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Abstract

Grounded and Consistent Question Answering

Christopher Alberti

This thesis describes advancements in question answering along three general directions:

model architecture extensions, explainable question answering, and data augmentation. Chapter 2

describes the first state-of-the-art model for the Natural Questions dataset based on pretrained

transformers. Chapters 3 and 4 describe extensions to the model architecture designed to

accomodate long textual inputs and multimodal text+image inputs, establishing new state-of-the-art

results on the Natural Questions and on the VCR dataset. Chapter 5 shows that significant

improvements can be obtained with data augmentation on the SQuAD and Natural Questions

dataset, introducing roundtrip consistency as a simple heuristic to improve the quality of synthetic

data. In Chapters 6 and 7 we explore explainable question answering, demonstrating the usefulness

of a new concrete kind of structured explanations, QED, and proposing a semantic analysis of

why-questions in the Natural Questions, as a way of better understanding the nature of real world

explanations. Finally, in Chapters 8 and 9 we delve into more exploratory data augmentation

techniques for question answering. We look respectively at how straight-through gradients can be

utilized to optimize roundtrip consistency in a pipeline of models on the fly, and at how very recent

large language models like PaLM can be used to generate synthetic question answering datasets for

new languages given as few as five representative examples per language.
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Chapter 1: Introduction

Computational question answering has been a crucial research area within the field of natural

language processing for several decades [1]. Its progress has been accelerating rapidly in the last

several years, with stunning improvements obtained by fine-tuning large language models, such as

ELMo [2], BERT [3], T5 [4], PaLM [5], GPT-3 and GPT-4 [6]. As more data and computational

resources have become accessible to researchers, the performance of models on question-answering

tasks has surged, often surpassing human performance on benchmarks of increasing complexity,

raising the question of whether sufficiently large language models are all we need to reach human

performance in question answering in general.

This thesis describes several advances in neural approaches to question answering that give

significant improvements over previous approaches. We have detailed these techniques across eight

self-contained chapters, with their logical structure presented in Figure 1.1. The core method utilized

in this thesis to tackle the question answering task is described in Chapter 2, namely fine-tuning

pretrained transformers. The thesis work then develops along three complementary lines: extending

the architecture of question answering models to support richer inputs (Chapters 3 and 4), adding

explanatory capabilities to question answering models (Chapters 6 and 7) and, finally, improving

the quality of question answering systems through different data augmentation techniques (Chapters

5, 8 and 9).

The general formulation for the problem of question answering is to learn a function of the form

(𝑞, 𝑐) → 𝑎, where 𝑞 is a question, 𝑐 is the context based on which the question should be answered,

and 𝑎 is either a valid answer to the question or null if the question cannot be answered. The

function is to be learned from a set of provided training examples for which the answer 𝑎 is known,

with the goal of maximizing generalization to unseen instances, sampled from the same distribution

as the training examples or from a similar distribution. In this thesis, 𝑞 and 𝑎 are always textual,
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Figure 1.1: Thesis outline.

while 𝑐 can be either textual or a combination of text and images. An additional categorization to

consider is whether the answer 𝑎 is extractive, i.e. a span in 𝑐, or abstractive, i.e. an unconstrained

textual answer.

In practice, every task we consider in this thesis contains variations from the idealized question

answering framework. For instance, in the Natural Questions dataset [7] the context 𝑐 is the text of

a full Wikipedia page, complete with sections, headings, lists and tables expressed in html. The

answer in the Natural Questions is a pair (𝑎long, 𝑎short). 𝑎long, the long answer, is either a full

paragraph from 𝑐 that fully answers question 𝑞, or null. 𝑎short, the short answer, is either a set of

entities contained in 𝑎long, the words ‘yes’ or ‘no’ for yes/no questions, or null when no valid short

answer could be found. An example of long and short answer from the Natural Questions dataset is

show in Figure 1.2.
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Figure 1.2: Long and short answer to the question “when are hops added to the brewing process”,
from the Natural Questions dataset. The long answer is a paragraph from the Wikipedia page
“Brewing”. The short answer is the string “The boiling process”.

1.1 Base Question Answering Architecture

In Chapter 2, we discuss a strong baseline we built for the Natural Questions dataset. The

baseline is a transformer model called “BERT-joint” [8] which obtained the initial best performance

on this dataset by a large margin compared to other available methods. In BERT-joint, we tokenize

the question and the context using a word piece tokenizer. We then join the tokenized question and

context using special tokens [CLS] and [SEP], obtaining the following input sequence:

I = [CLS], 𝑞1, . . . , 𝑞𝑛, [SEP], 𝑐1, . . . , 𝑐𝑚, [SEP]

where 𝑛 is the length of the tokenized query and 𝑚 is the length of the tokenized context. We then

utilize the BERT-Large pretrained encoder [3] to obtain context dependent representations of this

sequence of tokens, each token being represented by a vector in R𝑑 . A small feed forward net

is used to map each context dependent representation to two scores, 𝑓start(·) and 𝑓end(·), used to

predict the start and the end of the short and long answer. Each span is assigned the score

𝑠(𝑖, 𝑗) = 𝑓start(𝑐𝑖) + 𝑓end(𝑐 𝑗 ) − 𝑓start([CLS]) − 𝑓end([CLS])

3



and the highest scoring span is found as (𝑖∗, 𝑗∗) = argmax(𝑖, 𝑗):𝑖< 𝑗 𝑠(𝑖, 𝑗). We finally return

𝑎short = (𝑖∗, 𝑗∗) or null if 𝑠(𝑖, 𝑗) < 𝑡short∀𝑖 < 𝑗

𝑎long = paragraph containing (𝑖∗, 𝑗∗) or null if 𝑠(𝑖, 𝑗) < 𝑡long∀𝑖 < 𝑗

where 𝑡short and 𝑡long are thresholds selected to optimize the F1 score on the evaluation set. Note

that in BERT-joint we intentionally ignore yes/no answers as they did not make a large difference in

the final evaluation metric.

This model, finetuned from BERT-large on NQ, is found to obtain substantially improved results

compared to other contemporary approaches. The advantage of BERT-joint compared to competitor

systems on NQ is due to the following factors: (1) our model is pretrained with the masked-LM

loss on a large amount of unlabeled text, while competitor systems were trained on NQ only, (2) our

model uses a transformer based architecture, where competitors used LSTMs, and (3) our model

uses an end-to-end answer extraction system instead of a pipeline comprised of a retriever and

reading comprehension model.

1.2 Architectures for Question Answering Extensions

ETC: Question Answering With Long Textual Inputs. One major drawback of the question

answering model described in Chapter 2 is that it could only ingest sequences of at most 512 tokens,

while the Wikipedia articles in the Natural Questions are often much longer, requiring an average of

30 windows of 512 tokens to be extracted from each article to be processed independently. This

limitation affects both question answering accuracy and computational efficiency.

We address this limitation in Chapter 3, presenting ETC, a model we developed in collaboration

with other Google researchers and that again obtained state-of-the-art performance on the Natural

Questions dataset. The core idea of ETC is to recognize that self-attention is often the main memory

bottleneck for long input sequences to transformer models. This is because, while all components

of the transformers scale linearly with the length of the input, the self attention scales quadratically,
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Figure 1.3: Sparse self-attention from the ETC transformer, presented in Chapter 3, to handle long
document contexts in the Natural Questions and other question answering datasets.

since every token can attend to every other token. This could be addressed by limiting self-attention

to tokens in a local radius 𝑟, however this would heavily degrade the model, intuitively because

documents often encode important information in the relationship between far away tokens, and

with a small local radius we would never be able to model long distance interactions. The ETC

solution to this problem is depicted in Figure 1.3. The input of the model is modified with respect

to the tokenized question and context in equation 1.1 by prepending 𝑛𝑔 “global” tokens:

I = 𝑔1, . . . , 𝑔𝑛𝑔 , [CLS], 𝑞1, . . . , 𝑞𝑛, [SEP], 𝑐1, . . . , 𝑐𝑚, [SEP] (1.1)

The original tokens from equation 1.1 are “local” and are only able to attend other local tokens

if they are at a distance of at most 𝑟. Global tokens instead attend to and are attended to by all

other tokens. All local tokens are therefore able to attend to all other local tokens through a global

token as an intermediate step. This results in self-attention layers whose memory footprint grows

linearly with the length of the input sequence like the rest of the transformer model. The additional

model parameters required to represent the new global tokens as well as specialized cross-attention
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Figure 1.4: An input image and question from the VCR dataset. The image is augmented with
bounding boxes produced by Mask-RCNN, an automatic object detection system. The VCR task
consists of picking the correct answer and answer rationale out of four options for each.

weights are learned by “lifting” an existing pretrained transformer that can be trained without the

sparse self-attention mechanism. Lifting consists of initializing all parameters of the ETC model

from the quadratic attention pretrained transformer and then continuing pretraining the ETC model

on unlabeled text with a masked-language-model objective.

The ETC model also introduces several additional improvements over the BERT baseline of

Chapter 2, allowing it to obtain state of the art performance in the long answer task by a large margin

on the Natural Questions. The additional improvements are to lift the more powerful RoBERTa

model [9] instead of BERT, and to use contrastive predictive coding (CPC) [10] during pretraining to

improve the global token representations. For CPC, the local tokens are partitioned in 𝑛𝑔 contiguous

sets and each partition 𝑝𝑖 is assigned to a global token 𝑔𝑖. The hidden representation of global token

𝑔𝑖 is used to predict the hidden representation of the local tokens in partition 𝑝𝑖. The loss for this

prediction is added as a pretraining loss during the lifting process. A final refinement in ETC for

question answering in the Natural Questions dataset is to further constrain the attention masks so

that each global token can only attend to a section of the input Wikipedia page, so that global tokens

can represent the high level structure of the input document.
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B2T2: Question Answering with Text+Visual Inputs. In an effort to further advance perfor-

mance of question answering models, we decided to look into the possibility of modeling images

from Wikipedia pages together with the textual content. From initial analysis it seemed clear

however that most questions in NQ were likely to benefit very little from image content. So we

decided to instead experiment with extensions to the basic transformer model on a dataset with

questions that would heavily rely upon the content of images. For this purpose we chose the VCR

dataset [11]. An example from the VCR dataset is show in Figure 1.4.

The main idea in Chapter 4 is to introduce in the input to BERT special visual tokens, whose

embeddings are obtained as a linear transformation of the output of a vision model, namely ResNet-

152, applied to the pixels in each of the bounding boxes that appear in the input image. The tokens

input to BERT in this case are

I = [CLS], 𝑣0, 𝑞1, . . . , 𝑞𝑛, [SEP], 𝑎1, . . . , 𝑎𝑚, [SEP], 𝑣1, . . . , 𝑣𝑘 (1.2)

where 𝑣0 is a visual token corresponding to the entire input image, 𝑞1, . . . , 𝑞𝑛 is the tokenized

question, 𝑎1, . . . , 𝑎𝑚 is the tokenized candidate answer, and 𝑣1, . . . , 𝑣𝑘 are the visual tokens for all

the objects detected in the image. Additionally in this dataset, as shown in figure 1.4, some of the

objects are referenced in the question and the answer by index. In this case we simply put the visual

token corresponding to that mention in place of the reference. A score corresponding to whether an

answer choice is correct or not is finally computed with a small feed-forward network applied to the

contextual representation of the [CLS] token. The model is then fine-tuned on the training split of

the VCR training set and tuned on the validation split.

Our experiments reported in Chapter 4 showed state-of-the-art results on VCR based on this

multimodal modeling architecture. We found that additional improvements could also be obtained

by pretraining the entire model on a synthetic task generated from the Conceptual Captions dataset

[12], a collection of millions of images and corresponding captions mined from the web. The

synthetic task we designed consisted of replacing some of the tokens in the caption with [MASK]
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"Howl’s Moving Castle"  

"the film howl’s moving castle"

"who wrote <x>?"

"<x> is a 2004 Japanese 
animated fantasy film written 
and directed by <answer>."

Predicate entailment:

Question: who wrote the film howl’s moving castle?

Passage: Howl’s Moving Castle is a 2004 Japanese 
animated fantasy film written and directed by Hayao 
Miyazaki. It is based on the novel of the same name, 
which was written by Diana Wynne Jones. The film 
was produced by Toshio Suzuki.

Referential equality:

Figure 1.5: Example of a structured explanation for question answering following the QED frame-
work described in Chapter 6.

tokens and occasionally replacing the image itself with a different image. Our multimodal model

was then trained to predict back the masked tokens from the caption as well as predict whether

the associated image had been replaced or not. We found that pretraining improved both question

answering performance and training stability.

1.3 Explainable Question Answering

QED: Structured Explanations. All question answering systems seen so far are still very far

from perfect. Frequent mistakes create a very real risk of misleading the user into believing false

information. As a way of mitigating this risk and of increasing user trust in question answering

systems, we decided to investigate the possibility of providing a certificate of accuracy together

with predicted answers, so that users could easily verify the correctness of the answer based on the

given textual context, or alternatively quickly realize that the model had output an invalid answer.

The notion of a certificate of accuracy can be seen as a special kind of structured explanation that

the question answering system provides together with the answer.

In Chapter 6 of this thesis, we present a concrete framework for constructing structured explana-

tions of question answering. We named this framework QED. QED explanations consist of a list

of referential equalities between question and context spans and a predicate entailment between

the question and a sentence where corresponding entities and the extractive answer are replaced

8



Table 1.1 Several predictions made by [13] on admissible answers to different kinds of why-
questions can be disproven by real world examples in the Natural Questions dataset. The prediction
about the absence of purpose answers to negative why-questions however holds surprisingly well.

Prediction from [13] Counterexample in Natural Questions
“Passives only admit reason” Why were Luke and Leia separated at birth?

To keep them hidden from Darth Vader.
“Locative-existentials only admit reason” Why is the Angel of the North there?

To serve as a focus for our evolving hopes and fears.
“Unaccusatives only admit reason” Why does cooling water run through the condenser?

To condense the steam coming out of the cylinders or turbines.
“Negative questions only admit reason.” ∅

by placeholders. An example of QED explanation can be seen in Figure 1.5: the noun phrases

“the film howl’s moving castle” and “Howl’s Moving Castle” are found to be a referential equality,

meaning that they refer to the same thing in the world, and the predicate “who wrote <x>?” is

found to be entailed by the sentence “<x> is a 2004 Japanese animated fantasy film written and

directed by <answer>”. The referential equality and predicate entailment together make up the QED

explanation, which certifies to the user the accuracy of the answer, which in this case is “Hayao

Miyazaki”.

As detailed in Chapter 6, we introduce the QED dataset, a new resource derived from Natural

Questions where expert linguists have annotated existing question answering examples with QED

explanations. We report experimental results showing that QED explanations can be accurately

recovered by models and that training a model on question answering and on the QED task jointly

can improve question answering performance, even if the size of the QED dataset is small. We

finally report results of a user study showing that QED explanations improve the ability of untrained

raters to spot errors made by question answering systems.

A Semantic Analysis of Why Questions. As powerful as QED structured explanations are, they

only cover a specific type of explanation for question answering. In a much more general sense, it

can be productive to think of explanations for question answering as answers to questions of the

type: “why does 𝑎 answer question 𝑞 in the context of 𝑐?”. In other words explainable question

answering can be re-framed as an instance of question answering itself, with the caveat that the

9



questions in this context are why-questions, which are often considered particularly challenging and

open-ended. The Natural Questions dataset fortunately contains 1,220 why-questions that we were

able to study in search of meaningful patterns.

In Chapter 7 of this thesis, we employ tools from semantics to obtain a deeper understanding of

why-questions, based on the real world examples available in the Natural Questions dataset, hoping

that this understanding will allow us to design more general explanations for question answering in

the future. From semantics literature on why-questions we discover that there are two main types of

answers to why-questions, reason answers (generally introduced by the preposition “because”) and

purpose answers (generally introduced by the preposition “to”). Indeed, in the Natural Questions

dataset we find that roughly 250 questions have a purpose answer, while the remaining roughly

1,000 have a reason answer.

The question of how why-questions work from a technical semantic point of view does not

appear to be widely studied, except for a few key papers. We did find however very interesting

predictions in a work by Chapman and Kučerová [13]. The predictions appeared to be in most

cases contradicted by examples in the Natural Questions, as shown in Table 1.1, but, even more

interestingly, a specific prediction held with perfect accuracy on NQ, namely that negative why-

questions are never answered with purpose answers. In Chapter 7 we propose a deeper analysis of

this phenomenon and propose a new explanation for it based on semantic modalities.

1.4 Improving Question Answering with Data Augmentation

Even though question answering datasets are available up to considerable size, e.g. 300,000

examples in Natural Questions, or 150,000 examples in SQuaD 2.0 [14], it seems self evident that

the capacity of language models could benefit from much larger datasets. In this thesis we show

that performance improvements are achievable by significantly increasing the size of training data

with synthetically generated examples. Increased accuracy can be obtained by augmenting English

datasets (Chapter 5) as well as by augmenting datasets for low-resource languages (Chapter 9),

provided that at least a handful of representative samples (5 or more) are provided for each new
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if A == A’
add (C, Q, A)

to training data

... in 1903, boston 
participated in the first 
modern world series, 
going up against the 
pittsburgh pirates ... 1903

when did the red sox first go to the world series?

1903

C:

A:

Q:

A’:

Figure 1.6: Data augmentation strategy for question answering explored in Chapter 5.

language.

Augmenting Question Answering Datasets with Roundtrip Consistency. The data augmenta-

tion strategy explored in Chapter 5 is sketched in Figure 1.6. The approach combines three models:

(1) a question independent answer model 𝑝(𝑎 |𝑐; 𝜃𝐴) that predicts plausible extractive answers 𝑎

given a textual context 𝑐, (2) a question generation model 𝑝(𝑞 |𝑎, 𝑐; 𝜃𝑄) that generates a question

given a context 𝑐 and an extractive answer 𝑎, and (3) a question answering model 𝑝(𝑎 |𝑐, 𝑞; 𝜃𝐴′)

used to verify that the synthetic question-answer pair is valid. The final verification step is referred

to as the “roundtrip consistency” check. In this work we showed that significant improvements can

be obtained through this simple data augmentation approach both on Natural Questions and SQuAD

2.0, generating 4M synthetic questions for Natural Questions and 50M questions for SQuAD 2.0.

Both Natural Questions and SQuAD 2.0 contain unanswerable questions, i.e. QA examples

where a model is expected to output a null answer since the context does not contain a valid answer

to the question. For this reason, in Chapter 5 we employ a simple method to generate synthetic

unanswerable questions that are however difficult to identify by the models as such: we generate a

question based on a paragraph of Wikipedia page, but then associate that question with a different

paragraph from the same page.

We additionally observed interesting differences in the style of questions generated by models
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Figure 1.7: Verifiable language modeling intuition developed in Chapter 8. The approach seeks to
re-frame language modeling as a semantic auto-encoder, where the intermediate representation is
natural language.

trained on Natural Questions vs. SQuaD 2.0. For the same passage, the model trained on NQ

generated the question-answer pair “what was the population of chicago in 1857?” → “over

90,000”, whereas the model trained on SQuaD generated the question-answer pair “what was the

weight of the brigg’s hotel?” → “22,000 tons”. The former generation reflects the fact that Natural

Questions is generally focused on facts that could be of interest to the user of a search engine.

SQuAD style questions instead appear to be constructed more artificially, aiming to extract specific

entities from paragraphs without a notion of how likely generated questions are to be asked in real

world scenarios.

Roundtrip Consistency as a Semantic Auto-encoder. We continued the roundtrip consistency

line of work in Chapter 8. In Chapter 5 we generated question-answer pairs, then removed the ones

that are deemed invalid by a question answering model, and finally trained on the filtered synthetic

data. in Chapter 8 we aimed at performing data generation and consistency checking in a single

chain of models that we could back-propagate through end-to-end. We decided to pick a dataset

outside of question answering, the WebNLG dataset [15], to validate this approach. However, the

method should apply identically to the question answering tasks considered in the rest of this thesis.

The main intuition considered in Chapter 8 is depicted in Figure 1.7. We attempt to conceptually

re-frame the problem of language modeling from the usual task of predicting the next word given the

preceding context, to the problem of encoding a semantic message from the mind of the speaker into

a natural language utterance, with the objective of making the semantic message easy to reconstruct
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Figure 1.8: Data augmentation methods explored in Chapter 9 for low resource language scenarios.

by the listener through semantic parsing. The WebNLG dataset [15] is very appropriate to investigate

these ideas, since it is designed to benchmark for the two tasks that make up our reframing, namely

language generation and semantic parsing. The examples in WebNLG specifically contain lists of

subject-relation-object triples from DbPedia [16] and corresponding human written verbalizations.

We train two T5 models to perform the language generation and semantic parsing tasks on

the WebNLG dataset. We then stack the models and use a technique known as “straight-through

gradient”, to allow us to pass gradients through the non-differentiable decoding step on the interface

between the two models. We then propose a decoding method that we name “greedy-finetuned”,

where we generate a verbalization and then perform a few steps of gradient descent on the language

generation model to improve the probability of correct reconstruction with a frozen semantic parser.

In experiments, we find that this method leads to increased semantic parsing accuracy at a small

cost in BLEU score. We additionally corroborate these results with human evaluations.

Very Low Resource Question Answering with Large Language Models. We conclude our

thesis with a final exploratory effort in the space of data augmentation for question answering. In

the final chapter, Chapter 9, we look at the possibility of using large language models to bootstrap

question answering systems in very low resource languages. We compare different bootstrapping
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methods, which are schematically represented in Figure 1.8. We experiment with bootstrapping

by translating English question answering datasets to new languages and we compare this to the

more modern approach of generating synthetic question-answer pairs with large language models

(PaLM), either through prompt engineering or prompt tuning. In all cases, we train downstream

question answering models on the synthetic data and evaluate them on the TyDiQA dataset.

The experiments in Chapter 9 lead us to several interesting observations. We found that large

language models can learn to generate useful training data for question answering in new languages

from as little as 5 examples. We found that prompt tuning is significantly better than prompt

engineering and machine translation when it comes to the quality of downstream question answering

models. We additionally found that generating synthetic data and then training a question answering

model is always consistently better than fine-tuning a model directly on a small number of labeled

examples, confirming our previous findings that synthetic data generation is always a useful tool

for improving accuracy of question answering systems. We finally found that large language

models on the scale of PaLM (half a trillion parameters) are substantially better than smaller models

like T5 (11B parameters) at generating synthetic data for training downstream models. From

inspecting generated question answer pairs, we found that larger models seem to produce a higher

variety in generated questions and we hypothesize that the diversity of generation is responsible for

downstream QA improvements.
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Chapter 2: Answering Natural Questions with Transformers

In this chapter we discuss the Natural Questions (NQ) [7] dataset and a baseline transformer

model that obtained state-of-the-art performance on this dataset. We give an overview of how

NQ was collected and how it compares to other popular question answering datasets. The model

we present is BERT-joint [8]. BERT-joint is a BERT-based model which provides a substantial

improvement over the original LSTM baseline system. The new ideas in BERT-joint were to use

pretrained transformers instead of LSTMs as models and to predict short answer spans directly on

the entire document rather than selecting the best paragraph first.

2.1 Natural Questions: A Benchmark for Question Answering Research

Questions in NQ consist of real anonymized, aggregated queries issued to the Google search

engine. During data collection, annotators are presented with a question along with a Wikipedia

page from the top 5 search results on google.com. The annotators select a long answer (typically

a paragraph) and a short answer (one or more entities) if present on the page, or they mark null

if no long/short answer is present. The dataset consists of 307,373 training examples with single

annotations, 7,830 examples with 5-way annotations for development data, and a further 7,842

examples with 5-way annotated examples sequestered as test data. Evaluation on test data can only

be performed by uploading a question answering system to the NQ website. Models are expected to

provide two scores for every document in the NQ test set, a long-answer score and a short-answer

score. The evaluation then computes the F1 score corresponding to the best possible choice of

threshold. A significant challenge in NQ comes from the fact that only half of the examples have a

long answer annotated and so the model has to learn not only to find answering paragraphs but also

to abstain when no answering paragraph exists.
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One of the most important objectives in the development of NQ was to provide researchers with

a high quality and long-lived dataset for long term research efforts. In the time since its release, NQ

seems to have delivered on this goal. While leaderboards for popular question answering tasks like

SQuAD 2.0 and CoQA already show models scoring several percentage points better than humans

on test set metrics, NQ still has non-negligible headroom. For NQ, human performance is estimated

to be 87.2% and 75.7% on the long-answer and short-answer task respectively, while the best model

results are 79.8% and 64.1%. It therefore appears that NQ is still a challenging benchmark for the

NLP community.

The qualities that we think make NQ more challenging than other question answering datasets

are the following: (1) the questions in NQ were formulated by people out of genuine curiosity

or out of a real need for an answer to complete another task, (2) the questions were formulated

by people before they had seen the document that might contain the answer, (3) the documents

in which the answer is to be found are much longer than the textual evidence used in most other

question answering challenges.

2.2 A BERT Baseline for the Natural Questions Dataset

The original NQ paper was published with an LSTM baseline result that was state-of-the-art in

2018. The LSTM baseline was a pipeline system that first made a long answer prediction with a

lightweight model and then analyzed the best long answer with a more expensive LSTM model to

find the best short answer. We were able to obtain a substantial improvement over this baseline by

combining the following insights:

1. we make use of a pretrained BERT model and finetune on the NQ training split,

2. we jointly predict short and long answers in a single model rather than using a pipeline

approach,

3. rather than relying on HTML markup, we split each document into multiple training instances

by using fixed-size and partially overlapping windows of tokens,
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4. we use the “[CLS]” token at training time to predict null instances and rank spans at inference

time by the difference between the span score and the “[CLS]” score.

We picked the name “BERT-joint” for our system to emphasize the fact that we are modeling

short and long answers in a single model rather than in a pipeline of two models. This approach was

very successful. It reduced the gap between the F1 scores reported in the original NQ paper and the

human upper bound by 30% and 50% relative for the long and short answer tasks respectively. In

the rest of this section we give further details on how the NQ dataset was pre-processed, we explain

the modeling choices we made to adapt BERT to the NQ task, and we finally present our results.

2.3 Data Preprocessing

Following [3] we tokenize every example in NQ using a vocabulary comprised of 30,522 word

segments, then generate multiple instances per example by concatenating a “[CLS]” token, the

tokenized question, a “[SEP]” token, tokens from the content of the document, and a final “[SEP]”

token, limiting the total size of each instance to 512 tokens. For each document we generate all

possible instances, by listing the document content starting at multiples of 128 tokens, effectively

sliding a 512 token size window over the entire length of the document with a stride of 128

tokens. On average we generate 30 instances per NQ example. Each instance is then processed

independently by BERT.

For each training instance we compute start and end token indices to represent the target answer

span. If all annotated short spans are contained in the instance, we set the start and end target

indices to point to the smallest span containing all the annotated short answer spans. If there are

no annotated short spans but there is an annotated long answer span completely contained in the

instance, we set the start and end target indices to point to the entire long answer span. If no short or

long span can be found in the current instance, we set the target start and end indices to point to the

“[CLS]” token. In the following, we refer to the instances in the last category as “null instances”.

Given the large size of documents in NQ and the fact that 51% of the documents are annotated

as not having an answer to the query at all, we find that about 98% of generated instances are null;
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therefore for training we down-sample null instances by 50 times in order to obtain a training set

that has roughly as many null instances as non-null instances. This leads to a training set that has

approximately 500,000 instances of 512 tokens each.

We introduce special markup tokens in the document to give the model a notion of which part

of the document it is reading. The special tokens we introduced are of the form “[Paragraph=N]”,

“[Table=N]”, and “[List=N]” at the beginning of the N-th paragraph, list and table respectively in the

document. This decision was based on the observation that the first few paragraphs and tables in the

document are much more likely than the rest of the document to contain the annotated answer and

so the model could benefit from knowing whether it is processing one of these passages. Special

tokens are atomic, meaning that they are not split further into word segments.

We finally compute for each instance a target answer type as one of five values: “short” for

instances that contain all annotated short spans, “yes” and “no” for yes/no annotations where the

instance contains the long answer span, “long” when the instance contains the long answer span but

there is no short or yes/no answer, and “no-answer” otherwise. Null instances correspond to the set

of instances with the “no-answer” target answer type.

2.4 Model

Formally, we define a training set instance as a four-tuple

(𝑐, 𝑠, 𝑒, 𝑡)

where 𝑐 is a context of 512 word segment ids (including question, document tokens and markup),

𝑠, 𝑒 ∈ {0, 1, . . . , 511} are inclusive indices pointing to the start and end of the target answer span,

and 𝑡 ∈ {0, 1, 2, 3, 4} is the annotated answer type, corresponding to the labels “short”, “long”,

“yes”, “no”, and “no-answer”.

18



We define the loss of our model for a training instance to be

𝐿 = − log 𝑝(𝑠, 𝑒, 𝑡 |𝑐)

= − log 𝑝start(𝑠 |𝑐) − log 𝑝end(𝑒 |𝑐)

− log 𝑝type(𝑡 |𝑐),

where each probability 𝑝 is obtained as a softmax over scores computed by the BERT model as

follows:

𝑝start(𝑠 |𝑐) =
exp( 𝑓start(𝑠, 𝑐; 𝜃))∑
𝑠′ exp( 𝑓start(𝑠′, 𝑐; 𝜃))

,

𝑝end(𝑒 |𝑐) =
exp( 𝑓end(𝑒, 𝑐; 𝜃))∑
𝑒′ exp( 𝑓end(𝑒′, 𝑐; 𝜃))

,

𝑝type(𝑡 |𝑐) =
exp( 𝑓type(𝑡, 𝑐; 𝜃))∑
𝑡′ exp( 𝑓type(𝑡′, 𝑐; 𝜃))

,

where 𝜃 represents the BERT model parameters and 𝑓start, 𝑓end, 𝑓type represent three different

outputs derived from the last layer of BERT.

