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Abstract 
Drivers and Mechanisms of Historical Sahel Precipitation Variability 

 
Rebecca Jean Herman 

 
The semiarid region between the North African Savanna and Sahara Desert, known as the 

Sahel, experienced dramatic multidecadal precipitation variability in the 20th century that was 

unparalleled in the rest of the world, including devastating droughts and famine in the early 

1970s and 80s. Accurate predictions of this region’s hydroclimate future are essential to avoid 

future disasters of this kind, yet simulations from state of the art general circulation models 

(GCMs) do a poor job of simulating past Sahel rainfall variability, and don’t even agree on 

whether future precipitation will increase or decrease under global warming. Furthermore, 

climate scientists are still not in agreement about whether anthropogenic emissions played an 

important role relative to natural variability in dictating past Sahel rainfall change. Because the 

climate system is complex and coupled, it is difficult to determine which processes should be 

considered causal drivers of circulation changes and which should be considered part of the 

climate response, and therefore many theories for monsoon rainfall variability coexist in the 

literature. It is difficult to evaluate these competing theories because observational studies 

generally cannot be interpreted causally, but simulated experiments may not represent the 

dynamics of the real world.  

The Coupled Model Intercomparison Project (CMIP) provides a wealth of data in which 

GCMs maintained at research institutions worldwide perform similar experiments, allowing the 

researcher to reach conclusions that are robust to differences in parameterization between GCMs. 

The scientific community has been using a wide range of statistical techniques to analyze this 

data, and each has notable limitations. This dissertation explores two statistical techniques for 



 

 

leveraging CMIP to explore the drivers and mechanisms of historical Sahel rainfall variability: 

analysis of ensemble-mean responses to prescribed variables, and causal inference. 

In Chapter 1, we give an overview of the climatology and variability of Sahel rainfall and 

present relevant physical theory.  

In Chapter 2, we examine the roles of various types of anthropogenic forcing in 

observations and coupled simulations, using a 3-tiered multi-model mean (MMM) to extract 

robust climate signals from CMIP phase 5 (CMIP5). We examine “20th century” historical and 

single-forcing simulations—which separate the influence of anthropogenic aerosols, greenhouse 

gases (GHG), and natural radiative forcing on global coupled ocean-atmosphere system, and 

were specifically designed for attribution studies—as well as pre-Industrial control simulations, 

which only contain unforced internal climate variability, to investigate the drivers of simulated 

Sahel precipitation variability. The comparison of single-forcing and historical simulations 

highlights the importance of anthropogenic and volcanic aerosols over GHG in generating forced 

Sahel rainfall variability that reinforces the observed pattern, with anthropogenic aerosols alone 

responsible for the low-frequency component of simulated variability. However, the forced 

MMM only accounts for a small fraction of observed variance. A residual consistency test shows 

that simulated internal variability cannot explain the residual observed multidecadal variability, 

and points to model deficiency in simulating multidecadal variability in the forced response, 

internal variability, or both.  

In Chapter 3, we investigate the causes for discrepancies in low-frequency Sahel 

precipitation variability between these ensembles and for model deficiency in reproducing 

observations. In the most recent version of CMIP – phase 6 of the Coupled Model 

Intercomparison Project (CMIP6) – the differences between observed and simulated variability 



 

 

are amplified rather than reduced: CMIP6 still grossly underestimates the magnitude of low-

frequency variability in Sahel rainfall, but unlike CMIP5, historical mean precipitation in CMIP6 

does not even correlate with observed multi-decadal variability. We continue to use a MMM to 

extract robust climate signals from simulations, but now additionally include sea surface 

temperature (SST) as a mediating variable in order to test the proposed physical processes. This 

partitions all influences on Sahel precipitation variability into five components: (1) 

teleconnections to SST; (2) atmospheric and (3) oceanic variability internal to the climate 

system; (4) the SST response to external radiative forcing; and (5) the “fast” (not mediated by 

SST) precipitation response to forcing.  

Though the coupled simulations perform quite poorly, in a vast improvement from 

previous ensembles, the CMIP6 atmosphere-only ensemble is able to reproduce the full 

magnitude of observed low-frequency Sahel precipitation variance when observed SST is 

prescribed. The high performance is due entirely to the atmospheric response to observed global 

SST – the fast response to forcing has a relatively small impact on Sahel rainfall, and only lowers 

the performance of the ensemble when it is included. Using the previously-established North 

Atlantic Relative Index (NARI) to approximate the role of global SST, we estimate that the 

strength of simulated teleconnections is consistent with observations. Applying the lessons of the 

atmosphere-only ensemble to coupled settings, we infer that both coupled CMIP ensembles fail 

to explain low-frequency historical Sahel rainfall variability mostly because they cannot explain 

the observed combination of forced and internal variability in SST. Though the fast response is 

small relative to the simulated response to observed SST variability, it is influential relative to 

simulated SST variability, and differences between CMIP5 and CMIP6 in the simulation of 



 

 

Sahel precipitation and its correlation with observations can be traced to differences in the 

simulated fast response to forcing or the role of other unexamined SST patterns.  

In this chapter, we use NARI to approximate the role of global SST because it is 

considered by some to be the best single index for estimating teleconnections to the Sahel. 

However, we show that NARI is only able to explain half of the high-performing simulated low-

frequency Sahel precipitation variability in the atmospheric simulations with prescribed global 

SST. Statistical techniques commonly applied in the literature cannot distinguish between 

correlation and causality, so we cannot analyze the response of Sahel rainfall to global SST in 

more depth without atmospheric CMIP simulations targeted at every ocean basin of interest or a 

new method. 

In Chapter 4, we turn to a novel technique called causal inference to qualify the notion 

that NARI can adequately represent the role of global SST in determining Sahel rainfall. We 

apply a causal discovery algorithm to CMIP6 pre-Industrial control simulations to determine 

which ocean basins influence Sahel rainfall in individual GCMs. Though we find that state of the 

art causal discovery algorithms for time series still struggle with data that isn’t generated 

specifically for algorithm evaluation, we robustly find that NARI does not mediate the full effect 

of global SST variability on Sahel rainfall in any of the climate simulations. This chapter lays the 

foundation for future work to fully-characterize the dependence of Sahel precipitation on 

individual ocean basins using the non-targeted simulations already available in CMIP – an 

approach which can be validated by comparing the composite results to the interventional 

historical simulations that are available. Furthermore, we hope this chapter will guide algorithm 

improvement efforts that are needed to increase the performance and usefulness of time series 

causal discovery algorithms on climate data. 
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Chapter 1. Sahel Climatology and Variability 

 

Figure 1.1: Satellite view of the Sahel (outlined in black) from Google Earth. 

1.1. Introduction and Climatology 

The Sahel is the semi-arid region bordering the North African Savanna and the Sahara 

Desert and spanning the width of Africa. The satellite imagery in Figure 1.1 highlights the zonal 

(East-West) symmetry of vegetation and albedo (surface reflectivity) in the region, and outlines 

the area that defines the Sahel for the purposes of this dissertation: 12°-18°N and 20°W-40°E. 

Rainfall in the Sahel is also quite zonally homogenous in its climatology (mean over the 

observed record, Figure 1.2a in the black box) and its historical variability (Figure 1.3d shows 

the spatial pattern of the leading mode of Sahel precipitation variability), though this uniformity 

may not hold under future global warming (Chou et al. 2001; Marvel et al. 2020). The Sahel 

receives its rainfall almost exclusively between July and September (JAS, see Figure 1.2b, 

turquoise contour) during the West African Monsoon (WAM), when zonal-mean rainfall 
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migrates north following seasonal heating from the sun (yellow-red shading shows the mean 

temperature at different latitudes over the course of a year). The WAM is additionally 

characterized by changes in the horizontal wind field (streamlines, Figure 1.2a): the annual-mean 

northeasterly winds (originating in the northeast) between the equator and the Sahel reverse and 

become southwesterly, while the annual-mean northeasterly winds over the Sahara Desert, 

known as the harmattan winds (Nicholson 2013), remain unchanged. (See Table 1.1 for a list of 

acronyms used in this dissertation.) 

 

Figure 1.2: (Figure 1 in Biasutti 2019) The main features of the rainfall climatology in West 
Africa, with the latitude of the Sahel denoted in black. (a) Mean May–October (MJJASO) 
rainfall (color shading) and near surface (925 hPa) wind (streamlines; ERA40, Uppala et al. 
2005). All fields are for the 1979–1998 period, for consistency with Thorncroft and Hodges 
(2001). (b) The seasonal cycle of sector mean (20°W-30°E) surface air temperature (warm 
shaded colors; CPC Monthly Global Surface Air Temperature, Fan and Van den Dool 2008), 
precipitation (contours, same colors as in (a); GPCP Huffman et al. 1997), and the 
intertropical discontinuity (ITD), where the WAM southwesterlies meet the harmattan  
northeasterlies (indicated in blue by the zero contour of the 925 hPa meridional wind from 
ERA40 reanalysis). Note how the advance of the ITD is connected with the warming of the 
Sahara and how the rain band stays to the south of the ITD. Panel (a) additionally shows the 
maximum African Easterly Waves (AEW, orange color; contour retraced from Figure 5a in 
Thorncroft and Hodges 2001) as indicated by the a track density scaled to number density per 
unit area (106 km2) per season (MJJASO) greater than 6, and the location of the African 
Easterly Jet (AEJ, magenta contour) as indicated by the 9 m/s contour of the easterly wind at 
600 hPa; these are features are important for the regional circulation paradigm of Sahel 
rainfall change. 
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Figure 1.3: (From Figure 2 in Giannini et al. 2003) Principal Component Analysis (PCA) of 
simulated northern summer rainfall over tropical Africa during 1930-2000. (d) Second leading 
spatial pattern (Empirical Orthogonal Function, EOF) where red are positive precipitation 
anomalies and blue are negative anomalies. (e) Principal Component (PC) time series (blue). 
Panel (e) additionally displays the PC from the corresponding analysis using observations 
(red); the two PCs correlate at 0.73. The first EOF and PC don’t project onto the Sahel; the 
second (pictured) explain 15% of observed and 21% of ensemble-mean precipitation variance 
across tropical Africa, and capture the well-known low-frequency variability in Sahel 
rainfall.  

The tropical oceans also have a zonal band of rainfall that migrates north during the 

summer and is generally co-located with low surface pressure, ascent, and surface wind 

convergence, and is therefore called the Intertropical Convergence Zone (ITCZ). Because these 

features co-locate, all of them have been used to identify the location of the marine ITCZ 

(Nicholson 2013); however, over land, the features separate. The WAM is characterized by two 

areas of ascent, which can be seen in the dark shading in the top panel of Figure 1.4: a deep 

ascent associated centered near 10°N, and a shallow ascent centered at 20°N (which is closer to 

the latitude of maximum temperature at 25°N, Figure 1.2b). Each area of ascent is associated 

with a track of African Easterly Waves (AEW), separated both by latitude and by vertical extent: 

the shallow circulation with the African Easterly Jet (AEJ) in the mid-troposphere, and the deep 

ascent with the Tropical Easterly Jet (TEJ) in the upper troposphere (Nicholson 2009). The 

shallow ascent is part of a Shallow Meridional Circulation (SMC) in which air rises and then 

turns south to enter the deep ascent at around 700 mb (Nicholson 2009, 2013). It is associated 
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with surface wind convergence and a low-pressure system known as the Saharan Heat Low 

(SHL), which also induces geostrophic counter-clockwise near-surface flow. However, it is the 

deep ascent that is associated with rainfall (see bottom panel). To avoid confusion between the 

location of surface convergence and the location of land rainfall, we follow Nicholson’s lead and 

refer to the zonal band of rain over Africa as the tropical rainbelt. The Sahel lies between the 

areas of strongest ascent (Figure 1.4, bottom); it experiences the northern edge of the rainbelt, 

and can be classified as a “convective margin.” Figure 1.5 shows a simplified schematic of the 

zonal mean overturning circulation.  

 

Figure 1.4: (Figure 11 in Nicholson 2009) Schematic of the rainbelt over West Africa. Top 
diagram is a vertical cross-section of mean vertical motion (10-2 Pa s-1) in August. The main 
region of ascent lies between the axes of the African easterly jet (AEJ) and the tropical 
easterly jet (TEJ). A shallow region of ascent corresponds to the center of the Saharan Heat 
Low (SHL) and that maximum in surface convergence, which is sometimes associated with 
the land Intertropical Convergence Zone (ITCZ). The bottom diagram gives mean August 
rainfall (mm mo-1, averaged for 10o W to 10o E) as a function of latitude, with the location of 
Sahel indicated on the latitudinal axis. 
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Figure 1.5: (Figure 18 in Nicholson 2009) Schematic illustration of Nicholson’s view of the 
West African monsoon. Surface convergence is labelled ITCZ; other sources associated the 
rainbelt with the ITCZ even though surface convergence is lower there. 

State of the art coupled climate simulations do a poor job of simulating past Sahel rainfall 

variability, and have wildly different projections of how Sahel rainfall will change in a warming 

world. Simplified conceptual depictions of the WAM system are necessary to diagnose the 

reasons for these differences, evaluate the simulations relative to observations and theory, and 

improve projections of the future. Because the climate system is complex and coupled, it is 

difficult to determine which processes should be considered causal drivers of circulation changes 

and which should be considered part of the climate response, and therefore many theories for 

monsoon rainfall variability coexist in the literature. The different paradigms used to explain and 

understand variability in Sahel monsoon rainfall can be broadly categorized into three different 

spatial scales (see Biasutti 2019 for a discussion of physical processes governing the WAM at 

different spatial scales). (1) At one extreme, some scientists portray rainfall at a given location as 

uniquely determined by moist atmospheric thermodynamics within an arbitrarily narrow column 

of air above it. In this view, horizontal processes are only relevant insofar as they affect column 

moisture and heat content. (2) On the other extreme, some scientists view rainfall across the 

tropics as an expression of the shifting global circulation, which is in turn determined by 

differences in heating and energetics on a planetary scale. (3) Lastly, some scientists depict 
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rainfall as determined by local regional circulation features on the order of hundreds to thousands 

of kilometers, such as land-sea contrast or variability in African Easterly Waves. Of course, 

climate phenomena at all spatial scales must coexist in the coupled climate system, so the truth 

may encompass all of these arguments. All of these paradigms have merit and deserve analysis. 

But in the interest of time, this introduction will focus on the column view and discuss the 

relevant theory for understanding the arguments that follow in the dissertation. 

1.2. Basic Theory 

Precipitation occurs when a parcel of air rises in the atmosphere until it reaches a 

pressure and temperature too cold to sustain its water vapor or suspended water droplets. In the 

absence of a mechanical disturbance, such vertical motion is called convection and is driven by 

differences in density: when an air parcel’s density differs from its surroundings, it experiences a 

vertical buoyant force proportional to the fractional difference between its density and the 

density of the surrounding air. The density of a parcel of air can be expressed to a good 

approximation in terms of pressure (p) and temperature (T) according to the ideal gas law: 𝜌 =

𝑝/𝑅𝑇, where 𝑅 depends on the composition of gases in the parcel. The biggest differences in the 

composition of air over time and space are associated with the presence of water vapor, so if an 

air parcel’s pressure matches the surrounding air, the difference in temperature and moisture 

content between the air parcel and the environment determines its buoyancy. Virtual temperature 

(𝑇!) corrects the ideal gas law for differences in density due to the presence of water vapor, 

allowing us to rephrase the ideal gas law using the ideal gas constant for dry air (𝑅") and virtual 

temperature: 𝜌 = 𝑝/𝑅"𝑇!. If we can predict the virtual temperature of the parcel as it rises (𝑇!#), 

and if we know the virtual temperature profile of the column (the  “environment” surrounding 

the parcel, 𝑇!$), we can quantify column (in)stability as the integral of the difference in buoyancy 
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due to virtual temperature from the level of free convection (𝑝%, where a parcel might begin to 

rise) to the level of “neutral” buoyancy (𝑝&, where the virtual temperature of the air parcel 

matches that of the column), termed convective available potential energy: CAPE =

∫ 𝑅"
#!
#"

(𝑇!# − 𝑇!$)/𝑝	𝑑𝑝 (Glossary 2009). Here, positive CAPE is associated with instability and 

convection, while zero CAPE is associated with stability and subsidence (sinking air).  

It is not automatically obvious how to predict the virtual temperature of a parcel as it 

rises: processes such as incoming or outgoing radiation, mixing with surrounding air from the 

column or from neighboring columns, condensation of water vapor, freezing of liquid water, and 

precipitation can all affect the temperature and water vapor content of the air. Moist static energy 

(MSE = ℎ = 𝑔𝑧 + 𝑐'𝑇 + 𝐿!𝑞)—defined as the sum of gravitational potential energy (𝑔, the 

acceleration of gravity, times 𝑧, height), sensible heat (the heat capacity of air at constant 

pressure, 𝑐'1, times temperature, 𝑇), and latent heat (latent heat of water, 𝐿!, times the partial 

pressure of water vapor, 𝑞)—is often used to predict temperature along the parcel’s path of 

motion. It is a common choice because—under the assumption of hydrostatic balance, which 

defines the pressure profile such that changes in height and temperature roughly balance each 

other in the MSE budget for a rising parcel of air (Bohren and Albrecht 2000; Yano and 

Ambaum 2017)—it is relatively simple to calculate, and it is almost2 conserved under vertical 

 
 
1 Most appropriately defined as (1 − 𝑞#)𝑐$% + 𝑞#𝑐&, where 𝑞# is the total water content (equal to the sum of the 
specific vapor and specific liquid water), and 𝑐$% and 𝑐& are the heat capacities of dry air at constant pressure and of 
liquid water, respectively (Emanuel et al. 1994), but often (poorly) approximated with 𝑐$%, the heat capacity of dry 
air (Yano and Ambaum 2017). 
2 Moist entropy, which is truly conserved under reversible adiabatic processes, is a more rigorous choice. The 
conservation of MSE is derived from conservation of entropy along with a number of approximations (Bohren and 
Albrecht 2000). 
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motions and condensation if there is no exchange of heat with the surroundings (adiabatic), no 

precipitation (reversible), and no freezing of water droplets or vapor3.  

If the virtual temperature of the environment just above the parcel is warmer than the 

parcel would be at that pressure, this may inhibit convection even when CAPE is positive. This 

state is called “conditional instability,” and allows us to sometimes measure positive values of 

CAPE in the atmosphere before a convection occurs (e.g. Figure 1.6). But convection is a fast 

process, and CAPE is rapidly consumed when a column is actively convecting. This means that 

CAPE remains near a critical neutral value (Sobel 2007), and the column reaches a state of 

convective quasi-equilibrium (CQE; Arakawa and Schubert 1974; Emanuel et al. 1994) where 

the temperature profile of the column approximates a moist adiabat: the virtual temperature 

profile of the rising air. Thus, the thermodynamic properties of a precipitating atmospheric 

column are determined roughly by the near-surface MSE from which the adiabat arises, and 

precipitation rate is more readily associated with CAPE production and column energetics.  

 

Figure 1.6: (Figure 1 in Emanuel et al. 1994) Conditionally unstable thermodynamic 
sounding, 00 GMT 7 May 1986, at Oklahoma City, Oklahoma. If raised through the column, a 

 
 
3 This can be simply added to the definition (Hill 2016; Yano and Ambaum 2017) 
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surface parcel of air would react to the change in height and pressure by changing 
temperature according to the dry adiabat (straight light dashed line) until the lifting 
condensation level (intersection of the straight and curved light dashed lines), at which point 
the temperature has decreased enough to saturate the parcel so that any further decrease will 
cause water vapor to condense. After that, the parcel follows the moist adiabat (curved light 
dashed line). The dark curve shows the temperature of the column. Between 800 and 700 mb, 
it is warmer than the moist adiabat, inhibiting convection. But above 700 mb, it is cooler than 
the moist adiabat. Convective available potential energy is proportional to the area between 
the curves. 

1.3. Column Energetics 

The column energetics framework assumes CQE in precipitating regions, and associates 

precipitation with latent heating that balances CAPE production by top-of-atmosphere radiation 

(𝑅(), surface fluxes including latent enthalpy (𝐿!) due to evaporation (𝐸) and sensible heat (𝐻), 

and column-integrated ({⋅}) quantities including mean-flow (𝒖P) advection Q𝒖P ⋅ ∇#ℎST, transient 

eddy flux divergence (∇ ⋅ Qℎ)𝒖)SSSSSST), and MSE storage (𝜕QℎST/𝜕𝑡).  

The MSE budget ( *
*(
QℎST + Q𝒖P ⋅ ∇+ℎST + W𝜔P

*,-

*#
Y + ∇ ⋅ Qℎ)𝒖)SSSSSST ≈ 𝐿!𝐸 + 𝐻 + 𝑅( + 𝑅.),  

approximately relates changes in vertical motion (𝜔P) that could produce precipitation to the MSE 

profile of the column (𝜕ℎS/𝜕𝑝), MSE storage (𝜕QℎST/𝜕𝑡), and the terms mentioned above. 

Because it contains many of the terms important for CAPE production, many studies thus set 

aside CAPE and focus instead on the MSE budget, which must hold in non-precipitating as well 

as precipitating regions (see Hill 2019 for a helpful overview of the MSE framework for 

monsoons and impactful studies). Gross moist stability is a method for quantitatively predicting 

precipitation using the MSE budget; it relates vertically integrated horizontal convergence of 

MSE (or some other conserved quantity) to the strength of moist convection. Using assumptions 

about the profile, one can predict precipitation increases and decreases via direct atmospheric 

responses to anthropogenic emissions or other factors.   
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1.4. Column Instability in the Tropics 

Another approach approximates CAPE with a simple index directly representing the 

MSE profile of the column. In non-precipitating regions, the atmospheric column is not 

constrained to the moist adiabat, and upper-tropospheric MSE can and does vary independently 

from near-surface MSE. In the tropics, the free troposphere cannot sustain severe horizontal 

temperature gradients, since the small Coriolis parameter near the equator allows Inertial Gravity 

waves including eastward propagating Kelvin and westward propagating Rossby waves to 

rapidly spread any temperature perturbation over the whole tropics (Sobel et al. 2001). This 

affinity for a horizontally-uniform free tropospheric temperature is known as the weak 

temperature gradient (WTG) constraint. Thus, when deep convection in the tropics heats the 

upper troposphere, the resulting local temperature anomaly is quickly spread throughout the 

tropics (Chiang and Sobel 2002; Parhi et al. 2016), and the upper-tropospheric temperature in 

non-convecting regions is set by the near-surface MSE in precipitating regions (Zhang and 

Fueglistaler 2020).  

The closeness of the tropical free tropospheric temperature profile to a single moist 

adiabat and the separation of near-surface temperatures from this adiabat in non-precipitating 

regions leads to a natural simplification of the seasonal-mean thermodynamic MSE profile: near-

surface MSE in the boundary layer, and uniform MSE at upper levels that approaches tropical-

maximum near-surface MSE (Zhang and Fueglistaler 2020). Thus, one may roughly associate 

perturbations to CAPE with perturbations in the difference between local near-surface and upper 

tropospheric MSE (i.e. Giannini 2010). As a near-surface parcel approaches the upper 

troposphere, ambient temperatures are so low that humidity is near zero both in the parcel and in 

the environment. This means that MSE at upper levels is essentially a measure of temperature, 
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and this allows us to approximate CAPE in terms of near-surface humidity (q) and temperature 

(T) as well as upper tropospheric temperature (TT). (This simplification ignores intrusion of dry 

air from the SMC, but could be modified to take this into account by examining lower-

tropospheric mean MSE instead of near-surface MSE, in a fashion similar to that suggested by 

Shekhar and Boos (2016)). While many analyses use column-integrated values, the results from 

such studies are often still discussed using this conceptual simplification (e.g. Chou and Neelin 

2004). 

In the planetary boundary layer over ocean regions, where moisture supply is unlimited 

and relative humidity is relatively constant at 80% (Sobel 2010), sea surface temperature (SST) 

directly determines humidity; thus local near-surface MSE can be estimated solely using local 

SST (Sobel 2007), and global tropical TT can be estimated using a precipitation-weighted mean 

of global tropical SST (Sobel et al. 2002). Over land such as the Sahel, evaporation and moisture 

supply are limited, so the surface MSE maximum is strongly associated with moisture 

convergence (Chiang and Sobel 2002; Giannini et al. 2008) and often occurs at a different 

latitude than the temperature maximum. High surface temperatures alone are never able to create 

enough buoyancy to sustain deep convection, so latent heat release is crucial for convection 

(Giannini et al. 2008), and precipitation over land is associated not with the maximum of 

temperature, but of MSE.  

1.5. Moist Static Energy Budget Analyses 

 Unfortunately, moisture convergence cannot be viewed strictly as a cause of 

precipitation – due to conservation of mass, an increase in vertical motion associated with 

precipitation must be balanced by an increase in mass (and moisture) convergence, so causality 

can flow both ways and the two are tightly coupled. However, large-scale external factors, such 
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as orography or changes in remote evaporation, may affect moisture convergence in the context 

of quasi-steady circulations, and so diagnostic analysis of moisture budgets is still useful (Sobel 

2007). 

For example, Chou and Neelin (2004) use column-integrated MSE budget analysis and 

employ both the column energetics (Section 1.3) and column instability (Section 1.4) 

frameworks to explain why tropical convective margins (such as the Sahel) often dry under 

global warming while neighboring convection intensifies.  

The temperature of the upper troposphere sets the surface MSE threshold for convection, 

and when it warms for any reason—whether due to increased absorption of infrared radiation by 

greenhouse gases (GHG) or because near-surface MSE in convecting oceanic regions elsewhere 

has increased—tropical regions must match the increased MSE threshold in order to convect. 

(Indeed, the combination of WTG in the tropics and CQE in convecting regions means that, even 

at daily time scales, convection throughout the tropics only occurs where near-surface MSE is 

close to the tropical maximum; Zhang and Fueglistaler 2020.)  

Global warming also increases temperature on and near Earth’s surface, which in turn 

increases absolute humidity by increasing evaporation according to the Clausius-Clapeyron 

relation and relative humidity (Held and Soden 2006). If the climatological wind field did not 

change, this increase in absolute humidity would be expected to increase moisture convergence 

and MSE in convecting regions in a thermodynamic mechanism termed the “direct moisture 

effect”. This helps precipitating regions meet the higher MSE threshold for convection, and 

overall would be expected to increase precipitation in precipitating regions.  

But—because the Clausius-Clapeyron relation is non-linear and because non-convecting 

regions are associated with surface divergence—absolute humidity and MSE in non-convecting 
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regions increase less than in convecting regions, causing horizontal MSE gradients to increase 

under uniform global warming. Chou and Neelin (2004) argue that advection of air with 

relatively lower MSE from non-convecting regions prevents neighboring convective margins 

from meeting the convective threshold for MSE set by the upper troposphere, and suppresses 

precipitation. (This MSE budget analysis is diagnostic by nature, but Hill et al. (2017) later 

confirmed that uniform oceanic warming causes an increase in MSE gradients, advection of 

relatively lower-MSE air from the Sahara to the Sahel, and subsidence in the Sahel, though this 

doesn’t imply reduced Sahelian precipitation in all models (see also Hill et al. 2018).) This 

mechanism, termed the “upped ante” mechanism, is represented in Figure 1.7.  

 

Figure 1.7: (Figure 3 from Neelin et al. 2003) Schematic of the “upped ante” mechanism for 
negative precipitation anomalies. For the global warming case, the tropospheric temperature 
warms due to increased absorption of infrared radiation (dashed curves) by greenhouse 
gases (GHG). For the El Niño case (inset) warming is spread from the Pacific by wave 
dynamics. The rest of the pathway via convective interactions is common to both. 
Adjustment of atmospheric boundary layer (ABL) moisture in convective regions, to meet the 
new convective “ante”, establishes a gradient of ABL moisture anomalies q’ relative to 
nonconvecting regions. This creates a tendency where low-level flow v moves into the 
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margin of a convective zone. Feedbacks reducing upward motion and low-level convergence 
enhance this drying tendency. 

The reduction of convection in precipitating regions further triggers a dynamic feedback 

whereby the mass (and moisture) convergence that used to occur at the convective margins is 

relocated to the center of convecting regions, causing further decreases in precipitation in 

convective margins, but moistening the atmospheric boundary layer and causing further 

increases in precipitation in convective areas. This dynamic mechanism is termed the 

“anomalous gross moist stability mechanism” because it involves changes in horizontal 

convergence and convection that affect gross moist stability without directly changing moisture 

content in the atmosphere. This effect and the direct moisture effect together enhance the pattern 

of precipitation minus evaporation – an effect of global warming which is robust to model 

parameterization (Held and Soden 2006) – and both have been called “rich-get-richer” 

mechanisms (Chou et al. 2009). (For the rest of the dissertation, in this context, 

“thermodynamic” is used to refer to the “direct moisture effect” while “dynamic” refers to 

differences that can be traced to changes in the wind fields.) 

1.6. El Niño Southern Oscillation 

Neelin et al. (2003) outline the upped ante/anomalous gross moist stability framework in 

the context of the El Niño Southern Oscillation (ENSO), which is more complicated than 

greenhouse gas warming because SST warming is far from uniform over the tropics and its 

pattern changes over time. Warm upper tropospheric temperatures resulting from deep 

convection in the Pacific during the development phase of El Niño in spring are rapidly spread 

horizontally throughout the tropics before remote SST can respond. This increases temperature 

aloft without a matching increase in moisture supply, meaning all remote tropical precipitation 

might initially respond to El Niño like a convective margin responds to global warming. Later, 
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the tropospheric temperature anomalies are communicated vertically to SST in remote oceans via 

turbulent surface energy fluxes with a lag of a 3-6 months (Chiang and Sobel 2002), resulting in 

local thermodynamic increases in moisture supply during the mature phase of ENSO that 

counteract the “upped ante” mechanism. Parhi et al. (2016) explore this possibility, represented 

in Figure 1.8, with regards to African rainfall. They show that, in June, upper tropospheric 

temperature over the Sahel has already increased but neighboring SST has not yet changed, 

allowing the “upped ante” mechanism to have its full effect in the Sahel during the development 

of El Niño. Though the El Niño event may last into the next year, Global Tropical SST in May is 

strongly affected by El Niño the previous winter (Chiang and Sobel 2002), so an El Niño event 

may thermodynamically increase moisture supply to the Sahel during the spring of its demise, 

preventing a second dry year. It is worth note that in many GCMs, the atmospheric response to 

El Niño and the corresponding response of the WAM is delayed by a year (Joly and Voldoire 

2009). 

 
Figure 1.8: (Figure 1 from Parhi et al. 2016) Schematic showing our hypothesized mechanism 
acting upon remote tropical land and adjacent regional ocean (moisture source). (left) The 
environmental lapse rates are shown for the remote tropical land regions with temperature T 
on the x axis and height Z on the y axis. The lapse rate is shown in blue for the neutral case 
and in red for the El Niño case. Note how in the mature phase of El Niño the surface 
warming by moist static energy convergence increases the lapse rate (more negative slope). 
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(right) The moisture and heat fluxes are shown for the remote tropical ocean and land region 
for (top) neutral, (middle) growth, and (bottom) mature cases. The thick red horizontal lines 
in the cases of growth and mature phase indicate the TT warming advection in the free 
troposphere. The blue arrows indicate the ocean-to-land moisture advection and convergence 
in the rainy season. For mature phase, the blue arrow is thicker suggesting the bottom-up 
instability dominates over the stability caused by the TT warming acting top down. 

1.7. The Sahel 

Giannini (2010) first used the upped ante/anomalous gross moist stability framework to 

develop storylines for future Sahel precipitation change. She argued that future climate 

projections for the Sahel from different general circulation models (GCMs) diverge because 

differing sensitivities of local evaporation to global warming give some, but not all, GCMs 

enough moisture supply to meet the upped ante for convection, triggering the gross moist 

stability mechanism rather than the upped ante mechanism. Giannini et al. (2013) (G13 from 

here on out) then focus on historical Sahel rainfall variations. Arguing that moisture supply from 

the North Atlantic—defined from 10 to 40°N—has had a leading role in determining Sahel 

rainfall in observations and most simulations of the 20th century, they claim that the cooling and 

subsequent warming of North Atlantic SST in the 20th century thermodynamically (via changes 

in humidity over the North Atlantic) controlled anomalous moisture convergence in the Sahel 

and determined whether near-surface MSE there was able to meet the threshold for convection. 

They estimate the convective threshold (TT) using average SST in the global tropics4, resulting 

in a single SST index for predicting Sahel precipitation: the North Atlantic Relative Index 

(NARI), defined as the difference in SST between the North Atlantic (NA) and Global Tropics 

 
 
4 Average of SST over the global tropics appears to have a computational correspondence to TT that is about as 
strong (or stronger) than that of precipitation-weighted mean tropical SST in the past (Sobel et al. 2002) and in many 
simulations of the future (Johnson and Xie 2010), but it has a weaker theoretical relationship (Sobel et al. 2002), and 
uncertainties in observational estimates of observed SSTs draw out the difference between these two indices in 
atmospheric simulations with prescribed SST (Flannaghan et al. 2014). 
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(GT, 20°S-20°N). Giannini and Kaplan (2019, hereafter GK19) tied Sahelian moisture supply to 

competing responses of North Atlantic SST to greenhouse gases and aerosols emissions via the 

thermodynamic mechanism discussed above (G13), or potentially via other dynamic mechanisms 

reviewed by Giannini et al. (2008) from a column viewpoint.  

Because it is the best known linear indicator of Sahel precipitation, in Chapter 3 we will 

use NARI to represent the role of the global oceans in mediating the effect of anthropogenic 

emissions on 20th century Sahel precipitation variability, and we will employ physical arguments 

such as these to qualify our results. In Chapter 4, we will evaluate how well NARI represents 

global oceans in climate simulations. In both chapters, we will use the language of “causal 

diagrams,” where variables are represented by nodes, and the causal dependence of node A on 

node B is represented by an arrow from node B to node A (this will be explained in detail in 

Chapter 4). This graphical picture is a way of representing pictorially which variables would be 

included in a functional definition defining another, without having to specify the form of the 

relationship.  

Figure 1.9 summarizes the argument in GK19 for 20th century rainfall change—that 

precipitation (P) is determined by moisture supply (q) and upper tropospheric temperature 

(TT)—and additionally includes surface temperature (T), which is necessary for defining MSE. 

Upper tropospheric temperature is determined by SST in the Global Tropics (GT), which is in 

turn driven solely by greenhouse gases (GHG). As discussed in the previous section, greenhouse 

gases are also believed to affect upper tropospheric temperatures directly. This effect is neglected 

in GK19 because Giannini et al. (2003) show that Sahel precipitation is primarily SST-driven. 

This view may still be overly simplistic: Hill (2019) showed that the uniform cooling component 

of the global SST response to Anthropogenic Aerosols (AA) triggers a reverse upped ante 
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mechanism (presumably by cooling TT) that dominates the precipitation response over the Sahel 

in some GCMs. In GK19, the role of Anthropogenic Aerosols (AA) is to determine North 

Atlantic (NA) SST and moisture supply. Because G13 argue that moisture is directly supplied to 

the Sahel via atmospheric transport from the North Atlantic, we represent surface temperature as 

a function of North Atlantic SST and greenhouse gases.  

 

Figure 1.9: Causal diagram summarizing GK19’s hypothesis for Sahel 
precipitation variability. Anthropogenic Aerosols (AA) and GHG affect North 
Atlantic SST (NA), which determines the humidity (q) and the temperature in 
the Sahel (T). GHG also affect SST of the global tropics (GT), which determines 
upper tropospheric temperature (TT). Q, T, and TT together determine Sahelian 
precipitation (P). 

1.8. Moisture Supply and its Variability 

G13’s claim that the (subtropical) North Atlantic region supplies critical moisture to the 

Sahel is not well established in the literature. In the climatological (mean over tens of years) 

seasonal mean, the main sources of moisture to the Sahel are thought to include the Atlantic cold 

tongue in the Gulf of Guinea (Keys et al. 2014; Nicholson 2013), transported to the Sahel via an 

atmospheric “moisture river” (Lélé et al. 2015) in May and June (reaching a maximum buildup 

in June) and then via the WAM flow in JAS (Lélé et al. 2015; Thorncroft et al. 2011); and the 

Tropical Atlantic (mostly 8-11°N; Druyan and Koster 1989; Lélé et al. 2015; Pu and Cook 

2012), transported to the Sahel via westerlies known as the West African Westerly Jet (WAWJ; 

P

GTNA

AA GHG

TTq T
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Pu and Cook 2010). Seth et al. (2013) find that springtime moisture supply is crucial for the 

accumulation of moisture in the boundary layer necessary to counteract the upped ante effect due 

to greenhouse gases (called the “remote” effect in this paper) in monsoon regions across the 

globe during early-summer, and that a lack of springtime moisture supply causes early-summer 

Sahel rainfall to be redistributed later in the season in future climate projections. Sahelian 

moisture may additionally originate in the Mediterranean (Keys et al. 2014; Peyrillé et al. 2007; 

Rowell 2003), or may be traced to farther reaches of the Gulf of Guinea (Keys et al. 2014). 

Figure 1.10 shows the moisture river in the Gulf of Guinea in May (a) and June (b, vectors and 

contours) as well as the WAM flow from the Gulf of Guinea and WAWJ inflow from the 

Tropical Atlantic in August (c, July and September are similar). Figure 1.11 shows the Sahel 

“precipitationshed,” or region where at least 5mm of evaporated moisture later precipitates in the 

Sahel during the WAM, and the magnitude of moisture supply from each location, estimated 

from reanalysis data with an Eulerian moisture tracking method. It also shows the first two 

Empirical Orthogonal Functions (EOFs) of variability in the moisture origins field, which 

notably do not include moisture supply from the subtropical North Atlantic.  

 

Figure 1.10: (From Figures 3 and 4 of Lélé et al. 2015) Mean surface-850-hPa seasonal 
distribution of vertically integrated mean moisture flux (vectors; kg m-1 s-1) over the WAM 
region, overlaid by moisture flux magnitude (contours) in (a) May, (b) June, and (c) August 
averaged from 1979 to 2008. The Unit vector is displayed at the bottom of each panel and the 

a) b) c)
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contour interval for flux magnitude is 20 kg m-1 s-1. Values of moisture flux magnitude ≥ 𝟏𝟎𝟎 
kg m-1 s-1 are shaded. Thick dashed red line indicates the intertropical front latitude, defined 
as the 15°C dewpoint temperature. 

 

Figure 1.11: (Taken from Figures 2b and 6 of  Keys et al. 2014) (Left) Mean precipitationshed 
(the upwind ocean and land surface that contributes evaporation to a specific location’s 
precipitation) extents for MERRA for the period 1980-2011. Values less than 5 mm are 
excluded from the precipitationsheds. The green dotted-dashed lines separate the Sahelian 
precipitationshed (middle) from the La Plata and Northern China precipitationsheds. Note 
that the Mediterranean sources belong to the western Sahel. (Both) The magenta line 
indicates the 5 mm growing season-1 precipitationshed boundary, and the black box indicates 
the sink region. (Right) Comparison of first and second Empirical Orthogonal Functions 
(EOFs) for the western Sahel for MERRA during the period 1980-2011. The bold number in 
the upper left corner indicates the amount of variance explained by the associated pattern. 
Values < 2 mm growing season-1 are excluded for the sake of clarity of the figure. 

One study that focused on a GCM with a questionable representation of the observed 

climate system5 reached conclusions that are not inconsistent with climatological moisture 

 
 
5 It focuses on an old version of the NASA Goddard Institute for Space Studies model (GISS) that does a poor job of 
reproducing Sahel rainfall change and has an unrealistic climatological wind field 
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transport from the North Atlantic (though it fails to separate the North Atlantic from the 

Mediterranean Sea; Druyan and Koster 1989), and a couple of moisture advection studies show 

anomalous wind fields during wet years consistent with a small amount of moisture advection 

from part or all of this region (Park et al. 2015; Pu and Cook 2012). But the main mechanism for 

variability in moisture supply during the monsoon season (even in studies potentially consistent 

with moisture supply from the North Atlantic) is determined to be “dynamic” changes in 

atmospheric circulation that reduce transport of moisture from the Tropical Atlantic (and 

perhaps, to a lesser extent, the Gulf of Guinea) to the Sahel (Lélé et al. 2015; Liu et al. 2014; 

Park et al. 2015; Pu and Cook 2012) or reduce convergence of transported moisture in the Sahel 

(Druyan and Koster 1989). The North Atlantic may instead play a role in instigating dynamic 

changes in moisture supply.  

The apparent leading-order role for dynamic changes in moisture supply does not 

preclude an important causal role for “thermodynamic” mechanisms mediated by changes in 

evaporation. For example, Chou and Neelin (2004) find that 70% of the greenhouse gas-induced 

increase in precipitation in regions of convection in climate projections is due to the (dynamic) 

“anomalous gross moist stability mechanism”, which involves changes in MSE transport via 

circulation changes. But they maintain that this mechanism is a feedback triggered by the 

(thermodynamic) “direct moisture effect”. Thermodynamic moisture supply mechanisms have 

been proposed for the Mediterranean Sea—which is thought moisten the north of the Sahel when 

it is warm via the Harmattan winds, allowing precipitation to penetrate further into the Sahel 

(Peyrillé et al. 2007; Rowell 2003)—and for the Tropical Atlantic (Liu et al. 2014).  
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Table 1.1: Definitions of acronyms used in this dissertation. 

Climate Variables and Phenomena 
JAS July-September 
WAM West African Monsoon 
ICTZ Intertropical Convergence Zone 
AEW African Easterly Waves 
AEJ African Easterly Jet 
TEJ Tropical Easterly Jet 
SMC Shallow Meridional Circulation 
SHL Saharan Heat Low 
CAPE Convective Available Potential Energy 
MSE Moist Static Energy 
CQE Convective Quasi-Equilibrium 
q (near-surface) absolute humidity 
T (near-surface) temperature 
TT Upper-tropospheric temperature (in Chapter 4: over the Sahel) 
SST Sea Surface Temperature 
NA North Atlantic 
GT Global Tropics 
NARI North Atlantic Relative Index = NA – GT 
WAWJ West African Westerly Jet 
ENSO El Niño Southern Oscillation 
AMV Atlantic Multidecadal Variability 
AMOC Atlantic Meridional Overturning Circulation 
IOBM Indian Ocean Basin Mode 
PMM Pacific Meridional Mode 
NAO North Atlantic Oscillation 
Simulations, Climate Forcings, and Observational Products 
GCM General Circulation Model 
CMIP5 Coupled Model Intercomparison Project, phase 5 (Taylor et al. 2012) 
CMIP6 Coupled Model Intercomparison Project, phase 6 (Eyring et al. 2016) 
AA Anthropogenic Aerosols 
GHG Greenhouse Gases 
NAT natural radiative forcing 
ALL The combination of AA, NAT, and GHG 
piC Pre-Industrial control simulations 
AMIP Atmospheric Model Intercomparison Project 
amip-piF amip-piForcing simulations (prescribed SST and pre-Industrial radiative forcing) 
amip-hist AMIP historical simulations (prescribed SST and ALL radiative forcing) 
PnonNARI MMM precipitation – NARI, scaled by the amip-piF teleconnection strength (0.87) 
GPCC Global Precipitation Climatology Center dataset (Becker et al. 2013) 
CRU Climate Research Unit precipitation dataset (CRU; Harris et al. 2014)  
Papers        
GK19 Giannini and Kaplan (2019) 
G13 Giannini et al. (2013) 
Statistical Jargon 
MMM Multi-Model Mean: 3-tiered weighted mean over runs, models, institutions 
IM Institution Mean: 2nd tier of the MMM. 
R(LF)  Correlation (at low frequency) 
sRMSE(LF) Standardized Root Mean Squared Error (at low frequency) 
PDF Probability Distribution Function 
PS  Power Spectrum / Spectra 
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Causal Inference Jargon 
iid Independent and identically distributed 
SCM Structural Causal Model 
𝐴 ⫫ 𝐵|𝐶 A is “conditionally independent” of B given C 
PAG Partial Ancestral Graph 
MAG Maximal Ancestral Graph 
ADMG Acyclic Directed Mixed Graph 
DC Distance Correlation 
CMI Conditional Mutual Information 
CMIknn K nearest-neighbor estimator of CMI with a permutation-based significance test (Runge 2018b) 
MCI Momentary Conditional Independence 
knn K nearest neighbors for CMIknn 
SN Shuffle neighbors for CMIknn 
PCMCI Time-series causal discovery algorithm based on the Peter and Clark algorithm (PC) and MCI 

(Runge et al. 2019a) 
PCMCI+ PCMCI with contemporaneous relationships (Runge 2020) 
LPCMCI “Latent PCMCI” with latent confounding (Gerhardus and Runge 2021) 
𝛼 Significance parameter for the conditional independence test for (L)PMCIC(+) 
𝑝 Number of preliminary iterations for LPCMCI 
𝜏'() Maximum considered time lag for (L)PCMCI(+) 
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Chapter 2. The Effects of Anthropogenic and Volcanic Aerosols and 

Greenhouse Gases on Twentieth Century Sahel 

Precipitation in CMIP5 

Note: This chapter has been published in very near its present form as “The effects of 

anthropogenic and volcanic aerosols and greenhouse gases on twentieth century Sahel 

precipitation” in Sci. Rep. (2020), Vol. 10.1, pp. 1-11, doi: 10.1038/s41598-020-68356-w.6 

Minor edits have been made for clarity. 

