWAE

objective. This choice is guided by our experiments in the previous subaim, where these

configurations led to the best performance among MCEM-optimized VAEs and baselines,

respectively.

As detailed below, our datasets comprise continuous-valued features and binary labels.

Thus, for all VAEs, we specify a heterogeneous likelihood function in the decoder which

places conditionally independent normal and Bernoulli distributions over the feature and

label variables, respectively. Aside from this modification, the models and their training

procedures remain unchanged.

Training and Hyperparameter Tuning. As described in the previous subaim, we use

ASHA to tune hyperparameters for each combination of model and dataset. We hold the

computational budget fixed across all models trained on a given dataset to ensure fairness

at test time. For each model, we report results only for the best identified checkpoint.

Data. Our first dataset is two moons which serves to define a low-dimensional classification

problem. Here the features correspond to the two continuous values specifying the location

of each point in the plane; a single binary label specifies which moon (top or bottom) a point

in the plane belongs to (see Figure 5.3). As in the previous subaim, we sampled 6 × 104

instances and randomly partition out 5× 104 for training, 5× 103 for validation, and 5× 103

for testing. We apply synthetic missingness masks constructed by randomly eliminating 20%

of observations while ensuring each instance retains at least one observed value.

Our second dataset is derived from the publicly available Women in Data Science (WiDS)

Datathon 2020: ICU Mortality Prediction data (Lee et al. 2020). These data contain a

heterogenous mixture of partially observed clinical variables recorded during 130,000 ICU
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Figure 5.3: Labeled two moons data. Features correspond to two-dimensional coordinates,
x0 and x1. y encodes the binary label specifying the “moon” each point belongs too: y = 0
and y = 1 for the bottom and top moon, respectively.

stays at hospitals in Argentina, Australia, New Zealand, Sri Lanka, and the United States.

Though these data were curated primarily to train in-patient mortality prediction models,

they also contain binary values encoding a variety of patient states (e.g. is intubated, is

diabetic). For our label set, we consider only those patient states with low missingness and

high prevalance; these are ventilated (prevalence: 0.325), intubated (prevalence: 0.151),

diabetes mellitus (prevalence: 0.225), and hospital death (prevalence: 1.0). For the

feature set, we include only the continuous-valued variables. See Table 5.1 for more details

on the selected variables and their intrinsic missingness rates.
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Our evaluation strategy (discussed below) requires both predictions for missing labels and

access to their ground truth values. However, unlike our low-dimensional dataset, the WiDS

data are inherently partially observed. Thus, for some hospital stays, ground truth values

are not available for each label. To remedy this conflict, we only consider those hospital

stays with a complete label set. This reduces the total number of hospital stays to 90,998

which we then parition (80% train, 10% validation, 10% test). We then apply 20% synthetic

missingness to the labels. For the features, missingness is inherent; no synthetic missingness

is applied. See Table 5.1 for a list of variables included in our preprocessed dataset and their

corresponding missingness rates.

Evaluation. We evaluate models based on their ability to predict the true values of missing

labels in held-out data. To do so, we report the areas under the ROC and Precision-Recall

curves (AUROC and AUPRC, respectively). In the multi-label setting, we report these

metrics per label, as well as the micro- and macro-averages over all labels.

Results

Table 5.2 displays results for our low-dimensional experiments with the two-moons data.

Recall, the task here is to correctly predict which moon (top or bottom) an instance belongs

to when the label is missing and the features are partially observed. MCEM-SIR outperforms

MIWAE in both AUROC and AUPRC.

AUROC AUPRC

MIWAE 0.766 0.735

MCEM-SIR 0.881 0.860

Table 5.2: Classification metrics for held-out two-moons data.

