Zhou et al. BMC Bioinformatics (2019) 20:666

https://doi.org/s12859-019-3303-6

BMC Bioinformatics

RESEARCH ARTICLE Open Access

Base-pair ambiguity and the kinetics of
RNA folding

Guangyao Zhou'"

Check for
updates

, Jackson Loper? and Stuart Geman?

Abstract

Background: A folding RNA molecule encounters multiple opportunities to form non-native yet energetically
favorable pairings of nucleotide sequences. Given this forbidding free-energy landscape, mechanisms have evolved
that contribute to a directed and efficient folding process, including catalytic proteins and error-detecting
chaperones. Among structural RNA molecules we make a distinction between “bound” molecules, which are active as
part of ribonucleoprotein (RNP) complexes, and “unbound,” with physiological functions performed without
necessarily being bound in RNP complexes. We hypothesized that unbound molecules, lacking the partnering
structure of a protein, would be more vulnerable than bound molecules to kinetic traps that compete with native
stem structures. We defined an “ambiguity index"—a normalized function of the primary and secondary structure of
an individual molecule that measures the number of kinetic traps available to nucleotide sequences that are paired in
the native structure, presuming that unbound molecules would have lower indexes. The ambiguity index depends on
the purported secondary structure, and was computed under both the comparative (“gold standard”) and an
equilibrium-based prediction which approximates the minimum free energy (MFE) structure. Arguing that kinetically
accessible metastable structures might be more biologically relevant than thermodynamic equilibrium structures, we
also hypothesized that MFE-derived ambiguities would be less effective in separating bound and unbound molecules.

Results: We have introduced an intuitive and easily computed function of primary and secondary structures that
measures the availability of complementary sequences that could disrupt the formation of native stems on a given
molecule—an ambiguity index. Using comparative secondary structures, the ambiguity index is systematically smaller
among unbound than bound molecules, as expected. Furthermore, the effect is lost when the presumably more
accurate comparative structure is replaced instead by the MFE structure.

Conclusions: A statistical analysis of the relationship between the primary and secondary structures of non-coding
RNA molecules suggests that stem-disrupting kinetic traps are substantially less prevalent in molecules not
participating in RNP complexes. In that this distinction is apparent under the comparative but not the MFE secondary
structure, the results highlight a possible deficiency in structure predictions when based upon assumptions of
thermodynamic equilibrium.

Keywords: Non-coding RNA, RNA folding kinetics, Comparative secondary structure, Minimum free energy,
Thermodynamic equilibrium, Self-splicing introns, Ribonucleoproteins

Background

Discoveries in recent decades have established a wide
range of biological roles served by RNA molecules,
in addition to their better-known role as carriers of
the coded messages that direct ribosomes to construct
specific proteins. Non-coding RNA molecules participate
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in gene regulation, DNA and RNA repair, splicing and
self-splicing, catalysis, protein synthesis, and intracellu-
lar transportation [1, 2]. The precursors to these actions
include a multitude of processes through which primary
structures are transformed into stable or metastable sec-
ondary and tertiary structures. There are many gaps in
our knowledge, but accumulating evidence (cf. [3—8]) sug-
gests that the full story typically includes cotranscriptional
explorations of secondary and tertiary structures, possibly
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accompanied by finely regulated transcription speeds, as
well as a selection of proteins that may participate as stabi-
lizers, catalysts, partners in a ribonculeoprotein complex,
or chaperones to guide the process and detect errors. It is
not surprising, then, that although many non-coding RNA
molecules can be coxed into folding, properly, in artifi-
cial environments, the results rarely if ever match in vivo
production in terms of speed or yield [3, 4, 9, 10].

Nevertheless, given the infamously rugged free-energy
landscape of all but the smallest RNA molecules, there is
good reason to expect that many of the large structural
RNA molecules evolved not only towards a useful tertiary
structure but also, at the same time, to help navigate the
energy landscape. We reasoned that this process, a kind of
co-evolution of pathway and structure, might have left a
statistical signature, or “tell,” in the relationships between
primary and native secondary structures. The primary
structures of RNA molecules typically afford many oppor-
tunities to form short or medium-length stems,! most
of which do not participate in the native structure. This
not only makes it hard for the computational biologist to
accurately predict secondary structure, but might equally
challenge the biological process to avoid these kinetic
traps. Once formed, they require a large amount of energy
(not to mention time) to be unformed.

Taking this kinetic point of view a step further, we
conjectured that evolutionary pressures would tend to
suppress the relative prevalence of ambiguous pairings,
meaning available complementary subsequences, more
for those subsequences that include paired nucleotides in
the native structure than for equally long subsequences
that do not. The idea being that ambiguities of stem-
participating subsequences would directly compete with
native stem formations and therefore be more likely to
inhibit folding. Here, we do not mean to suggest that these
particular adaptive mechanisms would obviate the need
or advantages of other adaptations|3, 5, 11, 12], including
the reliance on proteins as both nonspecific and specific
cofactors. Herschlag [3] (and many others since) argued
convincingly that thermodynamic considerations applied
to an unaccompanied RNA molecule could explain nei-
ther the folding process nor the stability of the folded
product, explicitly anticipating multiple roles for protein
cofactors. It is by now apparent that many mechanisms
have evolved, and are still evolving, to support repeatable
and efficient RNA folding[3, 5, 11-15]. We are suggesting
that some of these, perhaps among the earliest, might be
visible upon close examination of relationships between
the availability of ambiguous pairings for stem structures
to those for non-stem structures. Shortly, we will intro-
duce a formal definition of this relative ambiguity, which

! By which we will mean sequences of G-U (“wobble pairs”) and/or
Watson-Crick pairs.

Page 2 0f 13

will be a molecule-by-molecule difference between the
average ambiguity counts in and around native-structure
stems and the average counts from elsewhere on the
molecule. For now, we note that this measure, which we
will call the ambiguity index and label d, depends on both
the primary (“p”) and native secondary (“s”) structures
of the molecule, which we emphasize by writing d(p, s)
rather than simply d.> To the extent that for any given
native structure there is evolutionary pressure to mini-
mize relative stem ambiguities, we expect to find small
values of the ambiguity indexes.

But it would be a mistake to apply this line of thinking
indiscriminately. The pathway to function for the many
RNA molecules that operate as part of a larger, com-
posite, complex of both RNA and protein components—
the ribonucleoproteins, is considerably more complicated.
The assembly of these complexes is far from fully worked
out, but it stands to reason that the structures and fold-
ing of the component RNA molecules are influenced by
the conformations of the accompanying proteins [8]. In
such cases, the folding kinetics of the RNA molecule, as
it might proceed in isolation and based only on thermo-
dynamics and the free-energy landscape, may have little
relevance to the in vivo assembly and arrival at a ter-
tiary structure. Hence we will make a distinction between
RNA molecules that are components of ribonucleopro-
teins (which we will refer to as “bound” RNA molecules)
and RNA molecules which can function without being
bound in a ribonucleoprotein complex (which we will
refer to as “unbound” RNA molecules). The distinction
is more relative than absolute. For example, many of the
Group II introns both self-splice and reverse-splice, and
both processes involve protein cofactors, some of which
include a tight ribonculeoprotein complex with the mat-
urase protein [7]. Nevertheless, we will treat these (as
well as the Group I introns) as examples of “unbound,’
since most, if not all, can function without being bound
to a specific protein [10], and since there is evidence that
the adaptation of preexisting proteins to function in the
splicing process evolved relatively recently [16].

The advantage of the two categories, bound and
unbound, is that we can avoid making difficult abso-
lute statements about the values of ambiguity indexes,
per se, and instead focus on comparisons across the
two populations. We reasoned that molecules from the
bound (ribonculeoprotein) families would be less sensi-
tive to the kinetic traps arising from ambiguities of their
stem-producing subsequences than molecules from the
unbound families. We therefore expected to find smaller
ambiguity indexes in the unbound families. Recall now

2Native secondary structures often include so-called pseudoknots, which are
sometimes excluded, or handled separately, for computational efficiency.
Pseudoknots are formed from paired complementary subsequences and
therefore included, by definition, in the ambiguity index.