2.1. Introduction 

The Sahel experienced dramatic, multi-decadal rainfall variability in the twentieth 

century which was unparalleled in the rest of the world. This variability was marked by a striking 

decline in rainfall between about 1960 and the early 1980s, including devastating droughts and 

famine in the early 1970s and 80s, which left 100,000 people dead and 750,000 dependent on 

food aid (Bird and Medina 2002). Scientists immediately began to explore potential relationships 

between Sahel rainfall and a wide variety of local (Charney 1975; Taylor et al. 2002a) and global 

(Folland et al. 1986; Rowell et al. 1995) climatic factors. Giannini et al. (2003) confirmed the 

importance of global over local processes by showing that an atmospheric model forced with 

observed global sea surface temperature (SST) alone could reproduce the profile of the first 
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principal component of Sahel 20th century rainfall variability, if not the amplitude, at a 

correlation of approximately 0.7. Studies since then have continued to focus on various global 

processes, reinforcing the connections between the Sahel and the temperature of ocean basins 

across the globe, and establishing links to internal variability—such as the El Niño Southern 

Oscillation (Okonkwo et al. 2015; Parhi et al. 2016; Pomposi et al. 2016) and the Atlantic 

Multidecadal Oscillation (Okonkwo et al. 2015; Pomposi et al. 2015)—and external forcing—

such as greenhouse gases (GHG; Ackerley et al. 2011; Dong and Sutton 2015; Giannini and 

Kaplan 2019; Giannini et al. 2013; Haarsma et al. 2005; Held et al. 2005) and volcanic and 

anthropogenic aerosols (Ackerley et al. 2011; Haywood et al. 2013; Polson et al. 2014). 

However, the relative importance of internal variability and different sources of external forcing 

remain unclear. 

There is a developing consensus in the literature that anthropogenic aerosols have 

contributed to the Sahel drought, though there is disagreement over the prominence of this 

contribution and the physical mechanism that governs it (Ackerley et al. 2011; Biasutti and 

Giannini 2006; Chang et al. 2011; Giannini and Kaplan 2019; Haywood et al. 2013; Held et al. 

2005; Hwang et al. 2013a; Iles and Hegerl 2014; Kawase et al. 2010; Polson et al. 2014; 

Pomposi et al. 2015; Robock and Liu 1994; Rotstayn and Lohmann 2002; Undorf et al. 2018). 

The magnitude of the contribution is somewhat contentious because of disagreement about the 

strength of the indirect aerosol effects (McCoy et al. 2017; Penner et al. 2006; Stevens and 

Feingold 2009), which may influence SSTs and global precipitation much more than the direct 

radiative effect (Booth et al. 2012; Lin et al. 2018; Wang et al. 2015), and which may cause non-

linear interactions affecting both the spatial pattern (i.e. Polson et al. (2014) on the Asian 

monsoon) and even the mean (Lohmann and Feichter 2005) of the precipitation and temperature 
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responses to other sources of forcing. The role of greenhouse gases (GHG) is even more widely 

debated—not just in the 20th century (Ackerley et al. 2011; Booth et al. 2012; Chang et al. 2011; 

Dong and Sutton 2015; Giannini and Kaplan 2019; Giannini et al. 2013; Haarsma et al. 2005; 

Haywood et al. 2013; Kawase et al. 2010), but even in the future when GHG forcing dominates 

(Biasutti and Giannini 2006; Dong and Sutton 2015; Haarsma et al. 2005; Held et al. 2005). 

Some argue that there are also non-linear interactions between different effects of increasing 

GHG (Biasutti 2013; Biasutti et al. 2008) or between GHG and other external forcings (Giannini 

and Kaplan 2019) and internal processes (Neupane and Cook 2013). Finally, many studies claim 

that SST and Sahel rainfall variation are primarily of internal origin (Hoerling et al. 2006; Sutton 

and Hodson 2005; Ting et al. 2009). 

Many of the above studies on the Sahel focus on one or two types of forcing or on one 

model, or are limited to CMIP3 (Meehl et al. 2007), in which most models did not include 

indirect aerosols effects. Some, such as Giannini and Kaplan (2019), use a storyline approach—

focusing on proposing physically-consistent pathways by which anthropogenic emissions could 

affect societal welfare rather than proving the existence or significance of a climate response—in 

order to avoid underestimating regional impacts that result from “type II errors” such as 

scientific hesitation to make a claim and take action (Shepherd 2019). Others (Polson et al. 2014; 

Undorf et al. 2018) use fingerprinting, extracting distinct spatial and/or temporal patterns 

associated with different forcings and scaling the model response to match observations in order 

to correct sensitivity biases and avoid compensating errors in the models (Hegerl and Zwiers 

2011). We attempt to enrich the debate about the influence of external forcing and internal 

variability on Sahel rainfall over the 20th century by performing an attribution study using multi-

model means (MMM) of simulations from the Coupled Model Intercomparison Project phase 5 
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(CMIP5; Taylor et al. 2012). This is the first large ensemble of coupled models to include 

aerosol indirect effects (albeit of varying quality). Additionally, while previous ensembles have 

run simulations where all sources of external radiative forcing are set to historical values (ALL) 

and also control simulations where all sources of external radiative forcing are held constant at 

pre-Industrial levels (piC), CMIP5 is the first to run “single-forcing” model simulations, in 

which one source of external radiative forcing—such as GHG, anthropogenic aerosols (AA), or 

natural forcing (which includes volcanic aerosols and solar and orbital variations, NAT)—varies 

historically while the other external forcings are held at constant pre-Industrial values. This 

model ensemble will allow us to accurately characterize simulated responses to different forcing 

agents that are robust to model parameterization. 

2.2. Methods 

2.2.1. Data 

Our index of Sahel rainfall variability is land-averaged precipitation anomalies for the 

monsoon season (July – September; JAS) over the region 12°-18°N, 20°W-40°E. For 

precipitation observations we use the Global Precipitation Climatology Center (GPCC) dataset 

(Becker et al. 2013), which is quite similar to the Climate Research Unit (CRU; Harris et al. 

2014) dataset in average precipitation over the Sahel (see Figure 2.1a and Figure 2.1b). The two 

are compared in Figure 2.1, and GPCC is used for the rest of the paper. Model simulations come 

from the Coupled Model Intercomparison Project phase 5 (CMIP5; Taylor et al. 2012), which 

includes simulations by over 50 models from 20 different research institutions. Not all models 

contribute simulations to all four historical experiments; we use all available runs (between 1 and 

10 for a given model) from all models (with a distinct name and physics number) and research 

institutions that have complete data from 1901 (where the observed rainfall record begins) to 
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2003 (where some models stop their historical simulations). There are 14 models from 8 

institutions that contributed model simulations to the AA experiment, 21 models from 15 

institutions that contributed to the GHG experiment, 22 models from 15 institutions that 

contributed to the NAT experiment, and 51 models from 20 institutions that contributed to the 

ALL experiment (Tbl. A.1). Here, if the physics number is changed, it is treated as a different 

model under the same institution. 

2.2.2. The Multi-Model Mean 

The MMM is defined as a 3-tiered, weighted average: (1) across individual simulations 

(runs) to get an ensemble mean (EM) for each model, (2) across EMs to get an institution mean 

(IM) for each research institution, and (3) across IMs to get the MMM for that experiment. While 

any averaging helps to filter internal variability from the MMM, the first tier focuses on reducing 

internal variability present in the individual runs, the second tier focuses on reducing variability 

between models from uncertainty in parameter values, and the third tier focuses on reducing 

variability between institutions from uncertainty in parameterization. A simple mean across all 

model simulations is very similar to the tiered mean (not shown), but tiers are used to prevent 

over-representation of some parameterizations and parameter choices (associated with models 

that provide more simulations) in the MMM and in the uncertainty and significance calculations 

described in Section 2.2.4. (These differences are easier to see in the significance calculations; 

not shown.) 

If a random variable (such as the internal variability component of yearly JAS Sahel 

precipitation) has a variance of 𝜎/, then the mean over n realizations of that variable will have a 

variance of 𝜎//𝑛. The forced variability component may experience some attenuation as well 

due to differences in the simulated response to forcing between models. Given that the forced 
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signal ought to be similar across simulations from a given model, we expect attenuation of 

internal variability to overwhelm attenuation of forced variability. Thus, means over models with 

more runs or over institutions with more models will have a higher signal (forced variability) to 

noise (internal variability) ratio than their counterparts. However, they will also have less total 

variability, causing them to (counterproductively) contribute less to the MMM than their noisier 

model-mean counterparts. We counteract this by using weights which are inversely proportional 

to the expected attenuation of noise in the MMM tiers due to the number of ensemble members. 

For a weighted mean ∑ 𝑤0𝑋00 	between independent random variables Xi with mean 𝜇0, 

variance 𝑎0𝜎/, and weight wi, where ∑ 𝑤00 = 1, we find that: 

𝜎∑ 2*3**
/ = E[(∑ 𝑤0𝑋00 )/] − E[∑ 𝑤0𝑋00 ]/ = ∑ 𝑤0/0 (E[𝑋0/] − 𝜇0/) = 𝜎/∑ 𝑤0/𝑎00   

Thus, to counteract the attenuation from a previous tier, captured in ai, we define the weights as 

𝑤0 = 𝑎0
4+,/∑ 𝑎0

4+, ∝ 	𝑎0
4+,

0 . Specifically, let f, i, m, r, Nf, Nfi, and Nfim be such that each forcing 

experiment f is simulated by Nf institutions, with Nfi models from each institution i, and Nfim runs 

from each model m, and assume that the JAS Sahel precipitation in a given year for each run r 

has a variance of 𝜎/. In the first tier, where 𝑎%056 = 1 and 𝑤%056 =
7

8"*-
 (an unweighted mean), 

we find that the variances of the EMs are 𝜎9:"*-
/ = 𝜎/ ∑ 7

8"*-
,6 = ;,

8"*-
, giving 𝑎%05 = 7

8"*-
 for 

the second tier. To combat this attenuation, in the second tier we define weights 𝑤%05 =

<8"*-
∑ <8"*--

= <8"*-
:"*

∝ g𝑁%05, where  𝑀%0 = ∑ g𝑁%055  is the normalization constant for those 

weights. Using these weights, the variances of the IMs are 𝜎=:"*
/ = 𝜎/ ∑ 8"*-

:"*
, 	

7
8"*-

	5 = 8"*
:"*
, 𝜎/, 

giving 𝑎%0 =
8"*
:"*
,  for the third tier. Then in the third tier, 𝑤%0 ∝

:"*

<8"*
. 
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2.2.3. Approach 

MMMs are compared to observations using correlations, which capture similarity in 

frequency and phase, and standardized root mean squared errors (sRMSE), which capture 

differences in magnitude and are expressed as a fraction of observed variance. When comparing 

the observations to themselves, the correlation would be 1 and the sRMSE would be 0; when 

comparing the observations to a constant prediction, the correlation would be 0 and the sRMSE 

would be 1 (or 100% of observed variance). 

2.2.4. Uncertainty and Significance: Bootstrapping and Randomized Bootstrapping 

Estimates of sampling uncertainty over all possible model parameterizations are obtained 

by bootstrapping (resampling with replacement) available forced IMs before calculating the 

MMM and corresponding correlations and RMSE, yielding probability density functions (PDF) 

around the MMM correlation and RMSE. This PDF can also be interpreted as a measure of 

agreement between CMIP5 models. 

In addition to uncertainty derived from model parameterization, the MMM still contains 

noise from lingering coincident internal variability, and because bootstrapping underestimates 

variance when sample size is small, this procedure does not capture the full magnitude of that 

uncertainty. To measure this noise, we perform a similar analysis on the piC simulations, which 

contain only internal variability. We improve the procedure by artificially increasing the sample 

size by choosing random, continuous, 103-year subsets from the long, constant-forcing piC runs 

before each bootstrap. This “randomized bootstrapping” procedure captures the noise uncertainty 

in the MMM, as evident from the nearly-uniform confidence intervals of the piC MMMs 

(yellow, Figure 2.2), which contain no time-varying signal—due to forcing or to internal 

variability—by construction. (When randomizing is not used while bootstrapping the piC 
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MMMs, for comparison, the piC confidence interval expresses high-frequency variability similar 

to that seen around the forced MMMs in Figure 2.2: not pictured). However, it is worth note that 

it may be a slight overestimate since the MMM is less effective at filtering noise when there are 

fewer runs per model, and there is almost always only one piC run per model. 

We test the null hypothesis—that all results from the forced experiments are consistent 

with noise in the MMM derived from modelled internal variability alone—by repeating the 

randomized bootstrapping procedure once for each of the four forced experiments, using piC 

runs from the set of models contributing historical simulations to that experiment. 

2.2.5. Residual Consistency 

We evaluate consistency between modelled and observed internal and externally-forced 

variability by examining and comparing the power spectra (PS) of individual ALL and piC 

simulations. For increased resolution of sampled frequencies, we zero-pad the time series before 

taking the PS, and for clarity and decreased uncertainty, we average across PS from the same 

model before presenting the PS. This averaging is precluded for the piC simulations, which 

usually contain only one (long) simulation per model. To help reduce uncertainty in the piC PS, 

we divide them into consecutive, non-overlapping segments of 103 years, calculate the PS of the 

segments separately, and average them together. To account for the effect of climatological 

rainfall biases on spectral power, we calculate “rescaled PS” by scaling the individual ALL and 

piC runs from a given model by (mean observed 20th century precipitation)/(mean precipitation 

from the ALL runs for that model) before taking the PS. We then average the PS by model and 

present the 66% and 95% range of the PS. We also present 3-tiered, unweighted means over all 

simulations of the rescaled ALL, AA, NAT, and GHG PS. We use an unweighted mean because 
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differences in the timing of different simulated realizations of internal variability do not affect 

the magnitude of the spectral peaks characterizing that variability. 

2.3. Results 

2.3.1. Multi-model mean performance 

In Figure 2.1a and Figure 2.1b, we compare the MMM of Sahel 20th century precipitation 

anomalies for the ALL MMM (blue line) to individual ALL runs (blue-grey lines, background) 

and IMs (cyan lines), and to observations from the Global Precipitation Climatology Center 

(GPCC, black line; Becker et al. 2013) and the Climatic Research Unit (CRU, red dotted line; 

Harris et al. 2014). Despite disagreement in the first three years, the spatial averages of the two 

observational records look similar enough that the choice of observational product should not 

affect the results, and only GPCC is used throughout the rest of the paper. Despite the spread of 

the IMs, the standardized anomalies (Figure 2.1a) reveal a striking similarity between 

observations and the MMM, which captures much of the time series’ multi-decadal variation by 

reproducing the drought of the 70s and 80s and its recovery, and even many episodes of dramatic 

interannual rainfall changes, most notably near 1984, the driest year in observations. Assuming 

the averaging was successful in preferentially filtering out internal variability present in 

individual model simulations, the MMM represents a consensus, forced Sahelian rainfall profile 

which is recognizable in the observations (Figure 2.1a). However, the actual rainfall anomalies 

(Figure 2.1b) reveal substantial attenuation of variance in the ALL MMM compared to 

individual simulations and to the observations. 
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Figure 2.1: MMM Performance: Standardized (a) and actual (b) departures from climatology 
of 20th century Sahel precipitation in Individual ALL runs (blue-grey solid lines), ALL 
institution means (IMs, cyan), the ALL MMM (blue), and observations from GPCC (black) 
and CRU (red dotted line). Histogram (cyan) of correlations (c) and sRMSE (d) between 
GPCC observations and the IMs, actual correlation (c) and sRMSE (d) of the MMM with 
observations (blue dot), and the bootstrapping PDFs (blue curve) of the correlation (c) and 
sRMSE (d) between the ALL MMM and observations. 

The remaining panels of Figure 2.1 display the correlations (Figure 2.1c) and the RMSE 

(Figure 2.1d) of individual IMs (cyan histogram) and of the MMM (blue dot) with observations. 

The blue curves show probability density functions (PDF) from bootstrapping over the IMs, and 

represent how those statistics might change with a slightly different set of models. The 

correlation measures the similarity in the shape of one time series with respect to the other but is 
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independent of relative amplitude, whereas the sRMSE estimates the difference in amplitude of 

the simulated and observed yearly rainfall time series. 

The MMM performs as well as or better than most individual IMs in both metrics, 

consistent with previous studies which compared other versions of multi-model means to 

individual models (Gillett et al. 2002). Though some research institutions may appear to 

outperform the MMM in correlation and RMSE with 20th century observations (notably, GISS 

outperforms the MMM in both), as we are comparing only one variable (precipitation) to one 

realization of observations in which forced and internal variability are indistinguishable, it is 

unclear whether these models truly capture the underlying mechanisms better than the ensemble. 

The RMSE values for the MMM and the IMs are near 100% of observed variance, partially 

reflecting the severe attenuation seen in Figure 2.1b. 

2.3.2. Model response to different forcing experiments 

Figure 2.2 displays the MMMs for the three different single-forcing experiments: AA for 

anthropogenic aerosols (pink, Figure 2.2b), NAT for natural forcing (brown, Figure 2.2c), and 

GHG for greenhouse gases (green, Figure 2.2d); and compares them to observations (black). 

Figure 2.2a again displays the ALL MMM (blue). Note that the observations correspond to the 

black ordinates on the left, while forced and piC model outputs (colors, including yellow) 

correspond to the colored ordinates on the right, which have a scale a quarter the range to 

facilitate comparison. The blue, pink, brown, and green shaded areas are the 95% range of 

bootstrapped forced MMMs. They represent agreement in the forced signal between the 

institutions, even though—due to small sample size—they do not fully capture the magnitude of 

noise in the MMM caused by coincident simulated internal variability (see Section 2.2.4). The 

yellow shaded areas are also a 95% confidence interval, but they are obtained using randomly-
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chosen continuous subsequences of the piC runs in place of the historical simulations, where the 

piC simulations are taken from the same set of research institutions which provided simulations 

for that historical forcing experiment. The yellow shading thus estimates the magnitude of noise 

in the MMM. 

The variance of the forced MMMs over time (solid lines) and of the bootstrapped forced 

MMMs and randomized bootstrapped piC MMMs in a given year (shaded areas) vary from panel 

to panel inversely (though not proportionally) with the square root of the number of research 

institutions which simulated each forcing experiment (N). They are all roughly a quarter of 

observed variance – consistent with many precipitation fingerprinting studies, which often scale 

simulated precipitation up by a factor of 3-5 (Hegerl and Zwiers 2011; Polson et al. 2014; 

Undorf et al. 2018; Zhang et al. 2007). Aside from a few exceptions, the yearly magnitudes of 

the forced MMMs are not significantly different from zero, as they do not surpass the yellow 

zone consistent with noise in the MMM; this limits the detail with which we can examine the 

MMM directly. However, NAT (Figure 2.2c) and ALL (Figure 2.2a) are both significantly dry in 

1982 (the year of the El Chichón eruption, near the driest observed year in 1984), and AA 

(Figure 2.2b) and ALL both display multi-decadal variability in the second half of the century 

(including a partial recovery) that is characteristic of the observations and uncharacteristic of 

NAT and GHG (Figure 2.2d). 
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Figure 2.2: Forced MMMs: Forced MMM Sahel precipitation anomalies (colored lines; right, 
colored ordinates) and their yearly 95% confidence intervals from bootstrapping (colored 
shaded areas; right, colored ordinates) over observed Sahel precipitation anomalies (black 
lines; left, black ordinates) and the 95% confidence interval of the piC runs from randomized 
bootstrapping (yellow shaded areas; right, colored ordinates). N are the number of research 
institutions which performed each forcing experiment. Panel (c) additionally identifies the 
dates of large volcanic eruptions which had different effects on the aerosol optical depth in 
the northern and the southern hemispheres, as well as the sign of that difference (Haywood 
et al. 2013). 

Figure 2.3 displays the mean padded power spectra (PS, lines) and 95% confidence 

intervals (shaded areas) of the bootstrapped forced MMMs (colors other than yellow), and 

compares them to that of the randomized bootstrapped piC MMMs (yellow). We calculate the 

piC MMM using the reduced set of models that contributed the AA experiment. With only 8 
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contributing research institutions, the AA MMMs filter out less noise from modelled internal 

variability—and thus have more power at all frequencies—than the MMMs associated with the 

other experiments. Thus, using this reduced set of models provides a conservative estimate of the 

spectral noise in all four forcing experiments. Figure 2.3 shows that the multi-decadal variability 

in AA (pink) and ALL (blue) is distinct from noise (yellow). It also confirms that the high-

frequency variability in GHG is consistent with noise. Episodic volcanic forcing should not give 

rise, per se, to spectral peaks, though the observed pattern of large eruptions at the beginning and 

at the end of the century (see Figure 2.2c) may induce some spectral power at multidecadal 

timescales. Since we do not detect any meaningful spectral peak in the NAT PS (brown) 

associated with solar variability at 11 years, we interpret the NAT MMM to be mostly the result 

of volcanic aerosols. 

 
Figure 2.3: Forced MMM Power Spectra: Mean (lines) and 95% confidence intervals (shaded 
areas) of padded Power spectra (PS) of bootstrapped forced MMMs (ALL – blue, NAT – 
brown, AA – pink, GHG – green) and randomized bootstrapped AA piC MMMs (yellow). 

Figure 2.4 again displays the values (dots) and PDFs (curves) of correlation (Figure 2.4a) 

and RMSE (Figure 2.4b) between observations and the bootstrapped ALL MMMs from Figure 

2.1c and Figure 2.1d (blue) and compares them to the values (dots) and PDFs (curves) for 
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individual forcing experiments (solid curves distinguished by color) and the piC PDFs associated 

with the ALL experiment (dotted yellow curves). The piC PDFs corresponding to the three 

individual forcing experiments (which make use of only the models contributing to that 

experiment) are sufficiently similar to the ALL piC PDF that they are not plotted separately, with 

the exception of the AA piC sRMSE PDF (pink dotted curve in Figure 2.4b), which is wider and 

centered at a higher sRMSE than those of the other experiments, reflecting the high variance in 

the yearly values seen in the yellow shaded area in Figure 2.2b. Despite this difference, the p=.05 

significance levels are still sufficiently similar for all four experiments for both correlation and 

sRMSE that they are represented by a single vertical grey dashed line at the p=.05 significance 

level of the ALL experiment. As the NAT and GHG MMMs contain mostly high-frequency 

variability – which is difficult to distinguish from noise remaining in the MMM (see Figure 2.3) 

– their PDFs are wider than the PDFs for the AA and ALL MMMs, which exhibit low-frequency 

variability uncharacteristic of noise in the MMM. 

 
Figure 2.4: Performance of forced MMMs: Probability density function (PDF) of correlations 
(a) and sRMSE (b) of bootstrapped forced MMM 20th century Sahel precipitation (colored 
curves: blue = ALL, pink = AA, brown = NAT, green = GHG) and of randomized 
bootstrapped piC MMM Sahel precipitation corresponding to the ALL experiment (dotted 
yellow curves) and the AA experiment (dotted pink curve, b) with observed 20th century 
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Sahel precipitation. Actual forced MMM values are represented with colored dots on the 
PDFs. One-sided 95% confidence level represented with grey vertical dashed lines. 

While the GHG MMM is not significantly better than noise at matching observations in 

both correlation (r=.06) and sRMSE (100% of observed variance), ALL (r=.36, sRMSE=.96), 

AA (r=.26, sRMSE=.97), and NAT (r=.23, sRMSE=.98) all achieve significance at p=.05. The 

discrepancy between the ALL MMM and NAT and AA individually under both metrics suggests 

that both anthropogenic and volcanic aerosols contribute substantially to the performance of the 

ALL MMM. Because the metrics for both AA and NAT fall within the other’s bootstrapping 

confidence interval, according to this analysis, AA and NAT contribute roughly equally to the 

performance of the observed ALL MMM. 

The ALL MMM has limited explanatory power as it is nearly constant, and, according to 

the RMSE, it leaves 96% of the variance unexplained. This unexplained variance could be due 

either to model deficiency or internal variability, since the MMM is designed to filter out internal 

variability—which will have similar characteristics but different phase across individual 

simulations—in favor of forced variability. Since observations include both internal and forced 

variability, no MMM would be able to match observations exactly. In this light, the ALL MMM 

correlation with observations of 0.36 is substantial. For comparison, we may liken this to 

simulations forced with observed SST, which reflect as best as possible observed internal climate 

variability as well as forced variability. As reported in Giannini et al. (2003), the correlation of 

the unsmoothed observations with the unsmoothed mean over version 1 of the atmospheric 

general circulation model developed at NASA’s Goddard Space Flight Center in the framework 

of the Seasonal-to-Interannual Prediction Project (NSIPP1) from 1930-2000 is 0.60; the 

correlation of the ALL MMM with observations over the same period is not far behind at 0.47, 
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suggesting that a large fraction of the variability that SST-forced climate models can capture is 

externally forced. 

 
Figure 2.5: Residual Consistency: Power spectra (PS) of observed 20th century Sahel rainfall 
(solid black, a and c) and the residual after removing the ALL MMM (black dotted-dashed, b 
and d). (a) and (b): Mean PS by model of individual ALL (a) and piC (b) runs, colored by 
average JAS rainfall bias of the ALL runs compared to 20th century observations, where 
observed rainfall is grey, wet models are turquoise, and dry models are brown. piC PS (b) are 
additionally averaged over multiple subsections of the runs. (c): Tiered mean (blue dashed 
line) and 66% and 95% range (blue shading) of mean PS by model of individual ALL runs 
which were first rescaled to match 20th century observed JAS rainfall. Also displayed are the 
tiered means over PS of individual forced AA, NAT, and GHG runs (colored dashed lines). 
The black dashed line shows the sum of the tiered mean piC PS (from panel d) and the ALL 
MMM PS (i.e. Figure 2.3). (d): Tiered mean (orange dashed line) and 66% and 95% range 
(yellow shading) of mean PS by model of individual piC runs which were first rescaled so 
their corresponding ALL runs match 20th century observed yearly rainfall, as in (c). 
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2.3.3. Residual Consistency 

To test the role of internal variability in the CMIP5 fully coupled models, we cannot use 

the MMM, because internal variability will have differing phase across different simulations. 

Instead, we examine power at different frequencies in individual coupled runs. Figure 2.5a 

compares the padded power spectrum (PS) of 20th century observed Sahel precipitation (solid 

black) to the padded PS of the ALL simulations, first estimated for individual runs, then 

averaged across ensemble members for each model. They are colored by the difference in the 

modelled and observed rainfall climatology from 1901 to 2003, where brown is used for models 

which are drier than observations, grey is used for models whose climatologies are near the 

observed climatology, and turquoise is used for models which are wetter than observations. As 

the individual ALL runs are single realizations that compound forced and internal variability like 

observations, they are directly comparable to observations. 

While there are three models (MIROC-ESM p1, MIROC-ESM-CHEM p1, and GFDL-

ESM2G p1) which nearly reach the high power of the observations at a period of 100 years, 

these models are biased wet, and also exhibit over-estimates of high-frequency variability. Figure 

2.5b displays the PS of the estimate of observed internal variations implied by the MMM, 

calculated as the residual of observations with respect to the ALL MMM (black dashed-dotted 

line), and compares it to its modeled counterpart, estimated as the mean PS by model of the 

individual piC runs, colored by the same rainfall biases used in Figure 2.5a. Since there is often 

only one piC simulation per model, in order to reduce uncertainty in the PS, the long piC runs are 

divided into continuous, non-overlapping sections, and PS are taken separately for each section 

and then averaged together. We again see that wet models overestimate high-frequency 

variability, and no model matches the low-frequency power of the residual, pointing to 
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inconsistency between model simulations, their MMM, and observations. If the models 

underestimate forced variability, or if the MMM underestimates the magnitude of the modelled 

forced variability, this will cause the estimate of observed internal variability to be too large; so, 

while this comparison allows us to make a statement about consistency, it does not determine 

whether it is simulated internal variability or our estimate of forced variability that is incorrect. 

However, it is clear that modelled internal variability does not contribute substantial power at 

low frequencies. 

The PS for both the forced and piC runs are clearly stratified by modelled precipitation 

climatology, or the mean JAS precipitation over the length of that simulation. To investigate 

whether any of the models capture the observed distribution of power across different 

frequencies, in Figure 2.5c and Figure 2.5d we rescale the simulations by model before taking 

the PS and the mean by model so that the climatology of each model’s ALL simulations matches 

observed rainfall climatology. This mostly destroys the stratification in the previous panels (see 

Fig. A.1). The distribution of model-mean scaled ALL and piC PS are represented by blue and 

yellow shaded areas in Figure 2.5c and Figure 2.5d, respectively. The blue and orange dashed 

lines in Figure 2.5c and Figure 2.5d mark the centers of these distributions with 3-tiered, 

unweighted means over the PS of the ALL and piC runs, respectively. The other colored dashed 

lines in Figure 2.5c mark the tiered means over the PS of all runs in each of the three individual 

forcing experiments (magenta=AA, brown=NAT, green=GHG) for comparison. 

The black dashed line in Figure 2.5c shows the sum of the tiered mean piC PS (orange 

dashed line from Figure 2.5d) and the PS of the ALL MMM (i.e. the blue line in Figure 2.3). If 

the MMM accurately represented the simulated forced power when scaled to the observed 

climatology, we would expect this sum to match the tiered mean ALL PS (blue dashed line). 
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Instead, it falls short at low frequency, suggesting that the ratio of the variance of the ALL 

MMM to observed climatology underestimates the ratios of simulated forced variance to 

climatological Sahelian precipitation in CMIP5 models. This may be because the ensemble is 

biased dry, or because differing responses to forcing between models cause the consensus forced 

response to have lower variance than exhibited in individual models. In addition to any 

implications for the sRMSE calculations displayed earlier, this means that the residual spectrum 

in Figure 2.5d is an overestimate of internal variability in observations as implied by the CMIP5 

ensemble. 

However, it is still clear that even scaled piC simulations do not exhibit any increase in 

power at low frequency (Figure 2.5d). Even though the inclusion of external forcing introduces 

low-frequency variance (Figure 2.5c), the CMIP5 models are unable to capture the scale of the 

increase in power at low frequency in the observed PS, which exceeds the 95th percentile of 

rescaled ALL PS at periods longer than 50 years. Of the different forced experiments, ALL and 

AA are the only ones that exhibit substantial multi-decadal variability. Thus, while the variance 

of the ALL MMM may be somewhat underestimated due to the dry bias of the ensemble or to 

attenuation from averaging, the vast majority of the discrepancy in low-frequency power 

between simulations and observations is due to model deficiency, whether in capturing the full 

magnitude of the forced response to AA, or in detailing the true character and magnitude of the 

other forced responses, low-frequency internal variability, and their interactions. 

2.4. Discussion 

The analysis in this study shows that the consensus response of Sahelian precipitation to 

20th century external forcing in CMIP5 simulations, as defined by the 3-tiered multi-model mean 

(MMM), correlates significantly with observations. It further shows that both anthropogenic 



 

 44 

aerosols (AA) and volcanic aerosols (NAT) contribute significantly and substantially to making 

CMIP5 MMM Sahel precipitation similar to observations, with AA mostly responsible for the 

multidecadal forced variability. Given that the performance of the ALL MMM can apparently be 

explained with AA and NAT alone, we conclude that GHG do not contribute to the consensus 

forced response of Sahel seasonal precipitation in CMIP5 models.  

This does not mean that GHG do not influence Sahelian precipitation in any way, or that 

GHG will not play a significant role in the future as the magnitude of the forcing increases. 

While some individual models have indicated a role for GHG in the recovery since the mid 

1990s (Dong and Sutton 2015), it is possible that the models as an ensemble do not yet capture 

the effects of GHG on Sahelian rainfall because the magnitude of the forcing is still too small 

over the historical period. Alternatively, competition between the mechanisms linking GHG 

forcing to Sahelian rainfall may have masked the effects of GHG by cancelling within individual 

simulations (Kawase et al. 2010) or between models (Biasutti 2013) in the MMM. Finally, it has 

been suggested that the response to GHG is inherently non-linear (e.g. different circulation 

responses to different magnitudes of warming in Neupane and Cook 2013), or interacts non-

linearly with other forcings (e.g. the interaction of an “upped ante” and changing moisture 

supply, as suggested by Giannini and Kaplan 2019). These non-linearities are difficult to test 

without the ability to compare the ALL MMM to “all but GHG” simulations, which are not 

widely available in CMIP5. 

While the standardized root mean squared error (sRMSE) of the ALL MMM with 

observations is also significantly different from noise, it is 96% of the observed rainfall variance, 

meaning that modelled forced variability can hardly account for observed variability since the 

ALL MMM is hardly better than a constant prediction. Our residual consistency test showed that 
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while the variance of the MMM may be too small relative to observed climatological seasonal-

mean rainfall due to the dry-bias of simulations or to averaging, the discrepancy between total 

observed variability and total modelled variability is an order of magnitude larger than this 

difference, and modelled internal variability cannot account for the difference between the 

simulated forced response and observations. 

Since modelled internal variability does not show substantial low-frequency variability 

while the AA MMM does, it is tempting to attribute the full magnitude of observed multi-

decadal variability to AA, as many previous studies have done by focusing only on standardized 

trends (Held et al. 2005), correlations (Giannini and Kaplan 2019), or detectability in a 

fingerprinting framework (Polson et al. 2014; Undorf et al. 2018). However, such a claim would 

rely heavily on assumed grid-point linearity of the climate response to different forcings, which 

is disputed for tropical rainfall (i.e. Giannini and Kaplan 2019 on GHG and anthropogenic 

aerosols; Lohmann and Feichter 2005 on feedbacks involving the indirect aerosol effects; Meehl 

et al. 2003 on non-linear feedbacks between solar forcing and GHG; Neupane and Cook 2013 on 

GHG-induced circulation changes over Africa; and Polson et al. 2014 on the indirect aerosol 

effect and spatial trend patterns in the Asian Monsoon), as well as on the accuracy of simulated 

forced and internal variability. In fact, it is not possible to say without further investigation into 

the physical pathways influencing Sahelian precipitation whether the model deficiency is in the 

modelled response to forcing or in modelled internal variability. Given the strong link between 

Sahelian rainfall and North Atlantic SST (Ackerley et al. 2011; Giannini and Kaplan 2019; 

Giannini et al. 2013; Hoerling et al. 2006; Martin et al. 2014), it is perhaps not a coincidence that 

models lack strong low-frequency variability both in Sahel rainfall and in internally-generated 

Atlantic Multidecadal Variability in SST (AMV; Yan et al. 2018). The community is currently 
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still debating whether the observed AMV is forced by AA (Booth et al. 2012; Chang et al. 2011; 

Rotstayn and Lohmann 2002) or is an internal phenomenon which is linked to ocean circulation 

variability (Sutton and Hodson 2005; Yan et al. 2019; Zhang 2017; Zhang et al. 2016; Zhang et 

al. 2013) and is dramatically underestimated in most models (Yan et al. 2018). 

Future work that focuses on characterizing and quantifying the mechanisms of influence 

on Sahelian precipitation in simulations and observations and using the next generation of 

climate models (Eyring et al. 2016) might shed new light on whether the model/observation 

discrepancy documented here is due to an underestimate in the strength of the precipitation 

response to AA or a failure of CMIP5-class climate models to capture low-frequency internal 

variability. 
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Chapter 3. Deficiencies in Simulated Low-Frequency Sahel 

Precipitation Variability from CMIP5 and CMIP6 

Note: This chapter has been published in very near its present form as “Drivers of Low-

Frequency Sahel Precipitation Variability: Comparing CMIP5 and CMIP6 Ensemble Means with 

Observations” in Climate Dynamics (2023), doi: 10.1007/s00382-023-06755-1.7. Minor edits 

have been made for clarity. 

3.1. Introduction 

Chapter 2 investigated the causes of observed Sahel precipitation variability using the 

Coupled Model Intercomparison Project phase 5 (CMIP5, Taylor et al. 2012), which is the first 

multi-model ensemble to include “Detection-Attribution” simulations aimed at separating the 

effects of the radiative forcing agents mentioned above. Rather than focusing on the specific 

behavior of any individual model—which may outperform other models in one metric but 

underperform in another—we employed a multi-model mean (MMM) to identify a more robust 

“central tendency” of the ensemble (Mote et al. 2011). We showed that, while the MMM 

variance might be somewhat damped due to the dry-bias of the ensemble, the MMM of historical 

Sahel precipitation matches observed historical precipitation better than simulated precipitation 

from any individual model in CMIP5. We found that AA and volcanic aerosols—but not GHG—

are responsible for forcing simulated Sahelian precipitation that correlates well with 
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observations, with AA alone responsible for the low-frequency component of simulated 

variability. This conclusion appeared consistent with previous claims that global AA 

emissions—which originate mostly in the Northern Hemisphere, and which increased until the 

1970s and then decreased until 2000 in response to clean air initiatives (Klimont et al. 2013; 

Smith et al. 2011)—caused multi-decadal variability in Sahel precipitation via changes in 

Northern Hemisphere surface temperature (Ackerley et al. 2011; Haywood et al. 2013; Hwang et 

al. 2013b; Undorf et al. 2018), or specifically via multidecadal variability in North Atlantic SST 

(the Atlantic Multidecadal Variability, AMV; Booth et al. 2012; Hua et al. 2019). However, we 

also found that, like previous simulations, the CMIP5-simulated rainfall response to forcing 

(given by the MMM) has too little low-frequency power relative to observations, and simulated 

internal variability is unable to account for this difference.  

Because we did not examine the pathways through which any given forcing agent affects 

Sahel precipitation, we could not determine whether the discrepancy between the CMIP5 

simulations and observations represents a quantitative underestimate of aerosol indirect effects 

and related feedbacks, or a qualitative inability of the models to simulate the observed climate 

response to forcing or observed modes of internal variability. The distinction is crucial if we are 

to trust these models’ projections of future Sahelian rainfall.  

A first investigation into the mechanisms of forced Sahel precipitation variability should 

focus on sea surface temperature (SST). Early Sahel climate variability research (Folland et al. 

1986; Giannini et al. 2003; Knight et al. 2006; Palmer 1986; Zhang and Delworth 2006) and 

more recent studies (Okonkwo et al. 2015; Parhi et al. 2016; Park et al. 2016; Pomposi et al. 

2015; Pomposi et al. 2016; Rodríguez-Fonseca et al. 2015 and references therein) used 

atmospheric simulations with prescribed global SST to demonstrate causal “teleconnections” 
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between remote SST in a number of ocean basins and Sahel precipitation, and used observational 

statistics to show the importance of these teleconnections. Unfortunately, like coupled 

simulations, atmospheric simulations have also historically failed to explain the full magnitude 

of observed Sahel precipitation variability (e.g. Scaife et al. 2009). Thus, while the dominant role 

of global SST over local land-use practices in driving the pacing of observed 20th century Sahel 

rainfall variability is unquestioned (Biasutti 2019), it has not yet been possible to rule out 

simultaneous (and potentially important) roles for solely-atmospheric responses to global 

radiative forcing that are in-phase with observed SST variability.  

Since publishing Chapter 2, new coupled and atmosphere-only simulations became 

available from phase 6 of the Coupled Model Intercomparison Project (CMIP6, Eyring et al. 

2016), in which many models have an improved representation of physical processes and newly 

implemented biogeochemical cycles as well as higher resolution (Masson-Delmotte et al. 2021). 

In coupled models, these changes have reportedly resulted in greater (and perhaps unrealistic) 

sensitivity to GHG (Forster et al. 2020; Zelinka et al. 2020) but little change in the representation 

of summer monsoons (Fiedler et al. 2020), though in this paper we identify and explore some 

notable differences in the historical evolution of Sahel rainfall. Atmosphere-only simulations in 

CMIP5 used both prescribed SST and remote radiative forcing simultaneously, and only covered 

the last couple decades of the 20th century, making it previously impossible to examine multi-

decadal SST-forced variability using CMIP. CMIP6 for the first time includes an ensemble of 

atmosphere-only (“AMIP”) simulations long enough to capture the observed period of multi-

decadal Sahel precipitation variability, with and without simultaneous radiative forcing. This 

new ensemble will allow us to robustly analyze the simulated response to realistic SST in CMIP 

and in observations. 
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Here, we extend the methodology of Chapter 2 by using the well-established dependence 

of Sahel precipitation on global SST in combination with the CMIP6 atmosphere-only 

simulations to examine the mechanisms of Sahel precipitation variability in observations and in 

the CMIP ensembles in more depth. We decompose the simulated effects of individual external 

forcing agents (F) and internal climate variability on low-frequency Sahel precipitation 

variability (P) into five path components, presented in Figure 3.1: (1) teleconnections that 

communicate variations in SST to variations in precipitation (indicated by the arrow t⃗); (2) the 

“fast” atmospheric and land-mediated effect of external forcing (F) on precipitation (f⃗); (3) the 

expression of atmospheric internal variability (IVa) as precipitation variability (an⃗ ); (4) the effect 

of forcing on SST (s⃗); and (5) the expression of internal variability in the coupled climate system 

(IVo) as SST variability (on⃗ ). The path F → SST → P is the “slow,” SST-mediated effect of 

forcing on precipitation. While the atmospheric response to forcing is not more rapid than 

teleconnections or atmospheric internal variability, we prefer to label this term the “fast response 

to forcing” rather than employing the other commonly used label—the “direct response”—in 

order to avoid terminology confusion with the “direct” effect of aerosols (which contributes to 

the “fast response” to forcing in combination with the "indirect effect" of aerosols). 