Results for our phenotyping experiments are shown in Table 5.3. In this setting, MCEM-

SIR and MIWAE demonstrate similar performance in both metrics across all labels and their
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Type Variable Description Unit MR 1hr MR 24hr MR APACHE MR

age Age Years 0.039
height Height cm 0.015
weight Weight kg 0.030
bmi Body mass index kg/m3 0.037
pre_icu_los_days Length of stay Days 0.000
heartrate Heart rate Beats/min 0.030 0.002 0.002
resprate Respiratory rate Breaths/min 0.047 0.004 0.006
temp Core temperature °C 0.236 0.025 0.037
spo2 Peripheral oxygen saturation % 0.045 0.004
arterial_pco2 Arterial partial pressure of carbon dioxide mmHg 0.828 0.646 0.771
arterial_ph Arterial pH None 0.833 0.655 0.771
arterial_po2 Arterial partial pressure of oxygen mmHg 0.828 0.646 0.771
pao2fio2ratio Fraction of inspired oxygen None 0.874 0.720 0.771
urineoutput_apache Total urine output for the first 24 hours mL 0.531
diasbp_invasive Diastolic blood pressure, invasively measured mmHg 0.817 0.741
diasbp_noninvasive Diastolic blood pressure, non-invasively measured mmHg 0.080 0.011
diasbp Diastolic blood pressure, either non-invasively or inva-

sively measured
mmHg 0.039 0.002

sysbp_invasive Systolic blood pressure, invasively measured mmHg 0.817 0.741
Features sysbp_noninvasive Systolic blood pressure, non-invasively measured mmHg 0.080 0.011

sysbp Systolic blood pressure, either non-invasively or inva-
sively measured

mmHg 0.039 0.002

mbp_invasive Mean blood pressure, invasively measured mmHg 0.816 0.739
mbp_noninvasive Mean blood pressure, non-invasively measured mmHg 0.099 0.016
mbp Mean blood pressure, either non-invasively or invasively

measured
mmHg 0.050 0.002 0.003

sodium Sodium concentration in serum or plasma mmol/L 0.792 0.111 0.197
potassium Potassium concentration in serum or plasma mmol/L 0.786 0.104
hco3 Bicarbonate concentration in serum or plasma mmol/L 0.830 0.164
calcium Calcium concentration in serum mmol/L 0.827 0.142
bun Blood urea nitrogen concentration in serum or plasma mmol/L 0.819 0.114 0.204
glucose Glucose concentration in serum or plasma mmol/L 0.573 0.063 0.113
creatinine Creatinine concentration in serum or plasma µmol/L 0.817 0.111 0.199
wbc White blood cell count 109/L 0.828 0.143 0.234
hemaglobin Hemoglobin concentration g/dL 0.797 0.132
hematocrit Volume proportion of red blood cells blood None 0.800 0.127 0.211
platelets Platelet count 109/L 0.825 0.146
bilirubin Bilirubin concentration in serum or plasma µmol/L 0.923 0.585 0.631
albumin Albumin concentration in serum g/L 0.914 0.535 0.590
inr International normalized ratio µmol/L 0.632 0.632
lactate Lactate concentration in serum or plasma mmol/L 0.920 0.746

ventilated Whether the patient was invasively ventilated None 0.000
Labels intubated Whether the patient was intubated None 0.000

diabetes_mellitus Whether the patient has been diagnosed with diabetes None 0.000
hospital_death Whether the patient died during this hospitalization None 0.000

Table 5.1: Features and labels extracted from WiDS Datathon 2020: ICU Mortality Prediction dataset
and their intrinic missingness rates. Many variables have repeated measurements which are represented in
the dataset by the minimum and maximum values observed within the first hour and first 24 hours. Some
variables also contribute to the Acute Physiology and Chronic Health Evaluation III (APACHE III) severity-
of-disease classification system, and the values used in the score are represented by additional variables in the
dataset. Variables measured only once (e.g. age) have one missingness rate shown in column MR. Variables
with repeated measurements (e.g. sodium) have multiple missingness rates: missingness for the minimum
and maximum values within the first hour and first 24 hours shown in columns 1hr MR and 24hr MR,
respectively. Missingness rates for variables used in APACHE III (e.g. temp) are shown in column APACHE
MR. Note that for any variable with repeated measurements the missingness rates for the minimum and
maximum values are identical. Thus, we represent both variables with a single variable name.
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averages, with neither method being consistently superior.