Zhou et al. BMC Bioinformatics (2019) 20:666

that the ambiguity index depends on both the primary and
native secondary structures of the molecule, d = d(p,s),
which raises the question—which secondary structure s
should be used in the calculation? Our main conclusions
were drawn using comparative secondary structures [17,
18] available through the RNA STRAND database[19],
a curated collection of RNA secondary structures which
are widely used as reference structures for single RNA
molecules[20-22].

But this dependency on s also afforded us the oppor-
tunity to make comparisons to a second, much-studied,
approach to secondary structure prediction: equilibrium
thermodynamics. The premise, namely that the struc-
tures of non-coding RNA molecules in vivo are in ther-
mal equilibrium, is controversial. Nevertheless, varia-
tions on equilibrium methods constitute the prevailing
computational approaches to predicting secondary struc-
ture.> Typically, these approaches use estimates of the
conformation-dependent contributions to the free-energy
and dynamic-programming type calculations to produce
either samples from the resulting equilibrium distribu-
tion or minimum free energy (MFE) secondary structures
[23, 24]. Yet the biological relevance of equilibrium and
minimum energy structures has been a source of misgiv-
ings at least since 1969, when Levinthal pointed out that
the time required to equilibrate might be too long by many
orders of magnitude [25]. In light of these observations,
and considering the "frustrated" nature of the folding
landscape, many have argued that when it comes to struc-
ture prediction for macromolecules, kinetic accessibility is
more relevant than equilibrium thermodynamics [25-29].
In fact, a metastable state that is sufficiently long-lived and
accessible might be biologically indistinguishable from an
equilibrium state. Since the same issues of kinetic acces-
sibility and the roles of kinetic traps that are behind these
controversies are also behind our motivation to explore
ambiguities, we also used the MFE secondary structure s/,
as estimated using standard packages, to compute a sec-
ond ambiguity index for each RNA molecule: d(p,s’). In
this way, we could look for differences, if any, between
conclusions based on the comparative structure and those
based on the MFE structure.

The choice of RNA families to represent the two groups
was limited by the availability of reliable comparative
secondary structures and the belief that the ambiguities
captured by our index would be more relevant in large
rather than small RNA molecules. With these consider-
ations in mind, we chose the transfer-messenger RNAs
(tmRNA), the RNAs of signal recognition particles (SRP
RNA), the ribonuclease P family (RNase P), and the 16s

3Molecular dynamics, which might be called “agnostic” to the question of
equilibrium, has proven to be exceedingly difficult, and has not yet yielded a
useful tool for generic folding of large molecules.
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and 23s ribosomal RNAs (16s and 23s rRNA) as represen-
tatives of “bound” (ribonucleoprotein) RNA molecules,
and the Group I and Group II introns (sometimes referred
to as self-splicing introns) as representatives of “unbound”
molecules. See Methods for more details about the data
set.

In summary, we will make a statistical investigation
of the ambiguity index, as it varies between two groups
of molecules (bound and unbound) and as it is defined
according to either of two approaches to secondary
structure prediction (comparative and MFE). In line
with expectations, we will demonstrate that unbound
molecules have systematically lower ambiguity indexes,
when computed using comparative secondary structures,
than bound molecules. The effect is strong: the average
ambiguity in each unbound family is lower than the aver-
age ambiguity in every bound family. And the effect is
still visible at the single-molecule level: a randomly cho-
sen molecule can be accurately classified as belonging to
the unbound group versus the bound group by simply
thresholding on the ambiguity index (ROC area 0.81). We
will also show that the utility of the ambiguity index to
distinguish unbound from bound molecules disappears
when the MFE structure is substituted for the comparative
structure in computing the index. A related observation
is that the ambiguity index of an unbound molecule can
be used to classify whether the index itself was derived
from the comparative versus MFE structure. To the extent
that the comparative secondary structures are more accu-
rate, these latter results might be interpreted as adding to
existing concerns about the relevance of equilibrium RNA
structures.

By using comparisons as opposed to absolute statis-
tics, and various normalizations, and by favoring non-
parametric (distribution-free) statistical methods, we
have done our best to avoid subtle biases and hidden
assumptions that would explain or at least influence the
results. But more confidence would come with more data,
especially more RNA families of both the ribonucleopro-
tein type and those that typically function without first
forming tight assemblies with proteins. Given the rate of
new discoveries and the rapid growth of accessible data
sets, opportunities can not be far away.

The remainder of the paper is organized as follows:
In the Results section we first develop some basic nota-
tion and definitions, and then present an exploratory and
largely informal statistical analysis. This is followed by for-
mal results comparing ambiguities in molecules drawn
from the unbound families to those from the bound fami-
lies, and then by a comparison of the ambiguities implied
by secondary structures derived from comparative analy-
ses to those derived through minimization of free energy.
The Results section is followed by Discussion and Con-
clusions, in which we will recap the main results, further
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speculate about their interpretations, suggest refinements
in the index that might highlight the effects of cotranscrip-
tional folding and the varying thermodynamic stability of
stems of different lengths, and review how our results bear
on current thinking about RNA folding and structure. And
finally, in Methods, we include detailed information about
the data and its (open) source, as well as links to code
that can be used to reproduce our results or for further
experimentation.

Results

Basic Notation and the Ambiguity Index

Consider a non-coding RNA molecule with N
nucleotides. Counting from 5 to 3/, we denote the
primary structure by

° ypN)rWherepi S {ArGyCy u}’l = 1:' tT yN
1

p=p1,p2--

and the secondary structure by

s= {(j, k) : nucleotides j and k are paired, 1 <j < k < N}
()

Recall that we are interested in investigating the ambiguity
of different subsequences in the RNA molecule. To for-
malize the notion of a subsequence, we define the segment
at location i to be

P; = (pi, pi+1, piv2, piv3) fori=1,2,...,N—3 (3)

In other words, the segment at location i is the sequence of
four consecutive nucleotides that starts at i and proceeds
from 5’ to 3'. There is no particular reason for using seg-
ments of length four, and in fact all qualitative conclusions
are identical with segment lengths three, four, or five, and
quite likely, many other larger lengths.

To study the ambiguity of a particular segment, we are
interested in counting the locations which could feasibly
form a stem with the given segment. We start by identify-
ing which locations are viable to pair with P;, based just on
location and not nucleotide content. The only constraint
on location is that an RNA molecule cannot form a loop of
two or fewer nucleotides. Let A; be the set of all segments
that are potential pairs of P;:

A = {Pj :1 <j <i— 7 (segment precedes i) or

4
i+7 <j <N — 3 (segment follows i)} @)

We can now define the local ambiguity function,

a(p) = (ai1(p),--- ,an-3(p))

which is a vector-valued function of the primary structure
p, and quantifies the ambiguities at different locations of
the molecule. The vector has one component, a;(p), for
each segment P;, namely the number of feasible segments
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that are complementary to P; (allowing for G-U wobble
pairings in addition to Watson-Crick pairings):

ai(p) = #{P € A, : P and P; are complementary}
=#{P; € Ai : Pikpj5-k) € {(A,U), (U, A),
(G, O, (C,6), (G, U, (U, G)},
k=1,...,4}
(5)

Notice that a;(p) is independent of secondary structure s.
It is simply the total number of subsequences that could
form a stem structure with (p;, pi+1, Pi+2, Pi+3)-

We want to explore the relationship between ambigu-
ity and secondary structure. We can do this conveniently,
on a molecule-by-molecule basis, by introducing another
vector-valued function, this time depending only on a
purported secondary structure. Specifically, the new func-
tion assigns a descriptive label to each location (i.e. each
nucleotide), determined by whether the segment at the
given location is fully paired, partially paired, or fully
unpaired.