 
Figure 3.1: Causal diagram relating external forcings (F), atmospheric (IVa) and oceanic 
internal variability (IVo), sea surface temperatures (SST), and Sahel precipitation (P) via 
directional causal arrows. Unobserved variables and their causal effects are presented with 
dashed lines, while observed variables are presented with solid lines. 
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To this point, characterization of these path components in observations remains 

controversial. Firstly (top of diagram), separating the SST response to forcing (s⃗) from SST 

variability internal to the climate system (on⃗ ) has proven difficult. In particular, there is significant 

debate over whether observed AMV is a response to external forcing (Booth et al. 2012; Chang 

et al. 2011; Hua et al. 2019; Menary et al. 2020; Rotstayn and Lohmann 2002) or mainly an 

expression of internal variability in the Atlantic Meridional Overturning Circulation (AMOC, 

Han et al. 2016; Knight et al. 2005; Qin et al. 2020; Rahmstorf et al. 2015; Sutton and Hodson 

2005; Ting et al. 2009; Yan et al. 2019; Zhang 2017; Zhang et al. 2016; Zhang et al. 2013) that is 

underestimated in models (Yan et al. 2018). This debate has been hard to resolve partially 

because internal variability in AMOC and aerosol forcing may have coincided by chance in the 

20th century (Qin et al. 2020). Next, examine the bottom of the diagram. The effect of the 

observed SST field on Sahel precipitation (t⃗) can be directly estimated using atmosphere-only 

simulations, but while these simulations capture the pattern of observed Sahel precipitation 

variability, many fail to capture its full magnitude (Biasutti 2019; e.g. Hoerling et al. 2006; 

Scaife et al. 2009). This could reflect an underestimate in climate models of the strength of SST 

teleconnections (t⃗), which could be resolution dependent (Vellinga et al. 2016); or of land-

climate feedbacks that amplify the teleconnections, such as vegetation changes (Kucharski et al. 

2013). But it could also reflect a significant additional role in the observations for a fast response 

to forcing (f⃗) that drives (Bretherton and Battisti 2000) and confounds the SST-forced signal 

[P ← F → SST → P; see Pearl et al. (2016) for notation] or coincides with it by chance. 

We will not be able to resolve all of these uncertainties, but if coupled simulations or the 

new atmospheric simulations from CMIP6 can explain either precipitation or SST variability in 

observations, then this exercise should simultaneously shed light on the drivers of observed 
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variability (where the forced response and simulated internal variability jointly explain the 

observations) and the realms of common shortcomings of CMIP models (where simulations fail 

to explain observations). We continue to use the MMM to understand the forced response in both 

observations and simulations. While model improvement efforts also benefit from model-

specific analysis, we believe it is most urgent to identify and address model biases that are 

common across Model Intercomparison Projects because they prevent the ensemble from giving 

accurate mean and uncertainty estimates in future projections. 

To examine the path components in coupled simulations, we need a parsimonious 

characterization of the relationship between SST and Sahel precipitation. The scientific literature 

has linked Sahelian precipitation to many ocean basins, including the equatorial Pacific Ocean, 

the Indian Ocean, the North and South Atlantic Oceans, and the Mediterranean Sea (Rodríguez-

Fonseca et al. 2015). Observed Mediterranean SST correlates with observed Sahel precipitation 

mainly at high frequencies (not shown), which are not the focus of this study. Giannini et al. 

(2013) summarize the influence of the other relevant ocean basins in a single index, defined as 

the difference between average SST in the North Atlantic (NA) and in the Global Tropics (GT), 

and termed the North Atlantic Relative Index (NARI). Warming of NA is argued to increase the 

moisture supply to the Sahel, destabilizing the column from the bottom up (Giannini and Kaplan 

2019), while warming of GT is expected to stabilize the column by causing upper tropospheric 

warming throughout the tropics (Chou and Neelin 2004; Giannini 2010). Thus, an increase in 

NARI is expected to wet the Sahel while a decrease is associated with drying. Giannini and 

Kaplan (2019, hereafter GK19) identify NARI as the dominant SST indicator of 20th century 

Sahel rainfall in observations and CMIP5 simulations. Others have preferred to summarize the 

teleconnected SST as an Interhemispheric Temperature Difference, linking Sahel rainfall to 
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energetically-driven shifts in the Intertropical Convergence Zone (Donohoe et al. 2013; Kang et 

al. 2009; Kang et al. 2008; Knight et al. 2006; Schneider et al. 2014). The two indices are 

sufficiently correlated at the low frequencies of interest here (r=0.89 in observations, .79 in 

CMIP5, and .98 in CMIP6 for periods of >20 years; see Figure 3.4 and relevant discussion for 

motivation of this choice) that it is difficult to separate their potential effects on Sahel 

precipitation. We prefer NARI because the mechanisms associated with it are predictive rather 

than diagnostic (but see Section 3.5 for a discussion of the choice). Here, we choose to use NARI 

together with the assumption of linearity to approximate the full slow response as the product of 

the NARI response to external forcing and the strength of the NARI-Sahel teleconnection. 

This paper is organized as follows: Section 3.2 provides details on the simulations and 

observational data used in this analysis while Section 3.3 discusses the methods. In Section 3.4.1, 

we update Chapter 2’s analysis to CMIP6, examining the total response to forcing (all paths from 

F to P) and internal variability (all paths from IV to P). We then evaluate the performance of the 

CMIP6 AMIP simulations, decomposing them into the path components from the bottom half of 

Figure 3.1 (t⃗, f⃗, and an⃗ ) in Section 3.4.2, and focusing on the NARI teleconnection in Section 

3.4.3. Section 3.4.4 decomposes coupled simulations of NARI into the path components from the 

top half of Figure 3.1 (s⃗ and on⃗ ), while Section 3.4.5 evaluates the consistency of the NARI 

teleconnection established in Section 3.4.3 with coupled simulations. Finally, in Section 3.4.6, 

we use simulated NARI and the simulated NARI teleconnection to decompose the total response 

of Sahel precipitation to external forcing in coupled simulations (examined in Section 3.4.1) into 

NARI-mediated and residual components. We discuss whether the residual is consistent with a 

fast response in Section 3.5 before concluding in Section 3.6.  
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3.2. Data 

We examine 20th century Coupled Model Intercomparison Project simulations from 

CMIP5 (Taylor et al. 2012) and CMIP6 (Eyring et al. 2016), including “historical” simulations 

forced with all sources of external radiative forcing (ALL) and “pre-Industrial control” (piC) 

simulations in which all external forcing agents are held constant at pre-Industrial levels. We 

additionally examine “Detection and Attribution” simulations (Gillett et al. 2016) forced with 

AA alone, natural forcing alone (NAT, which includes volcanic aerosols as well as solar and 

orbital forcings), and GHG alone. Finally, we also examine CMIP6 amip-piForcing (amip-piF) 

simulations (Webb et al. 2017), in which atmospheric models are forced solely with observed 

SST, and CMIP6 amip-hist simulations (Zhou et al. 2016), which are forced with observed SST 

and historical ALL radiative forcing. Our calculations begin in 1901 and extend to the end of the 

simulated period: 2003 for CMIP5 and 2014 for CMIP6.  

In Chapter 2, we used all models available through the International Research Institute 

(IRI) and Lamont-Doherty Earth Observatory (LDEO) Climate Data Library for each forcing 

subset. Here, in order to provide a more stringent comparison of the effects of different forcing 

agents, we exclude models from the coupled ensemble if no AA, GHG, or ALL simulations for 

that model (or a related model from the same institution) were available on the IRI/LDEO 

Climate Data Library (for CMIP5) or on Pangeo’s CMIP6 Google Cloud Collection (for CMIP6) 

as of May 4, 2022. For the AMIP ensemble, all existing CMIP6 amip-piForcing simulations 

were downloaded from the Earth System Grid Federation website, and models were excluded if 

there was not at least one available amip-piForcing simulation or if there was no amip-hist 

simulation available on Pangeo’s CMIP6 Google Cloud Collection. Tbl. B.1, Tbl. B.2, and Tbl. 

B.3 enumerate the simulations used in this analysis. 
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Precipitation observations are from the Global Precipitation Climatology Center (GPCC, 

Becker et al. 2013) version2018, and SST observations are from the National Oceanic and 

Atmospheric Administration’s (NOAA) Extended Reconstructed Sea Surface Temperature, 

Version 5 (ERSSTv5, Huang et al. 2017). 

We analyze precipitation over the Sahel (12°-18°N and 20°W-40°E), and the SST indices 

of GK19: the North Atlantic (NA, 10°-40°N and 75°-15°W), the Global Tropics (GT, ocean 

surface in the latitude band 20°S-20°N), and the North Atlantic Relative index (NARI, the 

difference between NA and GT). All indices are spatially- and seasonally-averaged for July-

September. 

3.3. Methods 

In defining the causal diagram in Figure 3.1, we have explicitly assumed that external 

forcing does not affect internal variability. This may not be completely justified (e.g. Ham 2017), 

but is standard practice in model-based attribution methods that go beyond simple comparison. 

Such methods typically further assume (implicitly or explicitly) that observations and 

simulations are the sum of externally forced climate signals and independent internal climate 

variability. This allows the researcher to define the simulated response to forcing and to internal 

variability using an ensemble of simulations with differing initial conditions (Hegerl and Zwiers 

2011). Our formulation additionally assumes that precipitation variability does not affect 

simultaneous or following atmospheric or oceanic internal or forced variability – a simplification 

that precludes the possibility of vegetation feedbacks. While these might be relevant for the real 

world, we assume they are of secondary importance in the CMIP ensembles analyzed here, 

which do not include dynamic vegetation. 
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We define the response of a climate variable to a set of radiative forcing agents as the 

multi-model mean (MMM) of that variable over a set of historical simulations which prescribe 

that forcing agent. The MMM filters out intermodel differences and internal variability (which is 

independent across simulations), leaving an ensemble consensus response to forcing (which is 

dependent on the common radiative forcing applied to every model). We calculate the MMM as 

a 3-tiered weighted average over (1) individual simulations (runs) from each model, (2) models 

from each research institution, forming the Institution Mean (IM), and (3) institutions in that 

ensemble. Details of the weighting are provided in Chapter 2; the results are robust to differences 

in weighting. Time series are not detrended, and anomalies are calculated relative to the period 

1901-1920 unless otherwise noted. 

To evaluate the performance of the simulations relative to observations, we compute 

correlations (r), which capture similarity in frequency and phase, and root mean squared errors 

standardized by the standard deviation of observations (sRMSE), which measure yearly 

differences in magnitude between the simulated MMM and observations. The MMM time series 

are usually smoothed with a 20-year lowpass filter before calculating these statistics, and this is 

notated (•)LF. We chose to divide high- and low-frequencies at a period of 20 years because that 

is the border between low- and high-power variance in observations (see Figure 3.4). An sRMSE 

of 0 represents a perfect match between the simulated MMM and observations, and 1 would 

result from comparing the observations with a constant time series. 

To gauge uncertainty in the smoothed MMM estimates of the forced signals and 

associated metrics, we resample the institution means (output of tier two) with replacement to 

calculate a set of perturbed MMMs (details in Chapter 2), yielding probability distribution 

functions (PDF) of the MMMs and of the values of each metric. Due to the finite number of 
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simulations, these PDFs underestimate the true magnitude of the uncertainty. We evaluate 

significance by applying a randomized bootstrapping technique, which increases the effective 

sample size, to the smoothed piC simulations with one significant improvement over Chapter 2: 

instead of using just one subset of each piC simulation at a random offset to calculate the model 

means (tier 1 of the MMM) in each bootstrapping iteration, we take enough subsets to match the 

number of that model’s historical runs. Done this way, the confidence intervals calculated using 

piC simulations accurately represent noise in the forced MMMs. PiC PDFs from the same 

ensemble associated with different experiments differ slightly because a different number of 

simulations are available for different subsets of forcing agents (see Tbl. B.2). 

We perform a residual consistency test, which compares the power spectra (PS) of 

individual simulations (not smoothed) to that of observations, with one significant modification 

over Chapter 2: we calculate the PS using the multi-taper method. Confidence intervals for the 

PS for observations and MMMs are given by the multi-taper method, without accounting for the 

uncertainty in the MMMs themselves. Mean PS by model are pictured with colors according to 

climatological rainfall bias given by those simulations. The multi-model mean of these PS is 

calculated using the three tiers from the definition of the MMM, but without weights, since 

spectral power is not attenuated when averaging PS. The power spectrum of observed Sahel 

rainfall is used to justify the choice of 20 years for the low-pass filter. 

3.4. Results 

3.4.1. Changes in CMIP6: Total Precipitation Response to Forcing and Internal Variability 

In this section, we compare observed Sahelian precipitation to simulated forced and 

internal precipitation variability. 
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We begin by examining forced variability. The Multi-Model Mean (MMM) over coupled 

simulations filters out atmospheric and oceanic internal variability (an⃗  and on⃗ ), leaving the fast and 

slow precipitation responses to external radiative forcing (f⃗ and F → SST → P; see Section 3.3 for 

a discussion of the MMM). Figure 3.2 compares observed Sahelian precipitation anomalies to 

the simulated response to four sets of forcing agents (colors) in CMIP5 (dotted curves) and 

CMIP6 (solid curves). To highlight the primarily low-frequency simulated precipitation response 

to slowly-varying anthropogenic emissions, the anthropogenic aerosols b, “AA,” magenta) and 

greenhouse gases (d, “GHG,” green) MMMs are smoothed with a 20-year lowpass filter and 

contrasted with smoothed observations (black). Natural forcing (c, “NAT,” brown and red), on 

the other hand, is dominated by sporadic and non-periodic short-lived volcanic episodes, some of 

which are highlighted on the x ordinates. Spectral decomposition of any kind assumes that all 

components of the time series are periodic, so the simulated and observed responses to volcanic 

eruptions will necessarily be split between the apparent “high-frequency” and “low-frequency” 

components. Because the episodes are short-lived, we find it visually more helpful to compare 

the NAT MMMs to high frequency observed precipitation variability (grey), calculated by 

subtracting the low-pass filtered time series from the full time series. ALL simulations with all 

three forcing agents (a, blue) include both episodic and low-frequency forced variability, and so 

their MMMs are visually compared to the full observed precipitation variability (light grey) in 

addition to the smoothed version. The figure also presents the bootstrapping 95% confidence 

intervals of the forced MMMs (blue, magenta, red/brown, and green shaded areas) and of 

MMMs over randomly-shifted CMIP5 and CMIP6 preindustrial control (piC) simulations (dotted 

and solid black lines, respectively). These dotted and dashed lines represent the magnitude of 

noise deriving from coincident internal variability in the MMMs; differences between panels 
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arise from varying numbers of simulations for the different forcing subsets (see Section 3.3: 

Methods and Tbl. B.2) and from smoothing in some panels. 

 
Figure 3.2: Observed high (grey) and low-frequency (black) Sahelian precipitation anomalies 
and MMM simulated precipitation anomalies (colored) from CMIP5 (dotted bold curves) and 
CMIP6 (solid bold curves) forced with ALL (a, blue), AA (b, magenta), NAT (c, brown/red), 
and GHG (d, green). The colored shaded areas surrounding the MMMs denote the 
bootstrapping confidence intervals, and the horizontal black lines mark the confidence 
intervals of randomized bootstrapped MMMs from CMIP5 (dotted) and CMIP6 (solid) piC 
simulations, representing the magnitude of noise in the MMMs. For AA (b) and GHG (d), 
which cause low-frequency precipitation variability, simulations are smoothed over 20 years 
before taking the MMM and are visually compared to smoothed observations. Because 
volcanic forcing in NAT (c) causes short-lived episodic precipitation variability, we present 
observed high-frequency precipitation variability in grey. We also make note of 
hemispherically asymmetric volcanic forcing from Haywood et al on the x ordinates, where a 
negative sign denotes an eruption that cooled the northern hemisphere more than the 
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southern hemisphere while a positive sign denotes the opposite, aligning with the sign of 
the expected Sahel precipitation response to the eruption. The ALL MMM (a) includes both 
episodic and low-frequency forced variability, and so we present the full observed 
precipitation variability (light grey) in addition to the smoothed version (black). This panel 
additionally shows the sum of the smoothed AA and GHG MMMs for CMIP5 (auburn 
dotted-dashed curve) and CMIP6 (amber dashed curve). The label shows the standardized 
root mean squared error of the CMIP6 MMM with observations at low-frequency (sRMSELF). 

Though we sometimes visually present “high-frequency” variability to clarify the impact 

of volcanic eruptions on total as well as apparent “low-frequency” variability, only low-

frequency (LF) correlation and sRMSE statistics are presented. This means that the statistic was 

calculated after smoothing the MMM and observations, and the confidence interval and 

significance level are calculated by repeating the statistic on the smoothed bootstrapped MMMs 

of forced and piC simulations, respectively. Significance in the context of this paper means that 

the performance of the forced response is separable from unforced noise in the performance 

statistic. 

The CMIP6 MMM is less successful than CMIP5 at producing a forced dry interval in 

the second half of the century that compares to the observed drought in the 1970s and 80s (panel 

a). To understand why, we examine the individual forcing experiments. In the AA experiments 

(b), CMIP6 looks similar to CMIP5—precipitation declines in the mid-century and then recovers 

in response to clean air initiatives, preceding the timing of observed variability by about 10 

years—but the drought is not quite as strong. There are some differences in the NAT 

experiments between CMIP5 and CMIP6 (c), but the largest MMM variations in both ensembles 

are interannual episodes that are clearly associated with volcanic eruptions, most notably 

following El Chichón in 1982. In the GHG experiments (d), CMIP6 shows anomalous wetting 

after 1970 that wasn’t present in CMIP5.  
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The changes in the single forcing experiments are reflected in the ALL MMM (a): while 

CMIP5 reaches peak drought in 1982 – close to the observed precipitation minimum – CMIP6 

dries very little and only until 1970, after which it displays an anomalously wetter climate than 

CMIP5 through the end of the century. But while the precipitation responses to different forcing 

agents appear to add linearly in CMIP5 (compare the auburn dotted-dashed curve to the blue 

dotted curve), the late century wetting in CMIP6 is larger than the sum of GHG and AA wetting 

(amber dashed curve; including NAT does not help). This effect is robust to differences in model 

availability for the different sets of forcing agents. Thus, in the ALL MMM, CMIP6 displays 

slightly less drying from AA compared to CMIP5, more wetting from GHG, and additional 

wetting after 1990 from a non-linear interaction between forcings.  

As a result of these changes, the response to forcing in CMIP6 is a poor match to 

observations. At low frequencies, the correlation between the CMIP6 ALL MMM and 

observations is statistically indistinguishable from 0, and, while the sRMSELF between 

observations and the ALL MMM in CMIP5 (0.88 ± 0.04) is significantly better than a constant 

prediction (1) or noise in the MMM (not shown), the sRMSEs for all CMIP6 MMMs are 

equivalent to or worse than noise (≥0.96, see panel titles). The poor correlation for CMIP6 

makes it clear that amplifying the simulated precipitation response to forcing will not help 

explain observed precipitation.  

In Chapter 2 we showed that the CMIP5 ALL MMM (dotted blue curve) better 

reproduces observed Sahelian precipitation than individual ALL institution means (IMs). This is 

not true for CMIP6, whose MMM performance is a closer match to the median of the Institution 

Mean (IM) performances (not pictured). Though it does not perform better than the IMs, the 

MMM seems an accurate representation of the behavior of the individual IMs and the ensemble 
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as a whole. In Figure 3.3, smoothed individual simulations are presented in grey, with 95% of the 

yearly precipitation anomalies falling within the dotted black curves. IMs are presented in cyan, 

and the institution that performs best in correlation and sRMSE (MRI) is presented in green. The 

smoothed MMM is presented in blue, and compared to smoothed observations (Obs), in black. 

The major characteristics of the MMM generally apply to the IMs: none of the IMs capture the 

observed pluvial, all of the IMs show wetting at the end of the century despite almost none 

producing any drought at all, and those IMs that do produce a late-century rainfall minimum 

reach minimum precipitation earlier than observations. MRI appears to outperform the other IMs 

in part because the drought is later than the others (but still earlier than observed), and also in 

part because the difference in magnitude between the late-century drying and wetting is smaller 

than the other IMs. But its performance statistics are not distinct from the performance 

distributions over all IMs in CMIP6 (not pictured), and it still differs strongly from observations, 

with no simulated pluvial and with a drought and a recovery that are weaker than observations 

and some (or most) of the other IMs. Thus, the discrepancy between the MMM and observations 

is much larger than the difference between models, and we continue to use the MMM to 

represent the response to forcing in CMIP6. 

 
Figure 3.3: Low-frequency Sahel precipitation anomalies from individual ALL simulations 
(“runs”, grey), Institution Means (IMs, cyan), and the MMM (blue) compared to observations 
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(black). The best-performing IM (MRI) is highlighted in green. The 95% range of runs is 
outlined in dotted black curves. 

Atmospheric and oceanic internal variability (an⃗  and on⃗ ) are not anchored in time, so they 

do not survive in the MMM, and will generally not align between the observed time series and 

any given individual simulation; thus, we must compare observations to the ensemble of 

individual simulations. One way to target low-frequency internal variability would be to compare 

the observed time series to the 95% range of smoothed individual simulations, outlined in dotted 

black curves in Figure 3.3. This span clearly does not encompass the observed pluvial between 

1925 and 1965 nor the precipitation minimum in the 1980s. A more quantitative approach is 

presented in Figure 3.4, which compares the power spectra (PS) of individual piC simulations 

(colored brown to turquoise by model climatological rainfall) to the observed PS (solid black) 

and the PS of the ALL-residual (observations minus the ALL MMM, dotted-dashed black) to 

determine whether simulated internal variability can explain observed precipitation variability on 

its own or in combination with the simulated response to forcing, respectively. In the 

observations and the residual, variance at periods longer than about 20 years (low-frequency) is 

roughly 5 times as large as the high-frequency variance. Low-frequency variability in the piC 

simulations is smaller than, and inconsistent with, either observed or residual variability. 

Moreover, it is similar in magnitude to simulated high frequency variability. If the observed low-

frequency variability is internal, then this suggests that internal variability in simulated Sahel 

rainfall derives mostly from atmospheric (an⃗ ), rather than oceanic (on⃗ ), internal variability, or that 

simulated oceanic internal variability is too white (Eade et al. 2021). Because the shape of the 

spectrum is wrong, even a bias correction that inflates simulated internal variability would not 

bring simulations and observations into alignment. 
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Figure 3.4: PS of observed Sahelian precipitation (solid black curve) and the residual of 
observations and the ALL MMM (dotted-dashed black curve) and associated 95% confidence 
intervals (grey shading), compared to the model-average PS of individual piC simulations. 
Mean piC PS are colored by the average yearly piC precipitation by model, where brown 
simulations are drier than observed, grey simulations match observed yearly precipitation, 
and turquoise simulations are wetter than observed. 

We must conclude that no linear combination of the simulated forced MMM (which is a 

poor match to observations at low frequencies) and simulated internal variability (which has 

insufficient low-frequency variance) in the coupled CMIP6 ensemble can explain observed low-

frequency Sahel variability during the 20th century. Thus, model deficiency in the CMIP 

ensemble cannot be limited to the simulation of climate feedbacks which amplify—but do not 

otherwise change—the simulated response to forcing: the CMIP6 ensemble displays a 

fundamental inability to simulate the evolution of the observed Sahelian precipitation response to 

forcing, the magnitude of observed low-frequency internal variability, or both. To identify the 

proximate cause of this failure, in the next three sections we examine each causal path 

component identified in Figure 3.1. 
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Figure 3.5: Sahelian precipitation anomalies in observations (black) and simulations 
(colored) from CMIP6 atmospheric models forced with observed historical SST alone (a, 
amip-piF, orange) and with observed historical SST and all historical external forcing agents 
(b, amip-hist, dark green). The shaded areas denote the bootstrapping confidence intervals 
about the simulated MMMs. Panel (a) additionally displays observed NARI anomalies (light 
blue, right ordinates). The right ordinates for panel (a) are scaled by the inverse of the 
simulated amip-piF teleconnection strength (see Section 3.4.3) so that, when read on the left 
ordinates, NARI represents its predicted impact on precipitation. Panel (c) compares 
observed precipitation at all frequencies (grey) and at high frequencies (black) to the mean 
implied simulated fast component in AMIP simulations (amip-hist – amip-piF, purple). As in 
Figure 3.2, panel (c) denotes hemispherically asymmetric volcanic eruptions, where the 
pictured sign denotes the sign of the expected Sahelian precipitation response to the 
eruption. Panel titles show the correlation (rLF) and sRMSELF of simulated MMMs with 
observations at low frequencies. Panel (d) shows the low-pass filtered versions of panels (a)-
(c). 
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3.4.2. AMIP simulations: the Response to SST, Atmospheric Internal Variability, and the Fast 

Response to Forcing (�⃗�, 𝒂nn⃗ , and 𝒇n⃗ ) 

To isolate the effect of SST on the Sahel (t⃗), we examine precipitation in the CMIP6 

amip-piForcing simulations, which force atmosphere-only models with the observed SST history 

(containing both internal, on⃗ , and forced, s⃗, oceanic variability) and constant preindustrial external 

radiative forcing (no f⃗). The MMM of simulated Sahel precipitation filters out atmospheric 

internal variability (an⃗ ), leaving the precipitation response to the entire observed SST field 

(although the reliability of the prescribed SST is still investigated; see Chan and Huybers 2021; 

Chan et al. 2019). At all frequencies (Figure 3.5a), the amip-piF MMM (orange) is a much better 

match to observations (black) than the coupled MMMs are. Though the amip-piF MMM still 

doesn’t accurately capture many observed interannual episodes (notably including the 

precipitation minimum in 1984 and the local minimum in 1972), it captures much of the 

magnitude of observed low-frequency variability, even including wetting between the 1920s and 

the early 1960s, which is missing from the coupled MMM. A smoothed low-frequency 

comparison can be seen in panel (d). When smoothed, the amip-piF MMM achieves very high 

correlation (rLF = 0.94, CI = [0.90, 0.95]) and low sRMSELF (0.40, CI = [0.37, 0.52]) with 

observations. The main source of low-frequency sRMSE (which would ideally be 0) appears to 

be due to the influence of the dry episodes of 1972 and 1984 on the smoothed observed time 

series in the 70s and 80s.  

Could the difference between the MMM and observations be explained by simulated 

random atmospheric internal variability? Figure 3.6a compares the PS of observations (black) to 

that of the amip-piF MMM (dashed orange) and to the mean over the individual-simulation PS 

(solid orange). The 95% confidence intervals for the PS of the observations and of the amip-piF 
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MMM are displayed in grey and orange shading. The PS of the amip-piF MMM contains only 

SST-forced variability (t⃗), while the mean over the individual-simulation PS contains 

atmospheric internal variability in addition (an⃗ ). Atmospheric white noise gives the mean of PS 

slightly more power at all frequencies, and thus it falls within the grey shaded area and is not 

statistically distinguishable from the observed PS (black). Unlike previous generations of AMIP 

experiments (e.g. Scaife et al. 2009), when combined with atmospheric internal variability, 

global SST causes Sahel precipitation variability consistent with the full magnitude of observed 

variability at all frequencies. This substantial low-frequency power can only be achieved when 

atmospheric internal variability aligns with the high-performing MMM, and thus would place 

observed variability within the range of individual simulations. This suggests that CMIP6 

atmospheric models successfully capture observed teleconnections to SST that are important at 

low frequencies. 

 
Figure 3.6: PS of observed Sahelian precipitation (bold black) and associated 95% confidence 
interval (grey shading) compared to the PS of amip-piF simulations (a) and amip-hist 
simulations (b). As in Figure 3.5, mean PS by model are colored by average yearly 
precipitation, where brown is drier than observed, grey is observed, and turquoise is wetter 
than observed. The mean of the model PS is displayed in bold orange for amip-piF (a) and in 
bold green for amip-hist (b, the MMM PS is below the observed PS in both cases). The bold 
dashed lines show the PS of the MMMs with associated 95% confidence intervals (colored 
shaded areas). The amip-piF MMM is repeated in (b) to facilitate comparison. 
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Could the discrepancy be better explained by the atmospheric response to forcing? The 

“fast” atmospheric and land-mediated precipitation response to ALL in the CMIP6 AMIP 

ensemble (f⃗) can be estimated by subtracting the MMM of amip-piF simulations (Figure 3.5a, 

orange) from that of amip-hist simulations (Figure 3.5b, green), the latter of which are forced 

with historical SST and historical external radiative forcing. This estimate (panel c, purple) gives 

us the natural direct effect (as opposed to the 'controlled direct effect'; Pearl 2022) of radiative 

forcing on Sahel precipitation given observed SST. (If the atmospheric responses to radiative 

forcing and SST do not add linearly, then the natural direct effect might not be independent of 

SST, and thus may be different in coupled models.) 

Low frequency variability in the AMIP “fast” MMM (panel d, purple) is likely mostly 

due to anthropogenic emissions. It displays a small wet undulation centered at 1960 and a 

wetting trend after 1985. It does not perform well relative to observed low-frequency variability 

on its own (r = 0.01, sRMSE = 1.05), suggesting that it is not the dominant driver of observed 

variability. Additionally, it only hurts the performance of the amip-hist MMM (green) relative to 

amip-piF (orange) by keeping simulated precipitation too wet in recent decades—low-frequency 

correlation reduces from 0.94 (CI=[0.90, 0.95]) to 0.85 (CI=[0.66,0.96]), sRMSE is increased 

from 0.40 (CI=[0.37, 0.52]) to 0.55 (CI=[0.31,0.77]), and the spectral properties of the 

precipitation MMM are virtually unchanged (Figure 3.6b, green)—suggesting that the AMIP 

“fast” MMM may be an inaccurate representation of the observed fast response to radiative 

forcing. 

Short-lived episodic variability in the AMIP “fast” MMM (Figure 3.5b) is likely to be 

associated with volcanic eruptions, noted on the x ordinates, obscured by noise from both sets of 

AMIP simulations. Though part of the observed response to these volcanic eruptions will exist in 
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the “low-frequency” component, most of the low-frequency variability that dominates total 

observed precipitation variability (grey) is not volcanic and would inhibit comparison with the 

mostly-flat “fast” MMM. Instead, we compare the “fast” response to observed “high-frequency” 

precipitation variability (black), which will clarify the timing (though not the full magnitude) of 

observed episodes of precipitation variability that may be a response to volcanic eruptions. 

Indeed, the total fast response appears to match the sign and timing of observed episodes near the 

marked eruptions, notably including the observed precipitation minimum in 1984. This suggests 

that the actual observed precipitation minimum in 1984—which is not well-captured by the 

amip-piF MMM (panel a)—is at least partially a fast response to the eruption of El Chichón in 

1982. The “low-frequency” component of the fast response to the eruption of El Chichón might 

have helped lessen the gap between the amip-piF low-frequency MMM (panel d, orange) and 

observations (black) around 1980, but the benefit of this fast volcanic drying is overwhelmed in 

the fast (purple) and amip-hist (green) MMMs by the unrealistic anthropogenic fast wetting 

trend. 

The high performance of the AMIP MMMs suggests that the principal deficiency in 

reproducing observed low-frequency Sahelian precipitation variability in coupled models stems 

from a failure to simulate the observed combination of forced and internal variability in SST or 

from corruption of the simulated teleconnections in coupled models (due to e.g., variations in 

model basic state and patterns of SST variability). The reduced performance of the amip-hist 

MMM relative to the amip-piF MMM at low frequencies suggests that a secondary deficiency 

might arise from an overzealous fast wetting response to anthropogenic emissions. 
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3.4.3. The NARI Teleconnection: AMIP Simulations and Observations (�⃗�) 

We next examine Sahel teleconnections to SST in more depth. Observed NARI is 

presented in Figure 3.5a in light blue on the right ordinates. NARI correlates reasonably with 

SST-forced Sahelian precipitation at all frequencies in the amip-piF MMM (orange, left 

ordinates; r	 = 	0.60, CI = [0.42,0.62]), but this still leaves 64% of total variance unexplained, 

suggesting influences from SST variations elsewhere or non-linear or non-stationary effects 

(Losada et al. 2012). A low-frequency comparison of NARI with simulated precipitation can be 

seen in panel d (rLF = 0.72 , CI = [0.54,0.81]). It is clear that NARI matches the timing and sign 

of observed (black) and simulated (orange and green) low-frequency Sahel precipitation 

variability, but no linear teleconnection with NARI can explain the full magnitude of the 

simulated drought (orange), because NARI in the 1980s is in the same range as in the beginning 

of the century.  

Let’s assume that the NARI teleconnection is linear at all frequencies (as claimed by 

GK19) and unconfounded by the influence of SST changes in other ocean basins (correlating 

NARI and amip-piF MMM precipitation with globally-varying MMM SST, not shown, suggests 

that candidates for confounders are limited to ocean basins north of the area covered by NARI or 

the Interhemispheric Temperature Difference; we will revisit this assumption in Section 3.5). 

Then we can measure the strength of the NARI teleconnection by the regression coefficient of 

the amip-piF precipitation MMM, which contains only SST-forced variability, on NARI. This 

calculation yields a regression slope of 0.87 ± 0.26 >>
?@A∗°D

. This value is affected by both high- 

and low-frequency variability, which is appropriate if the teleconnection is, indeed, linear. The 

left ordinates in Figures 3.5a and 3.5d are scaled relative to the right ordinates by this 

teleconnection strength so that, when read on the left ordinates, the light blue curve represents 
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the expected precipitation response to NARI. This view highlights how NARI captures the 

timing of simulated low-frequency variability, even though it fails to explain the full magnitude 

of simulated dry anomalies after 1975. In the rest of this paper, we use the NARI teleconnection 

as the preferred linear representative of the simulated influence of SST on Sahel precipitation in 

the 20th century. 

The teleconnection strength that we calculated from the amip-piF MMM is not directly 

comparable to observations, because the latter includes the fast precipitation response to forcing, 

which can in theory confound estimates of the teleconnection. A more direct comparison can be 

drawn between the apparent teleconnection strength in the amip-hist MMM (0.93 ± 0.41) and in 

observations (1.04). The consistency lends credence to our previous suggestion that simulated 

SST teleconnections to Sahel rainfall appear to have the appropriate strength in CMIP6, at least 

in the AMIP MMM. 

3.4.4. Forced and Internal SST Variability in Coupled Simulations (𝒔n⃗  and 𝒐nn⃗ ) 

We now examine simulation of forced (s⃗) and internal (on⃗ ) SST variability in the coupled 

ensembles. Figure 3.7 compares observations (black and grey) to the simulated coupled SST 

response to forcing (s⃗)—represented by MMM anomalies (colors)—for NARI (right column) 

and its constituent ocean basins: the North Atlantic (NA, left column) and the Global Tropics 

(GT, middle column). The horizontal dotted and solid black lines show the bootstrapping 95% 

confidence intervals of the piC simulations for statistical significance for CMIP5 and CMIP6, 

respectively, while the colored shaded areas denote uncertainty in the CMIP5 and CMIP6 

MMMs. As above, CMIP5 MMM anomalies are presented in dotted curves and CMIP6 in solid 

curves, color-coded according to their forcing. We observed that the simulated North Atlantic 

and tropical SST responses to external forcing are quite similar in CMIP5 and CMIP6. 
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Figure 3.7: Observed high- (grey) and low-frequency (black) SST anomalies (°C relative to 
1901-1920) and simulated SST anomalies from CMIP5 (dotted curves) and CMIP6 (solid 
curves) for the North Atlantic (NA, left column), the Global Tropics (GT, middle column), 
and the North Atlantic Relative Index (NARI, right column) when forced with ALL (blue, top 
row), AA (magenta, second row), NAT (brown/red, third row), and GHG (green, bottom row). 
As in Figure 3.2, the shaded areas mark the bootstrapping confidence intervals, and the 
horizontal black lines mark the confidence intervals of randomized bootstrapped MMMs 
from CMIP5 (dotted) and CMIP6 (solid) piC simulations, representing the magnitude of 
noise in the MMMs. AA (second row) and GHG (last row) simulations are smoothed over 20 
years and compared to smoothed observations (black) or a smoothed residual (orange) 
between observed SST (black) and simulated GHG-forced SST (green, bottom row) in that 
basin. NAT simulations are compared to high-frequency observed variability and are 
presented relative to the 1920-1960 mean, between volcanic eruptions. The y labels show the 
number of institutions that were used for each subset of forcing agents in CMIP6 (N, see Tbl. 
B.2), and for all panels, the subplot titles display the correlation (rLF) and sRMSELF between 
the smoothed MMM and smoothed observations (or GHG residual) for CMIP6. Panel (a) 
additionally displays the sum of simulated NA forced with AA and GT (burgundy dashed 
curve). 



 

 73 

CMIP5 and CMIP6 historical MMMs are unable to capture observed NARI (panel c, 

grey), which shows strong multi-decadal variability (black) throughout the century. In the ALL 

MMM (top row, blue), the temporal evolution of NARI (c) matches the observations at low 

frequencies with some skill, and significantly better than noise in the MMM (rLF = 0.46, CI = 

[0.39, 0.51]; sRMSELF = 0.89±0.03 for CMIP6), but fails to capture the observed multi-decadal 

NARI warm period between 1925 and 1970. Moreover, its NA (a) and GT (b) components are a 

poor match to the observed marked multi-decadal variability in NA and the roughly linear 

warming trend in GT. For NA, the match between observations and the ALL-forced response is 

better in the later part of the record, but worse in the first half. During the period prior to 1960, 

according to the MMMs from both CMIP ensembles, GHG warming (j, green) masks AA 

cooling (d, magenta) to produce a roughly constant temperature in the ALL MMM (a, blue). The 

simulated cold episode in 1964 is due to the eruption of Agung in 1963 (g, brown and red), and it 

is only after the mid 1960’s that increased GHG warming overtakes stagnating AA cooling to 

produce pronounced warming in fairly good accord with observations. The simulated response to 

external radiative forcing cannot explain much of the observed low-frequency variability in NA 

(a, black), especially the anomalously warm period between 1930 and 1960. In both CMIP5 and 

CMIP6 ALL simulations, the MMMs of GT (b, blue) are anomalously colder than observations 

between 1960 and 2000. This behavior is reminiscent of the inaccurate simulation of global SST 

in HadGEM2-ES, as pointed out by Zhang et al. (2013), who questioned the claims of Booth et 

al. (2012) that observed AMV was externally forced. This period coincides with a cluster of 

volcanic eruptions (h) that possibly affect GT too strongly in simulations. It is also the period 

when simulated AA cooling (e, magenta) is the strongest and not yet compensated by GHG 

warming (k, green). These correspondences lead us to question whether the match of simulated 
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and observed NARI in this period happens due to compensating errors across different ocean 

basins and between the responses to different radiative forcing agents. 

Examining all types of experiments (all rows), we see that coupled simulations cannot 

reproduce realistic low-frequency mean variability in the North Atlantic (left column) or in 

NARI (right column) no matter what forcing is applied. GHG (l) and NAT (i) both produce little 

variability in NARI. AA forcing (second row, magenta)—which had appeared to explain the 

timing of observed low-frequency Sahel precipitation variability in Chapter 2—does produce 

some low-frequency NARI variability (f), but it does not capture the warm period between 1925 

and 1970 or correlate significantly with observations. Moreover, it derives from simulated NA 

and GT that do not match observations. Specifically, AA do not cause oscillatory variability in 

NA. Instead, they cause nearly monotonic cooling throughout the century in NA (d) and also in 

GT (e) with especially steep declines in SST between ~1940 and 1980. Though legislation to 

curb pollution reduced global AA loading in the northern hemisphere after 1970 (Hirasawa et al. 

2020; Klimont et al. 2013; Smith et al. 2011), its effect in both CMIP ensembles is to halt the 

cooling of NA, not to cause actual warming. This is consistent with estimates of the hemispheric 

difference in total absorbed solar radiation in AA simulations in CMIP6, which level off—but do 

not decrease—after 1970 (Menary et al. 2020). We summarize the discrepancy between 

observations and simulations by noting that, while observed multidecadal variability in NARI 

derives from multidecadal variability in NA, simulated multidecadal variability in the AA-forced 

NARI MMM (f) comes from the fact that AA-forced cooling in NA precedes the cooling in GT. 

In observations, the warming response to GHG dominates regional averages such as NA 

and GT, so the AA-forced MMMs are best compared to an observed “GHG-residual” (that is, the 

observations minus the GHG-forced MMM, presented in orange instead of black), which 
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represents our best estimate of the sum of observed oceanic internal variability and the observed 

responses to aerosols (the response to natural forcing is assumed to be small). These estimates 

(panels d and e, orange) differ greatly from the simulated response to AA, especially in the mid-

century warm anomalies, which maximize as simulated AA (magenta) begin to cool NA and GT. 

Observational estimates may be too high between 1940 and 1945 (Chan and Huybers 2021), but 

while correcting this bias would address the warm period in GT and reduce the magnitude of the 

warm period in NA, it could not explain the magnitude or duration of the warm period in NA. 

Inaccuracies in the simulated response to GHG forcing – which is small in the first half of the 

century – are unlikely to be the cause of this discrepancy. If the observed Atlantic Multidecadal 

Variability is externally forced, then volcanic aerosols (g)—which cool NA during the reference 

period for our anomaly calculations—would have to play a much larger role in forcing observed 

NA variability than suggested by the CMIP ensembles. 

Could internal SST variability (on⃗ ) instead explain the difference between the simulated 

response to forcing and observations in these ocean basins? In Figure 3.8, we present the mean 

PS of SST indices for piC simulations from each CMIP6 model (colder than observed models are 

in blue and warmer than observed models are in red). We compare these PS to the PS for 

observed SST (solid black), the GHG-residual (dotted-dashed black), and/or the ALL-residual 

(dotted black), omitting PS for time series with dramatic trends. Simulated internal variability in 

most of the CMIP6 models used in this study does not match residual or observed low-frequency 

variability in NA (a), GT (b), or NARI (c). In CMIP5, climatological NA and GT are colder and 

internal variability at all frequencies is larger than in CMIP6, but no model shows an increase in 

spectral power at low frequencies for any of these SST indices (not shown). There are, however, 

three CMIP6 models that produce low-frequency internal variability in NA consistent with 
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observations—in order of decreasing power at 50 years: CNRM-ESM2-1 p1 (pink), IPSL-

CM6A-LR p1 (blue), and CNRM-CM6-1 p1 (grey)—suggesting that observed variability may be 

internal. Certainly, either the simulated SST response to forcing, simulated oceanic internal 

variability, or both, are not well represented in the CMIP ensembles.  

 
Figure 3.8: PS of observed SST (bold solid black), observed SST – GHG MMM (dotted-
dashed black), observed SST – ALL MMM (dotted black) and associated 95% confidence 
intervals (black shading) in NA (a), GT (b), and NARI (c), compared to the PS of piC 
simulations. Similar to Figure 3.5, mean PS by model are colored by average SST, where blue 
is colder than observed, grey is observed, and red is warmer than observed. 

Though simulated MMM SST is inconsistent with observations, it may still contribute to 

the relatively high correlation of the CMIP5 AA MMM with observations. While the correlation 

of the AA NARI MMM with observations is not significant on its own, it is still positive (rLF = 

0.27, CI = [-0.09, 0.55] for CMIP5), and it shares many of its shortcomings with simulated 

precipitation: neither capture the observed warm/wet period from the 1920s to the 1960s and 

both reach their minimum in temperature/rainfall about 10 years before the observed minimum. 

Though we have argued that SST is a more important driver of Sahel rainfall variability than the 

fast response to radiative forcing in observations and AMIP simulations, the fast response in 

coupled simulations may mask the differences between the NARI-mediated precipitation 

response to AA in CMIP5 and observed rainfall changes, giving the appearance of a partially 

right result, but for the wrong reasons. Additionally, because there are only minor differences in 

the ALL NARI MMM between CMIP5 and CMIP6 (Figure 3.7c), the difference in mean 
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simulated Sahel rainfall between CMIP5 and CMIP6 must derive from some combination of 

changes in the fast response to forcing, the nature of the NARI-Sahel teleconnection, and 

variability in other SST basins. 