At inference time we score all the contexts from each document and then rank all document

spans (𝑠, 𝑒) by the score

𝑔(𝑐, 𝑠, 𝑒) = 𝑓start(𝑠, 𝑐; 𝜃)

+ 𝑓end(𝑒, 𝑐; 𝜃)

− 𝑓start(𝑠 = [CLS], 𝑐; 𝜃)

− 𝑓end(𝑒 = [CLS], 𝑐; 𝜃)

and return the highest scoring span in the document as the predicted short answer span. Note that

𝑔(𝑐, 𝑠, 𝑒) is exactly the log-odds between the likelihood of an answer span (defined by the product

𝑝start · 𝑝end) and the “[CLS]” span.

We select the predicted long answer span as the DOM tree top level node containing the
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Table 2.1 Our results on NQ compared to the baselines in the original dataset paper and to the
performance of a single human annotator and of an ensemble of human annotators. The systems
used in previous NQ baselines are DocumentQA [17], DecAtt [18], and Document Reader [19].

Long Answer Dev Long Answer Test Short Answer Dev Short Answer Test
P R F1 P R F1 P R F1 P R F1

DocumentQA 47.5 44.7 46.1 48.9 43.3 45.7 38.6 33.2 35.7 40.6 31.0 35.1
DecAtt + DocReader 52.7 57.0 54.8 54.3 55.7 55.0 34.3 28.9 31.4 31.9 31.1 31.5

BERT-joint [8] 61.3 68.4 64.7 64.1 68.3 66.2 59.5 47.3 52.7 63.8 44.0 52.1

Single Human 80.4 67.6 73.4 - - - 63.4 52.6 57.5 - - -
Super-annotator 90.0 84.6 87.2 - - - 79.1 72.6 75.7 - - -

predicted short answer span, and assign to both long and short prediction the same score equal to

the maximum value of 𝑔(𝑐, 𝑠, 𝑒) for the document.

We opted to limit the complexity of this baseline model by always outputting a single short

answer as prediction and we rely on the official NQ evaluation script to set thresholds to decide

which of our predictions should be changed to having only a long answer or no answer at all.

We expect that improvements can be obtained by combining start/end and answer type outputs to

sometimes predict yes/no answers instead of always predicting a span as the short answer. We also

expect additional improvements to be achievable by extending the model to be able to emit short

answers comprised of multiple disjoint spans.

2.5 Experiments

We initialized our model from a BERT model already finetuned on SQuAD 1.1 [20]. We then

further finetuned the model on the training instances precomputed as described in Section 2. We

trained the model by minimizing loss 𝐿 from Section 3 with the Adam optimizer [21] with a batch

size of 8. As is common practice for BERT models, we only tuned the number of epochs and the

initial learning rate for finetuning and found that training for 1 epoch with an initial learning rate of

3 · 10−5 was the best setting. Evaluation completed in about 5 hours on the NQ dev and test set with

a single Tesla P100 GPU.

The results obtained by our model are shown in Table 2.1. Our BERT model for NQ performed
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dramatically better than the models presented in the original NQ paper. Our model closes the gap

between the F1 score achieved by the original baseline systems and the super-annotator upper bound

by 30% for the long answer NQ task and by 50% for the short answer NQ task. However NQ

appeared to be still far from being solved, with more than 20 F1 points of headroom for both the

long and short answer tasks.
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Chapter 3: ETC: Encoding Long and Structured Inputs in Transformers

In this chapter we describe ETC, a BERT-style extractive question answering model with a

sparse attention mechanism that allows it to scale up the length of the input and represent structure

in the input document. The work described in this chapter is the result of a collaboration with other

researcher at Google. My contribution is the adaptation of the ETC model to the Natural Questions

task. Natural Questions was also the first task on which we saw substantial improvements from

using this technique. Natural Questions seemed particularly well suited to a methods that allow

long input lengths because many of the input documents in NQ have many thousands of tokens,

well above the 512 token limit that BERT had at the time.

3.1 Overview

Models based on Transformers [22], such as BERT [3], or other variants [23, 24, 25] have

yielded state-of-the-art results in many NLP tasks such as language modeling [26, 27, 28, 29],

question answering [24, 30], and summarization [31]. In this chapter we present the Extended

Transformer Construction (ETC) architecture1, targeting two limitations of the original models: (1)

scaling input length, (2) encoding structured inputs.

The computational and memory complexity of attention in the original Transformer scales

quadratically with the input length, typically limiting input length to around 512 tokens. While 512

might be enough for some tasks (e.g., co-reference resolution seems to benefit from even smaller

input lengths [32]), this is problematic in others. Consider question answering (QA) tasks that

require reasoning across multiple documents (e.g., the HotpotQA dataset [33]) all of which must

simultaneously fit in the model input. Other examples are summarization or QA on long documents.

1Source code and pretrained checkpoints for ETC can be found at http://goo.gle/
research-etc-model
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Many approaches have been proposed to address this, like hierarchical processing [31], sparse

attention [26], and segment-level recurrence [34].

A second limitation is that few models focus on structured inputs, by which we refer to any

underlying graph or hierarchical structure among the input tokens. Although ETC can encode more

general graph structure, in this work we focus on representing hierarchical structure in NLP tasks,

not usually modeled by Transformer models. For example, text is organized into sentences and

paragraphs, and while these have a sequential order, different input documents might not hold any

order between them (e.g., the HotpotQA dataset). Additionally, web text contains markup and is

laid out using a DOM tree, giving additional structure. We show ETC can represent these and other

types of structure, like linking different entity mentions.

To address these challenges, we present a novel attention mechanism called global-local atten-

tion, which divides the input into two sequences (which we call the global input and the long input).

This mechanism introduces local sparsity to reduce the quadratic scaling of the attention mechanism.

When this is coupled with relative position encodings [35], it allows for handling structured inputs

in a natural way. Additionally, unlike previous Transformer extensions, ETC can be initialized from

existing pretrained standard BERT models (which together with a GPU/TPU-friendly implemen-

tation, allows for efficient model training)2. Our results show that initializing from RoBERTa [9]

significantly improves performance. Finally, we show that by adding a pretraining Contrastive

Predictive Coding (CPC) task [10], performance improves even further for tasks where structure is

important, as CPC plays the role of a masked language model (MLM) task, but at a sentence level

of granularity.

We report experiments on four datasets: Natural Questions (NQ) [7], HotpotQA [33], Wiki-

Hop [36], and OpenKP (part of MS MARCO) [37], which have long and/or structured inputs. We

set a new state of the art in all of them.

Moreover, although in this chapter we strictly focus on ETC, in a related model called Big-

Bird [38], we experimented with an alternative set of ideas to handle long inputs and its extensions

2An exception to this is Longformer [30], a new model developed concurrently to ETC, which also allows initializa-
tion from BERT/RoBERTa.
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Figure 3.1: An illustration of mechanisms to scale attention to long inputs, including our proposed
model, ETC.

to a decoder for text generation. The focus of BigBird is on the idea of adding random sparse

attention patterns to global-local attention, and on showing under which conditions models like

BigBird/ETC are universal approximators of sequence functions and are Turing complete. While

the key ideas and techniques required to achieve the state-of-the-art results mentioned above for QA

tasks are the focus of this chapter, the reader is referred to the BigBird work for a joint evaluation of

ETC (referred to as BigBird-ETC in that work) and the idea of random sparse attention patterns.

3.2 Background

Many variants of the original Transformer model [22] have been proposed for scaling up

training [9], the internal representation [24], or both [25], outperforming BERT [3] in tasks such as

GLUE [39], SQuAD [20] or RACE [40]. However, these models typically limit inputs to 𝑛 = 512

tokens due to the 𝑂 (𝑛2) cost of attention. We classify prior approaches to scale up attention into

four categories: sparse attention, recurrence, hierarchical mechanisms, and compressed attention.

Sparse Attention involves limiting each token to attend to a subset of the other tokens. For

example, the Sparse Transformer [26] used predefined attention patterns for both text and image
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generation. They showed that attending only to previous pixels in the same row or column was

enough to generate high quality images, while keeping attention cost at 𝑂 (𝑛
√
𝑛). In the Adaptive

Attention Span Transformer [27] each attention head is associated with a decaying learnable masking

function, which limits the number of tokens it can attend to. They show that lower layers learn to use

short attention spans, and only in higher layers are attention spans longer. Sparse attention has also

been used to increase the interpretability of attention heads by allowing attention to assign exactly

zero weight to certain input tokens [41]. The Reformer [29] model finds the nearest neighbors of

the attention query (those input tokens that would result in the highest attention weights) using

locality sensing hashing [42] and only uses those for attention. This reduces attention cost to

𝑂 (𝑛 log(𝑛)). The Routing Transformer [43] learns dynamic sparse attention patterns using online

𝑘-means, reducing complexity to 𝑂 (𝑛1.5). Finally, the most related approach to the work presented

in this paper is Longformer [30], developed concurrently to ETC, and which features a very similar

global-local attention mechanism as ETC’s but does not directly encode graph or hierarchical

structure (more detailed comparison in Section 3.3).

Recurrence incorporates elements of recurrent neural networks into Transformer models to

lengthen their attention span. Transformer-XL [34] takes this approach, dividing the input sequence

into segments and then processing these segments one at a time. At each layer, the model attends

to the layer immediately below for both the current and previous input segments. The effect is

that layer 𝑘 is influenced by the current segment and the 𝑘 − 1 previous segments, as shown in the

top-right of Figure 3.1.

In Hierarchical Mechanisms the input sequence is split into blocks that are ingested inde-

pendently to produce summary embeddings that represent the whole block. Then, separate layers

ingest the concatenation of these embeddings. For example, HIBERT [31] uses this idea at the

sentence level for extractive summarization (illustrated in the bottom-left of Figure 3.1). Hierar-

chical attention in Transformers has also been applied to other NLP tasks such as neural machine

translation [44]. Moreover, notice that this idea of processing the input hierarchically is not specific

to Transformer models, and it has been applied to recurrent neural network models both at the level
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of sentences [45, 46] and blocks [47].

Compressed Attention takes the idea of hierarchical attention one step further by selectively

compressing certain parts of the input. The BP-Transformer [48] model builds a binary partitioning

tree over the input, and only lets the model attend to the leaves (the raw tokens) for nearby tokens,

and higher nodes in the tree (summaries of groups of tokens) as tokens grow more distant (see

Figure 3.1, middle top). Other ideas include memory compressed attention [49] where groups

of 𝑘 tokens are compressed via a convolution filter before they are attended to, and the Star

Transformer [50], where each token can attend only to its immediate left/right neighbors and to a

separate special auxiliary token that represents a summary of the whole input (see Figure 3.1, left).

The Compressive Transformer [28] integrates this idea into Transformer-XL by compressing tokens

in the input that are far away. The model benefits from detailed attention to nearby tokens, while

using summarized information for more distant tokens (see Figure 3.1, lower right).

3.3 Extended Transformer Construction

Our model follows the original Transformer architecture [22], with key modifications to tackle

long and structured inputs: relative position encoding, global-local attention, and a CPC pretraining

task, explained below. In this paper, we consider only the encoder side of the Transformer, and

leave the decoder for future work.

3.3.1 Relative Position Encoding

Inspired by the work of [35], ETC replaces absolute position encodings with relative position

encodings, which provide information about the relative position of tokens in the input sequence

with respect to one another. Given the input sequence 𝑥 = (𝑥1, ..., 𝑥𝑛), we can see it as a labeled

fully connected and directed graph, where 𝑙𝑖 𝑗 is the label of the edge that connects 𝑥𝑖 to 𝑥 𝑗 . Given a

maximum clipping distance 𝑘 , Shaw et al. define 2𝑘 + 1 relative position labels: 𝑙−𝑘 , ..., 𝑙𝑘 . The

label of the edge between two input tokens depends only on their relative position 𝑗 − 𝑖. For input

pairs with 𝑗 − 𝑖 ≥ 𝑘 , label 𝑙𝑘 is given, and with 𝑗 − 𝑖 ≤ −𝑘 , 𝑙−𝑘 is given. Each label then becomes a
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Figure 3.2: Sparsity diagram showing which attention queries (rows) can attend to which attention
keys (columns) a) for standard Transformer attention with input size 𝑛; b) for global-local attention
with input sizes 𝑛𝑔, 𝑛𝑙 , and radius 𝑟; c) how the l2l attention piece is reshaped into a much smaller
attention matrix, limited by local radius.

learnable vector 𝑎𝐾
𝑙

, which modifies the attention mechanism (equations in the next section)3.

Relative position encodings are independent of input length, so it is easy to adapt a model to

greater input lengths than seen during pretraining. As other recent work [51], ETC’s attention

mechanism uses relative position labels not just for relative positions in a sequence but also to

express arbitrary pairwise token relations useful for structured inputs, as explained below.

3.3.2 Global-Local Attention

Global-local attention is a generalization of several of the models presented above. ETC receives

two separate input sequences: the global input 𝑥𝑔 = (𝑥𝑔1 , ..., 𝑥
𝑔
𝑛𝑔) and the long input 𝑥𝑙 = (𝑥𝑙1, ..., 𝑥

𝑙
𝑛𝑙
).

Typically, the long input contains the input a standard Transformer would receive, while the global

input contains a much smaller number of auxiliary tokens (𝑛𝑔 ≪ 𝑛𝑙). Attention is then split into four

separate pieces: global-to-global (g2g), global-to-long (g2l), long-to-global (l2g), and long-to-long

(l2l). Attention in the l2l piece (the most computationally expensive piece) is restricted to a fixed

radius 𝑟 ≪ 𝑛𝑙 . To compensate for this limited attention span, the tokens in the global input have

unrestricted attention, and thus long input tokens can transfer information to each other through

global input tokens. Accordingly, g2g, g2l, and l2g pieces of attention are unrestricted.

This concept is illustrated in Figure 3.2, where each cell (row 𝑖, column 𝑗) is shaded grey if

3In the work of Shaw et al., a second 𝑎𝑉
𝑙

vector was used, but their ablations showed it may not affect performance.
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token 𝑥𝑖 can attend to token 𝑥 𝑗 . As we can see, in a regular Transformer, attention is unrestricted

(full 𝑛×𝑛 attention). ETC, illustrated in Figure 3.2b, however, restricts the l2l piece to a local radius,

significantly reducing computational and memory complexity for very long inputs. Conceptually,

the l2l attention piece is reshaped into a 𝑛𝑙 × (2𝑟 + 1) matrix as illustrated in Figure 3.2c.4

If 𝑟 = 1 and 𝑛𝑔 = 1, we recover exactly the Star Transformer (Section 3.2). Similarly, placing

all the tokens in the global input and setting 𝑛𝑙 = 0 yields standard Transformer attention. Attention

in ETC is 𝑂 (𝑛𝑔 (𝑛𝑔 + 𝑛𝑙) + 𝑛𝑙 (𝑛𝑔 + 2𝑟 + 1)). If we assume 𝑛𝑔 = 𝑂 (2𝑟 + 1), we see attention is linear

in the size of the long input: 𝑂 (𝑛2
𝑔 + 𝑛𝑔𝑛𝑙).

To provide flexible attention and help with structured inputs, per-instance Boolean attention

matrices 𝑀𝑔2𝑔, 𝑀𝑔2𝑙 , 𝑀 𝑙2𝑔, and 𝑀 𝑙2𝑙 exist, with zeroes for those pairs of tokens that should

not attend to one another. Each g2g attention head works as follows. Given the global input

𝑥𝑔 = (𝑥𝑔1 , ..., 𝑥
𝑔
𝑛𝑔), which is a sequence of token representations 𝑥𝑔

𝑖
∈ R𝑑𝑥 , the output of attention is

𝑧𝑔 = (𝑧𝑔1, ..., 𝑧
𝑔
𝑛𝑔), where each 𝑧𝑔

𝑖
∈ R𝑑𝑧 is calculated as follows:

𝑧
𝑔

𝑖
=

𝑛𝑔∑︁
𝑗=1
𝛼
𝑔2𝑔
𝑖 𝑗
𝑥
𝑔

𝑗
𝑊𝑉

𝛼
𝑔2𝑔
𝑖 𝑗

=
exp(𝑒𝑔2𝑔

𝑖 𝑗
)∑𝑛

ℓ=1 exp(𝑒𝑔2𝑔
𝑖ℓ

)

𝑒
𝑔2𝑔
𝑖 𝑗

=
𝑥
𝑔

𝑖
𝑊𝑄 (𝑥𝑔

𝑗
𝑊𝐾 + 𝑎𝐾

𝑖 𝑗
)𝑇√︁

𝑑𝑧
− (1 − 𝑀𝑔2𝑔

𝑖 𝑗
)𝐶

where: 𝑀𝑔2𝑔 is a binary attention mask,𝑊𝑄 ,𝑊𝐾 , and𝑊𝑉 are learnable weight matrices, and 𝑎𝐾
𝑖 𝑗

are learnable vectors representing the relative position labels, and 𝐶 is a large constant (𝐶 = 10000

in our experiments to follow the same convention as BERT). Attention for the other 3 pieces is

analogous. We experiment with having separate 𝑊𝐾 and 𝑊𝑉 across all four attention pieces, or

sharing them. And for𝑊𝑄 , we experiment with having one for g2g and g2l, and a separate one for

l2g and l2l; or sharing them also. To recover BERT as a special case when 𝑟 is large enough to

4In practice, for GPU/TPU efficiency, a different reshaping occurs that yields identical outputs (see the appendices).
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Figure 3.3: Example attention patterns for handling (a) long inputs and (b) structured inputs. White
background means attention is masked via 𝑀 , and the other colors indicate different relative position
labels.

remove sparsity, attention is actually only split into 2 pieces internally instead of 4, as g2g+g2l can

be computed jointly (top half of Figure 3.2c), and l2g+l2l can also be computed jointly (bottom half

of Figure 3.2c). A single softmax is used to jointly calculate 𝛼𝑔2𝑔
𝑖 𝑗

and 𝛼𝑔2𝑙
𝑖 𝑗

, and another for 𝛼𝑙2𝑔
𝑖 𝑗

and 𝛼𝑙2𝑙
𝑖 𝑗

.

Thus, the output of global-local attention is a sequence of length 𝑛𝑔 and one of length 𝑛𝑙 . These

sequences go through a layer normalization and feed forward layer in the same way as in the

standard transformer.

3.3.3 Long Inputs and Global-Local Attention

Let us illustrate how ETC can be used to encode long inputs. A general way to handle long

inputs in ETC is to place the entire sequence of input tokens (e.g., word pieces) in the long input

and then, assuming some sort of division into segments (e.g., sentences), place one auxiliary token

in the global input per segment in the long input. We then use one relative position label to link

the global segment tokens with the word piece tokens that belong to them, and a different label for

those that do not. Moreover, as we will show in the experiments below, we have seen that using the
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𝑀𝑔2𝑙 attention masks to perform hard masking in one direction (g2l) can bring performance gains

in some datasets. This last asymmetric hard-masking is illustrated in Figure 3.3a, where we used

different colors to indicate different relative position labels. In this way, although tokens in the long

input can only attend to the local neighborhood defined by the radius 𝑘 , they can indirectly attend to

all other tokens in the input sequence via the global tokens.

3.3.4 Structured Inputs

A standard Transformer resembles a graph neural network [52] over a fully connected graph

𝑔; see [48]. Thanks to the combination of global-local attention and relative position labels, ETC

exploits this relation to encode structured inputs. Given the input 𝑥 = (𝑥1, ..., 𝑥𝑛), we use the

term structure to refer to the relations that exist between the tokens in 𝑥. When 𝑥 is a plain

ordered sequence, the only relation is the sequential order of tokens, which is the only structure

captured by BERT (encoded by absolute position encodings, used to modify attention). We define

structured inputs as those that have additional relations between the tokens beyond sequential order.

In principle, we could think of inputs with arbitrary graph structure (such as chemical molecule

graphs), but here we focus on structure in NLP tasks.

ETC is particularly well suited to capture hierarchical structure thanks to three mechanisms.

First, as originally conceived, the vocabulary of relative position labels is used to represent token

relative positions. However, seeing a Transformer as a graph neural network over a graph 𝑔 (with

one vertex per token in 𝑥, and edges representing their relations), we can expand this vocabulary

to label some edges with labels for relations such as is-a, part-of, or others. Second, the division

between long and global input induces a natural structure where the global input contains summary

tokens of sets of tokens in 𝑥 (a 2-level hierarchy). However, we can also have tokens summarizing

sets of summary tokens (constructing a 3-level hierarchy, or beyond). Third, if some pairs of tokens

should not have an edge between them, this can be captured with the 𝑀𝑔2𝑔, 𝑀𝑔2𝑙 , 𝑀 𝑙2𝑔, 𝑀 𝑙2𝑙 masks.

An illustration of all these concepts is shown in Figure 3.3b, which uses masking and relative

position labels to represent a context-sentence-token hierarchy that includes within-context order
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of sentences but no order between contexts. Another example would be social community graphs

structure, where we could partition the graph into components, use 𝑀 𝑙2𝑙 to constrain attention to

within components, and add per-component global tokens, linked to allow information to propagate

from one component to another in a hierarchical way.

3.3.5 Pretraining Tasks

We use two pretraining tasks: (1) a masked language model (MLM) task with whole word

masking (if one word piece token is masked, then all other tokens of the same word are masked);

and (2) instead of using BERT’s next sentence prediction (NSP), we adapt Contrastive Predictive

Coding (CPC) [10] for ETC.

The goal of CPC is to predict subsequent inputs in latent space, i.e., to predict internal hidden

representations of blocks of tokens. We adapted this idea in ETC by using global input sentence

summary tokens. Given an input sequence containing 𝑛 sentences, we mask all the tokens corre-

sponding to a subset of sentences (but leave the sentence summary tokens in the global input). We

then train the model to minimize the difference between the hidden representation of the global

sentence summary tokens for the masked sentences with respect to that of a global summary token

that can see the unmasked sentence and nothing else. We use a Noise Contrastive Estimation (NCE)

loss as in the work of Oord et al. (2018) (details in the appendices).

Having described ETC, we can now compare it with Longformer [30], which uses a similar

attention mechanism, except that Longformer has a single input sequence with some tokens marked

as global (the only ones that use full attention). The key differences are that (1) ETC’s combination

of global-local attention with relative position encodings and flexible masking enables it to encode

structured inputs in a similar way as graph neural networks do; (2) global tokens in Longformer

are never pretrained with anything like our CPC loss, and thus their use must be learned during

fine-tuning.
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3.3.6 Lifting Weights from Existing Models

ETC and BERT share enough similarities that BERT parameters are useful to perform a warm

start. The parameters are compatible because the global-local attention mechanism includes BERT

as a special case if the input is small enough or the local radius is large enough to eliminate sparsity.

Moreover, when lifting weights from BERT into an ETC model with separate 𝑊𝑄 , 𝑊𝐾 , and 𝑊𝑉

projection matrices, BERT’s parameters are just copied over to the different matrices of ETC.

Although pretraining is still required to adapt the weights to use global tokens and relative

position encodings, we show that initializing from RoBERTa results in significant performance

improvements compared to pretraining from scratch. Specifically, we initialized from the RoBERTa

checkpoints reported in the work of Rothe et al. [53].

3.4 Empirical Evaluation

This section focuses on evaluating our two main contributions: (1) long inputs, and (2) structure

in text inputs, as well as initialization from existing BERT models. We chose four datasets (Table

3.1) with long inputs or interesting input structure.

NQ [7]: in Google’s Natural Questions (NQ) dataset the input consists of a question and a full

Wikipedia article. The task is to identify both a short answer (a few words from the article) and a

long answer (e.g., a whole paragraph), if they exist within the article (and otherwise, return null

answers). Performance is measured based on the F1 score of the model predictions with respect to

the human generated answers.

HotpotQA [33] is a question answering dataset where the goal is to combine evidence from

multiple contexts. We use the distractor setting, where 10 paragraphs are provided: two of them

contain useful information to answer the question, and the rest are distractors. The task is both

to answer the question, and also to identify the supporting facts that are relevant to answer the

questions (at a sentence granularity).
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Table 3.1 Dataset stats (length in word piece tokens).
Instances Instance length

Dataset Training Dev Median 95% Max
NQ 307373 7830 4004 17137 156551
HotpotQA 90447 7405 1227 1810 3560
WikiHop 43738 5129 1541 3994 20337
OpenKP 133724 6610 761 4546 89183

Table 3.2 Empirical results on the dev sev set for the Natural Questions (NQ) dataset. Best results
for base and large models highlighted. BERT-large results obtained from [8]. ∗ although not visible
due to rounding to the closest million, doubling the relative position encoding vocabulary adds
about 600k parameters.

Model Input length Configuration #Params Long answer F1 Short answer F1
BERT-base 512 110M 0.634 0.475
BERT-large 512 340M 0.647 0.527
RikiNet 512 lifting from RoBERTalarge - 0.753 0.593
ETC 512 shared, no CPC, no hard g2l 109M 0.645 0.478
ETC 4096 shared, no CPC, no hard g2l 109M 0.692 0.497
ETC 4096 fixed blocks, shared, no CPC, no hard g2l 109M 0.697 0.508
ETC 4096 shared, no hard g2l 109M 0.717 0.524
ETC 4096 shared 109M 0.721 0.514
ETC 4096 - 166M 0.725 0.522
ETC 8192 166M 0.740 0.542
ETC 4096 2x local radius 166M 0.737 0.530
ETC 4096 2x relative vocab 166M∗ 0.733 0.532
ETC 4096 2x pretraining 166M 0.746 0.558
ETC-large 4096 539M 0.761 0.565
ETC-large 4096 lifting from RoBERTa 558M 0.782 0.585

WikiHop [36] is similar in structure to HotpotQA. The contexts correspond to portions of

Wikipedia articles, and the goal is to answer about properties of an entity that cannot be found in the

entity’s article. Each instance contains a query, a collection of candidate answers, and a collection

of contexts from which to obtain information to select among the candidate answers.

OpenKP [37] is a keyphrase extraction dataset. Each document contains up to 3 short keyphrases

to be identified. We selected this dataset as the input is not flat text sequences, but websites, including

the hierarchical and spatial relations between the different DOM elements on the website, as well as

other visual properties.
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3.4.1 Training Configuration

We use two basic configurations: base and large. Base uses 12 layers, 768 hidden size, 12

attention heads, local attention radius 𝑟 = 84, and relative position maximum distance 𝑘 = 12. Large

uses 24 layers, 1024 hidden size, 16 heads, 𝑟 = 169, and 𝑘 = 24. We used 128, 230 and 460 global

tokens for models with 512, 4096 and 8192 long input size respectively in NQ5, 256 global tokens

in HotpotQA, 430 in WikiHop, and 512 in OpenKP.

Pretraining: We place all word piece tokens in the long input and add one auxiliary token per

sentence to the global input. We defaulted to BERT’s 30k English uncased word piece vocabulary.

Models were pretrained using the original BERT datasets, except that documents with fewer than 7

sentences were filtered out. Unless stated otherwise, base models were pretrained with the same

total number of tokens as the original BERT, and for large models, twice as many. We used the

LAMB optimizer [54] with learning rate set to
√

8 × 10−3.

Fine-tuning: we put all input tokens in the long input (CLS, question, and context tokens

for QA datasets), and use relative position labels to encode structure (see Section 3.3.4). Global

input has a CLS token, tokens mirroring the question tokens in long, and one summary token

per paragraph/sentence (or VDOM block in OpenKP). OpenKP had no CLS nor question tokens.

For WikiHop, we also add one global token per candidate answer, and used a different relative

position label to link these tokens to their string-matched mentions in the text (more details in the

appendices).

3.4.2 Results on the Dev Set

NQ: We used NQ to study the different parts of ETC via ablations. Results are shown in

Table 3.2. The first three rows show baseline models: BERT-base, BERT-large, and RikiNet [55]

(one of the best models in the NQ leaderboard). BERT’s performance is comparable to ETC using

input length of 512. The smaller local radius of ETC (84) puts ETC at a disadvantage with respect

5With gradient check-pointing, ETC can scale beyond this, but we limit our experiments to 8192 tokens for this
paper.
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Table 3.3 Empirical results on HotpotQA and WikiHop (dev set results). ∗Longformer parameter
counts provided by the authors via personal communication.

Model Input length Configuration #Params HotpotQA WikiHop
Ans. F1 / Sup. F1 Acc.

Longformer 4096 149M∗ 0.743 / 0.844 75.0
Longformer-large 4096 435M∗ 0.788 / 0.8606 77.6
ETC 4096 flat structure, no CPC, no hard g2l 166M 0.722 / 0.857 70.0
ETC 4096 flat structure 166M 0.748 / 0.870 70.7
ETC 4096 no CPC 166M 0.747 / 0.866 73.0
ETC 4096 no hard g2l 166M 0.743 / 0.864 75.9
ETC 4096 shared 109M 0.733 / 0.866 73.7
ETC 4096 - 166M 0.751 / 0.869 73.2
ETC-large 4096 539M 0.798 / 0.890 77.0
ETC-large 4096 lifting from RoBERTa 558M 0.813 / 0.894 79.8

Table 3.4 Empirical results on OpenKP (dev set F1@3 results).
Model Input length Configuration #Params OpenKP F1@3
RoBERTa-JointKPE 512 - 0.398
ETC 512 fixed blocks, no CPC, no hard g2l, no visual features 166M 0.399
ETC 4096 fixed blocks, no CPC, no hard g2l, no visual features 166M 0.400
ETC 4096 no CPC, no hard g2l, no visual features 166M 0.400
ETC 4096 no hard g2l, no visual features 166M 0.400
ETC 4096 no visual features 166M 0.402
ETC 4096 - 166M 0.409
ETC 4096 shared 109M 0.409
ETC 4096 max loss 166M 0.416
ETC-large 4096 max loss 539M 0.419
ETC-large 4096 max loss, lifting from RoBERTa 558M 0.423

to BERT, but other ETC improvements, such as dynamic whole word masking seem to compensate.