Formally, given a secondary structure s, as defined in Eq
(2), and a location i € {1,2,...,N — 3}, let fi(s) be the
number of nucleotides in P; that are paired under s:

fils)=+# {j € P;: (jk) e sor(k,j) € s, for some 1<k < N}
(6)

Evidently, 0 < fi(s) < 4. The “paired nucleotides function”
is then the vector-valued function of secondary structure
defined as f(s) = (fi(s),...,fn—3(s)). Finally, we use f to
distinguish three types of locations (and hence three types
of segments): location i will be labeled

single if fi(s) =0
double if fi(s) = 4
transitional if 0 < fi(s) < 4

i=1,2,---

In words, given a secondary structure, location i is sin-
gle if none of the four nucleotides (p;, pi+1, pit2, Pi+3) are
paired, double if all four are paired, and transitional if 1, 2,
or 3 are paired.

A First Look at the Data: Shuffling Nucleotides

Our goals are to explore connections between ambiguities
and basic characteristics of RNA families, as well as the
changes in these relationships, if any, when using compar-
ative as opposed to MFE secondary structures. For each
molecule and each location i, the segment at i has been
assigned a “local ambiguity” a;(p) that depends only on
the primary structure, and a label (single, double, or tran-
sitional) that depends only on the secondary structure.
Since the local ambiguity, by itself, is strongly depen-
dent on the length of the molecule, and possibly on other
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intrinsic properties, we define a relative ambiguity index:
“dr_s(p,s)” which depends on both the primary (p) and
purported secondary (s) structures:

YN a6 YN a(p)c e (s)
ijias c};ran(s) o ij\i_OS C;ingle ®
8)
tran

ingl T
where we have used ¢;"*" and C;lng ¢ for indicating whether
location i is transitional or single respectively. In other
words, foreachi=1,2,...,N —3

drs(p,s) =

1, if location i is transitional
tran _ ’
@ = { 0, otherwise ©)
single, .| 1, if location i is single
- ©= { 0, otherwise (10)

In short, the T-S ambiguity index is the difference in the
averages of the local ambiguities at transitional sites and
single sites.

We have also experimented with a second, closely
related, index dp_s(p,s), in which averages over dou-
ble locations replace averages over trausitional locations.
Since the definition is somewhat complicated by the
observation that local ambiguities at double locations are
almost always greater than one (the exceptions being cer-
tain configurations with bulges), and since the results
using dp_gs mirror those using dr_s (albeit somewhat
weaker), we will focus exclusively on dr_g. Results using
dp_s can be accessed along with data and code, as
explained in the Methods section. (Since there is only one
index we could write d in place of d7_g, but chose to retain
the subscript as a reminder of the source.)

Thinking kinetically, we might expect to find relatively
small values of dr.g, at least for molecules in the unbound
families, as discussed in Background. One way to look at
this is that larger numbers of partial matches for a given
sequence in or around a stem would likely interfere with
the nucleation of the native stem structure, and nucleation
appears to be a critical and perhaps even rate-limiting
step. Indeed, the experimental literature [30—33] has long
suggested that stem formation in RNA molecules is a two-
step process. When forming a stem, there is usually a slow
nucleation step, resulting in a few consecutive base pairs
at a nucleation point, followed by a fast zipping step. It is
important to note, though, that the application of this line
of reasoning to the dr_s(p, s) index requires that s be an
accurate representation of the native secondary structure.
For the time being we will use the time-honored compara-
tive structures for s, returning later to the questions about
MEE structures raised in Background.

How are we to gauge dt.s and compare values across dif-
ferent RNA families? Consider the following experiment:
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for a given RNA molecule we create a “surrogate” which
has the same nucleotides, and in fact the same counts
of all four-tuple segments as the original molecule, but
is otherwise ordered randomly. If ACCU appeared eight
times in the original molecule, then it appears eight times
in the surrogate, and the same can be said of all sequences
of four successive nucleotides—the frequency of each of
the 4% possible segments is preserved in the surrogate. If
we also preserve the locations of the tramusitional, double,
and single labels (even though there is no actual secondary
structure of the su~rrogate), then we can compute a new
value for dr, say drt.s, from the surrogate. If we produce
many surrogate sequences then we will get a sampling of
EZT_S values, one for each surrogate, to which we can com-
pare d1.s. We made several experiments of this type—one
for each of the seven RNA families (Group I and Group
I Introns, tmRNA, SRP RNA, RNase P, and 16s and 23s
rRNA).

To make this precise, consider an RNA molecule with
primary structure p and comparative secondary struc-
ture s. Construct a segment “histogram function,” H(p),
which outputs the number of times that each of the 4*
possible segments appears in p. Let P(p) be the set of
all permutations of the ordering of nucleotides in p, and
let £(p) < P(p) be the subset of permutations that
preserve the frequencies of four-tuples. If, for example,
p = (AAUAAUUA,A), then there are six four-
tuples, (A,A,U,A),(A,U,AA),(U,AAU),AAUU),
(A, U,UA),U,UAA), and each happens to appear
only once, i.e., the histogram function H(p) assigns the
number one to each of these six four-tuples and zero to
every other four-tuple. The only additional sequence that
preserves these frequencies (aside from p itself) turns out
tobep = (A4,A,U,U,A A U,A,A), and in this example
E(p) = {p,p'}. More generally

Ep)={p e Pw): HE) = H(p)]

Clever algorithms (all of which are variants and gen-
eralizations of the Euler algorithm, e.g. see [36] and
references therein) exist for efficiently drawing indepen-
dent samples from the uniform distribution on £—see
[34-36]. Let pD,...,p%® be K such samples, and let
dr.s (p(l),s) e dToS (p(K),s) be the corresponding T-S
ambiguity indexes. Whereas the secondary structure s
remains the same across shuffles, the local ambiguity
function a(p®®), which depends on the primary struc-
ture, changes with &, and so does the resulting ambiguity
index dr.s(p®,s). How different is dr.s(p,s) from the
ensemble of values d1.s(p®, s) derived by sampling from
E()? To measure this, let ar.s(p,s) €[0,1] be the left-
tail empirical probability of choosing an ambiguity index
less than or equal to dt_s(p, s) from the ensemble of values
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{dT_s(p, s), dT—S (p(l),s) IR dT—S (p(K),S) }:

1+#lke{1,...,K} :dtg (p(k),s) <drs(p,s)}

ars(p,s)= 11K

(11)

In essence, for each RNA family the o score is a self-
calibrated ambiguity index. The results are not very sensi-
tive to K nor to the particular sample, provided that K is
large enough. We used K = 10, 000.

If the number of distinct sequences in £(p) is small,
then so is the number of possible values of «. In such
cases, o will be of little value for comparing ambiguity
indexes across types of molecules or proposed secondary
structures. Indeed, many short sequences, such as p =
(A4,C,G,U,A,C,G, U), have no histogram-preserving pri-
mary structures beyond p itself. But as we have already
remarked, our methods are motivated by a kinetic view-
point, within which the greatest challenges to folding
are faced by the larger rather than smaller molecules.
Hence, our experiments are with sequences that are rel-
atively long. In fact, none of the RNA families used in
our experiments have a median length shorter than 274
nucleotides, and most are much longer—see Table 4. At
these lengths it is extremely rare that a sample of 10,000
primary sequences from £(p) will have any duplicates.
Hence there is no built-in meaningful loss of resolution in
the o statistic.

It is tempting to interpret at.s(p,s) as a p-value from a
conditional hypothesis test: Given s and 7, test the null
hypothesis that dr.s(p, s) is statistically indistinguishable
from dr.g(p’,s), where p’ is a random sample from . If
the alternative hypothesis were that dr.s(p, s) is too small
to be consistent with the null, then the null is rejected
in favor of the alternative with probability a1.s(p,s). The
problem with this interpretation is that this null hypothe-
sis violates the observation that given # there is informa-
tion in s about p, whereas p, ..., p% are independent
of s given H. In other words, dr.s(p,s) and drs(¥,s)
have different conditional distributions given s and H,
in direct contradiction to the null hypothesis. A larger
problem is that there is no reason to believe the alter-
native; we are more interested in relative than absolute
ambiguity indexes. Thinking of aT.5(p,s) as a calibrated
intra-molecular index, we want to know how aT.s(p,s)
varies across RNA families, and whether these variations
depend on the differences between comparative and MFE
structures.