3.4.5. The NARI teleconnection in Coupled Simulations 

Now that we have examined NARI in the coupled ensemble, we may investigate the 

ensemble’s representation of the NARI teleconnection with Sahel precipitation. Though the 

estimate of the teleconnection strength from the amip-piF MMM is much more likely to be 

causal than estimates from coupled simulations that are confounded by external radiative forcing, 

we cannot automatically assume that it represents teleconnections in the coupled models. First, 

differences between observed and simulated mean state global SST (Richter and Tokinaga 2020; 

Wang et al. 2014) may affect the mechanism and strength of the atmospheric teleconnection. 

Second, while GK19 already showed NARI is dominant in CMIP5, changes in simulated global 

SST variability may mean that NARI is not the dominant SST driver of precipitation variability 

in CMIP6. Finally, changes in the atmospheric models themselves between CMIP5 and CMIP6 

could cause differences in the teleconnection unrelated to SST. 

Do the teleconnections in coupled simulations appear consistent with that in the amip-piF 

MMM? Calculating the teleconnection strength in coupled simulations is difficult: the 

relationship between SST and precipitation in historical simulations is confounded by radiative 

forcing, and SST variability in the (unforced) piC simulations is small and varies from 

simulation to simulation. Thus, there is no guarantee that NARI is the prominent driver of 

precipitation variability in the piC simulations. Furthermore, piC simulations must be treated 

individually, leaving the teleconnection obscured by atmospheric internal variability. The 

teleconnection strengths calculated from individual piC simulations are, therefore, generally 
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smaller and less certain than the amip-piF teleconnection strength. Nevertheless, the amip-piF 

teleconnection strength does fall within the estimated range for CMIP5 (0.5 ± 0.6 >>
?@A∗°D

) and 

CMIP6 (0.3 >>
?@A∗°D

, CI = [−0.1,0.9]) piC simulations. (These estimates of the teleconnection 

strength are unrelated to model performance, not shown.) As a second test, we compare the 

confounded teleconnection strength from the amip-hist MMM (0.9	 >>
?@A∗°D

, CI=[0.6,1.4]) to that 

of bootstrapped MMMs over the coupled ALL simulations in CMIP5 (0.96 ± 0.56	 >>
?@A∗°D

) and 

CMIP6 (1.5 ± 0.3	 >>
?@A∗°D

). The confounded teleconnection strength in the CMIP6 amip-hist 

MMM is consistent with that in CMIP5, but it is smaller than, and inconsistent with, that in 

CMIP6, falling outside the 95% confidence interval. This may be because NARI variability in 

the coupled ensemble is smaller relative to the magnitude of external radiative forcing than it is 

in the amip-hist ensemble. If this is the cause for the apparent inconsistency in confounded 

teleconnection strengths between the two ensembles, we may still confirm the NARI 

teleconnection strength indirectly in CMIP6 by showing that the fast response to forcing implied 

by the NARI teleconnection is consistent with the mean fast response from the amip-hist 

simulations. 

3.4.6. Fast and Slow Responses to Forcing in Coupled Simulations (𝒇n⃗  and 𝑭 → 𝑺𝑺𝑻 → 𝑷) 

Under the assumption that the dominant simulated path of SST influence on the Sahel is 

captured by a linear relationship with NARI, we estimate the slow response to forcing in coupled 

simulations as the simulated NARI MMM scaled by the teleconnection strength derived from 

amip-piF MMM (0.87 >>
?@A	°D

, Section 3.4.3), so that a warm (cold) NARI predicts a wet (dry) 

Sahel. In Figure 3.9, simulated NARI (as in Figure 3.7, right column) is displayed on the left 

ordinates in light blue (CMIP6, left) and turquoise (CMIP5, right). On the right ordinates are the 
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total simulated precipitation responses to forcing (as in Figure 3.2), colored by forcing agents. 

The right ordinates are scaled by the teleconnection strength so that, when read on the right 

ordinates, simulated NARI represents the estimated slow component of the precipitation 

response to forcing. 

Simulated precipitation matches the estimated slow response in CMIP6 relatively well: 

The phase of simulated precipitation anomalies in the CMIP6 ALL (a), AA (b), and NAT (c) 

MMMs match the estimated NARI-driven slow responses throughout the century, and the 

magnitudes of the anomalies also match throughout the century in the NAT MMM (c), and until 

1980 in the AA (b) and ALL (a) MMMs. But after 1980, the ALL (a), AA (b), and GHG (d) 

MMMs all experience increases in precipitation beyond our estimate of the slow response. In 

CMIP5, the timing of simulated precipitation anomalies still mostly matches anomalies in the 

estimated slow response, but the ALL (e) and AA (f) MMMs experience drying after 1950 that is 

larger than can be explained by our NARI-based estimated slow response to forcing. The 

discrepancies between the total and NARI-mediated responses, which we’ll denote PnonNARI, 

account for most of the difference in simulated forced precipitation between CMIP5 and CMIP6. 
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Figure 3.9: Simulated Sahel precipitation (right ordinates, same as Figure 3.2) MMMs (bold 
solid and dotted curves) at various frequencies and associated 95% confidence intervals 
(shaded areas) in CMIP5 (right column) and CMIP6 (left column) when forced with ALL 
(blue, top row), AA (magenta, second row), NAT (brown/red, third row), and GHG (green, 
bottom row), compared to simulated NARI (left ordinates, thin light blue and turquoise 
curves, same as Figure 3.7). The right ordinates are scaled such that a 1°C change in NARI 
corresponds to a 0.87 mm/day change in precipitation, given by the teleconnection strength in 
the CMIP6 amip-piF MMM (see Section 3.4.3). 
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Is PnonNARI consistent with the mean simulated fast response in the AMIP simulations? 

Time series for these differences are displayed in Figure 3.10 in a fashion similar to Figure 3.2, 

and are compared to the fast response obtained as the difference between amip-hist and amip-piF 

simulations (purple, as in Figure 3.5c). Mean PnonNARI in the CMIP6 (solid curves) ALL 

ensemble (Figure 3.10a, blue) is consistent with the sum of wetting from PnonNARI in the AA (b) 

and GHG (d) MMMs. It doesn’t capture the simulated fast wetting in between 1950 and 1970, 

but does capture the fast wetting after 1980, and matches the AMIP fast response significantly 

better than noise (sRMSELF = 0.46, CI = [0.40, 0.77]). These consistencies give us confidence 

that PnonNARI describes the mean fast response in CMIP6 coupled simulations with all subsets of 

radiative forcing agents, and that NARI is sufficient to summarize the effect of SST on Sahel 

rainfall in the MMM from the CMIP6 coupled ensemble. 

PnonNARI in CMIP5 (dotted curves), on the other hand, doesn’t resemble the mean fast 

response from CMIP6 AMIP simulations at all. In the ALL MMM (a, turquoise), PnonNARI dries 

from the 1940s to the end of the record, and is composed of drying centered at 1970 from the AA 

MMM (b, magenta) and drying after 1980 from the GHG MMM (d, green). Whether PnonNARI in 

CMIP5 is also consistent with a fast response to forcing in CMIP5 (which we cannot directly 

estimate) or is a response mediated by SST in ocean basins other than the Atlantic cannot be 

firmly established by this analysis, but we offer our perspective below. 
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Figure 3.10: Compares the MMM fast Sahelian precipitation response to forcing in AMIP 
simulations (thin purple curve, as in Figure 3.5c) to PnonNARI MMMs (precipitation – 
0.87*NARI; the difference between the colored and light blue curves in Figure 3.9) in coupled 
CMIP5 (bold dotted curves) and CMIP6 (bold solid curves) simulations forced with ALL (a, 
blue), AA (b, magenta), NAT (c, brown/red), and GHG (d, green), displayed as in Figure 3.2. 

3.5. Discussion: PnonNARI in CMIP5 and CMIP6 

The PnonNARI response to GHG is more readily interpreted as a fast response in CMIP6 

than in CMIP5, as it is generally accepted that the fast response of the Sahel to GHG is wetting 

(Biasutti 2013; Gaetani et al. 2017; Giannini 2010; Haarsma et al. 2005; Mutton et al. 2022). 

Though basic physical theory links increased (reduced) aerosol concentrations to decreasing 

(increasing) rainfall via fast surface cooling (warming) and increasing (decreasing) optical depth 

of the atmosphere (Allen and Ingram 2002; Rosenfeld et al. 2008), the observed and simulated 
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fast responses are difficult to predict because reflective and absorbing aerosols may have 

different fast effects, and because the concentrations of aerosols vary greatly in space and time 

and are affected by circulation patterns which differ between models and observations (Hirasawa 

et al. 2022; Liu et al. 2018). One could propose storylines for the PnonNARI responses to AA in 

CMIP5 and CMIP6, but these storylines cannot be confirmed without a thorough analysis of the 

ensemble in the style of Hirasawa et al. (2022), who found evidence of late-century fast drying 

due to African black carbon emissions in the Community Atmosphere Model 5 – a phenomenon 

which does not appear to be prominent in the MMM for either CMIP ensemble. But even if the 

simulated PnonNARI MMM does not successfully capture the fast response to forcing in the 

observed climate system, the good match between PnonNARI in the coupled CMIP6 ensemble and 

the estimated mean fast response in amip-hist simulations increases our confidence that PnonNARI 

in CMIP6 reflects a simulated fast response to forcing, that NARI is a sufficient linear 

representative of the effect of SST on Sahel rainfall in CMIP6, and that the strength of the 

teleconnection in the coupled MMM is the same as in the AMIP MMM.  

The same cannot be said for CMIP5. We calculated the correlation of PnonNARI with SST 

in CMIP5 and CMIP6 (not shown) and found it to be uniformly negative in CMIP5 (consistent 

with the result of GK19 for the 20th century, but not the 21st) aside from the subpolar North 

Pacific and Atlantic basins (which are most strongly correlated with NARI at low frequencies), 

giving us confidence that PnonNARI in CMIP5 is not an artifact of using the wrong strength for the 

NARI teleconnection. The same calculation is uniformly positive in CMIP6, reflecting the 

prominence of global warming in simulated SST and opposite trends in PnonNARI. Uniform 

warming would not appear as part of NARI, and Sahel drying in response to uniform warming is 

strong in models that simulate a deeper ascent profile, but weak otherwise (Hill et al. 2017), so it 
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is possible that newer parameterizations and higher resolution have changed the sensitivity to 

this forcing in the latest generation of models. Nevertheless, the inconsistency in the sign of this 

relationship means further investigation is needed to reach a conclusion. 

Additionally, we correlated the difference between CMIP6 and CMIP5 in MMM SST 

with the corresponding difference in MMM Sahel rainfall. The pattern (emerging at low 

frequencies) is also reminiscent of the simulated global warming pattern, but now includes 

anomalies of the opposite sign in the subpolar North Atlantic – in the region where models 

simulate a so-called warming hole in response to GHG and AA (i.e. Baek et al. 2022). Martin et 

al. (2014) suggest that, unlike the North Atlantic south of 40°N, variability in the subpolar North 

Atlantic is not well-connected to Sahel precipitation variability, so the connection to PnonNARI 

might be confounded by the fast effect of the imposed anthropogenic forcings or by its 

relationship to NA. Insignificant correlations between SST in this region and Sahel precipitation 

at all frequencies in the amip-piF MMM would support this view, at least when observed SST 

variability is involved. Nevertheless, it is intriguing that an index summarizing the warming hole 

pattern (the difference between the North Atlantic box 60-15W by 50-65N and the area 60S-

60N) is well correlated at low frequencies not only with the CMIP5-CMIP6 Sahel rainfall 

difference (rLF = 0.71), but also with PnonNARI in each ensemble (rLF = 0.78 in CMIP5 and rLF = 

0.86 in CMIP6). Whether there is a causal connection between the strength of the warming hole 

in the coupled models and PnonNARI could be tested by targeted simulations, and this is left for 

future work. In any case, the simulated forced warming hole pattern differs from observed in a 

manner similar to NARI: it does not capture the observed warm period in the first half of the 

century, and then cools too little and too early followed immediately by warming in the second 
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half of the century (not shown); thus, our assessment that a deficient simulation of low-frequency 

SST variability is the primary reason for CMIP’s poor Sahel precipitation variability still stands.  

3.6. Summary and Conclusion 

In this Chapter, we decompose Sahelian precipitation from atmospheric (“AMIP”) 

simulations into (1) teleconnections from sea surface temperature (SST), (2) atmospheric noise, 

and a (3) fast, atmospheric- and land-mediated response to forcing. We then calculate a linear 

regression coefficient between the North Atlantic Relative Index (NARI)—an index of the 

warming of the North Atlantic relative to the Global Tropics—and the AMIP Multi-Model-Mean 

(MMM) and employ it to decompose coupled simulations into (1) forced NARI variability, (2) 

internal NARI variability, and (3) forced precipitation variability not explained by a linear 

relationship with NARI (PnonNARI). Treating NARI as a representative for Sahel teleconnections 

from global SST allows comparison of the components from AMIP and coupled simulations. We 

examine these components in order to determine which are responsible for differences in the 

simulation of Sahel rainfall between the 5th and 6th generations of the Coupled Model 

Intercomparison Project (CMIP) and which are to blame for the inconsistency of both ensembles 

with observed Sahel precipitation variability.  

When forced with observed SST alone, mean precipitation from CMIP6 atmospheric 

simulations captures the evolution of observed low-frequency variability quite well (rLF = 0.94, 

CI = [0.90, 0.95]; sRMSELF = 0.40, CI = [0.37, 0.52]), and—when combined with atmospheric 

white noise—these simulations are also able to explain the full spectral power of observed low-

frequency variability. This is a welcome improvement from previous generations of climate 

models, and allows us to use the simulations to make claims about observed variability as well as 

the shortcomings of the simulations.  
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Including radiative forcing alongside observed SST in the AMIP simulations mostly acts 

to increase mean wetting in the second half of the century and notably worsens the MMM 

sRMSE (0.55, CI = [0.31,0.77]), suggesting that the mean simulated fast response is incorrect 

while the observed fast component is small and plays a secondary role to SST-forced 

precipitation variability. Nevertheless, even with the inclusion of the fast response, atmospheric 

models forced by observed SST capture much of the observed Sahel rainfall variability. This 

leads us to conclude that observed precipitation variability is mostly a response to global SST, 

and that the failure of coupled simulations to explain observed low-frequency Sahel precipitation 

variability must be due mainly to an incorrect response to SST, either because of incorrect 

teleconnections or deficiencies in reproducing observed forced and internal SST variability.  

Using the AMIP ensemble, we summarize simulated Sahel teleconnections from global 

SST as a linear relationship of 0.87 ± 0.26 >>
?@A∗°D

	with NARI (a relationship that explains about 

48% of low-frequency, and 36% of the total, variance in the simulated precipitation response to 

observed global SST given by the AMIP MMM) and verify that this simulated teleconnection 

strength is consistent with observations. This estimate is consistent with the coupled CMIP 

ensembles, meaning that—to the extent that NARI is representative of simulated teleconnections 

in the AMIP and coupled simulations—the main deficiency of CMIP coupled simulations for 

explaining observed low-frequency precipitation variability is likely in explaining observed SST 

variability.  

Indeed, simulated mean low-frequency NARI variability is different and much smaller 

than observed, with the latter mostly coming from low-frequency variability in North Atlantic 

SST (NA). In both CMIP5 and CMIP6, anthropogenic aerosols (AA) cause a cooling trend and 

GHG cause a warming trend, but no combination of forcing agents produces a decadal-scale 
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oscillation in NA. The resulting NARI-mediated slow response to external radiative forcing is to 

dry the Sahel slightly in the 60s and to wet it immediately afterwards; this does not, in isolation, 

explain the timing or magnitude of the observed drought or recovery. Only three CMIP6 models 

(out of 25 CMIP5 and 30 CMIP6 models) are able to generate internal SST variability 

commensurate to the residual (the difference between total and radiatively forced) low-frequency 

variability. If we trust these three models, one possible interpretation is that observed SST 

variability is mostly an expression of internal climate variability that is poorly simulated in the 

other CMIP models. However, even these three models cannot explain observed precipitation 

variability; and it is not clear physically that we should trust them more than the other models. 

We must conclude that the CMIP coupled ensembles as a whole are inconsistent with observed 

low-frequency SST and precipitation variability, and that it is impossible to determine from these 

ensembles whether the latter is mainly the expression of a response to forcing, oceanic internal 

variability, or both.  

How do we reconcile our results with those using coupled simulations to support claims 

that the observed Atlantic Multidecadal Variability (AMV) is externally forced (Bellomo et al. 

2018; Booth et al. 2012; Hua et al. 2019; Murphy et al. 2017)? The discrepancy can be explained 

because these studies examine only one or two models (Booth et al. 2012) or subtract a linear 

trend from simulated NA before comparing to observations (Bellomo et al. 2018; Hua et al. 

2019; Murphy et al. 2017), thus aliasing non-linear simulated global warming and inducing 

artificial low-frequency variability in the simulated AA-induced monotonic decreasing step 

function (Baek et al. 2022 demonstrated this effect in CESM1). Furthermore, our results for the 

CMIP5 and CMIP6 ensembles are consistent with the findings of Zhang et al. (2013) for the 

model used by Booth et al. (2012), showing that simulated multidecadal variability in the North 
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Atlantic is often associated with unrealistic multidecadal variability in global (tropical) SST. 

This does not preclude a role for external forcing in observed AMV: observational evidence may 

still suggest an important role for volcanic aerosols (Birkel et al. 2018) that is poorly captured in 

simulations, and AA and GHG may still contribute some forced cooling and warming, 

respectively, to observed AMV in the second half of the century. But a prominent role for 

internal variability cannot yet be dismissed, as suggested by Yan et al. (2018), who—consistent 

with our analysis—find that most models do not capture observed AMOC variability. These 

results cast doubt on claims that AA caused observed AMV based on attribution studies 

employing CMIP ensembles.  

With nearly identical forced NARI variability and similar teleconnection strengths, the 

difference in Sahel precipitation between CMIP5 and CMIP6 is likely due to PnonNARI, which 

contains the fast response to forcing and slow responses mediated by other SST patterns. 

Because forced NARI variability in the coupled simulations is small relative to observations 

throughout the century, PnonNARI has a larger relative effect on the evolution and performance of 

the MMMs from coupled simulations than on those from AMIP simulations. The CMIP6 MMMs 

underperform relative to CMIP5 because PnonNARI includes substantial fast wetting responses to 

increasing GHG and decreasing AA that are comparable in magnitude to the NARI-related 

component and consistent with the detrimental fast response in that ensemble’s AMIP MMM. In 

contrast, PnonNARI in CMIP5 is drying that may be a fast response to anthropogenic emissions or a 

slow response to global warming and forced changes in the subpolar North Atlantic.  

PnonNARI plays an important role in CMIP5 because it delays the drought from the NARI-

mediated slow response to forcing and increases its strength, causing simulated precipitation to 

correlate well with observed precipitation even though simulated SST—which is the primary 
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driver of observed precipitation variability—is incorrect. We conclude that CMIP5 MMM Sahel 

precipitation correlates with historical observations despite not reproducing the physical 

phenomena that were most important for the Sahel in the 20th century. Thus, while both CMIP5 

and CMIP6 suggest that historical AA emissions had a larger effect on observed Sahel 

precipitation variability than GHG, it is premature to conclude that AA were the dominant 

influence on observed variability based on attribution studies using CMIP (e.g. Hua et al. 2019; 

Polson et al. 2014; Undorf et al. 2018).  

This work has shown that, while there has been progress in the simulation of the Sahel’s 

response to global SST, much remains uncertain in our understanding and simulation of the 

pathways of Sahel multi-decadal variability, especially in the characterization of Sahel 

teleconnections and the simulation of low-frequency variability in North Atlantic SST. Differing 

mechanisms can lead to similar time evolutions in observations and simulations; to avoid this 

pitfall, future work should focus on evaluating in more detail the hypothesized pathways of the 

Sahel response to anthropogenic emissions and oceanic internal variability in individual models 

as well as the CMIP ensembles in order to further categorize model performance and improve 

predictions of the future. As a first step toward this goal, Chapter 4 will focus on the role of 

global SST in driving Sahel rainfall change. 
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Chapter 4. SST Influence on Sahel Precipitation in CMIP6 

Note: This chapter was researched in large part as a project for Elias Barenboim’s causal 

inference class and under the lasting guidance of Adele Ribeiro. 

4.1. Introduction 

The dominant role of global sea surface temperature (SST) in driving the pacing (though 

not necessarily the full magnitude) of 20th century Sahel rainfall variability was demonstrated in 

the early stages of Sahel climate variability research (Folland et al. 1986; Giannini et al. 2003; 

Knight et al. 2006; Palmer 1986; Zhang and Delworth 2006), and has been further reinforced in 

more recent studies (Okonkwo et al. 2015; Parhi et al. 2016; Park et al. 2016; Pomposi et al. 

2015; Pomposi et al. 2016; Rodríguez-Fonseca et al. 2015 and references therein). A dry Sahel 

during the West African Monsoon from July to September (JAS) has generally been associated 

with positive SST anomalies in the global tropics (including individual contributions from the 

Pacific, Indian, and South Atlantic Oceans), negative SST anomalies in the Mediterranean, and 

subtropical or extratropical North Atlantic SST that is positive relative to the South Atlantic or to 

the global tropics. However, the relative importance of these basins and the mechanisms by 

which they affect the Sahel are still debated due to a number of complications. First, 

observations relationships appear to have changed over time (Losada et al. 2012; Rodríguez‐

Fonseca et al. 2011) and are confounded by global anthropogenic emissions. Furthermore, 

simulated teleconnections differ strongly between models (Joly et al. 2007) and are often a poor 

match to observations (Joly and Voldoire 2009; Joly et al. 2007).  

Giannini et al. (2013, hereafter G13) argued that the influence of global SST on Sahel 

rainfall in observations and simulations could be summarized with a single index, known as the 

North Atlantic Relative Index (NARI) and defined as the difference between subtropical North 
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Atlantic SST (10°-40°N and 75°-15°W) and SST in the Global Tropics (20°S-20°N). Their 

argument, which is based in column thermodynamics, is that SST in the global tropics sets the 

minimum surface moist static energy required for convection to occur—called the “ante” for 

convection (see Section 1.5)—by setting upper tropospheric temperature around the tropics via 

convective quasi-equilibrium (CQE; Arakawa and Schubert 1974; Emanuel et al. 1994) and the 

weak temperature gradient constraint (Sobel et al. 2001), while the subtropical North Atlantic 

supplies critical moisture to the Sahel in quantities proportional to temperature-driven 

evaporation over the subtropical North Atlantic (see Section 1.6). They gain confidence that this 

index captures an important aspect of the underlying physics by showing that the index helps 

explain future projections and inter-model differences in addition to past change, and later work 

shows that versions of this index also perform well in the Coupled Model Intercomparison 

Project phase 5 (Giannini and Kaplan 2019). However, the proposed mechanism has not yet been 

verified, and in Chapter 3, we find that there is more to be understood about the simulated Sahel 

precipitation response to observed global SST variability than can be explained by NARI. While 

we find that atmospheric simulations from the Coupled Model Intercomparison Project phase 6 

(CMIP6) with prescribed observed global SST alone reproduce the full magnitude of observed 

low-frequency 20th century variability in Sahel rainfall for the first time, we also show that a 

linear teleconnection with NARI can only account for 50% of the simulated SST-forced 

precipitation variability over the Sahel.  

Because global SST has such a dominant effect on Sahel rainfall, characterizing the true 

dependence of Sahel pluvials and droughts on global SST is invaluable for many reasons. First, 

this understanding is necessary for attribution of past change and identifying the global actors 

responsible for it, which may have economic implications regarding climate reparations (Naylor 
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and Ford 2023). It is also necessary for process-based climate model validation and improvement 

efforts (Nowack et al. 2020), which go beyond statistically comparing historical simulations with 

observations, and may lead to more effective and trustworthy changes to the climate models. 

Given that state-of-the-art climate simulations struggle to reproduce observed rainfall patterns, 

such an understanding is also required for prediction of future rainfall change (which also 

requires accurate projections of global SST under future global warming) that can inform long- 

and short-term famine mitigation efforts aimed at keeping food production high despite changes 

in rainfall patterns, such as planting crops that will thrive in the expected conditions (Vignaroli 

2017) and building coordinated water-management systems that can accommodate and address 

future change (Bruins 2019). Finally, such an understanding is essential for determining the 

efficacy of proposed climate engineering initiatives aimed at controlling the future of Sahel 

rainfall directly (i.e. by changing the land-surface albedo; Taylor et al. 2002b), and the incidental 

effects of climate engineering efforts focused on other goals, such reducing global warming via 

solar dimming (Izrael et al. 2014; Storelvmo et al. 2014).  

All of these goals inherently depend on causal knowledge, and statistical associations are 

not enough to address them. Non-causal statistical associations can be useful for short-term 

prediction if the joint distributions of all relevant variables remain the same. However, statistical 

relationships cannot be expected to hold in the future as the world warms and aerosol emissions 

shift, leading to SST and land-sea contrast patterns not typical of the historical record, among 

other changes (Kamae et al. 2014; Ma and Xie 2013). Neither can they be expected to hold under 

interventions such as future climate engineering efforts or hypothetical past interventions that 

might have changed the evolution of Sahel rainfall in the 20th century.  
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Observed statistical relationships between SST in a given ocean basin and Sahel rainfall 

may be non-causal for a number of reasons. For instance, the apparently-strong relationship 

between mean SST over the global tropics and Sahel rainfall could be partially a by-product of 

the fact that both are affected by greenhouse gases, while in theory Sahel rainfall should respond 

to tropospheric temperature, which, in the tropical mean, responds instead to a precipitation-

weighted mean of SST over the global tropics (Sobel et al. 2002). In this case, we would say that 

the statistical relationship is confounded by a third variable. (The confounding variable could 

also be SST in another ocean basin). In an observational study, such confounding could lead the 

researcher to attribute an atmospheric effect of anthropogenic emissions on Sahel rainfall to SST 

or vice versa, or to attribute SST-driven variability to the wrong ocean basin. Furthermore, 

autocorrelation in any time-series dataset can bias cross-correlation metrics to be significantly 

large even for unrelated variables, and to maximize at the wrong time lag for causally-related 

variables – even sometimes leading to inverted inferred causal relationships (Runge et al. 2014; 

Zhang et al. 2021). Thus, regression and correlation analyses are not an appropriate way to 

determine causal relationships, especially in time-series data. 

The classic approach for truly measuring a causal effect is through a randomized 

controlled trial. But, as with many large-scale climate phenomena, performing a true randomized 

controlled experiment on the relationship between global SST and widespread drought and 

famine in the Sahel is not only unethical, but also infeasible: we cannot simply intervene with 

perfect control on the temperature of entire ocean basins, and even if we could, there is only one 

realization of the state of the monsoon each year, so we cannot control for other varying factors. 

Researchers often escape the ethical and practical concerns of the real world by performing 

controlled experiments in simulated environments; but, as previously mentioned, simulated 
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environments often differ dramatically from the observed environment. The results of such a 

study should hold in the general circulation model that was used for the experiment, but they do 

not necessarily reflect the behavior of the true climate system.  

Model Intercomparison Projects (MIPs) such as the Coupled Model Intercomparison 

Project phase 6 (CMIP6; Eyring et al. 2016) attempt to address our lack of trust in individual 

climate models by soliciting semi-standardized simulations from all institutions maintaining 

applicable climate models worldwide, allowing researchers to determine the robustness of their 

conclusions to model parameterization choices. Unfortunately, global climate simulations are 

computationally expensive, and this plurality in model parameterization comes at the cost of the 

freedom to perform needed targeted experiments. For instance, in Chapter 3 we used the 

atmospheric “amip-piForcing” simulations forced with observed global historical SST that are 

available in CMIP6 to directly measure the combined effect of observed global SST on Sahel 

precipitation, without confounding between SST and rainfall due to external radiative forcing or 

feedbacks between rainfall and SST. However, we were not able to reliably measure the 

individual effects of different ocean basins or SST indices on the Sahel because SSTs in different 

basins are confounded in the observed record by historical external radiative forcing and 

interactions between basins. We could theoretically address this with simulations that prescribe 

SST that varies independently in different ocean basins; but, unfortunately, the focus of CMIP6 

targeted SST experiments is limited to low-frequency variability in the North Atlantic and North 

Pacific (Zhou et al. 2016). Thus, though simulations have some comparative advantages over 

observations in that they provide multiple realizations of the climate response to certain 

prescribed conditions and they have complete records of a wide variety of climate variables, they 

cannot provide robust controlled experiments targeting every variable of interest. In order to 
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examine robust roles for variables not explicitly targeted in a MIP, we must have a way of 

measuring true causal effects ‘observationally’—or in the absence of a randomized controlled 

experiment—whether the dataset is composed of observations or simulations.  

An early attempt of the scientific community to extract causal information from 

‘observational’ data is Granger causality (Granger 1969), which states that 𝑋 is a Granger-cause 

of 𝑌 if knowledge of 𝑋 improves predictions of 𝑌 that are already based on the past of 𝑌. 

Granger causality reflects usefulness for predictability, but doesn’t truly learn the underlying 

causal structure because it assumes that all past variables are causal if they improve predictions 

without considering the possibility of confounding by variables not included in the analysis. 

Unfortunately, the researcher is prevented from simply adding every potential confounder to the 

analysis because Granger causality methods do not perform well in high-dimensional problems 

with more than a couple variables (Runge et al. 2019a). Furthermore, Granger causality cannot 

accommodate causal relationships that occur faster than the frequency of observations, and while 

it reduces the impact of autocorrelation effects, it fails to completely address the problem. 

To address these limitations, the scientific community has begun to explore the practical 

efficacy of an alternative framework called causal inference (Kretschmer et al. 2021), which 

provides a theoretically-complete set of rules for discovering causal dependencies and making 

causal claims from non-interventional data (Pearl 2009; Runge 2018a; Runge et al. In Review; 

Runge et al. 2019b). Causal discovery can help the researcher distinguish between direct causes, 

indirect causes (that are mediated by another variable), and confounded covariates of a chosen 

target variable. It can also help the researcher construct a set of sound causal assumptions that 

can support causal effect estimation, which determines whether and how a causal effect can be 

quantified given the discovered or assumed knowledge about the causal structure underlying the 
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data generation (see Kretschmer et al. 2021 for practical simple examples in climate science). In 

its simplest application, causal effect estimation formalizes the choice of covariates to control for 

in observational regressions (a decision which is non-obvious), but it can also be used to 

determine more complicated formulas for estimating causal effects. The last decade has seen 

rapid development of causal discovery algorithms for time series data, which have already been 

applied at various stages of development to climate problems with some apparent success (e.g. 

Ebert-Uphoff and Deng 2012; Kretschmer et al. 2017; Kretschmer et al. 2016; Nowack et al. 

2020). The methods have continued to improve since then, with higher performance and fewer 

restrictive assumptions. 

In this chapter, we employ state-of-the-art causal discovery methods for time series to 

learn about the qualitative causal structure relating SST in different ocean basins to each other 

and to Sahel rainfall in simulations, and attempt to evaluate the efficacy of these methods in 

practice. We begin by focusing on the long, freely-varying pre-Industrial control simulations 

because they are not confounded by anthropogenic emissions. These methods should also work 

on 20th century observations, but further work first must be done to determine how best to 

represent anthropogenic emissions in the analysis. It is not obvious how best to represent 

anthropogenic emissions because anthropogenic aerosols are not evenly distributed and 

greenhouse gas concentrations increase monotonically with very little random variability, yet 

doing so is necessary because the effects of anthropogenic emissions are so pervasive in the 

observed record that they will likely cause problems for the causal discovery algorithm if not 

included.  

Our immediate goal is to test the G13’s claim that the North Atlantic and Global Tropics 

(or tropical tropospheric temperature) fully mediate the causal effects of all ocean basins on 
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Sahel rainfall, which would mean that other ocean basins are not identified as direct causes of 

Sahel precipitation. Our eventual goal is to use causal effect estimation to quantify the effects of 

SST in individual ocean basins on Sahel rainfall, giving a complete simple model for Sahel 

rainfall variability in each climate model. The simple models can be validated by comparing 

their predicted responses to observed historical global SST variability with precipitation 

produced by atmospheric simulations from the same climate model driven by this same observed 

global SST. Because the model is causal, it is much more likely to generalize across changing 

background climate states than associative statistical models. This pursuit requires full 

knowledge of the causal structure relating SST in the relevant ocean basins to each other, and 

because this structure may differ between climate models or between observations and climate 

models, we also seek to discover the full causal structure relating of modes of SST variability to 

each other in climate simulations and to characterize the differences between various simulations 

and between simulations and observations. If the underlying causal structures for different 

climate models are consistent with each other, then future work will be able to leverage the rules 

of causal inference to define a single expression for the effect of SST in each ocean basin on 

Sahel rainfall in every climate simulation. Otherwise, climate simulations may need to be 

analyzed separately or be selected for process-based consistency with observations (Nowack et 

al. 2020).  

Section 4.2 gives an introduction to causal inference. We return throughout the section to 

an illustrative example (introduced in Section 4.2.4) to clarify the concepts. Readers already 

familiar with the concepts of causal inference should feel free to skip most of this section, but are 

still advised to read Section 4.2.10, which reviews the complications of time series causal 

discovery, and Sections 4.2.9 and 4.2.11, which introduce the statistical methods and causal 
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discovery algorithms used in this chapter. The reader can also consult Ebert-Uphoff and Deng 

(2012) and Kretschmer et al. (2021) for other helpful introductions to the concepts of causal 

inference. In Section 4.3, we motivate and introduce the climate indices used in this chapter and 

review the existing literature on their interactions to form a causal hypothesis we expect to hold 

for the observed climate system in the absence of external radiative forcing. Section 4.4 details 

the methods used in this Chapter. We apply causal discovery to CMIP6 coupled simulations in 

Section 4.5. Section 4.5.1 focuses on tuning adjustable algorithm parameters, and Section 0 

discusses how we arrive at our results. Section 4.5.3 examines in detail the discovered causal 

relationships, and Section 4.5.4 evaluates the performance of LPCMCI. Finally, in Section 4.5.5, 

we synthesize our results and discuss how much trust we can place in different physical 

conclusions. In Section 4.6, we discuss whether the inconsistent performance of causal discovery 

algorithms on our dataset is likely to generalize to other datasets, and we conclude in Section 4.7. 

4.2. Introduction to Causal Inference 

4.2.1. Foundations in Probability Theory 

A joint probability distribution 𝑃(𝑿) over a set of random variables 𝑿 = {𝑋0|𝑖 = 1…𝑁} 

defines the likelihood of observing any possible combination of outcomes, or values for the 

random variables. We can obtain informative observational marginal distributions such as 

𝑃�𝑿�𝑋F = 𝑥� = 𝑃(𝑿 ∩ 𝑋F = 𝑥)/𝑃(𝑋F = 𝑥) by selecting only the portion of the joint probability 

distribution that satisfies the condition 𝑋F = 𝑥, a process we call conditioning on 𝑋F. (For 

continuous variables, we might use a range rather than an individual value as our condition.) A 

marginal distribution is how scientists might express the probability that there is a drought in the 

Sahel given that we observe La Niña that year. Two variables 𝑋0 and 𝑋F 	in 𝑿 are considered 

independent (written 𝑋0 ⫫ 𝑋F) when 𝑃(𝑋0|𝑋F) = 𝑃(𝑋0) (or, equivalently, when 𝑃�𝑋0𝑋F� =
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𝑃(𝑋0)𝑃(𝑋F)). They are conditionally independent given some conditioning set 𝑍 ∈ 𝑿 (written 

𝑋0 ⫫ 𝑋F|𝑍) if 𝑃(𝑋0|𝑋F𝑍) = 𝑃(𝑋0|𝑍). In plain language, this means that knowledge of 𝑋F does not 

change our estimation of the likelihood of 𝑋0 if we already know 𝑍. 

In theory, there are multiple ways to test the equivalence of the probability distributions 

𝑃(𝑋0|𝑋F) and 𝑃(𝑋0). One could measure the difference between these distributions using a 

conditional distance correlation (DC) proportional to �∭𝑤(𝑋, 𝑌, 𝑍)�𝑃(𝑋𝑌|𝑍) −

𝑃(𝑋|𝑍)𝑃(𝑌|𝑍)�/𝑑𝑋𝑑𝑌𝑑𝑍�
7//

 for some weight function 𝑤 (Edelmann et al. 2019). It has the 

formulation of a classic Euclidian distance metric, so it is non-negative and equals 0 if and only 

if 𝑋 ⫫ 𝑌|𝑍. Alternately, one could use conditional mutual information (CMI) as the metric, 

which is defined 𝐼(𝑋; 𝑌|𝑍) =∭ 𝑃(𝑋𝑌𝑍)log � '(3I|K)
'(3|K)'(I|K)

� 𝑑𝑋𝑑𝑌𝑑𝑍, and measures the 

reduction of uncertainty in 𝑋 due to knowledge of 𝑌 given knowledge of 𝑍. It is easy to see that 

𝐼(𝑋; 𝑌|𝑍) = 0 if 𝑋 ⫫ 𝑌|𝑍, and it has been shown that 𝐼(𝑋; 𝑌|𝑍)  is non-negative and equals 0 

only if 𝑋 ⫫ 𝑌|𝑍 (Cover and Thomas 1991).  

4.2.2. Structural Causal Models 

Causal inference assumes that data is generated from a quasi-deterministic set of 

structural equations  

𝑋0 ≔ 𝑓0(𝑝𝑎0 , 𝑈0), 𝑈0~𝑃0(𝑢) 

that define each examined endogenous variable 𝑋0 ∈ 𝑿 as some function 𝑓0 of 𝑝𝑎0 ⊆ 𝑿\{𝑋0} – a 

subset of the other endogenous variables which we call the parents of 𝑋0 – and of unmeasured 

exogenous stochastic noise 𝑈0 such that each instance 𝑢0 of a given noise variable 𝑈0 is drawn 

independent and identically distributed (iid) from a specified probability distribution 𝑃0(𝑢) and 
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𝑈0 ⫫ 𝑈F 	∀𝑖 ≠ 𝑗. The ordered set 〈𝑿, 𝑼 = {𝑈0}, 𝒇 = {𝑓0}, 𝑷 = {𝑃0}〉	is called a Structural Causal 

Model (SCM), and it generates an observational joint probability distribution 𝑃(𝑿).  

The symbol ≔ in our definition of the SCM is used to emphasize that the structural 

assignments are not reversible equations, but rather represent a causal one-way flow of 

information from right to left. That means that if we intervene on 𝑋F, the data must still satisfy 𝑓0 

for 𝑖 ≠ 𝑗, but no longer must satisfy the original functional relationship given by 𝑓F. If we 

perform a hard intervention and set 𝑋F to 𝑥 regardless of the values of other variables, then the 

data must satisfy the SCM where 𝑋F = 𝑓F′(	) = 𝑥 and 𝑓0 for 𝑖 ≠ 𝑗 remain unchanged. This new 

SCM generates an interventional joint probability distribution that we denote 𝑃(𝑿|𝑑𝑜(𝑋F = 𝑥)). 

In general, 𝑃(𝑿|𝑑𝑜(𝑋F = 𝑥)) ≠ 𝑃(𝑿|𝑋F = 𝑥); in plain language: correlation does not imply 

causation.  

In the new SCM, 𝑋F has no parents; any variable 𝑋0 that is still dependent on 𝑋F in the 

intervened SCM is called a descendant of 𝑋F in the original SCM. Formally, 𝑋0⫫/	𝑋F|𝑑𝑜�𝑋F� →

𝑋0 ∈ 𝑑𝑒F 	∀𝑖𝑗 (note that 𝑗 may equal 𝑖, so a variable is its own descendant). To extend the family 

relationships metaphor further, 𝑋0 is a child of 𝑋F if 𝑋F ∈ 𝑝𝑎0, and 𝑋0 ∈ 𝑎𝑛F is an ancestor of 𝑋F if 

𝑋F ∈ 𝑑𝑒0. All ancestors of 𝑋0 are considered to be causes of 𝑋0, but only 𝑝𝑎0 are direct causes. 

The requirement that 𝑈0 ⫫ 𝑈F 	∀𝑖 ≠ 𝑗 means that a variable 𝑋0 can never be made 

independent of its parent 𝑋F ∈ 𝑝𝑎0 by conditioning on other variables: only descendants of 𝑋F 

contain information about 𝑈F, and they also contain independent variability unrelated to the 

response of 𝑋0 to 𝑋F, so while they can change the nature of the relationship between the 

variables, they cannot destroy it. It also means that if there exists some 𝑌 such that intervening 

on 𝑌 affects two distinct variables 𝑋0 , 𝑋F ∈ 𝑿|𝑖 ≠ 𝑗 even when conditioning on all their other 
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parents	(𝑌⫫/	𝑋0𝑋F|𝑝𝑎0 ∪ 𝑝𝑎F\𝑌, 𝑑𝑜(𝑌)), then 𝑌 ∈ 𝑝𝑎0 ∩ 𝑝𝑎F ⊆ 𝑿 must be included in the set of 

endogenous variables and appear as a parent of both 𝑋0 and 𝑋F; this requirement is called causal 

sufficiency. Though there exists technically involved work on cyclic SCMs (Bongers et al. 2021; 

Forré and Mooij 2018, 2020; Rubenstein et al. 2017), for the purposes of this chapter we will 

focus on acyclic SCMs, in which we can define a topological ordering for 𝑖 such that the parents 

of every variable 𝑋0 are a subset of its predecessors: 𝑝𝑎0 ⊆ {𝑋F|𝑗 < 𝑖}. In an acyclic SCM 

satisfying causal sufficiency, a variable is independent of all of its other predecessors when 

conditioned on its parents: 𝑋0 ⫫ 𝑋F|𝑝𝑎0 	∀𝑗 < 𝑖|𝑋F ∉ 𝑝𝑎0, because the parents contain all 

information about 𝑈F , 𝑗 < 𝑖 that gets passed on to 𝑋0.  

4.2.3. Causal Diagrams 

For causal effect estimation (Section 4.2.6), it is usually assumed that we do not know the 

functional relationships 𝒇, or estimating the causal effects would be trivial. But we must know or 

assume the set of parents associated with each node 𝑋0, and from this we can determine all 

independencies in the underlying SCM. This knowledge can be more concisely represented in 

the form of a directed graph called a causal diagram.  

A graph is a set of variables called nodes that may be disconnected or connected with a 

line called an edge or an adjacency, and the set of nodes adjacent to a given node are called its 

neighbors. A directed graph is a graph where every adjacency is oriented to be an arrow → with 

a tail and a head; the graph’s unoriented adjacencies are called its skeleton. A directed graph is a 

causal diagram if there is a node for every variable, and we connect 𝑋F → 𝑋0 if and only if 𝑋F ∈

𝑝𝑎0. The researcher often does not have access to 𝑼, but since 𝑈0 ⫫ 𝑈F 	∀𝑖 ≠ 𝑗 and each 𝑈0 only 

affects one variable, the exogenous variables are implied and are not represented directly. For 

acyclic SCMs, a causal diagram is a directed acyclic graph or DAG.  
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We say that two nodes 𝑋 ∈ 𝑿 and 𝑌 ∈ 𝑿 in the graph are d-separated given a 

conditioning set 𝒁 ⊆ 𝑿 ∖ {𝑋, 𝑌} if all paths connecting 𝑋 and 𝑌 are blocked. A path is considered 

blocked if it contains a chain 𝑎 → 𝑏 → 𝑐 or a fork 𝑎 ← 𝑏 → 𝑐 with 𝑏 ∈ 𝑍, or a collider 𝑎 → 𝑏 ←

𝑐 such that 𝒁 contains no descendant of 𝑏. By construction, if 𝑋 and 𝑌 are d-separated given 𝒁 in 

the graph, then 𝑋 ⫫ 𝑌|𝒁 in the underlying SCM, and this property is called the Causal Markov 

Condition. 