AUROC AUPRC

Label MIWAE MCEM-SIR MIWAE MCEM-SIR

ventilated 0.846 0.842 0.743 0.735

intubated 0.827 0.844 0.440 0.438

diabetes mellitus 0.795 0.805 0.525 0.539

hospital death 0.834 0.811 0.374 0.352

macro average 0.825 0.826 0.600 0.602

micro average 0.848 0.850 0.521 0.516

Table 5.3: Classification metrics for held-out WiDS data.

Discussion

This subaim explores the use of MCEM for training VAEs on partially observed, partially

labeled data. In a low-dimensional setting, our results suggest that MCEM (in combination

with SIR and an NF prior) yields a VAE which is better able to perform as a classifier relative

to a MIWAE baseline. Recall in the previous subaim that, relative to MIWAE, MCEM was

better able to approximate true conditionals defined by the two-moons data distribution.

This is likely a driving factor behind MCEM’s superior performance in the present context

as well. Consider the true conditional for the label, yc, when the features are both observed,

p(yc|xc). If the model well approximates this conditional, then it should be a strong classifier

given that the moon’s are disjoint in the plane. Meanwhile, if only one of the features is

observed, approximating the true conditional should still result in good classifications in

areas where there is no overlap in the moons’ projections along the observed dimension.

Thus, at least in a low-dimensional settings, MCEM does appear to be a viable strategy for

handling classification problems when both the features and labels contain missing values.

We also explore the use of MCEM for clinical phenotyping. This setting is significantly

94



more complex: the data are higher dimensional, the task is multi-label, and the features

contain inherent missingness (i.e. we do not know the true missing values, we do not control

the missingness mechanism, and it is likely not MCAR). Our results show that, though

MCEM achieves relatively high AUROCs and AUPRCs for these data, it does not clearly

outperform MIWAE. There are several possible explanations for this outcome. Since the

data are high-dimensional, and any instance may have multiple missing values, each model is

tasked with estimating many multivariate conditional distributions. It is possible that, under

either model, we simply lack sufficient observations to estimate each conditional faithfully,

and thus both perform similarly. Alternatively, the structure of the true data distribution

may be to blame. For example, it may be the case that many true conditionals for the binary

labels do not clearly distinguish between the two states. In this scenario, both models would

perform similarly since they are both attempting to model many true conditionals which are

ill-suited for prediction.

Limitations

The work described in this subaim has several limitations. Similar to our previous sub-

aim, we rely on complete data in our labels to carry out our evaluation. This allows us to

use standard supervised learning metrics to evaluate our models, but it also requires that

we design our own missingness mechanism for the labels. This missingness is MCAR and is

applied to 20% of the observations. Future work should explore more complex missingness

mechanisms and a wider distribution of missingness rates. However, for our phenotyping

task, it should be noted that this limitation is somewhat attenuated by the inherent miss-

ingness in the features, which is likely not MCAR but rather MNAR. Our clinical dataset

also introduces some limitations. It was developed for use in a machine learning competetion

and is thus highly curated. Data derived from an average hospital’s data stores is likely to

be much noisier. Furthermose, though these data permit us to define a multi-label pheno-

typing problem, the dataset was originally developed specifically for mortality prediction.
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This may have influenced which patient visits were included in the dataset, making it less

represenative of clinical datasets in general.
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Chapter 6

Conclusion

Determining if a patient has a particular condition can be a difficult task even for an

experienced clinician with access to the patient and their full clinical history. It should be

of no surprise then that accomplishing the same task for a population of patients using only

a subset of their clincal records can be very challenging. Nevertheless, such phenotyping

problems are routinely encountered when using clincal data for research purposes, and rep-

resent a persistent bottleneck slowing the extraction of clinically meaningful insights from

growing clincal data stores. The work detailed in this dissertation has sought to loosen this

constraint by introducing methods for learning phenotypes directly from data, particularly

when the data are not fully observed and fully labeled, as is common in the clincal domain.