Nevertheless, ars(p,s) is a useful statistic for
exploratory analysis. Table 1 provides summary data
about the o scores for each of the seven RNA families.
For each molecule in each family we use the primary
structure and the comparative secondary structure, and
K =10,000 samples from &, to compute individual T-S
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Table 1 Comparative Secondary Structures: calibrated ambiguity
indexes, by RNA family

Number Median Median

Family molecules length aT-s

Group I Introns 116 451 0432
Group Il Introns 34 990 0.181
tmRNA 404 363 0.926
SRP RNA 346 274 0.790
RNase P 407 330 0.925
165 rRNA 279 1512 0.938
235 rRNA 59 2913 1.000

The number of molecules, the median length (number of nucleotides), and the
median « scores for the T-S ambiguity indexes (Eq. 11) for each of the seven RNA
families studied. RNA molecules from the first two families (unbound) are active
without necessarily forming ribonucleoprotein complexes; the remaining five are
bound in ribonucleoproteins. Molecules from the unbound families have lower
ambiguity indexes

scores (Eq 11). Keeping in mind that a smaller value of «
represents a smaller calibrated value of the corresponding
ambiguity index d(p,s), there is evidently a disparity
between ambiguity indexes of RNA molecules that form
ribonucleoproteins and those that are already active with-
out forming a ribonculeoprotein complex. As a group,
unbound molecules have systematically lower ambiguity
indexes. As already noted, this observation is consistent
with, and in fact anticipated by, a kinetic point of view.
Shortly, we will further support this observation with
ROC curves and rigorous hypothesis tests.

Does the MFE structure similarly separate single-entity
RNA molecules from those that form ribonucleoproteins?
A convenient way to explore this question is to recalculate
and recalibrate the ambiguity indexes of each molecule
in each of the seven families, but using the MFE in place
of the comparative secondary structures. The results are
summarized in Table 2. By comparison to the results

Table 2 MFE Secondary Structures: calibrated ambiguity indexes,

by RNA family
Number Median Median

Family molecules length aTs
Group I Introns 116 451 0.833
Group Il Introns 34 990 0.841
tmRNA 404 363 0.867
SRP RNA 346 274 0.803
RNase P 407 330 0.955
165 rRNA 279 1512 0.982
23s rRNA 59 2913 1.000

Identical to Table 1, except that the ambiguity indexes and their calibrations are
calculated using the MFE secondary structures rather than comparative analyses.
There is little evidence in the MFE secondary structures for lower ambiguity indexes
among the unbound RNA molecules



Zhou et al. BMC Bioinformatics (2019) 20:666

shown from Table 1, the separation of unbound from
bound molecules nearly disappears when viewed under
the MFE secondary structures. Possibly, the compara-
tive structures, as opposed to the MFE structures, better
anticipate the need to avoid kinetic traps in the folding
landscape. Here too we will soon revisit the data using
ROC curves and proper hypothesis tests.

Formal Statistical Analyses

The T-S ambiguity index drt.s(p,s) is an intra-molecular
measure of the difference between the number of avail-
able double-stranded Watson-Crick and wobble pairings
for segments in and around stems and pseudoknots ver-
sus segments within single-stranded regions. As such,
dr.s depends on both p and any purported secondary
structure, s. Based on a calibrated version, ar.s(p,s),
and employing the comparative secondary structure for
s, we found support for the idea that non-coding RNA
molecules in the unbound families, which are active
absent participation in ribonucleoproteins, are more likely
to have small ambiguity indexes than RNA molecules that
operate exclusively as part of ribonucleoproteins. Fur-
thermore, the difference appears to be sensitive to the
approach used for identifying secondary structure—there
is little, if any, evidence in indexes dt.g derived from the
MEE secondary structures for lower ambiguities among
unbound molecules.

These qualitative observations can be used to formu-
late precise statistical hypothesis tests. Many tests come to
mind, but perhaps the simplest and most transparent are
based on nothing more than the molecule-by-molecule
signs of the ambiguity indexes. Whereas ignoring the
actual values of the indexes is inefficient in terms of infor-
mation, and probably also in the strict statistical sense,
tests based on signs require very few assumptions and
are, therefore, more robust to model misspecification.
All of the p-values that we will report are based on the
hypergeometric distribution, which arises as follows.

We are given a population of M molecules, m =
1,...,M, each with a binary outcome measure B,, €
{—1,41}. There are two subpopulations of interest: the
first M; molecules make up population 1 and the next
M, molecules make up population 2; M; + My = M.
We observe n; plus values in population 1 and 7y in
population 2

m=#{me{l,2,...,M1}: B, = +1}

ng=#{me{My+1,M,+2,...,M}:B,, = +1}
(13)

We suspect that population 1 has less than its share of plus
ones, meaning that the n; 4+ ny population of plus ones
was not randomly distributed among the M molecules. To
be precise, let N be the number of plus ones that appear
from a draw, without replacement, of M; samples from

(12)
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By, ..., Byr. Under the null hypothesis, H,, n; is a sample
from the hypergeometric distribution on N:

() G )

PN = n} = ()
ni1+ny

max{0, ny + ny — Mo}
< n < min{n; + ny, M1}
(14)

The alternative hypothesis, H,, is that #; is too small to be
consistent with H,, leading to a left-tail test with p-value
P{N < n;} (which can be computed directly or using a
statistical package, e.g. hypergeom.cdf in scipy.stats).

It is by now well recognized that p-values should never
be the end of the story. One reason is that any departure
from the null hypothesis in the direction of the alternative,
no matter how small, is doomed to be statistically signif-
icant, with arbitrarily small p-value, once the sample size
is sufficiently large. In other words, the effect size remains
hidden. Therefore, in addition to reporting p-values, we
will also display estimated ROC curves, summarizing per-
formance of two related classification problems: (i) Clas-
sify a single RNA molecule, randomly selected from the
seven families, as belonging to the unbound group or
the bound group based only on thresholding dr.s(»,s).
Compare performance under each of the two secondary-
structure models, comparative and MFE; and (ii) Ran-
domly select an RNA molecule from the unbound group
and classify the origin of its secondary structure (com-
parative or MFE), here again based only on thresholding
dr-s(p,s). Now Repeat the process, but selecting randomly
from the bound group.

Bound versus Unbound

Classification. Consider an RNA molecule, m, selected
from one of the seven families in our data set, with pri-
mary structure p and secondary structure s computed
by comparative analysis. Given only the T-S ambiguity
index of m (i.e. given only dr.s(p,s)), how accurately
could we classify the origin of m as the unbound versus
bound group? The foregoing exploratory analysis sug-
gests constructing a classifier that declares a molecule
to be unbound when dr.s(,s) is small, e.g. drs(p,s) <
t, where the threshold ¢ governs the familiar trade off
between rates of “true positives” (an unbound molecule
m is declared ‘unbound’) and “false positives” (a bound
molecule m is declared ‘unbound’). Small values of ¢ favor
low rates of false positives at the price of low rates of
true positives, whereas large values of ¢ favor high rates of
true-positives at the price of high rates of false positives.
Since for each molecule m we have both the correct clas-
sification (unbound or bound) and the statistic d, we can
estimate the ROC performance of our threshold classifier
by plotting the empirical values of the pair

(# false positives, # true positives)
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for each value of . The ROC curve for the two-category
(unbound versus bound) classifier based on thresholding
drs(p,s) < tis shown in the left panel of Fig. 1. Also
shown is the estimated area under the curve (AUC=0.81),
which has a convenient and intuitive interpretation, as it
is equal to the probability that for two randomly selected
molecules, m from the unbound population and m' from
the bound population, the T-S ambiguity index of m will
be smaller than the T-S ambiguity index of n1'.

p-Values. As mentioned earlier, we can also asso-
ciate a traditional p-value to the problem of separating
unbound from bound molecules, based again on the T-
S ambiguity indexes. We consider only the signs (posi-
tive or negative) of these indexes, and then test whether
there are fewer than expected positive indexes among
the unbound as opposed to the bound populations. This
amounts to computing P{N < n;} from the hypergeo-
metric distribution—Eq (14). The relevant statistics can
be found in Table 3, under the column labels #mol’s
and #dt.s > 0. Specifically, M; = 116 + 34 = 150
(number of unbound molecules), My = 404 + 346 +
407 4+ 279 + 59 = 1495 (number of bound molecules),
np = 50 + 8 = 58 (number of positive T-S indexes
among unbound molecules) and n; = 368 + 269 +
379 + 210 + 53 = 1279 (positive bound indexes). The
resulting p-value, 1.2 - 10734, is essentially zero, meaning
that the positive T-S indexes are not distributed propor-
tional to the sizes of the unbound and bound populations,
which is by now obvious in any case. To repeat our
caution, small p-values conflate sample size with effect
size, and for that reason we have chosen additional ways,
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using permutations as well as classifications, to look at
the data.