If we perform an intervention on 𝑋F, we remove all arrows pointing to 𝑋F in the graph, 

just as we would replace the structural equation 𝑓F and make 𝑋F independent of its original 

parents. Any variable 𝑋0 is in the set 𝑑𝑒F of descendants of 𝑋F if there exists a directed path (with 

all arrows pointing the same direction along the path) of any length (including 0) 𝑋F → ⋯ → 𝑋0. 

Such a path is not blocked when 𝑍 = ∅, and is not disconnected when we intervene on 𝑋F.  

4.2.4. Example and Causal Reasoning 

Let’s work through a simple example, which we will return to throughout the remaining 

subsections of this Introduction to Causal Inference. In the summer, people are more likely to go 

to the beach, eat ice cream, and get attacked by sharks. Let 𝐵, 𝐼, and 𝑆 represent monthly July 

and January aggregates of the number of people at the beach, ice cream sales, and shark attacks, 

respectively. (We choose July and January monthly aggregates in an attempt to roughly satisfy 

the requirement that sequential samples are drawn iid, but we would still need to examine our 

data to make sure there are no trends over time.) Though all of these variables are correlated, to 

understand which variables cause the others, we must reason about interventions. We know that 

forcing someone to eat ice cream does not increase his likelihood of encountering a dangerous 

shark or cause him to go to the beach; that means that 𝐼 ∉ 𝑎𝑛M ∪ 𝑎𝑛N, and we draw no arrows 

coming out of 𝐼. On the other hand, while we will assume that spending time at the beach doesn’t 
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change a person’s likelihood of eating ice cream, it does directly increase the likelihood of an 

encounter with a shark; so 𝐵 ∈ 𝑝𝑎M, and we draw an arrow 𝐵 → 𝑆. For now, let’s assume that 

shark attacks don’t cause people to eat ice cream or inhibit them from going to the beach, so 𝑆 ∉

𝑎𝑛= ∪ 𝑎𝑛N and we add no further arrows. Our diagram so far is 𝐼, 𝐵 → 𝑆. 

We have neglected some factors that affect variables in our diagram. For instance, the 

likelihood of a shark attack increases when the prey sharks eat move toward the shore (𝑃). The 

location of shark’s prey should not affect ice cream sales, and—assuming that the public is not 

informed of the movement of shark’s prey—it shouldn’t affect the number of people at the 

beach; so, while 𝑃 ∈ 𝑝𝑎M, 𝑃 ∉ 𝑎𝑛= ∪ 𝑎𝑛N. Because 𝑃 only affects one node in the graph, we can 

exclude 𝑃 from the diagram without violating the causal sufficiency assumption, in which case 𝑃 

is considered part of 𝑈M. If we want to include it, we must also consider how it is affected by the 

other parents of S (if 𝑃 affects 𝑆, then any parent of 𝑃 would be a parent of 𝑆 when 𝑃 is 

excluded). If we claim that the movement of sharks’ prey does not depend on the number of 

people at the beach, then we simply add the arrow 𝑃 → 𝑆, and our graph is now 𝐼, 𝐵 → 𝑆 ← 𝑃. 

We have also neglected the temperature (𝑇). We will assume that temperature does not directly 

affect the movement of sharks’ prey or the prevalence of shark attacks, but high temperatures do 

encourage people to go to the beach and to eat ice cream, so 𝑇 ∈ 𝑝𝑎N ∩ 𝑝𝑎=. Because 

temperature affects more than one variable in the diagram, we must include it for our graph to 

qualify as a causal diagram. We assert that temperature is not affected by any of the other 

variables, and our causal diagram is 𝐼 ← 𝑇 → 𝐵 → 𝑆 ← 𝑃. The causal diagram contains one fork 

(𝐼 ← 𝑇 → 𝐵), one chain (𝑇 → 𝐵 → 𝑆), and one collider (𝐵 → 𝑆 ← 𝑃). Valid topological 

orderings for this graph include the 6 orderings where 𝑇 is first and 𝑆 is last.  
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The Causal Markov Condition means that we can read conditional independencies from 

the diagram using the rules of d-separation. In the observational dataset, if we do not condition 

on any variables, the only path between ice cream sales and shark attacks (𝐼 ← 𝑇 → 𝐵 → 𝑆) is 

unblocked, and we may see a non-causal correlation between ice cream sales and shark attacks 

because both are more likely when it’s warmer out: 𝐼⫫/	𝑆. Our graph shows us that we can 

destroy the correlation between ice cream sales and shark attacks by conditioning on 

temperature, on the number of people at the beach, or both: 𝐼 ⫫ 𝑆|𝑇, 𝐼 ⫫ 𝑆|𝐵, 𝐼 ⫫ 𝑆|𝑇𝐵. 

However, one should not always condition on covariates, or additional variables that correlate 

with the investigated cause and/or effect variables. The only path between the number of people 

at the beach and the movement of the sharks’ prey (𝐵 → 𝑆 ← 𝑃) is naturally blocked (𝐵 ⫫ 𝑃), 

but if we condition on the number of shark attacks (for example, by examining all months in 

which there were 2 total shark attacks) then we will un-block this non-causal path, and will likely 

see that months with more crowding at the beach coincide with months where sharks’ prey is 

further from the shore (𝐵⫫/	𝑃|𝑆). One might be tempted to conclude that the presence of people 

at the beach scares away sharks’ prey, but this is inconsistent with the assertions of our causal 

diagram. Instead, this correlation arises because the number of people at the beach and the 

proximity of sharks’ prey to the shore both increase the number of shark attacks, so a change in 

one implies an opposite change in the other if we are to maintain exactly 2 shark attacks.  

4.2.5. Latent Confounding and Mixed Graphs 

In practice, a researcher may not have observations of all the variables 𝑿 in the 

underlying SCM needed to satisfy causal sufficiency (Section 4.2.2). In our example (Section 

4.2.4), if we do not have access to the temperature record, then 𝑇 would become exogenous 

(external to the system). Practically, it could be absorbed by 𝑈N and 𝑈=, causing them to covary, 
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or it could equivalently be represented as its own variable 𝑈N= that also appears in the structural 

equations for both 𝐵 and 𝐼. We call it latent confounding or unmeasured confounding when 𝑈0 

and 𝑈F for 𝑖 ≠ 𝑗 covary no matter how it is expressed.  

We can represent latent confounding between 𝑋0 and 𝑋F graphically in an acyclic directed 

mixed graph (ADMG) by connecting 𝑋0 ↔ 𝑋F with a bidirected arrow. We would represent our 

example system with the mixed graph 𝐼 ↔ 𝐵 → 𝑆 ← 𝑃 over the remaining endogenous nodes 

{𝐼, 𝐵, 𝑆, 𝑃}. Variables connected with a bidirected edge are called spouses, and bidirected arrows 

are also removed in the case of intervention on either spouse. In graphs with unmeasured 

confounding, a node may not be independent of all of its predecessors solely by conditioning on 

its parents (unlike in Section 4.2.2). However, the rules of d-separation still apply (Section 

4.2.3), where 𝑏 behaves as the middle node of a chain in 𝑎 ↔ 𝑏 → 𝑐 and the middle node of a 

collider in 𝑎 ↔ 𝑏 ← 𝑐, and 𝑎 ↔ 𝑐 is a fork that cannot be blocked. In the causally-sufficient 

graph 𝐼 ← 𝑇 → 𝐵 → 𝑆 ← 𝑃, 𝐼 and 𝐵 were d-separated given 𝑇, but they are not separable in the 

mixed graph 𝐼 ↔ 𝐵 → 𝑆 ← 𝑃. We can still separate 𝐼 and 𝑆 in the mixed graph by conditioning 

on 𝐵. 

4.2.6. Causal Effect Estimation 

Given a correct causal graph for an observed system, do-calculus relies on the Causal 

Markov Condition to leverage the d-separations in the graph (see Sections 4.2.3 and 4.2.5) to 

express target interventional distributions such as 𝑃�𝑌�𝑑𝑜(𝑋 = 𝑥)�|	𝑋, 𝑌 ∈ 𝑿 in terms of 

observational distributions such as 𝑃(𝑌|𝑋 = 𝑥) (see Sections 4.2.1 and 4.2.2). To learn about the 

rules of do calculus, please consult Pearl (2009).  

The simplest application of these rules is called the Backdoor Criterion. In order to 

measure 𝑃(𝑌|𝑑𝑜(𝑋)) from 𝑃(𝑿), the researcher must block all noncausal “backdoor” 
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confounding paths 𝑋 ← ⋯ → 𝑌 and backwards paths 𝑋 ← ⋯ ← 𝑌 between 𝑋 and 𝑌 without 

unblocking any non-causal collider paths 𝑋 → ⋯ ← 𝑌, all of which would otherwise induce a 

non-causal or reversed-causal observational correlation between these variables. The Backdoor 

Criterion states that 𝑃(𝑌|𝑑𝑜(𝑋)) = 𝑃(𝑌|𝑋𝑍) if the researcher can find a conditioning set 𝑍 ∈ 𝑿 

that (1) blocks every path between 𝑋 and 𝑌 that has an arrowhead pointing to 𝑋 and (2) does not 

include any descendants of 𝑋. The second condition prevents us from accidently unblocking 

collider paths. It also prevents us from trying to measure the effect of temperature on the 

prevalence of shark attacks by controlling for the number of people at the beach: 𝑃(𝑆|𝑑𝑜(𝑇)) ≠

𝑃(𝑆|𝑇𝐵), which would destroy part of the causal relationship; and from trying to measure the 

effect of temperature on the number of people at the beach by controlling for the number of 

shark attacks: 𝑃�𝐵�𝑑𝑜(𝑇)� ≠ 𝑃(𝐵|𝑇𝑆), which would induce a selection bias into the calculation. 

In this case, there are no backdoor paths between 𝑇 and 𝑆 or between 𝑇 and 𝐵, so 𝑃(𝑆|𝑑𝑜(𝑇)) =

𝑃(𝑆|𝑇) and 𝑃(𝐵|𝑑𝑜(𝑇)) = 𝑃(𝐵|𝑇). However, if we believe the number of people at the beach 

may affect ice cream sales and want to measure that effect, we must control for temperature: 

𝑃(𝐼|𝑑𝑜(𝐵)) = 𝑃(𝐼|𝐵𝑇). 

When the system is not causally sufficient (Section 4.2.5), it is sometimes not possible to 

convert an interventional query into an observational expression. For instance, if we do not have 

access to the temperature record (𝐼 𝐵 → 𝑆 ← 𝑃), then the rules of do-calculus would tell us that 

we cannot measure 𝑃(𝐼|𝑑𝑜(𝐵)) from the observational distribution 𝑃(𝐼, 𝐵, 𝑆, 𝑃). In this case, we 

say that the causal effect is not identifiable. 

Causal effect estimation goes beyond the backdoor criterion to generally determine 

exactly when a causal effect 𝑃(𝑌|𝑑𝑜(𝑋),𝑊) can be estimated in terms of the available 

observational distributions given the assumed causal diagram, and gives an expression for the 
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effect when possible. A related task is mechanism estimation, which attempts to recover the 𝑓0 in 

the SCM based on additional functional assumptions. For continuous, linear variables, the 

derivative over 𝑋 of the expected value 𝐸[⋅] of the query—𝜕𝐸[𝑌|𝑑𝑜(𝑋),𝑊]/𝜕𝑋—can be 

considered the causal mechanism.  

The output of causal effect estimation will only be correct if the assumed causal diagram 

is correct, but this is true for standard regression-analysis as well, which implicitly assumes that 

the regressors are a complete set of parents for the regressand or a backdoor-criterion separating 

set for some cause and effect variables. Causal effect estimation has the clear advantage because 

it can fairly interact with a much wider range of assumptions and because it clearly states the 

assumptions and their implications.  

4.2.7. Equivalence Classes and Partial Ancestral Graphs 

If a causal diagram represents a hypothesis or a set of beliefs from a domain expert rather 

than ground-truth knowledge, it can be partially validated against an observational distribution 

𝑃(𝑿) before causal effect estimation (Section 4.2.6) by testing the conditional independencies 

that are implied by the d-separations in the graph (Sections 4.2.3 and 4.2.5). In our example 

(Section 4.2.4), when temperature is not measured, our graph 𝐼 ↔ 𝐵 → 𝑆 ← 𝑃 implies that	𝐵 ⫫

𝑃, 𝐼 ⫫ 𝑃, 𝐼 ⫫ 𝑃|𝐵, 𝐼 ⫫ 𝑆|𝐵, and 𝐼 ⫫ 𝑆|𝐵𝑃 in 𝑃(𝑿). But if we find that the movement of sharks’ 

prey is unconditionally dependent on the number of people at the beach 𝑃⫫/	𝐵 in 𝑃(𝑿), then our 

diagram is not an accurate representation of the observed system. If we had instead hypothesized 

that crowding at the beach drives sharks’ prey away from the beach (Figure 4.1a), then we would 

find no inconsistency between the observational distribution 𝑃(𝑿) and our diagram, which 

implies only that 𝐼 ⫫ 𝑃|𝐵, 𝐼 ⫫ 𝑆|𝐵𝑃, and 𝐼 ⫫ 𝑆|𝐵 (𝐵 blocks both paths connecting 𝐼 to 𝑆: 𝐼 ↔

𝐵 → 𝑆 and 𝐼 ↔ 𝐵 → 𝑃 → 𝑆). Though 𝐼 and 𝑃 are not d-separated in this graph, the graph is still 
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consistent with the observed distribution even if 𝐼 ⫫ 𝑃 in 𝑃(𝑿): while the Causal Markov 

Condition states that every independence implied by the graph must hold in 𝑃(𝑿), there may be 

additional independences in 𝑃(𝑿) that are not implied by the graph (Section 4.2.3). However, if 

we additionally found that ice cream sales are not independent of shark attacks when we 

condition on the number of people at the beach 𝐼⫫/	𝑆|𝐵, then Figure 4.1a would again fail to 

explain the observed distribution. An alternate hypothesis that the public is informed about the 

whereabouts of the sharks’ prey and avoid going to the beach when sharks are likely to be 

present, as in Figure 4.1b, would imply only that 𝐼 ⫫ 𝑃 and 𝐼 ⫫ 𝑆|𝐵𝑃, and would thus be 

consistent with the observational distribution.  

 

Figure 4.1: Alternate hypotheses for a causal relationship between the number of people at 
the beach and the location of sharks’ prey (a and b, noted with a bracket). Some directed 
acyclic mixed graphs (b-d, outlined with a box) that belong to the same equivalence class, 
presented as a partial ancestral graph (e). 

We cannot completely evaluate graphs this way because there are other graphs that would 

lead to the same set of d-separations. In this example, we would find the same set of d-

separations if we had assumed there is an unmeasured confounder between the number of people 

at the beach and the movement of sharks’ prey—instead of (panel c) or in addition to (panel d) 

an effect of the movement of sharks’ prey on the number of people at the beach. 

When multiple diagrams yield the same d-separations, they belong to the same 

equivalence class. A non-Markovian equivalence class for ADMGs (Section 4.2.5) can be 

represented with a partial ancestral graph (PAG).  In any ancestral graph, an arrow 𝐴 → 𝐵 
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implies ancestorship rather than parenthood, so two nodes that are adjacent in the ancestral graph 

may not be directly adjacent in an ADMG consistent with it. For instance, the ADMG 𝑇 → 𝐵 𝑆 

could be re-expressed as an ancestral graph , which states that 𝑇 is an ancestor of 𝑆 

that is still related to 𝑆 even when conditioning on 𝐵 (without conditions, 𝑇 is connected to 𝑆 by 

the path 𝑇 → 𝐵 → 𝑆, but if we condition on 𝐵, then we unblock the path 𝑇 → 𝐵 ↔ 𝑆). PAGs 

additionally admit edges with circles at their ends, representing multiple types of relationships 

between the variables in its component ADMGs. Table 4.1 details the possible PAG edges and 

lists the ancestral and/or confounded relationships that can exist between those same variables in 

the members of the equivalence class, with the one complication that edges that form a tripe with 

neighboring circles, such as 𝐴 ←∘ 𝐵 ∘→ 𝐶, cannot be fully-oriented independently, because 

forming a collider would remove the DAG from the equivalence class (Zhang 2008). 

Table 4.1: Edges that may connect two nodes in an Acyclic Directed Mixed Graph (ADMG) 
that belongs to an equivalence class represented by a Partial Ancestral Graph (PAG) are 
marked with an X based on the type of edge that connects those nodes in the PAG. 

 

The equivalence class for Figure 4.1 panels (b)-(d) is presented in panel (e). The arrow 

𝐵 ←∘ 𝑃 in panel (e) represents a causal effect (panel b), confounding (panel c), or both (panel d). 

Though we have not pictured any causal diagrams with a causal relationship 𝐼 → 𝐵, such a 
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relationship would not change the colliders or d-separations implied by the diagram, so this is 

allowed in the equivalence class. However, 𝐵 → 𝑆 cannot be confounded without changing the 

d-separations of the graph; this edge is called visible and we denote it with a star or a ‘v’ (these 

marks are often omitted). 

4.2.8. Causal Discovery 

Sometimes the domain expert cannot formulate a causal diagram or equivalence class that 

is consistent with the data from first principles alone. If we can validate or reject a hypothesized 

graph by checking conditional independencies in the data (Section 4.2.7), we can also “discover” 

the equivalence class of the causal diagram underlying a dataset by listing every possible 

equivalence class over a set of nodes and validating each one. Such a naïve approach quickly 

becomes computationally intractable. But under the faithfulness assumption—which is the 

reverse of the Causal Markov Condition and requires that independence in the observational 

distribution 𝑃(𝑿) implies d-separation in the causal graph—it is possible to choose a subset of 

independence conditions to check so that each one limits the set of possible equivalence classes.8 

Theoretically, faithfulness should not always hold, since there may be competing unblocked 

causal paths between two variables that counteract each other. It has been argued that 

faithfulness violations are incredibly unlikely when causal effects are randomly distributed 

(Spirtes et al. 2000), but real systems may not be randomly distributed, and constraints arising 

from physical conservation laws or from the persistence of a stationary dynamic system may 

make faithfulness violations more likely in the real world (Andersen 2013).  

 
 
8 Some algorithms rely on the somewhat-weaker adjacency faithfulness assumption, which only requires that 
adjacency in the graph (rather than d-connectedness, which is the opposite of d-separation) implies conditional 
dependence in the observational distribution (Ramsey et al. 2012). 
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Algorithms that use conditional independencies to learn the equivalence class associated 

with a dataset are called constraint-based causal discovery algorithms. The classic algorithm was 

formulated with a reasonable runtime by Peter Spirtes and Clark Glymour (1991), and termed the 

“PC” algorithm after their first names. Here, we use the language of PAGs (Section 4.2.7) to 

present a slight modification of the PC algorithm that allows for latent confounding (Section 

4.2.5). Begin by assuming a partial ancestral graph that is maximally connected with edges with 

circles at both sides. First, learn the skeleton of the graph (adjacencies without orientations) by 

searching for pairs of variables {𝑋, 𝑌} that are not directly related, for which we can find a set 

𝑍3I ⊆ 𝑿\{𝑋, 𝑌} such that 𝑋 ⫫ 𝑌|𝑍3I. Search through potential separating sets (where each 

element of the set is a potential ancestor of 𝑌) of increasing size, starting with 0. If such a set is 

found, remove the edge between 𝑋 and 𝑌. Next, begin to orient edges by searching for colliders, 

which induce relationships between pairs of variables that have already been separated by some 

conditioning set 𝑍3I. When a pair of non-adjacent variables {𝑋, 𝑌} share a common neighbor: 

𝑋 ∘ − ∘ 𝑁 ∘ − ∘ 𝑌, if 𝑁 ∉ 𝑍3I (𝑁 is not in the set that separated 𝑋 and 𝑌), partially orient the 

edges to show that 𝑁 is a collider: 𝑋 ∘→ 𝑁 ←∘ 𝑌. Finally, replace remaining circles with heads 

or tails if the opposite choice would create a new collider or a cycle.  

In practice, a researcher does not have access to the observational probability distribution 

function 𝑃(𝑿), and must rely on some statistical estimator of conditional dependence (see 

Section 4.2.9). Sampling and measurement errors mean that no test statistic will ever be exactly 0 

even when the underlying processes are truly independent, regardless of our choice of metric. So, 

we must define some (significance) threshold 𝛼 under which statistical conditional dependence is 

considered equivalent to 0, and face a tradeoff between identifying false independencies and 

missing true independencies. Thus, in practice, causal discovery relies not only on the 
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faithfulness assumption, but also on some version of the even stronger assumption of strong 

faithfulness: that all statistical dependence test results below some threshold correspond to d-

separations in the graph. This assumption is often violated in real data (Uhler et al. 2013), and 

can be sensitive to the choice of metric for conditional independence and the way it is estimated 

relative to the properties of the underlying SCM. 

4.2.9. Statistical Conditional Independence Testing 

In Section 4.2.1 we discussed some metrics for measuring dependence 𝑋⫫/	𝑌|𝑍 by 

quantifying the difference between the distributions 𝑃(𝑋𝑌|𝑍) = 𝑃(𝑋𝑌𝑍)/𝑃(𝑍) and 

𝑃(𝑋|𝑍)𝑃(𝑌|𝑍) = 𝑃(𝑋𝑍)𝑃(𝑌𝑍)/𝑃(𝑍)/ including CMI and distance correlation. In practice, we 

cannot use these metrics without estimating 𝑃(𝑿). Given samples drawn iid from 𝑃(𝑿), one can 

estimate 𝑃(𝑿) by dividing the domain of the observations into subranges and measuring the 

prevalence of observations within each subrange.  

“Fixed global bandwidth” estimators divide the total range of the observed variables into 

even subranges, as is typical when making a histogram, for instance. The researcher must choose 

the number of bins, and faces a tradeoff: if the bin size is too large, the histogram doesn’t have 

enough resolution to shed light on the true probability distribution, but if the bin size is too small, 

the accuracy of the estimates decreases. For instance, a small bin size can lead to unfortunate 

coincidences such as having no observations in some bin near the center of a normal distribution, 

preventing the estimated distribution from appearing smooth, let alone normal.  

“Data-adaptive” approaches instead adjust the limits of the subranges to maintain the 

same amount of data in each range, with smaller ranges where data are dense, and larger ranges 

where data are sparse, avoiding this strange behavior. But the researcher still adjusts the number 

and sizes of the bins by choosing the amount of data in each bin, and still faces a tradeoff 
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between accuracy and precision. On the one hand, with smaller bins and less data in each bin, the 

variance of the estimate for each bin increases and so the accuracy decreases. On the other hand, 

in the extreme case of having one large bin, there is no variance in the probability density 

estimate (it must equal 1), but there is also no resolution in the estimated probability distribution. 

This lack of resolution makes two distributions more likely to appear equivalent. Thus, when 

estimating independence, a large bin size causes a bias toward zero whereas a small bin size 

increases variance due to chance.  

CMI can be estimated using a data-adaptive k-nearest-neighbor estimate (CMIknn), and 

Runge (2018b) implements a computation significance test for of CMI by constructing a new 

distribution 𝑃(𝑋·𝑌𝑍) where 𝑋· ⫫ 𝑌|𝑍, but the relationship between 𝑋 and 𝑍 is preserved. He 

accomplishes this by shuffling values of 𝑋 within a “shuffle neighborhood” of observations with 

the most similar Z values. Thus, CMIknn has two additional important tunable parameters: k 

nearest neighbors (knn) and shuffle neighbors (SN).9 If SN is too small, then the relationship 

between 𝑋 and 𝑍 will be destroyed and the null distribution will be overly similar to the alternate 

distribution, so increasing SN increases sensitivity (true dependence results) while decreasing SN 

increases fidelity (reduces false dependence results). Knn is expressed as a fraction of the sample 

size (N, the length of the time series), and Runge (2018b) recommends values between 0.1 and 

0.2. SN is a small integer, and values between 5 and 10 are recommended. These 

recommendations are based on computational analysis of the conditional independence tests with 

sample sizes from 50 to 2000 and dimensionalities (number of variables) of 3 and 10. Within the 

context of causal discovery, these recommendations are still considered preliminary, and the 
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authors request further analysis to determine the best parameter choices. Unfortunately, this CMI 

estimator results in low detection power in the context of causal discovery with multiple 

variables, meaning it often finds independence where there is none and leads to incorrectly 

removing edges, especially when conditioning sets are large (see Figure 5e of Runge et al. 

2019a).  

Another approach to estimating the probability distribution function from independent 

samples of 𝑃(𝑿) is calculating the empirical characteristic function, which is an unbiased and 

consistent estimator of the probability distribution that does not rely on dividing the data into 

bins. Székely et al. (2007) use empirical characteristic functions to estimate distance correlation, 

but only when 𝑍 = ∅, and so some parametric assumption must be made to regress out 𝑍 from 𝑋 

and 𝑌, and this approach can only be used when the functional relationships satisfy the 

parametric assumptions.  

Another approach is to avoid estimating 𝑃(𝑿) altogether. The partial correlation 

coefficient 𝜌I3⋅K = (𝜌I3 − 𝜌IK𝜌3K)/[(1 − 𝜌IK/ )(1 − 𝜌3K/ )]^.5 is not a distance metric for the 

probability distributions—it only examines the mean of the distributions, and it can be 

negative—but it suffices as a theoretical proxy for conditional independence for linear 

dependencies with additive Gaussian noise. When 𝑍 = ∅, it is easy to see that the true 

unconditional correlation of 𝑋 and 𝑌—𝜌3I = (𝐸[𝑋𝑌] − 𝐸[𝑋]𝐸[𝑌])/√𝜎3𝜎I ∝ ∬𝑋𝑌[𝑃(𝑋𝑌) −

𝑃(𝑋)𝑃(𝑌)]𝑑𝑋𝑑𝑌, where 𝜎3 is the standard deviation of 𝑋—will always equal 0 when 𝑋 and 𝑌 

are independent even when the underlying SCM is not linear. However, the conditional partial 

correlation coefficient 𝜌3I⋅K implicitly uses linear regression to remove the effect of 𝑍 on 𝑋 and 

𝑌, and doesn’t generally equal 0 when 𝑋 ⫫ 𝑌|𝑍 if the relationship between 𝑍 and the other 

variables is non-linear. Furthermore, the reverse implication that 𝜌I3⋅K = 0 → 𝑋 ⫫ 𝑌|𝑍—which 
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is necessary to satisfy the faithfulness assumption when using partial correlation as the 

conditional independence indicator—also only holds when the functional assignments are linear 

and the noise is Gaussian. Thus, we can only use this indicator for conditional independence for 

causal discovery when we believe our SCM to be linear with additive Gaussian noise. We do not 

have to know 𝑃(𝑿) to calculate the sample partial correlation coefficient 𝑟I3⋅K ∝ (𝑁∑ 𝑥0𝑦08
0P7 −

∑ 𝑥08
0P7 ∑ 𝑦08

0P7 ), and partial correlation results in higher detection power for causal discovery in 

the linear case (Runge et al. 2019a).  

4.2.10. Time Series 

When the variables 𝑋0 = 𝑋0(𝑡) are time series, their values at different times are not 

independent, violating our definition of an SCM (see Section 4.2.2). We can address this by 

dedicating a node 𝑋0(𝑡) for every variable 𝑋0 	at every time 𝑡. Since the observations of different 

variables at the same time are likely to be confounded by the past of all variables in the system, 

we allow the parents of 𝑋0(𝑡) to include past observations of all variables including itself (𝑋F(𝑡 −

𝜏), 𝜏 > 0) in addition to simultaneous observations of other variables (𝑋F(𝑡), 𝑗 ≠ 𝑖). In practice, 

𝜏 ∈ 0… 𝜏5QR is also limited to be less than or equal to some finite maximum time lag 𝜏5QR ∈ ℝ. 

Simultaneous feedbacks still cannot be represented under the assumption of acyclicity; 

but, given a high enough sampling rate, feedbacks loops can be “unrolled” over time such that at 

least one of the causal relationships in the feedback mechanism has a lag. In our example, for 

instance, we already recognize that increasing the number of people at the beach increases the 

expected number of shark attacks when sharks are present, but it may also be that people are less 

likely to go to the beach the days after a shark attack occurs. We would not be able to represent 

this feedback when looking at monthly aggregates because it would create a ‘simultaneous’ cycle 
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in the graph. But if we examine a time series with a timestep of one day, we can unroll the 

feedback over time, and we might obtain a graph such as Figure 4.2a. 

 

Figure 4.2: Time series causal graph (a) and corresponding summary graph (b). 

Without further assumptions, it would be impossible to evaluate conditional 

independence for such a causal diagram, because we would only have one observation for each 

node in the graph. Under the assumption that the causal structure is stationary, a single 

functional relationship 𝑓0 is needed to define the behavior of 𝑋0(𝑡) for all 𝑡. This means the 

causal graph will have an infinitely repeating structure, and can be represented more compactly 

as a summary graph in which each variable appears only once, auto-dependence is represented 

by a circle about the node’s name with causal lags listed below, and simultaneous dependencies 

are marked with straight arrows while lagged dependencies are marked with curved arrows 

labelled with the length of the lag in outlined numbers (Figure 4.2b)10. More importantly, it 

 
 
10 This is method doesn’t clarify the direction of the lag for confounded adjacencies. A convention for this case 
should be determined. 
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allows us to use observations at different times as a sample for testing conditional independence 

between the variables.  

Unfortunately, these samples 𝑋0(𝑡) are still not independent of one another, and statistical 

conditional independence tests (see Section 4.2.9) also rely on the assumption that samples are 

independent and identically distributed. Runge et al. (2014) showed that, in the linear case, the 

partial correlation 𝜌I3⋅#Q.\3 (Section 4.2.9) is affected by autocorrelation in both 𝑋 and 𝑌 in 

addition to the causal effect between them even though the other parents of 𝑌 are included in the 

conditioning set. This causes theoretical problems for effect estimation, suggesting that 𝜌I3⋅K can 

give a biased estimate of the causal effect of 𝑋 on 𝑌 even when the conditioning set 𝑍 satisfies 

the backdoor criterion. It does not pose a theoretical problem for causal discovery, but it does 

pose a practical one: while the true partial correlation coefficient should still equal zero when 

variables are independent, the dependence on the autocorrelation of 𝑋 and 𝑌 makes it more likely 

that the sample partial correlation coefficient 𝑟I3⋅K (Section 4.2.9) will cross the defined 

threshold for dependence (Section 4.2.8) even for d-separated variables when samples are finite, 

resulting in detection of false edges and false orientations. Runge et al. (2014) showed that, for 

effect estimation, the bias in 𝑟I3⋅K can be addressed by conditioning on the parents of both 𝑋 and 

𝑌.  

Generally, it has been argued that iid violations reduce the number of degrees of freedom 

of the data and the width of the test statistic distributions for any conditional independence test, 

but theoretical results on the implications of iid violations on true conditional independence 

metrics (including CMI and distance correlation) and in turn on the soundness of time-series 

causal discovery algorithms when data are finite are still missing. Nevertheless, Runge (2018a) 

showed computationally that eliminating autocorrelation by conditioning on the parents of both 
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the cause and effect variables improves the performance of time-series causal discovery 

algorithms even when using CMI to measure independence. This test 𝑋 ⫫ 𝑌|𝑝𝑎3 ∪ 𝑝𝑎I\𝑋	 is 

called momentary conditional independence (MCI). 

4.2.11. Time-Series Causal Discovery Algorithms 

Including past values of all variables as separate nodes (Section 4.2.10) dramatically 

increases the dimensionality of the dataset, reducing the detection power of conditional 

independence test and thus the performance of causal discovery algorithms in the time series 

case. The PCMCI algorithm (Runge et al. 2019a) generalizes the PC algorithm to the time-series 

case (see Section 4.2.8). At the same time, it attempts to reduce false negatives (missing edges) 

by avoiding unnecessary conditions that reduce the detection power of the conditional 

independence tests and might result in strong faithfulness violations (see Section 4.2.8). It also 

partially addresses autocorrelation biases by adding an additional stage at the end of the 

algorithm where each pair of neighbors are tested for MCI (Section 4.2.10), which helps reduce 

false positives (extra edges) and gives the algorithm its name.  

PCMCI assumes causal sufficiency (Section 4.2.2), so 𝜏5QR must be large enough to 

include the longest causal time lag affecting more than one variable in underlying SCM, and 

should be physically and statistically motivated. PCMCI additionally assumes no simultaneous 

dependencies, and so the orientation of edges is entirely determined by the time lag, and no 

orientation step is required in the algorithm. PCMCI was followed by PCMCI+ (Runge 2020), 

which relaxes the second assumption and allows simultaneous dependencies as long as there are 

no simultaneous cycles; and Latent PCMCI (LPCMCI; Gerhardus and Runge 2021), which 

additionally relaxes the first assumption and allows for latent confounders (Section 4.2.5). 

Because LPCMCI can learn confounded relationships, while a 𝜏5QR shorter than the longest 
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causal lag in the underlying SCM may in practice reduce the algorithm’s effectiveness at 

removing autocorrelation effects and may also limit its ability to orient certain lagged 

adjacencies, it will not in theory produce an incorrect graph in the absence of (strong) 

faithfulness violations – it will simply return a graph with more confounded adjacencies and 

fewer lagged causal adjacencies; thus, 𝜏5QR can be considered an analysis choice. PCMCI+ 

requires orienting only simultaneous edges, but LPCMCI must orient all edges. Both PCMCI+ 

and LPCMCI return a PAG which is augmented in that it may contain edges with an x at one or 

both ends. These edges mean that the orientation rules led to conflicting orientations for that 

edge, betraying an inappropriate conditional independence test or a violation one of LPCMCI’s 

assumptions – acyclicity, stationarity, or (strong) faithfulness for the tested conditions.  

The possibility of latent confounding in LPCMCI complicates the algorithm because 

even lagged adjacencies may be confounded rather than causal, and so conditioning on lagged 

adjacencies may unblock colliders and cause confounding. LPCMCI thus performs preliminary 

iterations of the algorithm which begin to learn the diagram but then restore all removed edges 

while retaining orientations, allowing LPCMCI to re-test the skeleton while leveraging 

orientation information to avoid low detection power and reduce autocorrelation effects. This 

reduces the consequences of premature incorrect conditional independence tests, and increases 

the chances of detecting important edges once some orientations are known. The number of 

preliminary iterations used in the LPCMCI algorithm (𝑝) is tunable by the user: a larger 𝑝 is 

more computationally expensive, but could yield better results. Gerhardus and Runge (2021) test 

LPCMCI with 0-4 preliminary iterations11, and find that the majority of the improvement in 

 
 
11 “k” in (Gerhardus and Runge 2021) 
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performance is gained with the first preliminary iteration, and further preliminary iterations yield 

smaller gains. 

4.2.12. Evaluation of Causal Discovery Algorithms 

Causal discovery algorithms are typically evaluated by how successful they are in 

recovering to the ground-truth DAG (Section 4.2.3) or ADMG (Section 4.2.5) that generated the 

examined data, both in theory and in practice.  

On the theoretical side, the algorithm must be proven to be consistent, meaning it makes 

correct decisions and converges on the correct graph in the limit of infinite data. These proofs 

often rely on faithfulness (and all other assumptions of the algorithm) and assume an ‘oracle’ 

conditional independence test that is not constrained by the statistics of finite samples and always 

tells the algorithm truthfully whether the probability distributions of two variables are 

conditionally independent (see Section 4.2.2 for a definition of independence). Theoretical 

consistency results given real conditional independence tests and finite data are desired, but often 

difficult to prove and not provided. 

On the practical side, an algorithm can be evaluated by repeatedly applying the algorithm 

to real data and comparing the discovered causal graph to the true underlying data-generating 

mechanism. Since the ground-truth causal structure for observed systems is not known, the 

standard is to use simulated data. The comparison can be carried out in two stages, where first 

the skeleton is evaluated, and then the orientation of the edges. Classical metrics for comparing 

an undirected graph to ground-truth knowledge include recall and precision scores. A classical 

recall score rewards a graph for the fraction of “true adjacencies” it contains. This measure is 

maximized not only for a graph that perfectly matches the ground-truth, but also for a fully-

connected graph where every pair of nodes is adjacent regardless of the ground-truth. Thus, the 
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recall score is always balanced with precision, which evaluates a graph based on the fraction of 

its adjacencies that also appear in the ground-truth, and these scores can be combined into a 

single F1 score. Recall can be calculated without bias from partial knowledge of the positive 

adjacencies in the ground-truth, but precision requires full knowledge of true adjacencies. 

4.3. Relevant Climate Variables and their Interactions 

This chapter is motivated by previous work (Giannini and Kaplan 2019; Giannini et al. 

2013; Chapter 3 of this dissertation) that defines the North Atlantic as the area-weighted mean of 

SST within 10°-40°N and 75°-15°W, and the Global Tropics as area-weighted mean of 

temperature ocean surface in the latitude band 20°S-20°N (outlined in black in Figure 4.3) from 

July to September. We continue using area-weighted means, but in order to approach causal 

sufficiency (Section 4.2.2), the STT indices should not only capture the teleconnections to the 

Sahel, but should also capture individual modes of climate variability and should minimize 

overlap with each other. In Figure 4.3, it is clear that the North Atlantic and Global Tropics 

overlap with each other. Furthermore, the Global Tropics includes a number of distinct modes of 

internal climate variability, including the El Niño Southern Oscillation in the tropical Pacific, the 

Atlantic Niño in the tropical Atlantic, the Atlantic Meridional Mode in the North Tropical 

Atlantic, and the Indian Ocean Basin Mode and Indian Ocean Dipole. Thus, we construct a new 

set of climate indices inspired by the original definitions of NARI and the Sahel. Table 4.2 

contains the complete definitions of the SST indices used in this chapter (black), and Figure 4.3 

gives a visualization of the basins. 
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Table 4.2: SST (black) and other (gray) indices used in this chapter. 

Coordinates Season Name Abbrev. 

140°E-80°W and 20°S-20°N January-March El Niño EN 
JAS Tropical Pacific Pc 

28°W-20°E, 35°S-15°N and the lines  
6*lat-5*lon=164° and 6*lat+5*lon=116° May-June Gulf of Guinea GG 

30°W-20°E and 20°S-10°N JAS South Atlantic SA 

60°-15°W and 10°-20°N March-May Atlantic Meridional Mode AMM 
JAS North Tropical Atlantic TA 

20°S-20°N JAS Global Tropics GT 
75°-15°W and 20°-40°N JAS North Atlantic NA 
6°W-36°E and 30°-40°N JAS Mediterranean Sea Md 
40°-100°E and 20°S-20°N JAS Indian Ocean IN 

12°-18°N and 20°W-40°E 150 hPa JAS Upper-Tropospheric Temperature TT 
surface Sahel precipitation Pr 

 

 

Figure 4.3: Visualization of the SST basins (defined in Table 4.2) used in this chapter. 

To avoid overlapping indices, we split G13’s North Atlantic index into two: the part that 

overlaps with the Global Tropics from 10°-20°N (additionally restricted to 60°-15°W, orange), 

and the rest from 20°-40°N (gray). The former is often called the North Tropical Atlantic, and is 

the location of decadal SST variability known as the Atlantic Meridional Mode (Nobre and 

Shukla 1996), which peaks in the spring between March and May. We examine SST in this box 

GT

NA

GG

SA

md

TA

NA

Pc/EN IN
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both in the spring (March-May, “AMM”) and in the summer (JAS, “TA”), when its temperature 

might affect the humidity and intensity of the West African Westerly Jet (Pu and Cook 2012), 

which brings moisture from the North Tropical Atlantic to the Sahel during the rainy season 

(unfortunately, the jet lies between 8º and 11ºN, just on the southern boundary of TA). The other 

part of G13’s North Atlantic index will be designated the North Atlantic (NA) for the purposes 

of this study. It is meant to capture low-frequency variability in the North Atlantic Ocean basin 

associated with the Atlantic Multidecadal Variability (AMV or AMO; Knight et al. 2005). 

Though it excludes variability in the subpolar North Atlantic north of 40N that is also associated 

with the AMV, it captures the variability from 20-30N shown to be most strongly associated with 

the Sahel in simulations (Martin et al. 2014). 

To capture independent modes of variability, we keep the original definition of the 

Global Tropics (GT), but additionally split it up into component basins designed to capture each 

distinct mode of internal variability. We intentionally do not include an index for Indonesian 

SST, and also never include SA and IN at the same time, to make sure that GT has variability not 

explained by its constituent basins, as required by our definition of an SCM (Section 4.2.2).  

The EN and Pc indices cover the tropical Pacific (green), and are designed to capture El 

Niño – the most dramatic and influential mode of internal variability in the global oceans (Wang 

et al. 2017). It is accompanied by a pressure oscillation in the southern Pacific and Indian oceans 

which is called the Southern Oscillation (Bjerknes 1969), and the coupled phenomenon is called 

the El Niño Southern Oscillation (ENSO). It develops in the summer, which is also when it is 

believed to suppress Sahel rainfall in observations (Joly and Voldoire 2009). This development 

phase is captured in the Pc index, defined from July to September. El Niño events peak in winter, 

and this is captured by our EN index defined from January to March. 
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The Gulf of Guinea index (GG, yellow) is designed to roughly capture the Atlantic Ocean 

portion of the “precipitationshed” for Sahel rainfall identified by Keys et al. (2014), where the 

precipitationshed is the land and ocean surface where at least 5mm of evaporated moisture 

eventually precipitates in the Sahel during the monsoon. It is defined in spring from May to June 

to capture the atmospheric river that transports moisture from the Gulf of Guinea to the Sahel 

(Lélé et al. 2015). This index also captures the first mode of interannual variability in the tropical 

Atlantic, known as the Atlantic Niño (Ruiz-Barradas et al. 2000), which peaks in May and June 

(see Figure 1.5 in Mechoso et al. 2023) and may affect the latitudinal position of the African 

rainband (Rodríguez‐Fonseca et al. 2011, and references therein). It additionally captures the 

development of the seasonal tropical Atlantic cold-tongue, which begins in April and is strongly 

associated with the onset and development of the WAM (Okumura and Xie 2004). The cold 

tongue extends into July, affecting the South Atlantic index (SA, red), which is defined from July 

to September to represent, in combination with NA, the argument that summer Atlantic SST 

gradients affect the latitudinal location of the African rainband (e.g. Zeng 2003). Since this index 

overlaps with Sahel rainfall, coupled cold tongue dynamics may mean that convection in the 

Sahel also causes increased wind speeds over SA and reduces SST there, in which case there 

would be a causal cycle in the graph, violating the assumptions of causal discovery. 

The IN index (purple) captures the basin-wide Indian Ocean SST variability believed to 

affect the Sahel (e.g. Bader and Latif 2003; Giannini et al. 2003). It is defined from July-

September, and captures the second peak of the Indian Ocean Basin Mode (IOBM), which 

persists into summer (Du et al. 2009). It does not capture the Indian Ocean Dipole12, in which the 

west and east portions of the ocean basin have opposite sign anomalies, unless IOD variability is 

 
 
12 The existence of this mode is disputed (Zhao and Nigam 2015). 
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associated with positive IOBM variability. The IOBM displays both high- and low-frequency 

variability (Han et al. 2014), both of which have been argued to be important for the Sahel 

(Bader and Latif 2003, 2011). 

