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Abstract

Study of Traveling Waves in a Nonlinear Continuum Dimer Model

Huaiyu Li

We study a system of semilinear hyperbolic PDEs which arises as a continuum

approximation of the discrete nonlinear dimer array model of SSH type of Hadad, Vitelli and Alú

in [1]. We classify the system’s traveling waves, and study their stability properties. We focus on

pulse solutions (solitons) on a nontrivial background and moving domain wall solutions (kinks

and antikinks), corresponding to heteroclinic orbits for a reduced two-dimensional dynamical

system. We further present analytical results on: nonlinear stability and spectral stability of

supersonic pulses, and the spectral stability of moving domain walls. Our result for nonlinear

stability is expressed in terms of appropriately weighted 𝐻1-norms of the perturbation, which

captures the phenomenon of convective stabilization; as time advances, the traveling wave

“outruns” the growing disturbance excited by an initial perturbation. We use our analytical results

to interpret phenomena observed in numerical simulations. The results for (linear) spectral

stability are studied in appropriately-weighted 𝐿2-norms.
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Introduction and Overview

The present work studies a nonlinear hyperbolic system of PDEs with a rich family of

traveling wave solutions (TWSs). Our study is inspired by work of Hadad, Vitelli and Alù (HVA)

[1], and also an earlier work of Hadad et al.[2]. There, they introduce a nonlinear variant of the

discrete and linear Su-Schrieffer-Heeger (SSH) dimer model. The linear SSH model was first

introduced in the context of condensed matter physics, in Su et al.[3], to study topological

properties of polyacetylene chains. The linear SSH model exhibit topological transitions, related

to the closing and reopening of a spectral gap in its band structure. This transition is parametrized

by the ratio of the chain’s intra-cell to inter-cell coupling coefficients; the spectral gap closes

when the ratio is unity. In [1], the authors (HVA) generalized it to a model of an electric array of

coupled nonlinear circuit elements. In the same work, a continuum model was introduced to

describe the dynamic of envelopes modulating Bloch waves at the (linear) band crossing wave

number. They found traveling pulse solutions (solitons) and traveling domain wall solutions

(kinks). They also reported on numerical simulations of the time evolution of the the discrete

system, with initial data sampled from continuum solitons and kinks. The continuum model can

be nondimensionalized and scaled to become (1.0.1), which we study in this thesis.

In this thesis, we present analytical results for the system (1.0.1), on R𝑦 ×R𝑡 governing a

real-valued unknown

𝑏(𝑦, 𝑡) =
[
𝑢(𝑦, 𝑡) 𝑣(𝑦, 𝑡)

]T

We focus on the nonlinear stability and spectral stability analysis of heteroclinic traveling wave
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solutions.

The present work is organized as follows:

1. We start with CHAPTER 1, discussing motivations behind this work. In SECTION 1.1, we

briefly discuss the SSH model, in particular, how it has different topological phases. In

SECTION 1.2, we review the experimental setup of the HVA model, which exhibits

intensity-induced topological phase transition. We then present the mathematical

framework of our study of (1.0.1). In SECTION 1.3, we list assumptions on the nonlinearity

profile N(𝑟2), consistent with the original nonlinearity used by Hadad et al. in [1]. In

PROPOSITION 1.2, the discrete symmetries of (1.0.1) are displayed. These discrete

symmetries are shared by the system’s traveling wave solutions (PROPOSITION 2.1) and

their linearized spectra (THEOREM 6.7). In SECTION 1.4, we summarize observed

phenomena of convective stability of the traveling wave solutions of system (1.0.1). A

rigorous proof of nonlinear convective stability of supersonic pulses (THEOREM 4.1). We

also discuss open questions and future directions not addressed in the present work, as well

as different directions which hopefully can bifurcate from the currently available results, in

SECTION 1.6.

2. In CHAPTER 2 we present a complete classification of the traveling wave solutions (TWS)

of (1.0.1). In particular, we solve for the profiles of the traveling wave solutions in a

reference frame traveling with speed 𝑐 ≠ ±1, where the spatial coordinate is denoted

𝑥 = 𝑦 − 𝑐𝑡. Phase plane analysis can then be applied to the resulting 2-real-dimensional

dynamical system (2.0.3), whose properties are summarized in SECTION 2.1. The traveling

wave solutions then can be identified with the orbits of (2.0.3). These orbits are connected

subsets of level sets of a conserved quantity 𝐸𝑐, see (2.1.1). The only homoclinic orbits of

(2.0.3) are fixed points. Non-fixed point TWSs have two speed regimes, |𝑐 | > 1

(supersonic) and |𝑐 | < 1 (subsonic). We restrict our study to TWSs given by the

heteroclinic orbits of (2.0.3), which asymptote to different equilibria/fixed points. Although

periodic TWSs (wave trains) exist, we do not address their stability properties in this thesis.

2



We then introduce the discrete symmetries on the family of traveling wave solutions in

PROPOSITION 2.1 to greatly compress work on their classification. We then focus on

supersonic pulses and kinks in SECTION 2.2. In SECTION 2.3, we calculate the convergence

rates of their profiles to their asymptotic equilibria at ±∞. These results are crucial in

understanding the role of translation modes in linear stability analysis of supersonic pulses

and kinks. Lastly we give in SECTION 2.4 an exhaustive list of all possible traveling wave

solutions of (1.0.1), and display a “phase diagram” FIGURE 2.4 showing the type of TWS

given on the 𝐸𝑐 - 𝑐 plane.

3. Let 𝑏∗(𝑦, 𝑡) = 𝑏∗(𝑦 − 𝑐𝑡) denote a generic TWS. In CHAPTER 3 we study the nonlinear

dynamics of perturbations on 𝑏∗(𝑦 − 𝑐𝑡). As mentioned above, we focus on heteroclinic

TWSs. The profile of such a TWS asymptotes to a nonzero equilibria either as 𝑥 → ∞, as

𝑥 → ∞, or both. It is therefore challenging to provide an functional analytic framework for

studying 𝑏∗(𝑦 − 𝑐𝑡) + 𝐵(𝑦, 𝑡), where 𝐵(𝑦, 𝑡) is the perturbation on the TWS, observed in the

lab frame. Instead, we restrict 𝐵(𝑦, 𝑡) itself to be decaying at 𝑥 = ±∞, study its dynamic

stability via the nonlinear PDE system for it. This equation is given in (3.4.1) in the lab

frame. Local and global-in-time wellposedness results are presented in THEOREM 3.3 of

SECTION 3.3. Here and in CHAPTER 4, the nonlinearity N(𝑟2) is assumed to be saturable,

see SECTION 1.3. The hyperbolicity of system (3.4.1) gives rise to finite propagation speed

of data, as summarized in PROPOSITION 3.4.

4. In CHAPTER 4, we prove the first major result, THEOREM 4.1, on the nonlinear convective

stability of supersonic pulses. Intuitively speaking, if one is to travel with a supersonic

pulse 𝑏∗(𝑥) with the speed |𝑐 | > 1 it travels at, however large the initial perturbation on 𝑏∗

is, the profile of the pulse on [𝑅,∞), where 𝑅 ∈ R fixed but arbitrary, will eventually

restore to almost the same as an unperturbed pulse, as long as the initial perturbation decays

fast enough in the direction in which it travels. In other words, a supersonic pulse always

outrun sufficiently rapidly decaying initial perturbations. The proof of THEOREM 4.1

3



consists of two previous results. The first one is that data of (3.4.1) propagates with finite

speed, and the second is the a priori exponential rate of growth of data given in the

wellposedness result THEOREM 3.3.

5. The rest of this work starting from CHAPTER 5 concerns the linear spectral stability

analysis of heteroclinic TWSs. For the linear stability theory, we no longer require N(𝑟2)

to be saturable. The spectral stability analysis is carried out in the reference frame traveling

with same speed 𝑐 of the TWS 𝑏∗(𝑥 = 𝑦 − 𝑐𝑡), which we call comoving reference frames. In

SECTION 5.1, motivated by the phenomena seen from the numerical simulations discussed

in SECTION 1.4 and previous works, we introduce a class of weights,𝑊 (𝑥) = 𝑒𝑤(𝑥) , in

SECTION 5.1.1, and associated weighted 𝐿2 and 𝐻1 function spaces, where convective

stability can be appropriately accounted for. The resulting spaces are denoted 𝐿2
𝑤, 𝐻1

𝑤 etc.

In SECTION 5.1.2, we linearize the nonlinear equation (3.4.1) of perturbation 𝐵, and obtain

its linearized version 𝜕𝑡𝐵 = 𝐿∗𝐵. To study the linear stability of 𝑏∗ in the weighted space

𝐿2
𝑤, it is equivalent to study the unweighted 𝐿2-spectral theory of conjugated linear

operators 𝐿∗,𝑤, see DEFINITION 5.1. The spectral stability of 𝑏∗ in 𝐿2
𝑤 is equivalent to

𝜎(𝐿∗,𝑤) being contained in the closed left-half complex plane. In SECTION 5.2 we study

the spectral stability of equilibria, both trivial and nontrivial, in appropriately weighted

spaces with weight𝑊 (𝑥) ∼ 𝑒𝑎𝑥 and summarize the result in PROPOSITION 5.6. This result

helps us to locate the essential spectrum, in the following chapters, of pulses and kinks.

6. In CHAPTER 6 we describe our strategy to study the spectral stability of TWSs. For a

general operator 𝐿 on a Banach space, in particular a Hilbert space, its spectrum 𝜎(𝐿) can

be decomposed uniquely into essential and discrete spectra. The operators 𝐿∗,𝑤 have the

property that their coefficients asymptote exponentially to constants as 𝑥 → ±∞. This holds

because 𝑏∗(𝑥) asymptotes to its equilibria as 𝑥 → ±∞. As a result, the left- and

right-asymptotic operators of 𝐿∗,𝑤 are constant-coefficient. Moreover, they are exactly the

weight-conjugated operators of the equilibria whose spectra we characterized in SECTION

4



5.2. PROPOSITION 6.1 enables us to systematically bound the essential spectrum of 𝐿∗,𝑤

simply by bounding the spectra of its asymptotic operators. This is a well-established result

and we only provide a sketch for its proof. In the next two chapters we will apply

PROPOSITION 6.1 to the cases of supersonic pulses and kinks to locate their essential

spectra, and to investigate whether it is possible to choose a weight𝑊 (𝑥) = 𝑒𝑤(𝑥) , so that 𝑏∗

is spectrally stable in 𝐿2
𝑤 space equipped with it. Concluding this chapter, we remark with

THEOREM 6.7 that the weight-conjugated linearized operators of TWSs associated with

certain discrete symmetries are identical, upon suitably transforming weights as well. This

greatly simplifies our study of spectral stability. In particular, we only need study those

TWSs with 𝑐 ≥ 0, and the result for 𝑐 < 0 TWSs follows directly.

7. In CHAPTER 7 we study the spectral stability of supersonic pulses. We summarize the

result in THEOREM 7.1, which says supersonic pulses are spectrally stable in 𝐿2
𝑎 for some

𝑎. Here, 𝐿2
𝑎 := 𝐿2(R.𝑒𝛼𝑥 d𝑥). The proof consists of two parts. First, we locate the essential

spectrum with the help of PROPOSITION 6.1, in SECTION 7.1; see PROPOSITION 7.3. Then,

in SECTION 7.2 results from ODE theory on the growth rate of solutions of ODE preclude

the existence of discrete spectrum of 𝐿∗,𝑎 of a supersonic pulse, to the right of its essential

spectrum; see PROPOSITION 7.4. We also briefly remark on the instability of subsonic

pulses and antikinks, in SECTION 7.3. This instability result is a direct consequence of

PROPOSITION 6.1 In fact, there are no such exponential type weight𝑊 (𝑥) = 𝑒𝑤(𝑥) , that such

solutions (even at least one of their asymptotic equilibria as 𝑥 → ±∞) are spectrally stable.

8. The last chapter, CHAPTER 8, concludes the spectral stability of kinks, under the rather

mild concavity requirement that the nonlinearity N(𝑠) (where 𝑠 = 𝑟2) be concave for

𝑠 ∈ [0, 1]. This requirement is met by, for example, N(𝑟2) = 1 − 𝑟2𝑚 where 𝑚 = 1, 2, · · · .

Kink solutions are heteroclinic orbits of dynamical system (2.0.3) that connect the trivial

equilibrium to some nontrivial equilibria on the unit circle. Again applying PROPOSITION

6.1, PROPOSITION 8.1 gives us the condition of the weight 𝑤 for a kink with speed 𝑐 ≥ 0 is

5



spectrally stable in 𝐿2
𝑤. We first treat the case 𝑐 = 0, that of a non-moving kink, in SECTION

8.2, with more detail. In fact a nonmoving kink can be only made neutrally spectrally

stable, namely, the spectrum of its weight-conjugated operator 𝐿∗,𝑤 is entirely on the

imaginary axis. This result is summarized in THEOREM 8.3. The method we use is to

transform the eigenvalue problem 𝐿∗,𝑤𝐵 = _𝐵 into locating the bound states of a linear

Schrödinger operator (LEMMA 8.6). In this case we can conclude the zero eigenvalue is the

only element of the point spectrum. On the other hand, in SECTION 8.3 we generalize the

approach used in SECTION 8.2, and are able to conclude the nonexistence of unstable

eigenvalues, when the essential spectrum of 𝐿∗,𝑤 is contained in the closed left-half plane.

The result for the spectral stability of a general kink (|𝑐 | < 1) is given by THEOREM 8.8

Towards the proof of this result, the crux of our method is to find an appropriate linear

transformation (PROPOSITION 8.11), so that the resulting transformed problem can again be

reduced to a generalized eigenvalue problem (8.3.28) given by second-order ordinary

differential operator; this transformation is not as straightforward as the non-moving case

and (8.3.28) is highly nonlinear in _, the eigenvalue. In this case, the present work does not

preclude the existence of stable and neutral eigenvalues apart from the neutral _ = 0, but is

enough for us to conclude, with nonlinearity being concave, the spectral stability for a

general kink.
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Chapter 1: Physical Motivations and Problem Setup

We study a system of semi-linear hyperbolic PDEs:

𝑢𝑡 = 𝑣𝑦 + N
(
𝑢2 + 𝑣2)𝑣

𝑣𝑡 = 𝑢𝑦 − N
(
𝑢2 + 𝑣2)𝑢 (1.0.1)

governing the time evolution of a real-valued unknown 𝑏(𝑦, 𝑡) =
[
𝑢(𝑦, 𝑡) 𝑣(𝑦, 𝑡)

]T
. The proper-

ties of the nonlinearity, N(·) are discussed below in SECTION 1.3. We extensively account for the

motivation behind (1.0.1) in SECTION 1.1.

1.1 Linear SSH model

The Su-Schrieffer-Heeger (SSH) model is one of the earliest and models in condensed matter

physics which exhibit what physicists refer to as topological phase transition. In a series of paper

by Su, Schrieffer and Heeger [3] [4][5], introduced and studied a model for trans-polyacetylene

(CH)𝑥 chain. The SSH model describes, under tight-binding approximation of the 𝜋-electrons

. . . C

C

C

C

C

C

C

C

C

C

C

C

C
. . .

Figure 1.1: Dimerized polyacetylene chain with alternating single and double bonds.

[3][6] and in single-electron picture[7], a chain of atoms on which a single delocalized electron

“hops” back and forth, and on each of the atoms there is only one available orbital. Schematically,

the SSH model describes the evolution of a state |𝑎⟩. See FIGURE 1.2. The bulk Hamiltonian is
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𝑎
(1)
𝑛 𝑎

(2)
𝑛

a ^

𝑛-th cell

Figure 1.2: A schematic dimer chain in the SSH model

given by

𝐻 =
∑︁
𝑛∈Z

a
(
|𝑛, 1⟩⟨𝑛, 2| + |𝑛, 2⟩⟨𝑛, 1|

)
+ ^

(
|𝑛 + 1, 1⟩⟨𝑛, 2| + |𝑛 − 1, 2⟩⟨𝑛, 1|

)
(1.1.1)

where a, ^ > 0 and the summation is only formal. Here we have used the Dirac bra-ket notation

[8] where |𝑛, 1⟩ is the state/orbital on site-1 of the 𝑛-th cell, and ⟨𝑛, 2| is the orthogonal projection

onto site-2 of the 𝑛-th cell, etc. Let the state vector be |𝑎⟩ and 𝑎 (1)𝑛 = ⟨𝑛, 1|𝑎⟩, 𝑎 (2)𝑛 = ⟨𝑛, 2|𝑎⟩, we

have
i ¤𝑎 (1)𝑛 = a𝑎

(2)
𝑛 + ^𝑎 (2)

𝑛−1

i ¤𝑎 (2)𝑛 = a𝑎
(1)
𝑛 + ^𝑎 (1)

𝑛+1

(1.1.2)

By Floquet-Bloch theory, the generalized eigenfunctions of this system is of the form 𝑎𝑛 (𝑘) ∼

𝑒i𝑘𝑛𝐴, where 𝑘 ∈
[
− 𝜋

Δ
, 𝜋
Δ

)
where Δ is the lattice constant. Now the dispersion relation is given by

solving

det


−𝜔(𝑘) a + ^𝑒−i𝑘Δ

a + ^𝑒i𝑘Δ −𝜔(𝑘)

 = 0

whence

𝜔(𝑘) = ±
���a + ^𝑒i𝑘Δ

��� = ±
√︃
a2 + ^2 + 2a^ cos

(
𝑘Δ

)
(1.1.3)

The union of the images of 𝜔(𝑘) gives the band of system (1.1.2). If a ≠ ^, it is impossible that

the bands touch, namely the band gap closes, since it would require a + ^𝑒i𝑘Δ = 0. So the band gap

closes if and only if a = ^ at 𝑘 = ± 𝜋
Δ

, and the Bloch wave 𝑎 ∼ 𝑒±i𝜋𝐵 ∼ (−1)𝑛𝐵 is “alternating” in

amplitude; moreover, the energy at which the gap closes is 𝜔(±𝜋/Δ) = 0. See FIGURE 1.3, where

the graphs of 𝜔(𝑘) with different choices of ^, while keeping a constant, are plotted.
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0 𝜋/Δ 2𝜋/Δ

−2^

0

2^
a = 0.5^

a = 2^
a = ^

𝑘

𝜔

Figure 1.3: Dispersion relation of linear SSH model for different choices of a and ^

1.2 HVA model

In [1], the intracell coupling a of SSH system (1.1.2) is replaced with an amplitude-dependent

nonlinear coupling coefficient:

−i ¤𝑎 (1)𝑛 = 𝜔0𝑎
(1)
𝑛 + a

(���𝑎 (2)𝑛 − 𝑎 (1)𝑛
���2) 𝑎 (2)𝑛 + ^𝑎 (2)

𝑛−1

−i ¤𝑎 (2)𝑛 = 𝜔0𝑎
(2)
𝑛 + a

(���𝑎 (2)𝑛 − 𝑎 (1)𝑛
���2) 𝑎 (1)𝑛 + ^𝑎 (1)

𝑛+1

(1.2.1)

where 𝜔0 is the “self-resonance” frequency, or on-site energy of the hopping electron in the linear

SSH model. a(𝐴2
𝑛) where 𝐴𝑛 =

��𝑎 (2)𝑛 − 𝑎 (1)𝑛
�� is monotonically decreasing from a0 > ^ to a∞ < ^.

We call this the HVA model. See FIGURE 1.4 for a schematic plot of the HVA model, analogous

to FIGURE 1.2 for the (linear) SSH model. Experimentally, this system is realized by a chain of

𝑛-th cell

𝑎
(1)
𝑛 𝑎

(2)
𝑛

a
a

(��𝑎 (1)𝑛 − 𝑎 (2)𝑛
��2)

^

electric circuits, see FIGURE 1.4.

The infinite-dimensional dynamical system (1.2.1) is the original form which models the non-

9



Figure 1.4: A unit cell of electric circuit chain implementing model (1.2.1), FIGURE 1(b) of [1].

linear version of SSH model introduced in [1]. There, the authors remark that (1.2.1) have an

“local“ intensity-induced topological phase change. In fact, if 𝐴𝑛 is small, the intracell coupling

is weaker than ^, corresponding to the topological trivial regime of (1.1.2), and if 𝐴𝑛 is large, the

topological nontrivial regime of (1.1.2). Since the band touch at 𝑘 = 𝜋/Δ, one can study the sys-

tem by looking at slow-changing envelopes of Bloch wave 𝑒𝑖𝑛𝑘 = (−1)𝑛. The envelope profile 𝑎𝑛

satisfies 𝑎𝑛 ∼ (−1)𝑛𝑏𝑛, for 𝑛 ∈ Z.

Proposition 1.1 (Equivalent discrete system).
{
𝑎
(1,2)
𝑛 (𝑡)

}
𝑛∈Z

is a solution to the dynamical system

(1.2.1), if and only if there exists an infinite sequence of C2 vectors
{
𝑏
(1,2)
𝑛 (𝑡)

}
𝑛∈Z

, which is given

by

𝑎
(1)
𝑛 = (−1)𝑛i𝑒−i𝜔0𝑡𝐵0𝑏

(1)
𝑛 ((a0 − ^)𝑡)

𝑎
(2)
𝑛 = (−1)𝑛𝑒−i𝜔0𝑡𝐵0𝑏

(2)
𝑛 ((a0 − ^)𝑡)

(1.2.2)

and solves the DS

¤𝑏 (1)𝑛 − 𝛿−1
(
𝑏
(2)
𝑛 − 𝑏 (2)

𝑛−1

)
− N

(���𝑏 (1)𝑛 + i𝑏 (2)𝑛
���2) 𝑏 (2)𝑛 = 0

¤𝑏 (2)𝑛 − 𝛿−1
(
𝑏
(1)
𝑛+1 − 𝑏

(1)
𝑛

)
+ N

(���𝑏 (1)𝑛 + i𝑏 (2)𝑛
���2) 𝑏 (1)𝑛 = 0

(1.2.3)

Where the discreteness parameter 𝛿 =
a0
^
− 1, a0 = a(0), and “threshold amplitude” 𝐵0 is the
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unique real number such that a(𝐵2
0) = ^. The scaled and always decreasing nonlinearity is given

by

N(𝑟2) =
a(𝐵2

0𝑟
2) − ^

a0 − ^
(1.2.4)

Now formally replacing the difference in (1.2.3) by spatial differentiation:

𝛿−1
(
𝑏
(1)
𝑛+1 − 𝑏

(1)
𝑛

)
→ 𝜕𝑦𝑏1(𝑦 = 𝑛𝛿, 𝑡), 𝛿−1

(
𝑏
(2)
𝑛 − 𝑏 (2)

𝑛−1

)
→ 𝜕𝑦𝑏2(𝑦 = 𝑛𝛿, 𝑡)

and restrict 𝑏 (𝑛)1,2 = 𝑢, 𝑣 to be real, whence

N
(���𝑏 (1)𝑛 + i𝑏 (2)𝑛

���2) = N
(
𝑢2 + 𝑣2)

we obtain the PDE system (1.0.1) the current work studies.

1

N∞

1

𝑟2

N(𝑟2)

N (𝑟2) = a(𝐵2
0𝑟

2)−^
a0−^

Figure 1.5: Left panel: profile of nonlinearity a, FIGURE 1(c) of [1]. Right panel: a typical profile
of a saturable nonlinearity (see SECTION 1.3) N(𝑟2).
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1.3 Basic properties

We next set up the problem mathematically, discuss numerics which exhibit the phenomenon

of convective stabilization of pulses and solitons, and summarize our analytical results.

Throughout this article, we make the following assumptions on the nonlinearity in (1.0.1):

(N1) 𝑠 ↦→ N (𝑠) is monotonically decreasing and smooth for 0 ≤ 𝑠 < ∞.

(N2) lim𝑠→+∞N(𝑠) = N∞ ∈ [−∞, 0)

(N3) N(0) = 1, N(1) = 0

(N4) Let N ′(𝑠) := dN(𝑠)/ d𝑠. We assume

𝐾 := −N ′(1) > 0. (1.3.1)

We say that N(𝑠) is a saturable nonlinearity if lim𝑠→+∞N(𝑠) = N∞ ∈ (−∞, 0) exists and

N(𝑠) together with its derivatives converge sufficiently rapidly as 𝑠 → ∞. Otherwise, we say

that N(𝑠) is a general nonlinearity. An example of a saturable nonlinearity is N(𝑟2) = 1−𝑟2

1+𝑟2 . An

example of a general nonlinearity is N(𝑟2) = 1 − 𝑟2.

The system (1.0.1) is a semilinear hyperbolic system, whose characteristic lines are given by

solutions of 𝑑𝑦/𝑑𝑡 = ±1. Any C1 solution satisfies the conservation law

𝜕𝑡
(
𝑢2 + 𝑣2) + 𝜕𝑦 ( − 2𝑢𝑣

)
= 0. (1.3.2)

The conservation law (1.3.2) plays a role in our classification of traveling wave solutions in CHAP-

TER 2 and in the proof and application of finite propagation speed in SECTION 3.4 and CHAPTER

4. The system (1.0.1) does not appear to be of Hamiltonian type. It has certain discrete symmetries

which we summarize below.
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Proposition 1.2 (Discrete Symmetries). System (1.0.1) has the following discrete symmetries. As-

suming 𝑏(𝑦, 𝑡) = [𝑢(𝑦, 𝑡), 𝑣(𝑦, 𝑡)] is a solution, then

[
P𝑏

]
(𝑦, 𝑡) := [−𝑢(𝑦, 𝑡),−𝑣(𝑦, 𝑡)][

T 𝑏
]
(𝑦, 𝑡) := [𝑢(𝑦,−𝑡),−𝑣(𝑦,−𝑡)][

C𝑏
]
(𝑥, 𝑡) := [𝑣(−𝑦,−𝑡), 𝑢(−𝑦,−𝑡)]

are also solutions. Moreover,

P2 = T 2 = C2 = id

PC = CP, PT = TP, TC = CPT

1.4 Overview of phenomena motivating this work

System (1.0.1) has spatially uniform equilibria: either 𝑏 = 0 or those 𝑏 for which |𝑏 | = 1 viz.

N(𝑏) = 0. We classify the traveling wave solutions (TWS) of (1.0.1), 𝑏∗(𝑦, 𝑡) = 𝑏∗(𝑥 := 𝑦 − 𝑐𝑡),

which tend to asymptotic equilibria at both infinities:

lim
𝑥→±∞

𝑏∗(𝑥) = constants

These traveling wave solution profiles, 𝑏∗(𝑥), given by heteroclinic orbits in the phase portrait

of a 2 dimensional dynamical system obtained from (1.0.1). We interpret numerically observed

[9][1] stability of the cores of kinks and supersonic pulses with an appropriate notion of spectral

stability; see DEFINITION 5.1.

1.4.1 Convective stability and weighted spaces

Consider a supersonic (|𝑐 | > 1) pulse, 𝑏∗, whose profile is a heteroclinic orbit connecting

distinct equilibria satisfying |𝑏 | = 1. FIGURE 1.6 displays snapshots of the time-evolution of 𝑏∗
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with a small and rapidly decaying (Gaussian) perturbation. A small and localized perturbation at

𝑡 = 0 generates perturbations of the pulse which appear to travel to the left and away from the

traveling pulse core (fixed in the moving frame of reference) while also growing in amplitude.

Note that, in a frame of reference moving with speed 𝑐 > 0, the deviation from an exact traveling

wave profile, when measured within the “window" [𝑅,∞), tends zero as 𝑡 increases; perturbations

exit the window at 𝑥 = 𝑅 as 𝑡 increases. Recall our convention that 𝑥 = 𝑦 − 𝑐𝑡 is the spatial

coordinate in the moving frame with speed 𝑐, where 𝑦 is the spatial coordinate in the non-moving

frame. We say that the supersonic pulse (or its core) is convectively stable. Other examples of

convective stability have been considered in, for example, [10, 11, 12].

For saturable nonlinearities (N∞ > −∞), the perturbation 𝐵(𝑦, 𝑡) = 𝑏(𝑦, 𝑡) − 𝑏∗(𝑦 − 𝑐𝑡) exists

globally in time. However, our a priori bounds on the perturbation (see THEOREM 3.3) does not

preclude 𝐵(𝑦, 𝑡) from growing without bound, for example in the 𝐿∞ norm. As noted, the core of

the traveling wave persists as it “outruns” perturbations that decays faster than some exponential

rate dependent only on 𝑏∗ and the nonlinearity. Such perturbations “lag behind” the supersonic

pulse. For kink solutions which are shown to always be subsonic, the situation is more nuanced.

However, we do observe in numerical simulations that the perturbation only grows as it moves in

the opposite direction as is the speed of the underlying kink.