The rest of Table 3.2 shows performance under different ablations. Our default configuration

(marked with a “-” in the configuration column) is ETC-base with long input length of 4096 tokens,

using CPC, hard g2l masking, and separate𝑊𝑄 ,𝑊𝐾 , and𝑊𝑉 matrices for long/global inputs. We

tested the following ablations: shared (sharing all model parameters for attention across both the

Table 3.5 Official leaderboard results for ETC at the time of submission.
Leaderboard Result Position
NQ long answer 0.7778 1st
NQ short answer 0.5786 18th
HotpotQA Sup. F1 0.8909 1st
HotpotQA Overall 0.7362 3rd
WikiHop 0.8225 1st
OpenKP 0.4205 1st
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global and long inputs), no CPC (removing the CPC pretraining task), no hard g2l (not having a

hard g2l mask), and fixed blocks (which configures the global input to just have one global token

per 97 long input tokens, to keep the same proportion as without fixed-blocks, ignoring sentence

boundaries, and not having any other tokens in the global input for pretraining or fine-tuning).

Sharing𝑊𝑄 ,𝑊𝐾 , and𝑊𝑉 and removing CPC significantly hurt the performance of ETC in NQ7.

Using fixed blocks, surprisingly, seems to slightly help without CPC.

Increasing long input from 512 to 4096 significantly helped performance, and going to 8192

increased performance further to 0.740 / 0.542, highlighting the importance of longer inputs.

Increasing the local radius, relative position vocabulary, or the amount of pretraining all helped

performance (especially the latter, reaching 0.746 / 0.558). Moving to a large model also helped,

especially when lifting from RoBERTa (both large models used the RoBERTa vocabulary). Lifting

from RoBERTa achieved our best scores: 0.782 / 0.585, beating the best dev scores in the literature

for long answer (compare with 0.754 / 0.593 for RikiNet). For short answer, we still lag behind

RikiNet.

HotpotQA, WikiHop: Table 3.3 shows our results in HotpotQA and WikiHop. We show

two Longformer models as baselines (currently the state-of-the-art model in WikiHop), as well as

ablations to study the effect of structure in the results. In particular, we consider a flat structure

ablation where: (1) we do not break long input attention by context boundaries, (2) we limit relative

position labels between global and long tokens to representing only sentence-level relationships

(this removes any special attention in WikiHop between candidate answers and their mentions).

Our results show that both our base and large models outperform their corresponding Longformer

models in both HotpotQA and WikiHop. Besides parameter counts, the main factors that can explain

this difference in performance are the different pretraining strategies and the different handling of

structure in ETC and Longformer. Removing the CPC pretraining task, and not using a hard g2l mask

significantly hurt the performance of the model in HotpotQA, going from a performance of 0.751 /

0.869 for the baseline model to 0.722 / 0.857 using none of those features. Using a flat structure (but

7Separate projection matrices were also found to be helpful in other models, like Longformer [30].
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keeping CPC and hard g2l) did not seem to hurt in HotpotQA. WikiHop shows a slightly different

picture, as it seems that hard g2l masking and especially flat structure hurt performance in this

dataset. Our best model is the base configuration without hard g2l masking, which achieves an

accuracy of 75.9. Interestingly, sharing𝑊𝑄 ,𝑊𝐾 , and𝑊𝑉 seems to help performance in WikiHop.

This is our smallest dataset, and maybe the added capacity of the model without sharing parameters

leads it to overfit.

OpenKP: Table 3.4 shows our results on the OpenKP dataset, using RoBERTa-JointKPE [56]

as the baseline, which is currently #1 in the leaderboard. This is an interesting structured dataset,

and thus, we performed additional ablations to investigate the effect of removing such structural

information. Our results show that even the most constrained ETC model already achieves very

good performance (0.399), and scaling to 4096 length seems to give a slight boost. Using hard g2l

also helps, and adding the visual features brings the largest benefit. Finally, we see that using a

large model, and especially lifting weights from RoBERTa improve results significantly. As with

WikiHop, sharing 𝑊𝑄 , 𝑊𝐾 , and 𝑊𝑉 does not hurt performance. Our default model uses the first

occurrence of a key-phrase, but we saw that using the maximum logit of all occurrences (max loss)

improved results.

3.4.3 Official Leaderboard Results

Finally, Table 3.5 shows official results on the leaderboards of each dataset. The model submitted

to the leaderboards was the model with best dev set results (shown at the bottom of the respective

results tables, lifting weights from RoBERTa). We set a new state of the art in WikiHop and OpenKP,

NQ long answer, and HotpotQA Support F1. Remarkably, our submissions were all single model,

outperforming the leaderboard ensemble models.

7Better results were reported for Longformer-large using a 2 stage approach, reaching 81.0 / 85.8 [30], but our table
shows single-model results only, for comparison.
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3.5 Conclusions

This chapter described the Extended Transformer Construction (ETC), an architecture designed

to (1) scale up the input length (linearly with input), and (2) encode structured inputs. ETC allows

lifting weights from existing BERT models, improving results significantly. The key ideas are a new

global-local attention mechanism, coupled with relative position encodings and a CPC pretraining

task.

We showed that significant gains can be obtained thanks to increased input sequence length. The

ability to represent dataset structure in ETC further improves the model quality. We hypothesize

that CPC helps the model train the usage of the higher-level global input summary tokens, as CPC

plays a role akin to MLM, but at the global input level. Notice that although our datasets contain a

limited amount of structure (compared to graph datasets), our experiments show that ETC was able

to exploit this existing structure.

As future work, we would like to investigate complementary attention mechanisms like those of

Reformer [29] or Routing Transformer [43], push scalability with ideas like those from RevNet [57],

and study the performance of ETC in datasets with even richer structure.
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Chapter 4: Fusion of Detected Objects in Text for VQA

This chapter describes B2T2 [58] (“Bounding Boxes in Text Transformer”), a technique to

ground mentions in text to objects in images while solving a question answering task. B2T2

introduces special visual tokens in the textual context of the task. These tokens are treated as regular

word tokens by the transformer model solving the QA task, but their representation is generated

by an upstream vision model. B2T2 is pretrained on a large scale dataset of images with captions

and then finetuned on the Visual Commonsense Reasoning (VCR) benchmark1, achieving a new

state-of-the-art performance with a 25% relative reduction in error rate compared to published

baselines and obtaining the best performance to date on the public leaderboard (as of May 22, 2019).

In this chapter we additionally present an ablation study showing that multimodal pretraining not

only improves the results of finetuning, but also its stability. We also find that the early integration

of the visual features into the text analysis is key to the effectiveness of the new architecture.

4.1 Overview

The challenge we consider in this chapter is Visual Question Answering (VQA), a natural

instance of grounding text in a multimodal context. More specifically we look at an instance of

VQA where a model has to solve a multiple choice question related to a given image, where objects

from the image are explicitly pointed to in the text. Several research questions are investigated in

this work. How is visual and verbal information best encoded in a neural architecture? How should

we represent text entities bound to objects seen in images? Are text and image best integrated late,

allowing for independent analysis (late fusion), or should the processing of one be conditioned on

the analysis of the other (early fusion)? Can neural representations from single-modality text and

vision models be made compatible and combined in an effective multi-modal model?
1https://visualcommonsense.com
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Q: What was [1] doing before he sat in his living room?

A1: He was reading [10].
A2: He was taking a shower. ✓
A3: [0] was sleeping until the noise [1] was making woke him up.
A4: He was sleeping in his bedroom.

R1: His clothes are disheveled and his face is glistening like he’s sweaty.
R2: [0] does not look wet yet, but [0] looks like his hair is wet, and bathrobes are what you wear before or after a

shower.
R3: He is still wearing his bathrobe. ✓
R4: His hair appears wet and there is clothing hanging in front of him on a line as if to dry.

Figure 4.1: An example from the VCR dataset. The tasks consists in picking an answer A1−4, and
then picking a rationale R1−4. The data contains explicit pointers in the text to bounding boxes in
the image.

In this work we gather evidence to answer these questions by designing the Bounding Boxes in

Text Transformer, B2T2 for short, a neural architecture for multimodal encoding of natural language

and images, and we evaluate B2T2 on the Visual Commonsense Reasoning benchmark (VCR, [11]).

Figure 4.1 shows an illustrative example from the VCR benchmark. VCR is well suited to test rich

multimodal representations because it requires the analysis of images depicting people engaged in

complex activities; it presents questions, answers and rationales created by human annotators rather

than automatic generation; it has a clean multiple-choice interface for evaluation; and yet it is still

challenging thanks to a careful selection of answer choices through adversarial matching. VCR has

much longer questions and answers compared to other popular Visual Question Answering (VQA)

datasets, such as VQA v1 [59], VQA v2 [60] and GQA [61], requiring more modeling capacity for

language understanding.

In our experiments, we found that early fusion of co-references between textual tokens and

visual features of objects was the most critical factor in obtaining improvements on VCR. We

found that the more visual object features we included in the model’s input, the better the model
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Table 4.1 Glossary of mathematical symbols used in this chapter.

Symbol Type Description

𝑚 N number of extracted bounding boxes
𝑛 N number of tokens input to BERT
𝑘 N number of positional embeddings for image coordinates, usually 56
𝑑 N visual features dimension, usually 2048
ℎ N hidden dimension of BERT, usually 1024
𝑙 {0, 1} a binary label
𝐼 R·×·×3 an image
𝐵 R𝑚×4 rectangular bounding boxes on 𝐼 , as coordinates of opposite corners
𝑅 {0, 1}𝑚×𝑛 matrix encoding which bounding boxes in 𝐵 correspond to which tokens

in 𝑇

𝑇 N𝑛×2 input tokens, each expressed as word piece id and token type
Φ R·×·×3 → R𝑑 a function to extract visual feature vectors from an image
𝜋 R4 → R𝑑 a function to embed the position and shape of a bounding box
Ψ R𝑛×ℎ → Rℎ a function to compute a passage embedding from per-token embeddings
𝐸 N𝑛×2 → R𝑛×ℎ non-contextualized token embeddings, encoding word piece ids, token

types and positions

performed, even if they were not explicitly co-referent to the text. Positional features of objects, i.e.

the pixel position and dimensions of the object’s bounding box, also provided a small performance

boost. We finally discovered that our models for VCR could be trained much more reliably when

they were initialized from pretraining on Conceptual Captions [12], a public dataset of about 3M

images with captions. From the combination of these modeling improvements, we obtained a new

model for visual question answering that achieves state-of-the-art on VCR, reducing error rates by

more than 25% relative to the best published and documented model [11].

4.2 Problem Formulation

In this work, we assume data comprised of 4-tuples (𝐼, 𝐵, 𝑇, 𝑙) where

1. 𝐼 is an image,

2. 𝐵 = [𝑏1, . . . , 𝑏𝑚] is a list of bounding boxes referring to regions of 𝐼, where each 𝑏𝑖 is

identified by the lower left corner, height and width,

3. 𝑇 = [𝑡1, . . . , 𝑡𝑛] is a passage of tokenized text, with the peculiarity that some of the tokens

are not natural language, but explicit references to elements of 𝐵, and

4. 𝑙 is a binary label in {0, 1}.
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While it might seem surprising to mix natural text with explicit references to bounding boxes,

this is actually a quite natural way for people to discuss objects in images and the VCR dataset is

annotated in exactly this way.

We assume an image representation function Φ that converts an image, perhaps after resizing

and padding, to a fixed size vector representation of dimension 𝑑.

We similarly assume a pretrained textual representation capable of converting any tokenized

passage of text, perhaps after truncating or padding, into a vector representation of dimension ℎ.

We assume a context independent token representation 𝐸 in the shape of a vector of dimension ℎ

for each token and a passage level representation Ψ which operates on 𝐸 (𝑇) and returns a passage

level vector representation of dimension ℎ.

We refer the reader to Table 4.1 for an overview of the notation used in this chapter. Full details

on how the VCR dataset is encoded into this formalism are given in Section 4.9.

4.3 Models and Methods

We evaluate two main architectures: “Dual Encoder”, a late fusion architecture where image

and text are encoded separately and answer scores are computed as an inner product, and the full

B2T2 model, an early fusion architecture where visual features are embedded on the same level as

input word tokens. Section 4.12 will summarize experiments with model variants to answer the

research questions laid out in the introduction and to analyze what works, and why.

4.4 Dual Encoder

Dual Encoders, discussed for example by [62] and [63], are models that embed objects of

potentially different types into a common representation space where a similarity function can be

expressed e.g. as a dot product or a cosine similarity. A notable example of a dual encoder for image

classification is WSABIE, proposed by [64].
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what is [0] look at [sep] the sea[cls] [sep]#ing

[cls]

ResNet-152

BERT

xTAy

Class 
Score

... ...

Figure 4.2: Dual Encoder architecture with late fusion. The model extracts a single visual feature
vector from the entire image. Bounding boxes are ignored.

[b1] why are [b2] wear #ing the same[cls] ...[b3]T[cls]

BERT... ...

ResNet-152 ResNet-152 ResNet-152

Mx Mx Mx

xTA+b

Class 
Score

Figure 4.3: B2T2 architecture with early fusion. Bounding boxes are inserted where they are
mentioned in the text and at the end of the input, as described in Sec. 4.9.

Our Dual Encoder architecture is shown in Figure 4.2. We model the class distribution as

𝑝(𝑙 = 1|𝐼, 𝑇) = 1
1 + 𝑒−Ψ(𝐸 (𝑇))⊤𝐷Φ(𝐼)

where 𝐷 is a learned matrix of size 𝑑 × ℎ. In this model, co-reference information is completely
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ignored, and the model must rely on fixed dimensional vectors for the late fusion of textual and

visual contexts. However, we found this to be surprisingly competitive on VCR compared to

published baselines, perhaps due to our choice of powerful pretrained models.

4.5 B2T2

Our B2T2 architecture is shown in Figure 4.3. We model the class distribution as

𝑝(𝑙 |𝐼, 𝐵, 𝑅, 𝑇) = 𝑒Ψ(𝐸 ′ (𝐼,𝐵,𝑅,𝑇))·𝑎𝑙+𝑏𝑙∑
𝑙′ 𝑒

Ψ(𝐸 ′ (𝐼,𝐵,𝑅,𝑇))·𝑎𝑙′+𝑏𝑙′

where 𝑎𝑙 ∈ Rℎ and 𝑏𝑙 ∈ R for 𝑙 ∈ {0, 1} are learned parameters. 𝐸′(𝐼, 𝐵, 𝑅, 𝑇) is a non-

contextualized representation for each token and of its position in text, but also of the content

and position of the bounding boxes. The key difference from “Dual Encoder” is that text, image and

bounding boxes are combined at the level of the non-contextualized token representations rather

than right before the classification decision.

The computation of 𝐸′(𝐼, 𝐵, 𝑅, 𝑇) is depicted in Figure 4.4. More formally, for a given example,

let matrix 𝑅 ∈ {0, 1}𝑚×𝑛 encode the references between the bounding boxes in 𝐵 and the tokens in

𝑇 , so that 𝑅𝑖 𝑗 is 1 if and only if bounding box 𝑖 is referenced by token 𝑗 . Then

𝐸′(𝐼, 𝐵, 𝑅, 𝑇) =

𝐸 (𝑇) +
𝑚∑︁
𝑖=1

𝑅𝑖 [𝑀 (Φ(crop(𝐼, 𝑏𝑖)) + 𝜋(𝑏𝑖))]⊤

where 𝑀 is a learned ℎ × 𝑑 matrix, Φ(crop(𝐼, 𝑏𝑖)) denotes cropping image 𝐼 to bounding box 𝑏𝑖

and then extracting a visual feature vector of size 𝑑, and 𝜋(𝑏𝑖) denotes the embedding of 𝑏𝑖’s shape

and position information in a vector of size 𝑑.

To embed the position and size of a bounding box 𝑏, we introduce two new learnable embedding

matrices 𝑋 and𝑌 of dimension 𝑘× 𝑑
4 . Let the coordinates of the opposite corners of 𝑏 be (𝑥1, 𝑦1) and

(𝑥2, 𝑦2), after normalizing so that a bounding box covering the entire image would have 𝑥1 = 𝑦1 = 0
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and 𝑥2 = 𝑦2 = 𝑘 . Position embeddings are thus defined to be

𝜋(𝑏) = concat(𝑋⌊𝑥1⌋ , 𝑌⌊𝑦1⌋ , 𝑋⌊𝑥2⌋ , 𝑌⌊𝑦2⌋)

4.6 Loss

All of our models are trained with binary cross entropy loss using label 𝑙. Denoting 𝑝 := 𝑝(𝑙 =

1|𝐼, 𝐵, 𝑅, 𝑇), we have for each example

LBCE = 𝑙 log 𝑝 + (1 − 𝑙) log(1 − 𝑝)

4.7 Pretraining on Conceptual Captions

Before training on VCR, we pretrain B2T2 on image and caption pairs using a Mask-LM

pretraining technique like the one used in BERT [3]. The setup used during pretraining is shown in

Figure 4.5, where the model uses the image as additional context when filling in the mask.

We use two tasks for pretraining: (1) impostor identification and (2) masked language model

prediction. For the impostor task, we sample a random negative caption for each image and ask the

model to predict whether the caption is correctly associated. For mask-LM, we randomly replace

tokens in the caption with the [MASK] token, and the model must predict the original token (see

[3] for more details).

Formally, the pretraining data consist of images 𝐼 and captions 𝑇 . We do not consider bounding

boxes during pretraining, so 𝐵 = ∅. The binary label 𝑙 indicates whether the caption is an impostor

or not. The loss for impostor identification is binary cross entropy LBCE with label 𝑙 as in 4.6. We

denote the loss for mask-LM as LMLM, which is the summed cross entropy of the predicted token

distributions against the true tokens.

To ensure that our model correctly grounds the language to the image with the mask LM loss,

we only use it for positive captions, zeroing it out for negative captions. Our final objective is the
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Figure 4.4: How input embeddings are computed in our B2T2 architecture.

sum of the losses:

L = LBCE + 𝐼 [𝑙 = 1] · LMLM

where 𝐼 [𝑙 = 1] is an indicator for the label 𝑙 being positive for the image and caption pair.

We pretrain on Conceptual Captions [12], a dataset with over 3M images paired with captions.2

We found empirically that pretraining improves our model slightly on VCR, but more importantly,

allows our model to train stably. Without pretraining, results on VCR exhibit much higher variance.

We refer the reader to Section 4.12 for an ablation analysis on the effect of pretraining.

4.8 Implementation Details

We use ResNet-1523 [66] pretrained on ImageNet for Φ, which yields a vector representation

of size 𝑑 = 2048. BERT-Large [3] provides both 𝐸 and Ψ. The latter is a pretrained Transformer

with 24 layers, 16 attention heads, and hidden size 1024. For BERT, 𝐸 corresponds to its token

embeddings, Ψ to the [CLS] token representation in the final layer, and so Ψ(𝐸 (𝑇)) corresponds

to the BERT passage representation of size ℎ = 1024.

We found empirically that it was slightly better to keep Φ fixed rather than fine-tuning it, but

2We also tried pretraining on MS-COCO images and captions [65], but found this to be ineffective. This could be
because MS-COCO is smaller (with around 80k images, 400k captions).

3Publicly available at tfhub.dev
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Figure 4.5: Mask-LM pretraining for B2T2.

that it was of critical importance to fine-tune Ψ and 𝐸 for the new task.

In all of our finetuning experiments we use the Adam optimizer [21] and trained our models

with a grid of hyperparameters: a learning rate of 2 · 10−5 and 3 · 10−5, for 3, 4, and 5 epochs with a

linear learning rate decay, and two random seed for initialization. To maximize performance on

VCR, we also evaluate an ensemble of B2T2 models. Our ensemble is comprised of 5 identical

B2T2 models, trained for 3 epochs with an initial learning rate of 2 · 10−5, but initialized with 5

different random seeds. The resulting class logits are then summed to obtain the ensemble scores.
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4.9 Data

Visual Commonsense Reasoning (VCR, visualcommonsense.com, [11]) is a corpus that

contains a sample of stills from movies. Questions and answers revolve around conclusions or

assumptions that require knowledge external to the images. The associated task is to not only select

a correct answer but also provide reasoning in line with common sense. Matching our problem

formulation given before, a VCR sample is defined as a tuple (𝐼, 𝑂, 𝑄, 𝐴, 𝑅). Here, 𝐼 is the image,

and 𝑂 is a sequence of objects identified in the image. A question 𝑄 = [𝑞0, . . . , 𝑞𝑘 ] is given, where

tokens are either textual words or references to objects in 𝑂. Each question contains a set of four

answers 𝐴 = {𝐴1, 𝐴2, 𝐴3, 𝐴4}, with exactly one correct answer 𝐴∗. Each response follows the

schema of the queries. Finally, there is a set of four rationales 𝑅 = {𝑅1, 𝑅2, 𝑅3, 𝑅4}, with exactly

one rationale 𝑅∗ identified as correct in supporting 𝐴∗.

Each of the objects in 𝑂 = [(𝑏1, 𝑙1), . . . , (𝑏 |𝑂 |, 𝑙 |𝑂 |)] is identified in the image 𝐼 by bounding

boxes 𝑏𝑖. The objects are also labeled with their classes with a text token 𝑙𝑖.

The 𝑄 → 𝐴 task is to choose 𝐴∗ given (𝐼, 𝑂, 𝑄, 𝐴). The 𝑄𝐴 → 𝑅 task is to choose 𝑅∗ given

(𝐼, 𝑂, 𝑄, 𝐴∗, 𝑅). Finally, the 𝑄 → 𝐴𝑅 task is a pipeline of the two, where a model must first

correctly choose 𝐴∗ from 𝐴, then correctly choose 𝑅∗ given 𝐴∗.

We adapt VCR to our problem formulation by converting each VCR example to four instances

for the 𝑄 → 𝐴 task, one per answer in 𝐴, and four instances for the 𝑄𝐴→ 𝑅 task, one per rationale

in 𝑅. We construct the text for the instances in the 𝑄 → 𝐴 task as

[[CLS], [𝑏0], 𝑞0, . . . , [SEP],

𝑎0, . . . , [SEP], 𝑙1, [𝑏1], . . . , 𝑙𝑝, [𝑏𝑝]]
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and in the 𝑄𝐴→ 𝑅 task as

[[CLS], [𝑏0], 𝑞0, . . . , [SEP], 𝑎∗0, . . . ,

𝑟0, . . . , [SEP], 𝑙1, [𝑏1], . . . , 𝑙𝑝, [𝑏𝑝]] .

where [CLS], [SEP] are special tokens for BERT.

Here, [𝑏0] is a bounding box referring to the entire input image. 𝑞0, . . . are all question tokens,

𝑎0, . . . answer tokens, 𝑎∗0, . . . answer tokens for the correct answer, and 𝑟0, . . . rationale tokens.

We append the first 𝑝 bounding boxes in 𝑂 with class labels to the end of the sequence (in our

experiments, we use 𝑝 = 8), and for objects referenced in 𝑄, 𝐴, 𝑅, we prepend the class label token

(i.e. [𝑏𝑖] becomes 𝑙𝑖, [𝑏𝑖]). We assign the binary label 𝑙 to every instance to represent whether the

answer or rationale choice is the correct one.

4.10 Experimental Results

4.11 VCR Task Performance

Our final results on the VCR task are shown in Table 4.2. Our Dual Encoder model worked

surprisingly well compared to [11], surpassing the baseline without making use of bounding boxes.

We also evaluate a Text-Only baseline, which is similar to the Dual Encoder model but ignores

the image. The ensemble of B2T2 models, pretrained on Conceptual Captions, obtained absolute

accuracy improvements of 8.9%, 9.8% and 13.1% compared to the published R2C baseline for the

𝑄 → 𝐴, 𝑄𝐴→ 𝑅, and 𝑄 → 𝐴𝑅 tasks respectively. At the time the B2T2 paper was written (May

22, 2019), both our single B2T2 and ensemble B2T2 models outperformed all other systems in the

VCR leaderboard.
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Table 4.2 Experimental results on VCR, incorporating those reported by [11]. The proposed B2T2
model and the B2T2 ensemble outperform published and unpublished/undocumented results found
on the VCR leaderboard at visualcommonsense.com/leaderboard as of May 22, 2019.

𝑄 → 𝐴 𝑄𝐴→ 𝑅 𝑄 → 𝐴𝑅

Model Val Test Val Test Val Test

Chance 25.0 25.0 25.0 25.0 6.2 6.2

Text-Only BERT (Zellers et al.) 53.8 53.9 64.1 64.5 34.8 35.0
R2C (Zellers et al.) 63.8 65.1 67.2 67.3 43.1 44.0

HCL HGP (unpub.) - 70.1 - 70.8 - 49.8
TNet (unpub.) - 70.9 - 70.6 - 50.4
B-VCR (unpub.) - 70.5 - 71.5 - 50.8
TNet 5-Ensemble (unpub.) - 72.7 - 72.6 - 53.0

Text-Only BERT (ours) 59.5 - 65.6 - 39.3 -
Dual Encoder (ours) 66.8 - 67.7 - 45.3 -
B2T2 (ours) 71.9 72.6 76.0 75.7 54.9 55.0
B2T2 5-Ensemble (ours) 73.2 74.0 77.1 77.1 56.6 57.1

Human 91.0 93.0 85.0

4.12 Ablations

To better understand the reason for our improvements, we performed a number of ablation

studies on our results, summarized in Table 4.3. We consider ablations in order of decreasing impact

on the VCR dev set 𝑄 → 𝐴 accuracy.

Use of Bounding Boxes. The bounding boxes considered by our model turn out to be the

most important factor in improving the accuracy of our model. Without any bounding boxes we

obtain 67.5% accuracy, just above the accuracy of the dual encoder. With 4 instead of 8 appended

bounding boxes we obtain 71% accuracy. With 8 bounding boxes, but no textual labels from the

bounding boxes in the text we obtain 70.9% accuracy, showing that our model can make use of

labels for detected objects. Example 1 in Table 4.4 shows an example that our models can only get

right if bounding box 5 is available.

Late Fusion vs. Early Fusion. The second most important architectural choice in our model is

to combine visual information at the level of context independent token embeddings, rather than

at the highest levels of the neural representation. If in the the full B2T2 model we add visual
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Table 4.3 Ablations for B2T2 on VCR dev. The Dual Encoder and the full B2T2 models are the
main models discussed in this work. All other models represent ablations from the full B2T2 model.

𝑄 → 𝐴

Dual Encoder 66.8

No bboxes 67.5
Late fusion 68.6
BERT-Base 69.0
ResNet-50 70.4

No bbox class labels 70.9
Fewer appended bboxes (𝑝 = 4) 71.0
No bbox position embeddings 71.6

Full B2T2 71.9

embeddings in the last layer of BERT rather than in the first, we lose 3.3% accuracy.

Effect of Textual Model Size. The original VCR work by [11] made use of BERT-base, while

we use BERT-large to initialize our models. To test how much of our improvements are simply due

to our model being larger, we retrained B2T2 models using BERT-base and found that we lose 2.9%

accuracy.

Effect of Visual Model Size. How important is the choice of the visual model in the performance

of B2T2? As further discussed in the error analysis section of this work, we suspect that B2T2 could

be significantly improved by extending the visual features to represent more than just objects, but

also activities, expressions and more. However it appears that even the size of the object detection

model is important. If we swap out ResNet-152 for ResNet-50, accuracy decreases by 1.5%.

Pretraining. We found that performance improvements from pretraining are quite small, around

0.4% accuracy, but initializing from a pretrained model heavily reduces variance of results. We

show this effect in Figure 4.6 over the grid of learning rates, random seeds, and training epochs

described in Section 4.8.

Position of Bounding Boxes We additionally investigated the effect of removing position

information from the model. The benefit of having bounding box positional embeddings is the

smallest of the ones we considered. A model trained without positional embeddings only loses 0.3%

accuracy compared to the full model.
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Figure 4.6: Boxplot of dev 𝑄 → 𝐴 accuracy on VCR with and without pretraining. Pretraining on
Conceptual Captions lowers variance when fine-tuning on VCR, from a grid search on multiple
random seeds, learning rates, and VCR training epochs.

4.13 Error Analysis

We picked some examples, shown in Table 4.4, to illustrate the kinds of correct and incorrect

choices that B2T2 is making, compared to our dual encoder and to a text only model.

In Example 1 we show an example of how our model picks the right answer only when it is able

to make use of all provided bounding boxes. Bounding box 5 in particular contains the clue that

allows the observer to know that the man in the picture might have just gone shopping.

In Examples 2 and 3, no specific bounding box appears to contain critical clues for answering the

question, but B2T2 outperforms models without access to the image or without access to bounding

boxes. It is possible that B2T2 might be gaining deeper understanding of a scene by combining

information from important regions of the image.

In Examples 4 and 5, we see failure cases of both the dual encoder and B2T2 compared to the

text only-model. Both these examples appear to point to a limitation in the amount of information

that the we are able to extract from the image. Indeed our vision model is trained on ImageNet, and

so it might be very good at recognizing objects, but might be unable to recognize human expressions

and activities. Our models could have correctly answered the question in Example 4 if they were
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Table 4.4 Examples of the 𝑄 → 𝐴 task from the VCR dev set. The correct answer for every
example is marked in bold. The answers picked by the text-only model, by the dual encoder and by
B2T2 are indicated in parenthesis.

Example 1
Q: What did [1] do before coming to this location?

A1: He took horse riding lessons. (text-only)
A2: He was just shopping. (B2T2)
A3: He found a skeleton.
A4: He came to buy medicine. (dual encoder)

Example 2
Q: How are [2, 4] related?
A1: [2, 4] are partners on the same mission.
A2: [2, 4] are a recently married gay couple.

(B2T2)
A3: They are likely acquaintances.
A4: They are siblings. (text-only, dual encoder)

Example 3
Q: What are [0] and the woman doing?
A1: Their husbands are doing something dumb.
A2: They are observing the results of an experiment.

(text-only, dual encoder)
A3: They are dancing. (B2T2)
A4: They are acting as nurses for the rescued peo-

ple.

