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Pharmacogenomic analysis of patient-
derived tumor cells in gynecologic cancers
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Abstract

Background: Gynecologic malignancy is one of the leading causes of mortality in female adults worldwide.
Comprehensive genomic analysis has revealed a list of molecular aberrations that are essential to tumorigenesis,
progression, and metastasis of gynecologic tumors. However, targeting such alterations has frequently led to
treatment failures due to underlying genomic complexity and simultaneous activation of various tumor cell survival
pathway molecules. A compilation of molecular characterization of tumors with pharmacological drug response is
the next step toward clinical application of patient-tailored treatment regimens.

Results: Toward this goal, we establish a library of 139 gynecologic tumors including epithelial ovarian cancers (EOCs),
cervical, endometrial tumors, and uterine sarcomas that are genomically and/or pharmacologically annotated and explore
dynamic pharmacogenomic associations against 37 molecularly targeted drugs. We discover lineage-specific drug
sensitivities based on subcategorization of gynecologic tumors and identify TP53 mutation as a molecular determinant
that elicits therapeutic response to poly (ADP-Ribose) polymerase (PARP) inhibitor. We further identify transcriptome
expression of inhibitor of DNA biding 2 (ID2) as a potential predictive biomarker for treatment response to olaparib.

Conclusions: Together, our results demonstrate the potential utility of rapid drug screening combined with genomic

profiling for precision treatment of gynecologic cancers.
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Background

A fundamental principle of precision oncology is that mo-
lecular profiling of the tumor enables identification of ap-
propriate therapeutic choice for individual patients [1-8].
However, predicting successful therapies on the sole basis
of computational approach remains challenging [9-11].
Large-scale pharmacogenomic analyses using conventional
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cancer cell-line models have shown significant conceptual
advances in discovering alternative therapeutic options for
subsets of cancer patients [12—18]. However, molecular
and pharmacological discrepancies between patient tumors
and long-term cultured cancer cell-lines discourage clinical
application of current gene-drug atlas. We have previously
established a pharmacogenomic landscape of patient-
derived tumor cell (PDC) models to reveal unprecedented
insights into dynamic gene-drug associations and demon-
strated its clinical feasibility [19]. To further interrogate the
dynamics of pharmacogenomic interactions at single
tumor-lineage resolution, we generated a collection of gy-
necologic tumors, including cervical, endometrial/uterine,
and epithelial ovarian cancers (EOCs), and explored
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potential gene-drug associations against 37 molecularly tar-
geted agents.

Currently, there are over 100,000 newly diagnosed cases
and approximately 32,000 mortalities from gynecologic
cancers in the US. Gynecologic tumors can be categorized
into 5 distinct subgroups: ovarian, endometrial/uterine,
cervical, vulvar, and vaginal tumors based on geographical
locations. The current standard treatment consists of ag-
gressive surgical intervention followed by platinum—tax-
ane chemotherapy. Despite such intensive treatment
modalities, approximately 25% of the patients invariably
undergo tumor relapse within 6 months from the initial
treatment and there is no alternative therapeutic avenue
that is readily available. Although large-scale genomic
characterizations of ovarian, uterine, and cervical cancers
have been profiled by The Cancer Genome Atlas (TCGA)
Research Network [20-23], clinical application potential
of molecular targeted therapy remains obscure. Toward
this goal, we have established a library of short-term cul-
tured PDC models and performed comprehensive analyses
of pharmacogenomic interactions to identify potential
molecular determinants that could guide personalized
treatment in gynecologic tumors.