We capture this stabilization of the traveling wave core by working in weighted function

spaces. In a reference frame moving with the traveling wave solution 𝑏∗, perturbations are studied

as elements of spaces such as 𝐻1 (
R;𝑊 (𝑥) d𝑥

)
. The weight 𝑊 (𝑥) is chosen to be of the exponen-

tial type which is monotone and given by

𝑊 (𝑥) = 𝑒𝑤(𝑥) , 𝑤(𝑥) ∈ R;

see SECTION 5.1.1. If, in the moving frame (speed 𝑐 > 1), the perturbation travels in the direction

of decrease of 𝑤(𝑥) (to the left), then it can be registered in such spaces as decaying if its amplitude

growth rate is not too large.
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Remark 1.3. We note that numerical simulations of the nonlinear PDEs suggest that the perturba-

tion of traveling wave may be growing without bound. (Note that we have no 𝐻1 a priori bound

on the solution; see THEOREM 3.3.) However, as time advances, the perturbation grows in regions

which are further and further away from the traveling wave core. This behavior of the perturbation

is registered as time-decay with respect to the weighted norm. This convective stability scenario

differs from the more typical scenarios in solitary wave stability. For example, in KdV type equa-

tions, which are Hamiltonian and come with an a priori bound on the 𝐻1 norm, the perturbation

remains bounded and is in fact comprised of small amplitude solitary waves and a radiation com-

ponent which together decay in appropriate weighted or local energy norms; see, for example, [10,

11].

1.5 Summary of results

We summarize the results of the present work:

• THEOREM 4.1: For saturable nonlinearities, with assumptions (N1)-(N4) satisfied in SEC-

TION 1.3 with −∞ < N∞ < 0), supersonic pulses (w.l.o.g. 𝑐 > 1) are nonlinearly convec-

tively stable, where the perturbation decays exponentially fast in time, when measured in

𝐻1( [𝑅,∞)) in a frame of reference with speed 𝑐 > 1. In particular, we focus on the core of

a supersonic pulse 𝑏∗.

• THEOREM 7.1: For more general nonlinearities, supersonic pulses are spectrally stable in

an appropriate weighted 𝐿2 space, denoted 𝐿2
𝑤; these weighted spaces are introduced in

SECTION 5.1.1. More specifically, by spectral stability of a traveling wave, we mean that

the 𝐿2
𝑤− spectrum of the linearized operator about the traveling wave profile, 𝑏∗, in a frame

moving with its speed, 𝑐, is contained in the closed left half plane.

• Spectral stability of kinks (|𝑐 | < 1):

(i) THEOREM 8.3: 𝑐 = 0 (static / non-moving kinks).
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(ii) THEOREM 8.8: |𝑐 | < 1 (moving kinks). Spectral stability of moving kinks, provided the

nonlinearity, N , satisfies the additional concavity assumption:

(N5) (Concavity) N(𝑠) is concave on 𝑠 ∈ [0, 1]; equivalently N ′(𝑠) is negative and mono-

tonically decreasing on 𝑠 ∈ [0, 1], and as a result N ′′(𝑠) ≤ 0,

then the kink is spectrally stable.

1.6 Future directions, open questions

We list some possible directions for future investigation and corresponding open questions.

1.6.1 Spectral stability with respect to other, less constrained, norms

Our stability results for pulses (nonlinear and spectral stability) and kinks (spectral stability)

are formulated in function spaces, requiring exponential decay of the perturbation in the direction

of propagation of the traveling wave. It would be of interest to extend these stability results to

spaces with weaker spatial localization requirements; see, for example, [13], [11].

1.6.2 Nonlinear stability with respect to more general perturbations

Our results regarding nonlinear stability of supersonic pulses requires the initial perturbation to

decay at a rate above some threshold (cf. THEOREM 4.1). It would be of interest to investigate the

dynamics in the case where the perturbation’s decay rate is slower. In fact, consider a supersonic

pulse with speed 𝑐 > 1. It can be perturbed into another pulse with speed 𝑐′ > 𝑐, and such a

perturbation indeed does not respect the decay rate bound. It would be interesting to formulate a

selection rule for an asymptotically (𝑡 → +∞) emerging pulse. In particular, does decay rate of

initial perturbation determine the pulse component of the solution that the perturbed pulse even-

tually settles down to? A paradigm is the well-known FKPP [14][15][16] equation exhibits such

selection rules, where the final speed of the front solution depends on the decay rate of the initial

condition.
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1.6.3 Nonlinear stability of kinks

Our spectral stability analysis and numerical simulations (see FIGURE 1.7) suggest that the fam-

ily of spatial translates of a kink is nonlinearly convectively stable. We conjecture the following:

Let 𝑏∗(𝑥) denote a kink and 𝐵0(𝑥) a sufficiently rapidly decaying initial perturbation. Then, there

exists 𝑥0 ∈ R, depending on 𝐵0 (and 𝑏∗(𝑥)), such that the solution 𝑏(𝑥, 𝑡) to (2.0.1) with initial

data 𝑏∗(𝑥) + 𝐵0(𝑥), satisfies

lim
𝑡→∞

𝑏(𝑥, 𝑡) − 𝑏∗(𝑥 − 𝑥0)

𝐻1 ( [𝑅,∞),𝑑𝑥)

= 0 (1.6.1)

where 𝑥 = 𝑦−𝑐𝑡 is the spatial coordinate in the moving frame with speed 𝑐, whereas 𝑦 is the spatial

coordinate in the non-moving frame. The phase shift in (1.6.1) is connected with the zero energy

translation mode of the linearized operator, see THEOREM 8.8 and REMARK 8.9. In contrast,

THEOREM 4.1 on nonlinear and convective (asymptotic) stability of supersonic pulses, requires no

asymptotic phase adjustment. This is corroborated by numerical studies showing no phase shift

in the emerging stable supersonic pulse, see FIGURE 1.6. Note: although there is a zero energy

translation state of the linearized operator in this case as well, this state is not in the appropriate

weighted 𝐿2 space; see THEOREM 7.1 the discussion following PROPOSITION 7.4.

Another question is to clarify the scenario described in REMARK 1.3, which is based on nu-

merical simulations. And a further technical question concerning kinks is whether, for example,

spectral stability can be established if the concavity assumption (N5) (used in (8.3.2)), on the

nonlinearity, is relaxed.

1.6.4 Periodic solutions

System (1.0.1) has a rich family of periodic traveling wave solutions (periodic train waves)

which correspond to nontrivial closed orbits of the 2-D dimensional dynamical system. Their

stability is an open problem.
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1.6.5 Relation between discrete and continuum models

Finally, system (1.0.1) is introduced in [1] as a formal continuum approximation for a nonlinear

discrete array of coupled nonlinear circuits, valid for excitations whose spatial scale is slow on the

inter-dimer length scale . After scaling and nondimensionalization, the discrete system takes the

form (1.2.3). As demonstrated in [1] there is evidence of the pulse-like and kink-like behaviors in

the discrete system (1.2.3). It is of interest to understand the relation between such behaviors that

we study analytically and numerically in (1.0.1) and those observed, thus far only numerically, in

(1.2.3). For example, on what time-scales do the coherent structures observed in the continuum

system (1.0.1) persist for (1.2.3)?

1.7 Notation and conventions

1. Weighted spaces. Following the convention in [10], we define the weighted spaces with

weight𝑊 (𝑥) = 𝑒𝑤(𝑥) where 𝑤(𝑥) is a real-valued function on R as

𝐿2
𝑤 := 𝐿2 (

R, 𝑒𝑤(𝑥) d𝑥
)
, 𝐻1

𝑤 :=
{
𝑓 (𝑥) ∈ 𝐿1

loc : 𝑒𝑤(𝑥) 𝑓 (𝑥) ∈ 𝐻1
}

(1.7.1)

for details of the particular weighted spaces used in this work, see SECTION 5.1.1.

2. Coordinates. The linear stability analysis of this work is always conducted in the frame of

references that travel at the same speeds of the underlying traveling wave solutions. For this

reason, we denote with 𝑦 the spatial coordinate in the non-moving (lab) frame of reference,

cf. (1.0.1), and with 𝑥 = 𝑦 − 𝑐𝑡 the spatial coordinate in the frame of reference traveling with

some speed 𝑐, cf. (2.0.1).

3. Default branch of the square root function. We define function 𝑧 ↦→ √
𝑧 in such a way that

its values have non-negative real parts. In particular,
√

1 = 1 and
√
𝑧 is conformal from the

cut complex plane, C \ (−∞, 0], to the open right-half plane
{
Re𝑧 > 0

}
. For 𝑧 ≤ 0,

√
𝑧 is

continued from above the cut and its values always have non-negative imaginary parts, e.g.,
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√
−1 = i.

4. Pauli matrices. We use the standard convention of defining Pauli matrices, 𝜎0, 𝜎1, 𝜎2 and

𝜎3, as a set of basis in the linear space of 2-by-2 complex matrices:

𝜎0 =


1 0

0 1

 , 𝜎1 =


0 1

1 0


𝜎2 =


0 i

−i 0

 , 𝜎3 =


1 0

0 −1


(1.7.2)

These matrices have the following commutation and anti-commutation relations:

𝜎𝑖𝜎𝑗 = −𝜎𝑗𝜎𝑖 for 𝑖, 𝑗 = 1, 2, 3 and 𝑖 ≠ 𝑗

𝜎2
𝑖 = 𝜎0.

(1.7.3)
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Figure 1.6: Convective stability. Snapshots of perturbed supersonic (𝑐 = 2 > 𝑐0 = 1) pulse of
(1.0.1)) in a reference frame of the same speed. Perturbation at 𝑡 = 0 is concentrated to the right of
its core. Red curve indicates the solution amplitude at different times. Blue dashed curves indicate
the amplitude profile of the unperturbed TWS. The amplitude scales of the different panels are
increasing with 𝑡, and perturbations becomes increasingly large as compared to the unperturbed
pulse, but lags behind and the core is almost restored without any phase shift at 𝑡 = 15.
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Figure 1.7: Numerical evidence for kink’s convective stability. Snapshots of perturbed kink (𝑐 =

0.9) of (1.0.1)) in a reference frame of the same speed. Perturbation at 𝑡 = 0 is concentrated to the
right of its core. Red curve indicates the solution amplitude at different times. Blue dashed curves
indicate the amplitude profile of the unperturbed TWS. The perturbation leaves the kink to the left,
stabilizing in amplitude and travels to the left. The core is almost restored with a phase shift at
𝑡 = 60.
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Chapter 2: Traveling wave solutions

In a moving frame of speed 𝑐 ≠ ±1, (1.0.1) becomes the following, where the spatial coordinate

is denoted by 𝑥 := 𝑦 − 𝑐𝑡:
𝑢𝑡 = 𝑐𝑢𝑥 + 𝑣𝑥 + N(𝑢2 + 𝑣2)𝑣

𝑣𝑡 = 𝑢𝑥 + 𝑐𝑣𝑥 − N(𝑢2 + 𝑣2)𝑢
(2.0.1)

For 𝑐 ≠ 1, the system (2.0.1) has the equilibria:

𝑏∗ = 𝑏𝑂 =


0

0

 and 𝑏∗ = 𝑏\ =


cos \

sin \

 where \ ∈ R/2𝜋Z (2.0.2)

The profile of a traveling wave solution (TWS) profile, 𝑏∗ =

[
𝑢(𝑥) 𝑣(𝑥)

]T
, of speed 𝑐 ≠ ±1 is

an orbit of the dynamical system

𝑢′ =
N(𝑢2 + 𝑣2)

1 − 𝑐2
(
𝑢 + 𝑐𝑣

)
𝑣′ =

N(𝑢2 + 𝑣2)
1 − 𝑐2

(
− 𝑐𝑢 − 𝑣

) (2.0.3)

If |𝑐 | > 1, we say the TWS is supersonic and if |𝑐 | < 1 say that it is subsonic.

2.1 Basic properties of system (2.0.3)

(i) The set of fixed points consists exactly of the origin 𝑂, and 𝜕𝐵1(0) = {(𝑢, 𝑣) : 𝑢2 + 𝑣2 = 1},

irrespective of speed 𝑐; note that N(1) = 0 as required in SECTION 1.3.

(ii) There is a conserved quantity 𝐸𝑐 on any orbit 𝑏(𝑥) =
[
𝑢(𝑥) 𝑣(𝑥)

]T
of (2.0.3) with speed

|𝑐 | ≠ 1.

𝐸𝑐 (𝑢, 𝑣) =
−1 + 𝑐

2
(𝑢 − 𝑣)2 + 1 + 𝑐

2
(𝑢 + 𝑣)2 = 𝑐(𝑢2 + 𝑣2) + 2𝑢𝑣 (2.1.1)
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which may be referred to as 𝐸𝑐, 𝐸𝑐 [𝑏] etc., when the context is clear.

For a fixed 𝑐, the level curves

Γ𝑐 (𝐸) = {(𝑢, 𝑣) : 𝐸𝑐 (𝑢, 𝑣) = 𝐸}

are families either of hyperbolas , for |𝑐 | < 1 ,with a fixed pair of asymptotes depending only

on 𝑐; or of ellipses, for |𝑐 | > 1, of fixed eccentricity which again only depend on 𝑐.

In particular

(a) For −1 < 𝑐 < 1 and 𝐸 ≠ 0, 𝐸𝑐 can be expressed as

𝐸𝑐 (𝑢, 𝑣) =
(
(𝑢 + 𝑣)/

√
2
)2(

1/
√

1 + 𝑐
)2 −

(
(−𝑢 + 𝑣)/

√
2
)2(

1/
√

1 − 𝑐
)2 = 𝐸 (2.1.2)

stands for the equation of a pair of hyperbolas of which the asymptotes are obtained by

setting 𝐸 = 0,

𝑢

(√
1 + 𝑐 ±

√
1 − 𝑐

)
= 𝑣

(
−
√

1 + 𝑐 ±
√

1 − 𝑐
)

(2.1.3)

(b) For −1 < 𝑐 < 1 and 𝐸 = 0, Γ𝑐 (𝐸) = Γ𝑐 (0) is a pair of asymptote lines (2.1.3).

(c) Γ𝑐 (𝐸) is an ellipse if either both 𝑐 > 1 and 𝐸 > 0, or both 𝑐 < −1 and 𝐸 < 0. WLOG

let 𝑐 > 1 and let 𝐸0 be given, the equation

𝐸𝑐 (𝑢, 𝑣) =
(
(𝑢 + 𝑣)/

√
2
)2(

1/
√

1 + 𝑐
)2 +

(
(−𝑢 + 𝑣)/

√
2
)2(

1/
√
−1 + 𝑐

)2 = 𝐸 (2.1.4)

is that of an ellipse if and only if 𝐸 > 0, whose long axis is on line 𝑢 = −𝑣, and whose

short axis is on line 𝑢 = 𝑣. Similarly, let 𝑐 < −1 then if and only if 𝐸 < 0, Γ𝑐 (𝐸) is

an ellipse given again given by (2.1.4) but whose long axis is on line 𝑢 = 𝑣, and whose

short axis is on line 𝑢 = −𝑣.

(d) For |𝑐 | > 1, the image of Γ𝑐 (0) is 𝑂, the origin; if 𝑐 > 1 and 𝐸 < 0 (or 𝑐 < −1 and

𝐸 > 0) then Γ𝑐 (𝐸) = ∅.
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(iii) The images of an orbit is either a fixed point of (2.0.3), or is a subset of a level curve Γ𝑐 (𝐸);

in the latter case, it is a connected component of Γ𝑐 (𝐸) \ (𝑂 ∪ 𝜕𝐵1(0)) for some 𝑐 ≠ ±1 and

𝐸 ∈ R provided Γ𝑐 (𝐸) is not empty.

(iv) System (2.0.3) has no homoclinic orbit except for fixed points.

In the following proposition, we discuss relations among traveling wave orbits, which are im-

plied by the symmetries of (1.0.1). A TWS with speed 𝑐 and conserved quantity 𝐸 given by (2.1.1)

will be denoted 𝑏𝑐,𝐸

Proposition 2.1 (Discrete symmetries of the family of traveling wave solutions). Let 𝑏(𝑥) be the

profile of a TWS with speed 𝑐. The corresponding solution 𝑏(𝑦 − 𝑐𝑡) of (1.0.1) can be transformed

into other TWSs under discrete transformations P, T and C given in PROPOSITION 1.2. In par-

ticular, the profiles of and corresponding conserved quantity 𝐸𝑐 of the transformed traveling wave

solution is listed below.

(i) P𝑏(𝑥) is a TWS with speed 𝑐 whose profile is −𝑏(𝑥) and 𝐸𝑐 [P𝑏] = 𝐸𝑐 [𝑏(𝑥)].

(ii) T 𝑏(𝑥) is a TWS with speed −𝑐 whose profile is 𝜎3𝑏(𝑥) and 𝐸−𝑐 [T 𝑏] = −𝐸𝑐 [𝑏(𝑥)].

(iii) C𝑏(𝑥) is a TWS with speed 𝑐 whose profile is 𝜎1𝑏(−𝑥) and 𝐸𝑐 [C𝑏] = 𝐸𝑐 [𝑏(𝑥)].

Remark 2.2. N.B. In view of PROPOSITION 2.1 we shall focus, particularly in our stability analyses,

on the case of right-moving pulses and kinks, 𝑐 ≥ 0. The linearized spectra of TWSs indeed

observe these symmetries, see THEOREM 6.7. A complete classification of all TWS solutions, and

their relation through discrete transformations, is given in APPENDIX 2.4.

2.2 Homoclinic traveling wave solutions; pulses and kinks

System (2.0.3) has fixed points at the origin and on the unit circle, and apart from which there

are no homoclinic orbits. There are periodic orbits in the supersonic regime, which we do not study

in this work. Of particular interest are so-called kink/antikink (moving domain wall) solutions

and pulse solutions.
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A kink solution 𝑏𝑐,0(𝑥) with 0 < 𝑐 < 1 is an orbit connecting the origin to the unit circle,

with 𝐸 [𝑏𝑐,0] = 0, while its amplitude grows to 1 as 𝑥 → ∞. The kink and antikink solutions are

orbits which are parts the asymptotic lines of the family of hyperbolas given by (2.1.2), bounded

by the trivial fixed point 𝑏𝑂 =

[
0 0

]T
and some 𝑏\ =

[
cos \ sin \

]T
. Since the asymptotic

lines go through the origin, for a fixed 𝑐, there is constant \ such that 𝑢(𝑥) = 𝑟 (𝑥) cos \ and

𝑣(𝑥) = 𝑟 (𝑥) sin \, where 𝑟 (𝑥) is the amplitude of such solutions. In FIGURE 2.1 are plotted some

representative kinks and antikinks, along with their discrete transformations. We define kinks to

be solutions among those depicted in FIGURE 2.1 whose amplitudes grow in the same direction as

the direction of its speed 𝑐, and antikinks to be those whose amplitudes decays in the direction of

𝑐.

Now plug 𝑢(𝑥) = 𝑟 (𝑥) cos \ and 𝑣(𝑥) = 𝑟 (𝑥) sin \ in (2.1.2) and set 𝐸 = 0:

0 = 𝑟2
(
(cos \ + sin \)/

√
2
)2(

1/
√

1 + 𝑐
)2 − 𝑟2

(
(− cos \ + sin \)/

√
2
)2(

1/
√

1 − 𝑐
)2

=⇒ (1 + 𝑐)
(
1 + sin 2\

)
= (1 − 𝑐)

(
1 − sin 2\

)
since 𝑟 (𝑥) ≠ 0, and immediately we have

sin 2\ = −𝑐 (2.2.1)

There are four \ ∈ R/2𝜋Z that satisfy (2.2.1). Owing to PROPOSITION 2.1, we only need to work

with \𝑐,0 = −1
2 arcsin 𝑐 with 𝑐 ≥ 0. Namely, the eight orbits in FIGURE 2.1 are given by that of 𝑏𝑐

which corresponds to the solid blue line in FIGURE 2.1a or its discrete transformations. Now from

the first equation of (2.0.3):

𝑟′(𝑥) cos \𝑐,0 = 𝑟 ·
N

(
𝑢2 + 𝑣2)

1 − 𝑐2
(
cos \𝑐,0 − sin \𝑐,0 sin 2\𝑐,0

=
𝑟N

(
𝑟2)

1 − 𝑐2 cos \𝑐,0
(
1 − 2 sin2 \𝑐,0

)
=
𝑟N

(
𝑟2)

1 − 𝑐2 cos \𝑐,0 cos 2\𝑐,0
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since cos 2\𝑐,0 =
√

1 − 𝑐2 we have the following equation for the kink profile 𝑏𝑐 = 𝑏𝑐,0

𝑟′(𝑥) = 𝑟 (𝑥)N (𝑟 (𝑥)2)
√

1 − 𝑐2
, 𝑟 (0) = 1

2

𝑢(𝑥) = 𝑟 (𝑥) cos \𝑐,0

𝑣(𝑥) = 𝑟 (𝑥) sin \𝑐,0

(2.2.2)

where 𝑟 (𝑥) > 0 and \𝑐,0 = −1
2 arcsin 𝑐. An antikink with 0 ≤ 𝑐 < 1 is similar to a kink, except that

its amplitude decays to 0 as 𝑥 → ∞.

(a) (b)

Figure 2.1: Kinks, antikinks and their relation through discrete symmetries. (a) 𝑐 ∈ [0, 1) (b)
𝑐 ∈ (−1, 0]. In both of the plots, solid lines stand for kinks whose amplitudes |𝑏 | increase in the
same direction of their speed 𝑐; dashed lines are antikinks, whose amplitudes decrease against the
direction of their speed 𝑐.

A pulse solution 𝑏𝑐,𝐸 is a heteroclinic orbit connecting fixed points on the unit circle with speed

𝑐 and 𝐸𝑐 [𝑏𝑐,𝐸 ] = 𝐸 where 𝐸 is bounded by

−1 + 𝑐 < 𝐸 < 1 + 𝑐

Depending on whether |𝑐 | > 1 or |𝑐 | < 1 they are called supersonic or subsonic pulses. For super-
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sonic pulses which we will study extensively, we require 𝑢(0) = 𝑣(0) =

√︃
𝐸

2(𝑐+1) , corresponding

to the solid blue line in FIGURE 2.2a and the solid green line in FIGURE 2.2b. Subsonic pulses are

plotted in FIGURE 2.3.

2.3 Convergence rate of heteroclinic orbits to asymptotic equilibria

We next give formulas for the endpoints of the heteroclinic orbits, i.e., the equilibrium asymp-

totic states of traveling wave solutions, and then study the rates at which these equilibria are ap-

proached.

Assume that TWS, 𝑏∗(𝑥), with speed 𝑐 and phase portrait energy 𝐸𝑐 [𝑏∗] = 𝐸 converges to an

equilibrium (fixed point)
[
cos \ sin \

]T
as 𝑥 → ∞ or as 𝑥 → −∞. Then, by (2.1.1), \ satisfies

𝐸𝑐 [𝑏∗] = 𝑐 + 2 cos \ sin \ = 𝐸 or sin 2\ = 𝐸 − 𝑐. (2.3.1)

There are four different solutions of (2.3.1):

\ = \𝑐,𝐸 = −1
2

arcsin(𝐸 − 𝑐) or \ =
𝜋

2
− \𝑐,𝐸 ,−

𝜋

2
− \𝑐,𝐸 , 𝜋 + \𝑐,𝐸 (2.3.2)

Along a trajectory in the phase portrait, as (𝑢(𝑥), 𝑣(𝑥)) approaches its asymptotic state
[
𝑢0 𝑣0

]T
=[

cos \ sin \
]T

on the circle, along the stable manifold of its asymptotic equilibria. The behavior,

near an equilibrium (𝑢0, 𝑣0), is characterized by the constant coefficient linearization of (2.0.3):

d
d𝑥


𝛿𝑢

𝛿𝑣

 = − 2𝐾
1 − 𝑐2


𝑢0 + 𝑐𝑣0

−𝑐𝑢0 − 𝑣0


[
𝑢0 𝑣0

] 
𝛿𝑢

𝛿𝑣

 . (2.3.3)
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The matrix in (2.3.3) has eigenpairs:

` = 0, ®𝑣0 =


−𝑣0

𝑢0

 , (2.3.4)

`\ = − 2𝐾
1 − 𝑐2 cos 2\, ®𝑣\ =


𝑢0 + 𝑐𝑣0

−𝑐𝑢0 − 𝑣0

 (2.3.5)

Now we have the asymptotic behavior of kink 𝑏𝑐,0 as 𝑥 → ∞:


𝛿𝑢(𝑥)

𝛿𝑣(𝑥)

 ∼

cos \𝑐,0

sin \𝑐,0

 exp
(
− 2𝐾
√

1 − 𝑐2
𝑥

)
(2.3.6)

and as |𝑥 | → ∞, for kinks


𝛿𝑢(𝑥)

𝛿𝑣(𝑥)

 ∼

𝑢±∞ + 𝑐𝑣±∞

−𝑐𝑢±∞ − 𝑣±∞

 exp
(
− 2𝐾
𝑐2 − 1

√︁
1 − (𝐸 − 𝑐)2

��𝑥��) (2.3.7)

The translation modes 𝜕𝑥𝑏∗(𝑥) has the same exponential decaying behavior, viz., for kinks, as

𝑥 → ∞,

𝜕𝑥


𝑢(𝑥)

𝑣(𝑥)

 ∼ exp
(
− 2𝐾
√

1 − 𝑐2
𝑥

)
(2.3.8)

and as |𝑥 | → ∞, for supersonic pulses

𝜕𝑥


𝑢(𝑥)

𝑣(𝑥)

 ∼ exp
(
− 2𝐾
𝑐2 − 1

√︁
1 − (𝐸 − 𝑐)2

��𝑥��) (2.3.9)

2.4 A complete list of the bounded traveling wave solutions

The following list of bounded TWS types is exhaustive.
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(a) (b)

Figure 2.2: Supersonic pulses and their relation through discrete symmetries. (a) 𝑐 > 1 (b) 𝑐 < −1.

(a) (b)

Figure 2.3: Subsonic pulses and their relation through discrete symmetries. (a) 𝑐 ≥ 0 (b) 𝑐 ≤ 0.

1. Equilibria. These corresponds to spatially constant time-independent solutions of (1.0.1):

{
[0, 0]

}
∪

{[
cos \, sin \

]
: \ ∈ (−𝜋, 𝜋]

}
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which are TWSs of arbitrary speeds 𝑐 ∈ R.

2. Kinks and antikinks. For each 0 ≤ 𝑐 < 1, there are four kink-like solutions; in particular, they

are 𝑏𝑐,0, P𝑏𝑐,0 which are kinks, and CP𝑏𝑐,0, C𝑏𝑐,0 which are antikinks; for each −1 < 𝑐 ≤ 0,

there are four kink-like solutions. In particular, they are CPT 𝑏 |𝑐 |,0 = TC𝑏 |𝑐 |,0, CT 𝑏 |𝑐 |,0

which are kinks, and T 𝑏 |𝑐 |,0, PT 𝑏 |𝑐 |,0 which are antikinks. See FIGURE 2.1.

TWSs of all the following types are invariant under C.

3. Subsonic pulses. In each of the four following cases there are two subsonic pulse solutions.

For each 0 ≤ 𝑐 < 1 and each 0 < 𝐸 < 1 + 𝑐 they are 𝑏𝑐,𝐸 and P𝑏𝑐,𝐸 ; for each 0 ≤ 𝑐 < 1

and each −1 + 𝑐 < 𝐸 < 0 they are T 𝑏−𝑐,|𝐸 | and PT 𝑏−𝑐,|𝐸 |; for each −1 < 𝑐 < 0 and each

0 < 𝐸 < 1 + 𝑐 they are T 𝑏 |𝑐 |,𝐸 and PT 𝑏 |𝑐 |,𝐸 ; for each −1 < 𝑐 < 0 and each −1 + 𝑐 < 𝐸 < 0

they are 𝑏𝑐,|𝐸 | and P𝑏𝑐,|𝐸 |. For each of the following cases there are four supersonic pulse

solutions, except for the marginal cases which will be indicated. For each 𝑐 > 1 and each

0 < −1 + 𝑐 ≤ 𝐸 ≤ 1 + 𝑐, these are 𝑏𝑐,𝐸 , P𝑏𝑐,𝐸 which respectively degenerates to ±[1, 1]/
√

2

at 𝐸 = 1 + 𝑐, and T 𝑏−𝑐,−𝐸 and PT 𝑏−𝑐,−𝐸 which respectively degenerates to ±[−1, 1]/
√

2

at 𝐸 = −1 + 𝑐. For each 𝑐 < −1 and each −1 + 𝑐 ≤ 𝐸 ≤ 1 + 𝑐 < 0, they are T 𝑏 |𝑐 |,|𝐸 |

and PT 𝑏 |𝑐 |,|𝐸 | which respectively degenerates to ±[−1, 1]/
√

2 at 𝐸 = −1 − 𝑐, and 𝑏𝑐,𝐸 and

P𝑏𝑐,𝐸 which respectively degenerates to ±[1, 1]/
√

2 at 𝐸 = −1 + 𝑐. See FIGURE 2.2.