Example 4
Q: How is [2] feeling?
A1: [2] is feeling shocked. (B2T2, dual encoder)
A2: [0] is feeling anxious.
A3: [2] is not feeling well.
A4: [2] is feeling joy and amusement. (text-only)

Example 5
Q: Why is [1] on the floor talking to [0]?
A1: The man on the floor was assaulting [1].
A2: He is asking her to help him stand up. (B2T2,

dual encoder)
A3: [1] just dropped all his books on the floor.
A4: [1] looks like he is telling [0] a secret. (text-

only)
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able to recognize smiles. Similarly our models could have ruled out the incorrect answer they picked

for the question in Example 5 if they were able to see that both people in the picture are sitting

down and are not moving.

4.14 Related Work

Our B2T2 model is similar to the Bottom-Up Top-Down attention model [67] in how bounding

boxes generated at pre-processing time are attended to by the VQA model. “Bottom-Up” refers to

the idea of attending from the text to the bounding boxes of objects detected in the image, while

“Top-Down” refers to the idea of attending to regions constructed as a regular grid over the image.

The Bottom-Up Top-Down model however reduces the text to a fixed length vector representation

before attending to image regions, while B2T2 instead treats image regions as special visual tokens

mixed in the text. In this sense, Bottom-Up Top-Down model is a late fusion model, while B2T2

is early fusion. The Neuro-Symbolic Concept Learner [68] also uses bounding boxes to learn

visually grounded concepts through language. The Neuro-Symbolic Concept Learner however

relies on a semantic parser to intepret language, while B2T2 uses a Transformer to construct a joint

representation of textual tokens and visual tokens. Another recently proposed model for VQA is

MAC [69]. As presented, MAC does not make use of bounding boxes, which makes it a Top-Down

model in the nomenclature of [67]. MAC also reduces the textual information to a vector of fixed

length. However MAC makes use of a new neural architecture designed to perform an explicit

multi-step reasoning process and is reported to perform better than [67] on the GQA dataset [61].

After the submission of the B2T2 paper, several new papers were published with excellent results on

VCR, in some cases exceeding the performance of our system. In particular we mention ViLBERT

[70], VL-BERT [71], Unicoder-VL [72], and VisualBERT [73]. VCR is only one of several recent

datasets pertaining to the visual question answering task. VQA [59, 74, 60] contains photos and

abstract scenes with questions and several ground-truth answers for each, but the questions are less

complex than VCR’s. CLEVR [75] is a visual QA task with compositional language, but the scenes

and language are synthetic. GQA [61] uses real scenes from Visual Genome, but the language is
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artificially generated. Because VCR has more complex natural language than other datasets, we

consider it the best evaluation of a model like B2T2, which has a powerful language understanding

component.

4.15 Conclusion

In this chapter we contrasted different ways of combining text and images when powerful text

and vision models are available. We picked BERT-Large [3] as our text model, ResNet-152 [66]

as our vision model, and the VCR dataset [11] as our main benchmark. The early-fusion B2T2

model, which encodes sentences along with links to bounding boxes around identified objects in

the images, produced the best available results in the visual question answering tasks. A control

model, implementing late fusion (but the same otherwise), performed substantively worse. Thus,

grounding words in the visual context should be done early rather than late.

We demonstrated competitive results with a Dual Encoder model, matching state-of-the-art

on the VCR dataset even when textual references to image bounding boxes are ignored. We then

showed that our Dual Encoder model can be substantially improved by deeply incorporating in the

textual embeddings visual features extracted from the entire image and from bounding boxes. We

finally showed that pretraining our deep model on Conceptual Captions with a Mask-LM loss yields

a small additional improvement as well as much more stable fine-tuning results.
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Chapter 5: QA Corpora Generation with Roundtrip Consistency

In this chapter we report another first author contribution [76], where we look at a specific way

of pretraining question answering models to obtain better logical consistency, namely roundtrip

consistency. The proposed method, illustrated in Table 5.1), consists of generating synthetic question

answering corpora with a question generation model, and then in filtering generated questions by

verifying that a question answering model would return the same answer that was used to generate

the question. By pretraining on the resulting corpora we obtain significant improvements on

SQuAD2 [14] and NQ, establishing a new state-of-the-art on the latter. We also describe a more

powerful variant that does full sequence-to-sequence pretraining for question generation, obtaining

exact match and F1 at less than 0.1% and 0.4% from human performance on SQuAD2.

5.1 Overview

Automatically generating tasks from vast amounts of unlabeled text has been one of the key ideas

behind the recent dramatic advancements in question answering and natural language processing.

BERT [3] in particular relies on two such tasks: masked language modeling, i.e. masking some

words from each passage and training the model to predict them back, and next sentence prediction,

i.e. classifying a sentence as the next one to appear after the current text or not. It seems plausible

however that other auxiliary tasks might exist that are better suited for QA, but can still be constructed

from widely available natural text. It also seems intuitive that such auxiliary tasks will be more

helpful the closer they are to the particular QA task we are attempting to solve. Based on this

intuition we construct auxiliary tasks for QA, generating millions of synthetic question-answer-

context triples from unlabeled passages of text, pretraining a model on these examples, and finally

finetuning on a particular labeled dataset. Our auxiliary tasks are illustrated in Table 5.1.
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Table 5.1 Example of how synthetic question-answer pairs are generated. The model’s predicted
answer (𝐴′) matches the original answer the question was generated from, so the example is kept.

Input (C)
... in 1903, boston participated in the
first modern world series, going up
against the pittsburgh pirates ...

(1) 𝑪 → 𝑨 1903
(2) 𝑪, 𝑨 → 𝑸 when did the red sox first go to the

world series
(3) 𝑪, 𝑸 → 𝑨′ 1903

(4) 𝑨
?
= 𝑨′ Yes

For a given passage 𝐶, we sample an extractive short answer 𝐴 (Step (1) in Table 5.1). In Step

(2), we generate a question 𝑄 conditioned on 𝐴 and 𝐶, then (Step (3)) predict the extractive answer

𝐴′ conditioned on 𝑄 and 𝐶. If 𝐴 and 𝐴′ match we finally emit (𝐶,𝑄, 𝐴) as a new synthetic training

example (Step (4)). We train a separate model on labeled QA data for each of the first three steps,

and then apply the models in sequence on a large number of unlabeled text passages. We show

that pretraining on synthetic data generated through this procedure provides us with significant

improvements on two challenging datasets, SQuAD2 [14] and NQ [77], achieving a new state of

the art on the latter.

5.2 Model

Given a dataset of contexts, questions, and answers: {(𝑐(𝑖) , 𝑞 (𝑖) , 𝑎 (𝑖)) : 𝑖 = 1, . . . , 𝑁}, we train

three models: (1) answer extraction: 𝑝(𝑎 |𝑐; 𝜃𝐴), (2) question generation: 𝑝(𝑞 |𝑐, 𝑎; 𝜃𝑄), and (3)

question answering: 𝑝(𝑎 |𝑐, 𝑞; 𝜃𝐴′).

We use BERT [3]1 to model each of these distributions. Inputs to each of these models are

fixed length sequences of wordpieces, listing the tokenized question (if one was available) followed

by the context 𝑐. The answer extraction model is detailed in §5.2.1 and two variants of question

generation models in §5.2.2 and §5.2.3. The question answering model follows [8].

1Some experiments use a variant of BERT that masks out whole words at training time, similar to [78]. See
https://github.com/google-research/bert for both the original and whole word masked versions
of BERT.
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5.2.1 Question (Un)Conditional Extractive QA

We define a question-unconditional extractive answer model 𝑝(𝑎 |𝑐; 𝜃𝐴) and a question-conditional

extractive answer model 𝑝(𝑎 |𝑞, 𝑐; 𝜃𝐴′) as follows:

𝑝(𝑎 |𝑐; 𝜃𝐴) =
𝑒 𝑓𝐽 (𝑎,𝑐;𝜃𝐴)∑
𝑎′′ 𝑒

𝑓𝐽 (𝑎′′,𝑐;𝜃𝐴)

𝑝(𝑎 |𝑐, 𝑞; 𝜃𝐴′) =
𝑒 𝑓𝐼 (𝑎,𝑐,𝑞;𝜃𝐴′ )∑
𝑎′′ 𝑒

𝑓𝐼 (𝑎′′,𝑐,𝑞;𝜃𝐴′ )

where 𝑎, 𝑎′′ are defined to be token spans over 𝑐. For 𝑝(𝑎 |𝑐; 𝜃𝐴), 𝑎 and 𝑎′′ are constrained to be of

length up to 𝐿𝐴, set to 32 word piece tokens. The key difference between the two expressions is

that 𝑓𝐼 scores the start and the end of each span independently, while 𝑓𝐽 scores them jointly.

Specifically we define 𝑓𝐽 : Rℎ → R and 𝑓𝐼 : Rℎ → R to be transformations of the final token

representations computed by a BERT model:

𝑓𝐽 (𝑎, 𝑐; 𝜃𝐴) =

MLP𝐽 (CONCAT(BERT(𝑐) [𝑠],BERT(𝑐) [𝑒]))

𝑓𝐼 (𝑎, 𝑞, 𝑐; 𝜃𝐴′)) =

AFF𝐼 (BERT(𝑞, 𝑐) [𝑠]) + AFF𝐼 (BERT(𝑞, 𝑐) [𝑒]).

Here ℎ is the hidden representation dimension, (𝑠, 𝑒) = 𝑎 is the answer span, BERT(𝑡) [𝑖] is the

BERT representation of the 𝑖’th token in token sequence 𝑡. MLP𝐽 is a multi-layer perceptron with a

single hidden layer, and AFF𝐼 is an affine transformation.

We found it was critical to model span start and end points jointly in 𝑝(𝑎 |𝑐; 𝜃𝐴) because, when

the question is not given, there are usually multiple acceptable answers for a given context, so that

the start point of an answer span cannot be determined separately from the end point.
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5.2.2 Question Generation: Fine-tuning Only

Text generation allows for a variety of choices in model architecture and training data. In

this section we opt for a simple adaptation of the public BERT model for text generation. This

adaptation does not require any additional pretraining and no extra parameters need to be trained

from scratch at finetuning time. This question generation system can be reproduced by simply

finetuning a publicly available pretrained BERT model on the extractive subsets of datasets like

SQuAD2 and NQ.

Fine-tuning We define the 𝑝(𝑞 |𝑐, 𝑎; 𝜃𝑄) model as a left-to-right language model

𝑝(𝑞 |𝑎, 𝑐; 𝜃𝑄) =
𝐿𝑄∏
𝑖=1

𝑝(𝑞𝑖 |𝑞1, . . . , 𝑞𝑖−1, 𝑎, 𝑐; 𝜃𝑄)

=

𝐿𝑄∏
𝑖=1

𝑒 𝑓𝑄 (𝑞1,...,𝑞𝑖 ,𝑎,𝑐;𝜃𝑄)∑
𝑞′
𝑖
𝑒 𝑓𝑄 (𝑞1,...,𝑞

′
𝑖
,𝑎,𝑐;𝜃𝑄)

,

where 𝑞 = (𝑞1, . . . , 𝑞𝐿𝑄 ) is the sequence of question tokens and 𝐿𝑄 is a predetermined maximum

question length, but, unlike the more usual encoder-decoder approach, we compute 𝑓𝑄 using the

single encoder stack from the BERT model:

𝑓𝑄 (𝑞1, . . . , 𝑞𝑖, 𝑎, 𝑐; 𝜃𝑄) =

BERT(𝑞1, . . . , 𝑞𝑖−1, 𝑎, 𝑐) [𝑖 − 1] ·𝑊⊺BERT,

where 𝑊BERT is the word piece embedding matrix in BERT. All parameters of BERT including

𝑊BERT are finetuned. In the context of question generation, the input answer is encoded by

introducing a new token type id for the tokens in the extractive answer span, e.g. the question tokens

being generated have type 0 and the context tokens have type 1, except for the ones in the answer

span that have type 2. We always pad or truncate the question being input to BERT to a constant

length 𝐿𝑄 to avoid giving the model information about the length of the question we want it to

generate.
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This model can be trained efficiently by using an attention mask that forces to zero all the

attention weights from 𝑐 to 𝑞 and from 𝑞𝑖 to 𝑞𝑖+1 . . . 𝑞𝐿𝑄 for all 𝑖.

Question Generation At inference time we generate questions through iterative greedy decoding,

by computing argmax𝑞𝑖 𝑓𝑄 (𝑞1, . . . , 𝑞𝑖, 𝑎, 𝑐) for 𝑖 = 1, . . . , 𝐿𝑄 . Question-answer pairs are kept only

if they satisfy roundtrip consistency.

5.2.3 Question Generation: Full Pretraining

The prior section addressed a restricted setting in which a BERT model was fine-tuned, without

any further changes. In this section, we describe an alternative approach for question generation

that fully pretrains and fine-tunes a sequence-to-sequence generation model.

Section 5.2.2 used only an encoder for question generation. In this section, we use a full

sequence-to-sequence Transformer (both encoder and decoder). The encoder is trained identically

(BERT pretraining, Wikipedia data), while the decoder is trained to output the next sentence. Fine-

tuning is done identically as in Section 5.2.2, where the input is (𝐶, 𝐴) and the output is 𝑄 from

tuples from a supervised question-answering dataset (e.g., SQuAD). To get examples of synthetic

(𝐶,𝑄, 𝐴) triples, we sample from the decoder with both beam search and Monte Carlo search. As

before, we use roundtrip consistency to keep only the high precision triples.

5.3 Experiments

5.3.1 Experimental Setup

We considered two datasets in this work: SQuAD2 [14] and the Natural Questions (NQ) [77].

SQuAD2 is a dataset of QA examples of questions with answers formulated and answered by

human annotators about Wikipedia passages. NQ is a dataset of Google queries with answers from

Wikipedia pages provided by human annotators. We used the full text from the training set of NQ

(1B words) as a source of unlabeled data.

In our fine-tuning only experiments (Section 5.2.2) we trained two triples of models
(
𝜃𝐴, 𝜃𝑄 , 𝜃𝐴′

)
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Table 5.2 Our results on SQuAD2. For our fine-tuning only setting, we compare a BERT baseline
(BERT single model - Google AI Language on the SQuAD2 leaderboard) to similar models
pretrained on our synthetic SQuAD2-style corpus and on a corpus containing both SQuAD2- and
NQ-style data. For the full pretraining setting, we report our best single model and ensemble results.

Dev Test
EM F1 EM F1

Fine-tuning Only
BERT-Large (Original) 78.7 81.9 80.0 83.1
+ 3M synth SQuAD2 80.1 82.8 - -
+ 4M synth NQ 81.2 84.0 82.0 84.8

Full Pretraining
BERT (Whole Word Masking)2 82.6 85.2 - -
+ 50M synth SQuAD2 85.1 87.9 85.2 87.7
+ ensemble 86.0 88.6 86.7 89.1

Human - - 86.8 89.5

Table 5.3 Our results on NQ, compared to the previous best system and to the performance of a
human annotator and of an ensemble of human annotators. BERTjoint is the model described in [8].

Long Answer Dev Long Answer Test Short Answer Dev Short Answer Test
P R F1 P R F1 P R F1 P R F1

BERT-joint 61.3 68.4 64.7 64.1 68.3 66.2 59.5 47.3 52.7 63.8 44.0 52.1
+ 4M synth NQ 62.3 70.0 65.9 65.2 68.4 66.8 60.7 50.4 55.1 62.1 47.7 53.9

Single Human 80.4 67.6 73.4 - - - 63.4 52.6 57.5 - - -
Super-annotator 90.0 84.6 87.2 - - - 79.1 72.6 75.7 - - -

Table 5.4 Comparison of question-answer pairs generated by NQ and SQuAD2 models for the same
passage of text.

Question Answer

NQ what was the population of chicago in 1857? over 90,000
SQuAD2 what was the weight of the brigg’s hotel? 22,000 tons

NQ where is the death of the virgin located? louvre
SQuAD2 what person replaced the painting? carlo saraceni

NQ when did rick and morty get released? 2012
SQuAD2 what executive suggested that rick be a grandfa-

ther?
nick weidenfeld
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Figure 5.1: Learning curves for pretraining using synthetic question-answering data (fine-tuning
only setting). “no-RT” refers to omitting the roundtrip consistency check. Best exact match is
reported after fine-tuning on SQuAD2. Performance improves with the amount of synthetic data.
For a fixed amount of synthetic data, having a more diverse source (NQ+SQuAD vs. just SQuAD)
yields higher accuracies. Roundtrip filtering gives further improvements.

on the extractive subsets of SQuAD2 and NQ. We extracted 8M unlabeled windows of 512 tokens

from the NQ training set. For each unlabeled window we generated one example from the SQuAD2-

trained models and one example from the NQ-trained models. For 𝐴 we picked an answer uniformly

from the top 10 extractive answers according to 𝑝(𝑎 |𝑐; 𝜃𝐴). For 𝐴′ we picked the best extractive

answer according to 𝑝(𝑎 |𝑐, 𝑞; 𝜃𝐴′). Filtering for roundtrip consistency gave us 2.4M and 3.2M

synthetic positive instances from SQuAD2- and NQ-trained models respectively. We then added

synthetic unanswerable instances by taking the question generated from a window and associating

it with a non-overlapping window from the same Wikipedia page. We then sampled negatives to

obtain a total of 3M and 4M synthetic training instances for SQuAD2 and NQ respectively. We

trained models analogous to [8] initializing from the public BERT model, with a batch size of 128

examples for one epoch on each of the two sets of synthetic examples and on the union of the two,

with a learning rate of 2 · 10−5 and no learning rate decay. We then fine-tuned the the resulting

models on SQuAD2 and NQ.

In our full pretraining experiments (Section 5.2.3) we only trained
(
𝜃𝐴, 𝜃𝑄 , 𝜃𝐴′

)
on SQuAD2.

2https://github.com/google-research/bert
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However, we pretrained our question generation model on all of the BERT pretraining data, gen-

erating the next sentence left-to-right. We created a synthetic, roundtrip filtered corpus with 50M

examples. We then fine-tuned the model on SQuAD2 as previously described. We experimented

with both the single model setting and an ensemble of 6 models.

5.3.2 Results

The final results are shown in Tables 5.2 and 5.3. We found that pretraining on SQuAD2 and NQ

synthetic data increases the performance of the fine-tuned model by a significant margin. On the NQ

short answer task, we reduce by 50% the gap between model performance and the performance of a

single annotator. We additionally found that pretraining on the union of synthetic SQuAD2 and NQ

data is very beneficial on the SQuAD2 task, but does not improve NQ results. The full pretraining

approach with ensembling obtains the highest EM and F1 listed in Table 5.2. This result is only

0.1 − 0.4% from human performance and is the third best model on the SQuAD2 leaderboard as of

this writing (5/31/19).

Roundtrip Filtering Roundtrip filtering appears to be consistently beneficial. As shown in

Figure 5.1, models pretrained on roundtrip consistent data outperform their counterparts pretrained

without filtering. From manual inspection, of 46 (𝐶,𝑄, 𝐴) triples that were roundtrip consistent

39% were correct, while of 44 triples that were discarded only 16% were correct.

Data Source Generated question-answer pairs are illustrative of the differences in the style of

questions between SQuAD2 and NQ. We show a few examples in Table 5.4, where the same passage

is used to create a SQuAD2-style and an NQ-style question-answer pair. The SQuAD2 models

seem better at creating questions that directly query a specific property of an entity expressed in

the text. The NQ models seem instead to attempt to create questions around popular themes, like

famous works of art or TV shows, and then extract the answer by combining information from the

entire passage.
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5.4 Conclusion

This chapter presented a novel method to generate synthetic QA instances and demonstrated

improvements from this data on SQuAD2 and on NQ. We additionally proposed a possible direction

for formal grounding of this method, which we hope to develop more thoroughly in future work.
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Chapter 6: QED: A Framework and Dataset for Explanations in Question

Answering

A question answering system that, in addition to providing an answer, provides an explanation

of the reasoning that leads to that answer, has potential advantages in terms of debuggability,

extensibility and trust. To this end, we propose QED, a linguistically informed, extensible framework

for explanations in question answering. A QED explanation specifies the relationship between a

question and answer according to formal semantic notions such as referential equality, sentencehood,

and entailment. We describe and publicly release an expert-annotated dataset of QED explanations

built upon a subset of the Google Natural Questions dataset, and report baseline models on two tasks

– post-hoc explanation generation given an answer, and joint question answering and explanation

generation. In the joint setting, a promising result suggests that training on a relatively small amount

of QED data can improve question answering. In addition to describing the formal, language-

theoretic motivations for the QED approach, we describe a large user study showing that the

presence of QED explanations significantly improves the ability of untrained raters to spot errors

made by a strong neural QA baseline.

6.1 Introduction

Question Answering (QA) systems can enable efficient access to the vast amount of information

that exists as text [20, 7, 79, 80, i.a.]. Modern neural systems have made tremendous progress in

QA accuracy in recent years [81]. However, they generally give no explanation or justification of

how they arrive at an answer to a question. Models that, in addition to providing an answer, can

explain their reasoning may have significant benefits pertaining to trust and debuggability [82, 83].

Critical questions then, are: what constitutes an explanation in question answering? and how can
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Question: who wrote the film howl’s moving castle?
Passage: Howl’s Moving Castle is a 2004 Japanese
animated fantasy film written and directed by Hayao
Miyazaki. It is based on the novel of the same name,
which was written by Diana Wynne Jones. The film
was produced by Toshio Suzuki.
Answer: Hayao Miyazaki

(1) Sentence Selection
Howl’s Moving Castle is a 2004 Japanese animated
fantasy film written and directed by Hayao Miyazaki.
(2) Referential Equality
the film howl’s moving castle = Howl’s Moving Castle
(3) Entailment
X is a 2004 Japanese animated fantasy film written and
directed by ANSWER.; ⊢ ANSWER wrote X.

Figure 6.1: QED explanations decompose the question-passage relationship in terms of referential
equality and predicate entailment.

we enable models to provide such explanations? In an effort to make progress on these questions, in

this paper we make the following contributions: (1) we introduce QED1, a linguistically grounded

definition of QA explanations; and (2) we describe a corpus of QED annotations based on the

Natural Questions [84]. The QED corpus has been released publicly.2

Figure 6.1 shows a QED example. Given a question and a passage, QED represents an expla-

nation as a combination of discrete, human-interpretable steps: (1) identification of a sentence

implying an answer to the question, (2) identification of noun phrases in both the question and

answering sentence that refer to the same thing, and (3) confirmation that the predicate in the

sentence entails the predicate in the question once referential equalities are abstracted away.

This choice of explanation makes use of core semantic relations—referential equality and

entailment—and thus has well-understood formal properties. (See Section 6.2 for further discussion.)

In addition, we found that this way of decomposing explanations has high coverage (77% on the

Natural Questions corpus3). Since QED decomposes the QA process into distinct subproblems, we

also believe that it should enable research directions aimed at extending or improving upon extant

QA systems.

1QED stands for the Latin “quod erat demonstrandum” or “that which was to be shown”.
2https://github.com/google-research-datasets/QED.
3Instances with annotated short answers, omitting table passages.

66

https://github.com/google-research-datasets/QED


In what follows, after contextualizing the present work in the broader discussion on explain-

ability, we present a formal definition of QED explanations. We then describe the dataset of QED

annotations (7638/1353 train/dev examples), including discussion of the distribution of linguistic

phenomena exhibited in the data. We move to propose four potential tasks, of varying complexity,

related to the QED framework, and use the QED annotations to train and evaluate baseline models

on two of these. Additionally, we describe a rater study which shows how the presence of QED

explanations can help users identify errors made by an automated QA system.

6.2 Motivation: The Need for Explanations in Question Answering

We take as our departure point the following passage from [85] concerning explainable AI:

Explainability is important in situations where human operators work alongside au-

tonomous and semi-autonomous systems because it can help build rapport, confidence,

and understanding between the agent and its operator. In the event that an autonomous

system fails to complete a task or completes it in an unexpected way, explanations help

the human collaborator understand the circumstances that led to the behavior, which

also allows the operator to make an informed decision on how to address the behavior.

This quote refers to AI and ML systems in general, but is highly relevant to QA systems.

Explanations can help users understand and trust a QA system, and can help them work in tandem

with a QA system to fulfill their information needs. Explanations can also help system builders

understand and debug QA systems and also t extend them.

QED makes a particular choice about the form of explanations for QA. In particular, it decom-

poses the question-answer relationship according to known semantic and syntactic categories –

sentence, reference (and referential equality), predicate, and entailment. The explanations provided

in QED are discrete structured objects, as opposed, for example, to “heat map"-style explanations

(attention distributions, or other real-valued, word-level feature importance measures) [86].

One major goal in developing QED is to define models which provide faithful explanations; that
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is, explanations that in some sense truly reflect the underlying computation or reasoning performed

by a question-answering model. (See Section 6.7 for more discussion.) Another major goal, which

is closely related to faithfulness, is to develop models that have a sound basis in concepts from

cognitive science and linguistics and are thus closer to human reasoning. For example reference, a

core component of QED, is fundamental to semantics and cognition [87, 88, 89].

6.3 Annotation Definition

We now describe the form of QED annotations. Section 6.3.1 gives an overview of the annotation

process. Section 6.3.2 then gives a formal definition, which is extended in Section 6.3.3.

6.3.1 An Overview of the Approach

We will use the following example to illustrate the approach:

Question: how many seats in university of michigan stadium

Passage: Michigan Stadium, nicknamed “The Big House”, is the football stadium for the

University of Michigan in Ann Arbor, Michigan. It is the largest stadium in the United

States and the second largest stadium in the world. Its official capacity is 107,601.
The annotator is presented with a question/passage pair. Annotation then proceeds in the

following four steps:

(1) Single Sentence Selection. The annotator identifies a single sentence in the passage that entails

an answer to the question assuming that co-reference and bridging anaphora (see Section 6.3.3)

have been resolved in the sentence.4

In the above example, the following sentence entails an answer to the question, and would be

selected by the annotator:

Its official capacity is 107,601.

4If it is not possible to find a sentence that satisfies these properties—typically because the answer requires inference
beyond co-reference/ bridging that involves multiple sentences—the annotator marks the example as not possible. See
Section 6.4.
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This follows because given the passage context, “Its” refers to the same thing as the NP

“university of michigan stadium” in the question, and the predicate in the sentence, “X’s official

capacity is 107,601”, entails the predicate in the question “how many seats in X”.

(2) Answer Selection. The annotator highlights a short answer span (or spans) in the answer

sentence. In the above example the annotator would mark the following (answer shown with

[=A...]):

Its official capacity is [=A 107,601].

In addition if the answer appears in the sentence in the form of a pronoun, bridged reference

or underspecified NP, the annotator resolves the underlying co-reference within the passage (see

Section 6.3.3 for more discussion).

(3) Identification of Question-Sentence Noun Phrase Equalities. The annotator marks referen-

tially equivalent noun phrases, or noun phrases that refer to the same thing, in the question and the

answer sentence. This includes reference not only to individuals and other proper nouns, but also to

generic concepts.

In our example the annotator would mark the following two noun-phrases (marked with the

[=1 ...] annotations) as referentially equivalent:

how many seats in [=1 university of michigan stadium]

[=1 Its] official capacity is [=A 107,601]

(4) Extraction of an Entailment Pattern. As a final, automatic step, an entailment pattern can be

extracted from the annotated example by abstracting over referentially equivalent noun phrases, and

the answer. In the above example the entailment pattern would be as follows:

how many seats in X

X’s official capacity is ANSWER
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6.3.2 A Formal Definition

An annotator is presented with a question 𝑞 that consists of 𝑚 tokens 𝑞1 . . . 𝑞𝑚, along with a

passage 𝑐 consisting of 𝑛 tokens 𝑐1 . . . 𝑐𝑛.

The QED annotation is a triple ⟨𝑠, 𝑒, 𝑎⟩ where:

• 𝑠 is a sentence within the context 𝑐. Specifically 𝑠 is a pair 𝑠0, 𝑠1 indicating that the sentence

spans words 𝑐𝑠0 . . . 𝑐𝑠1 inclusive.

• 𝑒 is a sequence of 0 or more “referential equality annotations”, 𝑒1 . . . 𝑒 |𝑒 |. Each member of 𝑒

specifies that some noun phrase within the question refers to the same item in the world as

some noun phrase within the sentence 𝑠.

• 𝑎 is one or more answer annotations 𝑎1 . . . 𝑎 |𝑎 |.

We now describe the form of the 𝑒 and 𝑎 annotations. As a preliminary step, given the paragraph

𝑐 and sentence 𝑠, we use S to refer to the set of all phrases within 𝑠. Our initial definition of S is

S = {(𝑖, 𝑗) : 𝑠0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑠1}

We also define the set of question phrases Q and passage phrases C to be

Q = {(𝑖, 𝑗) : 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑚}

C = {(𝑖, 𝑗) : 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛}

We can then give the following definitions:

Definition 1 Each referential equality annotation 𝑒𝑘 for 𝑘 = 1 . . . |𝑒 | is a pair (𝜙𝑘 , 𝜋𝑘 ) ∈ Q × S,

specifying that the phrase 𝜙𝑘 in the query refers to the same thing in the world as the phrase 𝜋𝑘

within 𝑠.
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Definition 2 Each answer annotation 𝑎𝑘 for 𝑘 = 1 . . . |𝑎 | is a pair (𝜋𝑘 , 𝜉𝑘 ) ∈ S × C specifying

that the answer is given by phrase 𝜋𝑘 , and the full string corresponding to 𝜋𝑘 after co-reference is

resolved is the phrase 𝜉𝑘 . If no co-reference resolution is required then 𝜋𝑘 = 𝜉𝑘 .

To illustrate the treatment of co-reference resolution within answers, consider the following:

Question: who won wimbledon in 2019

Passage: Simona Halep is a female tennis

player. She won Wimbledon in 2019.