Results

Establishment of patient-derived gynecologic tumor cell
library

To establish a gynecologic PDC library, we have collected
139 tumor specimens from patients who were diagnosed
with either cervical (CC) (# = 18), uterine/endometrial (7 =
29), or epithelial ovarian (n=92) cancers (Fig. 1a, Add-
itional file 2: Table S1). Among them, 129 tumor tissues
were subjected to targeted exome sequencing to identify
genomic variations, including single nucleotide variants,
short insertions and deletions, and copy number alterations
[19, 24]. Somatic variants were determined though exome
sequencing (median of 20 genomic variants per sample),
and only mutations with variant allele frequency of >5%
were considered. Whole-transcriptome sequencing (WTS)
was performed on 51 tumors to curate gene expression
profiles. The mutational landscape of gynecologic tumors
revealed enrichment of 7P53 somatic mutations in EOCs
and endometrial cancers (EC) (Fig. 1b). BRCAI or 2 muta-
tions were observed in 35%, 53%, and 38% of the se-
quenced tumors in ovarian, endometrial, and cervix
cancers, respectively. Notably, genomic aberrations of
Phosphoinositide 3-kinase (PI3K) pathway encoding genes
including PIK3CA and PTEN were significantly more
prevalent in endometrial tumors (P = 1.518 x 107 and
P = 2686 x 10", Fisher’s exact test; Additional file 1: Fig-
ure S1), suggesting potential therapeutic opportunities for
PI3K targeted therapies [22, 25, 26]. Furthermore, somatic
mutations of CTNNBI were predominantly observed in
ECs compared with other gynecologic cancer types
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(P = 3.153 x 107, Fisher’s exact test) [22], indicating that
targeting of Wnt/f3-catenin pathway could potentially pro-
vide clinical benefits for EC patients [27, 28]. Compared
with TCGA datasets, our cohort constituted comparable
levels of major cancer-driver genes in respective cancer
types, including somatic mutations of TP53 in EOCs:,
PIK3CA and PTEN in cervical cancers, and PTEN,
PIK3CA, ARIDIA, and CTNNBI in uterine corpus endo-
metrial carcinomas (Additional file 1: Figure S2).

Tumor cell isolates were cultured under serum-free con-
ditions for generally 2 to 4 weeks with epidermal growth
factor (EGF) and basic fibroblast growth factor (FGF) sup-
plements for enrichment of tumor initiating cell (TIC) pop-
ulations (Additional file 2: Table S1) [29, 30]. Afterwards,
PDCs were subjected to systematic drug sensitivity screen-
ing against 37 anti-cancer agents, targeting major onco-
genic pathways including receptor tyrosine kinase (RTK),
histone deacetylase (HDAC), and poly (ADP-ribose) poly-
merase (Additional file 3: Table S2 and Additional file 1:
Figure S3) [19]. Drug sensitivities were determined using
the area under curve (AUC) of the dose response curve
(Fig. 1a) [19, 31-33]. A number of PDCs were further sub-
jected to targeted exome sequencing and/or WTS to inves-
tigate whether the major gynecologic cancer-driver genes
were retained from the parental tumors to PDCs. Consist-
ent with previous observation, major drug-target genetic
aberrations, including TPS53, ERBB3, EGFR, and BRAF,
were highly conserved in PDCs (Fig. 1c, Additional file 1:
Figure S4). Moreover, transcriptome analysis of the paren-
tal tumors with matched PDCs demonstrated a strong
positive correlation (Fig. 1c). To assess tumorigenicity of
PDCs in vivo, we established patient-derived xenograft
(PDX) models and evaluated their histological features [34].
Notably, PDX models recapitulated the original morpho-
logic and pathologic characteristics of their parental tumors
in situ (Additional file 1: Figure S5). Collectively, these re-
sults suggest that our gynecologic PDCs manifest molecu-
lar characteristics of the parental tumors and can be
employed as surrogates for comprehensive pharmacoge-
nomic analyses.