Comparative versus Minimum Free Energy

As we have just seen, ambiguity indexes based on MFE
secondary structures, as opposed to comparative sec-
ondary structures, do not make the same stark distinction
between unbound and bound RNA molecules. To explore
this a little further, we can turn the analyses of the previ-
ous paragraphs around and ask to what extent knowledge
of the ambiguity index is sufficient to predict the source of
a secondary structure—comparative or free energy? This
turns out to depend on the group from which the molecule
was drawn: The ambiguity index is strongly predictive
among unbound molecules and, at best, weakly predictive
among bound molecules.

Consider the two ROC curves in Fig. 2. In each of the
two experiments a classifier was constructed by thresh-
olding the T-S ambiguity index, declaring the secondary
structure, s, to be “comparative” when drs(p,s) < ¢
and “MFE" otherwise. The difference between the two
panels is in the population used for the classification
experiments—unbound molecules in the left-hand panel
(AUC=0.81) and bound molecules in the right-hand panel
(AUC=0.54, barely above chance). The corresponding
hypothesis tests seek evidence against the null hypothe-
ses that in a given group (unbound or bound) the set
of positive T-S ambiguity indexes (drs(p,s) > 0) are
equally distributed between the comparative and free-
energy derived indexes, and in favor of the alternatives
that the T-S ambiguity indexes are less typically positive

Unbound RNA, dr_g < t
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Fig. 1 Unbound or Bound? ROC performance of classifiers based on thresholding the T-S ambiguity index. Small values of dr-s(p, s) are taken as
evidence that a molecule belongs to the unbound group as opposed to the bound group. In the left panel, the classifier is based on using the
comparative secondary structure for s to compute the ambiguity index. Alternatively, the MFE structure is used for the classifier depicted in the right
panel. AUC: Area Under Curve—see text for interpretation. Additionally, for each of the two experiments, a p-value was calculated based only on the
signs of the individual ambiguity indexes, under the null hypothesis that positive indexes are distributed randomly among molecules in all seven
RNA families. Under the alternative, positive indexes are more typically found among the unbound as opposed to bound families. Under the null
hypothesis the test statistic is hypergeometric—see Eq 14. Left Panel: p = 1.2 x 10734, Right Panel: p = 0.02. In considering these p-values, it is
worth re-emphasizing the points made about the interpretation of p-values in the paragraph following Eq 14. The right panel illustrates the point:
the ambiguity index based on the MFE secondary structure “significantly distinguishes the two categories (p = 0.02)" but clearly has no utility for
classification. (These ROC curves and those in Fig. 2 were lightly smoothed by the method known as “Locally Weighted Scatterplot Smoothing,” e.g.
with the python command Y=lowess(Y, X, 0.1, return_sorted=False) coming from statsmodels.nonparametric.smoothers_lowess)
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Table 3 Numbers of Positive Ambiguity Indexes, by family

Family #mol's #drs >0 #d7c>0
Group | Introns 116 50 94
Group Il Introns 34 8 27
tmRNA 404 368 358

SRP RNA 346 269 264
RNase P 407 379 377

165 rRNA 279 210 254

23s rRNA 59 53 54

#mol's: number of molecules; #dr.s > 0: numbers of positive T-S ambiguity indexes,
secondary structures computed by comparative analysis; #d;.z > 0: numbers of
positive T-S ambiguity indexes, secondary structures computed by minimum free
energy

for the comparative secondary structures. The necessary
data can be found in Table 3. The test results are consistent
with the classification experiments: the hypergeometric p-
value is is 5.4 - 10~ for the unbound population and 0.07
for the bound population.

Qualitatively, these various ROC and p-value results
were easy to anticipate from even a superficial examina-
tion of Table 3. Start with the first two rows (unbound
molecules): A relatively small fraction of unbound
molecules have positive ambiguities when the index is
computed from comparative analyses, whereas most of
these same molecules have positive ambiguities when the
index is computed from MFE structures. Looking across
the next five rows (bound molecules), no such trend is dis-
cernible. Similarly, from a glance at the column labeled
#dr.s > 0 (derived from comparative analyses) it is
apparent that the fraction of positive indexes among the
unbound molecules is much lower than among the bound
molecules. What'’s more, this effect is missing in the MFE
indexes (column labeled #d; g > 0).4

Discussion

Consider a non-coding RNA molecule with a native ter-
tiary structure that is active, in vivo, without necessarily
being tightly bound with other molecules in a ribonu-
cleoprotein complex. We have labeled these molecules
“unbound” and reasoned that there are likely relationships
between their primary and secondary structures that not
only support the tertiary structure, but also the folding
process by which it emerges. Specifically, we reasoned
that examination of the primary and native secondary
structures might reveal evolutionary mechanisms that
discourage disruptive kinetic traps. Conjecturing that the
availability of non-native pairings for subsequences that
are part of the native secondary structure would be par-
ticularly disruptive, we defined an intra-molecular index

4The specific values of the areas under the ROC curves depend on the specific
values of the indexes. The equality—to two digits—of the areas in the
left-hand panels of Figs. 2 and 1 is a coincidence.
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that we called the ambiguity index. The ambiguity index
is a function of a molecule’s primary and native secondary
structures devised so that lower values of the index reflect
fewer opportunities for stem participating subsequences
to pair elsewhere in the molecule. We examined the Group
I and Group II introns, two families of molecules that are
believed to perform some of their functions (namely self
splicing) in an “unbound” state, to see if their ambigu-
ity indexes were lower than might be expected were there
no such evolutionary pressures to protect stem structures.
Heuristic permutation-type tests appeared to confirm our
expectation that these molecules would have low ambigu-
ities.

We sought additional evidence in two directions. The
first was to compare ambiguity indexes in unbound
molecules to those in “bound” molecules, i.e. molecules
that are known to function as part of ribonucleoprotein
complexes where the argument against these particular
kinds of ambiguities is weaker. We found a strong separa-
tion between the unbound and bound molecules, the for-
mer having substantially lower indexes. This was demon-
strated by statistical tests and, perhaps more meaningfully,
by showing that the ambiguity index could be used to
classify with good accuracy individual molecules as either
bound or unbound. These experiments were based on
comparative secondary structures available through the
RNA STRAND database[19], which remains one of the
most trusted sources for RNA secondary structures of
single molecules[20-22].