In this case the single sentence She won Wimbledon in 2019 would be selected by the annotator

in step 1, as once co-reference is resolved, this entails the answer to the question. The QED

annotation would be as follows

who won [=1 wimbledon] in [=2 2019]

[=A She] won [=1 Wimbledon] in [=2 2019]

However, the answer "She" is not sufficient, as it involves an unresolved anaphor. Because of

this, the annotator would mark the fact that "She" refers to "Simona Halep" earlier in the passage.

In this case the answer is a pair (𝜋, 𝜉) where 𝜋 corresponds to "She" within the sentence, and 𝜉

corresponds to the earlier phrase "Simona Halep".

6.3.3 Extending Annotations to Include Bridging

Bridging anaphora [90] are frequently encountered in the QA passages in our data, and in

Wikipedia more broadly. This section describes an extension to include annotations of bridging

anaphora. Consider the following:
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Question: who won america’s got talent season 11

Passage: The 11th season of America’s Got Talent, an American talent show competition,

began broadcasting in the United States during 2016. Grace VanderWaal was announced

as the winner on September 14, 2016.

It is clear from context surrounding the sentence "Grace VanderWaal was announced as the

winner on September 14, 2016" that the noun phrase "the winner" refers to "the winner of America’s

Got Talent Season 11", and hence the sentence provides an answer to the question. It is helpful

to imagine that there is an implicit prepositional phrase "of America’s Got Talent Season 11"

modifying "the winner".

Another motivating example is the following:

Question: who sang the national anthem at the first game of 2017 world series

Passage: Game 1 of the 2017 World Series: The ceremonial first pitch was thrown out

by members of former Dodger Jackie Robinson’s family, including his widow Rachel.

The game marked the 45th anniversary of Robinson’s death. Keith Williams Jr., a gospel

singer, performed “The Star-Spangled Banner”, the national anthem.

In this case it is clear that the sentence "Keith Williams Jr., a gospel singer, performed “The

Star-Spangled Banner”, the national anthem" is referring to a performance at Game 1 of the 2017

World Series, and hence that this sentence provides an answer to the question. In some sense there

is an implicit prepositional phrase "at the first game of 2017 world series" modifying the entire

sentence.

Recall that the set of phrases within the sentence 𝑠 was previously defined as S = {(𝑖, 𝑗) : 𝑠0 ≤

𝑖 ≤ 𝑗 ≤ 𝑠1}. We extend QED by redefining S to include implicit phrases introduced in the form of

implicit prepositional phrases, as in the "winner [of ...]" and "[at the first game ...]" examples above.

The modified definition of S includes all phrases of the following form: (1) Any pair (𝑖, 𝑗) such that

𝑠0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑠1 indicating the subsequence of words 𝑐𝑖 . . . 𝑐 𝑗 within the sentence. (2) Any triple

(𝑖, 𝑗 , 𝑝) such that 𝑠0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑠1 and 𝑝 is a preposition, indicating the implicit noun phrase in the
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Question: where did they film and then there were
none
Wikipedia page: And_Then_There_Were_None
Passage: Filming began in July 2015. Cornwall was
used for many of the harbour and beach scenes, includ-
ing Holywell Bay, Kynance Cove, and Mullion Cove.
Harefield House in Hillingdon, outside London, served
as the location for the island mansion. Production de-
signer Sophie Beccher decorated the house in the style
of 1930s designers like Syrie Maugham and Elsie de
Wolfe. The below stairs and kitchen scenes were shot at
Wrotham Park in Hertfordshire. Railway scenes were
filmed at the South Devon Railway between Totnes and
Buckfastleigh.

Figure 6.2: An example outside of QED’s current scope, since multiple passage sentences contribute
an answer.

sentence that modifies the phrase 𝑐𝑖 . . . 𝑐 𝑗 through the preposition 𝑝. (3) Any pair (NULL, 𝑝) such

that 𝑝 is a preposition, indicating the implicit noun phrase modifying the entire sentence 𝑐𝑠0 . . . 𝑐𝑠1

through the preposition 𝑝.

6.4 QED Annotations for the Natural Questions

We now describe QED annotations over the Natural Questions (NQ) dataset [84]. We first

describe the annotation process; then describe agreement statistics; finally we describe statistics of

types of referential expression.

We focus on questions in the NQ corpus that have both a passage and short answer marked

by the NQ annotator. We exclude examples where the passage is a table. A QED annotator was

presented with a question/paragraph pair. In a first step they determine whether: (1) there is a valid

short answer within the paragraph (note that they can overrule the original NQ judgment), and there

is a valid QED explanation for that answer; (2) there is a valid short answer within the paragraph,

but there is no valid QED explanation for that answer. (See Figure 6.2 for a representative example

in this category, in which multiple sentences are required to justify an answer, thus violating the

single-sentence assumption of QED); (3) there is no valid short answer within the passage (hence

the original NQ annotation is judged to be an error). 10% of all examples fell into category (3). Of
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Table 6.1 Referential link count frequency distribution in a random sample of 1000 instances.

Referential Link Count
0 1 2 3

Instances 54 649 294 6

the remaining 90% of examples which contained a correct short answer, 77% fell into category (1),

and 23% fell into category (2).

Three QED annotators5 annotated 7638 training examples (5154/1702/782 in categories 1/2/3

respectively), and 1353 dev examples (1019/183/151 in categories 1/2/3).

6.4.1 Agreement Statistics

Each of the three annotators marked a common set of 100 examples drawn from the development

set. Average accuracy of classification of instances was 73.9.%6 Average pairwise F1 on mention

identification/mention alignment, conditioned on both annotators labeling instances as amenable to

QED, was 88.4 and 84.1 respectively.

6.4.2 Types of Referential Expressions

The referential equality annotations are a major component of QED. Figure 6.3 shows some full

QED examples from the corpus, and Figure 6.4 shows some example equalities from the corpus. In

this section, in an effort to gain insight about the types of phenomena present, we describe statistics

on types of referential equalities. We subcategorize referring expressions into the following types:7

Proper Names Examples are “How I met your Mother” or “the cbs television sitcom how i met

your mother”.

5Three of the authors of this paper.
6One annotator was more conservative interpreting the single sentence assumption. Pairwise accuracy breakdown

was thus 81.2/72.3/68.1%. Given the high number of “debatable" instances reported in the Natural Questions paper, this
divergence is however unsurprising.

7For formal discussion, see [91, 92, 93, 94] among others.
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Pronominal reference
Question: how many blocks in the great pyramid of giza1

Wikipedia page: Great_Pyramid_of_Giza
Passage: Based on these estimates, building the pyramid in 20 years would involve installing approximately 800
tonnes of stone every day. Additionally, since it1 consists of an estimated 2.3 millionA blocks, completing the
building in 20 years would involve moving an average of more than 12 of the blocks into place each hour, day and
night. The first precision measurements of the pyramid were made by Egyptologist Sir Flinders Petrie in 1880–82
and published as The Pyramids and Temples of Gizeh. Almost all reports are based on his measurements[...]

Inexact match
Question: where does the term sixes and sevens1 originate
Wikipedia page: At_sixes_and_sevens
Passage: An ancient dispute between the Merchant Taylors and Skinners livery companiesA is the probable origin
of the phrase1 . The two trade associations, both founded in the same year (1327), argued over sixth place in
the order of precedence. In 1484, after more than a century and a half of bickering, the Lord Mayor of London Sir
Robert Billesden ruled that at the feast of Corpus Christi, the companies would swap between sixth and seventh
place and feast in each other’s halls[...]

Answer bridging/coref
Question: what is whitney houston’s mother1 ’s name
Wikipedia page: Cissy_Houston
Passage: Emily “Cissy” HoustonA (née Drinkard; born September 30, 1933) is an American soul and gospel
singer. After a successful career singing backup for such artists as Dionne Warwick, Elvis Presley and Aretha
Franklin, Houston embarked on a solo career, winning two Grammy Awards for her work. Houston is the mother
of singer Whitney Houston1 , grandmother of Whitney’s daughter, Bobbi Kristina Brown, aunt of singers Dionne
and Dee Dee Warwick, and a cousin of opera singer Leontyne Price.

Entity bridging
Question: who sang the national anthem1 at the first game of 2017 world series2

Wikipedia page: 2017_World_Series
Passage: Game 1: The ceremonial first pitch was thrown out by members of former Dodger Jackie Robinson’s
family, including his widow Rachel. The game marked the 45th anniversary of Robinson’s death, and the 2017
season was the 70th anniversary of his breaking of the baseball color line. [. . . ]2 Keith Williams Jr.A , a gospel
singer, performed “The Star-Spangled Banner", the national anthem1 .

Generic reference
Question: what is the function of a paints binder1

Wikipedia page: Paint
Passage: The binder1 is the film-formingA component of paint. It is the only component that is always present
among all the various types of formulations. Many binders are too thick to be applied and must be thinned. The type
of thinner, if present, varies with the binder.

Figure 6.3: Examples from the QED dataset, grouped according to different types of referential
equalities.

Non-Anaphoric Definite NPs These are expressions such as “the president of the United States”

or “the next Maze Runner film”. The majority involve one or more common nouns (e.g., "president",

"film") together with a proper name, thereby defining a new entity that is in some sense a "derivative"
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Question Expression Passage Expression
how i.met your mother the CBS television sitcom How I Met Your Mother
the most wins in the nfl most wins
mantis Mantis
the nashville sound Countrypolitan - a smoother sound typified through the

use of lush string arrangements with a real orchestra
and often, background vocals provided by a choir

a permit driver a driver operating with a learner ’s permit
god’s not dead a light in the darkness it
the current president of un general as-
sembly

the United Nations General Assembly President of its
72nd session beginning in September 2017

the new maze runner movie Runner : The Death Cure
a box lacrosse team a team

Figure 6.4: Referential equalities from the QED corpus.

Qu.
Ps.

P N A G Pn B M T

Proper 44 0 16 0 9 4 0 73
Def. 4 6 4 0 0 1 1 16
(Non-Ana)
Def. 0 1 1 0 0 0 0 2
(Ana)
Generic 0 0 0 6 0 0 0 6
Pronoun 0 0 0 0 0 0 0 0
Bridge 0 0 0 0 0 0 0 0
Misc 2 0 0 0 0 0 1 3
Total 50 7 21 6 9 5 2 100

Figure 6.5: Counts for 100 randomly drawn referential equality annotations from the QED corpus,
subcategorized by expression type in the question (Qu.) and passage (Ps.). P/N/A/G/Pn/B/M refer
to Proper/Def(non-ana)/Def(ana)/Generic/Pronoun/Bridge/Misc.

of the underlying proper name.

Anaphoric Definite NPs These are definite NPs, most often from within the passage rather than

the question, that require context to be interpreted. Examples are "the series" referring to an earlier

mention of "the Vampire Diaries" within the passage, or "the winner" referring to "the winner of

America’s got Talent Season 11".

Generics Examples are "a dead zone" in the question "what causes a dead zone in the ocean", or

"Dead zones" in the passage sentence "Dead zones are low-oxygen areas caused by ...".
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Pronouns Examples are it, they, he, she.

Bridging Referential expressions in the passage sentence that use bridging (see Section 6.3.3).

Miscellaneous All referential expressions not included in the categories above.

Table 6.1 shows the frequency distribution of per-instance referential equality counts. Figure 6.5

shows an analysis of 100 referential equality annotations from QED, with a breakdown by type of

referring expression in the question and passage. Proper names, non-anaphoric definites, and gener-

ics dominate expression types in the question (73, 16, and 6 examples respectively). Expressions in

the sentence are more diverse, with a much greater proportion of anaphoric definites, pronouns, and

bridging examples (21, 9, and 5 cases respectively).

Finally, as an indication of the difficulty of the referential equality task, we note that in only 12%

of all referential equalities in the 100 examples in Figure 6.5 is there an exact string match (after

lower-casing of both question and passage) between the question and passage referential expression.

6.5 Tasks and Baseline Results

We release the QED dataset with the intention to spur research into QED-based tasks and models.

In this section, we introduce four potential modeling tasks using the data and describe baseline

approaches and results for the first two tasks.

6.5.1 Four Tasks

Each QED example is a (𝑞, 𝑑, 𝑐, 𝑎, 𝑒) tuple where 𝑞 is a question from the NQ corpus, 𝑑 is a

Wikipedia page, 𝑐 is a long answer (typically a paragraph) within 𝑑, 𝑎 is a short answer within 𝑐,

and 𝑒 is a QED explanation. We use E to refer to set of evaluation examples (either the development

or test set).

Such data could potentially be used in many different ways. We highlight the following four

tasks, in order of increasing complexity:
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Task 1 Given a (𝑞, 𝑑, 𝑐, 𝑎) 4-tuple, make a prediction 𝑒 = 𝑓 (𝑞, 𝑑, 𝑐, 𝑎) where 𝑓 is a function

that maps a (𝑞, 𝑑, 𝑐, 𝑎) tuple to an explanation. We might for example define 𝑓 (𝑞, 𝑑, 𝑐, 𝑎) =

arg max𝑒 𝑝(𝑒 |𝑞, 𝑑, 𝑐, 𝑎; 𝜃) under some model 𝑝(. . .). The evaluation measure is then

1
|E |

∑︁
(𝑞,𝑑,𝑐,𝑎,𝑒)∈E

𝑙1(𝑒, 𝑓 (𝑞, 𝑑, 𝑐, 𝑎))

where 𝑙1(𝑒, 𝑒) is a per-example evaluation measure indicating how close 𝑒 is to 𝑒.

Task 2 Given a (𝑞, 𝑑, 𝑐) triple, predict (𝑎̂, 𝑒) = 𝑓 (𝑞, 𝑑, 𝑐), where 𝑓 is a function that maps

a (𝑞, 𝑑, 𝑐) pair to a short-answer/explanation triple. We might for example define 𝑓 (𝑞, 𝑑, 𝑐) =

arg max𝑎,𝑒 𝑝(𝑎, 𝑒 |𝑞, 𝑑, 𝑐; 𝜃) under some model 𝑝(. . .). The evaluation measure is
∑

(𝑞,𝑑,𝑐,𝑎,𝑒)∈E 𝑙2((𝑎, 𝑒), 𝑓 (𝑞, 𝑑, 𝑐))

where 𝑙2 is some per-example measure.

Task 3 Given a (𝑞, 𝑑) pair, predict (𝑐, 𝑎̂, 𝑒) = 𝑓 (𝑞, 𝑑), where 𝑓 is a function that maps a (𝑞, 𝑑)

pair to a long-answer/short-answer/explanation triple. We might for example define 𝑓 (𝑞, 𝑑) =

arg max𝑐,𝑎,𝑒 𝑝(𝑐, 𝑎, 𝑒 |𝑞, 𝑑; 𝜃) under some model 𝑝(. . .). The evaluation measure is
∑

(𝑞,𝑑,𝑐,𝑎,𝑒)∈E 𝑙3((𝑐, 𝑎, 𝑒), 𝑓 (𝑞, 𝑑))

where 𝑙3 is some per-example measure.

Task 4 As in Task 3, given a (𝑞, 𝑑) pair, predict (𝑐, 𝑎̂, 𝑒) = 𝑓 (𝑞, 𝑑). One part of the evaluation is

the same as in Task 3. But in addition, we require the explanations generated by 𝑓 (. . .) to be faithful

with respect to the reasoning process of the underlying model. This will require an evaluation

measure for faithfulness, which is an open question beyond the scope of this paper.

Accurate models for Tasks 1, 2, and 3 even if they do not generate faithful explanations (Task 4),

may still have considerable utility. However, faithful models have several desirable characteristics

(see Section 6.7); we view them as a major avenue for future work.

In the remainder of this section we describe results for baseline models on Tasks 1 and 2. The

intention here is to establish baseline results as a reference point for future work on QED models

and to get an idea of tractability of recovery of QED annotations.
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6.5.2 A Baseline Model for Task 1

Our baseline model for Task 1 is an extension of the recently proposed co-reference resolution

model of [95] and [96]. We present two variations on the model, the first trained on co-reference

data alone, the second trained on co-reference data with fine-tuning on QED annotations

The co-reference Resolution Model

We give a brief recap of the approach of [95] and [96]. Given some document 𝑑 and a candidate

mention 𝑥, corresponding to a span within 𝑑, define Y(𝑥) to be the set of potential antecedents for

𝑥. Each antecedent is either a span in the document with start-point before 𝑥 in the document, or 𝜖

signifying that 𝑥 does not have an antecedent. We can then define a distribution over the antecedent

spans Y(𝑥) as 𝑝(𝑦 |𝑥, 𝐷) = 𝑒𝑠 (𝑥,𝑦)∑
𝑦′ ∈Y(𝑥 ) 𝑒𝑠 (𝑥,𝑦

′ ) where

𝑠(𝑥, 𝑦) =


0 if 𝑦 = 𝜖 ;

𝑠𝑚 (𝑥) + 𝑠𝑚 (𝑦) + 𝑠𝑐 (𝑥, 𝑦) o.t.

𝑠𝑚 (𝑥) = FFNN𝑚 (𝑔𝑥)

𝑠𝑐 (𝑥, 𝑦) = FFNN𝑐 (𝑔𝑥 , 𝑔𝑦)

where 𝑔𝑥 and 𝑔𝑦 are span representations obtained by concatenating the SpanBERT representation

of the first and last token in each mention span. The scoring functions 𝑠𝑚 and 𝑠𝑐 represent mention

and joint span match scores respectively.

[96] describe a method for training the model based on log-likelihood, and a beam search

method that uses the scores 𝑠𝑚 (. . .) to filter mentions and antecedents. The final output from the

model is a hard clustering of the potential mentions into co-reference clusters.

The Model Applied to Task 1

Assume an example contains a question 𝑞 of 𝑚 tokens 𝑞1 . . . 𝑞𝑚 and a passage 𝑐 consisting of 𝑛

tokens 𝑐1 . . . 𝑐𝑛. We denote the title of the Wikipedia page separately as the sequence 𝑡 of 𝑘 tokens
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𝑡1 . . . 𝑡𝑘 . The model considers the concatenation of these token sequences,

[CLS]𝑡1 . . . 𝑡𝑘[S1]𝑞1 . . . 𝑞𝑚[S2]𝑐1 . . . 𝑐𝑛[SEP],

as an input document.8 The model is tasked with predicting the referential equality annotations

𝑒 = 𝑒1 . . . 𝑒𝑘 in the QED annotation. We do assume that the NQ short answer is also an input to the

model, used to restrict the position of referential equality annotations in the passage; we describe

this restriction below.

QED referential equality annotations are of two types: (1) coreferential links between noun

phrases in the question and in the passage, and (2) coreferential links between a noun phrase in the

question and an implicit argument in the passage. We observe that many implicit arguments link

to the title of the passage, so we model the latter annotation type as a coreferential link between

the question mention and the title span 𝑡1 . . . 𝑡𝑘 . In the untrained baseline, we restrict 𝑠𝑚 to only

score mentions in the sentence containing the answer. In both models we restrict 𝑠𝑐 to only score

coreferential links between the query and the passage or between the query and the title (all other

values for 𝑠𝑚 or 𝑠𝑐 are set to −∞).

We finally post-process the cluster outputs as follows: for each cluster we output the first cluster

mention in the question paired with the first cluster mention in the passages. If there is no cluster

mention in the passage, then we output the question mention paired with an implicit argument.

For the untrained baseline, we did not use expert annotated QED data but instead used the

CoNLL OntoNotes co-reference dataset [97] to train the pretrained SpanBERT model. For the

fine-tuned baseline, we further trained the model with the training portion of QED data converted

into co-reference format. We used SpanBERT “large”, with a maximum span width of 16 tokens, a

top span ratio of 0.2, 30 max antecedents per mention. In fine-tuning, we used an initial learning

rate of 3 · 10−4 and trained for 3 epochs on the QED training set.

We evaluate both mention identification (the identification of individual referential expressions in

the question and passage) and referential equality detection (the identification of pairs of referential

8We simply use [S1] = "." and [S2] = "?" as separators.

80



Table 6.2 SpanBERT model performance for Task 1: recovering QED annotations when the correct
answer is given.

Mention Mention
Identification Alignment

P R F1 P R F1

zero-shot 59.0 35.6 44.4 47.7 28.8 35.9
fine-tuned 76.8 68.8 72.6 68.4 61.3 64.6

expressions). We compute precision, recall, and F1 measure in both cases. Evaluation results are

reported in Table 6.2. The table shows results for both the zero-shot model, trained on co-reference

data alone, and a fine-tuned model, which is fine-tuned on QED annotations.9

6.5.3 A Baseline Model for Task 2

Our baseline model for Task 2 is a straightforward extension of the baseline model for Task 1.

We build a model of the form

𝑝(𝑎, 𝑒 |𝑞, 𝑑, 𝑐; 𝜃)

= 𝑝 (1) (𝑎 |𝑞, 𝑑, 𝑐; 𝜃 (1))𝑝 (2) (𝑒 |𝑎, 𝑞, 𝑑, 𝑐; 𝜃 (2))

where 𝑝 (1) is an existing QA model (similar to [8]), and 𝑝 (2) is the baseline model for Task 1. Thus

we simply compose an existing question-answering model with an answer agnostic model that

recovers explanations.

The answer scoring component of the model computes answer candidate representations 𝑔𝑧 in

the same way as the Task 1 baseline computes mention representations. The score of an answer 𝑧 is

then computed as

𝑠𝑎 (𝑧) = FFNN𝑎 (𝑔𝑧).

Mention representations are shared between 𝑝 (1) and 𝑝 (2) , so the only new parameters belong to

9Official evaluation code will be released with the dataset.
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Table 6.3 SpanBERT model performance for Task 2: recovering answer and QED annotations given
a passage that is known to contain the answer.

Mention Mention Answer
Identification Alignment Accuracy

P R F1 P R F1

QED-only 74.1 63.8 68.6 63.6 54.9 58.9 -
QA-only - - - - - - 73.4
QA+QED 77.5 64.6 70.5 68.6 57.3 62.4 74.5

a single hidden layer feed-forward net FFNN𝑎 that computes the answer score for each mention.

No further dependence is introduced between the answer and explanation predictions. We train

𝑝 (1) and 𝑝 (2) in a multitask fashion, by minimizig the weighted sum of the question answering

and co-reference cross entropy losses. Our best results are obtained with a weight of 5 on the

co-reference loss and 2 epochs of training. The best answer accuracy and QED F1 are obtained for

different base learning rates of 2 · 10−5 and 5 · 10−5 respectively.

Results

In Table 6.3 we report results for Task 2 for three separate variations of the approach described

in the previous section. QED-only fine-tunes 𝑝 (2) on the QED training set only. QA-only fine-tunes

𝑝 (1) on all the paragraphs of the NQ dataset that contain a short answer. QA+QED fine-tunes both

𝑝 (1) and 𝑝 (2) on all NQ and QED data. We obtain the encouraging result that both QA and QED

metrics improve significantly in the final multitask setting, despite the fact that the QED training

data (5154 examples) amounts to only 6% of the data available for QA (91632 examples).

6.6 Rater Study

A system which makes use of QED explanations to answer a question is one which decomposes

its reasoning process into human-interpretable chunks. We hypothesize that exposing QED explana-

tions should improve a user’s ability to spot errors made by an automated QA system. To this end,

we evaluate QED explanations using a rater study.
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6.6.1 Task Setup

Given a question, passage, and a candidate answer span, raters were tasked with assessing

whether the candidate answer was correct or incorrect, and indicating the confidence of their

assessment.

We obtained the data for the study by taking a random set of 50 correct answers and 50 incorrect

guesses from the NQ baseline model on the Natural Questions dev set. So as to ensure that the task

was sufficiently challenging, correct instances were the gold answer spans on question/passage pairs

where the model produced a false negative.10 Incorrect instances were false positive guesses from

the model.

A total of 354 raters, all of whom are US-residents and native English speakers, were divided

into three disjoint pools to perform the task in three distinct test settings: The None group of raters

(n=121) was presented with a question, passage, and a highlighted answer span. The Sentence

group (n=117) was provided with additional highlighting of the sentence containing the answer,

with no distinction made between referential equalities and predicates. The QED group (n=116)

was provided with additional highlighting to indicate referential equalities between spans in the

question and spans in the passage. On average, a given rater provided judgments for 41 questions.

In each case, raters were told that highlighting was the output of “an automated question

answering system” that was incorrect “about half of the time.” Where explanations were present,

they were manually imputed to simulate the inferences of a hypothetical model that used a QED-

style reasoning process. Additionally, raters were told that the system made use of the highlighted

information to produce its candidate answers.

6.6.2 Results

Average rater accuracies for each test setting are presented in Table 6.4. We see that, in aggregate,

QED explanations improved accuracy on the task over and above the other test settings, and gave

the most improvement on the identification of answers that were incorrect. These improvements

10That is, where an answer existed in the passage, but the model was not confident about it.
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Table 6.4 Rater study results. Corr and Incorr are accuracies of raters in each group on correct
and incorrect instances respectively, with incorrect instances further broken into Pred(icate) and
Ref(erence) model errors. F1 is on the task of identifying incorrect instances.

Accuracy F1
All Corr Incorr/Pred/Ref Incorr

None 67.5 90.4 44.3/43.9/44.7 57.6
Sentence 69.7 92.4 47.1/46.1/48.0 60.9
QED 70.2 90.6 49.7/48.2/51.0 62.5
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Figure 6.6: Sorted, per-question evaluation accuracies from different rater study settings, with
95% binomial confidence intervals. Left three plots correspond to trials with incorrect answers
highlighted; right three plots to trials with correct answers highlighted. Dashed red lines correspond
to the average accuracy for each setting, identical to the numbers in Table 6.4.

translate to incorrect answers resulting from both predicate and reference model errors.

Somewhat surprisingly, highlighting just the sentence containing the answer improved accuracy

more than including referential equality highlighting on instances that were correct. This is likely

because raters’ propensity to mark instances correct decreases as the complexity of explanations

increases, from None (73.1%) to Sentence (72.6%) to QED (70.5%).

Also clear from Table 6.4 is that rater accuracy is much lower on incorrect instances. Even

though raters were told that the answers presented were incorrect half of the time, they marked the

model guess as correct roughly 71% of the time.11

11While this confirmation bias presents an interesting challenge for future work, it is not a shortcoming of our results:
Raters were not trained to do well on the task, as we aimed to approximate how users interact with automated QA
systems.
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Table 6.5 Generalized linear mixed model fixed effect coefficients, showing mean and standard
deviation of 10k MCMC samples. The Intercept corresponds to the Incorrect+None setting.

Parameter Coefficient (SD)

(Intercept) -0.31 (0.15)
+ Incorrect+Sentence 0.15 (0.11)
+ Incorrect+QED 0.25 (0.11)
+ Correct+None 2.94 (0.21)
+ Correct+Sentence 3.04 (0.13)
+ Correct+QED 2.69 (0.13)

Figure 6.6 provides another perspective on the disparity in judgments on correct/incorrect

instances summarized in Table 6.4. The instances receiving the highest accuracy in the incorrect

pool are harder for raters on average than most of the correct instances, and the lowest accuracy on

incorrect instances is far lower than that of any of the correct instances. The wide distribution of

accuracies on incorrect instances (𝜎≈0.50) seen in Figure 6.6 was also reflected in the rater pool

(𝜎≈0.45). The challenging nature of incorrect instances speaks to the promise of improvements

from QED explanations.

6.6.3 Effectiveness of explanations

How statistically significant are the results reported in Table 6.4? The 14,115 test instances

were spread across 354 raters and 100 questions. To control for the correlations induced by the rater

and question groups, we fit a generalized linear mixed model (GLMM) using the rstanarm R

package [98]. We used the formula a ∼ c * e + (1|r) + (1|q), where a is whether or not

the rater accurately marked the instance; c is whether the instance was Correct or Incorrect; e is the

explanation test setting of None, Sentence, or QED; r is the rater id; and q is the question id. This

formula specifies a regression of the log-odds of the rater accuracy on the fixed effects of instance

correctness (c) and explanation setting (e), while allowing for random effects in the raters (r) and

questions (q). Ultimately we are interested in the magnitude and statistical properties of e under

the various test settings.

Table 6.5 shows the fixed effect coefficient and standard deviations for each setting. The presence
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of QED explanations in the Incorrect setting increased the log-odds of rater accuracy by 0.25, with

a posterior predictive p-value of 0.015 that this effect is greater than zero. The comparable effect for

Sentence explanations was 0.15, with a posterior predictive p-value of 0.08. The rater and question

random effects had standard deviations of 0.63 and 0.90 respectively, reflecting again the high

variance of questions shown in Figure 6.6.

As we saw earlier, the effects of explanations in the Correct setting was reversed: the Sentence

explanations caused a small, statistically insignificant increase in log-odds, while QED explanations

caused a statistically significant drop in log-odds.

6.7 Discussion

6.7.1 QED and strong explainability

It is an open question as to what constitutes a good explanation [99]. A major inflection

point in the discussion is the notion of faithfulness [100, 101]. We say a model’s explanations

are faithful when there is a causal relationship between an explanation and a prediction. That is,

when an explanation changes, the outputs change accordingly. When this is not true, we say a

model generates rationales, which have the appearance of justifying its outputs, but without causal

guarantees [85].

While the models described in Section 6.5 fall into the latter category, we believe QED is a

promising framework for strongly explainable QA. This is due in large part to its commitment to the

cognitive reality of reference and entailment. We can say, definitively, that in order for a sentence

to answer a question about a thing, its meaning must involve that thing in a very particular sense.

Posed counterfactually, when you break referential equality, you break answerhood, and the same

argument follows for predicate entailment. Unlike other intelligent behavior that may permit of

post-hoc rationalization at best [83], certain forms of high-level linguistic reasoning are in fact

amenable to strong explanation.
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6.7.2 Potential Extensions to the QED Framework

QED exists in between relatively unstructured explanation forms on the one hand, such as

attention distributions [102, 103, 104] or sequential outputs [105, 106, 107, 108] and more elaborate,

discrete semantic representations that can in theory be applied to explainable QA [109, 110].