4. Periodic wave trains. For each of the following cases there is one periodic wave train solu-

tion. In particular, for each 𝑐 > 1 and 0 < 𝐸 < 1 − 𝑐, it is counterclockwise and “small”;

for each 𝑐 > 1 and each 𝐸 > 1 + 𝑐, it is clockwise and “large”; for each 𝑐 < −1 and

−1 + 𝑐 < 𝐸 < 0 it is clockwise and “small”; for each 𝑐 < −1 and each 𝐸 < −1 − 𝑐 it is

counterclockwise and “large”.
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Figure 2.4: A phase diagram of traveling wave solutions of system (1.0.1), equivalently the orbits
of (2.0.3)
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Chapter 3: Nonlinear dynamics around traveling wave solutions

Only in this section, we require the nonlinearity to be saturable, see SECTION 1.3. We write

down the PDE satisfied by a perturbation

𝐵(𝑥, 𝑡) =

𝑈 (𝑥, 𝑡)

𝑉 (𝑥, 𝑡)


on top of some TWS 𝑏∗, as (3.1.1). We then prove some well-posedness results with the help

of standard fixed-point techniques and Grönwall integral inequalities. We also prove the finite

propagation of data as a result of the hyperbolicity of (3.1.1), with energy-type arguments. With

such result, we will provide a growth bound on arbitrary perturbations, as well as the convective

stability of supersonic pulses, if the rate of decay of the initial perturbation 𝐵0(𝑥) is fast enough as

𝑥 → ∞.

3.1 Local and global well-posedness

Consider (2.0.1) with a perturbed TWS at 𝑡 = 0. Let 𝑏0(𝑥) = 𝑏∗(𝑥)+𝐵0(𝑥) where 𝐵0(𝑥) is a per-

turbation on a TWS 𝑏∗(𝑥). Plug 𝑏(𝑥, 𝑡) = 𝑏∗(𝑥)+𝐵(𝑥, 𝑡) in (2.0.1) then 𝐵(𝑥, 𝑡) =
[
𝑈 (𝑥, 𝑡) 𝑉 (𝑥, 𝑡)

]
solves the IVP given by:


𝑈

𝑉

 𝑡 = Σ


𝑈

𝑉

𝑥 + 𝑁∗
(
𝑥;𝑈 (𝑥, 𝑡), 𝑉 (𝑥, 𝑡)

)
:=


𝑐 1

1 𝑐



𝑈

𝑉

𝑥 +

N

(
𝑟∗(𝑥)2)𝑉

−N
(
𝑟∗(𝑥)2)𝑈

 +

𝛿N∗(𝑥;𝑈,𝑉)𝑣∗(𝑥)

−𝛿N∗(𝑥;𝑈,𝑉)𝑢∗(𝑥)


(3.1.1)
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where 𝑟∗(𝑥) ≡ |𝑏∗(𝑥) | =
√︁
𝑢2
∗ (𝑥) + 𝑣2

∗ (𝑥) and

𝛿N∗(𝑥;𝑈,𝑉) := N
( (
𝑢∗(𝑥) +𝑈

)2 +
(
𝑣∗(𝑥) +𝑉

)2
)
− N

(
𝑢∗(𝑥)2 + 𝑣∗(𝑥)2) (3.1.2)

with initial data 𝐵(𝑥, 0) = 𝐵0(𝑥). By Duhamel’s principle given initial data 𝐵0(𝑥), we have another

integral version of

𝐵(𝑥, 𝑡) = 𝑇𝑐 (𝑡)𝐵0(𝑥) +
∫ 𝑡

0
𝑇𝑐 (𝑡 − 𝑡′)𝑁∗

(
𝑥; 𝐵(𝑥, 𝑡′)

)
d𝑡′ (3.1.3)

with

𝑇𝑐 (𝑡) = exp
©«𝑡


𝑐 1

1 𝑐

 𝜕𝑥
ª®®¬

stands for a semigroup generated in spaces in which solutions are required to live. A solution

𝐵(𝑥, 𝑡) of (3.1.3) is called a mild solution of 3.1.1. Note that 𝐻𝑠 can be defined (see CHAPTER 6

of [17]) to be those 𝑓 (𝑥) ∈ D′ (
R

)
of which the Fourier transform satisfies:

 𝑓 2
𝐻𝑠

:=
∫
R

(
1 + |𝑘 |2

) 𝑠�� 𝑓 (𝑘)��2 d𝑘 < ∞

For 𝑓 ∈ 𝐻𝑠, Fourier transform with respect to 𝑥 of 𝑇𝑐 (𝑡) 𝑓 (𝑥) gives

(
𝑇𝑐 (𝑡) 𝑓

)∧(𝑘) = exp
©«i


𝑐 1

1 𝑐

 𝑘𝑡
ª®®¬ 𝑓 (𝑘)

Therefore 𝑇𝑐 (𝑡) is a unitary group on 𝐻𝑠 for all 𝑠 ∈ R by Plancherel’s identity. In particular, it is a

unitary group on 𝐿2 and 𝐻1, which suffice for our application.

To prove the following well-posedness results, we will need some properties of the nonliearity

𝑁∗ in (3.1.1) summarized in the following proposition and proved in APPENDIX 3.2:

Proposition 3.1. Consider the nonlinear mapping 𝑁∗(𝐵) = 𝑁∗
(
𝑥;𝑈 (𝑥), 𝑉 (𝑥)

)
given implicitly in

(3.1.1). 𝑁∗ as a mapping only depends on the nonlinearity profile N∗(𝑟2) and the TWS 𝑏∗.
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For 𝑁∗, the following hold:

1. 𝑁∗ is globally Lipschitz on 𝐿2. Namely, for any 𝐵, �̃� ∈ 𝐿2, there is a constant independent

𝐵, �̃�, such that 𝑁∗(𝐵) − 𝑁∗(�̃�)

𝐿2 ≤ 𝐶

𝐵 − �̃�

𝐿2 (3.1.4)

2. 𝑁∗ is locally Lipschitz on 𝐻1. In particular, for any 𝐵, �̃� ∈ 𝐻1, there is a constant 𝐶

independent of 𝐵, �̃� such that

𝑁∗(𝐵) − 𝑁∗(�̃�)

𝐻1 ≤ 𝐶

(
1 + min

{𝐵
𝐻1 ,

�̃�
𝐻1

})𝐵 − �̃�

𝐻1 (3.1.5)

As a special case, for any 𝐵 ∈ 𝐻1,

𝑁∗(𝐵)

𝐻1 ≤ 𝐶

𝐵
𝐻1 (3.1.6)

3.2 Proof of PROPOSITION 3.1

Recall

𝑁∗
(
𝑥; 𝐵

)
=


N

(
𝑟2
∗
)
𝑉 + 𝛿N∗

(
𝑥; 𝐵

)
𝑣∗

−N
(
𝑟2
∗
)
𝑈 − 𝛿N∗

(
𝑥; 𝐵

)
𝑢∗

 =


I1 + II1

I2 + II2

 (3.2.1)

where N
(
𝑟2) is bounded, real-valued and sufficiently smooth, satisfying N(0) = 1, N(1) = 0 and

𝑟2 = 1 is the only zero of N
(
𝑟2) . Moreover, there is N∞ < 0 such that

��N (
𝑟2) − N∞

�� = O
(
𝑟−𝛼)

as 𝑟 → ∞, and for each 𝑘 = 1, 2, · · · there is 𝐶 > 0 such that
��N (𝑘) (𝑟2) �� = O

(
𝑟−𝛼−𝑘

)
as 𝑟 → ∞.

Moreover, 𝑏∗, the TWS we work with, as well as its components and all their derivatives with

respect to 𝑥, asymptotes to their respective limits exponentially as 𝑥 → ±∞, and are all bounded,

in particular. WLOG we only need to work out the estimate details for terms I1 and II1 in (3.2.1),

since those for I2 and II2 are almost identical.
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3.2.1 Self-mapping properties

Estimates for I1 on 𝐻1

If 𝑉 ∈ 𝐻1 we have
𝑁 (

𝑟2
∗
)
𝑉


𝐿2

≤ 𝐶
𝑉

𝐿2 , also (𝑉 being weakly differentiable), for each 𝑥:

����� [N (
𝑟∗(𝑥)2)𝑉 (𝑥)]

𝑥

����� ≤ ���N(𝑟2
∗)𝑉 ′ + 2N ′(𝑟2

∗)𝑟∗𝑟′∗𝑉
�� ≤ 𝐶 [��𝑉 ′(𝑥)

�� + ��𝑉 (𝑥)��]
Thus

𝑁
(
𝑟∗(𝑥)2)𝑉 (𝑥) ∈ 𝐻1 (

R𝑥

)𝑁 (
𝑟∗(𝑥)2)𝑉 (𝑥)

𝐻1
(
R𝑥

) ≤ 𝐶
𝑉 ∥𝐻1

Where 𝐶 only depends on 𝑏∗ and the profile of N∗.

Estimates for II1 in 𝐿2

The following calculus lemma will be repeatedly used in the sequel.

Lemma 3.2. Let [ ∈ Rℓ, and define

𝐹
(
𝑥, [

)
∈ C1

(
R𝑥 ×Rℓ

[,R
𝑘
)

(3.2.2)

with ℓ, 𝑘 being positive integers. Assume

(i) 𝐹 (𝑥, 0) = 0 for all 𝑥 ∈ R, and 𝐹 is bounded.

(ii) There is a nonnegative continuous function 𝑓 ≥ 0 on [0,∞) such that𝜕𝐹 (
𝑥, [

)
𝜕[


𝑀ℓ×𝑘

(
R

) ≤ 𝑓
(
|[ |

)
uniformly for all 𝑥 ∈ R
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Then there is a constant 𝐶 > 0 such that, uniformly in 𝑥 ∈ R, there is

���𝐹 (
𝑥, [

) ��� ≤ 𝐶��[��
Proof of LEMMA 3.2. For any 𝑀 > 0 and for all |[ | ≥ 𝑀 ,

���𝐹 (
𝑥, [

) ��� ≤ 𝐹
𝐿∞ ≤

𝐹
𝐿∞

𝑀

��[��
For |[ | ≤ 𝑀 , uniformly in 𝑥 there is

���𝐹 (
𝑥, [

) ��� ≤ ∫ |[ |

0
𝑓 (𝑟) d𝑟 ≤ |[ | max

𝑟∈[0,𝑀]
𝑓 (𝑟)

Then uniformly in 𝑥 and for all [ ∈ Rℓ, there is

���𝐹 (
𝑥, [

) ��� ≤ max
{𝐹

𝐿∞

𝑀
, max
𝑟∈[0,𝑀]

𝑓 (𝑟)
}��[��

and we are done. □

Recall

𝛿N∗(𝑥;𝑈,𝑉) = N
( (
𝑢∗(𝑥) +𝑈

)2 +
(
𝑣∗(𝑥) +𝑉

)2
)
− N

(
𝑟∗(𝑥)2)

Now we apply LEMMA 3.2 to 𝐵 ↦→ 𝛿N∗
(
𝑥; 𝐵

)
𝑣∗(𝑥) which is continuously differentiable, bounded,

and vanishes for 𝐵 = 0. Moreover

����𝜕𝛿N∗
(
𝑥; 𝐵

)
𝑣∗(𝑥)

𝜕𝐵

���� =
�������2𝑣∗N ′

( (
𝑢∗ +𝑈

)2 +
(
𝑣∗ +𝑉

)2
) 
𝑢∗ +𝑈

𝑣∗ +𝑉


�������

≤𝐶
√︂[

𝑢∗(𝑥) +𝑈
]2

+
[
𝑣∗(𝑥) +𝑉

]2
≤ 𝐶

√︃𝑏∗2
𝐿∞ + 2

𝑏∗𝐿∞ ��𝐵�� + ��𝐵��2
≤𝐶

√︃
1 +

��𝐵��2
is uniformly bounded by an increasing and continuous function of |𝐵 |. Therefore LEMMA 3.2 can
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be applied to 𝐹
(
𝑥, 𝐵

)
= 𝛿N∗

(
𝑥; 𝐵

)
𝑣∗(𝑥), thus pointwise

��𝛿N∗
(
𝑥; 𝐵

)
𝑣∗(𝑥)

�� ≤ 𝐶��𝐵(𝑥)��
For 𝐵 ∈ 𝐿2:

𝛿N∗
(
𝑥; 𝐵

)
𝑣∗(𝑥) ∈ 𝐿2𝛿N∗

(
𝑥; 𝐵

)
𝑣∗(𝑥)


𝐿2 ≤ 𝐶

𝐵
𝐿2

for 𝐶 only depending on 𝑏∗ and N and we have:

𝑁∗
(
𝑥; 𝐵

)
𝐿2

≤ 𝐶
𝐵

𝐿2

Estimates for II1 on 𝐻1

We only need to prove the derivative in 𝑥 of 𝛿N∗
(
𝑥; 𝐵

)
𝑣∗(𝑥) namely the following function is

in 𝐿2: [
𝛿N∗

(
𝑥; 𝐵(𝑥)

)
𝑣∗(𝑥)

]
𝑥
=

(
𝛿N∗

(
𝑥; 𝐵(𝑥)

) )
𝑥
𝑣∗(𝑥) + 𝛿N∗

(
𝑥; 𝐵(𝑥)

)
𝑣′∗(𝑥)

Apply LEMMA 3.2 to 𝛿N∗(𝑥; 𝐵)𝑣′∗(𝑥) there is

��𝛿N∗(𝑥;𝑈,𝑉)𝑣′∗(𝑥)
�� ≤ 𝐶��𝐵(𝑥)��

thus
𝛿N∗(𝑥;𝑈,𝑉)𝑣′∗(𝑥) ∈ 𝐿2𝛿N∗(𝑥;𝑈,𝑉)𝑣′∗(𝑥)


𝐿2 ≤ 𝐶

𝐵
𝐿2
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For a fixed 𝑥 ∈ R,(
d
d𝑥
𝛿N∗(𝑥; 𝐵)

)
𝑣∗(𝑥)

=2
[
N ′

( (
𝑢∗ +𝑈

)2 +
(
𝑣∗ +𝑉

)2
) [ (
𝑢∗ +𝑈

) (
𝑢′∗ +𝑈′) + (

𝑣∗ +𝑉
) (
𝑣′∗ +𝑉 ′) ]

− N ′ (𝑢2
∗ + 𝑣2

∗
) (
𝑢∗𝑢

′
∗ + 𝑣∗𝑣′∗

) ]
𝑣∗

=2
[
N ′

(��𝑏∗(𝑥) + 𝐵(𝑥)��2) (𝑏∗(𝑥) + 𝐵(𝑥)) · (𝑏′∗(𝑥) + 𝐵′(𝑥)) − N ′
(��𝑏∗(𝑥)��2)𝑏∗(𝑥) · 𝑏′∗(𝑥)]𝑣∗(𝑥)

We only need to estimate the expression inside
[
· · ·

]
, since |𝑣∗ | is bounded:����N ′

(��𝑏∗(𝑥) + 𝐵(𝑥)��2) (𝑏∗(𝑥) + 𝐵(𝑥)) · (𝑏′∗(𝑥) + 𝐵′(𝑥)) − N ′
(��𝑏∗(𝑥)��2)𝑏∗(𝑥) · 𝑏′∗(𝑥)����

≤
����N ′

(��𝑏∗(𝑥) + 𝐵(𝑥)��2) (𝑏∗(𝑥) + 𝐵(𝑥)) · 𝐵′(𝑥)����
+

���� [N ′
(��𝑏∗(𝑥) + 𝐵(𝑥)��2) (𝑏∗(𝑥) + 𝐵(𝑥)) − N ′

(��𝑏∗(𝑥)��2)𝑏∗(𝑥)] · 𝑏′∗(𝑥)����
≤𝐶

��𝐵′(𝑥)�� + 𝐶��𝐵(𝑥)��
the first term can be bounded because N ′(𝑟2) decays fast enough as 𝑟 → ∞ so N ′ (𝑟2)𝑟 is bounded

since it is also continuous. Then we apply to the second term LEMMA 3.2 and note that 𝑏′∗(𝑥) is

bounded. Therefore ����� ( d
d𝑥
𝛿N∗(𝑥; 𝐵)

)
𝑣∗(𝑥)

����� ≤ 𝐶 (��𝐵(𝑥)�� + ��𝐵′(𝑥)��) (
d
d𝑥
𝛿N∗(𝑥; 𝐵)

)
𝑣∗(𝑥)


𝐿2

(
R𝑥

) ≤ 𝐶
𝐵

𝐻1

Thus we have: N∗
(
𝑥; 𝐵(𝑥)

)
𝐻1

(
R𝑥

) ≤ 𝐶
𝐵

𝐻1

for a constant 𝐶 > 0 depending only on 𝑏∗ and N .
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3.2.2 Lipschitz properties on 𝐿2

I1 is trivially globally Lipschitz

I1 = N
(
𝑟∗(𝑥)2)𝑉 (𝑥) is trivially globally Lipschitz in 𝐵(𝑥) since it is linear in 𝑉 .

Lipschitz property of II1

Let �̃� =
[
�̃�, �̃�

]
∈ X = 𝐿2. Note that

���∇N (
|𝐵 |2

) ��� = 2
���N ′ (|𝐵 |2) �����𝐵��

is bounded: ���𝛿N∗
(
𝑥; 𝐵(𝑥)

)
𝑣∗(𝑥) − 𝛿N∗

(
𝑥; �̃�(𝑥)

)
𝑣∗(𝑥)

���
≤
����N (��𝑏∗(𝑥) + 𝐵(𝑥)��2) − N

(��𝑏∗(𝑥) + �̃�(𝑥)��2)����𝑣∗𝐿∞
≤
��𝐵(𝑥) − �̃�(𝑥)�� sup

𝑠∈[0,1]

���∇N (
|𝑏∗(𝑥) + (1 − 𝑠)𝐵(𝑥) + 𝑠�̃�(𝑥) |2

)���
≤𝐶

��𝐵(𝑥) − �̃�(𝑥)��
Integrating both sides we have

𝛿N∗
(
𝑥; 𝐵(𝑥)

)
𝑣∗(𝑥) − 𝛿N∗

(
𝑥; �̃�(𝑥)

)
𝑣∗(𝑥)


𝐿2

(
R𝑥

) ≤ 𝐶
𝐵 − �̃�


𝐿2

Doing the same estimate for I2 and for II2 and we have obtained the global Lipschitz property:

𝑁∗
(
𝑥; 𝐵(𝑥)

)
− 𝑁∗

(
𝑥; �̃�(𝑥)

)
𝐿2

(
R𝑥

) ≤ 𝐶
𝐵 − �̃�


𝐿2

3.2.3 Lipschitz properties on 𝐻1

I1 is trivially globally Lipschitz on 𝐻1

I1 = N
(
𝑟∗(𝑥)2)𝑉 (𝑥) is trivially globally Lipschitz since it is linear in 𝑉 for 𝐵 ∈ 𝐻1 and

N
(
𝑟∗(𝑥)2) is smooth in 𝑥.
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Lipschitz property of II1

Now we estimate [(𝛿N∗
(
𝑥; 𝐵(𝑥)

)
− 𝛿N∗

(
𝑥; �̃�(𝑥)

) )
𝑣∗(𝑥)

]
𝑥


𝐿2 (R𝑥)

≤
(𝛿N∗

(
𝑥; 𝐵(𝑥)

)
− 𝛿N∗

(
𝑥; �̃�(𝑥)

) )
𝑥
𝑣∗(𝑥)


𝐿2 (R𝑥)

+
(𝛿N∗

(
𝑥; 𝐵(𝑥)

)
− 𝛿N∗

(
𝑥; �̃�(𝑥)

) )
𝑣′∗(𝑥)


𝐿2 (R𝑥)

the second term can be estimated similarly as in is the 𝐿2 Lipschitz estimate above:

(𝛿N∗
(
𝑥; 𝐵(𝑥)

)
− 𝛿N∗

(
𝑥; �̃�(𝑥)

) )
𝑣′∗(𝑥)


𝐿2 (R𝑥) ≤ 𝐶

𝐵 − �̃�

𝐿2

To estimate the first term, note that�����12 (
𝛿N∗

(
𝑥; 𝐵(𝑥)

)
− 𝛿N∗

(
𝑥; �̃�(𝑥)

) )
𝑥

����� =
�����12 [

N
(��𝑏∗ (𝑥) + 𝐵(𝑥)��2) − N

(��𝑏∗ (𝑥) + �̃�(𝑥)��2)]
𝑥

�����
=

�����N ′
(��𝑏∗ (𝑥) + 𝐵(𝑥)��2) (𝑏∗ (𝑥) + 𝐵(𝑥)) · (𝑏′∗ (𝑥) + 𝐵′ (𝑥)

)
− N ′

(��𝑏∗ (𝑥) + �̃�(𝑥)��2) (𝑏∗ (𝑥) + �̃�(𝑥)) · (𝑏′∗ (𝑥) + �̃�′ (𝑥)
)�����

≤
�����N ′

(��𝑏∗ (𝑥) + 𝐵(𝑥)��2) (𝑏∗ (𝑥) + 𝐵(𝑥)) ��������𝐵′ (𝑥) − �̃�′ (𝑥)
��������N ′

(��𝑏∗ (𝑥) + 𝐵(𝑥)��2) (𝑏∗ (𝑥) + 𝐵(𝑥)) − N ′
(��𝑏∗ (𝑥) + �̃�(𝑥)��2) (𝑏∗ (𝑥) + �̃�(𝑥)) ��������𝑏′∗ (𝑥) + �̃�′ (𝑥)

���
=:III + IV

(3.2.3)

Term III is bounded pointwise by

𝐶

���𝐵′(𝑥) − �̃�′(𝑥)���
since N ′ (𝑟2)𝑟 is bounded. For term IV, set [ = 𝐵 − �̃� and define

𝐹
(
𝑥, [) := N ′

(��𝑏∗ (𝑥) + �̃�(𝑥) + [��2) (𝑏∗ (𝑥) + �̃�(𝑥) + [) − N ′
(��𝑏∗ (𝑥) + �̃�(𝑥)��2) (𝑏∗ (𝑥) + �̃�(𝑥))
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Then 𝐹 is a bounded function of [, and continuously differentiable, vanishes for [ = 0. Consider

the gradient of 𝐹 (𝑥, [) with respect to [ for a fixed 𝑥 ∈ R (suppressing explicit dependence on 𝑥):

𝜕𝐹

𝜕[
=2N ′′

(��𝑏∗ + �̃� + [
��) (𝑏∗ + �̃� + [

) (
𝑏∗ + �̃� + [

)T+

+N ′
( (
𝑏∗ + �̃� + [

) )
𝜎0

Both of the terms are bounded uniformly for all [. Therefore applying LEMMA 3.2 on 𝐹
(
𝑥, [

)
, and

note that

IV =

���𝐹 (
𝑥, 𝐵(𝑥) − �̃�(𝑥)

) ������𝑏′∗(𝑥) + �̃�′(𝑥)���
there is

IV ≤𝐶
��𝐵(𝑥) − �̃�(𝑥)�����𝑏′∗(𝑥) + �̃�′(𝑥)���

≤𝐶
(��𝐵(𝑥) − �̃�(𝑥)����𝑏′∗(𝑥)�� + ��𝐵(𝑥) − �̃�(𝑥)�����̃�′(𝑥)��)

Where 𝐶 here is a constant only depending on the profile of N .

Thus integrating III and IV,(𝛿N∗
(
𝑥; 𝐵(𝑥)

)
− 𝛿N∗

(
𝑥; �̃�(𝑥)

) )
𝑣∗(𝑥)


𝐻1

≤𝐶
𝐵 − �̃�


𝐿2

+ 𝐶
𝐵′ − �̃�′

𝐿2
+ 𝐶

�̃�′
𝐿2

𝐵 − �̃�

𝐿∞

≤𝐶
(
1 +

�̃�
𝐻1

)𝐵 − �̃�

𝐻1

The last inequality is due to Sobolev embedding.

3.3 Well-posedness results

The following global well-posedness results in 𝐻1 hold:

Theorem 3.3 (Global well-posedness of the mild solution of (3.1.1)). For 𝐵0 ∈ 𝐻1, there exists

a unique global mild solution 𝐵(𝑥, 𝑡) ∈ C0
(
[0,∞)𝑡 , 𝐻1 (

R𝑥

) )
of (3.1.1), and the 𝐻1 norm of the

41



perturbation grows at most exponentially:

𝐵
𝐻1 ≤ 𝐶𝑒𝐶𝑡

𝐵0

𝐻1 (3.3.1)

where 𝐶 does not depend on 𝐵0, but only on N and 𝑏∗. Moreover, 𝐵(·, 𝑡) is a strong solution to

(3.1.1) in 𝐿2 with 𝐵0 ∈ 𝐻1 ⊂ 𝐿2, namely 𝐵(𝑥, 𝑡) ∈ C1𝐿2.

The proof for local well-posedness is standard with the application of Banach’s fixed point

theorem, see for example THEOREM 1 of [18]; the hypotheses on the nonlinearity term 𝑁∗ are

given and checked in PROPOSITION 3.1 The global existence follows readily:

Proof of THEOREM 3.3. First we prove the local well-posedness with standard Banach fixed-point

approach.

Recall the mild solution is defined to be 𝐵(·, 𝑡) ∈ 𝐻1 satisfying, for all 𝑡 ∈ [0, 𝑇],

𝐵(𝑥, 𝑡) = 𝑇𝑐 (𝑡)𝐵0(𝑥) +
∫ 𝑡

0
𝑇𝑐 (𝑡 − 𝑠)𝑁∗

(
𝑥; 𝐵(𝑥, 𝑠)

)
d𝑠

where the 𝐶0-semigroup is well-defined and is generated by Σ𝜕𝑥 . We now define

[(𝑥, 𝑡) := 𝐵(𝑥, 𝑡) − 𝑇𝑐 (𝑡)𝐵0(𝑥) (3.3.2)

The proof is standard with the application of Banach’s fixed point theorem, see for example THE-

OREM 1 of [18], of which the hypothesis are satisfied by 3.1.3 by virtue of PROPOSITION 3.1. We

present the proof here for completeness.

Now 3.1.3 becomes the following fixed-point problem:

[(𝑡, 𝑥) = F
(
[(𝑡, 𝑥)

)
:=

∫ 𝑡

0
𝑇𝑐 (𝑡 − 𝑠)𝑁∗

(
𝑥;T𝑐 (𝑠)𝐵0(𝑥) + [(𝑥, 𝑠)

)
d𝑠 (3.3.3)

Note that T𝑐 (𝑡) is a unitary group.
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Now fix 𝑅 > 0. For ∥𝐵0∥𝐻1 ≤ 𝑅 we have, for [ ∈ 𝑋𝑇 satisfying
[

𝑋𝑇
≤ 𝑅 there is

F ([)

𝑋𝑇

= sup
𝑡∈[0,𝑇)

∫ 𝑡

0
𝑇𝑐 (𝑡 − 𝑠)𝑁∗

(
𝑥;𝑇𝑐 (𝑠)𝐵0(𝑥) + [(𝑥, 𝑠)

)
d𝑠


𝐻1

(
R𝑥

)
≤𝑇 sup

𝑡∈[0,𝑇)

𝑁∗
(
𝑥;𝑇 (𝑡)𝐵0(𝑥) + [(𝑥, 𝑡)

)
𝐻1

(
R𝑥

)
≤𝑅

(3.3.4)

The last inequality holds if we choose 𝑇 to be small enough, and this choice depends on ∥𝐵0∥. The

last line holds since we have the local Lipschitz estimate of 𝑁∗. Therefore for a ball 𝐵𝑋𝑇
𝑅
(0) in 𝑋𝑇 ,

centering at [(𝑡, 𝑥) ≡ 0 of radius 𝑅, we conclude on 𝐵𝑋𝑇
𝑅
(0) the nonlinear map F of [ ∈ 𝐵𝑋𝑇

𝑅
(0) is

a self-map.

Now we prove that on 𝐵
𝑋𝑇
𝑅
(0) the map F is a strict contraction. If this is proved then by

Banach’s fixed point theorem we can conclude the local existence and uniqueness of the mild

solution.