Therapeutic landscape of gynecologic cancers reveals
tumor type-specific drug sensitivity

Next, we established a pharmacological landscape of 66
PDCs that were derived from cervical (n = 6), endometrial
(n=10), uterine (n=38, including leiomyoma), and EOCs
(n =42) using 37 molecularly targeted drugs. A total of 2442
drug-PDC combinations were analyzed and plotted (Add-
itional file 4: Table S3 and Additional file 1: Figure S6). Dis-
tribution of drug sensitivities varied widely, portraying the
heterogeneous nature of gynecologic PDCs. A subset of
drugs, including afatinib, dacomitinib, neratinib (EGFR),
AZD2014 (mTOR), panobinostat (HDAC), and trametinib
(MEK), showed exceptionally high anti-tumor activities
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Fig. 1 Pharmacogenomic analyses of gynecologic malignancies. a Schematic representation of pharmacogenomic analyses in gynecologic
tumor-derived PDCs. Genomic and transcriptomics data were analyzed to identify single nucleotide variations and small indels and gene
expression profiles. Short-term cultured PDCs were subjected to drug sensitivity screening against 37 molecular targeted compounds. b
Mutational landscape of gynecologic tumors including ovarian cancer, endometrial cancer, cervical cancer, and uterine sarcoma. All mutations
with an allele frequency of > 5% and depth of > 20 reads are shown. ¢ Three-dimensional bubble plot demonstrating the frequency of non-
synonymous cancer-driver mutations exclusively in tissue (black, left axis), PDC (blue, right axis), or shared between the two (gray, upper axis)
(upper panel). The position of each dot or mutation is located on the quadrant based on its shared or private rate between primary tumor tissues
and matched PDCs, and the distance reflects the number of cases that harbor respective mutation. Comparison of mRNA expression profiles
between tumor tissue specimens and matched PDCs (bottom panel). Pearson’s correlation between tissue and PDCs is demonstrated as

a heatmap

J

across all gynecologic tumors. In contrast, several agents, cancer type-specific drug response [12, 19]. Through
such as cabozantinib (VEGFR, MET, RET), ABT-888 lineage-specific drug sensitivity analysis (Additional file 5:
(PARP), dabrafenib (BRAF), imatinib (Bcr/Abl), and suniti-  Table S4), we discovered that EGFR inhibitors including
nib (PDGFR), demonstrated relatively minimal anti-cancer  erlotinib, dacomitinib, and ibrutinib, a BTK inhibitor
activities [19]. that was previously shown to have profound anti-EGFR

The molecular variations across diverse pathological activities [19, 35], were highly sensitive in EOCs (P =
tumor types could significantly contribute to distinct 2.91x107°%, P= 359x107°% and P= 224x10"%
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Fig. 2 Lineage-specific drug sensitivity among gynecologic tumors. a Volcano plot representation of gynecologic tumor type-specific drug
response, with fold-change drug comparison (x-axis) and its significance (y-axis). Each circle represents a single tumor type-drug interaction, and
the size is proportional to the cohort size of the respective tumor. b Heatmap representation of plot A. Only significant associations have been
marked based on sensitivity (red) or resistance (blue). Drugs have been clustered based on their known target classes. ¢ Violin plots
demonstrating the pathway enrichment scores of each corresponding pathway. The activity scores were measured using single sample Gene Set
Enrichment Analysis (ssGSEA). Horizontal lines within the violin plots represent 0.25, 0.50, and 0.75 quantiles. P values in a—c: two-sided Wilcoxon's
rank-sum test
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respectively; Wilcoxon’s rank-sum test; Fig. 2a, b),
whereas uterine sarcomas were considerably resistant to
a number of EGFR-targeted compounds, including nera-
tinib, afatinib, gefitinib, and ibrutinib (P= 3.81 x 10",
P=691x10"%, P=1.65x10"%, and P =4.39 x 10, re-
spectively; Wilcoxon’s rank-sum test; Fig. 2a, b). Consist-
ently, pathway enrichment analysis showed activation and
downregulation of EGFR-associated pathway in EOCs and
uterine sarcomas, respectively (Fig. 2c). Furthermore, we
also discovered enrichment of PI3K pathway in ECs,
which further advocated our previous observation on re-
current genomic aberrations of PI3K-AKT-mTOR (PAM)
pathway in ECs (Fig. 1b) [29]. Consistently, everolimus, a
mTOR inhibitor, exhibited significantly higher anti-tumor
activities in ECs compared with other cancer types (Fig. 2a,

b) [36].