The version of QED presented here is a broad coverage, yet limited instantiation of a framework,

in which explanations are semantic relations whose substructures are defined in terms of formally

motivated linguistic categories. However, in keeping with its modularity, we can extend QED

to account for these by looking to semantic relations beyond referential equality and predicate

entailment, such as set-membership noun phrase [111] and interclausal [112, 113, 114] relations.

6.7.3 Future uses of QED representations

Our hope is that QED representations may be useful in a variety of extensions to extant QA

systems. Some examples are as follows:

Ambiguous Questions. Consider again the question in Figure 6.1, "who wrote the film howl’s

moving castle". Now consider the question "who wrote howl’s moving castle". In this case there are

two possible answers, depending on whether the author of the question is referring to the film or

novel. It would be natural for a system to provide two possible answers [see, e.g. 115], with two

possible QED explanations highlighting the differing assumptions underlying each answer. Such

referential ambiguities are common, and the centrality of referential equality in QED annotations

should mean that they are useful in this scenario.

Complex Referential Equalities. Consider the question "meaning of whiskey in the jar by

metallica". The Wikipedia page for "Whiskey in the Jar" says the following:

87



Passage: "Whiskey in the Jar" is an Irish traditional song set in the southern mountains

of Ireland. The song, about a rapparee (highwayman) who is betrayed by his wife or

lover, is one of the most widely performed traditional Irish songs and has been recorded

by numerous artists since the 1950s.

A good answer could be that the song is "about a rapparee . . . who is betrayed by his wife or

lover", assuming that the Metallica song is a variant of the Irish traditional song. Thus the validity

of this answer hinges on a complex referential equality, between the Metallica version and the

original. Examples that require this type of complex referential reasoning are quite common, and

the centrality of reference in QED should be relevant.

6.8 Conclusions

We have described QED, a framework for explanations in question answering, and we have

introduced a corpus of QED annotations. The framework is grounded in referential equality, and

entailment. In addition we have described baseline models for two QED-based tasks, and a rater

study utilizing QED annotations.

Future work should consider the development of models that provide faithful explanations

based on QED; extensions of QED, for example to handle multi-sentence inference or referential

phenomena going beyond equality; and applications of QED, for example to sentences with multiple

potential answers, to questions that are vague or underspecified, or to referential equalities that

require significant inference to be justified.

88



Chapter 7: A Semantic Analysis of Negative Why Questions in the Natural

Questions Dataset

In this chapter we temporarily depart from question answering modeling with pretrained trans-

formers, which is the topic of all the remaining chapters in this thesis, and we attempt a particular

semantic investigation of the data of the Natural Questions dataset. We look at the specific subset

of why-questions, and we make the interesting discovery that there are no attested cases of why-

questions containing a negation with an answer that describes a purpose rather than a reason. We

discovered in existing literature a proposed syntax-based explanation for this phenomenon, but we

find examples in the Natural Questions that invalidate that explanation. We therefore put forward a

new semantics-based explanation for the absence of purpose answers to negative why-questions.

7.1 Overview

Several authors have noted that there are two fundamental types of answers to why-questions:

reason and purpose. They can be easily exemplified as follows:

• Why did John tear down the wall?

Reason: because Mary asked him to.

Purpose: to show off.

Reasons are past-oriented answers to why-questions. They are often introduced by the con-

junction because, and provide a proposition that constitutes a cause for the explicandum, i.e. the

proposition modified by why in the question. On the other hand, purposes are future-oriented

answers to why-questions. They are introduced by the preposition to, and provide an intentional

result of the explicandum.
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This brief analysis of why-questions is a good starting point, but many issues remain to be

explored. Are there types of answers to why-questions other than reason and purpose? Is the

presence of to or because as a definition of purpose and reason consistent with our intuition?

Can something be said about which types of explanation are admissible by which types of why-

questions? In this work we explore these questions empirically using a dataset of question-answer

pairs ([7]) and attempt to provide a formal framework that systematizes our empirical observations.

We start our investigation in section 7.2, by introducing a new notion of purpose and reason

which can be more generally used in empirical judgements. In section 7.3, where we look at a

syntactic account of why-questions and analyze a series of interesting predictions due to [13].

We find that many of the predictions, though plausible, are in disagreement with empirical data.

In section 7.4, we focus on a particular prediction about negative why-questions from the same

syntactic account, which instead has a surprisingly high level of empirical support. In section 7.5,

we propose a formal framework for the analysis of why-questions based on the ideas described by

[116] and guided by our empirical observations. This framework will provide a justification for

the success of the prediction in section 7.4. Finally in section 7.6, we show how our framework

naturally makes room for additional types of answers to why-questions, showing that connections

are possible with taxonomies of explanations.

7.2 Reason and Purpose

While answers starting with because and to seem to closely reflect the intuitive idea of reason

and purpose respectively, we cannot take them to be a definition of these answer types. One practical

reason for this is that many answers found empirically do not start with either of these words and so

will require more flexible classification criteria. Another reason stems from the observation that it

would nearly always be possible to convert a purpose into a reason with a minimal modification to

the meaning:

• Why did John tear down the wall?

Purpose: To show off.
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Reason Still purpose: Because he wanted to show off.

This simple operation is almost always possible in practice: 1

• ‡Why did the United States declare war on Spain?

Purpose: To help Cuba gain independence.

Still purpose: [Because the US wanted t]o help Cuba gain independence.

• ‡Why did Chandler Massey leave days of our lives?

Purpose: To return to school.

Still purpose: [Because he wanted t]o return to school.

This empirical preponderance of examples that admit this rephrasing suggests that the compati-

bility with the bouletic modality (want) might be a much better definition of purpose. To capture

this fact, we propose the following operational definitions, which will serve us well for most of this

work. In the context of a why-question:

• 1. a purpose is an answer that expresses a want.

2. a reason is an answer that is not a purpose.

The conjunction because and the preposition to continue to be strong features to identify reasons

and purposes. Strictly speaking however we have to apply the definition above to determine the

type of each explanation, even if they start with to or because.

Future vs. Past. An alternative definition of reason and purpose could have been given in terms

of whether an explanation is past-oriented or future-oriented respectively. We could imagine a

formalization such as the following:

• Why 𝑥?

Reason: Because 𝑦. (if 𝑦 =⇒ 𝑥)

?Purpose: To 𝑦. (if 𝑥 =⇒ 𝑦)

1We always indicate with ‡ data derived from [7].
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While we do not see anything fundamentally wrong with the the above definition of reason, we

note that the definition of purpose is incomplete. It is not enough for 𝑦 to be entailed by 𝑥: a desire

for 𝑦 has to also be true in order to obtain a purpose, and such desire would have to logically or

temporally precede 𝑥. Therefore we would still have to include some component related to the

bouletic modality, even if we decided to adopt a future vs. past definition.

7.3 The Syntactic View

In a traditional interrogative semantics approach, such as [117], the meaning of why questions

might be represented as the following set of propositions:

• ⟦Why did John tear down the wall?⟧𝑤

=

{
that John tore down the wall because 𝑥 : 𝑥 ∈ 𝐷𝑠𝑡

}
∪
{
that John tore down the wall to 𝑥 : 𝑥 ∈ 𝐷𝑠𝑡

}
As detailed by [13] (henceforth C&K), reason why and purpose why have distinct attachment

positions in the syntactic structure of the question. Purpose why is base-generated within CP (the

higher why), while purpose why is adjoined to vP (the lower why). C&K predict that only dynamic

predicates with agentive subjects have a syntactic structure with both these attachment sites available,

and so only questions with those predicates will be able to support both reason and purpose answers.

They base this prediction on the fact that only dynamic predicates are propositionally complex, a

finding due to [118]. We find however that why-questions are much more flexible than what this

account suggests and provide counterexamples for several of the predictions made by C&K.

A first prediction is that passive why-questions only admit reasons as answers because the agent

is implicit. C&K present the following example:

• Why was that student cheated out of a grade?

# Purpose: To help him get a better grade on the final.

Reason: Because the instructor felt like it.
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C&K explicitly disagree in their judgement with [119], who give the opposite prediction: that

passive why-questions only admit purposes and not reasons. The example due to [119] is as follows:

• Why was the ship sunk?

Purpose: In order to collect the insurance money.

# Reason: Because they wanted to collect the insurance money.

Notably the reason answer in the last example would be classified as a purpose according to our

proposed definition. The fact that this example was likely intended to be a minimal pair exemplifies

how natural it seems to be to impute an implicit bouletic modality in most purpose answers.

Empirically this issue is of simple resolution: both types of answers are attested. Example

7.3 shows that it is easily possible to obtain a purpose answer even though the agent is implicit.

Example 7.3 shows that a reason answer is also obtainable.

• ‡ Why were Luke and Leia separated at birth?

Purpose: To keep them hidden from Darth Vader.

• ‡ Why was the constitution of India adopted on 26 Jan 1950?

Reason: Because it was on this day in 1930 when the Declaration of Indian Independence

(Purna Swaraj) was proclaimed by the Indian National Congress.

A second prediction by C&K is that locative-existential why-questions prefer reason readings.

C&K present the following example, with the purpose answer marked with (??) rather than (#) to

indicate that the answer is questionable rather than conclusively infelicitous.

• Why are there three engineers on the NSF linguistics committee?

?? Purpose: To block funding of theoretical research.

Reason: Because they were asked to help out.

Again however we are easily able to find counterexamples empirically. Purpose answers seem

to be obtainable despite the absence of an explicit agent in either the question or the answer, and

despite the predicate in the question not being propositionally complex.
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• ‡ Why is the Angel of the North there?

Purpose: To serve as a focus for our evolving hopes and fears.

• ‡ Why is there a ball in Guinness beer?

Purpose: To manage the characteristics of the beer’s head.

A prediction that seems more difficult to refute at first is the one about un-accusative why-

questions, which C&K also predict to be only answerable with purposes. The example provided by

C&K is the following:

• Why did the butter melt?

# Purpose: To make more room in our fridge.

Reason: Because I left it out in the sun.

One might initially think that metaphorical animacy would have to be ascribed to the butter to

obtain a barely acceptable purpose answer. For example we might imagine a children’s story where

food ingredients in a kitchen are magically collaborating on Saturday morning so that a child might

wake up to a delicious breakfast.

• ?? Even the stubborn butter helped by melting on the pancakes to help them taste better.

We must admit that this example is indeed quite far-fetched. The data however provides us with a

much more compelling example:

• ‡Why does cooling water run through the condenser?

Purpose: To condense the steam coming out of the cylinders or turbines.

Examples 7.3, 7.3 and 7.3 also rule out a prediction that one might be tempted to make: that

an animate agent is in some way required in the question for a purpose answer to be obtainable.

What does seem to be true however is that an animate subject will be required in the answer if we

rephrase it as a want as described in our operative definition of purpose.

An interesting type of why-question that C&K do not make predictions about is the case of

bi-clausal why-questions. For example
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• Why did you ask her to resign?

Short construal: why modifies ask.

Long construal: why modifies resign.

C&K note that interestingly the issue of bi-clausal why-questions has only ever been analyzed with

reason answers in mind. Unfortunately the vast majority of why-questions in our dataset appear to

be mono-clausal. We found only two bi-clausal examples with the verb ask and both of them had

reason answers.

7.4 Negative why-questions

Hope might be running low at this point about the possibility of predicting possible answer types

of why-questions. Perhaps why-questions are so flexible and open ended that no strong prediction is

possible about their answer types, if a sufficiently complex world is allowed. It was quite a pleasant

surprise for us to discover that one of the predictions made by C&K held with surprising strength:

that purpose why is sensitive to negation. C&K justify their prediction as a weak island effect. Their

proposal is that negation attaches in the syntax below reason-why (introduced by the conjunction

because), but above purpose-why (introduced by the preposition to), and therefore wh-movement

only encounters negation as an intervener in the case of purpose.

While this syntactic explanation might be true, we believe that further analysis is required for

at least two reasons. First, we observe that it is not only answers starting with the preposition to

that are missing from negative why-questions in our data. Purposes are missing even when our

more general definition of purpose as an answer expressing a want is adopted. If the problem

with purpose answers was purely syntactic, then we would expect to find other ways of expressing

purpose readings to get around the limitations of syntax. Instead what we find in the data is that

negative questions actually block the purpose meaning entirely, regardless of the syntax in which it

might be expressed. This suggest that purposes are rejected not only based on syntactic constraints,

but that there is a more general semantic or pragmatic reason for the this phenomenon.

Secondly, it does not seem particularly difficult, upon some reflection, to make up purpose
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Table 7.1 Question counts and why-question counts by answer type and presence of a negation in
[7].

Example count
Total question with answers 100,000
why-questions 1,220

with a purpose answer ∼ 250
with a not 52
with a not and a purpose answer 0

answers to why-questions, particularly if the purpose expresses the desire to avoid or prevent

something from happening. For example:

• Why did Mary not shake John’s hand?

Purpose: To avoid spreading the flu.

For some non-trivial reason, the examples that we make up do not give us the correct intuition

about the most likely answer types, perhaps because we neglect to construct a realistic context

where the imaginary exchange is taking place. This suggests that purposes are actually syntactically

admissible, but that some other mechanism is systematically discarding them as possible answers in

practice.

The results of our empirical analysis are summarized in Table 7.1. The fraction of purpose

answers was estimated by manually annotating 100 randomly selected why-questions, where we

found exactly 20 answers of type purpose. We found that while the incidence of purpose answer

types in why-questions is generally on the order of 20%, there were no purpose answers at all in the

set of 52 why-questions containing negation. The sensitivity of why-questions to negation in this

dataset is thus very statistically significant.

Since the syntactic account seems unreliable in our setting, we turn to the data for some insight

on the causes of this phenomenon. We found it to be particularly useful for our intuition to look at

near misses, i.e. answers to negative why-questions that look suspiciously close to purposes, but do

not actually fit our definition. The closest example in the data to a negative why-question with a

purpose answer is the following:

• Why did the East Side not let people go up to the Berlin Wall?
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#Purpose: The wall served to prevent the massive emigration and defection that had marked

East Germany and the communist Eastern Bloc during the post-World War II period.

It is alas incorrect. The answer describes the purpose of the Berlin Wall, not the purpose that East

Germany had for not allowing people close to the wall. A possible purpose reading for this question

could have been the following:

• Why did the East Side not let people go up to the Berlin Wall?

?Purpose: To prevent people from scaling the wall.

Again we notice that it is quite natural to come up with a purpose answer to a negative why-question

using a verb like avoid or prevent. What could be wrong in this purpose answer though? It seems

that this answer could have been just as good if the question had been about the West Side of the

Berlin Wall rather than the East Side. A much more reasonable answer would have been to explain

that people on the East Side were much more likely than those on the West Side to try to scale the

Berlin Wall. This however would have been a reason and not a purpose.

In our judgement, this seems to be an utterly common pattern in negative why-questions: a

purpose answer is possible, but the answerer chooses to instead to give a more in depth reason for

why that purpose came into being or became relevant. We will attempt to formalize this notion in

section 7.5.

Other examples that could be easily modified into having a purpose answer, but instead provide

a reason answer are the following:

• ‡Why do we not eat egg with a silver spoon?

Reason: Because the sulfur in eggs causes silver to tarnish.

?Purpose: To avoid tarnishing silver.

• ‡Why do Jehovah’s Witnesses not celebrate birthdays or Christmas?

Reason: Because they believe that these continue to involve “false religious beliefs or

activities.”

?Purpose: To avoid practicing false religious beliefs or activities
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• ‡Why does john a. powell not capitalize his name?

Reason: Based on the idea that we should be “part of the universe, not over it, as capitals

signify.”

?Purpose: To promote the idea that we are “part of the universe, not over it, as capitals

signify.”

In example 7.4 the attested reason provides a fact that causes a presumably preexisting desire

“to avoid tarnishing silver” to become relevant as a purpose. In examples 7.4 and 7.4 the answer

provides as reason a belief or an idea that justifies the purpose that we list as potentially admissible.

The main intuitions that we are attempting to convey with these examples are two: First, that

potentially admissible purpose answers to negative why-questions are often given in terms of

avoiding or preventing some effect from happening. Second, that this purpose is systematically

overridden by a reason that makes some presupposed purpose relevant.

7.5 A Modal Framework for why-questions

Given the evidence in section 7.2, we are convinced that an account of reason and purpose

cannot escape having some notion of modality. We therefore decided to give a representation of

why-questions and their answers in the classical modality framework described by [116].

In this view, we assume that the questioner and answerer both have a world view represented

by two conversational contexts: a modal base and a bouletic ordering source. Both conversational

contexts are represented as sets of propositions. The modal base contains hard requirements or

known facts, that cannot be violated or contradicted in any possible world. Ordering sources

generally contain preferences, desires, or other rules that can violated without making a world

impossible, but just less likely. The bouletic ordering source in particular contains only desires.

We propose a model of why-question-answering exchanges where the questioner expresses

curiosity about a proposition, and the answerer replies with a proposition from one of their con-

versational contexts. Note that, if a successful why-question-answering exchange has taken place,

we can safely assume that the views of the world of questioner and answerer were different before
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the exchange and have become more similar after. Otherwise the answer must have contained a

proposition that the questioner already knew and so no useful information has been conveyed.

We formally define our model as follows:

• A why-question is a request for an addition to a conversational context.

• Reasons are additions to the modal base s.t.:

1. Why 𝑥? Because 𝑦.

∧[modal base] ≠⇒ 𝑥

∧[{𝑦} ∪ modal base] =⇒ 𝑥

• Purposes are additions to the bouletic ordering source s.t.:

1. Why 𝑥? To 𝑦.

∧[modal base] ≠⇒ 𝑦

∧[{𝑥} ∪ modal base] =⇒ 𝑦

𝑦 is not already likely (todo: write this formally)

• Negative why-questions presuppose the bouletic ordering sources of the questioner and the

answerer are the same. (Maybe it is enough to presuppose that if the question-answer pair is

“Why !𝑥? To 𝑦” then 𝑥 is presupposed to be likely, and 𝑦 is a proposition entailed by !𝑥 that

can be made less likely.)

In rule 1, note that adding 𝑦 to the bouletic ordering source will necessarily make 𝑥 more likely,

because the set of worlds where 𝑥 is true is a subset of the accessible worlds where 𝑦 is true. In

rule 7.5, the informal interpretation is that we assume a presupposition that the bouletic ordering

source was previously worked out by the questioner, and so some condition outside of it must have

changed.

To see how this representation works in practice, consider the following toy example as the

world view of the questioner:
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• Modal base:

1. If Mary asks him, John will tear down the wall.

2. If John tears down the wall, he is showing off.

3. John doesn’t have time to tear down the wall and also play video games.

• Bouletic ordering source:

1. John wants to play video games.

We start our analysis by noting that, in the toy world as it stands, John is likely to play video games

and not tear down the wall. What happens to this world view if a successful why-question-answering

exchange takes place?

• Positive question: Why did John tear down the wall?

Reason: Because Mary asked him to.

In this case the answer provides an addition to the modal base. Initially the proposition 𝑥 = “John

tore down the wall” was possible but unlikely. After the addition of 𝑦 = “Mary asked John to tear

down the wall” to the modal base, the proposition 𝑥 is guaranteed to be true and the ordering source

has become irrelevant.

• Positive question: Why did John tear down the wall?

Purpose: To show off.

In this case the answer provides an addition to the bouletic ordering source. The proposition 𝑥 =

“John tore down the wall” was unlikely before the addition. After the addition of 𝑦 = “John wants to

show off.” has been added to the ordering source, and so 𝑥 has become more likely, specifically

just as likely as “John played video games.” The reason 𝑥 has become more likely is that any world

where “John tore down the wall” also must have “John showed off” (by 2) and so if “John showed

off” has become likely, then “John tore down the wall” has become more likely as well.
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• Negative question: Why did John not play video games?

Reason: Because Mary asked him to tear down the wall.

This case works in essentially the same way as example 7.5. The bouletic ordering constraint

introduced by the negation is not relevant since the answer only affects the modal base.

• Negative question: Why did John not play video games?

#Purpose: To show off.

Reason: Because he suddenly felt like he wanted to show off.

Our modeling of negations is critical in this case: we know that the questioner the bouletic ordering

sources of questioner and answerer are identical. As a result, an answer that directly adds to the

ordering source would not be as desirable for the questioner as a reply that gives an addition to the

modal base that in turn affects the composition of the bouletic ordering source or the relevance of

existing rules within it.

Why do negative why-questions contain this presupposition? In an ordinary, information

seeking intent, a questioner is unlikely to go through the trouble of posing their question in negative

form. They have observed that a certain proposition is true and they are simply seeking to increase

its likelihood in their world view. If the questioner chooses to add a negation, it must be because they

have a degree of surprisal associated with discovering that a certain proposition that they thought

was likely is actually not likely. This therefore presupposes that the likelihood of that proposition

had already been computed by the questioner.

Why does the surprisal presupposition not cover the modal base? Essentially, it seems to fit

the empirical data well and it is a simple constraint to add to our model of why-questions. However

if a surprisal presupposition is to be made, then the bouletic ordering source is the only place where

it makes sense with the data.
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7.6 Other Types of Answers to why-questions

Another way of viewing answers to why-questions is that they are linguistic counterparts of

explanations. However, there seems to be substantial misalignment between our two-way reason and

purpose classification, and the much richer taxonomies of explanations provided by philosophers.

As a notable example, [99] provides us with five types of explanations:

• 1. Reason (‘Why P?’ = ‘Why should I believe that P?’)

2. Familiarity (reduction to the familiar)

3. Unification (special case of a general pattern)

4. Necessity (the event in question had to occur)

5. Causation (the answer is actually a cause)

It is difficult to make a connection, but one first observation to make is that in these explanation

types, the modality appears in the why-question and not in the answer. For example for the reason

explanation type (in Lipton’s terminology), we might be able to examine examples such as the

following:

• Why is the butler the killer?

They found his fingerprints on the murder weapon.

This can be related to the doxastic modality, where, however, it is the question that presents a

proposition from the ordering source, rather than the answer.

Similarly an example of necessity could be the following:

• Why do engines need to be broken in?

To produce the last small bit of size and shape adjustment that will settle them into a stable

relationship for the rest of their working life.

• Why were the Athenians required to send fourteen sacrificial maidens and young men to king

Minos?

To be devoured in retribution for the death of Minos’ son Androgeos.

102



Again the fact that this question is a necessity is determined by the presence of need and require in

the question rather than in the answer.

In connection to unification and familiarity, potentially related to the stereotypical modality,

there might be a promising connection to be made with answers to why-questions introduced by

conjunctions or prepositions other than to and because. We found a small but interesting set of

why-questions whose answers start with as, in, and by:

• Why did people collect the blood of king Charles I?

As a memento.

• Why was alchemy important to the development of chemistry as a science?

By performing experiments and recording the results.

• Why do we have a big feast on Christmas day?

In the tradition of the Christian feast day.

While it might be possible to coerce the answer types in these examples as purpose or reason, it

might be more natural to think of the propositions in the answers as general rules for which the

proposition in the question is a special case.

7.7 Conclusion

In this work, we find that several predictions based on syntactic accounts of why-questions do not

seem to hold in a real world dataset. Surprisingly, one specific prediction about the incompatibility

of purpose answers with negative why-questions holds with a surprisingly high level of statistical

significance.

We argue that the syntactic justification for this prediction is not satisfactory and we propose

a new analysis based on modalities where why-questions are defined as requests for additions to

conversational contexts. Within this analysis we show that reasons and purposes can be distin-

guished based on the type of conversational context they are added to. We argue that purposes are

incompatible with why-questions because of a presupposition on the ordering source having already
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been worked out. Finally we show how some other known types of explanations might within reach

for this analysis by looking at the type of the ordering source that the proposition in the question

belongs to.
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Chapter 8: Towards Computationally Verifiable Semantic Grounding

For Language Models

The chapter presents an approach to semantic grounding of language models (LMs) that concep-

tualizes the LM as a conditional model generating text given a desired semantic message formalized

as a set of entity-relationship triples. It embeds the LM in an auto-encoder by feeding its output

to a semantic parser whose output is in the same representation domain as the input message.

Compared to a baseline that generates text using greedy search, we demonstrate two techniques

that improve the fluency and semantic accuracy of the generated text. The first technique samples

multiple candidate text sequences from which the semantic parser chooses. The second trains the

language model while keeping the semantic parser frozen to improve the semantic accuracy of

the auto-encoder. We carry out experiments on the English WebNLG 3.0 data set, using BLEU to

measure the fluency of generated text and standard parsing metrics to measure semantic accuracy.

We show that our proposed approaches significantly improve on the greedy search baseline. Human

evaluation corroborates the results of the automatic evaluation experiments.

8.1 Overview

A statistical language model (LM) in its standard formulation assigns a probability to sequences

of tokens that constitute an (ideally lossless) representation of text units such as sentences, para-

graphs or larger. The original use for LMs was as prior probability in source-channel models for

automatic speech recognition, machine translation and other similar tasks. Such use cases for LMs

have largely disappeared with the shift to seq2seq models [120] as conditional LMs (direct models)

for text given speech, or text in a foreign language, or other topics.

Very large LMs trained on huge amounts of text have demonstrated bewildering capabilities in
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dealing with a large array of natural language processing and understanding tasks, e.g. GPT-3 [121],

PaLM [122], Gopher [123], or Lamda [124]. Displaying nearly flawless fluency, the text sampled

from LMs turns out to also be semantically adequate to an ad-hoc prompt setup in one- or a few-

“shot” manner on a wide range of NLP tasks [121]. This is surprising since the LM is trained strictly

as a generative model without any specific context other than the preceding text; as pointed out by

many, the text sampled from LMs trained on large amounts of surface text cannot be expected to

come with any weak or strong guarantees in terms of semantic adequacy, e.g. [125].

In this work, we approach semantic grounding of language models (LMs) by conceptualizing

the LM as a conditional model generating text given a desired semantic message formalized as a set

of entity-relationship triples. The LM is embedded in a semantic auto-encoder by feeding its output

to a semantic parser whose output is in the same representation domain as the input message.

We propose two techniques for improving the semantic adequacy of the text generated by the

LM. We find that both approaches improve the semantic 𝐹1 score significantly over the greedy

baseline while preserving the same text fluency as measured using BLEU or METEOR scores

against the reference text for a given 𝑆.

In order to mitigate the limitations of the semantic parser (SP) in our evaluation, we also conduct

human evaluations. We collect a high-recall set of possible meaning triples represented by a piece

of text and ask human raters to evaluate whether each one is present in the text. Starting with a

high-recall set of triples mitigates recall failures of the SP, while collecting human ratings mitigates

precision failures in the high-recall set. Human evaluation corroborates the conclusions from

experiments using automatic metrics, showing that our proposed techniques lead to a small but

significant improvement in semantic grounding of generated text.

8.2 Background and Intuition

The use case for decoder-only auto-regressive LMs—input text (“prompt”) is fed to the LM

and then output text is sampled from the LM given the state induced by the “prompt”—follows

the original use of seq2seq models [120] and is best described by conceptualizing the LM as a
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conditional model 𝑃(𝑊 |prompt), a probability distribution on output text𝑊 given an input textual

prompt.

In our work we take a similar view on LMs, framing them as conditional models whose purpose

is to encode meaning 𝑆 as text 𝑊 , 𝑃(𝑊 |𝑆; 𝜃), except that the semantic message 𝑆 is formally

defined and different from surface form text. Communication thus entails the exchange of semantic

messages 𝑆1, . . . 𝑆𝑛 between conversation partners, or reader and writer, encoded as utterances

𝑊1, . . . ,𝑊𝑛. Besides possessing a LM that is used to verbalize the semantic message 𝑆 into words

𝑊 , each speaker is able to “decode” a semantic meaning 𝑆+ = argmax𝑆 𝑅(𝑆 |𝑊 ; 𝜙) using a semantic

parser (SP).

In this view, training a LM from surface text alone is no longer possible. To be able to do so

we first need a SP that is able to recover the semantic message 𝑆 in a unit of text𝑊 . Assuming the

SP is available, we can use it to generate training pairs (𝑆,𝑊) for a semantic LM 𝑃(𝑊 |𝑆; 𝜃). The

question of whether such a LM is semantically grounded is now well posed: we can use held-out

semantic messages 𝑆∗ and then sample text𝑊∗ from our LM 𝑃(𝑊 |𝑆∗; 𝜃) and compare the output

𝑆+ = argmax𝑆 𝑅(𝑆 |𝑊∗; 𝜙) of the SP to the desired input message 𝑆∗ and thus check the semantic

accuracy of text generated by the LM.

However, the exact definition of semantic messages 𝑆 and finding a SP that is able to extract

them from unrestricted text is infeasible with current methods. For a proof of concept we settle on

using the highly constrained setup in the WebNLG challenge [15]. In this setup, a large text-to-

text seq2seq model such as T5 [4] is incrementally trained as a WebNLG SP and its accuracy in

producing entity-relationship (E-R) triples as defined in WebNLG is measured on available test data.

Using this SP and a semantic LM 𝑃(𝑊 |𝑆; 𝜃), also bootstrapped from T5 and incrementally trained

on the WebNLG training data, we can measure the extent to which the LM produces "semantically

grounded" text by computing Precision and Recall between the input set of E-R triples fed to the

LM and that output by running the SP on the text sampled from the LM.

In the absence of a perfect SP (with Precision/Recall = 1.0) we can no longer computationally

verify the semantic grounding of the LM: a SP with Recall < 1.0 misses E-R triples present in the
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text generated by the LM and we can no longer strictly guarantee its semantic adequacy. We do note

however that a SP that does come close to Recall = 1.0 at a Precision < 1.0 value can still guarantee

semantic adequacy of the text as long as the set of E-R triples produced is a subset or equal to the

desired input set.

Our work evaluates the semantic adequacy of LM generated text𝑊∗ = GENERATE(𝑃(𝑊 |𝑆∗))

and investigates algorithms that improve it while preserving fluency.