In fact, for a given 𝐵0, we choose 𝑅 > 0 satisfying

∥𝐵0∥𝐻1 ≤ 𝑅, sup
𝑡∈[0,𝑇)

sup
𝑥∈R

∥[(𝑥, 𝑡)∥ ≤ 𝑅, sup
𝑡∈[0,𝑇)

sup
𝑥∈R

∥Z (𝑥, 𝑡)∥ ≤ 𝑅 (3.3.5)

Then with the help of the local Lipschitz constant 𝐶 (1 + 2𝑅) there is

∥F ([) − F (Z)∥𝑋𝑇

= sup
𝑡∈[0,𝑇]

∫ 𝑡

0
𝑇𝑐 (𝑡 − 𝑠)

[
𝑁∗

(
𝑥;𝑇𝑐 (𝑡)𝐵0(𝑥) + [(𝑥, 𝑠)

)
d𝑠

−𝑁∗
(
𝑥;𝑇𝑐 (𝑡)𝐵0(𝑥) + Z (𝑥, 𝑠)

)
d𝑠

]
𝐻1

(
R𝑥

)
≤ sup
𝑡∈[0,𝑇]

∫ 𝑡

0
𝐶 (1 + 2𝑅) sup

𝑥∈R

[(𝑥, 𝑠) − Z (𝑥, 𝑠)
𝐻1

(
R𝑥

) d𝑠

≤𝑇𝐶 (1 + 2𝑅)
[ − Z

𝑋𝑇

(3.3.6)
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Thus, since 𝑇 is small enough, we have shown F is a contraction map on 𝐵𝑋𝑇
𝑅
(0) and we have

concluded the proof of the local well-posedness.

The global existence then is a direct consequence of THEOREM 2 of [18]. However the follow-

ing calculation, similar to that in [19], provides more clarity. From (3.1.3) and estimate (3.1.6),

𝐵
𝐻1 ≤

𝐵0

𝐻1 +

∫ 𝑡

0

𝑁∗
(
𝑥; 𝐵(𝑥, 𝑡′)

)
𝐻1

d𝑡′

≤
𝐵0


𝐻1 +

∫ 𝑡

0
𝐶
𝐵(𝑥, 𝑡′)

𝐻1 d𝑡′

Therefore Grönwall’s integral inequality[20] yields:

𝐵
𝐻1 ≤ 𝐶𝑒𝐶𝑡

𝐵0

𝐻1

which is exactly (3.3.1). Therefore following standard arguments, for example that used in THEO-

REM 2 of [18], we conclude the global existence of mild solutions to (3.1.3) in 𝐻1.

The regularity 𝐵(𝑥, 𝑡) ∈ C1𝐿2 is a direct consequence of the original form of the equation

(3.1.1), since both sides are in 𝐿2, and is continuous in time, with initial data 𝐵0 ∈ 𝐻1. □

3.4 Finite propagation speed

In the non-moving frame, substitute 𝑢(𝑦, 𝑡) = 𝑢∗(𝑦, 𝑡) +𝑈 (𝑦, 𝑡) and 𝑣(𝑦, 𝑡) = 𝑣∗(𝑦, 𝑡) + 𝑉 (𝑦, 𝑡)

in (1.0.1), we have

𝑈𝑡 =𝑉𝑦 + N∗
(
𝑈,𝑉

)
𝑉 +

[
N∗

(
𝑈,𝑉

)
− N∗

(
0, 0

) ]
𝑣∗

𝑉𝑡 =𝑈𝑦 − N∗
(
𝑈,𝑉

)
𝑈 −

[
N∗

(
𝑈,𝑉

)
− N∗

(
0, 0

) ]
𝑢∗

(3.4.1)

is the equation for perturbation 𝐵(𝑦, 𝑡) =
[
𝑈 (𝑦, 𝑡) 𝑉 (𝑦, 𝑡)

]T
in the non-moving reference frame,

where for simplicity, we define

N∗
(
𝑈,𝑉

)
:= N

(
𝑟2
∗ + 2𝑢∗𝑈 + 2𝑣∗𝑉 +𝑈2 +𝑉2

)
(3.4.2)
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with 𝑢∗ = 𝑢∗(𝑦 − 𝑐𝑡) etc.

The following result says the speed of propagation of data for the system (3.1.1) is at most

|𝑐0 | = 1:

Proposition 3.4. Consider the initial value problem given by (3.4.1)

1. Let the initial data be 𝐵0 ∈ 𝐻1. For any 𝑦 ∈ R, 𝑡 > 0, 𝐵(𝑦′, 𝑡′) = 0 on the domain of

dependence of (𝑦, 𝑡):

Δ(𝑦, 𝑡) :=
{
(𝑦′, 𝑡′) ∈ R2 | 0 ≤ 𝑡′ ≤ 𝑡 − |𝑦 − 𝑦′|

}
(3.4.3)

if 𝐵0(𝑦′) = 0 on [𝑦 − 𝑡, 𝑦 + 𝑡].

2. Assume there are two initial perturbations 𝐴0 = (𝑊0, 𝑍0), 𝐵0 = (𝑈0, 𝑉0) ∈ 𝐻1 such that

𝐵0(𝑦′) = 𝐴0(𝑦′) for 𝑦′ ∈ [𝑦 − 𝑡, 𝑦 + 𝑡], 𝑡 > 0. Then, for any 𝑦 ∈ R, 𝐵(𝑦′, 𝑡′) = 𝐴(𝑦′, 𝑡′) on

Δ(𝑦, 𝑡).

3. If 𝐵0(𝑦) = 𝐴0(𝑦) on 𝑦 ∈ [ℓ,∞) for some ℓ ∈ R, then for all (𝑦, 𝑡) satisfying 𝑦 ≥ ℓ + 𝑡 we

have 𝐵(𝑦, 𝑡) = 𝐴(𝑦, 𝑡). In the moving frame with speed 𝑐 where the spatial coordinate is

𝑥 = 𝑦 − 𝑐𝑡, we have 𝐵(𝑥, 𝑡) = 𝐴(𝑥, 𝑡) for all 𝑥 ≥ ℓ − (𝑐 − 1)𝑡.

It suffices to prove only Part 2 and Part 3 of this proposition, since Part 1 follows from the case

𝐴0 = 0.

Proof. Define characteristic variables

�̃� =
𝑈 +𝑉
√

2
, �̃� =

−𝑈 +𝑉
√

2
(3.4.4)

and

�̃�∗ =
𝑢∗ + 𝑣∗√

2
, �̃�∗ =

−𝑢∗ + 𝑣∗√
2
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As a result: (
𝜕𝑡 − 𝜕𝑦

)
�̃� = N∗

(
𝑈,𝑉

)
�̃� +

[
N∗

(
𝑈,𝑉

)
− N∗

(
0, 0

) ]
�̃�∗(

𝜕𝑡 + 𝜕𝑦
)
�̃� = −N∗

(
𝑈,𝑉

)
�̃� −

[
N∗

(
𝑈,𝑉

)
− N∗

(
0, 0

) ]
�̃�∗

(3.4.5)

Denote 𝐴 =

[
𝑊 𝑍

]T
a second solution which satisfies (3.4.1). Analogously we define, via (3.4.4),

�̃� =

[
�̃� �̃�

]T
. Therefore

(
𝜕𝑡 − 𝜕𝑦

) (
�̃� − �̃�

)
= N∗

(
𝑈,𝑉

)
�̃� − N∗

(
𝑊, 𝑍

)
�̃� +

[
N∗

(
𝑈,𝑉

)
− N∗

(
𝑊, 𝑍

) ]
�̃�∗(

𝜕𝑡 + 𝜕𝑦
) (
�̃� − �̃�

)
= −N∗

(
𝑈,𝑉

)
�̃� + N∗

(
𝑊, 𝑍

)
�̃� −

[
N∗

(
𝑈,𝑉

)
− N∗

(
𝑊, 𝑍

) ]
�̃�∗

(3.4.6)

Multiply both sides of the first equation of (3.4.6) with 2
(
�̃�−�̃�

)
, and similarly the second equation

in (3.4.6) with 2
(
�̃� − �̃�

)
. Adding the results gives

(
𝜕𝑡 − 𝜕𝑦

) (
�̃� − �̃�

)2 +
(
𝜕𝑡 + 𝜕𝑦

) (
�̃� − �̃�

)2

=2
[
N∗

(
𝑈,𝑉

)
− N∗

(
𝑊, 𝑍

) ] [ (
�̃� − �̃�

)
�̃�∗ −

(
�̃� − �̃�

)
�̃�∗ + �̃� �̃� − �̃��̃�

] (3.4.7)

Now WLOG, we consider the point (0, ℓ) on the 𝑡-axis. The following argument makes no use

of the particular value of 𝑦 in the pair (𝑦, 𝑡) in the statement of Part 2 of this proposition.

Assume 𝐻1 initial data 𝐵0(𝑦) = 𝐴0(𝑦) on 𝑦 ∈ [−ℓ, ℓ] where ℓ > 0, and consider the closed

trapezoidal region on the (𝑦, 𝑡)-plane:

Ω𝑡 =
⋃

0≤𝑠≤𝑡

{
(𝑦, 𝑠) : −ℓ + 𝑠 ≤ 𝑦 ≤ ℓ − 𝑠

}
, (3.4.8)

where 0 < 𝑡 < ℓ. The region Ω𝑡 is bounded by the four line segments Γ1,2,3,4 and is shown in figure

3.1. It is easy to check

Ωℓ = Δ(0, ℓ) = [−ℓ, +ℓ]

where Δ(0, ℓ) is the domain of dependence of spacetime point (0, ℓ); see (3.4.3).

The energy identity (3.4.7) can be expressed in terms of the (𝑦, 𝑡)− divergence of the vector
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𝑦

𝑡

(−ℓ, 0) (ℓ, 0)

(−ℓ + 𝑡, 𝑡) (ℓ − 𝑡, 𝑡)

(0, 0)

(ℓ, 0)

Ω𝑡

Δ(0, ℓ)

Γ1

Γ2
Γ3 Γ4

Figure 3.1: The closed trapezoidal region Ω𝑡 used in the proof of PROPOSITION 3.4, shaded with
darker yellow; the domain of dependence of point (0, ℓ) is Ω𝑡 along with the top region shaded
with lighter yellow.

field:

Φ =

[
−

(
�̃� − �̃�

)2 +
(
�̃� − �̃�

)2
,
(
�̃� − �̃�

)2 +
(
�̃� − �̃�

)2
]
; (3.4.9)

equation (3.4.7) is equivalent to

divΦ = RHS of (3.4.7) (3.4.10)

Integrating (3.4.10) over Ω𝑡 and applying Gauss’s divergence theorem we obtain:∫
Ω𝑡

divΦ d𝑦 d𝑡 =
∫
Γ1

Φ�̂� · d𝑙 +
∫
Γ2

Φ�̂� · d𝑙 +
∫
Γ3

Φ�̂� · d𝑙 +
∫
Γ4

Φ�̂� · d𝑙

= −
∫ ℓ

−ℓ

(
�̃�0(𝑦) − �̃�0(𝑦)

)2 +
(
�̃�0(𝑦) − �̃�0(𝑦)

)2 d𝑦 (this term vanishes)

+
∫ ℓ−𝑡

−ℓ+𝑡

(
�̃� (𝑦, 𝑡) − �̃� (𝑦, 𝑡)

)2 +
(
�̃� (𝑦, 𝑡) − �̃� (𝑦, 𝑡)

)2 d𝑦

+
∫ 𝑡

0
2
(
�̃� (−ℓ + 𝑦, 𝑦) − �̃� (−ℓ + 𝑦, 𝑦)

)2 d𝑦 (this term ≥ 0 )

+
∫ 𝑡

0
2
(
�̃� (ℓ − 𝑦, 𝑦) − �̃� (ℓ − 𝑦, 𝑦)

)2 d𝑦 (this term ≥ 0 )

=

∫
Ω𝑡

2
[
N∗

(
𝑈,𝑉

)
− N∗

(
𝑊, 𝑍

) ] [ (
�̃� − �̃�

)
�̃�∗ −

(
�̃� − �̃�

)
�̃�∗ + �̃� �̃� − �̃��̃�

]
d𝑦 d𝑡

(3.4.11)

Now we bound pointwise the absolute value of the integrand on the last line. Note that 𝑢∗, 𝑣∗

are bounded since the TWSs we work with in this paper are all bounded. The derivative of the
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nonlinearity, N ′, is also bounded since it is continuous, and its arguments are all bounded. By the

growth rate bound (3.3.1) of THEOREM 3.3 we have that for 0 ≤ 𝑡 ≤ ℓ, the 𝐻1 thus the 𝐿∞ norm

of the perturbation is bounded. Moreover,���N∗
(
𝑈,𝑉

)
− N∗

(
𝑊, 𝑍

) ��� ≤ 𝐶 [
|�̃� − �̃� | + |�̃� − �̃� |

]
���(�̃� − �̃�

)
�̃�∗ −

(
�̃� − �̃�

)
�̃�∗

��� ≤ 𝐶 [���̃� − �̃�
�� + ���̃� − �̃�

��]���̃� �̃� − �̃��̃�
�� ≤ ���̃������̃� − �̃�

�� + ���̃� − �̃�
�����̃� �� ≤ 𝐶 [���̃� − �̃�

�� + ���̃� − �̃�
��] ,

where the constants𝐶 depends on the nonlinearity, TWS profile 𝑏∗ as well as ℓ. These estimates

imply that the absolute value of the expression on the last line of (3.4.11) is has the upper bound:∫
Ω𝑡

2
���N∗

(
�̃�, �̃�

)
− N∗

(
𝑊, 𝑍

) ������ (�̃� − �̃�
)
�̃�∗ −

(
�̃� − �̃�

)
�̃�∗ + �̃� �̃� − �̃��̃�

��� d𝑦 d𝑡′

≤𝐶
∫ 𝑡

0

∫ ℓ−𝑡′

−ℓ+𝑡′

[���̃� (𝑦, 𝑡′) − �̃� (𝑦, 𝑡′)
��2 + ���̃� (𝑦, 𝑡′) − �̃� (𝑦, 𝑡′)��2] d𝑦 d𝑡′

Let 𝐼 (𝑡) be the nonnegative function of 𝑡 defined by the third line of (3.4.11):

𝐼 (𝑡) :=
∫ ℓ−𝑡

−ℓ+𝑡

���̃� (𝑦, 𝑡) − �̃� (𝑦, 𝑡)
��2 + ���̃� (𝑦, 𝑡) − �̃� (𝑦, 𝑡)��2 d𝑦 ≥ 0

Then,

𝐼 (𝑡) ≤ 𝐶
∫ 𝑡

0
𝐼 (𝑡′) d𝑡′

where we used that 𝐼 (0) = 0 by the assumption 𝐵0(𝑦) = 𝐴0(𝑦) on [−ℓ, ℓ]. By Grönwall’s inequal-

ity 𝐼 (𝑡) = 0 for 0 ≤ 𝑡 ≤ ℓ. This proves Part 2 of PROPOSITION 3.4.

Part 3 of PROPOSITION 3.4 is an immediate consequence of Part 2. To see this, suppose 𝐵0(𝑦) =

𝐴0(𝑦) on (ℓ,∞) for some ℓ. Now if 𝑦 > ℓ + 𝑡, then [𝑦 − 𝑡, 𝑦 + 𝑡] ∩ (−∞, ℓ] = ∅. Hence, for all such

(𝑦, 𝑡), we have 𝐵(𝑦′, 𝑡′) = 𝐴(𝑦′, 𝑡′) for (𝑦′, 𝑡′) ∈ Δ(𝑦, 𝑡). Thus, 𝐵(𝑦, 𝑡) = 𝐴(𝑦, 𝑡) for all (𝑦, 𝑡) such

that 𝑦 > ℓ + 𝑡. Equivalently, in a frame of reference moving with speed 𝑐: 𝑥 = 𝑦 − 𝑐𝑡 > ℓ − 𝑐𝑡 + 𝑡.

See FIGURE 3.2 for illustration of this part of the proof. Part 3 is thus proved, and the proof of

PROPOSITION 3.4 is now complete. □
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𝑦

𝑡

𝑦 = ℓ + 𝑡

(ℓ, 0)

(𝑦, 𝑡)

Δ(𝑦, 𝑡)

𝐵(·, 𝑡) = 𝐴(·, 𝑡)𝐵(·, 𝑡) ≠ 𝐴(·, 𝑡)

Non-moving frame

𝑥 = 𝑦 − 𝑐𝑡(ℓ, 0)

𝑥 = ℓ − 𝑐𝑡 + 𝑡
(𝑥 = 𝑦 − 𝑐𝑡, 𝑡)

Δ̃(𝑥, 𝑡)

𝐵(·, 𝑡) = 𝐴(·, 𝑡)𝐵(·, 𝑡) ≠ 𝐴(·, 𝑡)

Moving frame

Figure 3.2: Illustration of the proof of Part 3 of PROPOSITION 3.4. Here, at time 𝑡 = 0, in the lab
frame, 𝐵0(𝑦) = 𝐴0(𝑦) and in the moving frame where 𝑥 = 𝑦 − 𝑐𝑡, 𝐵0(𝑥) = 𝐴0(𝑥). The yellow
regions in both frames are the spacetime region on on (𝑦, 𝑡) and (𝑥 = 𝑦 − 𝑐𝑡, 𝑡) planes respectively,
where 𝐵(·, 𝑡) = 𝐴(·, 𝑡). The darker yellow triangles in the left panel stands for Δ(𝑦, 𝑡), the domain
of dependence of (𝑦, 𝑡); whereas in the right panel the same domain of dependence of (𝑥 = 𝑦−𝑐𝑡, 𝑡),
observed in the moving frame. The blue lines are borders of the regions 𝐵(·, 𝑡) ≠ 𝐴(·, 𝑡) and
𝐵(·, 𝑡) = 𝐴(·, 𝑡), in either reference frame respectively.
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Chapter 4: Nonlinear convective stability of supersonic pulses

The following theorem is stated in the comoving frame of a supersonic pulse, i.e., for an “ob-

server” that travels with the pulse at the same speed 𝑐 as does the latter travels. For this result, we

still assume the nonlinearity to be saturable as we do for the last section; see SECTION 1.3.

Theorem 4.1 (Supersonic pulses are nonlinearly convectively stable). Let 𝑏∗ be a supersonic pulse

with speed 𝑐 > 1.

1. Consider equation (3.4.1) for the perturbation in a non-moving frame of reference, with

initial data 𝐵(𝑦, 0) = 𝐵0(𝑦). There exist 𝛾0 > 0 so that if 𝛾 > 𝛾0
𝑐−1 , then

𝐵0

𝐻1

(
[ℓ,∞)

) = 𝑜 (𝑒−𝛾ℓ) , as ℓ → ∞. (4.0.1)

Then, for any 𝑅 ∈ R, we have exponential time-decay:

𝐵(𝑦, 𝑡)
𝐻1

(
[𝑅+𝑐𝑡,∞)𝑦

) = O
(
𝑒−

(
𝛾(𝑐−1)−𝛾0

)
𝑡
)
. (4.0.2)

2. Equivalently, consider equation (3.1.1) for the perturbation of 𝑏∗ in the comoving frame of

reference (𝑥 = 𝑦 − 𝑐𝑡), traveling with the same speed 𝑐, with initial data 𝐵(𝑥, 0) = 𝐵0(𝑥)

satisfying (4.0.1). Then, for any 𝑅 ∈ R,

𝐵(𝑥, 𝑡)
𝐻1

(
[𝑅,∞)𝑥

) = O
(
𝑒−

(
𝛾(𝑐−1)−𝛾0

)
𝑡
)
. (4.0.3)

In particular, if 𝐵0 is any Gaussian perturbation, not necessarily centered at 0, 𝐵0 satisfies

(4.0.1), consistent with the simulated phenomena shown in figure 1.6. THEOREM 4.1 can be inter-

preted this way: as long as the initial perturbation decays fast enough as 𝑥 → ∞, if we look the
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𝐵0(𝑥) 𝑦 = ℓ(𝑡1)

𝐴0(ℓ(𝑡2); 𝑥)𝐴0(ℓ(𝑡1); 𝑥)
𝑦 = ℓ(𝑡2)

Figure 4.1: Illustration of the construction of the family of initial data 𝐴0(ℓ; 𝑦) ≡ 𝐴0(ℓ; 𝑥) used in
the proof of THEOREM 4.1. This is only a schematic plot, since 𝐵0 and 𝐴0 are vector-valued.

pulse in any finite window in the comoving frame with speed 𝑐, the perturbed profile will eventu-

ally be almost identical to the unperturbed profile. The profile of the perturbation itself outside this

window may, and usually does become intractable with our current approach.

Proof of THEOREM 4.1. We only prove Part 2; its equivalency to Part 1 is immediate. From THEO-

REM 3.3, there is a constant 𝛾0, depending only on the nonlinearity and the traveling wave solution

𝑏∗ whose perturbations we study, such that for all 𝐵0 ∈ 𝐻1(R):

∥𝐵(·, 𝑡)∥𝐻1 (R) ≤ 𝛾0𝑒
𝛾0𝑡 ∥𝐵0∥𝐻1 (R) (4.0.4)

Now we fix 𝐵0 ∈ 𝐻1, and require that it satisfies (4.0.1), and 𝐵(𝑥, 𝑡) will denote the solution to

(3.1.1) with initial data 𝐵0 for the rest of this proof.

Next, we define a family of initial data given this fixed 𝐵0. Let ℓ ∈ R. Let 𝐴0(ℓ; 𝑦) be defined

on all R as the function obtained by symmetrize the tail of 𝐵0 to the right of 𝑦 = ℓ about 𝑦 = ℓ:

𝐴0(ℓ; 𝑦) =


𝐵0(𝑦) for 𝑦 ≥ ℓ

𝐵0(2ℓ − 𝑦) for 𝑦 < ℓ.
(4.0.5)

A schematic illustration of the construction of A(ℓ; 𝑦) is given in FIGURE 4.1. Further, we in-

troduce 𝐴(ℓ; 𝑥, 𝑡), the solution of the IVP (3.1.1) (posed in the moving frame) with initial data
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𝐴(ℓ; 𝑥, 𝑡 = 0) = 𝐴0(ℓ; 𝑥). Therefore, by (4.0.4) we have

𝐴(ℓ; ·, 𝑡)
𝐻1 ≤ 𝛾0𝑒

𝛾0𝑡
𝐴0(ℓ; ·)


𝐻1 , for all 𝑡 ≥ 0 and ℓ ∈ R. (4.0.6)

Now 𝐵(𝑥, 𝑡) and 𝐴(ℓ; 𝑥, 𝑡) are defined for each 𝑥, ℓ ∈ R and 𝑡 ≥ 0. Note that 𝐵0(𝑦) = 𝐴0(ℓ; 𝑦)

for 𝑦 ≥ ℓ, since for 𝑡 = 0, 𝑥 = 𝑦 − 𝑐𝑡 = 𝑦. Then by Part 3 of PROPOSITION 3.4, for any 𝑥, ℓ ∈ R

and any 𝑡 ≥ 0:

𝐵(𝑥, 𝑡) = 𝐴(ℓ; 𝑥, 𝑡), if 𝑥 + (𝑐 − 1)𝑡 ≥ ℓ (4.0.7)

In the following, we shall use as a family of functions 𝐴(ℓ; 𝑥, 𝑡), which depends on ℓ, 𝑥, 𝑡, and

which satisfies the ℓ− parameterized family of identities (4.0.7) to bound the solution 𝐵(𝑥, 𝑡). Fix

any 𝑅 ∈ R. Then, for any 𝑡 ≥ 0 and 𝑥 ≥ 𝑅, we have

𝑥 + (𝑐 − 1)𝑡 ≥ 𝑅 + (𝑐 − 1)𝑡 = ℓ(𝑡).

Therefore, by (4.0.7), let ℓ = 𝑅 + (𝑐 − 1)𝑡, we have,

𝐵(𝑥, 𝑡) = 𝐴(𝑅 + (𝑐 − 1)𝑡; 𝑥, 𝑡), for all 𝑥 ≥ 𝑅 and 𝑡 ≥ 0. (4.0.8)

See FIGURE 4.2 for illustration as well as the idea of competing growth/decay rates used in the

current proof below.

We note that as a function of 𝑡, the RHS of (4.0.8) is not a solution to (3.1.1), in general. It

follows that for for all 𝑅 ∈ R, all 𝑡 ≥ 0, we have

𝐵(·, 𝑡)
𝐻1

(
[𝑅,∞)

) = 𝐴(𝑅 + (𝑐 − 1)𝑡; ·, 𝑡)

𝐻1

(
[𝑅,∞)

)
≤
𝐴(𝑅 + (𝑐 − 1)𝑡; ·, 𝑡)


𝐻1

(4.0.9)
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𝑥 = 𝑦 − 𝑐𝑡

𝑡

𝑅

𝑡 = 𝑡1
𝐵(𝑥, 𝑡1) = 𝐴(ℓ(𝑡1); 𝑥, 𝑡1)

𝑥 = ℓ(𝑡1) − 𝑐𝑡 + 𝑡

ℓ(𝑡1)

𝑡 = 𝑡2
𝐵(𝑥, 𝑡2) = 𝐴(ℓ(𝑡2); 𝑥, 𝑡2)

𝑥 = ℓ(𝑡2) − 𝑐𝑡 + 𝑡

ℓ(𝑡2)

· · ·
· · ·
· · ·

Figure 4.2: Illustration of (4.0.8) used in the proof of THEOREM 4.1. For all 𝑡 ≥ 0, here illustrated
by 𝑡 = 𝑡1 and 𝑡 = 𝑡2, the identity (4.0.8) holds for all 𝑥 ≥ 𝑅, colored yellow. Compare with the right
panel with FIGURE 3.2. Moreover, the arrows on the right schematically shows the two effects on
the tail norm of the perturbation 𝐵(𝑥, 𝑡) on [𝑅,∞).

By bound (4.0.6):

𝐴(𝑅 + (𝑐 − 1)𝑡; ·, 𝑡)

𝐻1 ≤ 𝛾0𝑒

𝛾0𝑡
𝐴0(𝑅 + (𝑐 − 1)𝑡; ·)


𝐻1 (4.0.10)

Combining (4.0.9) and (4.0.10),

𝐵(·, 𝑡)
𝐻1

(
[𝑅,∞)

) ≤ 𝛾0𝑒
𝛾0𝑡

𝐴0(𝑅 + (𝑐 − 1)𝑡; ·)

𝐻1 (4.0.11)

where the RHS depends only on data 𝐵0 through 𝐴0 defined by (4.0.5). Now we proceed to bound

the RHS of (4.0.11).

By assumption (4.0.1), we can choose 𝑀 ∈ R large enough, such that

𝐵0
2
𝐻1

(
[𝑧,∞)

) ≤ 1
2
(𝑀𝑒−𝛾𝑧)2

, 𝑧 ∈ R.

By the definition (4.0.5) of 𝐴0 we have

𝐴0(𝑧; ·)
2
𝐻1 = 2

𝐵0
2
𝐻1

(
[𝑧,∞)

) ≤ 𝑀2𝑒−2𝛾𝑧 (4.0.12)
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Now we apply (4.0.12) and set 𝑧 = 𝑅 + (𝑐 − 1)𝑡,

𝐴0(𝑅 + (𝑐 − 1)𝑡; ·)

𝐻1 ≤ 𝑀𝑒−𝛾𝑅𝑒−𝛾(𝑐−1)𝑡 (4.0.13)

So by (4.0.11) and (4.0.13),

𝐵(·, 𝑡)
𝐻1

(
[𝑅,∞)

) ≤ 𝑀𝛾𝑒−𝛾𝑅𝑒−
(
𝛾(𝑐−1)−𝛾0

)
𝑡 . (4.0.14)

Finally, since by hypothesis 𝛾 > 𝛾0
𝑐−1 , where 𝑐 > 1, we have 𝛾(𝑐 − 1) − 𝛾0 > 0, and hence (4.0.14)

implies exponential decay in time as asserted in (4.0.3). □
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Chapter 5: Linearized stability analysis

The nonlinear stability analysis of supersonic pulses of the previous section relies on the as-

sumption that nonlinearity is saturable and, in particular, both N(𝑟2) and its derivative N ′(𝑟2) are

bounded.

If the Lipschitz constant of the nonlinearity grows with growing amplitude, then it appears to

be a possibility that some solutions may blow up (become singular) in 𝐻1 in finite time. Without

global-in-time existence of solutions with a priori upper bound on the rate of growth, the above

strategy cannot be implemented.

Thus, we are motivated to pursue a linearized stability analysis of traveling wave solutions,

including supersonic pulses.