The definition of the Mediterranean Sea captures the vertical extent determined by 

Rowell (2003) to have a significant statistical relationship with the Sahel in observations, and 

extends it to cover the width of the basin to capture correlation with precipitation in simulations. 

Another choice could be the full height of the East Mediterranean, as identified by (Gaetani et al. 

2010). The Mediterranean Sea is thought to impact Sahel rainfall via thermodynamic changes in 

moisture supply and also by causing a dynamic shift in the location of the rainbelt via changing 

temperature gradients over Africa. 

There are other modes of internal variability that we are neglecting in our analysis, 

including the North and South Pacific Meridional Modes (Chiang and Vimont 2004; Zhang et al. 

2014), the Pacific Decadal Oscillation (Mantua et al. 1997), the Southern Annular Mode 

(Thompson and Wallace 2000), the North Atlantic Tripole (Fan and Schneider 2012), and an 

atmospheric phenomenon called the North Atlantic Oscillation (Hurrell 1995). If these modes 

affect Sahel rainfall (e.g. Villamayor and Mohino 2015) and/or other modes of variability, then 

we might not achieve causal sufficiency. 

In Figure 4.4, we present expected simulated interactions between these basins and Sahel 

precipitation using the language of time-series summary graphs (Section 4.2.10). While we 

cannot assume stationarity of the underlying SCM between seasons, we can assume stationarity 

from year to year for the piC simulations, and so we include a node for every examined season 

for every basin, and treat all indices within the same calendar year as “simultaneous” in our 

summary diagrams and the causal discovery algorithms. The indices are grouped by season, with 
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winter (W, JAS) in the top row, spring (Sp, March-May/May-June) in the second row, and 

summer (Su, JAS) in the third row; and also by location (from left to right: the Indian Ocean, the 

tropical Pacific, the tropical Atlantic, the North Atlantic, the South Atlantic and Gulf of Guinea, 

and the Mediterranean Sea). Beneath the first three rows is the Global Tropics (GT), defined to 

encompass the Pacific, South Atlantic, Tropical Atlantic, and Indian Oceans. The non-causal 

“ontological” relationships between GT and its constituent basins are notated with black arrows. 

Beneath GT are atmospheric variables including Sahel tropospheric temperature (TT) and 

precipitation (pr). Throughout the diagram, straight arrows represent “simultaneous” 

dependencies in the same calendar year, while curved arrows represent “lagged” dependencies 

from one year to the next, and colored circles represent the dependence of a variable on itself 

from the previous year. While SST in every ocean basin should depend on its previous value 

because ocean circulation is slow and water has a high heat capacity, only IN, NA, and md have 

red circles because the other auto-dependencies are unrolled over different seasons, and consist 

of one simultaneous edge and one lagged edge.13 In green arrows, we present interactions we 

expect to see between ocean basins based on the observed climate system, as summarized by 

Mechoso et al. (2023).  

 
 
13 In some ocean basins around the world, seasonal SST can affect SST one year later directly—without mediation 
by the intermediate seasons—via subsurface temperatures that resurface seasonally (Hanawa and Sugimoto 2004). 
But in the tropics, we expect the autocorrelation of SST in a given basin to be mediated by the intervening seasons. 
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Figure 4.4: Summary graph containing relationships between ocean basins and relevant 
atmospheric variables identified in the literature. Basins are organized according to season, 
with winter (W) in the top row, spring (Sp) in the second row, and summer (Su) below. Some 
basins are similar or identical to each other, and are grouped by column; from left to right: 
Indian Ocean (IN), tropical Pacific (EN and Pc), tropical Atlantic (AMM and TA), North 
Atlantic (NA), Gulf of Guinea or South Atlantic (GG and SA), and Mediterranean Sea (md). 
The fourth row contains the Global Tropics (GT), which encompasses the Pacific, South 
Atlantic, and Tropical Atlantic, as well as the Indian Ocean, and below that are Sahel 
tropospheric temperature (TT) and precipitation (pr). Straight arrows represent dependencies 
within the same year, while curved arrows represent time-lagged dependencies from one 
year to the next between variables and red circles represent auto-dependence from year to 
year. The colors differentiate the reasons why we expect to see an edge: red is given 
(dependence of an ocean basin on itself within the last year), black is by construction, green 
is based on observations and theory, and blue is the hypothesis of G13. 

ENSO is believed to affect global atmospheric and oceanic states three to six months 

after its peak (EN), including the North Tropical Atlantic and the Indian Ocean in spring (Sp) 

and summer (Su) (Klein et al. 1999), so we draw green arrows from EN to AMM, TA, and IN, 

and also GT, in case other areas of the Global Tropics are also effected. These effects are 

mediated by tropospheric temperature in the tropics: convection transports heat from warm 

tropical oceans to the troposphere, and gravity waves transmit the local increases in tropospheric 
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temperature both eastward and westward until tropical tropospheric temperature is nearly 

uniform (Sobel et al. 2001), obeying the “Weak Temperature Gradient” constraint (see section 

1.4). These anomalies then are transmitted to cooler remote ocean basins via downwelling and 

turbulent surface fluxes (Parhi et al. 2016) in an “atmospheric bridges” mechanism (Alexander et 

al. 2002). This mechanism transmits temperature anomalies from whichever tropical ocean basin 

happens to be the warmest to the rest of the Global Tropics, but the Pacific is considered the 

main driver because it has the most dramatic variability and is often the warmest basin in the 

Global Tropics during El Niño. 

Some have argued that ENSO events can be triggered by a warm phase of the Pacific 

Meridional Mode (PMM) the preceding spring (Alexander et al. 2010). Others have argued that 

the PMM affects the location of the warm El Niño anomalies (Yu et al. 2010), which may 

change the effect of ENSO on other parts of the world (Ashok et al. 2007). We have not included 

the PMM explicitly, but the SST pattern extends to 10°S and may be somewhat captured in the 

Pc index. Unfortunately, however, our EN and Pc indices will likely not be able to distinguish 

between the types of ENSO events because we take an average over the whole basin. PMM may 

respond to the Atlantic Multidecadal Variability (Yu et al. 2015), so we connect NA to Pc.   

AMV may also modulate interannual modes in the tropical Atlantic (Martín-Rey et al. 

2018), so we connect NA to the following year’s AMM and GG. Some have argued that the 

Atlantic Niño can reduce the likelihood of El Niño (Losada et al. 2010; Rodríguez-Fonseca et al. 

2009); accordingly, we draw an arrow from GG to Pc. There is disagreement about whether 

(Ham et al. 2013) or not (Zhang et al. 2021) the AMM can also trigger ENSO; for now, we do 

not connect them. It has also been argued that the AMM dampens the Atlantic Niño between 

May and July via an atmospheric teleconnection (Foltz and McPhaden 2010); accordingly, we 
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add an arrow from AMM to GG. The AMM is thought to be driven by the atmospheric North 

Atlantic Oscillation (NAO; Hurrell 1995) in addition to ENSO (Enfield and Mayer 1997), and 

the AMV also may be driven by the NAO (Clement et al. 2015), so AMM and NA are also 

confounded (double-sided green arrow). There may also be an oceanic connection between the 

Atlantic basins since surface waters flow northward through the Atlantic Oceans. Though the 

oceanic connection may not produce the spatial pattern of variability associated with the Atlantic 

Niño, the Atlantic Meridional Mode, or the AMV, it may still affect our area-mean SST indices, 

giving the connection SA → TA → NA (not pictured in our diagram). Though AMM and GG 

overlap in May, we hope that the fact that GG is defined later than AMM will mostly prevent 

any flow of information from GG to AMM which would conflict with the ‘simultaneous’ 

atmospheric teleconnection under the assumption of acyclicity. 

The IOBM may play a role in determining the persistence of ENSO events via an 

atmospheric pathway (Okumura and Deser 2010), so we draw an arrow from IN to EN in the 

following year. The Indian Ocean is connected to the Pacific Ocean via the Indonesian 

Throughflow, and so there could also be oceanic communication between these basins. For 

instance, it has been proposed that the Pacific Decadal Oscillation affects the IOD mode with a 

delay of about 10 years (Ummenhofer et al. 2017), but this time lag is too long to be captured in 

our analysis and is not pictured in our hypothesis. The Indian Ocean is also oceanically 

connected to the Gulf of Guinea via the Agulhas current, but the time delay is also likely too 

long to be observed in our analysis. If the Indian Ocean affects the NAO (Bader and Latif 2003), 

then there may be a dependence of NA and AMM on IN as well; these links are not included in 

our diagram. 
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The Mediterranean Sea (md) is correlated with NA in observations. There is outflow of 

Mediterranean water to the Atlantic, but it is usually identified by salinity and not with a 

temperature profile (Zhao and Nigam 2015). Variability in md has generally been poorly 

understood, but some studies links it to the AMV via atmospheric (Mariotti and Dell’Aquila 

2012) and oceanic (Skliris et al. 2012) pathways, while others link it to the NAO (Yan and Tang 

2021). Thus, md may affect NA with a lag, be affected by NA, and/or be confounded with NA 

and AMM. For now, we leave it disconnected. 

In addition to these SST indices, we examine precipitation (pr) and upper-tropospheric 

temperature (TT) over the Sahel (gray in Table 4.2), defined as in Chapter 2 and Chapter 3 to be 

the area within 12°-18°N and 20°W-40°E. If G13’s view of Sahel rainfall is correct, then we 

would see a connection from NA to Sahel rainfall, and from GT to the upper tropospheric 

temperature over the Sahel (TT) and then to Sahel precipitation (blue arrows). According to 

other hypotheses we discussed in the Introduction, we may see direct connections to other basins 

as well or instead. TT is defined over the Sahel and in summer to minimize its impact on other 

ocean basins so it can act solely as a mediator for the effect of remote SST on Sahel rainfall. 

However, since warm tropospheric temperature anomalies spread both eastward and westward 

throughout the tropics, TT may still be detected as a mediator for the effect of winter and spring 

oscillatory modes on summer tropical SST. If this is the case, the fact that TT also responds to 

tropical SST on shorter than seasonal timescales (Zhang and Fueglistaler 2020) may pose a 

problem for causal discovery because cyclic adjacencies are not allowed. We also hope to define 

TT high enough in the atmosphere that it will affect Sahel precipitation without responding to it, 

but if we are unsuccessful, TT and pr may also be coupled.  



 

 131 

4.4. Methods 

It is likely that simulations from different climate models differ causally from 

observations and from each other (see Section 4.1). Furthermore, it is not clear a priori how to 

choose the best parameters for statistical conditional independence testing (see Section 4.2.9) 

that forms the backbone of causal inference. In light of these considerations, rather than 

attempting to validate the conditional independencies implied by our hypothesized causal 

relationships (see Section 4.2.7 and Figure 4.4) in climate simulations, we use causal discovery 

(see Section 4.2.8) for time series (see Section 4.2.10) to learn the causal structure of individual 

climate models. As mentioned in Section 4.3, we expect causal relationships to vary seasonally, 

so in order to satisfy stationarity (see Section 4.2.10), we treat indices defined at all seasons 

within the same calendar year as “simultaneous.” This hides some background knowledge from 

the causal discovery algorithm that could have improved its performance, but it also gives us 

some independent ground-truth knowledge about a subset of the underlying causal relationships 

with which to evaluate the performance of the method (see Section 4.2.12). Because we likely do 

not include all causally-relevant factors (see Section 4.3), we choose an algorithm that allows 

latent confounding (see Section 4.2.5). As mentioned in the Introduction, we focus on coupled 

simulations with constant external radiative forcing (see Section 4.4.1) to reduce latent 

confounding and stationarity violations. Future work can use the discovered causal structures 

specific to each climate model to properly estimate the causal effects (see Section 4.2.6) of SST 

in various ocean basins on Sahel precipitation in each simulation, and those results can then be 

validated against atmospheric simulations with prescribed historical SST from those same 

climate models (with the caveat that if the system is not linear and the coupled simulations do 
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not cover the distribution of observed historical SST, then the learned relationships may not 

transfer well from the coupled simulations to the atmospheric simulations). 

4.4.1. Data 

We use pre-Industrial control (piC) simulations from the Coupled Model Intercomparison 

Project phase 6 (Eyring et al. 2016), in which all anthropogenic emissions and other external 

radiative forcings—factors that affect the climate system but are not caused by the climate 

system—are held constant at pre-Industrial levels. Table 4.3 lists the piC simulations used in this 

chapter. We focus on climate models that also provide amip-piForcing simulations (Webb et al. 

2017)—which are long atmospheric simulations with prescribed observed historical SST and no 

external radiative forcing—that can be used to validate causal effects estimated using the results 

of this chapter, and we include a few additional models for tuning (see Section 4.4.4).  

Table 4.3: Simulations used in this chapter, along with the sample size (N) and the largest 
autocorrelation at a lag of one year for any included variable in a given season (rmax). The first 
5 models were chosen for tuning algorithm parameters. The last 5 models were chosen to 
explain the performance of the amip-piF simulations analyzed in Chapter 3.  

 GCM Run N  rmax 

Fo
r t

un
in

g  AWI_AWI-CM-1-1-MR r1i1p1f1 500 0.18 
CMCC_CMCC-ESM2 r1i1p1f1 500 0.66 
AS-RCEC_TaiESM1 r1i1p1f1 500 0.29 
CAMS_CAMS-CSM1-0 r1i1p1f1 250 0.29 
CSIRO_ACCESS-ESM1-5 r1i1p1f1 1000 0.30 

Pr
ov

id
e 

am
ip

- p
iF

 
si

m
ul

at
io

ns
 CCCma_CanESM5 r1i1p2f1 1051 0.34 

CNRM-CERFACS_CNRM-CM6-1 r1i1p1f2 500 0.35 
IPSL_IPSL-CM6A-LR r1i1p1f1 1200 0.30 
MRI_MRI-ESM2-0 r1i1p1f1 701 0.30 
NCAR_CESM2 r1i1p1f1 1200 0.37 

 

We examine area-weighted means of SST in the regions listed in Table 4.2. Initial results 

exclude IN, and later results include it. We chose 150 hPa (which is 50 hPa higher than the 

approximate tropical tropospause pressure, Figure 4.5a) as the level for TT because it maximized 



 

 133 

the absolute value of the correlation of Sahel precipitation with the difference in moist static 

energy between the upper troposphere and near the surface (b, red) and of GT with TT across 

CMIP6 historical simulations (c). (If we were to repeat the analysis, we would use piC 

simulations instead.) Though correlation may not maximize at the height most associated with 

the causal mechanism, we hope that this choice will provide a reasonable signal-to-noise ratio. 

 

Figure 4.5: Ensemble-mean and variance of Sahelian profiles of time-mean thermodynamic 
quantities across CMIP6 historical simulations. (a) JAS moist static energy (MSE, estimated 
with cpd) profile. (b) Correlation of Sahel precipitation with MSE (blue) and with the 
difference in MSE at a given pressure and at 925 hPa (red, Dmse). (c) Correlation of GT in 
spring (green, March-May), late spring (yellow, May-July), and summer (blue, JAS) with air 
temperature. 

4.4.2. Code 

We study piC simulations using the “Latent PCMCI” (LPCMCI; Gerhardus and Runge 

2021) causal discovery algorithm and also employ PCMCI+ (Runge 2020), both of which are 

implemented in a python package called “tigramite”. This package supports multiple kinds of 

statistical conditional independence tests (see Section 4.2.9). For continuous dependencies, there 

are three of note. First, there is a partial correlation test (ParCorr) for linear dependencies with 

Gaussian noise, and two variants: RobustParCorr for different marginal distributions, and 

ParCorrWLC for heteroskedastic data. Second, there is a distance correlation test (GPDC). Since 

Correlation of JAS MSE with Precipitation by Model

925 hPa has the 
highest 
correla1on 

Dmse % = mse % − mse(925	hPa)
150 hPa has the 
lowest correla1on 

Top of Troposphere

a) b)

c) Correlation of seasonal mean GT with JAS ta by Model
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distance correlation is currently only implemented for unconditional dependencies, it first 

removes the effect of the conditioning set on the variables of interest using a Bayesian procedure 

called Gaussian process regression (Williams and Rasmussen 2006), which assumes that all 

marginal distributions are Gaussian. Finally, there is a k-nearest-neighbor estimator of 

conditional mutual information (CMIknn; Runge 2018b) that assumes no parametric form and 

can be used for continuous data with general dependencies. We use the High-Performance 

Computing resources at Columbia University to run parallel iterations of this algorithm.  

4.4.3. Parameter Choices 

Adjustable parameters in PCMCI+ include the significance level for the conditional 

independence test (𝛼, see Section 4.2.8) and the maximum time lag (𝜏5QR, see Section 4.2.10). 

LPCMCI includes these parameters and one more – the number of preliminary iterations (𝑝, see 

Section 4.2.11). Furthermore, all causal discovery algorithms implemented in tigramite support 

multiple choices of conditional independence test (see Section 4.4.2) which may come with 

additional parameter choices (see Section 4.2.9).  

To determine the best choice for 𝜏5QR, we perform a bivariate conditional independence 

testing procedure (described in Section S3.2 of Runge et al. 2019a) which evaluates 𝑋0(𝑡 − 𝜏) ⫫

𝑋F(𝑡)|{𝑋F(𝑡 − 𝜏))|𝜏) ∈ 0,… , �̃�} for all pairs of variables 𝑋0 and 𝑋F at a range of lags 0 ≤ 𝜏 ≤ �̃� 

(𝜏 = 0 is excluded when 𝑖 = 𝑗). This test conditions on the past of 𝑋( as would be done in 

Granger causality, so it helps reduce the effects of autocorrelation to give a rough idea of the 

important lags. However, it may miss some true dependencies due to low detection power that 

derives from the high dimensionality of the conditional independence tests, and it may contain 

spurious non-causal dependencies that result from autocorrelation or that cannot be removed or 

properly oriented without a proper causal discovery algorithm. For this procedure, we use 
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CMIknn (Runge 2018b) – the most general test available in tigramite (see Sections 4.2.9 and 

4.4.2) – with its default parameters, and examine lags up to �̃� = 5. For almost all climate models 

examined in this chapter that provide amip-piF simulations, the bivariate CMI is consistently 

near 0 for time lags 𝜏 > 1, so we focus on 𝜏5QR = 1 in this chapter. For CMCC and AS-RCEC 

(two of the tuning simulations), the bivariate CMI between EN and itself at a lag of 𝜏 = 2 years 

is greater than or roughly equivalent to the bivariate CMI at 𝜏 = 1, respectively. We thus tested 

𝜏5QR = 2 as well for AS-RCEC.  

To motivate our choice of conditional independence test for LPCMCI, we examine 

scatter plots for each pair of variables at the time lag that produces the maximum CMI. While 

most variables appear to be linearly related or completely uncorrelated (not shown), most of the 

simulations we examine have some relationships that appear to be nonlinear and non-Gaussian. 

For instance, Figure 4.6 displays a non-linear relationship between EN and itself in the following 

year in NCAR. Consistent with the oscillatory nature of the El Niño Southern Oscillation, some 

years show a positive relationship with their predecessors and others show a negative 

relationship with their predecessors, giving the resulting joint density distribution a complex 

shape. Not only is this process non-linear, but it is also non-Gaussian, because drawing a vertical 

or horizontal line through the distribution (equivalent to conditioning on EN(𝑡 + 1) or EN(𝑡), 

respectively) can yield a distribution with multiple peaks. This suggests that partial correlation 

and GPDC would be poor choices of conditional independence test for this data. In fact, a 

univariate linear or Gaussian process regression will not be able to capture a second-order 

relationship because the complete description must include the time-derivate of the variable in 

addition to the value of the variable. Thus, we prefer the CMIknn conditional independence test, 
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even though it has relatively low detection power, meaning it is more likely to find independence 

when variables are actually dependent (Runge et al. 2019a).  

 

Figure 4.6: Scatter plot of EN(𝒕) with EN(𝒕 + 𝟏) in kelvins for NCAR. The relationship of EN 
to itself appears to be non-linear and non-Gaussian. 

CMIknn has a tunable parameter that affects its null hypothesis (SN, see Section 4.2.9), 

so for LPCMCI we stick to the default significance level 𝛼 = 0.05. We tune the number of 

preliminary iterations in LPCMCI (𝑝) along with CMIknn’s parameters (see the next section).  

4.4.4. Tuning 

For tuning, we chose simulations that will not be used in our analysis and have varying 

time series length (N, second to last column, bottom part of Table 4.3). Time series length is 

roughly equivalent to sample size, but autocorrelation may reduce the degrees of freedom and 

the effective sample size, so we also choose simulations with varying autocorrelation, estimated 

by the maximum autocorrelation at lag 1 over all variables (𝑟5QR; last column of Table 4.3). We 

use 11 variables, including all the indices listed in Table 4.2 but the Indian Ocean, which was 

initially excluded. We test CMIknn parameters knn = 0.1,0.15, … 0.6 and SN = 5,6, … 25, and 

LPCMCI parameter p= 1,2…4 and search for a neighborhood of parameter space that 

consistently performs well. We hope to find a consistent set of preferable parameter choices for 

climate simulations with different characteristics, or a trustable dependence of preferable 

parameter choices on the time series length (sample size) and maximum autocorrelation.   

EN($ + 1)
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300 302
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We evaluate the performance of LPCMCI by comparing the resulting causal diagram to 

our prior knowledge and beliefs as summarized in Figure 4.4. We have high confidence that all 

simulations will demonstrate auto-dependence of (similar) SST indices in time (red circles and 

arrows) and the ontological relationships that result from our definitions of the basins (black 

arrows), but the green adjacencies in our hypothesized causal diagram are likely to differ from 

the true causal structure in any given climate model. We could use our partial knowledge of the 

true adjacencies to estimate recall without bias, but we cannot estimate precision without 

complete knowledge of the graph (see Section 4.2.12). Luckily, as explained in Section 4.2.8, 

edges cannot be oriented in causal discovery in the absence of triples 𝐴 − 𝐵 − 𝐶 where 𝐴 is not 

adjacent to 𝐶, so we can use our knowledge of the orientation of our known adjacencies to 

reward a graph for appropriately removing edges.  

We define a new score for evaluating the output of our causal discovery algorithm 

relative to partial background knowledge and call it the oriented-recall score. A graph’s 

oriented-recall score is the fraction of known adjacencies it contains, weighted by their 

orientation relative to the ground-truth. For illustration, say the ground truth is a right adjacency 

(→). A matching directed edge (→) receives one point, a consistent partially-oriented edge (o→) 

receives 2/3 of a point, and an unoriented adjacency (o−o) receives 1/3 of a point, while 

incorrectly-oriented edges (←,←∘) receive no points. While a fully-connected undirected graph 

would receive a classical recall score of 1, it will only receive an oriented-recall score of 1/3. The 

fully-connected graph will be outperformed by graphs that remove other edges when this results 

in correct orientation of known adjacencies, and it will outperform graphs that remove other 

adjacencies when this leads to incorrect orientation of known adjacencies. Graphs with x’s 
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anywhere are assigned a score of 0 because they violated some assumption of LPCMCI (see 

Section 4.2.11).  

By construction, we also know that any “simultaneous” edge that points backwards in 

time within the calendar year must be a false edge or a false orientation. It is difficult to use this 

knowledge to evaluate performance in a continuous and fair way when we don’t know if the 

edge should be present or not, so we do not use this knowledge for tuning, but we will take 

advantage of this knowledge in the next section. 

4.4.5. Graph Selection Criteria 

We define a likely-accurate score, which tests a PAG’s accuracy (the ratio of true 

positive and negative detected adjacencies to total adjacencies) relative to a distribution of 

“likely” ground-truth adjacencies constructed from our full background knowledge and from the 

ensemble of discovered PAGs within the chosen neighborhood of parameter space. This score 

will identify the PAG most likely to represent the underlying causal structure of the simulations. 

To begin, we estimate the likelihood of each type of adjacency (edge or lack thereof) for 

each pair of variables at each time lag, using the language of maximal ancestral graphs (MAGs), 

which admit exactly four types of adjacencies: right (→), left (←), confounded (↔), and no edge, 

defined as they are for PAGs (see Section 4.2.7). The likelihood assigned to each possible 

adjacency is the fraction PAGs discovered with parameters from within the ideal parameter 

neighborhood (identified according to Section 4.4.4) that contain an adjacency consistent with it. 

For the “no edge” MAG adjacency, this only includes PAGs without an edge connecting the 

variables in question. For the other three MAG adjacencies, this includes discovered PAGs that 

connect the variables in question with a fully- or partially-oriented edge that matches the PAG 

adjacency wherever it has no circle (the reader may consult the first two rows and the last three 
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columns of Table 4.1). The resulting likelihood distribution for a given pair of nodes at a given 

time lag will exceed 1 when PAG edges are partially-oriented; this was a conscious choice 

because we want to learn from, rather than disadvantage, any PAGs with a slightly different 

skeleton that were able to orient that adjacency. This edge-oriented approach is simplified 

causally in that pairs of edges with neighboring circles cannot always be oriented independently 

(see Section 4.2.7 and Zhang (2008)), and so our score may sometimes reward one graph for 

appearing to locally match another graph that is actually locally inconsistent with it; nevertheless 

it seems a simple and reasonable representation of our interpretation of the causal mechanisms at 

each adjacency. When performing this calculation, we entirely exclude any PAG that anywhere 

contains an x (reflecting a violation of LPCMCI’s assumptions) or an edge pointing backwards 

in time within the calendar year (which violates our background knowledge): we do not want 

these PAGs to affect the likelihood of any adjacency because the conflict or false orientation 

may have resulted from incorrect adjacencies and orientations in other parts of the graph, and a 

false orientation may also lead to further false orientations elsewhere. To explicitly incorporate 

our background knowledge in the edge likelihoods, we override the likelihood of MAG 

adjacencies that correspond to “expected” red and black edges from Figure 4.4, setting the 

likelihood of a fully-oriented adjacency → to 1 and the others to 0, and also override the 

likelihood of all edges pointing backwards in time, setting them to 0. 

The likely-accurate score for each discovered PAG is an aggregate over all pairs of 

variables and time lags of the likelihood of each potential MAG adjacency consistent with the 

discovered PAG adjacency (including no edge). The likelihood distributions for the MAG 

adjacencies sum to more than 1, but the likelihood of any given adjacency does not exceed 1, so 

each PAG adjacency earns a weighted average (rather than a sum) of the likelihood for each type 
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of MAG adjacency consistent with it: a PAG edge with two circles ∘ − ∘ receives  an unweighted 

average over the likelihood of the forwards →, backwards ←, and confounded ↔ MAG 

adjacencies; and a partially-oriented PAG edge with one circle on its left and an arrowhead on 

the other side ∘→ receives a weight of 2/3 on the likelihood of the forwards MAG adjacency →

	and of 1/3 on that of the confounded MAG adjacency ↔. The forwards MAG adjacency is 

weighted more highly than the confounded adjacency because the partially-oriented PAG edge is 

consistent with the existence of an unobserved confounder, a forwards causal relationship, or 

both, and the last two would both be expressed with a forwards adjacency in a MAG (see Table 

4.1). Finally, the score is offset by the average number of non-adjacencies (the sum of the 

likelihood of no edge for each pair of nodes) and normalized by the average number of edges in 

the PAGs selected for that climate simulation, so that scores are comparable across graphs of 

different dimensionality and connectivity and never exceed 1. We assign likely-accurate scores 

to LPCMCI results from the entire parameter space – not just the ideal parameter space chosen to 

have high oriented-recall (see Section 4.4.4). The reason is that though oriented-recall attempts 

to reward graphs for appropriately removing edges, it is still a recall score, and may be biased 

toward having too many edges (see Section 4.2.12). If each graph in the ideal parameter space 

has a different false positive edge, then a graph from outside the ‘ideal’ parameter space with 

slightly lower detection power may be a better representative of the robust qualities of the graphs 

used to create the edge likelihood scores. The graphs with the highest likely-accurate score for 

each climate model will constitute our results from a scientific point of view. 

4.4.6. Performance and Robustness 

Oriented-recall measures the performance of LPCMCI according to adjacencies required 

by our partial background knowledge (see Section 4.4.4) To evaluate our trust in other parts of 
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the graph, we re-calculate the likely-accurate scores for PAGs from within the ideal parameter 

space completely without background knowledge: no graphs are excluded from the ideal 

parameter space, no adjacency likelihoods are overwritten, and graphs are not assigned a score of 

zero when they contain a backwards edge. We call this the probably-accurate score, and 

compare it to the original likely-accurate scores to evaluate the likelihood of having at least one 

incorrectly-oriented edge outside our background knowledge in high-scoring graphs. We focus 

on the likelihood of having at least one edge rather than the number of incorrectly-oriented edges 

because one false orientation is likely to lead to more, depending on the connectivity of the 

graph. To the extent that false orientations are associated with detectable time-backwards 

orientations and are disassociated with high oriented-recall, we may alternately estimate the 

likelihood of an incorrect orientation by analyzing the prevalence of backwards edges in graphs 

with high likely-accurate scores that are not set to 0 when the graph contains a backwards edge. 

We will call this the “full” likely-accurate score. 

We can evaluate the robustness or our chosen graph by re-calculating the likely-accurate 

scores while refraining only from overwriting adjacency likelihoods according to our 

background knowledge. The resulting score represents the similarity of our graph to the actual 

graphs in the ideal parameter neighborhood rather than to the set of most likely adjacencies, and 

we call this score robustness. 

4.5. Results 

4.5.1. Tuning 

Figure 4.7 displays the oriented-recall scores when 𝜏5QR = 1 over all indices listed in 

Table 4.2 aside from IN for the climate models chosen for tuning, organized from left to right by 

increasing time series length (N) and from bottom to top by increasing maximum autocorrelation 
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(𝑟5QR), so that effective sample size increases moving down and to the right. Within each 

subplot, each of the three axes corresponds to one of the tunable parameters, and each dot on the 

grid corresponds to a PAG learned by LPCMCI under those parameters. Where a dot is absent, 

the algorithm failed to converge in a reasonable amount of time (knn=.2 is an exception; it was 

sometimes excluded from our analysis by mistake). Where the dots are present, the color 

represents the oriented-recall score. Blue dots received a score of 0 because the graph had at least 

one edge with an x, meaning orientation rules gave conflicting results for that edge and there 

must have been a violation of assumptions. The best-performing graphs are presented in yellow.  

For all simulations, we make the following observations. First, as expected, increasing 

the number of preliminary iterations in LPCMCI (𝑝, y axis) never hurts performance. Some 

simulations show dramatic improvement for 𝑝 = 2 relative to 𝑝 = 1, and none show much 

improvement after that, so 𝑝 = 2 is desired and larger 𝑝 may require more resources than 

necessary. Second, SN (z-axis) does not have a large impact on the performance of LPCMCI as 

long as it is large enough, where values between 10 and 15 are sufficient for the different 

simulations. The fact that increasing SN further doesn’t eventually reduce performance suggests 

that SN does not control the null distribution completely enough to encompass the effect of 

changing 𝛼 (the significance parameter of LPCMCI), and future work should focus on tuning 𝛼 

as well. Finally, knn has a large impact on performance. 
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Figure 4.7: Oriented-recall scores (colors) for the “tuning” simulations. The scores are 
displayed on a 3D grid with axes corresponding to different parameters, including k nearest 
neighbors for CMIknn (knn, x ordinates), the number of preliminary LPCMCI iterations (p, y 
ordinates), and shuffle neighbors for CMIknn (SN, z ordinates). Knn = 0.2 was excluded by 
mistake for all simulations but CSIRO; missing dots where knn ≠ 0.2 indicate that LPCMCI 
failed to converge because of time constraints. The simulations are organized by increasing 
time series length (N) from left to right: N=250 for CAMS (a), N=500 for AS-RCEC (b) and 
panels (d) and (e), and N=1000 for CSIRO (c); and by increasing maximum autocorrelation 
(𝒓𝒎𝒂𝒙) from bottom to top: 𝒓𝒎𝒂𝒙 = 𝟎. 𝟏𝟖 for AWI (e), 𝒓𝒎𝒂𝒙~𝟎. 𝟑 for panels (a-c), and 𝒓𝒎𝒂𝒙 =
𝟎. 𝟔𝟔 for CMCC (d).  

Across the middle row, we can see that longer time-series length leads to larger oriented-

recall given the appropriate choice of knn: CAMS (N=250) is mostly purple, AS-RCEC (N=500) 
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achieves some orange, and CSIRO (N=1000) reaches yellow. Besides this expected 

improvement in the optimal performance of LPCMCI with increasing sample size, we see that 

the best choice for knn—the fraction of the data to use in each data-adaptive ‘bin’ for estimation 

(see Section 4.2.9)—depends on time series length. For N=250 (a), the best value for knn 

appears to be 0.55, much higher than the range recommended for CMIknn in isolation (0.1-0.2). 

For N=500 (b), the parameter space with good performance is relatively wide, but the best choice 

of knn appears to be 0.35. Finally, for N=1000, the best choice is 0.25. This lead us to 

hypothesize that the most effective number of nearest neighbors is indeed related to the sample 

size linearly by a factor of 0.15—as suggested by Runge (2018b)—but with an offset of 100, 

where the offset may depend on the dimensionality: knn = (0.15𝑁 + 100)/𝑁 = 0.15 +

100/𝑁. This is logical, because as the size of the conditioning sets used during causal discovery 

increase with the number of variables, we may need some minimum number of points to evaluate 

conditional independence even as the sample size approaches zero.  

Looking vertically, AWI and CCMC—the climate models chosen to test varying 

autocorrelation—do not follow the pattern of improved performance at lower knn for larger 

effective sample size. Either our measure of autocorrelation is a poor representative of effective 

sample size (perhaps we should have taken the average instead of the maximum over each 

variable’s autocorrelation), or the relationship between autocorrelation and LPCMCI 

performance is non-linear, or there is another explanation for why AWI and CMCC perform 

poorly that is unrelated to the parameters of CMIknn. Perhaps CMCC performs poorly because it 

is not statistically stationary, with low-frequency variability emerging halfway through the run; 

and perhaps AWI performed poorly because cross-correlation (in addition to autocorrelation) is 

low, perhaps reflecting a causally-noisy dataset. They both had such low performance over the 
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entire tested parameter space that it’s not clear that they should be used for optimizing parameter 

choices. We will discuss other potential reasons for low performance in Section 4.5.4.d. In the 

meantime, we are not able to effectively investigate the effect of autocorrelation on preferred 

parameter choices. This is acceptable because the simulations chosen for our analysis (bottom 

half of Table 4.3) all have a maximum autocorrelation (𝑟5QR) similar to that of the simulations 

used for tuning to the time-series length. 

We repeated the tuning experiment for AS-RCEC with 𝜏5QR = 2 (not pictured). Oriented 

recall scores are more varied with increasing 𝜏5QR, with more PAGs receiving 0s but a higher 

maximum score. The maximum occurred at knn=0.4, consistent with the hypothesis that a larger 

𝜏5QR increases the dimensionality of the problem, requiring a larger offset. On average, only one 

dependency with a lag of two years was found, either reflecting short causal lags in the 

underlying causal structure or the low detection power of CMIknn. Since the climate models 

selected for analysis give no indication of having detectable causal lags longer than 1 year, we 

focus on 𝜏5QR = 1. As explained in Section 4.2.11, because LPCMCI does not require causal 

sufficiency, a small 𝜏5QR may limit the algorithm’s ability to remove autocorrelation effects, but 

it will not violate the assumptions of LPCMCI.  

To test our hypothesized relationship between time-series length and preferred choice for 

knn, we repeat the tuning experiment on the piC simulations chosen for our analysis (Figure 4.8). 

We confirm that performance varies with knn while SN and the number of preliminary iterations 

(𝑝) have little effect on performance (though sometimes, like for IPSL and NCAR, 𝑝 > 1 can be 

beneficial). We summarize the apparent best choice of knn for each model in the first two 

columns of the top part of Table 4.4. CNRM (panel a) appears to have a high-performing 

neighborhood of parameter space centered at knn = 0.35 (which has the highest individual 
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oriented-recall score) and 0.4 (which is the most consistently high-performing region), in line 

with our prediction for a time series length of 500. MRI (panel b), which has a time series length 

of 700, also is consistent with our hypothesis, and appears to maximize its performance at knn=

.3 ≈ .15 + 100/700. Unfortunately, performance for MRI and the other climate models is lower 

than expected for longer time-series lengths, and for some of them it’s so low or inconsistent that 

there doesn’t appear to be any high-performing neighborhood of parameter values (these say 

“all” in the table). Thus, we are neither able to confirm nor reject our hypothesized formula for 

ideal parameter choices.  

For the purposes of this chapter, we consider the ranges of knn noted in Table 4.4 

together with 𝑝 > 1 and 𝑆𝑁 > 9 to be the ‘ideal’ parameter space for each climate model. 

 

Figure 4.8: As in Figure 4.7, but for piC simulations from the climate models chosen for our 
analysis. Time series lengths are, from left to right: 500 (a), 700 (b), 1051 (c), and 1200 (d, e).  
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Table 4.4: The first major column lists the climate models used for analysis with a suffix that 
denotes whether SA and TT were included (“TT”, top portion) or whether IN was included 
instead (“IN”, bottom portion; this is motivated in Section 4.5.4). The second major column 
shows the knn values that resulted in high oriented-recall scores in Figure 4.7. The ideal 
parameter space used as probabilistic background knowledge when calculating the likely-
accurate scores is defined by these knn values, SN>9, and p>1. The second major column also 
displays the number of ideal parameter combinations (and the fraction of the ideal parameter 
space) that was used for calculating the likely-accurate score (the rest had edges pointing 
backwards in time or ending with an x). When the number of admissible parameter 
combinations was low, we also used a larger ‘ideal’ parameter space for comparison, and 
noted this in a second minor row. The third major column shows the maximum likely-
accurate score achieved by PAGs from the entire parameter space (see Section 4.4.5). The 
fourth major column shows parameter combinations (see Sections 4.4.3 and 4.4.4) that 
achieved the highest likely-accurate score, and the fifth major column shows the robustness 
(see Section 4.4.6) and oriented-recall score (see Section 4.4.4) of the associated graph.  

Climate 
Model 

Best 
knn 

Admissible Likely-
accurate knn SN p Robustness 

Oriented-
Recall Num Frac 

CNRM-TT .35,.4 90 .94 .62 .4 19-2514 1-4 .78 0.58 

MRI-TT .3 0 0 0      
all 0 0 0      

CCCma-TT all 0 0 0      

IPSL-TT .2-.35 7 .05  .63 .30 11 2 .82 .42 
all 10 .02  .5815 .35 12 2 .76 .42 

NCAR-TT all 58 .13 .57 .3 9-1016 3-4 .68 .58 

MRI-IN .15,.2 3 .03  .74 .2 19 4 .90 .61 
all 57 .11  .44 .5 12 2-4 .65 .36 

NCAR-IN .35,.4 67 .74 .68 .35 21 2 .81 .64 

CCCma-IN .3 0 0       
.1-.35 26 .10 .42 .15 22 2 .73 .45 

 
4.5.2. Graph Selection 

From the causal graphs discovered using every tested parameter combination, we select 

the one with the highest likely-accurate score for each climate model. The likely-accurate score 

(Section 4.4.5) is informed by our background knowledge (red circles and arrows and black 

 
 
14 The exact combinations of SN and p that produced the highest-scoring graph are SN=19 with p=2,3,4; SN=20 
with p=4; SN=21,23,25 with p=1; SN=22 with p=2; and SN=24 with p=1,3 
15 This PAG is the third-highest performing PAG according to the ideal parameter space in the first minor row, with 
a likely-accurate score of .61 and a robustness score of .8 
16 All combinations of the SN and p values listed here produced the highest-scoring graph except SN=10 with p=3 
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arrows in Figure 4.4) and graphs from within each climate model’s ‘ideal’ parameter space that 

don’t contain obviously non-physical edges (edges with x’s, or “simultaneous” edges within the 

same calendar year that point backward in time across the seasons). The first minor column of 

the second major column in Table 4.4 notes the knn values that help define the ideal parameter 

space, and the other minor columns show the number of parameter combinations from the ideal 

parameter space for each climate model that produced usable or “admissible” PAGs and the 

fraction of the ideal parameter space they comprise. When this number or fraction is very small, 

we re-calculated the likely-accurate scores using a larger ‘ideal’ parameter space for comparison, 

and note this in another minor row.  

IPSL—which had only seven usable graphs within the ideal parameters space (knn=0.2-

0.35)—gained only three additional usable PAGs elsewhere, and this did not improve its 

maximum likely-accurate score (third major column of Table 4.4). We thus prefer the graph that 

maximizes the likely-accurate score when optimized over the ideal parameter space, but we 

examine this alternate choice as well.  

MRI and CCCma, on the other hand, did not produce any usable PAGs in anywhere in 

the entire parameter space. In Section 4.3, we discussed the possibility that SA and TT may be 

coupled with Sahel precipitation (pr) and that TT may be coupled with SST throughout the 

tropics. Thus, we hypothesized that the non-physical false orientations might be due to a 

violation of LPCMCI’s assumption of acyclicity relating to SA and TT. Indeed, all of the non-

physical graphs for MRI and 80% of the non-physical graphs for CCCma contained backwards 

edges from the South Atlantic in the summer to the Gulf of Guinea in the previous spring, and 

almost all of the non-physical graphs for IPSL contained an effect of summer upper tropospheric 
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temperature over the Sahel (TT) on the Atlantic Meridional Mode from the previous spring 

(AMM).  

We attempted to improve the performance of LPCMCI on this dataset by removing SA 

and TT. Since we removed two variables, we added the Indian Ocean, which may also have 

unique effects on Sahel rainfall. Still, we have one fewer variable than used in our tuning 

experiments (Section 4.5.1), so we cannot implicitly trust the tuning results. We repeated the 

tuning experiments for all climate simulations chosen for analysis with this new set of variables 

(not shown). Under these conditions, MRI and CCCma still struggled, but did produce some 

usable graphs. However, two of the three models that produced usable PAGs when the Indian 

Ocean was excluded produced backwards edges or edges with x’s with every tested parameter 

combination. In the bottom half of Table 4.4, we list the ideal parameter space and the number of 

usable PAGs for each climate simulation that produced any usable results with the new set of 

parameters.  

MRI produces only three usable graphs in the ideal parameter space, but the maximum 

likely-accurate score is much lower when calculated using all values of knn, so we again prefer 

the graph that maximizes the likely-accurate score when optimized over the smaller ideal 

parameter space. For CCCma, we do find some usable graphs when we expand the ‘ideal’ 

parameter space, but the maximum likely-accurate score is below 0.5, meaning that, in our 

estimation, a given edge is on average more likely to be incorrect than correct. Expanding the 

ideal parameter space to the entire tested parameter space only reduces the likely-accurate score 

in this case because the performance is incredibly low for graphs with large knn. Thus, we do not 

trust the results for CCCma, and we do not present or discuss them.  
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4.5.3. Discovered Causal Relationships 

The fourth major column of Table 4.4 identifies the parameter combinations that 

produced the highest-scoring PAG, and these PAGs are displayed in Figure 4.9a-e (all the 

highest-scoring PAGs for each simulation are the same). The first row (panels a-c) shows results 

that omit the Indian Ocean, and panels (d) and (e) show results that omit SA and TT; these will 

be used to shed light on causal relationships including the Indian Ocean. 

 

Figure 4.9: Discovered causal PAGs with maximum likely-accurate scores for (a) CNRM, (b) 
NCAR, and (c) IPSL when SA and TT were included and IN was excluded, and for (d) MRI 
and (e) NCAR when SA and TT were excluded but IN was included (see the fourth major 
column of Table 4.4 for the parameter values employed to discover each PAG). Panel (f) 
shows an alternate choice of PAG for IPSL: it receives the maximum likely-accurate score 
when optimized over the entire tested parameter space (second minor row for IPSL in Table 
4.4) and receives the third-highest score when optimized over the ideal parameter space 
(second major column, first minor row for IPSL in Table 4.4). The strength of the conditional 
mutual information test statistic between a variable and its past value is notated in shade of 
red of the circle behind the name of the variable, and between otherwise adjacent variables is 
marked in the color of the edge connecting them. 