A family of simple inference-time techniques consists of sampling different word sequences in

ways that preserve fluency and picking the one that produces the highest semantic 𝐹1 score with

respect to the input 𝑆, without re-estimation of the LM parameters. Another approach conceptualizes

the LM followed by the SP as a semantic auto-encoder and estimates the LM, while keeping the SP

“frozen” such that the output sequence𝑊∗ maximizes the probability of the correct semantic parse

𝑅(𝑆∗ |𝑊∗). The latter estimation approach can be applied in both training and at inference time; in

this work we only investigate the latter.

8.3 Related Work

The idea of building auto-encoders for language where the latent variable itself is language was

previously explored by [126], where the authors propose an inference approach for sentence com-

pression based on variational auto-encoders. Unlike [126], our work draws the latent representation

from a probability distribution conditioned on the input semantic parse, rather than a background

language model. The optimization strategy is also different, since we perform a small number of

gradient descent steps instead of employing variational inference.

[127] tackle a very similar problem in a reinforcement learning setup, training both LM ("narra-

tor") and open information extraction models jointly. Our work fixes the semantic parser while still

taking advantage of the ability to back-propagate the error of reconstructing the correct semantic

message.

The approach of data-to-text-to-data is also a somewhat common evaluation strategy. Starting

with [128], people have been using information extraction to match information in text with that
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of the input. More recent work like [129] tries to parse text into AMRs. In this work we go a

step further and attempt to directly improve generation quality by sampling or by backpropagating

parsing signals into the generation component.

8.4 Model

Let𝑊 be a text unit (a sentence in the WebNLG data) and 𝑆 be a representation of the semantic

message of𝑊 (a sequence of WebNLG triples). We define a semantic LM and a semantic parser as

two sequence-to-sequence models:

• 𝑃(𝑊 |𝑆; 𝜃): a semantic LM trained to encode a semantic message 𝑆 into text units𝑊 ;

• 𝑅(𝑆 |𝑊 ; 𝜙): a semantic parser (SP), trained to decode the semantic message 𝑆 from a text

unit𝑊 .

Our objective is to develop a method that generates computationally verifiable text: given a semantic

message 𝑆∗, we would like to find a verbalization𝑊∗ such that running the semantic parser 𝑅 on

𝑊∗ will result in a semantic message 𝑆+ as close as possible to the original 𝑆∗. In this work we

compare a baseline to two methods designed to achieve this objective: a sampling approach and a

new approach we refer to as “greedy finetuned”.

In the baseline approach we decode greedily with 𝑃(𝑊 |𝑆; 𝜃) to encode the input semantic

message 𝑆∗ into the text unit 𝑊∗. In the sampling approach, we sample text units from the

𝑃(𝑊 |𝑆 = 𝑆∗; 𝜃) model using temperature or nucleus sampling [130], then run the semantic parser

on every sampled text unit, finally select as𝑊∗ the text unit that maximizes the 𝐹1 score between

the semantic parse 𝑆+ = argmax𝑠 𝑅(𝑆 |𝑊∗; 𝜙) and the input semantic message 𝑆∗.

In “greedy finetuned” we take a more complex approach and re-estimate the LM based on

feedback from the semantic parser. We iteratively perform greedy decoding with the semantic LM

𝑃 to obtain a text unit𝑊𝑖, then adjust the semantic LM 𝑃 while keeping the SP model 𝑅 “frozen” in

order to increase the probability of reconstruction of the correct semantic message. After 𝑘 steps,
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we pick the final text unit𝑊∗ from the set {𝑊1, . . . ,𝑊𝑘 }, choosing the one that leads to the best F1

score between the decoded semantic message 𝑆+ and the original message 𝑆∗.

The semantic LM update in “greedy finetuned” is performed by taking a gradient ascent step on

the following objective function:

𝐽 (𝑆∗, 𝑆+; 𝜃, 𝜙) = E
𝑊∼𝑃(·|𝑆∗;𝜃)

[𝑅(𝑆+ |𝑊 ; 𝜙)],

where keeping the semantic parser frozen corresponds to keeping 𝜙 constant and only updating 𝜃.1

Since both 𝑃 and 𝑅 are neural networks, the gradient ascent step for 𝜃 can mostly be computed by

backpropagation. However, the objective 𝐽 is not differentiable because it requires auto-regressively

decoding from the model 𝑃 to sample values for𝑊 and estimate the expectation of correct recon-

struction. We address this difficulty by sampling the text unit𝑊 using greedy decoding and then

employing the straight-through gradient estimator ([132], [133]). The estimator is illustrated in

more detail in section 8.4.1.

In addition to (1) greedy (baseline), (2) sampling and (3) greedy finetuned, we consider two

ensemble methods: (4) greedy+sampling and (5) +sampling. Greedy+sampling will run both

methods (1) and (2), and then pick the verbalization 𝑊∗ that leads to the reconstruction with the

highest F1 score. Greedy finetuned+sampling will similarly pick the best output after running

methods (2) and (3).

8.4.1 Straight Through Approximation

To propagate the gradient of 𝐽 through the SP into the language model we need to compute

𝜕𝑅(𝑆 |𝑊∗; 𝜙)
𝜕𝜃

,

where𝑊∗ = argmax 𝑃(𝑊 |𝑆+; 𝜃) is computed using greedy search G_SEARCH.

1We note that greedy finetuned is expensive since it requires updating all the parameters of the semantic LM 𝑘 times
for every inference batch. The approach could be made substantially more efficient, however, by employing parameter
efficient methods such as prompt tuning [131].
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Following [133], during the forward pass we transmit the text tokens 𝑊∗, and during the

backward pass we pretend that for every token the real value distribution over the vocabulary was

transmitted instead. For this purpose, we can regard the𝑊∗ sequence passed to the SP as a binary

tensor

𝑊∗ = ONE_HOT(G_SEARCH(log 𝑃(𝑊 |𝑆+; 𝜃)))

of shape (𝑏, 𝑙, 𝑣) where 𝑏 is the batch size, 𝑙 is the maximum length in tokens or word-pieces for

text sequences including padding, and 𝑣 is the size of the vocabulary.

In the straight-through (ST) approximation with automatic differentiation, we replace the𝑊∗

tensor in the computational graph with the following:

𝑊∗
ST = 𝑃(𝑊∗ |𝑆+; 𝜃) +

S_G[𝑊∗ − 𝑃(𝑊∗ |𝑆+; 𝜃)]

where the S_G[·] stop-gradient operator is the familiar pass-through in the forward direction and

none-shall-pass in back-propagation. Thus in the forward direction the computation will proceed

with𝑊∗
ST = 𝑊∗, but in the backward direction the computation will behave as if𝑊∗

ST = 𝑃(𝑊∗ |𝑆+; 𝜃).

8.5 Data Set

The WebNLG corpus [134] comprises sets of triplets describing facts (entities and relations

between them) and the corresponding facts rendered in the form of natural language text. The corpus

contains sets of up to 7 triplets alongside one or more reference texts for each set. As explained in

Section 2 of [15], the English dev set consists of categories and entities seen in the training data; the

English test set (D2T) consists of a mixture of seen entities and categories, as well as unseen entities

and 5 unseen categories (28%, 22% and 50%, respectively), making it hard to expect correct text

generation and/or semantic parsing from our models. Nevertheless, we experiment in this condition

as well.

The dataset can be used for work in both natural language generation and the reverse task of
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Table 8.1 Automatic evaluation of our method on “seen” test data (dev split of English WebNLG
3.0). Grayed rows have BLEU scores more than 1% below the baseline. The “Improved” column
displays the ratio of generations with a higher triple F1 compared to the greedy baseline.
Method BLEU METEOR chrF++ Triple P / R / F1 Improved
greedy (baseline) 0.64 0.46 0.76 0.93 / 0.87 / 0.90 -
sampling 0.51 0.43 0.71 0.97 / 0.92 / 0.95 -
sampling (t=0.3, p=0.95) 0.63 0.46 0.76 0.96 / 0.91 / 0.94 -
greedy+sampling 0.60 0.46 0.75 0.98 / 0.93 / 0.95 0.20
greedy+sampling (t=0.3, p=0.95) 0.63 0.47 0.76 0.96 / 0.91 / 0.94 0.14
greedy finetuned 0.62 0.46 0.76 0.96 / 0.91 / 0.93 0.13
greedy f.+sampl. (t=0.3, p=0.95) 0.63 0.46 0.76 0.97 / 0.92 / 0.95 0.17

triplets extraction. Its main use was for the WebNLG natural language generation challenge with the

goal of mapping the sets of triplets to text, including referring expression generation, aggregation,

lexicalization, surface realization, and sentence segmentation.

The initial (2017) WebNLG shared task required participating systems to generate English

text from a set of DBpedia triples [16], whereas the more recent (2020) WebNLG 3.0 data set

used for the WebNLG+ challenge [15] additionally includes generation into Russian and semantic

parsing of English and Russian texts, encompassing four tasks: RDF-to-English, RDF-to-Russian,

English-to-RDF and Russian-to-RDF.

We only use WebNLG 3.0 English data, starting from a pre-trained language model [4] and fine-

tuning it on the WebNLG training data for either LM or semantic (RDF) parsing. Since the model

uses an encoder-decoder architecture, we feed the conditioning information (RDF triples when

incrementally training the LM or natural language text when training the SP) to the encoder and then

let the decoder generate the output sequence (natural language text or RDF triples, respectively).

We note that the exact order of the RDF triples for a given reference text is a degree of freedom that

we could experiment with.

8.6 Experiments

As semantic LM and semantic parser we train T5 XXL models on the training set split of

WebNLG for 100 steps with a batch size of 256 examples. We then compare three main methods:
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Table 8.2 Automatic evaluation of our method on “mixed: seen and unseen” test data (test split of
English WebNLG 3.0). Grayed rows have BLEU scores more than 1% below the baseline. The
“Improved” column displays the ratio of generations with a higher triple F1 compared to the greedy
baseline.
Method BLEU METEOR chrF++ Triple P / R / F1 Improved
Amazon AI (2020 1st) 0.54 0.42 0.69
bT5 0.52 0.41 0.68
greedy (baseline) 0.54 0.41 0.69 0.58 / 0.50 / 0.54 -
sampling 0.44 0.39 0.64 0.66 / 0.58 / 0.62 -
sampling (t=0.3, p=0.95) 0.53 0.41 0.68 0.65 / 0.57 / 0.60 -
greedy+sampling 0.51 0.41 0.67 0.67 / 0.59 / 0.63 0.31
greedy+sampling (t=0.3, p=0.95) 0.54 0.41 0.69 0.65 / 0.57 / 0.61 0.23
greedy finetuned 0.53 0.41 0.68 0.65 / 0.57 / 0.61 0.20
greedy f.+sampl. (t=0.3, p=0.95) 0.53 0.41 0.68 0.69 / 0.61 / 0.65 0.34

Table 8.3 Exact match parsing performance of our T5 semantic parser (SP) on Text2RDF English
WebNLG.

Model F1 P R
Amazon AI (Shanghai) 0.67 0.69 0.69
bt5 0.68 0.67 0.70
Our T5 0.63 0.63 0.64

(1) the greedy decoding baseline, (2) sampling with different temperatures and nucleus probabil-

ity mass, (3) greedy finetuned. We additionally report ensembles of these methods. (1)+(2) is

“greedy+sampling”, where we perform both greedy decoding and sampling and then pick the gener-

ated text with highest semantic parsing F1 score. Similarly (2)+(3) is “greedy finetuned+sampling”.

For the sampling approach we alway pick 4 samples, we set the temperature to either 1.0 or

0.3 and the nucleus probability mass to either 1.0 or 0.95. For the greedy finetuned approach we

perform gradient descent steps on 𝜃 with AdaFactor, with a learning rate of 10−3. We perform

4 iterations and return the hypothesis with the best semantic reconstruction. Greedy finetuned is

performed on batches of 64 examples.

8.6.1 Automatic Evaluation

As an automatic metric of semantic grounding, we measure the standard Precision, Recall and

F1 metrics used for evaluating semantic parsing accuracy, fixing the input WebNLG triples as
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Figure 8.1: Screenshots of our evaluation template: (1) fluency question, (2) data coverage questions,
and (3) a question asking annotators if the triples cover all the information in the text.

reference and the triples reconstructed by the semantic parser as hypothesis. As for the fluency of

the text generated by the LM, we measure it using BLEU [135], METEOR [136] and chrF++ [137]

against the human references in the D2T data sets. We note that there are between one and five

references for each RDF triple, frequently two or three.

The results of automatic evaluation on the English section of WebNLG 3.0 are shown in Tables

8.1 and 8.2. We first note that our greedy baseline matches the performance of the 2020 WebNLG

winning system on BLEU and chrF++. Sampling and greedy finetuned increase triple F1 by

6% and 7% absolute on the test set while keeping the BLEU score and other metrics within one

point from the greedy baseline, showing that the semantic match with the desired input meaning

can be significantly increased at minimal cost in the fluency of the generated text. The greedy

finetuned+sampling ensemble gives us the highest performance, increasing triple F1 by 11%, again

keeping the fluency metrics within 1% from the greedy baseline. The same overall trends can be

observed for the WebNLG dev set in Table 8.1. We additionally note that the sampling approach
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Table 8.4 Human evaluation results. The row labeled “reference” has the evaluation of the human-
generated reference text (provided as part of the test set). Triples is the total number of triples rated,
not the number of triples generated by the parser for a particular system. See text for details.

Method Examples Triples Fluency Precision Recall F-Score
reference 206 1278 1.00 0.77 0.91 0.84
greedy (baseline) 206 1278 1.00 0.74 0.84 0.78
greedy+sampling 115 719 0.99 0.74 0.87 0.80
greedy finetuned 112 675 0.98 0.76 0.84 0.80

only performs well in this evaluation if temperature and nucleus probability mass are tuned.

We additionally report for both dev and test set the fraction of generations with improved

triple F1 compared to the greedy baseline. We only report the improved ratio for methods that are

ensembled with greedy and so are guaranteed to always improve on automatically measured triple

F1 compared to the baseline. We find that our best method, greedy finetuned+sampling, improves

34% of our generations according to our automated metric of semantic verification.

As a sanity check for our semantic parser model, we report in Table 8.3 the performance of

our T5 semantic parser on the official evaluation metrics of WebNLG Text2RDF. Since we only

fine-tune T5 on the training split of WebNLG and we do not employ any additional techniques, the

performance of our parser is competitive but lower than SotA systems.

8.6.2 Human Evaluation

Because our inference method relies on the SP, one could reasonably question whether it is

appropriate to use the same SP also in the automatic evaluation. For example, it is possible that our

method is learning to cheat by finding text with incorrect semantics that the text-to-parse model

incorrectly parses as the desired semantics. In order to alleviate such concerns we augment the

automatic evaluations with human ratings.

Ideally, expert annotators would encode the DBPedia semantics of reference text as well as

system outputs. However, due to the size of DBPedia with tens of thousands of possible relations, it

is infeasible for a human to perform the parsing task. Instead, we present annotators with a text as

well as candidate triples and ask them to evaluate whether each candidate triple is represented in the
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given text.

We evaluate the text generated by our models in the following way:

1. Use the SP model to generate possible triples for the reference text as well as all model

outputs.

2. For the reference text and each system output, we present the raters with that text and the

union of parse triples generated in step 1.

3. For each triple, the raters verify whether it is implied by the text.

4. We compute precision and recall for the reference text and each system with respect to the

union of generated triples and the human ratings.

We evaluate samples where the greedy decoding baseline did not produce the same result as

greedy+sampling and greedy finetuned. We see from Table 8.1 that this happens in 23% and 20%

of examples respectively. We include the exact phrasing of the questions as well as a screenshot of

the rating interface in Figure 8.1. Note that in addition to the semantic annotation we also ask the

raters to judge the fluency of the generated text.

The results are shown in Table 8.4. The row labeled reference refers to the human-generated

reference text which has a surprisingly low precision and recall. The remaining rows have the same

definitions as in Table 8.1. We obtained 3-way annotations for 112 examples for greedy finetuned

and 115 examples for greedy+sampling (and the corresponding 206 examples for greedy decoding).

Overall, we see that sampling improves recall while greedy finetuned improves precision, while

not significantly changing the fluency of the text. Using bootstrap resampling on the examples, we

find that greedy+sampling has significantly higher recall than greedy (p value 0.97), but greedy

finetuned is not better at the 95% level in terms of precision (p value 0.948 with 10k samples). The

other metrics are not significantly different. In addition to corroborating the results from automatic

evaluation, the human evaluation shows strikingly low precision and recall of the “reference” text.

We show two illustrative examples of losses. First, we display an example below of a recall loss,

where the annotator did not adhere strictly to the semantics.
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Input: Zaoyang | isPartOf | Hubei

Nie_Haisheng | birthPlace | Zaoyang

Target: Nie Haisheng is from Zaoyang in Hubei province.

In this example, the rater chose to realize the birthPlace relation using the phrase is from,

but those were judged by our annotators as not having the same meaning.

Below is an example of a precision error:

Input: Zaoyang | isPartOf | Hubei

Nie_Haisheng | mission | Shenzhou_6

Nie_Haisheng | birthPlace | Zaoyang

Target:

Born in Zaoyang city, Hubei, Nie Haisheng participated in the Shenzhou 6 mission.

Implied:

Nie_Haisheng | birthPlace | Hubei

In the example, Nie_Haisheng | birthPlace | Zaoyang and Zaoyang | isPartOf | Hubei

together imply Nie_Haisheng | birthPlace | Hubei and the SP identified this by generating

the implied relation. This was accepted by our annotators, and our metrics show it as a precision

loss – the generated text includes a triple that was not in the desired parse.2

8.6.3 Generation Examples

Table 8.5 displays example generated text for the two main approaches described in this paper

(greedy+sampling and greedy finetuned), compared to the greedy baseline. As noted in the previous

section, we find that greedy+sampling has a larger effect on reducing triple deletion, corresponding

to the recall gain in Table 8.4, while greedy finetuned is better at mitigating triple insertion,

corresponding to a precision gain.

As can be seen in the third row of Table 8.5, removing inserted triples with greedy finetuned

2It may be possible in theory to enumerate implied relations by writing rules to avoid penalizing the text presented
to the raters for including the semantics implied by the desired triples. However, this would make results more difficult
to reproduce, so instead note that this is a shortcoming of the evaluation of the generated semantics.
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Table 8.5 Text generated by the two main approaches described in this work (greedy+sampling
and greedy finetuned) compared to the a baseline greedy generation, for two different sets of input
triples. Inserted and deleted triples are determined by human annotators as described in Section
8.6.2.

Method Generated Text Inserted Triples Deleted Triples
greedy
(baseline)

The University of Burgundy
is located in Dijon, France. It
has 2900 staff and 16800 stu-
dents. Dijon has the postal
code 21000.

UniversityOfBurgundy
| country | France :
UniversityOfBurgundy
| numberOfStudents |
16800 : Dijon | country
| France

UniversityOfBurgundy |
numberOfUndergraduate
Students | 16800

greedy+
sampling

The University of Burgundy
is located in Dijon, France
and has 2900 employees and
16800 undergraduate students.
The postal code of Dijon is
21000.

UniversityOfBurgundy
| country | France
: Dijon | country |
France

-

greedy
finetuned

The University of Burgundy
is located in Dijon, 21000. It
has 2900 staff and 16800 un-
dergraduate students.

- -

greedy
(baseline)

Alan Shepard was born in
New Hampshire, United
States on November 18th,
1923. ...

- AlanShepard |
nationality |
UnitedStates

greedy+
sampling

Alan Shepard was born in
New Hampshire on Novem-
ber 18th, 1923. He was a
United States national and ...

- -

greedy
finetuned

Alan Shepard was an Ameri-
can born in New Hampshire
on November 18 1923. ...

- AlanShepard |
nationality |
UnitedStates

can at times come at the cost of fluency. In this case the model is led to output “Dijon, 21000” to

indicate the postal code and avoid mentioning the country in which Dijon is found.

8.7 Conclusions

We have presented an approach to semantic grounding of language models that conceptualizes

the LM as a conditional model generating text given a desired semantic message and embeds it into

a semantic auto-encoder model by feeding the LM output to a semantic parser whose output is in

the same representation domain as the input message. We evaluate a simple baseline that generates

text using greedy search and show that one can improve the semantic accuracy of generated text by
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two simple techniques. The first is a sampling method that generates a few candidate text sequences

and lets the semantic parser choose the better one. The second trains the language model (while

keeping the semantic parser frozen) with the aim of improving the auto-encoder semantic accuracy.

We carry out experiments on the English WebNLG 3.0 data set, using BLEU to measure the fluency

of generated text and standard semantic parsing metrics to measure the match between the output

of the parser and the desired (input) semantic message. We show that our proposed approaches

improve the semantic accuracy of generated text significantly over the greedy search baseline and are

partially additive. Human evaluation corroborates the results of automatic evaluation experiments

and suggests that the approaches are complementary, greedy+sampling improving triple recall and

greedy finetuned improving triple precision.

8.8 Limitations and Future Work

The main challenge of this work has been finding a suitable representation for the desired

semantics of the generated text along with a semantic parser that could generate such representations

from unconstrained text. The suitability of RDF triples is questionable for open domain semantics

representation in unconstrained text, so an approach aimed at widening the scope of the current

work would have to first address this obstacle.

Assuming the parser operating point on the Precision/Recall curve can be brought close enough

to perfect Recall, the framework proposed would lend itself to computationally verifiable semantic

grounding, namely being able to guarantee the fact that the generated text does not convey meaning

outside the intended one.
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Chapter 9: QAMELEON: Multilingual QA with Only 5 Examples

The availability of large, high-quality datasets has been a major driver of recent progress in ques-

tion answering (QA). Such annotated datasets, however, are difficult and costly to collect and rarely

exist in languages other than English, rendering QA technology inaccessible to underrepresented

languages. An alternative to building large monolingual training datasets is to leverage pre-trained

language models (PLMs) under a few-shot learning setting. In this chapter we present QAMELEON,

an approach that uses a PLM to automatically generate multilingual data upon which QA models

are trained, thus avoiding costly annotation. Prompt tuning the PLM with only five examples per

language delivers accuracy superior to translation-based baselines; it bridges nearly 60% of the gap

between an English-only baseline and a fully-supervised upper bound trained on almost 50,000

hand-labeled examples and consistently leads to improvements compared to directly fine-tuning a

QA model on labeled examples in low resource settings. Experiments on the TYDIQA-GOLDP and

MLQA benchmarks show that few-shot prompt tuning for data synthesis scales across languages

and is a viable alternative to large-scale annotation.

9.1 Overview

Question answering (QA) has seen impressive progress in recent years enabled by the use of

large pre-trained language models [138, 139, 140], and the availability of high-quality benchmarks

[20, 141, 7]. Many QA datasets frame the task as reading comprehension where the question

is about a paragraph or document and the answer is a span therein. Advances in QA modeling

have been primarily reported for English, which offers a considerable amount of high-quality

training data compared to other languages. More recently, efforts have focused on the creation

of multilingual QA benchmarks such as TYDI QA (10 languages; [142]), MLQA (6 languages;
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[143]), and XQUAD (10 languages; [144]). Among these, only TYDI QA is genuinely large-scale;

MLQA and XQUAD are limited to an evaluation set due to the high cost and labor required to

collect data across languages.

As a result, efforts to localize QA models to new languages have been primarily focusing on

zero-shot approaches. Recent proposals include using machine translation to approximate training

data for supervised learning [143], and data augmentation via generating synthetic questions for new

languages [145, 146]. Both approaches rely on transfer from English, which leads to a dependence

on translation artifacts [147, 148] and a bias towards the linguistic characteristics of English,

which is not the best source for all target languages [149]. However, annotating a minimally-sized

data sample can potentially overcome these limitations while incurring significantly reduced costs

compared to full dataset translation [150].

�জল হতসনা িদবস আওয়ামী লীগসহ বাংলােদেশর
�বশ িকছু রাজৈনিতক দল কতৃর্থে ক প্রিত বছর ৩রা নেভতৃকর পািলত হয়
১৯৭৫ সােলর এই িদেন আওয়ামী লীেগর চারজন জাতীয় �নতাঃ এবং
সােবক স্বরাষ্ট্রমন্ত্রী আবলু হাসনাত �মাহাɖদ কামাাতǵামান হতসনাকােȉর
মোহৃিত স্বরণােথর্থে এ িদবস পালন করা হয়

আবলু হাসনাত �মাহাɖদ কামাাতǵামােনর মতুৃসন িদবস
কেব

১৯৭৫ সােল

Первая важная выставка 
импрессионистов проходила с 15 апреля по 15 мая 
1874 года в мастерской фотографа Надара. Там было 
представлено 30 художников, всего 165 работ. Холст 
Моне — «Впечатление. Восходящее солнце», ныне в 
Музее Мармоттен, Париж, написанный в 1872 году дал 
рождение термину «импрессионизм» [...]

Где состоялась первая выставка 
импрессионистов?

мастерской фотографа Надара

Первая важная выставка 
импрессионистов проходила с 15 апреля по 15 мая 1874 
года в мастерской фотографа Надара. Там было 
представлено 30 художников, всего 165 работ. [...]

Где состоялась первая выставка 
импрессионистов?

мастерской фотографа Надара
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পািলত হয় ১৯৭৫ সােলর এই িদেন আওয়ামী লীেগর চারজন জাতীয়
�নতাঃ সােবক উপরাষ্ট্রপিত �সয়দ নজাতল ইসলাম সােবক বাংলােদশী
প্রধানমন্ত্রী তাজউțীন আহমদ কসনােȹন মনসুর আলী এবং সােবক
স্বরাষ্ট্রমন্ত্রী আবলু হাসনাত �মাহাɖদ কামাাতǵামান হতসনাকােȉর মোহৃিত
স্বরণােথর্থে এ িদবস পালন করা হয়

আবলু হাসনাত �মাহাɖদ কামাাতǵামােনর মতুৃসন িদবস
কেব

১৯৭৫ সােল

Figure 9.1: Synthetic data generation for multilingual question-answering (QA). Left: Examples of
the multilingual QA task. Translations are added for readability. Middle: Strategies for localizing
QA models to new languages: 1. Using English QA data as a zero-shot approach, 2. with Machine
Translation (MT) to approximate training data for supervised learning, and 3. few-shot approaches
with a handful of multilingual examples. Right: Model performance on the multilingual QA task.
We report average Exact Match (EM) across all languages on the TYDIQA-GOLDP dataset [142].

In this paper, we argue that a few-shot approach in combination with synthetic data generation

and existing high-quality English resources can mitigate some of the above mentioned artifacts.

Beyond question answering, multilingual approaches have succeeded at leveraging a small number
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of annotations within a variety of tasks [151] including natural language inference, paraphrase

identification, and semantic parsing [152]. Existing work [121, 153] has further shown that prompt-

ing pre-trained large language models (PLMs) can lead to strong performance on various tasks,

including question answering [154, 122] and open-ended natural language generation [155, 156].

Investigations of prompting in multilingual settings have also shown strong few-shot performance

in classification tasks [157], natural language inference [158], common sense reasoning [159],

machine translation [160], and retrieval [161].

We synthesize these directions into QAMELEON, an approach for bootstrapping multilingual

QA systems, with as few as five examples in a new target language (see Figure 9.1). We use gold

annotations to prompt-tune a PLM in order to automatically generate multilingual QA data, which

is then used to train a QA model. We find that QAMELEON delivers accuracy superior to zero-shot

methods and competitive translation-based baselines and in some cases competes with the fully

supervised upper bound. 1 Experiments on the TYDI QA [142] and MLQA [143] benchmarks

show that few-shot prompt tuning [163] scales across languages, significantly outperforms prompt

engineering [121] with the same number of labeled examples, and is a viable alternative to large-

scale annotation.

Our contributions include (a) a new approach to bootstrapping a multilingual QA system;

QAMELEON prompt-tunes a PLM with as few as five gold examples to automatically generate

multilingual QA data which is then used to train a QA model; (b) a series of experimental results

showing significant improvements over existing approaches in the few-shot regime, ranging from

12% absolute accuracy on TYDIQA-GOLDP [142] over an English-only baseline and 4% absolute

accuracy over a competitive translate-train baseline; (c) extensive analysis of the behavior of

QAMELEON in zero shot and low resource regimes, on different multilingual QA datasets, and in

comparison to prompt-engineering.

1This is noteworthy as multilingual models fine-tuned on translated data—also known as translate-train—form the
state of the art on most multilingual datasets [162].
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9.2 Synthetic Data Generation

Let D𝑙 denote a QA dataset with examples provided by human annotators, where 𝑙 is a target

language in a set 𝐿 of languages of interest. D𝑙 consists of samples (𝑐, 𝑞, 𝑎)𝑙 , where 𝑐 is a paragraph

of text, 𝑞 is a question, and 𝑎 is an answer extracted from 𝑐 (see Figure 9.1 left). We further use D𝑙,𝑛

to denote a dataset D𝑙 , but making 𝑛 explicit, with 𝑛 referring to the number of examples it contains.

For instance, Dfr,5 denotes a French QA dataset with 5 examples. Finally, let U𝑙 denote sets of

unlabeled paragraphs in language 𝑙; we assume these are in-domain with respect to the paragraphs

in D𝑙 but are not accompanied by questions or answers.

Throughout this work, we will assume the availability of Den, a large QA dataset in English

(source language). This assumption corresponds to the observation that most large-scale QA datasets

[20, 164, 165, 7] contain examples exclusively in English. For languages other than English, we

assume that only small datasets D𝑙,𝑛 are available for training (e.g., 𝑛 = 5) (“Few-Shot” scenario) or

no data at all (“English-Only” scenario). We will also assume that sets U𝑙 of unlabeled passages are

available for all target languages. Our task will be to synthesize QA data in each target language 𝑙

in order to train QA models on 𝑙 directly.

In the rest of this section we formally describe three ways of synthesizing QA data and give

further details on the two scenarios we consider, “English-Only” and “Few-Shot”.