Our stability analysis of supersonic pulses does not apply to kink-type traveling wave solu-

tions; see Figure 2.1. Recall that kink solutions are always subsonic (|𝑐 | < 1); hence a kink does

not “outrun” small perturbations which moves with the linearized wave speeds = ±1. In con-

trast, supersonic (|𝑐 | > 1) pulses do outrun disturbances of speed ±1; this observation underlies

THEOREM 4.1. This motivates our linearized stability analysis for the case of kinks.

We next give a general discussion of the linear spectral analysis for pulses and kinks and then

present results on the spectral stability properties of equilibria, which arise as the 𝑥 → ±∞ limits

of traveling wave solutions. In SECTION 7 we turn to the spectral stability of supersonic pulses,

and then in SECTION 8 to the spectral stability of kink traveling wave solutions.

5.1 Linearized spectral stability analysis of pulses and kinks; qualitative discussion

Traveling wave solutions 𝑏∗(𝑥) have non-zero constant limits as 𝑥 → ±∞. These constants

correspond to fixed points of the system (2.0.3). A study of the linearized operator about these
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equilibria indicates that they are, in general, exponentially unstable. In fact under the evolution

of the linearized perturbation equations, a system of constant coefficient wave equations, an initial

perturbation of such equilibria splits into left-moving and right-moving parts, one of which grows

with time.

By REMARK 2.2, on symmetries relating traveling wave solutions, we expect that it suffices

to focus our study on traveling waves (pulses and kinks) with speeds 𝑐 ≥ 0. As demonstrated

in CHAPTER 4 for supersonic pulses, and numerically for both supersonic pulses and kinks, if

we appropriately localize the perturbation to the region of space into which the traveling wave is

propagating, we may expect the perturbation to decay. This observation of convective stabilization

is consistent with the previous analyses of traveling wave systems. The biased localization to

one side is achieved through 𝐿2 exponentially weighted spaces [10][21] 𝐿2 algebraically weighted

spaces algebraic weights [21] and 𝐻1
loc spaces[11]. Here, we study the linearized dynamics of

perturbations in exponentially weighted spaces, which we next introduce.

5.1.1 Exponentially weighted spaces

We introduce a class of weights 𝑊 (𝑥) which asymptotes to different exponential functions as

𝑥 tend to plus or minus infinity:

𝑊 (𝑥) ≡ 𝑒𝑤(𝑥) =


𝑒𝑎−𝑥 for 𝑥 ≤ −1

𝑒𝑎+𝑥 for 𝑥 ≥ 1
(5.1.1)

where 𝑎± ∈ R, and𝑊 (𝑥), which interpolates between 𝑒𝑎−𝑥 and 𝑒𝑎+𝑥 , is chosen to be monotone and

smooth. The corresponding weighted Lebesgue and Sobolev spaces are introduced analogous to

those used in [10]:

𝐿2
𝑤 := 𝐿2 (

R, 𝑒𝑤(𝑥) d𝑥
)
, 𝐻1

𝑤 :=
{
𝑓 (𝑥) ∈ 𝐿1

loc : 𝑒𝑤(𝑥) 𝑓 (𝑥) ∈ 𝐻1
}

In the present work, we encounter the cases:
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1. 𝑎− = 𝑎+ = 𝑎. In this case we take𝑊 (𝑥) = 𝑒𝑎𝑥 , and for simplicity we will write

𝐿2
𝑎 := 𝐿2 (

R, 𝑒𝑎𝑥 d𝑥
)
, 𝐻1

𝑎 :=
{
𝑓 (𝑥) ∈ 𝐿1

loc : 𝑒𝑎𝑥 𝑓 (𝑥) ∈ 𝐻1
}

2. 𝑎− = 0, 𝑎+ = 𝑎 ≠ 0. Thus,𝑊 (𝑥) = 1 for 𝑥 < −1 and𝑊 (𝑥) = 𝑒𝑎𝑥 for 𝑥 > 1.

3. 𝑎+ = 0, 𝑎− = 𝑎 ≠ 0.

5.1.2 Linearized perturbation equation in a moving frame with speed 𝑐 ≥ 0

The equation for the perturbation, 𝐵 =

[
𝑈 𝑉

]T
, about the traveling wave solution 𝑏∗(𝑥) =

(𝑢∗(𝑥), 𝑣∗(𝑥)) in the traveling frame of reference with the same speed 𝑐 is displayed in (3.1.1).

Formal first-order Taylor expansion of (3.1.1) yields the following linearized evolution equation

for the perturbations:

𝐵𝑡 = 𝐿∗𝐵, 𝐿∗ = Σ𝜕𝑥 + 𝐴∗ (5.1.2)

with

𝐴∗(𝑥) =


2N ′ (𝑟2
∗
)
𝑢∗𝑣∗ N∗

(
𝑟2
∗
)
+ 2N ′ (𝑟2

∗
)
𝑣2
∗

−N
(
𝑟2
∗
)
− 2N ′ (𝑟2

∗
)
𝑢2
∗ −2N ′ (𝑟2

∗
)
𝑢∗𝑣∗

 (5.1.3)

and

Σ :=


𝑐 1

1 𝑐

 (5.1.4)

We shall refer to 𝐿∗ as the linearized operator about 𝑏∗.

Suppose _ ∈ C with Re_ > 0, and 0 ≠ 𝐵0(𝑥) ∈ 𝐿2 are such that 𝐿∗𝐵0 = _𝐵0. Then,

𝐵(𝑥, 𝑡) = 𝑒_𝑡𝐵0(𝑥) is a solution of (5.1.2), such that ∥𝐵(·, 𝑡)∥2 grows exponentially as 𝑡 → ∞.

However, in appropriately weighted spaces 𝐵(𝑥, 𝑡) needs not always grow. Indeed, the weighted

perturbation 𝑒𝑤(𝑥)𝐵(𝑥, 𝑡) satisfies

𝜕𝑡

(
𝑒𝑤(𝑥)𝐵(𝑥, 𝑡)

)
= 𝐿∗,𝑤

(
𝑒𝑤(𝑥)𝐵(𝑥, 𝑡)

)
,
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where 𝐿∗,𝑤 is related to 𝐿∗ by conjugation:

𝐿∗,𝑤 := 𝑒𝑤(𝑥)𝐿∗
(
𝑒−𝑤(𝑥) ·

)
= Σ

(
𝜕𝑥 − 𝑤′(𝑥)

)
+ 𝐴∗(𝑥) (5.1.5)

The study of the weighted perturbation 𝑒𝑤(𝑥)𝐵(𝑥, 𝑡) in 𝐿2 or 𝐻1 is equivalent to the study of 𝐵(𝑥, 𝑡)

in the corresponding weighted spaces 𝐿2
𝑤 or 𝐻1

𝑤.

Definition 5.1 (Spectral stability). Let 𝑏∗(𝑥) denote a TWS with speed 𝑐 whose profile satisfies

(2.0.3). Let 𝐿∗ denote the linearized operator of 𝑏∗. We say that 𝑏∗ is spectrally stable if

𝐿2
𝑤 (R)− spectrum of 𝐿∗ ⊂ {𝑧 : Re𝑧 ≤ 0},

or equivalently

𝐿2(R)− spectrum of 𝐿∗,𝑤 ⊂ {𝑧 : Re𝑧 ≤ 0}.

Suppose that for a choice of weight 𝑊 (𝑥) = 𝑒𝑤(𝑥) of the exponential type (5.1.1) the traveling

wave solution 𝑏∗ is spectrally stable in the sense of Definition 5.1. Then, if the context is clear,

then we shall refer to 𝑏∗ as being spectrally stable without explicit reference to the particular weight

𝑊 (𝑥) = 𝑒𝑤(𝑥) .

5.2 Spectral stability of equilibria

We study the spectral stability of equilibria

𝑏∗ =
[
0 0

]
and 𝑏∗ =

[
cos \ sin \

]
in 𝐿2

𝑎 = 𝐿
2
𝑤, where𝑊 (𝑥) = 𝑒𝑎𝑥 .
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5.2.1 The trivial equilibrium

Consider the trivial equilibrium, 𝑏∗ = 𝑏𝑂 := [0, 0], viewed in a frame of reference moving

with speed 𝑐. Let 𝑎 ∈ R be fixed. The 𝐿2
𝑎-spectral stability properties are determined by the

𝐿2-spectrum of the operator:

𝐿𝑂,𝑎 =


𝑐 1

1 𝑐


(
𝜕𝑥 − 𝑎

)
+


0 1

−1 0

 = Σ(𝜕𝑥 − 𝑎) + 𝐴𝑂 (5.2.1)

The spectrum of 𝐿𝑂,𝑎 is determined [22] by the frequency of non-trivial plane wave solutions of

wave numbers 𝑘 ∈ R: 𝐵 = 𝑒𝑖𝑘𝑥𝐵0, 𝐵0 ∈ C2 and 𝐿𝑂𝐵0 = _𝐵0, where _ = _(𝑘) satisfies:

det
©«
(
i𝑘 − 𝑎

) 
𝑐 1

1 𝑐

 +


0 1

−1 0

 −

_ 0

0 _


ª®®¬ = 0,

yielding two branches (dispersion relations), depending on 𝑎, the union of whose images is exactly

the 𝐿2-spectrum of 𝐿𝑂,𝑎, equivalently the 𝐿2
𝑎-spectrum of 𝐿𝑂 . It can be seen that the essential

spectrum is stable (does not intersect the open right half plane) if and only if 𝑎 = 0. The two

branches of 𝐿2 = 𝐿2
0 essential spectrum are swept out by the dispersion relations:

_(𝑘) = _±𝑂 (𝑘) = i
(
𝑘𝑐 ±

√︁
1 + 𝑘2

)
, 𝑘 ∈ R. (5.2.2)

Proposition 5.2. The trivial equilibrium, (𝑏∗ = (0, 0), is spectral stable in 𝐿2(R).

There are two qualitatively distinct cases:

• |𝑐 | < 1 (subsonic frame of reference),

𝜎(𝐿𝑂) = iR \ i(−
√︁

1 − 𝑐2,
√︁

1 − 𝑐2)

i.e. the spectrum is a subset of the imaginary axis and has a gap, which is symmetric about
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the origin, and

• |𝑐 | > 1 (supersonic frame of reference)

𝜎(𝐿𝑂) = iR

Remark 5.3. The relevance of considering the stability of equilbria in different reference frames

relates to our requiring this information for the study of supersonic (|𝑐 | > 1) pulses and kinks, for

which |𝑐 | < 1.

5.2.2 Nontrivial equilibria

Nontrivial equilibria are of the form 𝑏∗ = 𝑏\ :=
[
cos \ sin \

]
; see (2.0.2). In a frame of

reference with speed 𝑐, the linearized operator 𝐿\ = 𝐿∗ is given by (5.1.2). The weight-conjugated

operator (see (5.1.5)) is:

𝐿\,𝑎 =


𝑐 1

1 𝑐


(
𝜕𝑥 − 𝑎

)
− 𝐾


sin 2\ 1 − cos 2\

−1 − cos 2\ − sin 2\

 ; (5.2.3)

recall that 𝐾 = −N ′(1) > 0 by assumption 1.3.1. The essential spectrum of 𝐿\,𝑎 is characterized

by its (bounded) plane wave solutions 𝑒i𝑘𝑥+_𝑡b0, with b0 ∈ C2 ≠ 0. Thus, we obtain dispersion

curves

_±\,𝑎 (𝑘) =
(
i𝑘 − 𝑎

)
𝑐 ±

√︃(
i𝑘 − 𝑎

) (
i𝑘 − 𝑎 + 2𝐾 cos 2\

)
(5.2.4)

and

𝜎(𝐿\,𝑎) =
⋃
𝛽=±

{_𝛽
\,𝑎

(𝑘) : 𝑘 ∈ R}. (5.2.5)

We seek conditions on 𝑎 guaranteeing that Re𝜎(𝐿\,𝑎) ≤ 0. Note from (5.2.4) that for 𝑘 ∈ R

Re_±\,𝑎 (𝑘) = −𝑎𝑐 ± Re
√︃(

i𝑘 − 𝑎
) (

i𝑘 − 𝑎 + 2𝐾 cos 2\
)

(5.2.6)
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Using (5.2.6) we obtain the following bounds on Re𝜎(𝐿\,𝑎):

Proposition 5.4.

inf Re𝜎(𝐿\,𝑎) = −𝑎𝑐 −
��𝑎 − 𝐾 cos 2\

�� (5.2.7)

supRe𝜎(𝐿\,𝑎) = −𝑎𝑐 +
��𝑎 − 𝐾 cos 2\

�� (5.2.8)

Moreover, these extrema are not achieved if and only if 𝑎 − 𝐾 cos 2\ ≠ 0; otherwise, if and only if

𝑎 − 𝐾 cos 2\ = 0, 𝜎
(
𝐿\,𝑎

)
⊂ i𝑅.

We shall use the following technical lemma:

Lemma 5.5. Let 𝛼, 𝛽 ∈ R be fixed, and consider the mapping 𝑓 : 𝑘 ∈ R ↦→ C given by:

𝑓 (𝑘) =
√︃(

i𝑘 − 𝛼
) (

i𝑘 − 𝛽
)
, 𝑘 ∈ R.

where the square-root function is defined on the cut complex plane C \ (−∞, 0] to have a positive

real part; on the cut it is taken to have nonnegative real part. Then, for all 𝑘 ∈ R, we have

Re 𝑓 (𝑘) ≤
���𝛼 + 𝛽

2

���
In particular, if 𝛼 + 𝛽 = 0, then Re 𝑓 (𝑘) = 0 for all 𝑘 ∈ R. And if 𝛼 + 𝛽 ≠ 0, then supRe 𝑓 (𝑘) is

attained only in the limit 𝑘 → ±∞.

Proof. If 𝛼+ 𝛽 = 0, 𝛼𝛽 ≤ 0 and 𝑓 (𝑘) =
√︁
𝛼𝛽 − 𝑘2 and is purely imaginary. Therefore Re 𝑓 (𝑘) = 0

and we are done. Moreover, 𝑓 (0) =
√
𝛼𝛽, Re 𝑓 (0) = 0 for 𝛼𝛽 ≤ 0 or |𝛼𝛽 | ≤

���𝛼+𝛽2

��� for 𝛼𝛽 > 0. So

we can study the case when 𝛼 + 𝛽 ≠ 0 and 𝑘 ≠ 0.

Consider the conformal mapping 𝑔(𝑧) = 𝑧 ↦→ 𝑧2 from half plane Re𝑧 > 0 toC \R≤0. Now the

line Re𝑧 =
���𝛼+𝛽2

��� cuts Re𝑧 > 0 into two path-connected components:

Ω1 =

{
0 < Re𝑧 ≤

���𝛼 + 𝛽
2

���}, Ω2 =

{
Re𝑧 ≥

���𝛼 + 𝛽
2

���}
61



and Ω1 ∩Ω2 =

{
Re𝑧 =

���𝛼+𝛽2

���}. Under 𝑔(𝑧), Re𝑧 =
���𝛼+𝛽2

��� transforms to the parabola Π given by

𝑥 = 𝑝(𝑦) = − 𝑦2

(𝛼 + 𝛽)2 +
(𝛼 + 𝛽

2

)2

where 𝑥, 𝑦 = Re(𝑧2),Im(𝑧2). The set Ω1 is transformed into 𝑔
(
Ω1

)
by 𝑔(𝑧), which is the “left”

path-connected component of the cut complex plane C \R≤0 of which 0 is an element. Now the

image of 𝑓 (𝑘) is a subset of the open right-half plane since ℎ(𝑧) = 𝑧 ↦→ √
𝑧 on C \ R≤0 is the

inverse of 𝑔(𝑧). Re 𝑓 (𝑘) ≤
���𝛼+𝛽2

��� is equivalent to that the image of 𝑓 (𝑘), 𝑘 ≠ 0, is in Ω1; this is

further equivalent to the image of 𝑓 (𝑘)2, 𝑘 ≠ 0, is in 𝑔
(
Ω1

)
. In fact,

𝑓 (𝑘)2 = 𝛼𝛽 − 𝑘2 − i(𝛼 + 𝛽)𝑘 + 𝛼𝛽

whose image is

𝑥 = 𝑞(𝑦) = − 𝑦2

(𝛼 + 𝛽)2 + 𝛼𝛽, (𝑦 ≠ 0)

and since 𝑞(𝑦) ≤ 𝑝(𝑦), the image of 𝑓 (𝑘)2 sits to the left (inclusive) of Π, namely ran 𝑓 (𝑘)2 ∈

𝑔(𝜔1) and equivalently ran 𝑓 (𝑘) ∈ Ω1, and this is further equivalent to

Re 𝑓 (𝑘) ≤
���𝛼 + 𝛽

2

���
Now we prove that supRe 𝑓 (𝑘) =

���𝛼+𝛽2

���. In fact, WLOG assume 𝛼 + 𝛽 < 0 and

Re 𝑓 (𝑘) = Rei𝑘
√︃
−𝛼𝛽/𝑘2 − (𝛼 + 𝛽)/i𝑘 + 1 = −(𝛼 + 𝛽)/2 =

���𝛼 + 𝛽
2

��� + 𝑜(1)
which is exactly what needs to be proved. □

Proof of PROPOSITION 5.4. Applying LEMMA 5.5 with 𝛼 = 𝑎 and 𝛽 = 𝑎 − 2𝐾 cos 2\. Therefore

−𝑎𝑐 −
��𝑎 − 𝐾 cos 2\ | ≤ Re_±\,𝑎 (𝑘) ≤ −𝑎𝑐 +

��𝑎 − 𝐾 cos 2\ |
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Moreover, the lower and upper bounds above are optimal; if 𝑎 ≠ 𝐾 cos 2\, then the sup in 5.2.8 and

inf in 5.2.7 are only attained in the limit 𝑘 → ∞. Otherwise Re_±
\,𝑎

(𝑘) = −𝑎𝑐 for all 𝑘 ∈ R. □

By definition, 𝑏\ is 𝐿2
𝑎-spectrally stable if and only if supRe𝜎(𝐿\,𝑎) ≤ 0, which by (5.2.8) is

the condition

��𝑎 − 𝐾 cos 2\
�� ≤ 𝑎𝑐 or − 𝑎(𝑐 + 1) ≤ −𝐾 cos 2\ ≤ 𝑎(𝑐 − 1). (5.2.9)

For 𝑐 > 1, condition (5.2.9) is equivalent to:

𝑎 ≥ max
{
−𝐾 cos 2\

𝑐 − 1
,
𝐾 cos 2\
𝑐 + 1

}
≡ 𝑎𝑐>1(\, 𝑐) (5.2.10)

For 𝑐 < −1,

𝑎 ≤ min
{
−𝐾 cos 2\

𝑐 − 1
,
𝐾 cos 2\
𝑐 + 1

}
(5.2.11)

For −1 < 𝑐 < 1,
𝐾 cos 2\

1 + 𝑐 ≤ 𝑎 ≤ 𝐾 cos 2\
1 − 𝑐 . (5.2.12)

For parameters 𝑎 which satisfy (5.2.12) to exist, it is necessary that the indicated 𝑎−interval be

non-empty. Thus we require:

𝑐 cos 2\ ≥ 0. (5.2.13)

We summarize the preceding discussion in:

Proposition 5.6. For a fixed equilibrium solution (see (2.0.2)), consider the linearized operator,

𝐿𝑂 or 𝐿\,𝑎, corresponding to a frame of reference moving with speed 𝑐 ≠ ±1.

1. Trivial equilibrium: The trivial equilibrium is spectrally stable if and only if 𝑎 = 0. In this

case, 𝐿𝑂 is a subset of the imaginary axis.

2. Non-trivial equilibria,
[
cos \ sin \

]
: The spectrum 𝐿\,𝑎 is contained in the closed left-half

plane if and only if (5.2.9) holds. The condition (5.2.9) is equivalent to (5.2.10) if 𝑐 > 1, or
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(5.2.11) if 𝑐 < −1 and (5.2.12) if −1 < 𝑐 < 1.
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Chapter 6: Strategy for studying TWS stability

The spectrum of a closed operator 𝐿 on a Banach space can be uniquely decomposed into

two disjoint subsets of C[22]: the essential spectrum 𝜎e(𝐿) and the discrete spectrum 𝜎d(𝐿):

𝜎(𝐿) = 𝜎e(𝐿) ∪ 𝜎d(𝐿) In particular, for 𝐿𝑤,∗, the linearization about a traveling wave solution,

𝑏∗(𝑥), we have

𝜎(𝐿𝑤,∗) = 𝜎e(𝐿𝑤,∗) ∪ 𝜎d(𝐿𝑤,∗).

So 𝜎(𝐿𝑤,∗) is contained in the left-half plane (and hence 𝑏∗(𝑥) is spectrally stable) if and only if

both 𝜎e(𝐿𝑤,∗) and 𝜎d(𝐿𝑤,∗) are both contained in the closed left-half plane.

We consider traveling wave solutions 𝑏∗(𝑥) which, as 𝑥 → ±∞, approach equilibria of (1.0.1);

see SECTION 5.2. The corresponding constant-coefficient linear differential operators, right- and

left-asymptotic operators, are operators at ±∞; formally:

𝐿± = lim
𝑥→±∞

𝐿∗,𝑤 (6.0.1)

𝐿± are obtained from 𝐿∗,𝑤 by setting the coefficients equal to their values at ±∞.

Due to the heteroclinic nature of traveling wave solutions, 𝐿+ ≠ 𝐿− in general, and so we

introduce the piecewise constant-coefficient asymptotic operator which transitions between 𝐿−

and 𝐿+ across 𝑥 = 0:

𝐿∞ = 1𝑥≤0𝐿− + 1𝑥>0𝐿+. (6.0.2)

Since 𝐿∗,𝑤 − 𝐿∞ is spatially well-localized, by Weyl’s theorem on the invariance of essential spec-

trum under relatively compact perturbations, we have

𝜎e
(
𝐿∗,𝑤

)
= 𝜎e

(
𝐿∞

)
;
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see PROPOSITION 6.4. Therefore

𝜎
(
𝐿∗,𝑤

)
= 𝜎e

(
𝐿∞

)
∪ 𝜎d

(
𝐿∗,𝑤

)
(6.0.3)

In order to determine conditions on the weight, 𝑊 (𝑥) = 𝑒𝑤(𝑥) , such that 𝜎e
(
𝐿∞

)
for all TWSs

asymptotic to equilibria of the system (2.0.1), in particular, both supersonic pulses and kinks, we

use the following:

Proposition 6.1. Let 𝑏∗(𝑥) denote any TWS with speed 𝑐, which is asymptotic to spatially equilib-

ria as 𝑥 → ±∞. Denote by 𝐿∗,𝑤, the operator obtained by conjugating the linearized operator with

the weight 𝑊 (𝑥) = 𝑒𝑤(𝑥) of the exponential type; see SECTION 5.1.1 and (5.1.5). Finally, denote

by 𝐿± (where we suppress the dependence on 𝑤(𝑥)), the constant coefficient asymptotic operators;

see (6.0.1). Then we have

𝜎
(
𝐿+

)
∪ 𝜎

(
𝐿−

)
∈ 𝜎e(𝐿∗,𝑤) (6.0.4)

and

supRe𝜎e(𝐿∗,𝑤) = max
{

supRe𝜎(𝐿+), supRe𝜎(𝐿−)
}

(6.0.5)

PROPOSITION 6.1 is a direct application of the theory on the essential spectra of asymptotically

constant differential operators, nicely presented in CHAPTER 3 of [22].

6.1 Sketch of proof of PROPOSITION 6.1

Now the asymptotic operator 𝐿∞ = Σ
(
𝜕𝑥 − 𝑎

)
+ 𝐴(𝑥) by (6.0.2). 𝐿∞ is constant-coefficient for

both 𝑥 < 0 and 𝑥 > 0. We can characterize its essential spectrum. We adapt THEOREM 3.1.11 and

REMARK 3.1.14 of Kapitula and Promislow (2013) [22].

Theorem 6.2 (Essential spectrum of 𝐿∞). _ ∈ 𝜎e(𝐿∞) if and only if either of the following two

statements is true:

(i) _ ∈ 𝜎
(
𝐿+

)
∪ 𝜎

(
𝐿−

)
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(ii) The index of _ − 𝐿∞, defined by

ind
(
_𝐼 − 𝐿∞

)
:= dimEu (_𝐼 − 𝐿−) − dimEu (_𝐼 − 𝐿+) (6.1.1)

is not equal to zero.

In the theorem above, dimEu (_𝐼 − 𝐿−) is the number of independent vectors [ such that the

following generalized eigenvalue problem is solved with some Re𝑘 > 0:

𝐿−[𝑒
i𝑘𝑥 = _[𝑒i𝑘𝑥

similarly for Eu (_𝐼 − 𝐿+
)
. The following theorem adapted from the THEOREM 3.1.13 of [22]

characterizes the border of 𝜎e
(
𝐿∞

)
:

Theorem 6.3 (Characterization of 𝜕𝜎e
(
𝐿∞

)
). (i) The border of the essential spectrum of 𝐿∞ is

contained in the union of the essential spectra of 𝐿±. Namely

𝜕𝜎e
(
𝐿∞

)
⊂ 𝜎

(
𝐿+

)
∪ 𝜎

(
𝐿−

)
(ii) The set

C \
[
𝜎

(
𝐿+

)
∪ 𝜎

(
𝐿−

) ]
consists of connected components that are either entirely contained in 𝜎e

(
𝐿∞

)
or does not

intersect with it.

We are interested in the essential spectrum of 𝐿∗,𝑤. In fact,

Theorem 6.4. The essential spectra of an 𝐿∗,𝑤 and 𝐿∞ are identical.

THEOREM 6.4 follows as an immediate corollary of the following THEOREM 6.5 of Weyl on

the invariance of the essential spectrum of a linear operator under relatively compact perturbations

[23], and PROPOSITION 6.6:
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Theorem 6.5 (Weyl). Let 𝐿 : D(L) ⊂ 𝑋 → 𝑌 be a closed operator between Banach spaces 𝑋

and 𝑌 , and 𝑃 relatively compact to 𝐿 then

𝜎e(𝐿) = 𝜎e(𝐿 + 𝑃)

We say 𝑃 is relatively compact with respect to 𝐿, if it is a compact operator on D(𝐿) equipped

with the graph norm to 𝑌 . For our case, the domain of 𝐿∗,𝑤 is 𝐻1, and the graph norm of 𝐿∗,𝑤 is

equivalent to 𝐻1 norm since 𝐿∗,𝑤 = Σ𝜕𝑥 + some bounded matrix function, with Σ being a invertible

constant matrix. To apply THEOREM 6.5 we need the following proposition:

Proposition 6.6. 𝐿∗,𝑤 is a relatively compact perturbation of 𝐿∞.

Proof. Note that 𝐿∗,𝑤 − 𝐿∞ = 𝐴∗(𝑥) − 𝐴∞(𝑥) where

𝐴∞(𝑧) =
(
𝐴− + 𝑤′(−∞))1(−∞,0] (𝑥) + (𝐴+ + 𝑤′(∞))1(−,∞) (𝑥)

So it can be identified with a piecewise smooth matrix function, with a jump discontinuity at 𝑥 = 0.

The proof has two steps. First we prove that for any 𝑁 > 0, the operator defined by

𝛿𝐿𝑁 (𝑥) = (𝐴∗(𝑥) − 𝐴∞(𝑥)) 1[−𝑁,𝑁] (𝑥)

= (𝐴∗(𝑥) − 𝐴∞(𝑥)) 1[−𝑁,0] (𝑥) + (𝐴∗(𝑥) − 𝐴∞(𝑥)) 1(0,𝑁] (𝑥)

=𝛿𝐿−𝑁 (𝑥) + 𝛿𝐿+𝑁 (𝑥)

is compact relative to 𝐿∞. Let ( 𝑓𝑛)𝑛 be an arbitrary sequence bounded in 𝐻1 and as a result of the

equivalence of ∥ · ∥𝐻1 and the graph norm, it is also bounded in the graph norm. Note that

(𝛿𝐿𝑁 𝑓𝑛)𝑛 =
(
𝛿𝐿−𝑁 𝑓𝑛

)
𝑛
+

(
𝛿𝐿+𝑁 𝑓𝑛

)
𝑛

and 𝛿𝐿±
𝑁

can be identified with a bounded smooth matrix function on [0,∞) and (−∞, 0], respec-

tively. So both sequences 𝛿𝐿±
𝑁
𝑓𝑛 are bounded in 𝐻1, therefore both admit convergent subsequences
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in 𝐿2, as a result of the Rellich-Kondrachev compactness theorem[24]; so is their sum 𝛿𝐿𝑁 𝑓𝑛. As

a result 𝛿𝐿𝑁 compact from 𝐻1 to 𝐿2.