The graphs can be read in a manner similar to our hypothesized causal diagram (Figure 

4.4): Mostly we try to group SST indices in rows by season and in columns by location, though 

this format must be compromised often for clarity of the graph. The colors represent the strength 
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of the test statistic for dependence between each pair of adjacent variables and for each auto-

dependence, which can be roughly interpreted as a normalized detected causal importance of that 

direct mechanism relative to total variability (though this should not be taken as an 

approximation of the causal effect). We’ve used CMIknn as the conditional independence test, 

which is a distance metric applied to the probability distributions used to define conditional 

independence (see Sections 4.2.2 and 4.2.9), not an estimate of the functional parameters relating 

two variables; thus, the values are strictly positive, and are presented from white to red. Recall 

that in partial ancestral graphs (see Section 4.2.7) a directed adjacency (→ or ←) asserts 

ancestorship rather than parenthood, and edges may contain circles that permit multiple 

orientations within the discovered equivalence class. Straight arrows are dependencies within the 

same calendar year, while curved arrows are lagged dependencies labelled with the length of the 

time lag, which in this case is always one calendar year. Auto-dependence of a single variable is 

represented with the color of the circle behind the variable name, but note that auto-dependence 

is often so weak that it can be difficult to identify the presence or absence of true auto-

dependence in the summary graphs. Furthermore, it is never possible to see the orientation of 

auto-dependencies—which could be causal or confounded—in the summary diagrams. Refer to 

the text for an account of the active auto-dependencies and their orientations.  

In Sections 4.5.3.a and 4.5.3.b, we analyze the discovered adjacencies between ocean 

basins and between ocean basins and the Sahel, respectively, and compare them to the green and 

blue arrows from our causal hypothesis (Figure 4.4), which are of greatest scientific interest. We 

discuss the recovery of ground-truth red and black (circles and) arrows when we analyze the 

performance of LPCMCI in Section 4.5.4.b.  
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4.5.3.a SST 

We begin by examining CNRM (Figure 4.9a). The Pacific (EN and Pc) is not influenced 

by any of the other ocean basins, contrary to our expectations. Furthermore, we had expected the 

effects of the Pacific on the North Atlantic (NA) and the Gulf of Guinea (GG and SA) to be 

mediated by the North Tropical Atlantic (AMM and TA) via atmospheric pathways. Instead, we 

find a direct effect of peak El Niño conditions (EN) on the Atlantic Niño (GG) that mediates part 

of the effect of ENSO on the North Tropical Atlantic. Both of the Tropical Atlantic indices (GG 

and SA) both affect the North Tropical Atlantic indices in their respective seasons (AMM and 

TA), likely representing an oceanic pathway via northward surface water fluxes due to the 

Atlantic Meridional Overturning Circulation, rather than the expected atmospheric 

teleconnection from the Atlantic Meridional Mode to the Atlantic Niño. (As pointed out in 

Section 4.3, if both these mechanisms are active simultaneously, this would cause a simultaneous 

cycle and violate the assumptions of LPCMCI.) 

The North Tropical Atlantic is also directly affected by ENSO—but not quite in the way 

we expected. AMM supposedly responds to the preceding development of El Niño (Pc) rather 

than the peak (EN). This is not inconsistent statistically with our hypothesis that relates peak El 

Niño conditions in winter to AMM later that same calendar year, but it is causally distinct—

suggesting that intervening on the peak El Niño temperatures in winter would not prevent the 

response of AMM to El Niño’s development the previous summer. The ‘simultaneous’ effect of 

the peak of ENSO (EN) on TA is supposedly mediated by upper tropospheric temperature over 

the Sahel (TT). TT might be standing in for upper tropospheric temperature over the tropical 

Atlantic, which must be quite similar to TT by the weak temperature gradient constraint. There is 

also potentially an effect of the development of ENSO (Pc) on TA that same summer, which 
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would be much faster than our expected effect, though this edge isn’t fully oriented, so it may 

also be confounding. 

Rather than unmeasured confounding between the Atlantic Meridional Mode (AMM) and 

the North Atlantic (NA), TA is seen to cause NA, which is also likely an oceanic connection via 

surface water fluxes. The North Atlantic does not affect the other oscillatory modes as we had 

predicted, and instead interacts with the Mediterranean (md) in two ways we discussed in 

Section 4.3: NA affects md that same summer, as concluded by Mariotti and Dell’Aquila (2012) 

and Skliris et al. (2012), while md affects NA one year later, perhaps via outflow of its water into 

the Atlantic basin.  

Finally, in addition to the basins that fall within the bounds of the Global Tropics (GT; 

see Figure 4.3), there is a direct influence of EN on GT, as we had predicted if the other areas in 

GT also respond to ENSO. 

In NCAR (panel b), El Niño is not as prominent a driver of global SST variability, as 

evidenced by the lighter colors of the arrows. Instead of this strong relationship, many additional 

weaker causal relationships are discovered. Peak El Niño (EN) responds to the Atlantic Niño 

(GG) from the year before, similar statistically to our hypothesis; but it also possibly responds to 

the Atlantic Meridional Mode (AMM) from the year before directly instead of via GG, similar 

statistically to the argument of Ham et al. (2013), which we did not depict in Figure 4.4 (this 

edge is not fully-oriented, so it may be confounding). For this simulation, the development of 

ENSO (Pc) affects the following year’s Atlantic Niño (GG), similar statistically to CNRM, but 

with a different causal lag. Unlike CNRM, the Atlantic Meridional Mode (AMM) responds to 

peak El Niño temperature (EN) directly, as we had originally predicted; and, like CNRM, the 

response of summer temperatures (TA) to EN is mediated by AMM and summer tropospheric 
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temperature over the Sahel (TT). Again as in CNRM, summer Tropical Atlantic temperatures 

(TA) are seen to affect the North Atlantic (NA) which in turn affects the Mediterranean sea (md) 

and no other ocean basin. Unlike our hypothesis and the other simulations, we don’t see any 

confounding between NA and other ocean basins. LPCMCI finds that GT may be affected by the 

Atlantic Meridional Mode from the previous year (this edge is not fully oriented), and is also 

affected by summer SST in the South Atlantic (SA) from the year before. Perhaps these basins 

affect SST elsewhere in the Global Tropics via an atmospheric bridges pathway that operates 

slower than predicted.  

In IPSL (panel c), there is no direct effect of ENSO (EN and Pc) or the Atlantic 

Meridional Mode (AMM and TA) on the Atlantic Niño (GG and SA). The Atlantic Meridional 

Mode (AMM) responds to the development of El Niño in summer the year before, as in CNRM. 

The development of El Niño (Pc) is affected by other ocean basins, but not in the way we had 

expected. LPCMCI found potential effects from the previous year’s Atlantic Meridional Mode 

(AMM; this edge is not fully oriented), as argued by Ham et al. (2013); and from the previous 

year’s SA, which is not only causally distinct from our hypothesis, but may even result in a 

statistical association one year different from that seen in observations.  

The North Atlantic (NA) has no effect on other basins, contrary to expectations and other 

simulations, and is again affected by TA. Summer SST in the North Atlantic is also confounded 

with SST in the North Tropical Atlantic, but during the following summer (TA(𝑡 + 1)) rather 

than the previous spring (AMM(𝑡)); the source of this confounding is unclear. The Mediterranean 

(md) is only confounded with atmospheric variables, and is not connected to other ocean basins 

at all, as in our hypothesis. The Global Tropics are found to respond additionally to spring 

Atlantic Niño (GG) and Atlantic Meridional Mode (AMM) variability, which may represent 
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atmospheric teleconnections to other parts of the Global Tropics similar to the response to El 

Niño.  

The first 2 PAGs in the next row of Figure 4.9 allow us to learn about the Indian Ocean. 

For MRI (panel d), almost all SST relationships excluding the Indian Ocean (IN) are ones we’ve 

seen in the other models, aside from a dependence of the Mediterranean Sea on the Atlantic Niño 

(GG) and on the previous year’s peak El Niño (EN), and the lagged response of AMM to GG. 

The Indian Ocean (IN) responds to the previous year’s developing El Niño (Pc), which may be 

an atmospheric response or an oceanic communication via the Indonesian Throughflow. It also 

affects the following year’s NA (perhaps via an effect on the North Atlantic Oscillation) and 

potentially the following winter’s peak El Niño (EN), as predicted. IN is related in an 

unspecified way to the preceding peak El Niño (EN) in addition to the preceding development of 

El Niño (Pc), and the Atlantic Niño (GG), the last of which could be an oceanic connection via 

the Agulhas current. When we include IN in the NCAR analysis (panel e), we find again that IN 

responds to the previous year’s developing El Niño (Pc), but it responds to the Atlantic 

Meridional Mode rather than the Atlantic Niño, and it also oddly responds to the Global Tropics 

rather than causing changes in GT. In NCAR, IN appears to have no effects on other ocean 

basins. 

These results make it clear that there may be teleconnections that are important in some 

climate models despite not appearing statistically in other simulations or in observations, like the 

effect of peak El Niño on the Atlantic Niño in CNRM. Additionally, it would appear that the 

causally-relevant lags—and even the lags of statistical associations—may differ significantly 

between observations and climate simulations and between different climate simulations. Not 

only do the climate models demonstrate differing connectivity and differing relative importance 
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of different causal effects, but they also have causal effects that are inconsistent with one 

another. For instance: in NCAR (b), the Tropical Atlantic (TA) affects the Global Tropics (GT) 

in the way we had predicted, but in IPSL (c), the Global Tropics affects the Tropical Atlantic. 

Both cannot be possible without producing a simultaneous cycle, which is a violation of our 

assumptions. This suggests that simulations may need to be analyzed separately. 

Nevertheless, the causal discovery process also identified some causal relationships that 

appear in multiple climate simulations, and thus can inform our expectations for observed 

relationships. LPCMCI discovered an effect of TA on NA in every single climate simulation, 

suggesting that in order to measure truly-causal effects of basin-wide SST—whether in 

simulations or observations—it is robustly important to account for meridional advection of 

(near-)surface ocean water in the Atlantic basin from the North Tropical Atlantic to the North 

Atlantic, and perhaps also from the Gulf of Guinea to the North Tropical Atlantic – not just 

atmospheric teleconnections between the modes of internal variability. This means we must be 

careful during causal effect estimation and causal discovery that expected atmospheric 

teleconnections from northern to southern basins (Martín-Rey et al. 2018) don’t cause 

simultaneous cycles in our data. Additionally, an effect of the North Atlantic on the 

Mediterranean Sea appeared in half of our climate simulations, potentially consistent with the 

conclusions of Mariotti and Dell’Aquila (2012), Skliris et al. (2012), or both. The results also 

suggest that it may be important to account for the effects of the Atlantic Meridional Mode and 

the Atlantic Niño, in addition to El Niño, on SST elsewhere Global Tropics via atmospheric 

bridges. To that end, three of the four climate models support the hypothesis of Ham et al. (2013) 

that AMM can trigger El Niño, though the exact causal lag is unclear. Finally, causal lags 

interpreted from observed statistical relationships should be questioned; for instance, the Indian 
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Ocean responds to El Niño’s development during the previous year, rather than its peak, in both 

of the climate simulations that produced usable results using IN.  

4.5.3.b Drivers of Sahel Precipitation and Tropospheric Temperature 

Precipitation in the Sahel (pr) is driven by different ocean basins in each simulation (see 

first column of Table 4.5). In CNRM (a), the Sahel responds only to the North Atlantic; in 

NCAR (b), Sahel rainfall responds to the developing phase of El Niño, to South Atlantic SST, 

and to the Mediterranean; in IPSL (c), the Sahel responds only to peak El Niño conditions from 

the previous winter (which is consistent with analysis of coupled simulations even though it 

differs from observations; see Joly and Voldoire 2009); and in MRI (d), Sahel precipitation is 

affected only by summer SST in the North Tropical Atlantic (TA). All the dependencies are 

consistent with the literature except the dependence of Sahel precipitation on peak El Niño 

temperatures from two winters ago in NCAR, though it’s possible this represents a slow 

teleconnection in this climate model. The fact that basins other than GT and NA drive Sahel 

precipitation in many of these simulations would suggest that GT and NA—though they 

correlate well with Sahel precipitation in historical simulations and observations—are not a 

sufficient summary of the causal drivers of Sahel rainfall, and so the observed statistical 

relationship to NARI may not hold in a changing climate. It may be that the Global Tropics only 

appeared to be a good indicator for TT and Sahel rainfall in historical simulations because SST 

across the global tropics was confounded by anthropogenic emissions and by atmospheric 

bridges to individual important ocean basins. (TT also responds to ocean basins other than GT – 

in all simulations that included TT, it responds to peak El Niño temperatures (EN), and it 

additionally responds to the Atlantic Meridional Mode (AMM) in IPSL, and potentially to the 

Atlantic Niño in CESM.) 
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Table 4.5: Discovered (from Figure 4.9) and expected (from Figure 4.4) parents (see Section 
4.2.2) and spouses (see Section 4.2.5) of Sahel precipitation. Variables are italicized if they 
were found to be independent of Sahel precipitation in Section 4.5.5. 

Climate Model 	Parents of pr Spouses of pr 
CNRM NA SA 
NCAR-TT md, Pc, SA, EN-1 TT 
IPSL EN md, Pc 

MRI TA ∅  
Hypothesis NA, TT ∅  

 
Not only did NA and GT fail to mediate all causal effects between Sahel precipitation 

and other ocean basins, but LPCMCI did not even discover a causal dependence of Sahel 

precipitation (pr) and tropospheric temperature over the Sahel (TT) on the Global Tropics (GT) 

in any of the climate simulations, contrary to the claims of G13. TT was also not identified as a 

driver of Sahel precipitation variability in any of the simulations. In most of the climate models, 

TT can be separated from pr by conditioning on EN. Perhaps the altitude chosen for TT is not the 

one that is causally-relevant for Sahel rainfall in these simulations, making variations in TT 

another effect of ENSO that doesn’t actually mediate the effect on Sahel rainfall.  

The orientation is different from our expectations, but, in NCAR, Sahel precipitation is 

directly connected to tropospheric temperature, which in turn mediates a causal relationship with 

GT. If the orientations of these edges are incorrect, NCAR may experience the expected 

relationship between GT, TT, and pr, in addition to other direct causal relationships with EN, Pc, 

and SA. As discussed in Section 4.3, it is possible that convection associated with Sahel 

precipitation affects TT, and the confounding relationship is a misrepresentation of a disallowed 

cyclic dependency. Furthermore, causality may flow both ways between global tropical upper 

tropospheric temperature and SST in any given ocean basin, depending on which ocean basins 

are warm and convecting, and TT over the Sahel may be statistically indistinguishable from 

global tropical TT, or may be an actual mediator via gravity waves propagating both directions 
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around the tropics (see Section 1.4). Our discovered PAGs appear to support this possibility: in 

two of the three PAGs that include Sahel TT, it affects the temperature of some tropical ocean 

basin or other: both CESM and NCAR show an effect of TT on summertime temperatures in the 

North Tropical Atlantic (TA); in CNRM, TT additionally affects the development of El Niño 

(Pc) rather than simply responding to it; and in NCAR, tropospheric temperature over the Sahel 

is found to affect SA the following year and also GT, rather than responding to it. These 

potentially-cyclic relationships may complicate the interpretation of the presence and orientation 

or absence of causal adjacencies to TT.  

Sahel precipitation is unfortunately also found to be confounded with other climate 

indices in almost every simulation (see second column of Table 4.5): in CNRM (a), it is 

confounded with summer SST in the Gulf of Guinea (SA); in NCAR (b), it’s confounded with 

upper tropospheric temperature over the Sahel (TT); and in IPSL (c), it is confounded with the 

developing phase of El Niño (Pc) and with the Mediterranean (md). The apparent confounded 

relationship between pr and SA in CNRM (a) could be a misrepresentation of a coupled 

relationship between of the formation of the South Atlantic cold tongue to the monsoon 

circulation, in which case we cannot interpret the relationship as causal, and it may be impossible 

to appropriately estimate the causal effect of SA on Sahel precipitation using any method at this 

timescale. If these confounding relationships are physical, they would directly prevent us from 

measuring the simulated teleconnection between the implicated basin and Sahel rainfall in that 

climate model in a causally-responsible way, unless another variable can be found to de-

confound them. Since these confounded relationships are not discovered in all climate 

simulations, causal effect estimation for each teleconnection might be possible in a subset of the 

climate models, suggesting that simulations are better analyzed separately.  
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4.5.4. LPCMCI Performance 

The likely-accurate scores (third major column, top part of Table 4.4) are all above 0.5, 

but are all below 0.65, limiting the trust we can place in our results. This score is reduced when 

the results are not robust to small parameter perturbations, but is also reduced when LPCMCI 

robustly fails to recall known adjacencies or robustly returns edge orientations that are 

inconsistent with our background seasonal knowledge (see Section 4.4.5). In the following 

sections, we examine the performance of LPCMCI according to robustness (Section 4.5.4.a), 

(oriented-)recall (Section 4.5.4.b), and orientation (Section 4.5.4.c). In Section 4.5.4.d, we 

investigate the reasons for the non-physical orientations seen in Section 0 and discussed in 

Section 4.5.4.c. 

4.5.4.a Robustness 

The robustness score (Section 4.4.6) quantifies how well our chosen graph represents the 

discovered graphs from the ideal parameter space for each climate model that don’t have 

backwards edges or x’s, and thus it quantifies the sensitivity of our results to small parameter 

perturbations. The robustness scores (second-to-last column of Table 4.4) are all between 0.7 and 

0.85, suggesting that the chosen graph is a good representation of the ensemble of results, but 

that there are still some substantial differences between them.  

In Figure 4.9f, we picture the third-highest performing PAG for IPSL; it would have been 

the chosen PAG if we optimized the likely-accurate score over the entire parameter space (see 

Table 4.4), and it achieves a likely-accurate score of 0.61 and a robustness score at 0.80 

according to the original ideal parameter space. Most of the skeleton is the same as the highest-

scoring PAG for IPSL (panel c), but it has a slightly different connectivity: it does not find 

confounding between Pc and pr, and instead has some additional adjacencies, including 
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confounding between AMM and pr the following year, and confounding or a causal relationship 

between md and pr the following year. It also has some different orientations that are 

inconsistent with our chosen graph in panel c). For one, LPCMCI detects a collider at AMM in 

the triple TT(𝑡) ↔ AMM(𝑡) ↔ Pc(𝑡 + 1),17 which is an unoriented chain in the highest-

performing PAG. It must be that the change in parameter choices changed the result of the 

conditional independence test there, and, unfortunately, our robustness score is not able to 

strongly detect this type of inconsistency (see Section 4.4.6). But this PAG also has an 

inconsistent orientation that can likely be traced back to changes in the skeleton that caused the 

algorithm to perform a different conditional independence test entirely to orient the edge: the 

unlikely conclusion that Sahel precipitation affects simultaneous SST in the Mediterranean in 

panel (f) may be a result of replacing the adjacency between pr and Pc in panel (c) with 

adjacencies to AMM and md from the previous year in panel (f).  

We can learn about the robustness of our results to perturbations in the data by comparing 

the discovered causal diagram for NCAR when SA and TT are included (b) to that when IN is 

included instead (e). When a variable is removed, all its adjacencies must be removed and all 

non-collider paths that passed through that variable must be replaced with direct adjacencies, but 

the rest of the underlying causal structure should theoretically remain unchanged. For SA in 

NCAR, we would expect the path GG → SA → GT from panel (b) to be replaced with the 

adjacency GG → GT in panel (e), the path GG → SA → pr to be replaced with the adjacency 

GG → pr, and the path GG(𝑡) → SA(𝑡) → Pc(𝑡 + 1) to be replaced with the adjacency GG(𝑡) →

Pc(𝑡 + 1). In panel (e), we can see two of the three expected adjacencies, connecting GG to GT 

 
 
17 This corresponds to the lower of the two curved edges connecting Pc and AMM. Unfortunately, the lag notation in 
the summary graphs is not currently fully specified when the relationship is confounded. 
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and to pr; but the orientations are both confounded rather than causal, which is inconsistent with 

our first diagram.  

We can also see an instability in the exact timing of causal connections, even when the 

causal connections seem to be unrelated to SA, TT, and IN: in panel (b), there is a simultaneous 

edge from winter Pacific SST (EN) to AMM, and in panel (e) there is a lagged edge from the 

previous summer (Pc) instead. Furthermore, there are unexpected changes in the causal 

connectivity of the graph even when lag and orientation are ignored. We see a lagged coupled 

dependence of Pc on TA in panel (e) that was not present in panel (b) as well as a direct effect of 

NA on the development of El Niño, as we originally hypothesized. In panel (b), the direct effect 

of winter Pacific SST (EN) on summer Pacific SST (Pc) is oddly mediated by the Global Tropics 

(GT): EN → GT → Pc, while in panel (f) we see the expected relationship EN → Pc → GT. These 

changes are difficult to explain even statistically, because the connectivity of the Pacific to itself 

at different seasons and the effect of NA on the development of El Niño supposedly have nothing 

to do with SA, TT, or IN in the final discovered causal diagrams, suggesting room for 

improvement in the algorithm itself.  

4.5.4.b Recall 

The low likely-accurate scores are strongly affected by low oriented-recall (last major 

column of Table 4.4) of expected auto-dependencies and ontological edges (red and black, 

respectively, in Figure 4.4). This score is affected by the skeleton and the orientation of the 

discovered PAGs; to understand the low oriented-recall in more depth, we examine the expected 

auto- and ontological dependencies in the PAGs in the first row of Figure 4.9. The details of the 

auto-dependencies that are not unrolled over multiple seasons are difficult or impossible to see in 

the summary graphs, but will be identified in the text. 
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In CNRM (panel a), LPCMCI successfully recovers the ontological response of GT to its 

constituent basins (Pc, SA, and TA) and no auto-dependence of GT on itself. However, the other 

auto-dependencies are not successfully recovered. The effects of summer temperatures in the 

North Tropical Atlantic (TA) and Gulf of Guinea (SA) on the following spring (AMM and GG, 

respectively) are not captured, and while there is a ‘simultaneous’ effect of winter Pacific SST 

(EN) on the immediately-following summer (Pc), it is indirect, mediated by tropospheric 

temperature over the Sahel (TT); this cannot represent the expected auto-dependence due to the 

high heat capacity of the ocean. Of the basins that only appear at one season, only the North 

Atlantic (NA) has a direct link with itself in the previous year, and LPCMCI failed to fully orient 

the edge: NA(𝑡) ∘→ NA(𝑡 + 1).  

In the other two climate models, LPCMCI also struggles to reproduce the expected auto-

dependencies. LPCMCI is able to detect the unrolled auto-dependence of the Gulf of Guinea 

GG(𝑡) → SA(𝑡) → GG(𝑡 + 1) in NCAR (panel b) and the unrolled auto-dependence of the North 

Tropical Atlantic AMM(𝑡) → TA(𝑡) → AMM(t + 1) in IPSL (panel c), but doesn’t find both in 

the same climate model. Auto-links for NA and md are found in NCAR (though neither is fully-

oriented), but in IPSL, LPCMCI finds that NA is confounded with—rather than caused by—its 

previous value, and fails to find any auto-dependence for md (instead finding an unexpected 

auto-dependence of springtime AMM on itself in the previous year that is not mediated by TA in 

addition to the expected unrolled auto-dependence). LPCMCI isn’t able to detect a direct 

dependence of Pc on EN in the same calendar year for either climate model (though NCAR does 

exhibit an indirect simultaneous relationship that is mediated by GT, or by TT and then GT).  

LPCMCI also has trouble recovering the ontological relationships between GT and its 

constituent basins for these simulations, mostly due to orientations that are inconsistent with our 
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expectations rather than missing adjacencies in the discovered skeleton. With the exception of 

TA in NCAR, GT is connected to all its constituent basins in all simulations; but in NCAR, GT 

causes Pc rather than responding to it; and in IPSL, GT causes TA rather than responding to it. 

We cannot tell from this analysis whether these orientations are nonphysical and only reflect 

(strong) faithfulness violations during orientation, or whether the expected causal effect is simply 

much weaker than a competing causal or confounded relationship. Thus, while these 

dependencies seem highly unlikely, we do not consider these orientations obviously non-

physical. We examine the likelihood of definitively incorrect orientations in the next section.  

4.5.4.c Orientation 

Recall that, for a variety of reasons, we hid the seasonal time ordering of the variables 

from LPCMCI (see Section 4.4), making it possible for the algorithm to return an oriented edge 

that is obviously non-physical because it points backwards in time within a calendar year. This 

decision certainly reduces the performance of LPCMCI on some simulations in this dataset, but 

an advantage of this decision is that it allows us to bypass mechanistic uncertainty and 

objectively evaluate the limits of the performance of LPCMCI – limits we expect to hold even in 

the presence of complete time information. The accuracy of the orientation of the other edges in 

the graphs we identify as being the most likely to represent the underlying causal structure 

(Figure 4.9) cannot be directly tested given our partial knowledge. To the extent that the 

prevalence of general false orientations is comparable to the prevalence of detectable backwards 

orientations in the ideal parameter spaces for our climate models, we can estimate the likelihood 

that a graph has at least one backwards orientation by detecting backwards orientations is graphs 

that achieve high likely-accurate scores when our seasonal background knowledge is not taken 

into account (see Section 4.4.6). The probably-accurate score ignores seasonal knowledge 
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completely, while the “full” likely-accurate score simply does not set the likely-accurate score 0 

when a graph contains a backwards edge. The latter would better represent the likelihood of 

having general incorrect orientations than the former if general incorrect orientations are 

associated strongly with detectable time-backwards edges. 

There is ample evidence that LPCMCI sometimes robustly discovers non-physical edges 

for some climate models. Recall that MRI and CCCma didn’t produce a single usable PAG, and 

IPSL produced very few (second major column of Table 4.4, see Section 0). We will investigate 

the reasons for these non-physical edges in Section 4.5.4.d. Here, we approximately quantify our 

trust in the orientations of discovered simultaneous edges within the same season.  

In Figure 4.10, we compare the probably-accurate scores (top row) and the “full” likely-

accurate scores (bottom row) to the true likely-accurate scores (y-axis) for the three models that 

produced physical graphs when including SA and TT: CNRM (left column), NCAR (middle 

column), and IPSL (right column). All the probability density plots are a superposition of density 

centered around a diagonal line 𝑦~𝑥 and around a horizontal line 𝑦 = 0. When graphs with high 

probably-accurate and “full” likely-accurate scores do not contain backwards edges, they will 

also achieve a similar likely-accurate score and contribute to increased density along the 

diagonal; when they contain backwards edges, they will contribute density to the horizontal line 

at likely-accurate = 0. The likelihood of an incorrect orientation in a graph with a given likely-

accurate score is estimated to be between the marginal likelihoods of a true likely-accurate score 

of 0 (y-axis) in the vertical cross sections at comparable probably-accurate and “full” likely-

accurate scores (x-axis). Comparable scores can be estimated by tracing the desired likely-

accurate score from the y-axis to the peak density along the diagonal (grey dashed lines), and the 

vertical cross section (black solid lines) will also intersect this point. 
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Figure 4.10: Comparison of probably-accurate scores (x-axes on the top row), which do not 
include background knowledge, and of “full” likely-accurate scores that are not set to 0 when 
they contain backwards edges (x-axes on the bottom row) to true likely-accurate scores (y-
axes) for CNRM (a-b), NCAR (c-d), and IPSL (e-f) when TT and SA are included. Dashed 
grey lines identify a likely-accurate score of 0.5, and solid black lines highlight the vertical 
cross-sections at comparable probably-accurate and “full” likely-accurate scores. These cross-
sections give the estimated relative likelihood of discovering an edge with a reversed 
simultaneous orientation. 

In all cases, including our background knowledge when calculating edge likelihoods 

(bottom row) makes little difference to the qualitative comparison. For CNRM (the climate 

model with the highest performance according to oriented-recall; see Figure 4.7), high-scoring 

graphs (comparable to likely-accurate scores above 0.5) are unlikely to have incorrect 

orientations. For the lower-performing climate models, the chances of an incorrect orientation 

increases. Results for NCAR are still reasonably trustworthy, showing a much higher density 
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along the diagonal than the horizontal for high-scoring graphs, while results for IPSL are highly 

suspect. The results in Figure 4.9 are organized from left to right by decreasing trustworthiness. 

4.5.4.d Causes for non-Physical Edges 

Because multiple climate simulations produced non-physical graphs over the entire 

parameter space, we cannot attribute these persistent false orientations to the climate model or 

poor choices of CMIknn parameters. In Section 0, we removed SA and TA – variables we 

believed might violate LPCMCI’s assumption of acyclicity – and replaced them with IN, but 

LPCMCI still struggled. Could IN also be causing problems for LPCMCI? 

In CCCma, one of the most prominent backwards orientations under these conditions is 

from the Indian Ocean in summer (IN) to the Atlantic Meridional Mode in the previous spring 

(AMM), but equally prominent are backwards edges from the Global Tropics in summer to 

AMM the previous spring, and from the Pacific and Global Tropics in summer (Pc and GT) to 

the Gulf of Guinea the previous spring (GG). In the other climate models, the struggles seem to 

have nothing to do with the Indian Ocean: in CNRM, the most common backwards edge is from 

the Pacific Ocean in summer (Pc) to the previous winter (EN); in IPSL, all graphs with 

backwards edges include this backwards edge and also backwards edges from the Global Tropics 

in summer (GT) to AMM the previous spring and the Pacific the previous winter (EN); and MRI 

struggled by producing backwards edges to (GG) from the Global Tropics (GT) in lieu of the 

South Atlantic (SA). This suggests that all backwards orientations—whether in the graphs 

including SA and TT or those including IN—might be the result of missing adjacencies and 

incorrect orientations elsewhere, rather than acyclicity violations due to including potentially-

problematic indices.  
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GT itself could theoretically pose problems for causal discovery because it is 

ontologically, rather than causally, related to its constituent basins, and causal inference requires 

that every variable has unique causally-relevant noise (see Section 4.2.2). However, we 

intentionally left the Indonesian ocean surface out of our individual SST indices (see Section 

4.3), and we never included SA and IN at the same time, so GT should have variability that 

cannot be completely determined by the included constituent basins. 

It is also possible that simply having multiple indices that correlate highly with each other 

could cause strong faithfulness violations that pose a problem for causal discovery (see Section 

4.2.8), especially with a conditional independence test with low detection power like CMIknn. In 

our hypothesized diagram (Figure 4.4), the auto-dependence of the Gulf of Guinea region is 

unrolled: SA(𝑡 − 1) → GG(𝑡) → SA(𝑡 − 1). We would have hoped that LPCMCI would separate 

SA(𝑡 − 1) from SA(𝑡) by finding that SA(𝑡) ⫫ SA(𝑡 − 1)|GG(𝑡). But if GG(𝑡) ≈ 𝑆𝐴(𝑡), as can 

be expected since they are almost the same basin (see Figure 4.3) less than one year apart, then 

LPCMCI may incorrectly find instead that GG(𝑡) ⫫ SA(𝑡 − 1)|SA(𝑡), potentially leading to the 

unoriented adjacencies SA(𝑡 − 1) ∘→ SA(𝑡) ∘ − ∘ GG(𝑡), where the partial orientation of the first 

edge comes from the algorithm’s knowledge of the time order. This incorrect skeleton forces the 

reversed orientation: since SA(𝑡) is in the separating set, LPCMCI would find that SA(𝑡) is not a 

collider, and must orient the second edge away from SA, giving SA(𝑡 − 1) ∘→ SA(𝑡) → GG(𝑡).  

For CCCma, all graphs contain backwards edges, but only 80% contain backwards edges 

from SA to GG. We find that none of the graphs with backwards edges from SA to GG retain the 

expected adjacency between SA(𝑡 − 1) and GG(𝑡), while 82% of them discover the unlikely 

auto-dependence of SA on its value from the previous calendar year that forces the reversed 

orientation. In MRI as well, all of the graphs with backwards edges miss the expected adjacency 
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and contain the unlikely auto-dependence of SA on itself. Eleven graphs for MRI contained x’s 

elsewhere rather than a backwards edge from SA to GG; more than half still found the false auto-

dependence of SA on itself, but all of these also found the true dependence of GG(t) on SA(𝑡 −

1), preventing the application of the orientation rule. All this seemingly supports our hypothesis 

for the source of reversed orientations. Removing SA might not have been enough to produce 

usable graphs for some climate models because other SST indices—though we have no reason to 

suspect they are involved in cyclic dependencies—also correlate highly with each other, either 

because their auto-dependence is unrolled over time or because they contribute to GT. Indeed, all 

the graphs for MRI and CCCma when SA and TT were included also contain backwards edges 

from Pc or GT to EN, respectively, and these three indices are also highly correlated. All this 

might suggest that it is unwise to include unrolled dependencies in causal discovery, because this 

will necessarily produce a high cross-correlation while depriving the algorithm of time 

information that could help it avoid unnecessary conditional independence tests that lead to 

incorrect conclusions.  

But the story is slightly more complicated. Recall that, in Section 4.5.4.a, we found that 

adding and removing variables sometimes caused changes to the skeleton even in unconnected 

regions of the discovered graph. Examining the verbose output from LPCMCI for MRI, we see 

that GG(𝑡) ⫫ SA(𝑡 − 1)|SA(𝑡) is sometimes used to justify separating GG from the previous 

year’s SA, but often the algorithm actually justifies the separation by affirming the independence 

relation GG(𝑡) ⫫ SA(𝑡 − 1)|GT(𝑡 − 1). Though GG and SA are essentially the same ocean 

basin, GT is theoretically distinct. We had included it in order to test the hypothesis that GT(𝑡) 

mediates the effect of SA(𝑡) and other summer tropical SST on pr(𝑡), but we do not believe that 
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GT(−1) is a driver of GG(𝑡). Rather, we believe it is a child of the true parent of our target 

variable GG(𝑡): SA(𝑡 − 1) → GT(𝑡 − 1) (see Figure 4.4). 

Given an ‘oracle’ conditional independence test (see Section 4.2.12), conditioning on a 

child of the cause variable that is not a mediator of its effect on our target variable will change 

the shape of the underlying probability distributions, but will not affect the result of the 

independence test or the outcome of the causal discovery algorithm. However, Runge et al. 

(2019a) showed that, in the presence of finite data, conditioning on children of the parent 

variable dramatically reduces detection power of the conditional independence test and thus the 

performance of causal discovery algorithms. PCMCI (see Section 4.2.11) was specifically 

written to avoid conditioning on children of true causes that cannot be parents of the target 

variable, but it assumes that there are no simultaneous dependencies, and so it is able to leverage 

time information to identify which conditions to avoid. When simultaneous dependencies are 

allowed in PCMCI+ and LPCMCI, it is not possible to avoid this as easily.  

GT(𝑡 − 1) may persist as a potential parent of GG(𝑡) because it is connected via multiple 

confounded pathways, and thus requires a large conditioning set to separate it from GG(𝑡), but 

small sets are tested first. In our hypothesized diagram (Figure 4.4), there are many paths 

connecting GT(𝑡 − 1) to GG(𝑡), including GT(𝑡 − 1) ← SA(𝑡 − 1) → GG(𝑡), GT(𝑡 − 1) ←

Pc(𝑡 − 1) ← NA(𝑡 − 1) → GG(𝑡), GT(𝑡 − 1) ← TA(𝑡 − 1) → AMM(𝑡) → GG(𝑡), and multiple 

paths GT(𝑡 − 1) ← ⋯∘ − ∘ GG(𝑡 − 1) → SA(𝑡 − 1) → GG(𝑡). In LPCMCI’s output, Pc(𝑡 − 1) 

is required in addition to SA(t) (which introduces a selection bias into the calculation) to separate 

GT(𝑡 − 1) from GG(𝑡). Furthermore, to promote independence relative to the order of the 

variables in the dataset, all these causal discovery algorithms prioritize variables that correlate 

well (or have high conditional mutual information) with the target variable in the separating sets, 
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and due to autocorrelation effects,	GG(𝑡) has a higher unconditional mutual information with 

GT(𝑡 − 1) than with its true parent SA(𝑡 − 1) in all of the climate simulations. It would seem 

that the only way to successfully use LPCMCI with CMIknn on this dataset would be to remove 

all strong covariates including GT – the very index we wanted to examine. 

To investigate whether this problem persists with a conditional independence test with 

higher detection power, we ran PCMCI+ on all tuning and analysis simulations using 

RobustParCorr (see Section 4.4.2) as the conditional independence test. Though RobustParCorr 

has higher detection power than CMIknn, the problem of producing backwards edges was even 

more severe than before: every climate simulation produced a backwards edge from SA to GG, 

and the non-linearity of EN (see section 4.4.4) does not appear to be the source of the problem. 

In PCMCI+, which does not allow latent confounding, only one potential separating set of every 

size is tested when learning the skeleton of the graph, and so the effect of prioritizing indices that 

correlate well with the target variable for separating sets is even more severe: an analysis of the 

verbose output in one case showed that GT(𝑡 − 1) is retained in every potential separating set 

until the conditioning set gets large enough and the detection power of RobustParCorr small 

enough that GG(𝑡) is separated from SA(𝑡 − 1), and at the same time, SA(𝑡 − 1) is used to help 

separate GT(𝑡 − 1) from GG(𝑡).	Causal logic and basic probability theory dictate that these 

decisions are inconsistent with each other, but the algorithm does not check for such 

inconsistencies because they would not occur in the absence of faithfulness violations (see 

Section 4.2.8). The combination of these conflicting decisions means that PCMCI+ produces a 

graph that may not even be Markov to the data according to the very conditional independence 

test used to discover the graph. 
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4.5.5. Synthesis 

Our orientation analysis (Section 4.5.4.c) showed that LPCMCI struggled more with 

some datasets than others, so while the discovered PAGs for high-performing datasets such as 

NCAR and CESM may be reasonably trusted (Figure 4.9a and b), the orientations of causal 

relationships in the discovered PAGs for low-performing datasets such as IPSL (Figure 4.9c and 

f) should not be taken with high confidence to represent observed or simulated causal 

relationships. Our investigation into the source of incorrect orientations (Section 4.5.4.d) showed 

that they can often be traced to strong faithfulness violations in the skeleton phase, rather than 

the orientation phase, of causal discovery, meaning that even the skeleton for low-performing 

datasets such as IPSL cannot be trusted.  

Even for high-performing datasets, our robustness analysis (Section 4.5.4.a) shows that 

while a the discovered PAG is reasonably robust to small parameter changes, we may see a few 

causally-significant changes when perturbing the parameters or the dataset in the orientation of 

adjacencies and their time lag, and even in the basic skeleton of the discovered graph, that are 

not easily explained by the perturbations we made. While we would expect to see changes in the 

algorithm’s decisions based on the parameters chosen for the conditional independence test, the 

changes that result from adding and removing supposedly-irrelevant variables are especially 

concerning, suggesting that the algorithm is not as robust to the presence of causally-unnecessary 

variables in real data as it appeared to be on partially-simulated data (Runge et al. 2019a). While 

we may place some scientific weight on the results for higher-performing datasets including 

NCAR and CESM, discovered causal relationships and lags still must be using targeted 

simulations and theoretical arguments. 
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According to our recall analysis (Section 4.5.4.b), it would appear that LPCMCI is 

especially prone to omitting true causal adjacencies (that are presumably statistically weak). If 

this does not result in false orientations, it might not cause a large practical problem for 

estimation of individual causal effects using the same dataset, because the omitted relationships 

may only weakly bias the results. But if the statistical strengths of our known edges are 

comparable to the strengths of other causal relationships we wished to test, then we cannot place 

strong physical significance on the absence of adjacencies in our discovered PAGs when forming 

a conceptual model of climate variability – omitted relationships may play a larger role in the 

future. We therefore cannot strongly interpret that fact that LPCMCI did not discover causal 

effects from GT to TT and pr.  

However, if NARI truly captures the causal mechanism relating global SST to the Sahel, 

we would expect that NA together with TT or GT would be able to separate Sahel precipitation 

from all other ocean basins. Instead, in most simulations, LPCMCI finds that Sahel precipitation 

is directly driven by at least one ocean basin other than NA and GT (see Table 4.5). NCAR is the 

only simulation that does not display such a causal relationship, but Sahel precipitation is found 

to be confounded with SA, which is part of GT. If the orientation is correct, then NARI is not a 

clean causal driver of Sahel precipitation because the two are also confounded. If the skeleton is 

correct but the orientation is incorrect, then NCAR also demonstrates a causal effect of global 

SST on Sahel precipitation that is not mediated by NARI.  

Unfortunately, we are not able to directly test the prevalence of false positive adjacencies 

in our performance analysis given our partial knowledge (see Sections 4.2.12 and 4.4.4), but we 

can directly validate individual dependence relationships. As explained in Section 4.2.10, false 

positives may arise during causal discovery or correlation analyses due to autocorrelation effects, 
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but conditioning on the parents of both the cause and the effect variables should address this 

problem. Causal discovery is not specifically necessary to test this hypothesis in general, but it is 

helpful for making sure we have not missed important variables to add to our conditioning set. 

Furthermore, a tuning analysis like we performed in Section 4.5.1 may be necessary to determine 

the best choice of parameters for conditional independence testing. 

To validate our conclusion that NARI is not sufficient to explain the influence of global 

SST on Sahel precipitation independent of the decisions of our causal discovery algorithm, we 

directly test whether Sahel precipitation is independent from the ocean basins listed in Table 4.5 

when conditioning on NA, GT, and additional variables chosen to eliminate autocorrelation 

effects. Reasonable choices for this additional conditioning set include the causal parents from 

our hypothesis (Figure 4.4), the discovered causal parents (both with and without potential 

parents, which are only partially-oriented ∘→ in Figure 4.9), and combinations of these. 

Reasonable choices for CMIknn parameters include the CMIknn parameters employed to 

discover the pictured PAG (fourth major column of Table 4.4), and the ‘ideal’ CMIknn 

parameters based on oriented-recall alone (second column of Table 4.4, Section 4.5.1). We 

repeat each test ten times using combinations of these conditions, and the repeated tests almost 

uniformly give the same results. NARI can separate Sahel precipitation from lagged and 

simultaneous EN (peak El Niño) in NCAR and IPSL, and from Pc (the Pacific in summer) in 

IPSL (noted with italics in Table 4.5). Nevertheless, all other basins remain connected, 

confirming in every climate simulation that NA and GT are not sufficient to separate Sahel 

precipitation from global SST. Our analysis specifically suggests that summertime SSTs in the 

Pacific Ocean (Pc), the Gulf of Guinea (SA), the North Tropical Atlantic (TA), and the 

Mediterranean Sea (md) may be independently important for Sahel precipitation. Potential roles 
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for the Indian Ocean should be re-examined when LPCMCI achieves a higher performance on 

datasets that include it. 

4.6. Discussion 

One might try to dismiss the poor performance of (L)PCMCI(+) on the dataset examined 

here by arguing that our problem is contrived; after all, LPCMCI would not discover any 

detectable false orientations if we had not withheld seasonal time information (see Section 4.4). 

However, I argue that hiding partial time information from LPCMCI did not cause these 

difficulties, it simply exposed LPCMCI’s weaknesses by preventing us from justifying the 

incorrectly-oriented edges with some contrived physically-plausible explanation.  