In a second approach to additional evidence we sub-
stituted the comparative secondary structures with ones
that were derived from approximations to the thermo-
dynamic equilibrium structure (minimum free energy—
“MFE” structures). Though less accurate, MFE and related
equilibrium-type structures are easy and quick to com-
pute. But one line of thinking is that active biological
structures are determined more by kinetic accessibility
than thermodynamic equilibrium per se[25-29]. Biologi-
cal stability is relative to biological timescale; the folding
of any particular RNA could just as well end in metastabil-
ity, provided that the process is repeatable and the result
sufficiently stable over the molecule’s proper biological
lifetime. Indeed, it would be arguably easier to evolve
an effective tertiary structure without the additional and
unnecessary burden of thermal equilibrium. To the extent
that kinetic accessibility and metastability might be more
relevant than thermodynamic equilibrium, there would be
little reason to expect the ambiguity index to make the
same separation between unbound and bound molecules
when derived from MFE structures instead of comparative
structures. The results were consistent with this point of
view—ambiguity indexes based on MFE structures make
weak classifiers. We were surprised by the strength of
the effect. After all, MFE structures are superficially quite
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Fig. 2 Comparative or MFE? As in Fig. 1, each panel depicts the ROC performance of a classifier based on thresholding the T-S ambiguity index, with
small values of dr-s(p, 5) taken as evidence that s was derived by comparative as opposed to MFE secondary structure analysis. Left Panel:
performance on molecules chosen from the unbound group. Right Panel: performance on molecules chosen from the bound group. Conditional
p-values were also calculated, using the hypergeometric distribution and based only on the signs of the indexes. In each case the null hypothesis is
that comparative secondary structures are as likely to lead to positive ambiguity indexes as are MFE structures, whereas the alternative is that
positive ambiguity indexes are more typical when derived from MFE structures. Left Panel: p = 5.4 x 10~'4. Right Panel: p = 0.07

similar to comparative structures, yet the classification
performance goes from strong (> 80% AUC) to negligible
(53% AUC, just above chance). A worthwhile follow-up
would be to examine the actual differences in secondary
structure (as was done, with similar motivation but differ-
ent tools, in [29]) in an effort to discern how they impact
ambiguity.

A possible source of bias that might partially explain the
strength of the observed effects was raised by an anony-
mous reviewer, who noted that the RNAfold program
in the ViennaRNA package [20], used here to compute
MEE structures, does not allow pseudoknots, a structural
feature that is commonly present in comparative struc-
tures. To explore the possible effect of pseudoknots on our
results, and to make for something closer to an “apples-
to-apples” comparison, we re-ran the experiments after
removing all pseudoknots from the comparative struc-
tures®. There were only small changes in the results—e.g.
classification performance, “Bound or Unbound” (Fig. 1)
using comparative structures went from 81% AUC to 79%
AUC, whereas performance using MFE stayed the same at
53% AUC®. Of course it is still possible that a true MFE
structure, computed without compromises in the struc-
ture of the energy and allowing for pseudoknots, were it
computable, would fare better in these experiments.

Another interesting point raised by the same reviewer
concerns the well-known heterogeneity of structures
within the Group I and Group II Introns, which consti-
tute our unbound samples. In particular, these groups can
be further divided into subgroups that have very differ-
ent secondary structures (see Table 2 of [43]). To what

5Using methods presented in [37].

®More comprehensive results for the experiments with pseudoknot-free
comparative secondary structures and detailed results for thirteen different
unbound subgroups of RNA molecules can be accessed along with data and
code—see Methods.

extent are the differences between bound and unbound
molecules consistent across subgroups? To investigate this
we re-computed the aT.g indexes reported in Table 1, but
this time for each subgroup of each of the Group I and
Group II introns. The stark differences between bound
and unbound molecules remain. In fact, the differences
are more extreme for all but two of the unbound sub-
groups (Group IC1 and Group IIA), out of the thirteen
available in our dataset®.

It has often been argued (e.g. [38, 39]) that the MFE
structure itself may be a poor representative of thermal
equilibrium. It is possible, then, that our observations to
the effect that comparative and MFE structures have sub-
stantially different relationships to the ambiguity indexes,
and our interpretation that comparative structures bet-
ter separate unbound from bound molecules, would not
hold up as well if we were to adopt a more ensemble-
oriented structure in place of the MFE, as advocated by
[40], for example. In a related vein, and also within the
context of thermodynamic equilibrium, Lin et al. [41] have
given evidence that competing stems which are incon-
sistent may both contain a high measure of information
about the equilibrium distribution, suggesting that in such
cases both forms could be active and the notion of single
(locations we have labeled “S”) might itself be ambiguous.
Certainly there are RNA molecules (e.g. riboswitches) that
are active in more than one structural conformation. For
such molecules, ambiguity is essential for their biological
functioning, yet one would need to rethink the definition
of an ambiguity index.

The ambiguity index drt.s is derived from the difference
in average ambiguities of subsequences partly paired in
the native structure (“T”, transition locations) from those
not paired in the native structure (single locations). We
expected these differences to be small in unbound as
opposed to bound molecules because we expected the
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stem structures to be more protected from non-native
pairings. But this coin has another side: low ambiguities
at unpaired (single) locations of bound molecules relative
to unbound molecules would have the same effect. As an
example, some unpaired RNA sequences may be critical
to function, as in the messenger RNA-like region (“MLR”)
of tmRNA, and therefore relatively unambiguous. Also, it
is possible that the formation of non-native stems among
single-type subsequences are particularly disruptive to,
perhaps even stereochemically preventing, the binding of
an RNA molecule into a ribonucleoprotein complex. More
generally, it is reasonable to assume that different evolu-
tionary forces are at play for molecules destined to operate
as parts of ribonucleoprotein complexes. In any case, the
folding story may be even more complicated, or at least
quite different, for the ribonculeoprotein RNAs.

Finally, we note that the ambiguity index, as currently
formulated, is symmetric in the sense that there is no
explicit difference in contributions from different loca-
tions along the 5" to 3’ axis. Yet cotranscriptional folding,
which appears to be nearly universal in non-coding RNA
[42] strongly suggests that not all ambiguities are equally
disruptive. Indeed, some non-native pairings between two
subsequences, one of which is near the 3’ end of the
molecule, might have been rendered stereochemically
impossible before the 3’ half has even been transcribed. In
addition, the current ambiguity index is calculated using
segments of a fixed length (four for the results presented
in the paper). Yet thermodynamic stability increases with
stem lengths, which suggests that non-native pairings
between two longer subsequences would be more disrup-
tive than those between shorter subsequences. Possibly,
a proper weighting of ambiguities coming from segments
of different lengths would bring new insights. These fur-
ther considerations open many new lines of reasoning,
most of which suggest alternative indexes that could be
statistically explored, especially as the data bank of known
structures and functions continues to grow.

Overall, our results are consistent in supporting a role
for kinetic accessibility that is already visible in the
relationship between primary and secondary structures.
Stronger evidence will require more bound and unbound
families. The limiting factors, as of today, are the avail-
ability of families with large RNA molecules for which the
comparative structures have been worked out and largely
agreed upon.

Conclusions

In this paper, we have presented a statistical analysis
of the relationship between the primary and secondary
structures of non-coding RNA molecules. The results
suggest that stem-disrupting kinetic traps are substan-
tially less prevalent in molecules not participating in RNP
complexes. In that this distinction is apparent under the
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comparative but not the MFE secondary structure, the
results highlight a possible deficiency in structure predic-
tions when based upon assumptions of thermodynamic
equilibrium.

Methods

Datasets

We obtained comparative-analysis secondary structure
data for seven different families of RNA molecules from
the RNA STRAND database[19], a curated collection
of RNA secondary structures which are widely used as
reference structures for single RNA molecules[20-22].
These families include: Group I Introns and Group II
Introns[43], tmRNAs and SRP RNAs[44], the Ribonu-
clease P RNAs[45], and 16s rRNAs and 23s rRNAs[43].
Table 4 contains information about the numbers and
lengths (measured in nucleotides) of the RNA molecules
in each of the seven families. Note that we excluded fam-
ilies like tRNAs, 5s rRNAs and hammerhead ribozymes
since most of the molecules in these families are too short
to be of interest for our purpose. Also, since we are focus-
ing on comparative-analysis secondary structures, to be
consistent, we excluded any secondary structures derived
from X-ray crystallography or NMR structures.

Note that Group I and Group II Introns are the only
available families of unbound RNAs suitable for our anal-
ysis. There are some other families of unbound RNAs
(e.g. ribozymes), but most of these RNAs are too short in
length, and many of the structures are not derived using
comparative analysis. Hence they are not included.