9.2.1 Machine Translation (MT)

A widely adopted approach [143, 166] makes use of a machine translation system T to automat-

ically translate text from one language into another. Let T𝑙′ (D𝑙) denote the translation of dataset

D𝑙 from language 𝑙 to language 𝑙′. The translation is performed by independently applying T

to context 𝑐, question 𝑞, and answer 𝑎 for each example in the source dataset (see approach 2 in

Figure 9.1). A synthetic QA dataset DMT is generated by translating the entire English dataset into

each language of interest:

DMT = Den ∪
⋃

𝑙∈𝐿−{en}
T𝑙 (Den).
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The approach described here is known as “translate-train”. An alternative is “translate-test”,

where translation is employed during inference instead of training. Multilingual inputs are translated

to English and inference is done via an English QA model. The English predictions are then

translated back to the respective target language. We experimentally found “translate-test” to

perform poorly on our task in comparison to translate-train due to its reliance on multiple noisy

translation steps.

Note that training on DMT still relies on the support of the high-quality Den. Previous work

[167, 168] has highlighted various limitations with multilingual approaches based on MT including

(a) their dependence on the quality of available MT systems in a given language and, in turn,

the availability of high-quality (expensive) parallel data, (b) a potential misalignment of answer

spans after translation in context to the passage vs. translation of answers independently, and

(c) translationese artifacts and English-centric content topics [142].

9.2.2 Prompt Engineering (PE)

PLMs [121, 122] have recently shown unprecedented performance on a vast number of tasks,

including natural language generation, without the need for modifying any of the model’s parameters,

simply by hand-designing a textual prompt that instructs the model to perform a certain task.

Following [121], we consider a class of hand-designed prompts referred to as “prompting” or

“in-context learning”. The prompt starts with a free form instruction, followed by a small number

of instances exemplifying how the task is solved. An incomplete instance is then appended to this

prompt and the PLM performs the task by completing that instance. We refer to this approach as

”prompt engineering” (PE) since the input to the PLM has to be hand-engineered based on human

intuition about the target task (see approach 3 in Figure 9.1).

In order to hand-engineer prompts for our task, we use a small set of parallel examples C𝑙,𝑛

consisting of passages, questions, and their answers in the English source and target language 𝑙.

We discuss how we construct these examples shortly. For now, suffice it to say that we create two
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prompts for answer and question generation, respectively.2 Our first prompt is used to obtain an

answer 𝑎𝑙 in the target language 𝑙 from passage 𝑐𝑙 :

I will write potential answers

for the following passages .

Passage : 𝑐𝑙

Answer in English : 𝑎en

Answer in the original language : 𝑎𝑙

...

The second prompt generates question 𝑞𝑙 , utilizing passage 𝑐𝑙 and the previously predicted an-

swer 𝑎𝑙 :

I will write questions and answers

for the following passages .

Passage : 𝑐𝑙

Answer : 𝑎𝑙

Question in English : 𝑞en

Question in the original language : 𝑞𝑙

...

We generate synthetic data instances (𝑐, 𝑞, 𝑎)𝑙 where 𝑎 and 𝑞 are inferred by applying our two

prompts consecutively on each passage 𝑐𝑙 ∈ U𝑙 (recall U𝑙 is the set of unlabeled passages in target

language 𝑙).

In the English-Only scenario, neither questions nor answers are available in target language; we

obtain these by resorting to machine translation:

Cen−only
𝑙,𝑛

=

{(T𝑙 (𝑐), 𝑞, 𝑎,T𝑙 (𝑞),T𝑙 (𝑎)) | (𝑐, 𝑞, 𝑎) ∈ Den,𝑛},

In the “Few-Shot” setting, we have access to 𝑛-labeled examples (questions and answers) in the

2We find that joint answer and question generation using single-stage prompting performs worse in comparison to
two-stage generation.
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target language, and translate these into English:

C𝑛−shot
𝑙,𝑛 =

{(𝑐,Ten(𝑞),Ten(𝑎), 𝑞, 𝑎) | (𝑐, 𝑞, 𝑎) ∈ D𝑙,𝑛}.

Let P𝑒
𝑙

denote this prompting based generation. We can write the generated synthetic dataset as:

DPE = Den ∪
⋃

𝑙∈𝐿−{en}
P𝑒
𝑙 (U𝑙).

Note that, in the composition of the prompt, we always include English as an intermediate or

“bridge”, i.e., asking the model to predict questions and answers in English in addition to the ones

in the target language, as we experimentally found it improves the quality of the generated data.

The use of a bridge for this task can be thought of as an example of multilingual “chain of thought”

prompting [169].

9.2.3 QAMELEON (PT)

In this approach, an optimizer is utilized to minimize the cross-entropy loss by updating the

PLM’s parameters for 𝑃(𝑎, 𝑞 |𝑐, 𝑙) over a training set containing examples (𝑐, 𝑞, 𝑎)𝑙 for the languages

in 𝐿. As with PE, we generate the training set for the PLM in two ways. For “English-Only” we

construct the dataset as
⋃
𝑙∈𝐿 T (Den), while for “Few-Shot” we use

⋃
𝑙∈𝐿 D𝑙,𝑛.

Given the small size of the training set in the “Few-Shot” setting and the large size of current

models, we opt for using prompt tuning [PT; 163], a parameter-efficient fine-tuning variant where

only the embeddings of the first 𝑚 tokens in the input of the PLM are allowed to be modified by the

optimizer (see approach 3 in Figure 9.1). We note that in prompt tuning, like in prompt engineering,

the parameters of the PLM remain unchanged. What is trained is only a short soft prompt that is

prepended to the input embeddings at inference time.

We use P𝑡
𝑙

to denote the operation of generating question-answer pairs through greedy decoding

on the prompt-tuned PLM, by taking an unlabeled passage 𝑐𝑙 ∈ U𝑙 as input, preceded by a few
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tokens of encoding language 𝑙. We finally obtain the synthetic QA dataset DPT as:

DPT = Den ∪
⋃

𝑙∈𝐿−{en}
P𝑡
𝑙 (U𝑙).

9.2.4 Data Assumptions

English-Only In this scenario, only training data in English is available, denoted as Den. Prompt

Engineering (PE) assumes parallel exemplars are available, while Prompt Tuning (PT) requires

exemplars in the target language only. Both are possible by translating examples of the English

data Den into each target language. Machine Translation (MT) approaches in this work follow this

scenario only.

Few-Shot In this scenario, a small number of examples (𝑛-shot) are available in each target

language, denoted as Dl,𝑛. In this scenario, parallel exemplars for Prompt Engineering (PE) can be

obtained by translating the target language data into English. Prompt Tuning (PT) only requires

exemplars in the target language, which are readily available in this setting.

9.3 Experimental Setup

We evaluate the synthetic data generation approaches presented in Section 9.2 across various

languages on two benchmark datasets, which we discuss below. We also describe various model

configurations, and comparison systems before presenting our results.

9.3.1 Datasets

TYDI QA [142] is a multilingual extractive question answering dataset designed to represent a

typologically diverse set of languages. Annotators were given a Wikipedia passage in the target

language and asked to write a question that could not be answered by that passage. For each

question, the top-ranked Wikipedia article was then retrieved via Google Search. Annotators were

subsequently asked to answer the question given the retrieved Wikipedia article. As a result of this
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Table 9.1 Number of question-answer pairs per language and data split for the datasets considered
in this work.

TYDIQA-GOLDP MLQA
Language Train Eval Dev Test
Arabic 14,805 921 517 5,335
Bengali 2,390 113 — —
Chinese — — 504 5,137
English 3,696 440 1,148 11,590
Finnish 6,855 782 — —
German — — 512 4,517
Hindi — — 507 4,918
Indonesian 5,702 565 — —
Kiswahili 2,755 499 — —
Korean 1,625 276 — —
Russian 6,490 812 — —
Spanish — — 500 5,253
Telugu 5,563 669 — —
Vietnamese — — 511 5,495
Total 49,881 5,077 4,199 42,245

information-seeking task design, questions in TYDI QA are often without an answer. In this work

we consider TYDIQA-GOLDP: the Gold Passage version of TYDI QA where only questions with

answers in the Wikipedia page are given and the model has to identify the answer in the passage

that contains it (see Table 9.1 for statistics on this dataset).

MLQA [143] is an extractive question answering dataset, designed for evaluating multilingual and

cross-lingual question answering models. MLQA does not publish a training split, but only devel-

opment and test partitions. MLQA was created by aligning sentences in Wikipedia passages across

different languages. Annotators then created questions based on English sentences, professional

translators translated these questions to other languages, and, finally, annotators selected answers

from passages containing sentences aligned to the translated questions. As in TYDIQA-GOLDP,

the task is to extract the answer from a passage given a question (dataset statistics are shown in

Table 9.1).

Unlabeled Data We obtained paragraphs U𝑙 in each target language from Wikipedia. Specifically,

we pre-processed Wikipedia pages using WikiExtractor [170]. Paragraphs were sampled uniformly,
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Table 9.2 Synthetic question-answering data generation methods for training multilingual reading
comprehension systems on TYDIQA-GOLDP. We report averages over 3 runs of fine-tuning
mT5-XL on gold or synthetic data. Standard deviation is given in parentheses. Performance for
individual languages (excluding English) is shown in Table 9.3. For comparison we also include
recent few-shot prompting results with large language models on TYDIQA-GOLDP: [171]§, [122]†,
and [172]‡.

English-Only Few-Shot
Method Translate Avg EM Avg F1 n-Shot Avg EM Avg F1

Baseline 58.5(±3.1) 74.2(±2.6) 5 66.5(±0.7) 79.8(±0.4)
MT ✓ 66.1(±2.1) 79.5(±1.8) 5 — —
PE ✓ 64.4(±1.4) 76.9(±1.1) 5 62.6(±1.8) 77.6(±1.2)
PE + MT ✓ 69.4(±0.4) 81.4(±0.4) 5 67.9(±0.2) 80.5(±0.6)
QAMELEON (PT) ✓ 65.5(±0.7) 79.4(±0.7) 5 70.2(±0.2) 81.7(±0.1)
QAMELEON (PT)+MT ✓ 68.1(±0.8) 80.9(±0.7) 5 70.7(±0.9) 82.2(±0.8)
code-davinci-002§ — — 1 48.1 —
PaLM-540B† — — 1–10 60.0 —
Flan-U-PaLM-540B‡ — — 1 68.3 —

with a length between 200 and 510 characters. The target language was determined based on the

language code of the Wikipedia edition.

9.3.2 Model Configuration

Synthetic Data Generation In our TYDI QA experiments, we treat the English training data as

the English source. For MLQA, we employ the English SQUAD [20] training data as the source.

In the Few-Shot scenario, our human-annotated target-language examples D𝑙,𝑛 are taken from the

training split of TYDIQA-GOLDP and the validation split of MLQA.

For machine translation (MT), we employ the public Google Translate API [173] while the

PLM utilized in this work is Anonymous et al.3 We perform heuristic checks to clean synthetic

datasets DPE and DPT. We only preserve a question-answer pair if the generated answer 𝑎 is a

substring of the given context 𝑐, but not a substring of the query 𝑞. We perform the first check

as both TYDIQA-GOLDP and MLQA are extractive QA datasets. We perform the latter check

because we empirically found that some of the low quality generated question-answer pairs were

trivially answered based on the content of the question alone, for example, 𝑞: “where is X?”, 𝑎: “X”.

3Omitted to preserve anonymity.
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In the construction of DPE, we additionally perform round-trip filtering [174] as qualitative

analysis of random QA pairs suggested a higher level of noise in the PE-generated data. This

round-trip consistency check is done by comparing the originally generated answer 𝑎 in (𝑐, 𝑞, 𝑎)𝑙

with the predicted answer. This predicted answer is obtained by prompting the PLM to answer

question 𝑞 based on passage 𝑐. We also tried round-trip filtering for PT generated data; however,

we did not observe any gains. We report detailed statistics of the synthetically generated datasets in

Section 9.5.

In the construction of DPT, we prompt-tune the PLM on
⋃
𝑙∈𝐿 T (Den) or

⋃
𝑙∈𝐿 D𝑙,𝑛 as detailed

earlier. Prompt tuning is performed with the AdaFactor optimizer [175]. We tune a prompt of

length 50 tokens for up to 1,000 steps, evaluating every 50 steps, with a batch size of 16 examples,

and a learning rate of 0.3 with a linear warmup of 200 steps. We use early stopping to select the

best prompt per language based on BLEU [135] on a held-out dataset from the English TYDIQA-

GOLDP, translated to each target language.

Question Answering We trained an mT5-XL model [176] for question-answering to evaluate

different synthetic data generation methods (DMT, DPE, and DPT). As a baseline, we further use

mT5-XL fine-tuned on available training data. Specifically, in the English-Only scenario, Baseline

mT5-XL is trained on the English QA data D𝑒𝑛. In the Few-shot scenario, Baseline mT5-XL is

fine-tuned on 𝑛 human annotated examples in the target languages (the same number given to PE and

PT). We conducted experiments on TYDIQA-GOLDP [142] and MLQA [143], see Section 9.3.1.

During downstream QA evaluation, mT5-XL was fine-tuned with AdaFactor, with a learning

rate of 0.0002, a batch size of 64, and up to 5,000 steps of training evaluating every 50 steps. We

measure QA performance with Exact Match (EM) and F1, and report the unweighted average across

languages (excluding English). For TYDIQA-GOLDP, we report results on the development split,

which is commonly used as an evaluation set since the test split is unavailable. We select mT5

checkpoints per language using EM and report the average of 3 runs. For MLQA, we present results

on the test split, selecting the best mT5 checkpoint based on the average EM on the MLQA dev set.
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Table 9.3 QA performance (Average EM over three runs) for individual languages on the TYDIQA-
GOLDP evaluation set; the backbone of the QA model is mT5-XL fine-tuned on gold (Baseline,
Supervised) or synthetically generated data. The final row displays the percent of tokens for each
language in the PLM training data.
Method n-shot Ar Bn Fi Id Ko Ru Sw Te Avg
Baseline 5 65.9 68.4 65.1 71.3 68.4 57.6 60.1 75.4 66.5
MT 0 66.3 62.2 65.2 72.4 63.9 61.1 70.5 67.0 66.1
PE 0 60.4 66.7 63.5 63.6 65.1 53.8 74.5 67.3 64.4
PE + MT 0 68.1 70.5 68.2 73.6 68.5 61.0 78.4 66.9 69.4
QAMELEON (PT) 5 65.4 76.7 69.4 69.0 67.6 61.5 75.6 76.7 70.2
QAMELEON (PT)+MT 5 67.9 72.6 69.2 73.8 65.1 62.8 77.7 76.1 70.7
Supervised Multi-k 75.7 81.4 74.5 79.8 77.2 72.8 82.6 83.0 78.4
% tokens in PLM — 0.15 0.03 0.42 0.16 0.19 0.53 0.01 0.02 —

9.4 Results

QAMELEON (PT) Delivers the Best QA System Table 9.2 summarizes our results on TYDI

QA for both English-only and Few-Shot scenarios. Overall, we find that a low resource setting

with 5 human-annotated examples in the target language (D𝑙,5) is useful for scaling QA to multiple

languages. More specifically, 5-shot prompt tuning gives an EM improvement of 11.7% absolute

(58.5% → 70.2%) in exact match answer accuracy on the TYDIQA-GOLDP evaluation set over

mT5 fine-tuned on English data only (Baseline), 3.7% (66.5% → 70.2%) over mT5 trained on 5

examples per language (Few-shot Baseline), and 4.1% (66.1% → 70.2%) over mT5 fine-tuned on

the data obtained with the MT approach.

QAMELEON further improves over the few-shot results obtained by prompting code-davinci-

002 [171], PaLM-540B [122], and Flan-U-PaLM-540B [172], with a similar number of available

labeled examples. These approaches directly employ extremely large PLMs for the task of QA,

whereas QAMELEON leverages data synthesis to distill a PLM into a much smaller mT5-XL

model. It also is important to note that QAMELEON as an approach is orthogonal and possibly

complementary to any improvements due to more performant QA models and more sophisticated

PLMs (e.g., Flan-U-PaLM-540B).

In both English-only and Few-shot resource scenarios, QAMELEON outperforms the other two
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Table 9.4 Comparison of QA performance from training mT5-XL on 5 or 50 examples (Baseline),
on synthetic data generated with prompt tuning (PT), or on the full TYDIQA-GOLDP training set.
Results are averaged across languages.

Method n-Shot Avg EM
Baseline 5 66.5
QAMELEON (PT) 5 70.2
Baseline 50 69.3
QAMELEON (PT) 50 73.7
Supervised Multi-k 78.4

data generation approaches, Machine Translation (MT), and Prompt Engineering (PE). Despite

employing PE in two stages, chain-of-thought style, we observe that the generated data leads to

lower QA performance. Moreover, we see better performance when using English-Only data in

comparison to the Few-Shot scenario, suggesting that the PLM is able to better utilize high-quality

English data rather than small amounts of labeled data (in other languages). Finally, augmenting

PLM generated data (either via PE or PT) with data generated via MT leads to gains in QA

performance over using any of these methods independently. This could be due to the coupling of

diverse QA data i.e., language-specific content and task-specific English-centric translated content.

Table 9.3 shows QA performance in individual languages, for each of the methods in Table 9.3

in their best performing setting: Few-shot Baseline, Machine Translation (MT), Prompt Engineering

(PE), Prompt Tuning (PT) and augmenting PE and PT with MT. Data generated by QAMELEON

(PT) using 5 target examples provides the best performance in Bengali, Finnish and Telugu. A

boost can be seen for Arabic, Indonesian, Russian and Swahili when QAMELEON data is combined

with MT data. Language distribution listed under ‘% tokens in PLM’ reflects the extremely low

representation of many languages in the pre-training corpora of the PLM used in this work. As an

upper bound, we additionally show the performance of supervised mT5-XL fine-tuned on large

amounts of gold training data (see Table 9.1) to illustrate the remaining gap, which could potentially

be bridged by increasing the number of labeled examples or by improved (e.g. more multilingual or

FLAN-tuned) PLMs.
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Figure 9.2: Effect of synthetic data size on downstream QA performance (Average EM on TYDIQA-
GOLDP evaluation set); results shown for mT5-XL QA model fine-tuned via Machine Translation
(MT), Prompt Engineering (PE), Prompt Tuning (QAMELEON (PT)), and combinations thereof (PE
+ MT and QAMELEON (PT) + MT).

Increasing Labeled Examples Improves QA Performance So far, we have tested QAMELEON

in an extremely low resource setting, using only 5 examples in the target language. We next examine

its performance when we assume a 10-fold increase in the number of annotated examples. Table 9.4

compares the performance of mT5-XL trained on 5 or 50 examples (Baseline), on synthetic QA

datasets generated by QAMELEON using 5 or 50 examples, and as an upper bound on the entire

TYDIQA-GOLDP dataset. As can be seen, increasing the number of examples from 5 to 50

improves performance. It is important to note that in both settings, significant improvements in

multilingual QA can be obtained by generating data with QAMELEON instead of fine-tuning the

QA model directly on labeled data.

The Larger the Synthetic Data, the Better the QA Model We now study the impact of varying

the size of the automatically generated datasets on QA performance. As shown in Figure 9.2,

when larger amounts of synthetic data are used for training the QA model, absolute accuracy

increases. This improvement is higher when combining PLM-generated data with Translation

data in comparison to individual datasets. This can be explained due to the increased diversity of
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Table 9.5 BLEU scores and downstream QA performance on TYDIQA-GOLDP for questions
generated by mT5-XL and QAMELEON (Few-shot setting, 5 examples in the target language).

Method n-Shot Avg BLEU Avg EM
mT5-XL 5 24.74 57.3
QAMELEON (PT) 5 24.29 70.2

the combined data, which include English-centric translated content and target language-specific

content obtained from the PLM. Eventually, we observe a saturation effect: i.e., beyond 𝑂 (1, 000

QA pairs in the target language improvements are limited.

BLEU Does not Correlate with Downstream QA Performance An interesting question is

whether improvements in QA performance are due to better (e.g., more grammatical or diverse)

questions. We assessed the quality of questions generated by QAMELEON (PT) on TYDIQA-

GOLDP by measuring their similarity to gold standard questions. We compare this with an mT5-XL

model for question generation fine-tuned in a Few-shot setting. Both QAMELEON (PT) and mT5-XL

question generation models were given the same number of examples in each language. Table 9.5

reports BLEU [135] scores for these two models; we additionally report question answering

performance (in terms of EM) via another set of mT5-XL models fine-tuned on the synthetic data

generated by the respective models.

Even though mT5-XL produces questions with slightly higher BLEU score, QAMELEON

generates QA data that leads to much higher QA performance. The result underscores the need for

better trustworthy automatic evaluation metrics [177] across languages.

Our Results Generalize to MLQA To validate the general applicability of our approach, we

evaluate QAMELEON on MLQA [143]. We prompt-tune the PLM on 5 examples per language taken

from the MLQA development set, since MLQA does not provide training partitions. We generate

synthetic datasets in all of the MLQA languages and compare an English-only baseline, MT, and

QAMELEON (PT) approaches as we did previously for TYDIQA-GOLDP. We report results (EM

and F1) using mT5-XL as the QA model in Table 9.6, where English is included in the average

performance.
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Table 9.6 Downstream QA performance on the MLQA test set with an mT5-XL model trained
on SQUAD English data (English-Only), SQUAD translated to all MLQA languages (MT), on
synthetic data generated by QAMELEON (5-shot) in all MLQA languages, or on a combination of
data generated by MT and QAMELEON. Results for [176] and [178] are taken from the respective
papers.

Method Avg EM Avg F1
English-Only 53.1 71.8
MT 56.4 74.8
QAMELEON (PT) 55.0 74.3
QAMELEON (PT) + MT 56.8 75.3
mT5-XL [176] 54.5 73.5
XLM-E-XL [178] 57.9 76.2

Table 9.7 Number of synthetic question-answer pairs per language generated via Prompt Engineering
(PE) and QAMELEON (PT) with 5 human-labeled examples.

TYDIQA-GOLDP MLQA
Language PE QAMELEON QAMELEON

Arabic 5,219 8,499 14,738
Bengali 5,948 8,036 —
Chinese — — 14,669
Finnish 8,062 5,943 —
German — — 11,186
Hindi — — 12,036
Indonesian 6,487 7,810 —
Kiswahili 8,003 8,041 —
Korean 5,229 7,906 —
Russian 5,619 7,441 —
Spanish — — 10,134
Telugu 2,742 5,222 —
Vietnamese — — 13,333
Total 47,309 52,955 89,344

We find that the MT approach is very effective on MLQA, which is not surprising since MLQA

questions are translated from English. QAMELEON (PT), however, still delivers an improvement in

combination with MT synthetic data. Table 9.6 further reports comparisons with the state-of-the-art

models of [176] and [178]. The former is mT5-XL (3.7B parameters) trained on English data

only, whereas XLM-E-XL (2.2B parameters) benefits from a different language model pretraining

technique. The latter approach is orthogonal and potentially complementary to QAMELEON.
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Table 9.8 Examples of QA pairs from human-annotated TYDI QA and generated by QAMELEON

(PT) on corresponding passages. English translations from Google Translate are added for readabil-
ity.

9.5 Data Analysis

Table 9.7 shows the size of synthetic data resources generated via Prompt Engineering (PE)

and QAMELEON (PT), per language and in total. These were in the range of 47,000-53,000

QA examples for TYDIQA-GOLDP, and 89,000 for MLQA. The varying size of the data across

languages is due to the filtering described in Section 9.3. In some languages (e.g., Telugu) generation

is more noisy, leading to fewer data points. We conjecture that this is due to the PLM being exposed

to less data representing these languages during pre-training. We further hypothesize that a more

multilingual pre-training of PLMs could potentially lead to better quality data across all languages.

Machine translation (MT) creates the same number of data points as the source training set.

For TYDIQA-GOLDP, the English training contains 3,696 data points (Table 9.1), leading to

approximately 29,000 QA examples across 8 languages. In MLQA, machine translation (MT)

uses SQuAD as the English dataset, consisting of ∼ 87,000 data points, leading to ∼ 522,000 QA

examples across 6 languages.

Table 9.8 illustrates randomly picked examples of QA pairs generated by QAMELEON (PT) for

passages in the TYDIQA-GOLDP eval set. For these passages, we also have access to the human

annotated QA pairs. As can be seen, QA pairs generated by QAMELEON are of similar quality and

at times diverse in comparison to the human-annotated dataset. Table 9.9 illustrates examples of

QA pairs generated by QAMELEON from randomly sampled Wikipedia passages.
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Table 9.9 QA pairs (random selection) generated by QAMELEON (PT) on Wikipedia passages.
English translations from Google Translate are added for readability.

9.6 Related Work

Data Generation for QA Prior work on the generation of QA data has mostly focused on English

and typically divides the task into answer extraction/generation and question generation, followed

by some type of filtering. [174] employ round-trip consistency for filtering with BERT-based

models. Other work [166] uses BART to jointly generate a question and its answer given an input

passage, employing likelihood-based filtering. [179] use a RoBERTa-based passage selection model

to identify interesting passages. [180] additionally train the generation models on an adversarial QA

dataset, while [181] integrate a QA-pair ranking module.

The above approaches generally require large amounts of labeled QA data in the form of

SQUAD [20] or Natural Questions [7] to train passage selection and question generation models.

In contrast, we only assume access to a few question-answer pairs per language.

Multilingual QA In this work we used mT5-XL [176] as our reference QA model. We note

that a slightly more performant choice could have been ByT5 [182], which reports improvements

on TYDIQA-GOLDP by operating directly on raw text instead of sentence pieces. Existing work

on low resource multilingual QA has been relatively limited. [183] propose to use automatically

translated high-confidence QA examples for training, while other approaches [184, 185] only
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generate questions and require supervised training data in the target language. Other approaches

[145, 146, 167] focus on zero-shot transfer, i.e., a multilingual model trained on QA data generation

on SQUAD (and optionally automatically translated SQUAD data) is applied to other languages.

Our work shows that few-shot settings result in better multilingual generation quality in comparison

to zero-shot models.

Prompting Existing work [121, 153] has shown that prompting pre-trained large language models

can lead to strong performance in a wide range of tasks including natural language generation

and common sense reasoning. In the context of multilingual QA, [122] employ a single prompt

and a few labeled examples in the target language. In contrast, we employ chain-of-thought

prompting, and English answers and questions as a bridge. Moreover, our experiments with

QAMELEON demonstrate that prompt tuning is superior and a viable alternative to large-scale

annotation. Prompting in multilingual settings has achieved the best performance using English

prompts and target language exemplars [157, 160, 159]. We demonstrate that parameter-efficient

methods such as prompt tuning using target language exemplars [163] is a superior choice.

9.7 Conclusions

In this chapter, we examined the ability of pre-trained language models to generate synthetic

data for bootstrapping multilingual QA systems, with as few as five examples in a new target

language. We introduced QAMELEON, a parameter efficient approach which uses prompt tuning to

automatically create multilingual QA data. Extensive experiments under different resource scenarios

demonstrate that QAMELEON is superior to prompt engineering and competitive baselines based on

machine translation. In future, we would like to extend this approach to other multilingual tasks,

including retrieval, summarization, and semantic parsing.
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Epilogue

At the beginning of this work, we set out to explore new ways to advance question answering,

focusing on challenging and realistic benchmarks such as Natural Questions. While major strides

have been made in the field over the last several years, question answering remains an unsolved

problem with many open research questions. Even if today we have approaches capable of outper-

forming humans on many English extractive question answering benchmarks, we are still below

human performance when it comes to factuality, grounding and logical consistency of generative

question answering systems, as well as extractive question answering for low resource languages.

In this work, we described a number of techniques that can be used to improve question

answering systems, well beyond simple baselines based on pretrained transformers (Chapter 2).

We found that sparse attention mechanisms (Chapter 3) can be used to include much more textual

context for answering questions. Visual tokens (Chapter 4) can be used to ground question answering

to objects detected within images. Combinations of learned models (Chapter 5) can be used to verify

the output of question answering models and to improve quality through uptraining. We showed

how structured explanations (Chapter 6) can be utilized to improve question answering accuracy as

well as the ability of users to quickly judge whether an answer is correct. And most recently, we

found that improvements can also be achieved with prompt-tuned LLMs in low resource languages

(Chapter 9), requiring very few hand labeled examples.

We also studied question answering and the problem of generating grounded text from a

semantic perspective. We found that tools from formal semantics (Chapter 7) can help develop

richer conceptualizations of question answering and explain aspects of the distribution of question
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answer pairs in datasets. We also found that representations from open information extraction

(Chapter 8) can be used to reformulate language models as encoders of semantic messages into text,

and that the factuality of generated text can be improved by increasing the probability of correct

reconstruction of the intended semantic content.

Some of the findings discussed in this work are now relatively well known methods. It is

not surprising that sparse attention and long contexts can lead to improvements in many question

answering tasks, or that early fusion of visual feature works well in visual question answering, or

that uptraining with critic models can lead to improvements, and that LLMs allow this approach to

work even in cases where data is extremely scarce. What might be surprising is how very few of

these findings have found their way into some of the latest generations of LLMs. PaLM [122] in

2022, for instance, has been trained in almost the same way as T5 [25] in 2019, just scaling size

and training data, including very little of the large array of modeling improvements that have been

found by researchers over the years. This seems to suggest that a good deal of performance is being

left on the table and that we are likely to see many improvements in the coming years just from

scaling up some of the more successful techniques that have been found in the last few years.

We also believe that some of the connections we explored with semantics and open information

extraction are potentially fruitful areas of future research. For example, it might be suboptimal to

train large language models without giving them any access to collections of facts or to knowledge

graphs, leaving them to learn information extraction at the same time as they are learning language

itself. We argue that the framing and technique we described in Chapter 8 could help shape powerful

pretraining tasks for future large language models.

We hope that some of the techniques and challenges described in this work will inspire new

research in question answering, and, more generally, in language understanding and language

generation, helping create newer and better system for everyone to access useful and accurate

information.
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