In Section 4.5.4.d, we find that the true source of the backwards edges in the Gulf of 

Guinea is often not the high correlation of GG and SA, but the presence of another causally-

irrelevant variable that happens to correlate with the target better than its true parent. This 

reflects the combination of two common problems in time-series causal discovery that the 

authors of (L)PCMCI(+) identify and specifically try to address (see Section 4.2.11). The first is 

that conditioning on related variables that turn out to be not causally-relevant decreases the 

detection power of conditional independence tests and thus leads to strong faithfulness violations 

(see Section 4.2.8). The second is that autocorrelated time series data by definition violate the 

independence assumption, and can artificially inflate the apparent dependence between two 

variables (see Section 4.2.10).  

Surprisingly, the implications of these practical finite-data effects on conditional 

independence tests and on the performance and consistency of causal discovery algorithms are 

never addressed rigorously in theory. All causal discovery algorithms have been proven to be 

consistent, meaning they make correct decisions and converge on the correct graph; but, as noted 
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in Section 4.2.12, most of these proofs rely on faithfulness (and all other assumptions of the 

algorithm) and assume an ‘oracle’ conditional independence test that is not constrained by the 

statistics of finite samples and always tells the algorithm truthfully whether or not the probability 

distributions of two variables are conditionally independent.  

Reliance on the oracle conditional independence test means that decreased detection 

power and autocorrelation effects do not factor into the proof of consistency, and Runge et al. 

(2019a) offer no theoretical results on the implications of iid violations on conditional mutual 

information or distance correlation metrics, let alone the effects that changes in these metrics 

would have on PCMCI. In the end, autocorrelation effects are only addressed in the last stage of 

the algorithm without consideration for how they might affect the rest of the discovered graph in 

the earlier stages of the algorithm. A theoretical analysis of these finite-data effects might show, 

for instance, that—because correlation (and potentially other dependence metrics) can be 

artificially inflated by autocorrelation effects, and because increasing the size of the conditioning 

set reduces detection power—it is unwise in PCMCI to check only one potential conditioning set 

of each size consisting of the variables that are most strongly correlated, even though this 

approach has been proven to be sound in the oracle case.  

Furthermore, the reliance on the assumption of (strong) faithfulness means that most 

causal discovery algorithms (not just time-series algorithms and not just those available through 

tigramite) are designed to run potentially-conflicting conditional independence tests—sometimes 

in order to promote independence of the discovered graph from the order in which the variables 

appear in the dataset (Colombo and Maathuis 2014), and sometimes simply of poor design18—

 
 
18 The classic PC algorithm (Spirtes and Glymour 1991) checks potential separating sets for X and Y using potential 
parents of Y whether or not they are d-separated from X; in the oracle case, variables not d-connected to both X and 
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without ever considering the possibility that the results might conflict, either due to low detection 

power or true faithfulness violations.  

There is certainly room for improvement in the conditional independence tests 

themselves to reduce the prevalence of strong faithfulness violations and approach the oracle 

case: perhaps conditional mutual information can be estimated using Empirical Orthogonal 

Functions like distance correlation, and perhaps distance correlation can be generalized to allow 

for conditional independence testing so that it no longer applies only to Gaussian processes. But 

it may also be that true faithfulness violations are more prevalent than previously considered in 

the time series case, where causal lags must be rounded up or down to match discrete timesteps 

in a way that may not scale over multiple causal effects.  

If the performance of time-series causal discovery is to be improved and the results are to 

be trusted, there is an urgent need for theoretical results regarding the implications of iid 

violations on conditional independence metrics, and regarding the implications of autocorrelation 

effects and (strong) faithfulness violations on the consistency of causal discovery algorithms at 

every stage. 

In lieu of theoretical results, Runge et al. (2019a) attempt to prove computationally that 

they have succeeded in addressing low detection power and autocorrelation effects by showing 

that PCMCI performs better than other causal discovery methods on a specific contrived dataset 

with two real variables and additional generated causally-irrelevant variables, and on a large 

ensemble of entirely-generated datasets for causal discovery where the ground-truth is known. 

Since the true causal structure of observed data is usually not known, it is standard to test causal 

 
 
Y should not be able to help separate X and Y. I am currently exploring ways to address the potential sources of 
inconsistency in the PC algorithm. 
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discovery algorithms by generating Structural Causal Models (SCMs; see Section 4.2.2), and the 

stated goal of such SCM generation (which is often not achieved; see Reisach et al. 2021) is 

usually to generate truly-random causal graphs with truly-random causal effects to prevent the 

algorithm from taking unfair advantage of patterns in the simulated data.  

But in real causal discovery problems, the scientist does not randomly choose indices that 

may or may not be related; she chooses indices because they are correlated with each other and 

believed to be related. The scientist is furthermore only likely to turn to causal discovery if she 

does not know which variables are causally relevant, and if she believes a simple correlation 

analysis will fail to identify the most prominent driver of her target variable. I argue that 

simulated SCMs should not be generated randomly, but should instead be selected for high 

correlation between variables—and perhaps even for SCMs where the lagged variable with the 

highest correlation is not a true causal parent—to fairly represent causal discovery tasks the 

algorithm will likely have to face. If causal discovery is to be preferred over correlation analysis 

for discovering the one strongest causal driver, we must show specifically that causal discovery 

can identify the correct causal parents when other variables correlate better with the target – not 

only that it can recover randomly-generated SCMs. If causal discovery algorithms cannot 

perform well in data environments like these, it undermines the main selling points of causal 

discovery: that it can separate direct effects from indirect effects (mediated by another highly-

correlated variable), and that it is able to distinguish between variables that are correlated and 

variables that are truly causally-relevant. In our dataset, it would appear that (L)PCMCI(+) 

cannot handle the inclusion of the potential mediator we wished to test. 

Additionally, algorithm performance is always tied to recovery of the underlying graph, 

but it is not standard to check for inconsistencies that might easily result from conflicting 



 

 179 

decisions that violate strong faithfulness. This is imperative because, to the extent that causal 

discovery is used to generate background assumptions for causal effect estimation, the 

discovered diagram cannot be used in good faith if its testable implications do not hold in the 

data. While an inappropriate choice of conditional independence test might affect the algorithm’s 

ability to recover the underlying graph, a practically-sound algorithm should always return a 

graph that is Markov to the data according to the chosen conditional independence test. Thus, I 

argue that Markov-consistency of the discovered PAG should actually be valued as a 

performance metric above recovery of the generating causal diagram, and call first for the 

improvement of causal discovery algorithms according to this metric. 

4.7. Conclusions 

In this chapter, we employ a novel technique known as causal discovery to analyze the 

simulated impacts of sea surface temperature (SST) variability in various ocean basins on Sahel 

precipitation and on each other in the Coupled Model Intercomparison Project phase 6.  

Our results suggest that the North Atlantic Relative Index (NARI) does not mediate the 

full simulated effects of all ocean basins on Sahel precipitation. Instead, we find that simulated 

Sahel precipitation in most of the examined climate models responds to summertime SST in the 

Pacific Ocean, the Gulf of Guinea, the North Tropical Atlantic, or the Mediterranean Sea via a 

pathway that is not mediated by NARI. In fact, our results fail to detect any causal dependence of 

Sahel rainfall on the Global Tropics – a key component of NARI.  

We cannot initially place too much physical significance on either of these findings 

because, according to our performance analysis, discovered causal graphs are prone to errors in 

the discovered causal lags, the orientations of causal relationships, and even in the skeleton of 

the graph, likely resulting from violations of algorithmic assumptions. However, we verify the 
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first claim by confirming that NARI still does not separate simulated Sahel rainfall from 

summertime SST in the identified basins even when we rely on our causal hypothesis, rather than 

the error-prone discovered graph, to determine how to remove autocorrelation effects. To 

evaluate this, we rely on the results of our tuning experiment to determine conditional 

independence test parameters. The second claim—that NARI does not affect Sahel 

precipitation—cannot easily be verified. But even if we still believe that NARI has some direct 

effect on Sahel precipitation, the fact that individual ocean basins also have their own direct 

effects complicates estimation of the causal effect of NARI. Summertime SST in the Pacific, the 

North Tropical Atlantic, and the Gulf of Guinea all contribute to the Global Tropics index by 

construction, and the North Tropical Atlantic additionally impacts the North Atlantic Ocean in 

every single climate simulation, perhaps through surface water fluxes. Whenever any of these 

basins also has a direct effect on the Sahel, it confounds the relationship between NARI and 

Sahel precipitation, meaning that the causal effect cannot be responsibly estimated using 

bivariate regression as done in Chapter 3.  

Even though NARI, as it is defined here, does not capture the full effect of tropical—let 

alone global—SST variability on Sahel rainfall, it may still be possible that a single index could 

suffice to capture the effects of SST variability throughout the tropics on the Sahel. Perhaps the 

“upped ante” mechanism discussed in G13 would be best captured by tropical-maximum SST or 

precipitation-weighted mean SST (see Section 1.4) rather than the area-weighted mean SST 

employed by NARI, which potentially over-simplifies and obscures the causal mechanism. The 

practical need for this distinction may not have been clearly evident in the coupled historical 

simulations and simulated projections employed by G13, both of which are dominated by 

anthropogenic forcing that causes SST in the tropical ocean basins largely to vary together. 
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However, in freely-varying pre-Industrial control simulations such as those used in this chapter, 

tropical-mean and -maximum SST are more likely to diverge, exposing the limitations of the 

NARI index. 

So far, we have commented only on causal relationships in simulations, but when 

multiple climate models from the ensemble all demonstrate the same relationships, we gain 

confidence that certain claims may hold in observations as well. Our discovered causal graphs 

demonstrate a number of similarities. NARI does not mediate the effects of global SST on Sahel 

rainfall in any of the simulations we examine, so our claim that individual ocean basins directly 

impact Sahel rainfall is likely to hold in observations. Our results can also comment on some 

causal relationships between ocean basins that are currently debated in the literature. For 

instance, our analysis supports the claim that the Atlantic Meridional Mode can trigger El Niño. 

Such analysis has scientific merit in its own right, and furthermore could be important 

background information that affects how the NARI teleconnection and a wide range of other 

important causal relationships in the observed climate system should be estimated from the 

observational record. 

This study also detects significant differences in the causal structures of the climate 

models which could have important implications for causal effect estimation. Notably, our 

discovered causal graphs for different simulations often differ in edge orientation such that they 

are incompatible with each other, meaning that a different mathematical expression may be 

required for each climate model when attempting to estimate a causal effect from non-

interventional simulations. When ensemble-mean methods are applied to non-interventional data, 

as we did when examining the effect of SST on Sahel precipitation in coupled simulations in 

Chapter 3, they implicitly assume that the causal structures underlying different simulations are 
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the same, and so they cannot responsibly be used over the entire ensemble when climate models 

differ in this way. Since our performance analysis shows that small parameter and dataset 

perturbations can lead to some incompatible changes in our discovered diagrams, we cannot 

place too much confidence on the conclusion that teleconnections in different climate models are 

causally incompatible with each other. However, even if the causal graphs for different climate 

models and observations were oriented such that they did not directly conflict, the graphs have 

some notable differences in connectivity. For example, in CNRM, the Atlantic Niño responds 

strongly to peak El Niño conditions and affects springtime SST in the North Tropical Atlantic, 

while none of the other climate models demonstrate such an effect. These differences also 

suggest that attempting to extract causal information from ensemble-means is not optimal 

because different physical processes are active in different simulations.  

Sometimes the discovered graphs also conflict with our expectations based on the 

observed climate system. For instance, the previously-mentioned causal effect of spring Gulf of 

Guinea SST (GG) on spring North Tropical Atlantic SST (AMM) in CNRM conflicts with the 

expected effect of the Atlantic Meridional Mode on the Atlantic Niño in observations. When 

causal links in our hypothesis were inspired by observed associations, we would hope that the 

results of causal discovery that are robust to climate model parameterization could rest on equal 

ground with prior beliefs and help us improve scientific theory. Furthermore, if we are able to 

obtain a trustworthy causal representation of observations using some combination of theory and 

causal discovery applied to observations and simulations, and if we can trust that the differences 

in discovered graphs represent true differences in the underlying dynamics, we could constrain 

projections and help ensure that even ensemble means will be meaningful and representative of 

observed dynamics by selecting only climate models whose causal graph is compatible with our 
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understanding of observations (Nowack et al. 2020). However, it is not immediately clear 

whether the differences we see between climate models and observations are due to differences 

in the underlying climate dynamics, statistical errors in the causal discovery algorithm, or 

confounding and autocorrelation effects that biased our prior scientific beliefs. 

Unfortunately, our performance analysis suggests that time series causal discovery 

algorithms such as LPCMCI and its earlier variants, while promising, are not yet robust methods 

for learning causal relationships between climate variables. According to our analysis, the 

algorithms appear to make mistakes for a number of reasons that could be addressed. First, the 

algorithms rely so strongly on the computational assumption of strong (adjacency) faithfulness 

that they do not include implementable provisions to prevent the algorithm from making 

contradictory decisions when the assumption is violated. Second, because the theory of 

autocorrelation effects is not fully developed, it is overlooked in some stages of the algorithm. In 

practice, this second concern appears to make these causal discovery algorithms somewhat 

susceptible to the same pitfalls as correlation analysis, leading them to sometimes treat the 

variables that correlate best, rather than the true causal drivers, as parents of the target variable 

during many stages of the causal discovery algorithms.  

To improve the performance of causal discovery algorithms for time series, there is an 

urgent need for theoretical (and computational) results regarding the implications of iid 

violations on (statistical) conditional independence testing, and also the implications of strong 

faithfulness violations and autocorrelation effects on the consistency of causal discovery 

algorithms. Furthermore, automated evaluation of causal discovery algorithms should be tailored 

to the type of problems researchers are likely to face. Until these goals are accomplished, we 
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hope that our analysis of the reasons for LPCMCI’s failures on this dataset will help usher in 

needed improvements to the algorithms.  

In the meantime, it is not possible to determine whether differences between discovered 

graphs, or between discovered graphs and prior beliefs about observations, are due to mistakes in 

the prior beliefs, mistakes in the causal discovery algorithm, or true differences in the underlying 

dynamics. Thus, while current causal discovery algorithms may still be useful for preliminary 

characterization of poorly-understood causal relationships or large ensembles of models with 

differing behavior, the results of causal discovery should be combined with domain-specific 

theory as much as possible, and should then be validated by checking testable implications in the 

data. Furthermore, if the results of causal discovery will be used as the underlying causal 

assumptions for causal effect estimation, then there is a need to state uncertainty in the 

discovered graph and to propagate that uncertainty through effect estimation (such an automated 

procedure is currently being developed).  

Even if causal discovery algorithms do not perform well, going through the exercise of 

formalizing implicit beliefs and assumptions in the form of a causal diagram is paramount for 

directing appropriate causal analysis of non-interventional data. We hope that our tuning 

experiments will provide a partial basis for selecting parameter values for targeted testing of 

analysis assumptions, specific causal relationships, and entire causal diagrams. 
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Conclusion 

Identifying the true causal drivers of climate disasters, such as the drought in the Sahel, is 

essential for prediction, mitigation, and prevention efforts in a changing climate. Unfortunately, 

it is not possible to perform randomized controlled experiments on large-scale climate 

phenomena in the observed climate system, so results in climate science are often derived from 

simulated experiments on individual climate models that may not represent the true climate 

system, from observations or large ensembles of climate models using correlation analyses or 

other statistical association techniques that may suffer from autocorrelation effects and 

confounding, or from theoretically-motivated narratives and storylines, or physically self-

consistent, plausible pathways (Shepherd 2019), that are contrived to explain observed or 

simulated associations.  

Initial explanations for the Sahel drought focused on the impacts of local land-use 

change. But since Giannini et al. (2003) showed that observed global sea surface temperature 

(SST) changes could cause simulated Sahel precipitation variability that correlates with 

observations, most prominent storylines explain Sahel rainfall using SST. In Chapter 1, we 

introduce in depth the theory necessary to understand one of the prominent storylines for 

multidecadal Sahel rainfall change. The narrative is that Sahel rainfall decreased in the 1970’s 

and 80’s because moisture supply from the North Atlantic decreased due to anthropogenic 

aerosol-induced cooling, while the moist static energy threshold for convection was 

simultaneously raised due to greenhouse gas-induced warming of the global tropics. According 

to this storyline, the rains (partially) recovered after the 80’s because moisture supply from the 

North Atlantic was able to meet the “ante” for convection after aerosol emissions reduced in 

response to clean air legislation, warming the North Atlantic. Other storylines attribute Sahel 
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rainfall variability to changes in the location of the rainband caused by the response of SST 

gradients to anthropogenic and volcanic aerosols (without a role for greenhouse gases) or to 

unforced SST variability internal to the climate system. Because all of these competing 

narratives were inspired in part by the observed statistical association between Sahel rainfall and 

global SST, it is difficult to differentiate between them in observational studies. 

In Chapter 2, we enter the debate on whether or not Sahel precipitation variability was 

caused by anthropogenic emissions, taking advantage of the release of the 5th phase of the 

Coupled Model Intercomparison Project (CMIP5), which is a large ensemble of climate models 

that for the first time includes “detection and attribution” simulations in which the coupled 

atmosphere-ocean system responds to prescribed combinations of historical anthropogenic 

emissions and natural (non-anthropogenic) radiative forcings. The simulations are interventional, 

allowing us to make causal claims about the total effects of different forcing agents on Sahel 

precipitation in climate models. Because all climate models make somewhat arbitrary 

simplifying “parameterizations” of climate physics that may induce biases into the resulting 

climatology, it is not possible to confidently generalize causal results from an individual climate 

model to the observed environment, but the mean over a large ensemble of simulations with 

different parameterization choices, like CMIP5, has a much better chance of representing the 

observed climate system. Of course, ensemble-wide biases are also prevalent, and the 

performance of the ensemble still must be validated against observations. 

Simulated ensemble-mean Sahel precipitation variability in CMIP5 correlates 

significantly with observations. To the extent that correlation and magnitude represent the 

performance of the simulations, we confirm that the ensemble-mean outperforms individual 

models. This is far from a complete validation of the model ensemble, but might optimistically 
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be interpreted to mean that true climate dynamics lie somewhere in between the dynamics of 

individual simulations in the ensemble.  

To the extent that simulations from CMIP5 can explain observed variability, we find that 

the ensemble would attribute observed rainfall changes to changing atmospheric aerosol 

concentrations alone – a finding that is consistent with other studies using CMIP5 (e.g. Polson et 

al. 2014). Specifically, CMIP5 does not support any coherent role for historical greenhouse gas 

emissions in driving Sahel precipitation variability, and suggests that changing historical 

anthropogenic and volcanic aerosol emissions contributed to both the observed drought and the 

observed recovery, with anthropogenic emissions mainly responsible for low-frequency 

variability. These claims are supported by the fact that simulated unforced internal variability 

does not explain the observations as skillfully as the ensemble mean response to anthropogenic 

aerosols. The results appear to be consistent with one of the alternate storylines of Sahel 

precipitation variability – that increasing and then decreasing anthropogenic and volcanic 

aerosols affect the interhemispheric temperature gradient which in turn shifts the rainband 

meridionally, affecting how much of the monsoon rains fall in the Sahel. However, we also find 

that the simulated processes in CMIP5 cannot account for observed variability because the 

magnitude of simulated low-frequency variability is much smaller than observed, even after bias 

correction for total variability. This is evidence that there are differences between observed and 

simulated dynamics, thus preventing responsible use of these simulations for attribution, or 

claims about the fraction of observed variability due to specific causal drivers. 

Nevertheless, because the correlation of CMIP5 ensemble-mean precipitation with 

observations is relatively high and significant relative to other simulated patterns, some studies 

(e.g. Hua et al. 2019) have been tempted to attribute observed historical rainfall change to 
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anthropogenic aerosol emissions, even concluding that anthropogenic aerosols likely were the 

primary driver of observed changes. Such a claim relies on the implicit assumption that model 

biases are more likely to affect the magnitude of simulated variability than the pattern, and 

explicitly on the assumption that there is no poorly-simulated real-world process that produces 

the same pattern of variability as the simulations. Clearly, all studies that standardize or focus 

solely on correlations (including Giannini and Kaplan 2019; Held et al. 2005) also rely on these 

assumptions.  

Additionally, even studies that acknowledge attribution is impossible when simulated 

variability differs in magnitude from observations (e.g. Undorf et al. 2018) still rely on both of 

these assumptions in the same way if they instead make claims about detection, or verifying that 

the simulated response truly reflects an observed process. The premise is that if the pattern of 

variability associated with a simulated process is statistically distinguishable from other 

processes, then finding that same pattern in observations—even at a different magnitude—is 

evidence that the simulated process occurred in the real world. However, when observed 

variability is larger than simulated variability, if for any reason the simulated signal cannot be 

simply scaled to match the magnitude of the pattern in observations, then the difference in 

magnitude inadvertently provides evidence of poorly-simulated distinct observed processes that 

could in theory just as easily explain the entire magnitude of the simulated pattern in 

observations. Thus, a violation of the first, implicit assumption implies a violation of the second, 

explicit assumption, and destroys confidence in the conclusion that the simulated process is 

detectable in observations.   

If simulated variability cannot explain the full magnitude of observed variability, one 

could assume (rather than attempting to verify) that the simulated experiments represent a subset 
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of observed processes. Under this assumption, all simulated processes must be taken at their 

actual magnitudes regardless of whether they correlate well with observations unless there is 

some physical, rather than statistical, reason to correct biases in the simulations. In this context, 

we may re-interpret the significance of the high correlation between observed and aerosol-driven 

ensemble-mean precipitation, seen in Chapter 2, as a quantification of our confidence that the 

response to anthropogenic aerosols, though small, enhances the intensity of the observed drought 

rather than inhibiting it or having a negligible effect. However, we cannot claim that the 

simulated mechanism is stronger in the observed record without finding evidence that some 

specific physical process should be amplified, and we cannot even take this as a confirmation 

that the storyline relating anthropogenic aerosols to Sahel precipitation is the dominant 

explanation for simulated rainfall variability without examining potential mediating variables to 

confirm the storyline.  

In Chapter 3, we begin to address these goals by examining simulated SST, which is an 

important causal driver or mediator in all of the prominent storylines for Sahel precipitation 

variability. This will not help us distinguish between the narratives for Sahel precipitation, but it 

will help us understand what physical processes would need to be strengthened to bring the 

magnitude of simulated variability into agreement with observations, and to begin to evaluate 

whether this would make sense physically.  

Atmospheric simulations with prescribed global SST matching observed historical 

variability from the next generation of this climate model ensemble (CMIP6) capture the full 

magnitude of Sahel precipitation variability for the first time, confirming the importance of 

global SST in driving observed Sahel rainfall variability, and allowing us to make attribution 

claims about observed historical Sahel precipitation variability based on these atmospheric 
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simulations. In coupled simulations with prescribed radiative forcings from both CMIP5 and 

CMIP6, on the other hand, we find that anthropogenic aerosols cause simulated NARI variability 

that correlates positively with observations but is smaller in magnitude. At face value, this 

appears to be consistent with our narrative and to suggest that the simulated SST response to 

anthropogenic aerosols is amplified in observations. However, we also surprisingly find that 

simulated variability in NARI’s component basins – the North Atlantic and the Global Tropics – 

is inconsistent with observations and all narratives relating anthropogenic aerosols to Sahel 

precipitation variability. It would appear that the positive correlation of observed NARI with the 

simulated NARI response to anthropogenic aerosols is to be due to compensating errors in the 

two basins. Given these results, we cannot claim that the mechanism of Sahel rainfall change 

from coupled simulations is amplified in observations because this would result in exacerbated 

unrealistic differences between simulated and observed SST in the Global Tropics. Instead, we 

must conclude that CMIP5 ensemble-mean Sahel precipitation correlates with historical 

observations despite an inability to reproduce the physical phenomena that were most important 

for the Sahel in the 20th century.  

Though the response of NARI to radiative forcing is the same in CMIP5 and CMIP6 and 

the atmospheric components of the CMIP6 climate models perform incredibly well when 

provided with observed SST, the ensemble-mean of Sahel precipitation in CMIP6 no longer 

correlates with observations. Using the atmospheric simulations, we show that the fast response 

to radiative forcing (not mediated by SST) is not a dominant contributor to observed 20th century 

Sahel precipitation variability because it is overwhelmed by the influence of observed global 

SST variability. But in the coupled simulations, relevant SST variability (according to NARI) is 
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much smaller than observed, so changes in the simulation of the fast responses to anthropogenic 

aerosols and greenhouse gases are likely to explain the differences between CMIP5 and CMIP6.  

Because the atmospheric simulations intervene on global SST, we may directly discuss 

the simulated causal effects of the observed SST record. Since these simulations appear to 

explain the pattern and full magnitude of observed low-frequency precipitation variability, we 

can claim with reasonable confidence that we will not be able to explain the root causes of 

observed Sahel precipitation variability until we can account for relevant observed SST 

variability around the globe. We use NARI throughout the chapter to represent the relevant 

causal information in the global SST field, and we can see that not only are SSTs from the 

coupled simulations with prescribed radiative forcing inconsistent with observed variability in 

both the North Atlantic and the Global Tropics, but also that no linear combination of simulated 

internal variability and the SST responses to anthropogenic aerosols and greenhouse gases could 

possibly bring simulated SST into alignment with observations in the North Atlantic, which is 

primarily responsible for low-frequency variability in NARI. As with precipitation, this means 

that we cannot determine whether observed multidecadal variability in the North Atlantic is 

anthropogenic or natural, and further work is required to explain the observed record.  

Accounting for observed NARI variability would be a start to explaining the root causes 

of Sahel precipitation, but may not be sufficient. We show using the atmospheric simulations that 

a linear relationship with NARI is not a complete substitute for the effects of global SST: while 

NARI matches the pacing of the simulated precipitation response to global SST in the 

atmospheric simulations, it only explains half of the simulated variability and cannot account for 

the magnitude of the drought. Thus, though scientific consideration of global SST and NARI in 

particular as drivers of Sahel precipitation has improved scientific understanding of Sahel rainfall 
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variability, a more complete characterization of teleconnections affecting Sahel rainfall will now 

be necessary to explain observed variability. Unfortunately, we cannot identify other important 

and poorly-simulated ocean basins using the methodology used in this chapter because there are 

almost no ensemble simulations that prescribe the temperature of different ocean basins 

independently. 

In Chapter 4, we attempt to characterize the simulated impacts of SST variability in 

individual ocean basins on Sahel precipitation using available non-interventional CMIP6 

simulations by turning to a novel technique known as causal discovery, which is designed to 

extract causal information from non-interventional data when possible. Part of the process 

involves characterizing causal relationships between prominent modes of internal climate 

variability that affect SST in the ocean basins we analyze, allowing this approach ideally to 

identify and address confounding and reduce autocorrelation effects which could otherwise lead 

standard statistical techniques to mistake confounded covariates for causal drivers.  

To the extent that prominent physical narratives (and storylines) are contrived to explain 

observed correlations without explicit regard for confounding or autocorrelation effects, we 

would expect the output of causal discovery to meaningfully conflict with them to some degree. 

Such conflicts could help refine our scientific understanding of causal relationships, or could 

dramatically redefine the set of prominent narratives by identifying (parts of) storylines that are 

actually inconsistent with the data that inspired them, and instead proposing alternate causal 

connections that could inspire physical storylines and narratives more likely to represent the 

observed climate system. Unfortunately, we find that current causal discovery algorithms for 

non-linear time series are prone to make mistakes that limit the advantages of causal discovery, 

tempering our confidence in some of the results and preventing us from making many strong 
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conclusions about observations. Nevertheless, there are some things we can learn from the 

results.  

In each examined climate simulation, the Global Tropics – a key component of NARI – 

does not have any direct effect on Sahel precipitation, while individual ocean basins within the 

Global Tropics directly impact Sahel rainfall without mediation by NARI. It is possible that 

taking a spatial-mean might not be ideal for capturing the proposed causal mechanism that 

relates the Global Tropics to the Sahel. Due to the uncertainty of our results, more work would 

be needed to verify that the Global Tropics, even as it is currently defined, actually has no direct 

impact on Sahel precipitation variability. Nevertheless, we are able to verify that NARI does not 

mediate the effects of individual ocean basins on simulated Sahel rainfall even when we replace 

or combine the uncertain discovered causal structure relating different ocean basins to each other 

with current theory and storylines. If there is a direct effect of NARI on Sahel precipitation, the 

fact that the tropical ocean basins that directly impact the Sahel also contribute to simulated 

NARI variability implies that our estimation of the NARI teleconnection in Chapter 3 is likely 

confounded, with additional implications for estimation of PnonNARI. Regardless, we conclude that 

we may not be able to explain Sahel precipitation variability without explaining variability in the 

Mediterranean Sea and in individual tropical ocean basins, even when variability in different 

basins cancels in the global tropical mean.  

Regarding internal variability that might confound relationships between individual 

ocean basins and Sahel rainfall, we find that the discovered causal structure for a given climate 

model is likely to differ from other climate simulations. Often the differences can be such that 

the climate simulations are not compatible with each other under the assumption of acyclicity, 

which is required for most current methods of causal discovery and causal effect estimation. It is 
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not always clear to what degree these discrepancies reflect differences in the dynamics between 

the climate models rather than mistakes in the causal discovery output resulting from the 

statistical limitations of finite data. Nevertheless, to the extent that differences in the structure of 

simulated causal relationships exist and affect the appropriate mathematical expression for 

estimating the chosen causal effect, we conclude that it may be advantageous or even necessary 

to examine individual simulations rather than the ensemble mean when trying to estimate a 

causal effect from non-interventional simulations.19  

At the conclusion of this dissertation, the correct narrative and storyline for historical 

Sahel precipitation variability is still an open question. We hope that future work will continue to 

attempt to distinguish between different storylines by examining mediating variables related to 

the proposed mechanism of variability. We have particular interest in distinguishing between the 

importance of local instability and large-scale dynamics, and in determining the role of moisture 

supply. We look forward to the continuing steady efforts of the climate science community to 

determine the degree to which observed North Atlantic multidecadal variability was driven by 

anthropogenic and volcanic radiative forcing, which would be a first step toward attribution of 

Sahel precipitation. There is an urgent need to improve simulations of SST so that the 

combination of the response to radiative forcing and internal variability is consistent with 

observations. Of course, if past variability was mostly internal, then while truly capturing the 

physical processes important for past variability will be paramount for near-term predictions of 

Sahel rainfall even in a warmer world, century-long future projections might still diverge under 

 
 
19 When we are interested in teleconnections from individual ocean basins to Sahel rainfall, available atmospheric 
simulations with prescribed SST must be considered non-interventional because they prescribe global observed 
historical SST variability, and so variability in different ocean basins is confounded by observed radiative forcing 
and interactions between ocean basins. 



 

 195 

the dominant control of anthropogenic emissions. To gain trust in future projections, we must 

specifically address the simulation of the SST and fast precipitation responses to radiative 

forcing, since our results suggest that these simulated processes may be inconsistent with the 

observed environment even if they are not important for explaining the historical record.  

We take some lessons from this work going forward. The evolution throughout the course 

of this dissertation of our perception of the success of CMIP in capturing observed West African 

Monsoon dynamics tells a cautionary tale, both for the evaluation of climate models and for the 

validation of explanatory narratives and storylines. Though having a physically-plausible 

explanation for the way in which two correlated variables might be related (as we did for 

anthropogenic aerosols and Sahel precipitation in Chapter 2) does increase the likelihood that a 

simulated or observed association is causal, it is essential to confirm the true mechanisms of 

simulated and observed variability. Storylines inspired by observed correlations cannot be 

evaluated against those same observations, and ensemble-means of simulations that prescribe the 

hypothesized cause variable are not much better, especially when magnitude is ignored. 

Compensating errors between mediating variables (as we saw for the components of NARI in 

Chapter 3) or between simulations (as suggested might be likely in Chapter 4) might mask 

important differences between the data and the theory, and autocorrelation effects and 

confounding complicate analysis of non-interventional simulations and observations (as shown 

for NARI in Chapter 4). Testing our storylines robustly either requires a huge number of CMIP 

simulations that intervene on all intermediate variables of interest, or the use of causal discovery 

and causal effect estimation to extract causal information from existing CMIP simulations and 

observations.  



 

 196 

There is a lot of work that still needs to be done to improve the performance of causal 

discovery algorithms for non-linear time series. Specifically, the algorithms would benefit from 

theoretical characterization of the implications of iid and faithfulness violations that could 

motivate provisions in the algorithms to attempt to detect such violations and prevent them from 

having cascading effects on the resulting causal graph. Nevertheless, despite the struggles of 

current causal discovery algorithms, thinking informed by causal inference is necessary to glean 

needed causal information about the climate in the absence of controlled experiments. 

Correlation, regression, empirical components, fingerprinting, and all methods for detecting and 

quantifying causal effects from non-interventional data implicitly rely on assumptions that are 

just as strong as the assumptions of causal effect estimation, and that may not always hold. 

Because differences in these assumptions affects the appropriate way to estimate a causal effect 

from observational data, all observational studies would benefit from first formalizing the 

hypothesized causal structure of the data.  
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Appendix A. Supplement for Chapter 2: The Effects of 

Anthropogenic and Volcanic Aerosols and Greenhouse 

Gases on Twentieth Century Sahel Precipitation in 

CMIP5 

Fig. A.1 shows the scaled power spectra (PS) from Figure 2.5(c) and (d) in the style of 

panels (a) and (b), where the PS for each model (averaged over the runs for that model, and in 

the case of the piC, over different sections of the long piC run) are represented separately, 

colored by the rainfall bias of that model’s ALL runs relative to observations. While the 

correction seems to completely get rid of the stratification by total rainfall bias at medium and 

low frequency in the ALL simulations, it seems to overcorrect the power in the simulations of 

the driest models at high frequency in the ALL simulations, and at all frequencies in the piC 

simulations. This is perhaps not surprising, as when a model is particularly dry, normal 

variability may make up a larger fraction of the total rainfall. As this correction is imperfect, we 

do not use it in the calculation of the MMM; rather, only to facilitate comparison of the models 

in Figure 2.5. 
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Fig. A.1: Scaled Stratification: Same as Figure 2.5(c) and (d), but displayed as in panels (a) 
and (b). Power spectra (PS) of observed 20th century Sahel rainfall (solid black, a) and the 
residual after removing the ALL MMM (black dotted-dashed, b), and mean PS by model of 
individual ALL (a) and piC (b) runs which were first rescaled by model so their 
corresponding ALL runs match 20th century observed JAS rainfall, colored by original 
simulated average JAS rainfall bias of the ALL runs compared to 20th century observations, 
where observed rainfall is grey, wet models are turquoise, and dry models are brown. piC PS 
are averaged over multiple segments of the simulations. 

Tbl. A.1 displays the models and runs used in this study, as well as their institution 

classifications. 

Dry observed wet 
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Tbl. A.1: Models and runs used in this chapter for the different forcing experiments. “p” is 
the physics number – different physics numbers within the same model are treated as 
different models. Blank spaces exist in the chart where there were no runs from that model 
under that forcing experiment. *no accompanying piC run. Doubled lines divide different 
research institutions. 

  

 ALL  AA GHG NAT 

Models p 

Num 
runs 
used  runs excluded reason p 

Num 
runs 
used  

runs 
excluded reason p 

Num 
runs 
used  

runs 
excluded reason p 

Num 
runs 
used  

ACCESS1-0  1 1             
ACCESS1-3  1 1       1 1   1 3 
bcc-csm1-1  1 3       1 1   1 1 
bcc-csm1-1-m  1 3             
BNU-ESM  1 1       1 1   1 1 
CanCM4*  1  all no data 

before 1961 
          

CanESM2  1 5  4 5   1 5   1 5 

CCSM4  1 6   10 3   1 3   1 4 
    14          

CESM1-BGC  1 1    2 r6i1p14 access 
error 

      
CESM1-CAM5  1 3   10 3  1 1 r1i1p1, 

r2i1p1 
contain 
NaN 

1 3 
CESM1-CAM5-1-FV2*  1 4           
CESM1-FASTCHEM  1 3             
CESM1-WACCM  1 1 r4i1p1, r3i1p1, r2i1p1 no data 

before 1955 
          

CMCC-CESM  1 1            
CMCC-CM  1 1             
CMCC-CMS  1 1             
CNRM-CM5  1 10       1 6   1 6 
CNRM-CM5-2  1 1             
CSIRO-Mk3-6-0  1 10   4 5   1 5   1 5 
EC-EARTH  1 1             
FGOALS-g2  1 4 r2i1p1 no data 

before 1902 
1 1   1 1   1 3 

FGOALS-s2  1 3            
FIO-ESM  1 3             
GFDL-CM3  1 5   1 3   1 3   1 3 
GFDL-ESM2G  1 3             
GFDL-ESM2M  1 1   5 1   1 1   1 1 

GISS-E2-H  1 6   107 5   1 5   3 5 
2 5   310 5       1 5 

GISS-E2-H-CC  1 1             

GISS-E2-R  
1 6   107 5   1 5   3 5 
2 5   310 5       1 5 
3 5             

GISS-E2-R-CC  1 1             
HadCM3* 1 10             
HadGEM2-AO  1 1             
HadGEM2-CC  1 1 r3i1p1, r2i1p1 no data 

before 1960 
          

HadGEM2-ES  1 4      1 4   1 4 
inmcm4  1 1             
IPSL-CM5A-LR  1 6   3 1   1 3   1 3 
IPSL-CM5A-MR  1 3       2 3     
IPSL-CM5B-LR  1 1             
MIROC-ESM  1 3       1 3   1 3 
MIROC-ESM-CHEM  1 1       1 1   1 1 
MIROC4h 1  all no data 

before 1950 
          

MIROC5  1 5            
MPI-ESM-LR  1 3             
MPI-ESM-MR  1 3             
MPI-ESM-P  1 2             

MRI-CGCM3  1 3       1 1   1 1 
2 2             

MRI-ESM1* 1 1             
NorESM1-M  1 3   1 1   1 1   1 1 
NorESM1-ME  1 1             
Total Models used 51 14 21 22 
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Appendix B. Supplement for Chapter 3: Deficiencies in Simulated 

Low-Frequency Sahel Precipitation Variability from 

CMIP5 and CMIP6 

The following tables enumerate the simulations used in this paper. 

Tbl. B.1: CMIP6 AMIP (atmosphere-only) simulations used in this chapter. 

 
 
 
 
 
  

  Number of Runs Used 
Institutions Models amip-hist amip-piF 
CCCma CanESM5p2 10 3 

CNRM-
CERFACS 

CNRM-CM6-1p1 10 1 
CNRM-CM6-1-HRp1 1 

 

CNRM-ESM2-1p1 1 
 

IPSL IPSL-CM6A-LRp1 20 1 
MRI MRI-ESM2-0p1 5 1 
NCAR CESM2p1 3 1 
 

Total Runs Used 50 7  
Total Models Used 7 5  
Total Institutions Used 5 5 



 

 215 

Tbl. B.2: Fully coupled CMIP6 simulations used in this chapter. Where different for 
precipitation and SST, the two are presented in that order separated by a slash. *piC 
simulations extended past 100 years by repeating the first 14 values. MIROC-ES2H are 
excluded for only containing one year (1850). NCC_NorESM2-LM r1i1p1f1 excluded for 
precipitation because it begins in 1950. 

  Number of Runs Used 
Institution Model ALL  AA NAT GHG 

BCC BCC-CSM2-MR p1 3 3 3 3 
BCC-ESM1 p1 3    

CCCma 
CanESM5 p1 25 15 25/10 25 
CanESM5 p2 40 15 25/0 25 
CanESM5-CanOE p2 3    

CNRM-
CERFACS 

CNRM-CM6-1 p1 29 10 10 10 
CNRM-CM6-1-HR p1 1    
CNRM-ESM2-1 p1 10    

IPSL 
IPSL-CM5A2-INCA p1 1/0    
IPSL-CM6A-LR p1 32 10 10 10 
IPSL-CM6A-LR-INCA p1 1    

MIROC MIROC-ES2L p1 31    
MIROC6 p1 50 3 50/0 3 

MOHC 
HadGEM3-GC31-LL p1 5 4 4 4 
HadGEM3-GC31-MM p1 4    
UKESM1-0-LL p1 16    

MRI MRI-ESM2-0 p1 12 3 5/3 3 

NASA-
GISS 

GISS-E2-1-G p1* 28 5 25/5 6 
GISS-E2-1-G p3* 9    
GISS-E2-1-G p5 9    
GISS-E2-1-G-CC p1 1    
GISS-E2-1-H p1 15    
GISS-E2-1-H p3 5    
GISS-E2-1-H p5 5    
GISS-E2-2-H p1 5    

NCAR 

CESM2 p1 11 2 3 3 
CESM2-FV2 p1 3    
CESM2-WACCM p1 3    
CESM2-WACCM-FV2 p1 3    

NCC 
NorCPM1 p1 30    
NorESM2-LM p1 2/3 3/1 3/0 1 
NorESM2-MM p1 3    

NOAA-
GFDL 

GFDL-CM4 p1 1    
GFDL-ESM4 p1 3 1 3 1 

 Total Runs Used 402 74/2 169/51 93/95 
 Total Models Used 34/3 12 13/9 12 
 Total Institutions Used 11 11 11/9 11 
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Tbl. B.3: Fully-coupled CMIP5 simulations used in this chapter for precipitation. When the 
simulations for SST differ, they are presented after a slash. CESM1-CAM5-1-FV2 p1 are 
excluded from SST data because there was no appropriate mask available in the fixed data. 

Two of the CESM1-CAM5 p1 
simulations contain a couple 
NaN values around 1960. 
Precipitation from CCSM4 
r6i1p14 is excluded because of 
a downloading error. 

 

 Number of Runs Used 
Institution Model ALL AA NAT GHG 

CAS FGOALS-g2 p1 5 1 3 1 
FGOALS-s2 p1 3    

CCCma CanESM2 p1 5  5 5 
CanESM2 p4  5   

CSIRO CSIRO-Mk3-6-0 p1 10  5 5 
CSIRO-Mk3-6-0 p4  5   

IPSL 

IPSL-CM5A-LR p1 6/5  3 3 (0) 
IPSL-CM5A-LR p2    2 (5) 
IPSL-CM5A-LR p3  1   
IPSL-CM5A-MR p1 3  3  
IPSL-CM5A-MR p2    3 
IPSL-CM5B-LR p1 1    

NASA-
GISS 

GISS-E2-H p1 6  5 5 
GISS-E2-H p107  5   
GISS-E2-H p2 5    
GISS-E2-H p3   5  
GISS-E2-H p310  5   
GISS-E2-H-CC p1 1    
GISS-E2-R p1 6  5 5 
GISS-E2-R p107  5   
GISS-E2-R p2 5    
GISS-E2-R p3 5  5  
GISS-E2-R p310  5   
GISS-E2-R-CC p1 1    

NCAR 

CCSM4 p1 6  4 3 
CCSM4 p10  3   
CCSM4 p14  2/0   
CESM1-BGC p1 1    
CESM1-CAM5 p1 3  3/0 3 
CESM1-CAM5 p10  3   
CESM1-CAM5-1-FV2 p1 4/0    
CESM1-FASTCHEM p1 3    
CESM1-WACCM p1 1    
CMCC-CESM p1 1    

NCC NorESM1-M p1 3 1 1 1 
NorESM1-ME p1 1    

NOAA-
GFDL 

GFDL-CM3 p1 5 3 3 3 
GFDL-CM2 p1 0/10    
GFDL-ESM2G p1 3    
GFDL-ESM2M p1 1  1 1 
GFDL-ESM2M p5  1   

 Total Runs Used 94/99 45/43 51/48 40 
 Total Models Used 26 14/13 14/13 13 
 Total Institutions Used 8 8 8 8 