Then we prove (𝐿𝑁 )𝑁 is convergent in norm as bounded operators from 𝐻1 to 𝐿2. Let 𝑁 be a

positive integer and we have

∥ 𝑓 ∥𝐿∞ ≤ 𝐶

from Sobolev embedding with 𝐶 independent of 𝑓 as long as we fix ∥ 𝑓 ∥𝐻1 = 1. Since 𝐴∗(𝑥) −

𝐴∞(𝑥) → 0 exponentially fast as 𝑥 → ±∞, we have

∥(𝛿𝐿𝑁 − 𝐿∗,𝑤 + 𝐿∞) 𝑓 ∥𝐿2

≤
(𝐴∗(𝑥) − 𝐴∞(𝑥)) 𝑓 (𝑥)1|𝑥 |>𝑁 (𝑥)


𝐿2

≤𝐶
(𝐴∗(𝑥) − 𝐴∞(𝑥))1|𝑥 |>𝑁 (𝑥)


𝐿2 ∥ 𝑓 ∥𝐿∞

≤𝐶
(𝐴∗(𝑥) − 𝐴∞(𝑥))1|𝑥 |>𝑁 (𝑥)


𝐿2

≤𝐶𝑒−`𝑁

for some 𝐶, ` > 0 independent of 𝑁 , 𝑏 and vanishes as 𝑁 → ∞. Thus (𝛿𝐿𝑁 )𝑁 converges to

𝐿∗,𝑤 − 𝐿∞ in operator norm of B
(
𝐻1, 𝐿2) , the space of bounded linear operators from 𝐻1 to 𝐿2.

Since 𝐿∗,𝑤−𝐿∞ is compact in this space, it is compact relative to 𝐿∞ and the proof is complete. □

Before proceeding with a detailed discussion of spectra, we note that the linearized spectra of

pairs of TWSs related by discrete symmetries, in PROPOSITIONS 1.2 and 2.1, also have simple

relations.

Theorem 6.7 (Discrete symmetry of linearized spectra). Let 𝑏∗ be a TWS of speed 𝑐 and conserved

quantity 𝐸𝑐 [𝑏] = 𝐸 , see (2.1.1). Let 𝐿∗,𝑤 be the weight-conjugated linearized operator of 𝑏∗ with

weight𝑊 (𝑥) = 𝑒𝑤(𝑥) .

(i) Let 𝑏• = P𝑏∗. Then, 𝑏• is the profile of a TWS of the same speed 𝑐 and conserved quantity

𝐸𝑐 = 𝐸 . Moreover, 𝐿•,𝑤 = 𝐿∗,𝑤 and therefore 𝜎(𝐿•,𝑤) = 𝜎(𝐿∗,𝑤)

(ii) Let 𝑏• = TC𝑏∗ =

[
𝑣∗(−𝑥) −𝑢∗(−𝑥)

]
. Then, 𝑏• is the profile of a TWS of speed −𝑐
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with conserved quantity 𝐸𝑐 = −𝐸 . Let �̃�(𝑥) = 𝑤(−𝑥). Then, 𝐿•,�̃� = 𝐿∗,𝑤, and therefore

𝜎(𝐿•,�̃�) = 𝜎(𝐿∗,𝑤).

Remark 6.8. THEOREM 6.7 is convenient since it reduces checking the spectral stability of TWSs

to checking that of representative ones. In particular, for supersonic pulses with speed ±𝑐 we only

need to work with 𝑏𝑐,𝐸 and T 𝑏−𝑐,−𝐸 , corresponding to the solid blue line and the solid green line

in FIGURE 2.2a. Other supersonic pulses with speed ±𝑐 schematically shown in FIGURE 2.2 can

be obtained by acting P and T𝐶 on these two representative solutions. Note that pulse solutions

are all invariant under C. On the other hand, for kinks, we only need to work with 𝑏𝑐,0 kink with

𝑐 ≥ 0, represented by the solid blue line in FIGURE 2.1a. For details of how TWSs transform under

discrete symmetries, see SECTION 2.4.

Proof of THEOREM 6.7. The first case is straightforward, since in this case 𝑏• = −𝑏∗ by definition

of

P
[
𝑢(𝑦, 𝑡) 𝑣(𝑦, 𝑡)

]T
= −

[
𝑢(𝑦, 𝑡) 𝑣(𝑦, 𝑡)

]T

and the linear dynamics of disturbance on 𝑏• given by −𝐵 is identical to the 𝐵 disturbance on 𝑏∗.

Therefore in the linear regime,

𝜕𝑡𝐵 = 𝐿∗,𝑤𝐵

for perturbation on 𝑏∗ and

𝜕𝑡 (−𝐵) = 𝐿•,𝑤 (−𝐵)

on 𝑏•, and as a result

𝐿∗,𝑤 = 𝐿•,𝑤

We prove the TC = CPT case in detail. The traveling wave solution generated by acting TC on

𝑏∗(𝑦 − 𝑐𝑡) =
[
𝑢∗(𝑦 − 𝑐𝑡), 𝑣∗(𝑦 − 𝑐𝑡)

]
, according to PROPOSITION 1.2, is

TC
[
𝑢∗, 𝑣∗

]
(𝑦, 𝑡) =

[
𝑣∗(−𝑦, 𝑡),−𝑢∗(−𝑦, 𝑡)

]
=

[
𝑣∗

(
− (𝑦 + 𝑐𝑡)

)
,−𝑢∗

(
− (𝑦 + 𝑐𝑡)

) ]
(6.1.2)
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therefore the resulting traveling wave solution

[
𝑢•(𝑦, 𝑡), 𝑣•(𝑦, 𝑡)

]
=

[
𝑢•(𝑦 + 𝑐𝑡), 𝑣•(𝑦 + 𝑐𝑡)

]
is one that travels with speed −𝑐 with


𝑢•(𝑥)

𝑣•(𝑥)

 =


𝑣∗(−𝑥)

−𝑢∗(−𝑥)

 =
[
i𝜎2R𝑏∗

]
(𝑥) (6.1.3)

where R 𝑓 (𝑧) := 𝑓 (−𝑧), note that R commutes with i𝜎2 and R2 = id and 𝜎2
2 = 𝜎0.

Therefore the linearized dynamics of a disturbance �̃�(𝑥, 𝑡) in the frame moving with speed −𝑐

given by (5.1.2) is

(
Σ−𝑐

(
𝜕𝑥 − �̃�′(𝑧)

)
+ 𝐴

[
𝑢•, 𝑣•

]
(𝑥)

)
�̃�(𝑥, 𝑡) = 𝜕𝑡 �̃�(𝑥, 𝑡) (6.1.4)

So the transformed linearized operator is given by

𝐿•,�̃�
(
𝑥, 𝜕𝑥

)
= Σ(−𝑐)

(
𝜕𝑥 − �̃�′(𝑥)

)
+ 𝐴

[
𝑢•, 𝑣•

]
(𝑥) (6.1.5)

Now _ ∈ 𝜌
(
𝐿•

)
is equivalent to that the equation

(
𝐿•,�̃� − _

)
�̃� = 𝑓 is solvable for any 𝑓 ∈ 𝐿2,

which is equivalent to

i𝜎2R
(
𝐿•,�̃� − _

)
R−1 ( − i𝜎−1

2
)
𝐵 = i𝜎2R 𝑓 (6.1.6)
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is solvable for any 𝑓 ∈ 𝐿2, So the conjugated operator is

i𝜎2R
(
𝐿•,�̃� − _

)
R−1 ( − i𝜎−1

2
)

=


0 1

−1 0

 R

−𝑐 1

1 −𝑐


(
𝜕𝑥 − �̃�′ (𝑥)

)
R


0 −1

1 0


+


0 1

−1 0

 R


−2N
(
𝑟∗ (−𝑥)2)𝑣∗ (−𝑥)𝑢∗ (−𝑥) N∗

(
𝑟∗ (−𝑥)2) + 2N ′ (𝑟∗ (−𝑥)2)𝑢∗ (−𝑥)2

−N∗
(
𝑟∗ (−𝑥)2) − 2N ′ (𝑟∗ (−𝑥)2)𝑣∗ (−𝑥)2 2N

(
𝑟∗ (−𝑥)2)𝑣∗ (−𝑥)𝑢∗ (−𝑥)

 R

0 −1

1 0


=


𝑐 1

1 𝑐


[
𝜕𝑥 −

(
− �̃�′ (−𝑥)

) ]
+


2N

(
𝑟∗ (𝑥)2)𝑢∗ (𝑥)𝑣∗ (𝑥) N

(
𝑟∗ (𝑥)2) + 2N ′ (𝑟∗ (𝑥)2)𝑣∗ (𝑥)2

−N
(
𝑟∗ (𝑥)2) − 2N ′ (𝑟∗ (𝑥)2)𝑢∗ (𝑥)2 −2N

(
𝑟∗ (𝑥)2)𝑢∗ (𝑥)𝑣∗ (𝑥)


(6.1.7)

Note that R𝜕𝑥R−1𝑔(𝑥) = −𝜕𝑥𝑔(𝑥) for any 𝑔 ∈ 𝐻1, and 𝑅𝐴(𝑥)R−1𝑔(𝑥) = 𝐴(−𝑥)𝑔(𝑥) for any

matrix-valued function 𝐴(𝑥) and any 𝑔 ∈ 𝐿2. Therefore, choose �̃�(𝑥) = 𝑤(−𝑥) = R𝑤(𝑥) then

there is

𝐿•,R𝑤 = 𝐿∗,𝑤 (6.1.8)

since

Pi𝜎2R �̃� = 𝑏∗,R�̃� = 𝑤 (6.1.9)

we can conclude the equivalence. □
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Chapter 7: Supersonic pulses

By REMARK 6.8, we need only study the two supersonic pulses corresponding to the solid blue

and green trajectories in FIGURE 2.2a. Recall 𝐾 = −N ′(1) > 0; see (1.3.1).

Theorem 7.1 (Spectral stability for supersonic pulses). Let 𝑏∗(𝑥) be a supersonic pulse of speed

𝑐 > 1 and corresponding to a trajectory of (2.0.3) with phase portrait energy 𝐸𝑐 = 𝐸 for 𝑐 > 1,

marked with solid blue or solid green lines in figure 2.2. Then,

1. 𝑏∗ is spectrally stable in 𝐿2
𝑎, i.e. supRe𝜎(𝐿∗,𝑎) ≤ 0, if and only if

𝑎 ≥ 𝐾

𝑐 − 1

√︃
1 −

(
𝐸 − 𝑐

)2 (7.0.1)

In fact,

supRe𝜎
(
𝐿∗,𝑎

)
= −𝑎

(
𝑐 − 1

)
+ 𝐾

√︃
1 −

(
𝐸 − 𝑐

)2 ≤ 0

Hence, if strict inequality holds in (7.0.1), then supRe𝜎(𝐿∗,𝑎) < 0.

2. Assume 𝐸 ≠ 𝑐 ± 1, or 𝐸 = 𝑐 ± 1 and 𝑎 ≠ 0, then, 𝜎(𝐿∗,𝑎) is always in the open left-half

plane; the supremum is not attained. If 𝐸 = 𝑐±1 and 𝑎 = 0, 𝜎(𝐿∗,𝑎) is in the closed left-half

plane and not in the open left-half plane.

3. 0 ∉ 𝜎(𝐿∗,𝑎). In particular, the translation mode: 𝑒𝑎𝑥 𝜕𝑥𝑏∗, which satisfies 𝐿∗,𝑎 (𝑒𝑎𝑥 𝜕𝑥𝑏∗) =

0, is not an 𝐿2(R) solution of 𝐿∗,𝑎𝑌 = 0.

4. For supersonic pulses with 𝑐 < −1 we have similar results by THEOREM 6.7 and REMARK

6.8.

We now proceed with the proof of THEOREM 7.1. We have the decomposition 𝜎(𝐿∗,𝑎) =

𝜎e(𝐿∗,𝑎) ∪𝜎d(𝐿∗,𝑎). We will prove, for an appropriate choice of weight 𝑒𝑎𝑥 , that both the essential
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spectrum and the discrete spectrum of operator 𝐿∗,𝑎 are contained in the open left-half plane, for

most cases.

Remark 7.2. The only cases when 𝜎(𝐿∗,𝑎) is contained in the closed left-half plane, but not the

open left-half plane, are when 𝐸 = 𝑐 ± 1 and 𝑎 = 0.

7.1 Essential spectrum for supersonic pulses

The essential spectrum is determined by the operator 𝐿∗,𝑎 evaluated on its asymptotic equilib-

ria; in particular, we have the expression on the supremum of its essential spectrum; see PROPO-

SITION 6.1. For pulses, 𝑏∗(𝑥) =
[
𝑢∗(𝑥), 𝑣∗(𝑥)

]
= 𝑏𝑐,𝐸 or T 𝑏−𝑐,−𝐸 , are the representative profiles,

see REMARK 6.8. 𝑏∗ = 𝑏𝑐,𝐸 asymptotics to

[
𝑢∗(−∞), 𝑣∗(−∞)

]
=

[
cos \ sin \

]
[
𝑢∗(∞) 𝑣∗(∞)

]
=

[
sin \ cos \

]
=

[
cos

(
𝜋
2 − \

)
sin

(
𝜋
2 − \

)] (7.1.1)

while 𝑏∗ = T 𝑏−𝑐,−𝐸 asymptotics to

[
𝑢∗(−∞), 𝑣∗(−∞)

]
=

[
cos \ sin \

]
[
𝑢∗(∞) 𝑣∗(∞)

]
=

[
− sin \ − cos \

]
=

[
cos

(
− 𝜋

2 − \
)

sin
(
− 𝜋

2 − \
)] (7.1.2)

where \ = \𝑐,𝐸 = 1
2 arcsin(𝐸 − 𝑐), see (2.3.2).

By PROPOSITION 6.1 we have

supRe𝜎e(𝐿∗,𝑎) = max
{

supRe𝜎(𝐿−), supRe𝜎(𝐿+)
}
,

where 𝐿− = 𝐿\,𝑎 and 𝐿+ = 𝐿± 𝜋
2 −\,𝑎 whose expressions are given in (5.2.3), which we shall prove

to be non-positive for 𝑎 satisfying (7.0.1). Note that the two choices of 𝐿+ = 𝐿± 𝜋
2 −\,𝑎 are identical

operators, since by their definition (5.2.3), 𝐿± 𝜋
2 −\,𝑎 only depend on ± 𝜋

2 − \ through cosine or sine

of 2
(
± 𝜋

2 − \
)
, which give the same values.
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Now we apply PROPOSITION 6.1 to the weighted operator 𝐿∗,𝑎 of supersonic pulse 𝑏∗(𝑥) to

find the range of 𝑎 for both the spectra of 𝐿± to be contained in the open left-half plane, or to be

on the imaginary axis. By PROPOSITION 5.6, 𝜎(𝐿−) is in the closed left-half plane if (5.2.10) is

satisfied:

𝑎 ≥ max
{
−𝐾 cos 2\

𝑐 − 1
,
𝐾 cos 2\
𝑐 + 1

}
=
𝐾 cos 2\
𝑐 + 1

Note that cos 2\ > 0. Similarly for 𝜎(𝐿+) = 𝜎(𝐿± 𝜋
2 −\,𝑎), since cos 2(±𝜋/2 − \) = − cos 2\ ≤ 0,

supRe𝜎(𝐿+) ≤ 0 if and only if

𝑎 ≥ max
{
−−𝐾 cos 2\

𝑐 − 1
,
−𝐾 cos 2\
𝑐 + 1

}
=
𝐾 cos 2\
𝑐 − 1

again as a result of (5.2.10). So

supRe𝜎e(𝐿∗,𝑎) = max
{

supRe𝜎(𝐿−), supRe𝜎(𝐿+)
}
≤ 0

is equivalent to

𝑎 ≥ max
{
𝐾 cos 2\
𝑐 − 1

,
𝐾 cos 2\
𝑐 + 1

}
=
𝐾 cos 2\
𝑐 − 1

=
𝐾

𝑐 − 1
√︁

1 − (𝐸 − 𝑐)2

since \ = \𝑐,𝐸 = 1
2 arcsin(𝐸 − 𝑐) and cos 2\ =

√︁
1 − (𝐸 − 𝑐)2. This is exactly (7.0.1). Moreover,

the suprema of Re𝜎(𝐿−) ≡ Re𝜎(𝐿\,𝑎) and Re𝜎(𝐿+) ≡ Re𝜎(𝐿± 𝜋
2 +\,𝑎) satisfy the following

inequality

supRe𝜎(𝐿\,𝑎) = −𝑎𝑐 −
��𝑎 − 𝐾 cos 2\

�� ≤ −𝑎𝑐 +
��𝑎 + 𝐾 cos 2\

�� ≤ supRe𝜎(𝐿± 𝜋
2 +\,𝑎)

since cos 2\ =
√︁

1 − (𝐸 − 𝑐)2 ≥ 0, and there is

supRe𝜎e(𝐿∗,𝑎) = Re𝜎(𝐿+). (7.1.3)
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If 𝐸 ≠ 𝑐 ± 1, the supremum is never achieved is a consequence of PROPOSITION 5.4, i.e. sup𝜎e(𝐿∗,𝑎) ⊂{
Re𝑥 < 0

}
. If 𝐸 = 𝑐 ± 1, then (7.0.1) becomes 𝑎 ≥ 0. If 𝑎 = 0, then from (5.2.3), both 𝜎e

(
𝐿±

)
are

both subsets the imaginary axis. So we have proved

Proposition 7.3. 1. The essential spectrum of 𝐿∗,𝑎, 𝜎e(𝐿∗,𝑎), is contained in the closed left half

plane, if and only if condition (7.0.1) on the weight parameter 𝑎 is satisfied.

2. Assume (7.0.1). 𝜎e(𝐿∗,𝑎) is in the open left-half plane, if and only if additionally we have

that either 𝐸 ≠ 𝑐 ± 1 or 𝑎 ≠ 0.

3. Assume (7.0.1). Then, 𝜎e(𝐿∗,𝑎) is on the imaginary axis if and only if 𝐸 = 𝑐 ± 1 and 𝑎 = 0.

Figure 7.1: Spectral stability of supersonic pulses via THEOREM 7.1: Essential spectrum, 𝜎e(𝐿∗,𝑎)
of weight-conjugated linearized operator 𝐿∗,𝑎 for a supersonic pulse 𝑏∗ = 𝑏𝑐,𝐸 . Parameters:
𝐾 = −N ′(1) = 2, speed 𝑐 = 5 and phase portrait energy 𝐸𝑐 = 4.84. Weight parameter
𝑎 = 1 (𝑊 (𝑥) = 𝑒𝑥) satisfies 𝑎 ≥ 0.494, the lower bound in (7.0.1). Shown are spectra of 𝐿±
(dark blue and red curves) which enclose 𝜎e(𝐿∗,𝑎) (shaded light red). Vertical light blue line:
Re_ = supRe𝜎e(𝐿∗,𝑎) < 0. There is no discrete spectrum

We have plotted the essential spectrum of a supersonic pulse in an appropriate weighted space

𝐿2
𝑎, to illustrate PROPOSITION 7.3, in FIGURE 7.1.
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7.2 Discrete spectrum for supersonic pulses

In this section we prove that for any 𝑎 ∈ R, 𝐿∗,𝑎 does not have any discrete spectrum to the

right of its essential spectrum. That is,

Re𝜎d(𝐿∗,𝑎) ≤ supRe𝜎e(𝐿∗,𝑎). (7.2.1)

PROPOSITION 7.3 ensures that if that if (7.0.1) holds, then supRe𝜎e(𝐿∗,𝑎) ≤ 0 which implies

spectral stability, supRe𝜎(𝐿∗,𝑎) ≤ 0 along with (7.2.1).

We now prove (7.2.1). By definition, _ ∈ 𝜎d(𝐿∗,𝑎) if and only if there is an 𝐿2 function 𝑓 (𝑥)

such that (_𝐼 − 𝐿∗,𝑎) 𝑓 = 0. We rewrite this spectral problem as an equivalent system of ODEs:

𝜕𝑥 𝑓 (𝑥) =
[
𝑎 + Σ−1 (_ − 𝐴∗(𝑥)) ] 𝑓 (𝑥) ≡ A(𝑥, _) 𝑓 (𝑥) (7.2.2)

where 𝐴∗(𝑥) is given by (5.1.3) and Σ is given by (5.1.4). We show that for all _ ∈ C such that

Re_ > Re𝜎e(𝐿∗,𝑎), that _ ∉ 𝜎d(𝐿∗,𝑎); this is the case if for such _, all nontrivial solutions of

(7.2.2) are unbounded as 𝑥 → +∞. We claim that the matrix A(𝑥, _) has the following properties:

(A1) 𝑥 ↦→ A(𝑥, _) ∈ C1 [0,∞) is a C1 mapping into the space of complex square matrices which,

for each 𝑥, varies analytically for all _ ∈ C.

(A2)

sup
_∈C

∥A(𝑥, _) − A+(_)∥C𝑛×𝑛 → 0

exponentially fast as 𝑥 → +∞, where A+(_) = lim𝑥→+∞ A(𝑥, _) is analytic for all _ ∈ C.

(A3) For all _ ∈ C, such that Re_ > supRe𝜎e(𝐿∗,𝑎), A+(_) has two eigenvalues with strictly

positive real parts.

Assuming (A3) holds, the set of all solutions of ODE are expressible as a linear combinations

of (a) either two linearly independent solutions with exponential growth rates equal to the (positive)
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real parts of eigenvalues of A+(_) or (b) in the case of a non-diagonal Jordan normal form (due

to a degenerate eigenvalue ˜̀) a solution with growth ∼ 𝑒 ˜̀𝑥 and a solution with growth ∼ 𝑥 𝑒 ˜̀𝑥 .

Hence, all solutions grow exponentially as 𝑥 → +∞.

It suffices to verify (A1)-(A3) for any given 𝑎 ∈ R, in particular for 𝑎 that satisfies (7.0.1).

Properties (A1) and (A2) are trivial. We next show (A3). Due to the equivalence of the equation

(_𝐼 − 𝐿+) 𝑓 = 0 to (7.2.2), the eigenvalues, `, of A+(_) are roots of the characteristic polynomial,

arising by seeking solutions of (_𝐼 − 𝐿+) 𝑓 = 0, with ansatz 𝑓 = 𝑓0𝑒
`𝑥 where 𝑓0 ∈ C2 is a nonzero

vector. Recall that 𝐿+, is the weight-conjugated linearized operator 𝐿∗,𝑎 evaluated at 𝑥 = +∞ using

the nontrivial equilibrium
[
cos 𝜗 sin 𝜗

]T
, where 𝜗 = ± 𝜋

2 − \, see (5.2.3).

Therefore, ` = `(_) satisfies

0 = det
©«

𝑐 1

1 𝑐

 (` − 𝑎) − 𝐾


sin 2𝜗 1 − cos 2𝜗

−1 − cos 2𝜗 − sin 2𝜗

 −

_ 0

0 _


ª®®¬

=
(
𝑐2 − 1

)
(` − 𝑎)2 − 2

(
_𝑐 + 𝐾 cos 2\

)
(` − 𝑎) + _2

.

These roots given given by

`±(_) = 𝑎 +
_𝑐 + 𝐾 cos 2𝜗 ±

√︁
_2 + 2_𝑐𝐾 cos 2𝜗 + 𝐾2 sin2 2𝜗
𝑐2 − 1

. (7.2.3)

Recall that 𝐾 > 0 and 𝑐 > 1. Define `1(_) = minRe`±(_).

As _ varies over C the set of roots ` is always equal to {`−(_), `+(_)}. In a neighborhood

which is small enough of any point where these roots vary analytically. To be precise, there is a

pair of analytic functions in some small neighborhood of _, `1 and `2, such that `1(_) = `−(_)

and `2(_) = `+(_). This is true even if _ ≠ _1,2 but on the cut of the square root appearing in

(7.2.3). If _ is not on the cut, we can simply choose `1 = `− and `2 = `+. These roots coincide at

those values of _ for which

𝑞(_) ≡
√︁
_2 + 2_𝑐𝐾 cos 2𝜗 + 𝐾2 sin2 2𝜗 = 0.
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This occurs at the two values _1(\) and _2(\) given by:

𝐾−1_1(\) = 𝑐 cos 2\ +
√︁
𝑐2 cos2 2\ − sin2 2\

𝐾−1_2(\) = 𝑐 cos 2\ −
√︁
𝑐2 cos2 2\ − sin2 2\

where we used identities cos 2𝜗 = − cos 2\, sin 2𝜗 = − sin 2\. Note that Re`+(_ 𝑗 ) = Re`−(_ 𝑗 )

for 𝑗 = 1, 2, and Re`±(_) → Re`±(_ 𝑗 ) as _ → _ 𝑗 . Hence

𝑚(_) = min{Re`+(_),Re`−(_)}

varies continuously on C.

We claim next that for all _ satisfying Re_ > supRe𝜎e(𝐿∗,𝑎), we have that 𝑚(_) > 0. Indeed,

for _ = 𝑀 ∈ R such that 𝑀 ≫ 1 :

`+(𝑀) = 𝑀

𝑐 + 1
+ O(1), `−(𝑀) = 𝑀

𝑐 − 1
+ O(1), (7.2.4)

implying, since 𝑐 > 1. Hence, 𝑚(𝑀) > 0 for all large 𝑀 .

Now consider _ varying over the region Re_ > supRe𝜎e(𝐿∗,𝑎). Suppose `1(_) is not always

positive in this region. Since 𝑚(_) is continuous, there must be a _̂ for which

Re_̂ > supRe𝜎e(𝐿∗,𝑎) (7.2.5)

such that 𝑚(_̂) = 0. Therefore either `+(_̂) or `−(_̂) is purely imaginary. Without loss of gener-

ality we may assume that `+(_̂) = ib̂ for b ∈ R. It follows there is a function 𝑌 ∼ 𝑒𝑖b̂𝑥 , such that

(_̂𝐼 − 𝐿+)𝑌 = 0. Since 𝜎e(𝐿+) ⊂ 𝜎e(𝐿∗,𝑎), it follows that _̂ ∈ 𝜎e(𝐿∗,𝑎). However, this contradicts

(7.2.5). This contradiction implies that for all _ such that (7.2.5) holds, we have Re`±(_) > 0.

Summarizing the result in this section, we have:

Proposition 7.4. Let 𝐿∗,𝑎 denote the linearization about a supersonic pulse, with 𝑎 satisfying
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(7.0.1). Then,

1. If Re_ > 0, then _ is not in 𝜎d(𝐿∗,𝑎).

2. 0 ∉ 𝜎(𝐿∗,𝑎). In particular, the translation mode: 𝑒𝑎𝑥 𝜕𝑥𝑏∗, which satisfies 𝐿∗,𝑎 (𝑒𝑎𝑥 𝜕𝑥𝑏∗) =

0, is not an 𝐿2(R) solution of 𝐿∗,𝑎𝑌 = 0.

We need only verify Part 2. Note that if 𝑏∗(𝑥) satisfies (2.0.1), then 𝐿∗𝜕𝑥𝑏∗ = 0 and hence

𝐿∗,𝑎 (𝑒𝑎𝑥 𝜕𝑥𝑏∗) = 0. We claim that 𝜕𝑥𝑏∗ ∉ 𝐿2
𝑎 for 𝑎 satisfying (7.0.1). Note that

𝜕𝑥𝑏∗(𝑥) ∼ exp

(
−2𝐾

√︁
1 − (𝐸 − 𝑐)2

𝑐2 − 1

)
,

from (2.3.9). Further, by (7.0.1), we have

𝑎 ≥ 𝐾
√︁

1 − (𝐸 − 𝑐)2

𝑐 − 1
>

2𝐾
√︁

1 − (𝐸 − 𝑐)2

(𝑐 − 1) (𝑐 + 1) =
2𝐾

√︁
1 − (𝐸 − 𝑐)2

𝑐2 − 1
.

Therefore 𝑒𝑎𝑥𝜕𝑥𝑏∗(𝑥) → ∞ as 𝑥 → ∞, and 𝑒𝑎𝑥𝜕𝑥𝑏∗(𝑥) is not in 𝐿2.

7.3 Remarks on instability of subsonic pulses and antikinks

PROPOSITION 6.1 implies, for a TWS to be spectrally stable in some exponential weighted

space 𝐿2
𝑤, it is necessary that both the spectra of asymptotic operators 𝐿± of 𝐿∗,𝑤 is in the closed

left-half plane. Since we have restricted the weight𝑊 (𝑥) = 𝑒𝑤(𝑥) to be of exponential type defined

in (5.1.1), both of the asymptotic equilibria 𝑏(±∞) of 𝑏∗ need to be spectrally stable in some 𝐿2
𝑎±

space, when observed in the reference frame moving with the same speed 𝑐 of 𝑏∗. Conversely,

if it is impossible to find, WLOG, 𝑎+, such either 𝑏(∞) is stable in 𝐿2
𝑎+ , as a result, for any

𝑊 (𝑥) = 𝑒𝑤(𝑥) of the exponential type, supRe𝜎e(𝐿∗,𝑤) ≥ supRe𝜎(𝐿+) > 0 and 𝑏∗ is not stable in

any 𝐿2
𝑤 with exponential type weight. This is precisely what happens for the subsonic pulses, as

well as antikinks.