RNA Secondary Structure Prediction Methods

Comparative analysis[46] is based on the simple principle
that a single RNA secondary structure can be formed from
different RNA sequences. Using alignments of homolo-
gous sequences, comparative analysis has proven to be
highly accurate in determining RNA secondary structures
[18]. We used a large set of RNA secondary structures

Table 4 Data Summary

Family Number  Minlength  Maxlength ~ Median
Group | Introns 116 210 2630 451
Group Il Introns 34 619 2729 990
tmRNA 404 102 437 363
SRP RNA 346 66 533 274
RNase P 407 189 486 330
165 rRNA 279 612 2394 1512
235 rRNA 59 953 4381 2913

The seven families of RNA used in the experiments. Table includes the number of
molecules in each family, as well as basic statistics about the numbers of
nucleotides in the primary sequence of each of the molecules. Data was
downloaded from the http://www.rnasoft.ca/strand/
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determined by comparative analyses to serve as ground
truth.

When it comes to computational prediction of RNA
secondary structures, exact dynamic programming algo-
rithms based on carefully measured thermodynamic
parameters make up the most prevalent methods. There
exist a large number of software packages for the energy
minimization [20, 38, 47-51]. In this paper, we used the
ViennaRNA package [20] to obtain the MFE secondary
structures for our statistical analysis.

Reproducing the Results

The results presented in this paper, as well as additional
results on experiments with the D-S ambiguity index,
pseudoknot-free comparative secondary structures, and
detailed results for thirteen different unbound subgroups
of RNA molecules, can be easily reproduced. Follow
the instructions on https://github.com/StannisZhou/rna_
statistics. Here we make a few comments regarding some
implementation details.

e In the process of obtaining the data, we used the
bpseq format, and excluded structures derived from
X-ray crystallography or NMR structures, as well as
structures for duplicate sequences. Concretely, this
means picking a particular type, and select No for
Validated by NMR or X-Ray and Non-redundant
sequences only for Duplicates on the search page of
the RNA STRAND database. A copy of the data we
used is included in the GitHub repository, but the
same analyses can be easily applied to other data.

® When processing the data, we ignored molecules for
which we have nucleotides other than A, G, C, U, and
molecules for which we don’t have any base pairs.

e When comparing the local ambiguities in different
regions of the RNA molecules, we ignored molecules
for which we have empty regions (i.e. at least one of
single, double and transitional is empty), as well as
molecules where all local ambiguities in single or
double regions are 0.

e For shuffling primary structures, we used an efficient
and flexible implementation of the Euler
algorithm[34—36] called uShuffle [52], which is
conveniently available as a python package.

e For removing pseudoknots from comparative
secondary structures, we used the standalone
implementation of methods proposed in [37]. The
actual pseudoknot-free comparative secondary
structures used in our experiments are available at
https://github.com/StannisZhou/rna_statistics/tree/
master/data_without_pseudoknots.

Abbreviations
AUC: Area under the curve; MFE: Minimum free energy; MLR: Messenger
RNA-like region; RNase P: Ribonuclease P; RNP: Ribonucleoprotein; ROC:
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Receiver operating characteristic; rRNA: Ribosomal RNA; SRP: Signal
recognition particles; tmRNA: Transfer-messenger RNA

Acknowledgements

The authors would like to thank Yang Chen for helpful discussions and
Matthew T. Harrison and Charles Lawrence for many valuable suggestions.
This work was partially supported by the Office of Naval Research under
contracts ONR N000141613168 and ONR N000141512267.

Authors’ contributions

All authors designed the study. GZ collected the data and performed the
statistical analysis. All authors interpreted the data. GZ and SG wrote and
revised the paper. All authors read and approved the final manuscript.

Funding

SG was funded by grants ONR N000141613168 and ONR N000141512267
from the Office of Naval Research. The funding body did not play any role in
the design of the study, or collection, analysis, and intepretation of data, or in
writing the manuscript.

Availability of Data and Materials

The dataset analysed during the current study is available at RNA STRAND
database [19]. To make the results easily reproducible, a copy of the dataset, as
well as code for reproducing the results in the paper, is available at https://
github.com/StannisZhou/rna_statistics.

Ethics Approval and Consent to Participate
Not applicable.

Consent for Publication
Not applicable.

Competing Interests
The authors declare that they have no competing interests.

Author details

Wicarious Al, Union City, CA USA. ?Data Science Institute, Columbia
University, New York, NY, USA. 3Division of Applied Mathematics, Brown
University, Providence, RI, USA.

Received: 6 August 2019 Accepted: 2 December 2019
Published online: 12 December 2019

References

Morris KV, Mattick JS. The rise of regulatory RNA. Nat Rev Genet.

2014;15(6):423-37.

Kung JTY, Colognori D, Lee JT. Long noncoding RNAs: past, present, and

future. Genetics. 2013;193(3):651-69.

Herschlag D. Rna chaperones and the rna folding problem. J Biol Chem.

1995,270(36):20871-4.

4. Pyle AM, Fedorova O, Waldsich C. Folding of group Il introns: a model
system for large, multidomain RNAs? Trends Biochem Sci. 2007;32(3):
138-45.

5. Zemora G, Waldsich C. Rna folding in living cells. RNA Biol. 2010;7(6):
634-41. https://doi.org/10.4161/rna.7.6.13554. http://arxiv.org/abs/
https://doi.org/10.4161/rma.7.6.13554.

6.  Solomatin SV, Greenfeld M, Chu'S, Herschlag D. Multiple native states
reveal persistent ruggedness of an rna folding landscape. Nature.
2010;463(7281):681.

7. Pyle AM. Group ii intron self-splicing. Ann Rev Biophys. 2016;45(1):
183-205. https://doi.org/10.1146/annurev-biophys-062215-011149.
PMID: 27391926.

8. Duss O, Stepanyuk GA, Grot A, O'Leary SE, Puglisi JD, Williamson JR.
Real-time assembly of ribonucleoprotein complexes on nascent rna
transcripts. Nature Commun. 2018;9(1):5087. https://doi.org/10.1038/
s41467-018-07423-3.

9. Lambowitz AM, Perlman PS. Involvement of aminoacyl-tRNA synthetases
and other proteins in group I and group Il intron splicing. Trends Biochem
Sci. 1990;15(11):440-4.

10. Fedorova O, Zingler N. Group Il introns: structure, folding and splicing
mechanism. Biol Chem. 2007;388(7):665-78.

N


https://www.tbi.univie.ac.at/RNA/
https://github.com/StannisZhou/rna_statistics
https://github.com/StannisZhou/rna_statistics
http://www.rnasoft.ca/strand/search.php
https://github.com/StannisZhou/rna_statistics/tree/master/data
https://github.com/guma44/ushuffle
http://www.ibi.vu.nl/programs/k2nwww/static/k2n_standalone.tgz
https://github.com/StannisZhou/rna_statistics/tree/master/data_without_pseudoknots
https://github.com/StannisZhou/rna_statistics/tree/master/data_without_pseudoknots
http://www.rnasoft.ca/strand/
https://github.com/StannisZhou/rna_statistics
https://github.com/StannisZhou/rna_statistics
https://doi.org/10.4161/rna.7.6.13554
http://arxiv.org/abs/https://doi.org/10.4161/rna.7.6.13554
http://arxiv.org/abs/https://doi.org/10.4161/rna.7.6.13554
https://doi.org/10.1146/annurev-biophys-062215-011149
https://doi.org/10.1038/s41467-018-07423-3
https://doi.org/10.1038/s41467-018-07423-3

Zhou et al. BMC Bioinformatics

20.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34

35.

36.

37.

38.

39.

(2019) 20:666

Chu VB, Herschlag D. Unwinding RNA's secrets: advances in the biology,
physics, and modeling of complex RNAs. Curr Opin Struct Biol. 2008;18(3):
305-14.

Woodson SA. Taming free energy landscapes with RNA chaperones. RNA
Biol. 2010;7(6):677-86.

Tan Z, Zhang W, ShiY, Wang F. RNA folding: structure prediction, folding
kinetics and ion electrostatics. Adv Exp Med Biol. 2015;827:143-83.
Leamy KA, Assmann SM, Mathews DH, Bevilacqua PC. Bridging the gap
between in vitro and in vivo RNA folding. Q Rev Biophys. 2016;49:10.
Chen S-J. RNA folding: conformational statistics, folding kinetics, and ion
electrostatics. Annu Rev Biophys. 2008;37:197-214.