Aim 1 of this dissertation implements a previously described unsupervised method, Multi-

Channel Mixed Membership Models (MC3M), and applys it to infer phenotypes from par-

tially observed data. We train MC3M on survey questionairres developed to probe the

psychosocial and behavioral constructs underlying the health of individuals. MC3M phe-

notypes identified subgroups within the surveyed population, which were characterized by

both mutable and immutable characteristics (i.e. mediators and moderators) recorded in

the data and made prominent by the phentoypes’ structure. Modeling both sets of factors

within a phenotyping algorithm is a signficant contribution of this work; though immutable

factors are fixed, they provide essential context which may help to define and distinguish

among population subgroups. Meanwhile, prominent mutable factors which emerge within

subgroups may serve as targets for behavioral-health interventions. As such, our work rep-

resents a step toward the goal of intervention tailoring, which would aim to improve the
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health of a population by designing interventions suited to the subpopulations it contains.

We took a further step in this direction by isolating a subset of phenotypes found to have a

significant association with elevated weight status, an import, mutable risk factor for chronic

disease. Interrogating the structure of these phenotypes revealed salient characteristics which

could be useful in tailoring weight loss interventions for specific subgroups. Thus, this work

provides a proof of concept that unsupervised phenotyping can identify subpopulation and

surface defining characteristics relevant to intervention tailoring.

In Aim 2 we introduce Semi-Supervised Mixed Membership Models (SS3M), a pheno-

typing method which builds upon MC3M by modeling a set of partially observed labels.

SS3M seeks to strike a balance between unsupervised phenotyping, which can be difficult

to evaluate, and manual chart review which is often prohibitively expensive. By assuming

access to a small amount of labeled data, SS3M reduces phenotyping to a multi-label pre-

diction task and minimizes the required effort spent on label generation. Our first set of

experiments evaluate SS3M using simulated data, and demonstrate the model successfully

learns both the structure and identity of a known, ground truth set of phenotypes. Notably,

SS3M accomplishes this task with only 5% of the true labels made available for training.

Next, we focus on learning phenotypes from actual clinical data. In this setting, SS3M

outperformed MC3M on a set of evaluations designed to measure phenotype quality and

interpretability from the perspecitive of clinical experts. Importantly, our surveyed clinical

experts found that a large majority of SS3M phenotypes captured the clincial characteristics

of the conditions specified by their corresponding labels. In addtion, SS3M demonstrates

competitive performance relative to supervised baselines on a set of disease prediction tasks.

In summary, SS3M is shown to be an effective model for learning interpretable phenotypes

from partially labeled clincal data.

Aim 3, our final aim, describes an algorithm for training Variational Autoencoders

(VAEs), on partially observed data. Our approach takes a previously described algorithm for

heldout data imputation, and incorporates it within a Monte Carlo Expectation-Maximization
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(MCEM) scheme optimizing a lower bound on the marginal likelihood of the observed data.

This algorithm allows VAEs to to train on data containing missing values, but also has some

theoretical limitations which try to overcome by 1) adding a Sampling Importance Resam-

pling (SIR) step to MCEM, and 2) increasing the modeling capacity of VAEs by using a

normalizing flow (NF) as the latent space prior. Experiments with low-dimensional datasets

show our approach results in imputations which consistently lay within the support of the

true data distribution — a result that baselines struggle or fail to replicate. Furthermore,

among all tested imputers, VAEs trained with our method are found to most closely approx-

imate the optimal imputation model represented by the true conditionals, p(xm|xo). Though

our results on imputation are limited to low-dimensional data, our method shows promise,

and we suspect similarly strong performance will be seen when it is applied to more complex

datasets. We also experiment with MCEM in the context of semi-supervised learning. In a

low-dimensional settings, VAEs trained with MCEM outperform a strong baseline on label

prediction. We also apply this strategy for multi-label phenotyping, where MCEM-trained

VAEs perform similar to baseline. Nevertheless, MCEM shows promise in this space and

future work will aim to improve performance.
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