In fact, since the subsonic pulses and antikinks are all subsonic, it is straightforward to verify

that one of the asymptotic equilibria of a subsonic pulse, as well as the 𝑏(−∞) equilibrium of an
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antikink, are impossible to be rendered spectrally stable in any 𝐿2
𝑎 space since for these equilibria

(5.2.13) is violated.
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Chapter 8: Spectral stability of kinks

Consider a kink profile 𝑏∗(𝑥) satisfying (2.2.2). As noted in REMARK 6.8, we may restrict our

attention to kinks with speed 0 ≤ 𝑐 < 1, 𝑏∗ = 𝑏𝑐,0, where 𝑏𝑐,0 is the solution to (2.2.2), represented

by the solid blue line in FIGURE 2.1a. The profile 𝑏∗(𝑥) tends to the equilibrium
[
0 0

]T
as

𝑥 → −∞ and to a non-trivial equilibrium at 𝑥 → +∞. We have shown in SECTION 5.2.1 that

the trivial equilibrium is spectrally stable in the unweighted (𝑎 = 0) space, 𝐿2(R). We will first

characterize the essential spectrum of kinks by applying PROPOSITION 6.1 again, before tackling

the problem of locating the discrete spectrum.

8.1 Essential spectrum for kinks

Let 𝐿∗ denote the linearized operator about 𝑏∗. Introduce a smooth spatial exponential weight

𝑊 (𝑥) = 𝑒𝑤(𝑥) , where

𝑤(𝑥) =


0 𝑥 ≤ −1

𝑎𝑥 𝑥 ≥ 1
(8.1.1)

The linearized operator whose 𝐿2(R; 𝑑𝑥) spectrum determines the spectrum of 𝐿∗ in 𝐿2(R;𝑊 (𝑥)𝑑𝑥)

is given by 𝐿∗,𝑤 = Σ
(
𝜕𝑥 − 𝑤′(𝑥)

)
+ 𝐴∗(𝑥); see (5.1.5).

Proposition 8.1. Assume that the weight𝑊 (𝑥) = 𝑒𝑤(𝑥) is given by (8.1.1), where

𝐾

√︂
1 − 𝑐
1 + 𝑐 ≤ 𝑎 ≤ 𝐾

√︂
1 + 𝑐
1 − 𝑐 . (8.1.2)

Here, recall 𝐾 = −N ′(1) > 0; see (1.3.1). Then, the essential spectrum of 𝐿∗,𝑤 is contained in the

closed left-half plane, i.e. Re𝜎e(𝐿∗,𝑤) ≤ 0.

For illustration of the essential spectrum of a typical kink where (8.1.2) is satisfied, see
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Figure 8.1: The essential spectrum of a kink with speed 𝑐 = 1/2 with 𝑎 = 2.04. Here the nonlin-
earity satisfies 𝐾 = −N ′(1) = 2.

Proof. The ODE for a kink profile is given in (2.2.2). The kink is a heteroclinic connection be-

tween the trivial equilibrium at 𝑥 = −∞ and the nontrivial equilibrium
[
cos \ sin \

]T
at 𝑥 = ∞,

with \ = \𝑐,0 = −1
2 arcsin 𝑐; see (2.3.2). By PROPOSITION 6.1, the supremum of essential spec-

trum 𝜎e(𝐿∗,𝑤) is determined by the spectra of the asymptotic operators 𝐿− = 𝐿𝑂 and 𝐿+ = 𝐿\,𝑎;

specifically,

supRe𝜎e(𝐿∗,𝑤) = max
{

supRe𝜎(𝐿𝑂), supRe𝜎(𝐿\,𝑎)
}

The spectrum of 𝐿𝑂 is on the imaginary axis, by PROPOSITION 5.2, so supRe𝜎(𝐿𝑂) = 0. There-

fore supRe𝜎e(𝐿∗,𝑤) ≤ 0 if and only if supRe𝜎e(𝐿\,𝑎) = 0. By PROPOSITION 5.6, the spectrum of

𝐿\,𝑎 is in the closed left-half plane if and only if 𝑎 satisfies (5.2.12). Hence, supRe𝜎e(𝐿∗,𝑤) = 0 if

and only if (5.2.12) is satisfied. Since cos 2\ =
√

1 − 𝑐2, condition (5.2.12) is equivalent to (8.1.2).
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□

8.2 Neutral spectral stability of Non-moving (𝑐 = 0) kinks

Remark 8.2. The fact that non-moving kinks are spectrally stable in some weighted 𝐿2 space is a

special case of THEOREM 8.8 in SECTION 8.3 later. However, the current SECTION 8.2 provides

a stronger result and simpler treatment for the 𝑐 = 0 special case. Therefore we advise that the

readers start with this section first, for pedagogical purposes. In particular, in the current section we

do not assume that the nonlinearity N(𝑟2) satisfies the concavity condition (8.3.2). Moreover, the

transformation (8.2.8) in the current section is a special case of the one provided in PROPOSITION

8.11 in SECTION 8.3, and is less complicated.

For non-moving kinks with speed 𝑐 = 0 the only possible asymptotic weight as 𝑥 → ∞ is 𝑒𝐾𝑥

if it were to be spectrally stable in 𝐿2
𝑤, as a result of PROPOSITION 8.1 where the only possible 𝑎

is 𝑎 = 𝐾 . There are four non-moving kinks, each connecting the trivial equilibrium to different

nontrivial equilibria, but WLOG we study the one that asymptotes to [1, 0] as 𝑥 → ∞, by virtue of

THEOREM 6.7. The polar angle of this equilibrium on the phase plane of (2.0.3) is \ = 0, setting

𝑐 = 0 and 𝐸 = 0 in (2.3.2). Now we note that, for this particular kink, 𝑢∗(𝑥) = 𝑟0(𝑥) ≥ 0 in (2.2.2),

which now implies

𝑟′0(𝑥) = 𝑟0(𝑥)N
(
𝑟0(𝑥)2) , 𝑟0(0) =

1
2

(8.2.1)

So 𝑟0(𝑥) → 0 exponentially as 𝑥 → −∞, and 𝑟0(𝑥) → 1 exponentially as 𝑥 → ∞.

As declared by the theorem below, a non-moving kink is neutrally spectrally stable since its

spectrum is a subset of the imaginary axis.

Theorem 8.3. Consider the non-moving kink (𝑐 = 0) namely 𝑏∗ = 𝑏0,0 satisfying (2.2.2) with

𝑐 = 0, connecting the trivial fixed point and the fixed point [1, 0] on the phase plane. Let 𝑊 (𝑥) =

𝑒𝑤(𝑥) ∈ C1 such that

𝑊 (𝑥) = 𝑒𝑤(𝑥) =


1 for 𝑥 ≤ −1

𝑒𝐾𝑥 for 𝑥 ≥ 1
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Then, 𝑏∗ is neutrally spectrally stable in 𝐿2
𝑤, i.e. 𝜎

(
𝐿∗,𝑤

)
⊂ iR. In particular,

(i) The essential spectrum of 𝐿∗,𝑤 is a subset of the imaginary axis:

𝜎e
(
𝐿∗

)
= iR \ i

(
− ^, ^

)
where ^ = min

{
1, 𝐾

}
> 0.

(ii) The discrete spectrum of 𝐿∗,𝑤 is a subset of 𝑖(−^, ^), and 0 ∈ 𝜎d
(
𝐿∗,𝑤

)
is a simple eigenvalue.

The essential spectrum of a non-moving kink is a subset of the imaginary axis; this is because

the spectra of the left- and right-asymptotic operators of 𝐿∗,𝑤, namely 𝐿− = 𝐿𝑂 and 𝐿+ = 𝐿0,𝐾 , are

all on the imaginary axis. This can be seen from (5.2.2) and (5.2.4). In fact:

𝜎(𝐿𝑂) = iR \ i(−1, 1), 𝜎(𝐿0,𝐾) = iR \ i(−𝐾, 𝐾) (8.2.2)

Therefore to prove THEOREM 8.3, it suffices to locate the discrete spectrum, since the essential

spectrum is the union of 𝜎(𝐿𝑂) and 𝜎(𝐿0,𝐾) given by (8.2.2). We consider the eigenvalue problem

𝐿∗,𝑤 �̃� = _�̃� (8.2.3)

and _ ∈ C \ 𝜎e
(
𝐿∗,𝑤

)
and 0 ≠ �̃� ∈ 𝐻1 satisfies (8.2.3). From (5.1.5) and (5.1.3) we have and

equivalent formulation of (8.2.3):

𝐿∗,𝑤 �̃�(𝑥) ≡

0 1

1 0


(
𝜕𝑥 − 𝑤′(𝑥)

)
+


0 N0

−N0 − 2N𝑝 0

 �̃�(𝑥) = _�̃�(𝑥), (8.2.4)

where

N0(𝑥) := N
(
𝑟0(𝑥)2) , N𝑝 (𝑥) := N ′ (𝑠) ���

𝑠=𝑟0 (𝑥)2
𝑟0(𝑥)2 (8.2.5)

Note that 𝑣∗ = 0 for kinks with speed 𝑐 = 0, see (2.2.2) and set 𝑐 = 0 there. Multiplying both sides
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of (8.2.4) by the Pauli matrix 𝜎1, we find that (8.2.4) is equivalent to

𝜕𝑥 �̃�(𝑥) =

N0(𝑥) + 2N𝑝 (𝑥) + 𝑤′(𝑥) _

_ −N0(𝑥) + 𝑤′(𝑥)

 �̃�(𝑥) (8.2.6)

Introducing an integrating factor, we rewrite (8.2.6) as

𝜕𝑥

(
exp

[
− 𝑤(𝑥) −

∫ 𝑥

−∞
N𝑝 (𝑦) d𝑦

]
�̃�(𝑥)

)
=


N0(𝑥) + N𝑝 (𝑥) _

_ −N0(𝑥) − N𝑝 (𝑥)


(

exp
[
− 𝑤(𝑥) −

∫ 𝑥

−∞
N𝑝 (𝑦) d𝑦

]
�̃�(𝑥)

)

So 𝐵(𝑥) ∈ C1 is a solution of

𝜕𝑥𝐵(𝑥) =

N0(𝑥) + N𝑝 (𝑥) _

_ −N0(𝑥) − N𝑝 (𝑥)

 𝐵(𝑥) (8.2.7)

if and only if

�̃�(𝑥) = exp
(
𝑤(𝑥) +

∫ 𝑥

−∞
N𝑝 (𝑦) d𝑦

)
𝐵(𝑥) (8.2.8)

is a C1 solution to (8.2.3). That the eigenvalue problem associated with (8.2.3) is equivalent to the

eigenvalue problem associated with equation (8.2.8), is a consequence of the following lemma:

Lemma 8.4. Let _ ∈ C, and let 𝐵(𝑥) and �̃�(𝑥) be related by (8.2.8). Then, 𝐵 ∈ 𝐿2 if and only if

�̃� ∈ 𝐿2.

Proof. It is equivalent to proving that the weight in (8.2.8) is bounded for all 𝑥 ∈ R. Equivalently,

the exponent

𝑤(𝑥) +
∫ 𝑥

−∞
N𝑝 (𝑦) d𝑦 (8.2.9)

is bounded uniformly for 𝑥 ∈ R. Note that 𝑤(𝑥) = 0 for 𝑥 ≤ −1; also 𝑟0(𝑥) → 0 exponentially as

𝑦 → −∞, so N𝑝 (𝑥) = N ′ (𝑟0(𝑥)2)𝑟0(𝑥)2 → 0 exponentially as 𝑥 → −∞ as well since N ′(𝑟2) is

bounded for all 𝑟2 ≥ 0. As a result, the expression in (8.2.9) is bounded for all large and negative
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𝑥. For 𝑥 ≥ 1, there is 𝑤(𝑥) = 𝐾𝑥. Also, N𝑝 (𝑥) = N ′ (𝑟0(𝑥)2)𝑟0(𝑥)2 → −𝐾 exponentially fast as

𝑥 → ∞, since N ′′(𝑟2) is also bounded near 𝑟2 = 1 and 𝑟0(𝑥)2 → 1 exponentially fast as 𝑥 → ∞.

Thus, for some 𝑋0 > 0 and all 𝑥 ≥ 𝑋0, we have:

𝑤(𝑥) +
∫ 𝑥

−∞
N𝑝 (𝑦) d𝑦 = 𝐾𝑥 +

∫ 𝑋0

−∞
𝑁𝑝 (𝑦)𝑑𝑦 +

∫ 𝑥

𝑋0

(
−𝐾 + O(𝑒−𝛾𝑋)

)
𝑑𝑋,

for some 𝛾 > 0 which is bounded for all 𝑥 ≥ 𝑋0. as 𝑥 → ∞. □

It then follows immediately that:

Corollary 8.5. The pair (_, �̃�), with 0 ≠ �̃� ∈ 𝐻1 solves the eigenvalue problem (8.2.3), if and only

if (_, 𝐵) where 0 ≠ 𝐵 ∈ 𝐻1 solves the eigenvalue problem (8.2.7).

Now, it is convenient to write out (8.2.7):

𝑈𝑥 =
[
N0(𝑥) + N𝑝 (𝑥)

]
𝑈 + _𝑉

𝑉𝑥 = _𝑈 −
[
N0(𝑥) + N𝑝 (𝑥)

]
𝑉

(8.2.10)

We are now able to reduce the problem of finding eigenpairs of 𝐿∗,𝑤 to finding bound state and

bound state energies of some linear Schrödinger operator on the real line, as shown in the following

lemma:

Lemma 8.6. Assume that the pair (_, 𝐵(𝑥)) where

0 ≠ _ ∈ C and 0 ≠ 𝐵(𝑥) ≡
[
𝑈 (𝑥) 𝑉 (𝑥)

]T
∈ 𝐿2

solves (8.2.7). Then, (E = −_2,𝑈 (𝑥)) with 0 ≠ 𝑈 ∈ 𝐿2 and −_2 ∈ R, is an eigenpair for the

eigenvalue problem: (
−𝜕2

𝑥 + V(𝑥)
)
𝑈 (𝑥) = E𝑈 (𝑥), 𝑈 (𝑥) ∈ 𝐿2,

87



with the real-valued potential

V(𝑥) =
[
N0(𝑥) + N𝑝 (𝑥)

]
𝑥
+

[
N0(𝑥) + N𝑝 (𝑥)

]2
.

Moreover, E = 0 is the ground state of operator −𝜕2
𝑥 + V(𝑥).

Proof. From (8.2.10), it is easy to see in fact 𝑈 is twice continuously differentiable. Now, differ-

entiate the first equation with respect to 𝑥 and using the second to eliminate 𝑉𝑥:

𝑈𝑥𝑥 =
[
N0(𝑥) + N𝑝 (𝑥)

]
𝑥
𝑈 + _2𝑈 +

[
N0(𝑥) + N𝑝 (𝑥)

]2
𝑈

or [
− 𝜕2

𝑥 + V(𝑥)
]
𝑈 (𝑥) = E𝑈 (𝑥), E = −_2

where is a time-independent Schrödinger equation with a real-valued potential

V(𝑥) =
[
N0(𝑥) + N𝑝 (𝑥)

]2 +
[
N0(𝑥) + N𝑝 (𝑥)

]
𝑥
.

Let L = −𝜕2
𝑥 + V(𝑥). We observe that 𝑈 ≠ 0 if _ ≠ 0; otherwise if _ ≠ 0 and 𝑈 = 0, it would

follow from (8.2.10) that 𝑉 = 0, which contradicts the assumption that 𝐵 ≠ 0.

Now we prove that E = 0 is an eigenvalue of −𝜕2
𝑥 + V(𝑥). From the definition of N0 and N𝑝

in (8.2.5),

N0(−∞) + N𝑝 (−∞) = 1 > 0 > N0(∞) + N𝑝 (∞) = −𝐾

so there is an 𝑥′ ∈ R at which hold that N0(𝑥′) + N𝑝 (𝑥′) = 0 and that its derivative is negative. At

𝑥′, there is

V(𝑥′) =
[
N0(𝑥′) + N𝑝 (𝑥′)

]2 +
(
𝜕𝑥

[
N0(𝑥) + N𝑝 (𝑥)

] )
𝑥=𝑥′

=0 +
(
𝜕𝑥

[
N0(𝑥) + N𝑝 (𝑥)

] )
𝑥=𝑥′

< 0

Therefore min𝑥∈RV(𝑥) < 0.

Now E = −_2 = 0 is an eigenvalue of L. In fact, in this case, _ = 0 and from (8.2.10) we see
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𝑉 (𝑥) ≡ 0 since as 𝑥 → ∞,

−N0(−∞) − N𝑝 (−∞) = −1

so 𝑉 cannot be bounded as 𝑥 → −∞, unless it vanishes for all 𝑥 ∈ R, and there is a unique 𝑈 (𝑥)

given by (up to a constant):

𝑈 (𝑥) = 𝑈0(𝑥) = exp
( ∫ 𝑥

N0(𝑥) + N𝑝 (𝑥)
)

(8.2.11)

that solves the first of the (now decoupled) equations in (8.2.10). In fact, direct differentiation

yields:

𝑈0,𝑥𝑥 (𝑥) =
[ (
N0 + N𝑝

)
𝑈0

]
𝑥
=

(
N0 + N𝑝

)
𝑥
𝑈0 +

(
N0 + N𝑝

)2
𝑈0

Now for any 𝑥 ∈ R there is𝑈 (𝑥) ≠ 0, otherwise, there would be𝑈 ≡ 0. So𝑈 (𝑥) has no nodes and

thus it is the ground state of L, and E = 0 is the (nondegenerate) ground state energy. □

We are ready to prove THEOREM 8.3

Proof of THEOREM 8.3. Part (i) follows Part (i) of THEOREM 6.2 and Part (ii) of THEOREM 6.3,

with 𝜎(𝐿±) given by (8.2.2)

It follows from LEMMA 8.6, by self-adjointness of −𝜕2
𝑥 + V that −_2 ∈ R and therefore,

_ is either real or purely imaginary.

We may contrain _ further. Indeed, note that N𝑝 (𝑥) = N ′ (𝑟2
0 (𝑥)

)
𝑟2

0 (𝑥) approaches 0 as 𝑥 → −∞

(since 𝑟0(−∞) = 0) and approaches −𝐾 = N ′(1) as 𝑥 → +∞ (since 𝑟0(∞) = 1). Hence, V(−∞) =

1, and V(∞) = 𝐾2 > 0. It follows that −_2 = E < min{1, 𝐾2}. It follows that

_ is either real or purely imaginary with
��Im_�� < min{1, 𝐾} = ^. (8.2.12)

Now we claim there is no real eigenvalues of 𝐿∗,𝑤. This implies it does not has an eigenvalue with

a nonzero real part, and the non-moving kink is neutrally spectrally stable in 𝐿2
𝑤. Should there exist
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_ ∈ R and �̃� ∈ 𝐻1 that solves (8.2.3), then from COROLLARY 8.5 and LEMMA 8.6 there would be

an eigenpair E = −_2 < 0 and𝑈 ∈ 𝐿2 of the operator −𝜕2
𝑥 +V(𝑥). In fact, this is impossible since

E = 0 is the ground state energy of −𝜕2
𝑥 + V(𝑥).

Therefore there is no real eigenvalues of 𝐿∗,𝑤, and proof of THEOREM 8.3 is concluded. □

Remark 8.7. We remark that 𝜎
(
𝐿∗,𝑤

)
has no embedded eigenvalues in the essential spectrum, see

statement (8.2.12), and that 𝜎d
(
𝐿∗,𝑤

)
and is a finite subset of the imaginary interval

(
− i^, i^

)
, since

otherwise it would imply −𝜕2
𝑥 + V(𝑥) has infinite bound states; it is straightforward to see V(𝑥)

asymptotes to V(±∞) exponentially fast so this contradicts the Faddeev criterion, which says it

has only finitely many bound states if
∫
(1 + |𝑥 |)V(𝑥) < ∞.

8.3 Spectral stability of moving kinks (0 ≤ 𝑐 < 1)

Introduce the smooth weight𝑊𝑐 (𝑥) = 𝑒𝑤𝑐 (𝑥) , where

𝑊𝑐 (𝑥) = 𝑒𝑤𝑐 (𝑥) =


1 for 𝑥 ≤ −1

𝑒
𝐾√

1−𝑐2
𝑥

for 𝑥 ≥ 1
(8.3.1)

We furthermore require the nonlinearity satisfies the following concavity condition:

N ′′(𝑠) ≤ 0, for 𝑠 ∈ [0, 1] (8.3.2)

Theorem 8.8. Assume the nonlinearity satisfies the concavity condition (8.3.2). Then,

1. Any kink 𝑏∗ = 𝑏𝑐,0 (speed 𝑐 ∈ [0, 1)) is spectrally stable in 𝐿2
𝑤𝑐

given by (8.3.1). That is, the

spectrum of weighted operator 𝐿∗,𝑤𝑐 is a subset of the closed left-half complex plane.

2. In particular, 0 ∈ 𝜎d
(
𝐿∗,𝑤𝑐

)
and the corresponding zero energy eigenspace is spanned by

𝜕𝑥𝑏𝑐,0(𝑥), arising from translation invariance of (2.0.1).
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Remark 8.9. The neutral mode by translation invariance which corresponds to the neutral eigen-

value 0, is always in the spectrum, since 𝑒
𝐾𝑥√
1−𝑐2 𝜕𝑥𝑏∗(𝑥) → 0 as 𝑥 → ∞. In fact, the rate 𝑎 = 𝐾√

1−𝑐2

in THEOREM 8.8 satisfies

𝑎 ≤ 2𝐾
√

1 − 𝑐2

where 2𝐾√
1−𝑐2 comes from the decay rate of the kink as 𝑥 → ∞, namely (2.3.8). This is in contrast

to the case of supersonic pulses, see PROPOSITION 7.4 and the discussion which follows it.

Remark 8.10. We can improve the result a bit by merely requiring that the parameter 𝑎 in 𝑒𝑤(𝑥) =

𝑒𝑎𝑥 for 𝑥 > 1 to satisfy

𝐾

√︂
1 − 𝑐
1 + 𝑐 ≤ 𝑎 ≤ 𝐾

√︂
1 + 𝑐
1 − 𝑐

However for simplicity we made the restriction 𝑎 = 𝐾√
1−𝑐2 above. This restriction does not affect

our understanding of the “big picture”. Moreover, with this weight, when 𝑐 = 0, the results in

THEOREM 8.3 are recovered.

Recall for 𝑐 = 0 we transformed eigenvalue problem (8.2.3) to (8.2.7), through transformation

(8.2.8). We proceed in an analogous manner. We begin with the eigenvalue problem:

𝐿∗,𝑤𝑐 �̃�(𝑥) = _�̃�(𝑥), �̃� ∈ 𝐿2 (8.3.3)

Explicitly, 𝐿∗,𝑤𝑐 defined in (5.1.5) is the (weight-conjugated) linearized operator about a kink of

speed 0 < 𝑐 < 1:

𝐿∗,𝑤𝑐 = Σ

(
𝜕𝑥 − 𝑤′

𝑐 (𝑥)
)
+ 𝐴∗(𝑥),

where Σ = 𝑐𝜎0 + 𝜎1 and

𝐴∗(𝑥) =


N ′ (𝑟∗(𝑥)2)𝑟∗(𝑥)2 sin 2\ N∗
(
𝑟∗(𝑥)2) + 2N ′ (𝑟∗(𝑥)2)𝑟∗(𝑥)2 sin2 \

−N
(
𝑟∗(𝑥)2) − 2N ′ (𝑟∗(𝑥)2)𝑟∗(𝑥)2 cos2 \ −N ′ (𝑟∗(𝑥)2)𝑟∗(𝑥)2 sin 2\
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The expression for 𝐴∗(𝑥) is the general expression (5.1.3) where set set (𝑢∗, 𝑣∗) = 𝑏∗ satisfying

(2.2.2) with speed 𝑐; the kink profile which tends to (0, 0) as 𝑥 → −∞ and to (cos(\), sin(\)) as

𝑥 → +∞. Here, \ = \𝑐,0 = −1
2 arcsin 𝑐 is defined in (2.3.2) and setting 𝐸 = 0, or can be read-off

directly from the ODE for kinks’ profiles (2.2.2). Moreover, since the profile equations for kinks

𝑏𝑐,0 and 𝑏0,0 only differ by a factor of
√

1 − 𝑐2, there is a simple scaling relating their amplitudes

which we will derive below.

Eigenvalue problem (8.3.3) is rather complicated, in view of the expression of 𝐴∗ above. How-

ever, it is possible to reduce it to a simpler form:

Proposition 8.11. Assume eigenvalue problem (8.3.3) is satisfied by _ ∈ C, �̃� ∈ 𝐿2. Let 𝐵 =[
𝑈 𝑉

]T
satisfying

𝐵(𝑋) = 𝑒−𝑐Λ𝑋𝑒𝑤𝑐
(√

1−𝑐2𝑋
)
+
∫ 𝑋
−∞ N𝑝 (𝑌 ) d𝑌 𝛽(𝑋) (8.3.4)

where the intermediate 𝛽(𝑋) is related to �̃� by

�̃�
(√︁

1 − 𝑐2𝑋
)
=

(
𝜎0 cos \ + 𝜎1 sin \

)
𝛽(𝑋) (8.3.5)

where 𝜎𝑗 , 𝑗 = 0, 1, 2, 3 are Pauli matrices. See (1.7.2). Then,

𝑈𝑋 =
(
N0 + N𝑝

)
𝑈 +

(
Λ − 2𝑐N𝑝

)
𝑉

𝑉𝑋 = Λ𝑈 −
(
N0 + N𝑝

)
𝑉

, (8.3.6)

where N0 = N
(
𝑟0(𝑥)2) and N𝑝 = N ′(𝑟0(𝑥)2)𝑟0(𝑥)2, defined in (8.2.5), where 𝑟0(𝑥) is the ampli-

tude of the non-moving kink profile satisfying (8.2.1); and Λ = _√
1−𝑐2 .

Note that setting 𝑐 = 0, transformation (8.2.8) is recovered from (8.3.5) and (8.3.4).

Remark 8.12. We remark on the intuition behind the transform (8.3.7) above. Consider the ODE

(2.2.2) which the profiles of kinks and antikinks satisfy (without the restriction on the second

line of (2.2.2)). For 𝑐 = 0, the orbits of possible kinks lie on the 𝑢-axis, and those of possible

antikinks lie on the 𝑣-axis. In general, however, the kink 𝑏𝑐,0 and P𝑏𝑐,0 lie on the line parallel
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to vector
[
cos \ sin \

]
, and the antikinks CP𝑏𝑐,0 and C𝑏𝑐,0 lie on the line parallel to the vector[

sin \ cos \
]
, see FIGURE 2.1a; note that for 𝑐 > 0, \ = −1

2 arcsin 𝑐 < 0. We would like to express

the perturbation in terms of coordinates along these two vectors, hence the transform (8.3.7).

Proof. We will express formulas with Pauli matrices in this proof. See (1.7.2) and (1.7.3).

We conduct an intermediate transform on the unknown function �̃�:

�̃�
(√︁

1 − 𝑐2𝑋
)
=

(
𝜎0 cos \ + 𝜎1 sin \

)
𝛽(𝑋) (8.3.7)

for 𝑋 ∈ R, which is exactly (8.3.5).