Lambowitz AM, Caprara MG, Zimmerly S, Perlman PS. Group I and group
Il ibozymes as RNPs: clues to the past and guides to the future. In: In The
RNA World, 2nd. Cold Spring Harbor Laboratory Press; 1999. p. 451-85.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.692.2748.
James BD, Olsen GJ, Pace NR. Phylogenetic comparative analysis of RNA
secondary structure. Methods Enzymol. 1989;180:227-39.

Gutell RR, Lee JC, Cannone JJ. The accuracy of ribosomal RNA
comparative structure models. Curr Opin Struct Biol. 2002;12(3):301-10.
Andronescu M, BeregV, Hoos HH, Condon A. RNA STRAND: The RNA
secondary structure and statistical analysis database. BMC Bioinformatics.
2008;9(1):340.

Lorenz R, Bernhart SH, Honer zu Siederdissen C, Tafer H, Flamm C,
Stadler PF, Hofacker IL. ViennaRNA package 2.0. Algorithms Mol Biol.
2011,6(1):26.

Puton T, Kozlowski LP, Rother KM, Bujnicki JM. CompaRNA: a server for
continuous benchmarking of automated methods for RNA secondary
structure prediction. Nucleic Acids Res. 2013;41(7):4307-23.

Mathews DH. How to benchmark RNA secondary structure prediction
accuracy. Methods. 2019;162-163:60-7.

Mathews DH, Sabina J, Zuker M, Turner DH. Expanded sequence
dependence of thermodynamic parameters improves prediction of RNA
secondary structure. J Mol Biol. 1999;288(5):911-40.

Zuker M, Mathews DH, Turner DH. Algorithms and thermodynamics for
RNA secondary structure prediction: A practical guide. In: Barciszewski J,
Clark BFC, editors. RNA Biochem Biotechnol. Dordrecht: Springer; 1999. p.
11-43.

Levinthal C. How to fold graciously. Mossbauer spectroscopy in biological
systems. 1969;67:22-4.

Higgs PG. RNA secondary structure: physical and computational aspects.
Q Rev Biophys. 2000;33(3):199-253.

Flamm C, Hofacker IL. Beyond energy minimization: approaches to the
kinetic folding of RNA. Monatsh Chem. 2008;139(4):447-57.

Baker D, Agard DA. Kinetics versus thermodynamics in protein folding.
Biochemistry. 1994;33(24):7505-9.

Morgan SR, Higgs PG. Evidence for kinetic effects in the folding of large
RNA molecules. J Chem Phys. 1996;105(16):7152-7.

Porschke D. Model calculations on the kinetics of oligonucleotide double
helix coil transitions. evidence for a fast chain sliding reaction. Biophys
Chem. 1974;2(2):83-96.

Porschke D. A direct measurement of the unzippering rate of a nucleic
acid double helix. Biophys Chem. 1974,2(2):97-101.

Porschke D. Elementary steps of base recognition and helix-coil
transitions in nucleic acids. Mol Biol Biochem Biophys. 1977;24:191-218.
Mohan S, Hsiao C, VanDeusen H, Gallagher R, Krohn E, Kalahar B,
Wartell RM, Williams LD. Mechanism of RNA double Helix-Propagation at
atomic resolution. J Phys Chem B. 2009;113(9):2614-23.

Kandel D, Matias Y, Unger R, Winkler P. Shuffling biological sequences.
Discrete Appl Math. 1996;71(1):171-85.

Fitch WM. Random sequences. J Mol Biol. 1983;163(2):171-6.

Altschul SF, Erickson BW. Significance of nucleotide sequence
alignments: a method for random sequence permutation that preserves
dinucleotide and codon usage. Mol Biol Evol. 1985;2(6):526-38.

Smit S, Rother K, Heringa J, Knight R. From knotted to nested RNA
structures: a variety of computational methods for pseudoknot removal.
RNA. 2008;14(3):410-6.

Ding Y, Lawrence CE. A statistical sampling algorithm for RNA secondary
structure prediction. Nucleic Acids Res. 2003;31(24):7280-301.

Mathews DH. Revolutions in RNA secondary structure prediction. J Mol
Biol. 2006;359(3):526-32.

40.

41.

42.

43.

44,

45.
46.

47.

48.

49.

50.

51

52.

Page 13 0f 13

Ding Y, Chan CY, Lawrence CE. RNA secondary structure prediction by
centroids in a boltzmann weighted ensemble. RNA. 2005;11(8):1157-66.
Lin L, McKerrow WH, Richards B, Phonsom C, Lawrence CE.
Characterization and visualization of RNA secondary structure boltzmann
ensemble via information theory. BMC Bioinformatics. 2018;19(1):82.

Lai D, Proctor JR, Meyer IM. On the importance of cotranscriptional rna
structure formation. RNA. 2013;19(11):1461-73. https://doi.org/10.1261/
ma.037390.112. http://arxiv.org/abs/http://rmajournal.cship.org/content/
19/11/1461 full pdf+html.

Cannone JJ, Subramanian S, Schnare MN, Collett JR, D'Souza LM, Du'Y,
Feng B, Lin N, Madabusi LV, Muller KM, Pande N, Shang Z, Yu N, Gutell
RR. The comparative RNA web (CRW) site: an online database of
comparative sequence and structure information for ribosomal, intron,
and other RNAs. BMC Bioinformatics. 2002;3:2.

Andersen ES, Rosenblad MA, Larsen N, Westergaard JC, Burks J, Wower
IK, Wower J, Gorodkin J, Samuelsson T, Zwieb C. The tmRDB and SRPDB
resources. Nucleic Acids Res. 2006;34(Database issue):163-8.

Brown JW. The ribonuclease P database. Nucleic Acids Res. 1999;27(1):314.
Gutell RR, Power A, Hertz GZ, Putz EJ, Stormo GD. Identifying
constraints on the higher-order structure of RNA: continued
development and application of comparative sequence analysis
methods. Nucleic Acids Res. 1992;20(21):5785-95.

Markham NR, Zuker M. UNAFold: software for nucleic acid folding and
hybridization. Methods Mol Biol. 2008;453:3-31.

Reuter JS, Mathews DH. RNAstructure: software for RNA secondary
structure prediction and analysis. BMC Bioinformatics. 2010;11:129.
Zadeh JN, Steenberg CD, Bois JS, Wolfe BR, Pierce MB, Khan AR, Dirks
RM, Pierce NA. NUPACK: Analysis and design of nucleic acid systems. J
Comput Chem. 2011;32(1):170-3.

Hamada M, Kiryu H, Sato K, Mituyama T, Asai K. Prediction of RNA
secondary structure using generalized centroid estimators.
Bioinformatics. 2009;25(4):465-73.

Reeder J, Giegerich R.RNA secondary structure analysis using the
RNAshapes package. Curr Protoc Bioinforma. 2009,Chapter 12:12-8.
Jiang M, Anderson J, Gillespie J, Mayne M. ushuffle: a useful tool for
shuffling biological sequences while preserving the k-let counts. BMC
Bioinformatics. 2008;9:192.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

o fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions



http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.692.2748
https://doi.org/10.1261/rna.037390.112
https://doi.org/10.1261/rna.037390.112
http://arxiv.org/abs/http://rnajournal.cshlp.org/content/19/11/1461.full.pdf+html
http://arxiv.org/abs/http://rnajournal.cshlp.org/content/19/11/1461.full.pdf+html

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Results
	Basic Notation and the Ambiguity Index
	A First Look at the Data: Shuffling Nucleotides
	Formal Statistical Analyses
	Bound versus Unbound
	Comparative versus Minimum Free Energy


	Discussion
	Conclusions
	Methods
	Datasets
	RNA Secondary Structure Prediction Methods
	Reproducing the Results

	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of Data and Materials
	Ethics Approval and Consent to Participate
	Consent for Publication
	Competing Interests
	Author details
	References
	Publisher's Note