We must take care when plug (8.3.7) into (8.3.3). For a generic differential equation of the

form 𝜕𝑥 𝑓 (𝑥) = 𝑔(𝑥) which holds for all 𝑥 ∈ R. Consequently we have

1
√

1 − 𝑐2
𝜕𝑋 𝑓

(√︁
1 − 𝑐2𝑋

)
= 𝑔

(√︁
1 − 𝑐2𝑋

)
for all 𝑋 ∈ R. So write 𝐿∗,𝑤

(
𝜕𝑥 , 𝑥

)
, (8.3.3) is equivalent to

𝐿∗,𝑤

(
1

√
1 − 𝑐2

𝜕𝑋 ,
√︁

1 − 𝑐2𝑋

)
�̃�
(√︁

1 − 𝑐2𝑋
)
= _�̃�

(√︁
1 − 𝑐2𝑋

)
(8.3.8)

For convenience we further define

𝜓(𝑋) =
√︁

1 − 𝑐2𝑤′
𝑐 (𝑥) |𝑥=√1−𝑐2𝑋

=
d𝑤𝑐

(√
1 − 𝑐2𝑋

)
d𝑋

, Λ =
_

√
1 − 𝑐2

(8.3.9)

The kink 𝑏∗(𝑥) =
[
𝑢∗(𝑥) 𝑣∗(𝑥)

]
= 𝑏𝑐,0(𝑥) satisfies (2.2.2) which we repeat here:

𝑟′∗(𝑥) =
𝑟∗(𝑥)N

(
𝑟∗(𝑥)2)

√
1 − 𝑐2

(8.3.10)

Note that for 𝑐 = 0,

𝑟′0(𝑥) = 𝑟0(𝑥)N
(
𝑟0(𝑥)2) (8.3.11)
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and 𝑟0

(
𝑥√

1−𝑐2

)
satisfies

d
d𝑥
𝑟0

( 𝑥
√

1 − 𝑐2

)
=

1
√

1 − 𝑐2
𝑟′0

( 𝑥
√

1 − 𝑐2

)
(8.3.12)

Combining (8.3.11) and (8.3.12), we see 𝑥 ↦→ 𝑟0

(
𝑥√

1−𝑐2

)
satisfies (8.3.10) and have value 𝑟0(0/

√
1 − 𝑐2) =

𝑟0(0) = 1/2 at 𝑥 = 0. Therefore for all 𝑥 ∈ R,

𝑟∗(𝑥) = 𝑟0

( 𝑥
√

1 − 𝑐2

)
and equivalently for all 𝑋 ∈ R,

𝑟∗
(√︁

1 − 𝑐2𝑋
)
= 𝑟0(𝑋) (8.3.13)

Now we transform (8.3.3) according to (8.3.8). In the first identity below we used (8.3.13):

𝐿∗,𝑤

(
1

√
1 − 𝑐2

𝜕𝑋 ,
√︁

1 − 𝑐2𝑋

)
=

(
𝑐𝜎0 + 𝜎1

) ( 1
√

1 − 𝑐2
𝜕𝑋 − 𝑤′

𝑐 (𝑥) |𝑥=√1−𝑐2𝑋

)
+


N ′ (𝑟∗(𝑥)2)𝑟∗(𝑥)2 sin 2\ N∗

(
𝑟∗(𝑥)2) + 2N ′ (𝑟∗(𝑥)2)𝑟∗(𝑥)2 sin2 \

−N
(
𝑟∗(𝑥)2) − 2N ′ (𝑟∗(𝑥)2)𝑟∗(𝑥)2 cos2 \ −N ′ (𝑟∗(𝑥)2)𝑟∗(𝑥)2 sin 2\

𝑥=√1−𝑐2𝑋

=

(
𝑐𝜎0 + 𝜎1

)
√

1 − 𝑐2

(
𝜕𝑋 − 𝜓(𝑋)

)
+


N ′ (𝑟0(𝑋)2)𝑟0(𝑋)2 sin 2\ N

(
𝑟0(𝑋)2) + 2N ′ (𝑟0(𝑋)2)𝑟0(𝑋)2 sin2 \

−N
(
𝑟0(𝑋)2) − 2N ′ (𝑟0(𝑋)2)𝑟0(𝑋)2 cos2 \ −N ′ (𝑟0(𝑋)2)𝑟0(𝑋)2 sin 2\


=

(
𝑐𝜎0 + 𝜎1

)
√

1 − 𝑐2

(
𝜕𝑋 − 𝜓(𝑋)

)
− 𝜎1N𝑝 (𝑋) cos 2\ + i𝜎2

[
N0(𝑋) + N𝑝 (𝑋)

]
+ 𝜎3N𝑝 (𝑋) sin 2\

=

(
𝑐𝜎0 + 𝜎1

)
√

1 − 𝑐2

(
𝜕𝑋 − 𝜓

)
− 𝜎1N𝑝

√︁
1 − 𝑐2 + i𝜎2

(
N0 + N𝑝

)
− 𝜎3N𝑝𝑐

(8.3.14)

In the last line we have used \ = −1
2 arcsin 𝑐. Functions N0 and N𝑝 are defined in (8.2.5). Using

(8.3.14) above, plug the transformation (8.3.7) relating �̃� with 𝛽 into (8.3.8), (8.3.3) is equivalent
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to

𝑐𝜎0 + 𝜎1√
1 − 𝑐2

(
𝜕𝑋 − 𝜓

) (
𝜎0 cos \ + 𝜎1 sin \

)
𝛽 − 𝜎1N𝑝

√︁
1 − 𝑐2 (𝜎0 cos \ + 𝜎1 sin \

)
𝛽

+ i𝜎2
(
N0 + N𝑝

) (
𝜎0 cos \ + 𝜎1 sin \

)
𝛽 − 𝜎3𝑐N𝑝

(
𝜎0 cos \ + 𝜎1 sin \

)
𝛽

=
𝑐𝜎0 + 𝜎1√

1 − 𝑐2

(
𝜕𝑋 − 𝜓

) (
𝜎0 cos \ + 𝜎1 sin \

)
𝛽 − 𝜎1N𝑝

√︁
1 − 𝑐2 (𝜎0 cos \ + 𝜎1 sin \

)
𝛽

+ i
(
N0 + N𝑝

) (
𝜎0 cos \ − 𝜎1 sin \

)
𝜎2𝛽 − 𝑐N𝑝

(
𝜎0 cos \ − 𝜎1 sin \

)
𝜎3𝛽

=_
(
𝜎0 cos \ + 𝜎1 sin \

)
𝛽

(8.3.15)

In the last identity we have used the fact that 𝜎𝑖 and 𝜎𝑗 anti-commute for 𝑖, 𝑗 ∈ {1, 2, 3} and 𝑖 ≠ 𝑗 .

See (1.7.3). We would like to obtain a differential equation in which there is no coefficient in front

of 𝜕𝑋 . For this, we multiply on both sides (on the left) by

√︁
1 − 𝑐2 (𝜎0 cos \ + 𝜎1 sin \

)−1 (
𝑐𝜎0 + 𝜎1

)−1 (8.3.16)

Note that 𝜎0 cos \ +𝜎1 sin \ and 𝑐𝜎0 +𝜎1 commute, therefore so does their inverses. Explicitly, we

have: (
𝑐𝜎0 + 𝜎1

)−1
=
−𝑐𝜎0 + 𝜎1

1 − 𝑐2

and, note that cos2 \ − sin2 \ = cos 2\ =
√

1 − 𝑐2, there is also

(
𝜎0 cos \ + 𝜎1 sin \

)−1
=
𝜎0 cos \ − 𝜎1 sin \

√
1 − 𝑐2

Now multiplying to the left by (8.3.16) on both sides of the last identity of (8.3.15):

(
𝜕𝑋 − 𝜓

)
𝛽 −

(
− 𝑐𝜎0 + 𝜎1

)
N𝑝𝜎1𝛽

+ i
−𝑐𝜎0 + 𝜎1

1 − 𝑐2
(
𝜎0 cos \ − 𝜎1 sin \

)2 (N0 + N𝑝

)
𝜎2𝛽

− −𝑐𝜎0 + 𝜎1

1 − 𝑐2
(
𝜎0 cos \ − 𝜎1 sin \

)2
𝑐N𝑝𝜎3𝛽

=
−𝑐𝜎0 + 𝜎1√

1 − 𝑐2
_𝛽 =

(
− 𝑐𝜎0 + 𝜎1

)
Λ𝛽

(8.3.17)
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The second term of LHS of (8.3.17) is

−
(
− 𝑐𝜎0 + 𝜎1

)
N𝑝𝜎1𝛽 =

(
− 𝜎0 + 𝑐𝜎1

)
N𝑝𝛽 (8.3.18)

the third term:

i
−𝑐𝜎0 + 𝜎1

1 − 𝑐2
(
𝜎0 cos \ − 𝜎1 sin \

)2 (N0 + N𝑝

)
𝜎2𝛽

=i
−𝑐𝜎0 + 𝜎1

1 − 𝑐2
(
𝜎0 − 𝜎1 sin 2\

) (
N0 + N𝑝

)
𝜎2𝛽

=i
−𝑐𝜎0 + 𝜎1

1 − 𝑐2
(
𝜎0 + 𝜎1𝑐

) (
N0 + N𝑝

)
𝜎2𝛽 = i𝜎1

(
N0 + N𝑝

)
𝜎2𝛽

= −
(
N0 + N𝑝

)
𝜎3𝛽

(8.3.19)

where again sin 2\ = −𝑐. The fourth term is

− −𝑐𝜎0 + 𝜎1

1 − 𝑐2
(
𝜎0 cos \ − 𝜎1 sin \

)2
𝑐N𝑝𝜎3𝛽

=
𝑐𝜎0 − 𝜎1

1 − 𝑐2
(
𝜎0 + 𝜎1𝑐

)
𝑐N𝑝𝜎3𝛽

= − 𝜎1𝑐N𝑝𝜎3𝛽 = i𝑐N𝑝𝜎2

(8.3.20)

Combining (8.3.17), (8.3.18), (8.3.19) and (8.3.20):

(
𝜕𝑋 − 𝑣

)
𝛽 +

(
− 𝜎0 + 𝑐𝜎1

)
N𝑝𝛽 −

(
N0 + N𝑝

)
𝜎3𝛽 + i𝑐N𝑝𝜎2 =

(
− 𝑐𝜎0 + 𝜎1

)
Λ𝛽

which is

𝜕𝑋 𝛽 = 𝜎0
(
𝜓 − 𝑐Λ + N𝑝

)
𝛽 + Λ𝜎1𝛽 − 𝑐N𝑝

(
𝜎1 + i𝜎2

)
𝛽 +

(
N0 + N𝑝

)
𝜎3𝛽 (8.3.21)

Further, we let

𝐵(𝑋) := 𝑒−𝑐Λ𝑋 exp
( ∫ 𝑋

−∞
𝜓(𝑌 ) + N𝑝 (𝑌 ) d𝑌

)
𝛽(𝑋)

= 𝑒−𝑐Λ𝑋 exp
(
𝑤𝑐

(√︁
1 − 𝑐2𝑋

)
+

∫ 𝑋

−∞
N𝑝 (𝑌 ) d𝑌

)
𝛽(𝑋)

(8.3.22)
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which is exactly (8.3.4). Plugging (8.3.22) into (8.3.21) we get rid of the first term on the RHS of

(8.3.21):

𝜕𝑋𝐵 = Λ𝜎1𝐵 − 𝑐N𝑝

(
𝜎1 + i𝜎2

)
𝐵 +

(
N0 + N𝑝

)
𝜎3𝐵

Equivalently, 𝐵 =

[
𝑈 𝑉

]T
satisfies

𝑈𝑋 =
(
N0 + N𝑝

)
𝑈 +

(
Λ − 2𝑐N𝑝

)
𝑉

𝑉𝑋 = Λ𝑈 −
(
N0 + N𝑝

)
𝑉

. (8.3.23)

which is exactly (8.3.6), and the proof of PROPOSITION 8.11 is done. □

The following result states that to preclude unstable discrete spectrum, it suffice to prove that

there are no eigenpairs (𝐵,Λ) of (8.3.6).

Lemma 8.13. Assume (8.3.3) is satisfied by Re_ > 0 and �̃� ∈ 𝐿2. Then 𝐵 defined through (8.3.4)

satisfying (8.3.6) with Λ = _√
1−𝑐2 is in 𝐿2 as well.

Proof. By assumption 𝐿∗,𝑤 �̃�(𝑥) = _�̃�(𝑥). Since the coefficients of 𝐿∗,𝑤 are all bounded and

smooth with respect to 𝑥, �̃�(𝑥) is actually smooth. Moreover, _ with Re_ > 0 is not in the

essential spectrum of 𝐿∗,𝑤 since 𝑎 = 𝐾√
1−𝑐2 satisfies the condition in PROPOSITION 8.1. Rewrite

Hence there are constants `± with Re` ≠ 0 such that
���̃�(𝑥)�� = 𝐶𝑒`𝑥 (1+𝑜(1)) as 𝑥 → ∞; similarly

for 𝑥 → −∞. As a result, �̃� ∈ 𝐿2 if and only if �̃�(𝑥) = 𝑜(1) as |𝑥 | → ∞. From the transform

(8.3.7) relating �̃� and 𝛽, �̃� ∈ 𝐿2 if and only if 𝛽 ∈ 𝐿2, if and only if 𝛽(𝑋) = 𝑜(1) as |𝑋 | → ∞.

Now assume 𝛽 ∈ 𝐿2 and rewrite (8.3.22) as

𝐵(𝑋) = 𝑒𝑔(𝑋)𝛽(𝑋)

where

𝑔(𝑋) = −𝑐Λ𝑋 + 𝑤𝑐
(√︁

1 − 𝑐2𝑋
)
+

∫ 𝑋

−∞
N𝑝 (𝑌 ) d𝑌

For 𝑋 ≥ 1√
1−𝑐2 , 𝑤𝑐

(√
1 − 𝑐2𝑋

)
= 𝐾𝑋 , see (8.3.9); and N𝑝 (𝑋) = N ′ (𝑟0(𝑋)2)𝑟0(𝑋)2 approaches
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−𝐾 exponentially fast as 𝑋 → ∞, because 𝑟0(𝑋)2 approaches 1 exponentially fast. So 𝑔(𝑋) =

−𝑐Λ𝑋 +O(1) as 𝑋 → ∞. Since ReΛ > 0, if 𝛽 ∈ 𝐿2, there must be 𝐵(𝑋) → 0 (exponentially fast)

as 𝑋 → ∞.

On the other hand 𝑔(𝑋) = −𝑐Λ𝑋 + 𝑜(1) as 𝑋 → −∞ since 𝑤𝑐
(√

1 − 𝑐2𝑋
)
= 0 for 𝑋 ≤ 1√

1−𝑐2 ,

and N𝑝 (𝑋) → 0 exponentially fast. Since (8.3.23) is also exponentially asymptotically constant,

as 𝑋 → −∞, 𝐵(𝑋) also behaves exponentially. There must be 𝐵(𝑋) ∼ 𝑒`𝑋 where ` satisfies

the following, obtained by taking limits of the coefficients of (8.3.23) (note that N0(−∞) = 1 and

N𝑝 (−∞) = 0):

det


1 − ` Λ

Λ −1 − `

 = 0

namely ` = ±
√

1 + Λ2. Since 𝛽(𝑋) = 𝑜(1) as 𝑋 → −∞,

𝐵(𝑋) = 𝑜
(
𝑒−𝑐Λ𝑋

)
, as 𝑋 → −∞ (8.3.24)

This forces 𝐵(𝑋) ∼ 𝑒
√

1+Λ2𝑋 since otherwise there must be 𝐵(𝑋) ∼ 𝑒−
√

1+Λ2𝑋 . Due to the following

relation

𝑒−𝑐Λ𝑋 = 𝑜

(
𝑒−

√
Λ2+1𝑋

)
, as 𝑋 → −∞ (8.3.25)

so condition (8.3.24) is violated. To prove (8.3.25), note that Re
(
−
√

1 + Λ2) < Re(−Λ) since

ReΛ > 0, by the following elementary fact:

Re
√︁
𝑧2 + 1 > Re𝑧, for Re𝑧 > 0 (8.3.26)

and thus

Re
(
𝑐Λ −

√︁
1 + Λ2) < Re

(
𝑐Λ − Λ) < 0

with 0 ≤ 𝑐 < 1, so Re(−𝑐Λ) > Re
(
−
√
Λ2 + 1

)
, and Re

(
− 𝑐Λ𝑋

)
< Re

(
−
√
Λ2 + 1𝑋

)
for 𝑋 < 0.

As a result (8.3.25) holds.

So 𝐵(𝑋) ∼ 𝑒
√

1+Λ2𝑋 → 0 as 𝑋 → −∞. Therefore if 𝛽 ∈ 𝐿2, there must be 𝐵(𝑋) → 0
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exponentially fast as |𝑋 | → ∞, which implies 𝐵 ∈ 𝐿2.

Now we prove inequality (8.3.26) 1 Note that for any 𝑧 ∈ C,

Re𝑧 =
1
2

(
𝑧 + 𝑧𝑧

𝑧

)
. (8.3.27)

Write 𝑧 = 𝑟𝑒i\ . Since Re𝑧 > 0, where −𝜋/2 < \ < 𝜋/2. Equation (8.3.26) becomes 𝑟 cos \ <

Re
√
𝑟2𝑒2𝑖\ + 1. Dividing by 𝑟, we find that (8.3.26) is equivalent to

Re
√︁
𝑟−2 + 𝑒i2\ > cos \, −𝜋/2 < \ < 𝜋/2.

Note that the real part of
√· is always nonnegative, it is equivalent to prove

2
[
Re

√︁
𝑠 + 𝑒i2\

]2
− 2 cos2 \ > 0, 𝑠 ≡ 𝑟−2 > 0, −𝜋/2 < \ < 𝜋/2.

Using (8.3.27), the LHS satisfies

1
2


(
𝑠 + 𝑒i2\

)1/2
+

(
𝑠2 + 1 + 2𝑠 cos 2\

)1/2

(
𝑠 + 𝑒i2\

)1/2


2

− 2 cos2 \

=2 × 1
4

[
𝑠 + 𝑒i2\ + 2

(
𝑠2 + 1 + 2𝑠 cos 2\

)1/2 + 𝑠 + 𝑒−i2\
]
− 2 cos2 \

=𝑠 + cos 2\ +
(
𝑠2 + 1 + 2𝑠 cos 2\

)1/2 − cos 2\ − 1

=𝑠 +
(
𝑠2 + 1 + 2𝑠 cos 2\

)1/2 − 1 > 𝑠 + |𝑠 − 1| − 1 ≥ 0

with 𝑠 > 0 and cos 2\ ≠ −1 since the latter requires \ = ±𝜋/2, contradicting the requirement that

Re𝑧 = 𝑟 cos \ > 0. Thus we have concluded the proof of (8.3.26).

□

We now show there is no 𝐵 ∈ 𝐿2 that satisfies (8.3.6) with some ReΛ > 0. We proceed with

1The authors thank Dr. SUN Guanhao of UCSD for pointing out this is not a trivial fact and for providing the
following proof.

99



shorthand 𝐹 (𝑋) = N0(𝑋) + N𝑝 (𝑋) and 𝑓 = 2𝑐N𝑝 (𝑋). Acting 𝜕𝑋 on both sides of the second

equation of (8.3.6), then use the first equation for𝑈𝑋 , we obtain a closed equation for 𝑉

𝑉𝑋𝑋 =
(
𝐹2 − 𝐹𝑋

)
𝑉 + Λ

(
Λ − 𝑓

)
𝑉 (8.3.28)

Lemma 8.14. Assume ReΛ > 0, and that the nonlinearity N(𝑟2) satisfies the concavity condition

(8.3.2):

N ′′(𝑠) ≤ 0

For 𝑠 ∈ [0, 1], along with hypotheses (N1) to (N4) in SECTION 1.3. Then, the only 𝑉 ∈ 𝐿2 that

satisfies (8.3.28) is 𝑉 ≡ 0.

Proof. Suppose 0 ≠ 𝑉 ∈ 𝐿2(R). Then, 𝑉 is also smooth. Take 𝐿2-inner product of 𝑉 with (8.3.28)

and obtain 𝑉2
𝐿2Λ

2 +
〈
𝑉,− 𝑓 𝑉

〉
𝐿2Λ +

〈
𝑉,

(
𝐹2 − 𝐹𝑋

)
𝑉
〉
𝐿2 +

𝑉𝑋2
𝐿2 = 0 (8.3.29)

a quadratic equation in Λ. We claim that the coefficients of this quadratic are all non-negative.

Note that the quadratic coefficient of (8.3.29), namely
𝑉2

𝐿2 > 0, and

− 𝑓 = −2𝑐N𝑝 = −2𝑐N ′ (𝑟0(𝑋)2)𝑟0(𝑋)2 ≥ 0

since N is monotonically decreasing; so the linear coefficient
〈
𝑉,− 𝑓 𝑉

〉
𝐿2 ≥ 0 as well. Further-

more, 𝐹𝑋 ≤ 0. In fact, since 𝑟0(𝑋) is monotonically increasing in 𝑋 , and

𝐹 = N0 + N𝑝 = N
(
𝑟0(𝑋)2) + N ′ (𝑟0(𝑋)2)𝑟0(𝑋)2

is monotonically decreasing in 𝑟0(𝑋)2. N is so by definition, and as a result of the concavity

condition (8.3.2), there is also N ′ ≤ 0 monotonically decreases in 𝑟0(𝑋)2. Therefore 𝐹𝑋 ≤ 0

and 𝐹2 − 𝐹𝑋 ≥ 0 whence
〈
𝑉,

(
𝐹2 − 𝐹𝑋

)
𝑉
〉
𝐿2 ≥ 0. We conclude that Λ is a root of a quadratic
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polynomial:

𝑐2Λ
2 + 𝑐1Λ + 𝑐0 = 0

where 𝑐2 > 0, 𝑐1, 𝑐0 ≥ 0. It is easily checked that either Λ is one of two negative real roots or

its real part is equal to −𝑐1/2𝑐0 ≤ 0. In all cases, ReΛ ≤ 0, contradicting the assumption that

ReΛ > 0. As a result there is no Λ with nonnegative real part such that (8.3.29) holds. This

argument carries over for any 𝑉 ∈ 𝐿2 and we will be done. □

Now we summarize the discussion above and give the proof of THEOREM 8.8:

Proof of THEOREM 8.8. The essential spectrum of 𝐿∗,𝑤𝑐 is in the closed left-half plane since 𝑎 =

𝐾√
1−𝑐2 , satisfying the condition (8.1.2) in PROPOSITION 8.1.

Assume there was an eigenpair _, �̃� of 𝐿∗,𝑤𝑐 , where Re_ > 0 and �̃� ∈ 𝐿2. Then by LEMMA

8.13, there would be a pair Λ = _√
1−𝑐2 , 𝐵 =

[
𝑈 𝑉

]T
∈ 𝐿2 which would solve the generalized

eigenvalue problem (8.3.6). In particular we would have ReΛ > 0 and 𝑉 ∈ 𝐿2. Such 𝑉 would

in fact be smooth since the coefficients in (8.3.6) are bounded and smooth. As a result the pair

Λ, 𝑉 ∈ 𝐿2 would solve a generalized eigenvalue problem expressed by a second-order variant

coefficient ODE, namely (8.3.28). However such 𝑉 does not exist by LEMMA 8.14.

Therefore the assumption does not hold; namely 𝐿∗,𝑤 does not have any eigenvalue with a

positive real part.

Thus 𝜎
(
𝐿∗,𝑤𝑐

)
is contained in the closed left-half plane, and by DEFINITION 5.1, moving kinks

with nonlinearity concave on 𝑟2 ∈ [0, 1] are spectrally stable in the weighted space 𝐿2
𝑤𝑐

where

𝑤𝑐 (𝑥) is given by (8.3.1). □
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Conclusions and open problems

We have shown there are a rich family of traveling wave solutions of (1.0.1), in both

supersonic (|𝑐 | > 1) and subsonic (|𝑐 | < 1) regimes; CHAPTER 2. The bounded traveling wave

solutions are the either heteroclinic connections in a 2D phase space between the zero solution

and an equilibrium on the unit circle (kinks, antikinks) or heteroclinic connections between

distinct equilbria on the unit circle (pulses). We have proved, for saturable nonlinearities, that

supersonic pulses are both nonlinearly convectively stable against perturbations (which decay

rapidly as 𝑥 → +∞. This follows from an a priori bound on general solutions and finite

propagation speed property for the semilinear hyperbolic system (1.0.1) (THEOREM 4.1). We

have also proved their linear spectral stablility (THEOREM 7.1) in an appropriate weighted 𝐿2

space. For antikinks and subsonic pulses, are no exponential-type weights, with respect to which

linearized system is spectrally stable; an instability arises from that of the asymptotic equilibria;

SECTION 7.3. Finally, in CHAPTER 8 we demonstrated the spectral stability of kink solutions in

suitably weighted 𝐿2 spaces: (a) for the case of non-moving kinks (𝑐 = 0) (THEOREMS 8.3) and

(b) for arbitrary kinks ( |𝑐 | < 1) under a concavity condition on the nonlinearity (THEOREM 8.8).
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Appendix A: Numerical schemes for simulation

A.1 Dynamical simulation

In order to numerically compute the solution of the IVP associated with equation (2.0.1), we

use the finite difference method [25]. We have used fourth-order discretization of spatial derivative

of 𝜕𝑥 , but to replace for it with other discretization schemes can also be easily done:

𝜕𝑥 𝑓 ≈
− 𝑓𝑖+2 + 8 𝑓𝑖+1 − 8 𝑓𝑖−1 + 𝑓𝑖−2

12Δ𝑥
(A.1.1)

where Δ𝑥 is the spatial grid size, on a domain [0, 𝐿], and the grid points are

𝑥0 = 0; 𝑥𝑖 = 𝑖Δ𝑥; 𝑥𝑁 = 𝑁Δ𝑥 = 𝐿 (A.1.2)

to obtain an ODE of 2𝑁 +2 variables. We impose the homogeneous Neumann boundary condition.

We use the Radau-II scheme to solve the discretized ODE, which is a fully implicit RK

scheme[26] with Butcher table 
𝑐 𝐴

𝑏T

 (A.1.3)

where

𝐴 =


1
9

−1−
√

6
18

−1+
√

6
18

1
9

88+7
√

6
360

88−43
√

6
360

1
9

88+43
√

6
360

88−7
√

6
360


(A.1.4)

and

𝑏T =

[
1
9

16+
√

6
36

16−
√

6
36

]
(A.1.5)
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we do not need 𝑐 here since the discretized ODE is still autonomous.

This in matrix form of the discretized ODE is

d®𝑏
d𝑡

= ®𝐹 (®𝑏) (A.1.6)

where

®𝐹 (®𝑏𝑚) =



𝑓 (®𝑏𝑚 [0])

𝑓 (®𝑏𝑚 [1])
...

𝑓 (®𝑏𝑚 [2𝑖])

𝑓 (®𝑏𝑚 [2𝑖 + 1])
...

𝑓 (®𝑏𝑚 [2𝑁])

𝑓 (®𝑏𝑚 [2𝑁 + 1])



= (𝐷 (4) + 𝑁)



®𝑏𝑚 [0]
®𝑏𝑚 [1]
...

®𝑏𝑚 [2𝑖]
®𝑏𝑚 [2𝑖 + 1]

...

®𝑏𝑚 [2𝑁]
®𝑏𝑚 [2𝑁 + 1]



= (𝐷 (4) + 𝑁) ®𝑏𝑚 (A.1.7)

where

𝐷 (4) =
1

12Δ𝑥



· · ·
...

· · · 𝜎1 −8𝜎1 0 8𝜎1 −𝜎1 · · ·
...

· · ·


(A.1.8)

of which the first two and the last two rows are zero, and 𝑁 is block diagonal and consists of blocks


0 N

(
®𝑏𝑚 [2𝑖]2 + ®𝑏𝑚 [2𝑖 + 1]2

)
−N

(
®𝑏𝑚 [2𝑖]2 + ®𝑏𝑚 [2𝑖 + 1]2

)
0

 (A.1.9)

for 𝑖 = 0, · · · 𝑁

For the Newton-Raphson [26] root-finding method used in each step of the Radau-II scheme,
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we need to calculate the Jacobian of ®𝐹, which is

®𝐹′(®𝑏) = 𝐷 (4) + N +
[2𝑁+1∑︁
𝑘=0

𝜕N(®𝑏)𝑖𝑘
𝜕®𝑏 𝑗

®𝑏𝑘

]
𝑖 𝑗

(A.1.10)

where the last term is a block-diagonal matrix consisting of

𝑁′
(√︃

®𝑏𝑚 [2𝑖]2 + ®𝑏𝑚 [2𝑖 + 1]2
)

√︃
®𝑏𝑚 [2𝑖]2 + ®𝑏𝑚 [2𝑖 + 1]2


®𝑏𝑚 [2𝑖] ®𝑏𝑚 [2𝑖 + 1] ®𝑏𝑚 [2𝑖 + 1]2

−®𝑏𝑚 [2𝑖]2 −®𝑏𝑚 [2𝑖] ®𝑏𝑚 [2𝑖 + 1]

 (A.1.11)

We exploit the fact that all the matrices encountered (for example ®𝐹′) in the numerical scheme

that are of size O(𝑁) × O(𝑁) are sparse[27] with only O(𝑁) nonzero entries on the diagonal as

well as a few lower- and upper-diagonals. As a result the numerical scheme runs with time O(𝑀𝑁)

where 𝑀 = 𝑇/Δ𝑡 with 𝑇 the simulated time and Δ𝑡 the size of each time-step.
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