Pharmacogenomic interactions in EOCs

EOCs can be primarily categorized into two distinct sub-
types based on their histopathological features: serous and
clear cell carcinomas [37]. Since histologic characteristics
largely contribute to diverse molecular and phenotypic
states, we suspected that a wide-range of EOC-derived
PDCs would demonstrate cell type-specific pharmacoge-
nomic interactions. We first analyzed genomic profiles of
EOCs using targeted exome sequencing (Fig. 3a and
Additional file 6: Table S5). The mutational frequencies of
BRCAI and BRCA2 were approximately 26 and 25%,
respectively, in serous subtype tumors. Conversely, only a
small fraction of clear cell carcinomas harbored BRCAI or
2 mutations (8% for both BRCAI and BRCA2; Fig. 3a). As
previously reported, 7P53 mutation was highly enriched in
high-grade serous carcinomas (HGSC; 82%), while only
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Fig. 3 Pharmacogenomic landscape of epithelial ovarian cancer. a Mutational landscape of epithelial ovarian cancers. All mutations with an allele
frequency of > 5% and depth of > 20 reads are shown. Genomic variations, including single nucleotide variants (SNVs), frameshift insertions/
deletions, in-frame insertions/deletions, and non-sense mutations, are shown. Frequency of each genomic alteration within the whole cohort is
shown on the left column. b Network-based enrichment map analysis of gene set enrichment results. Gene sets are organized as a network,
where each gene set is a node and edges represent genes overlapping between the sets. Related gene sets are laid out as network clusters. ¢
Volcano plot representation of ovarian cancer type-specific drug response, with fold-change drug comparison (x-axis) and its significance (y-axis).
Each circle represents a single tumor type-drug interaction, and the size is proportional to the cohort size of respective tumor. d Drug response
assessments of VEGFR (left panel) and PI3K-AKT-mTOR (left panel) inhibitors in serous and clear cell carcinomas. Box plots span from the first to
third quartiles, and the whiskers represent the 1.5 interquartile range. e, f In vivo drug response assessments of cediranib (e) and PI3K inhibitor (f)

in serous and clear cell carcinomas, respectively. Violin plots represent the overall tumor weights of the PDX models from respective groups.
Horizontal lines within the violin plots represent 0.25, 0.50, and 0.75 quantiles. P values in ¢—f: two-sided Wilcoxon's rank-sum test

17% of clear cell tumors harbored somatic mutation of
TP53 (P=2.179 x 107%) [38, 39]. Notably, clear cell carcin-
omas were marked by high prevalence of PI3KCA and
ARIDIA mutations (67% and 50% for PIK3CA and
ARIDIA, respectively), compared to HGSC and other EOC
types (P = 1.067 x 10" and P = 5.43 x 10~%%) [40-42]. Sur-
prisingly, other EOCs demonstrated considerably high
levels of KRAS and PTEN genomic mutations (Add-
itional file 1: Figure S7). To explore dynamic cellular signal-
ing pathways that are enriched between HGSC and clear
cell tumors, we conducted Gene Set Enrichment Analysis
(GSEA) wusing gene expression profiles (Fig. 3b).

Interestingly, cell cycle and DNA replication/repair-associ-
ated pathways were significantly enriched in HGSC sub-
type. Additionally, interleukin and immune system
encoding genes, including T cell receptor pathways, were
profoundly more activated in HGSCs. In contrast, activa-
tions of metabolism/ion transport, keratinization/cell adhe-
sion, hypoxia/KRAS, and TP53 signaling pathways were
more predominant in clear cell tumors (Fig. 3b). Next, we
examined differential drug sensitivity between HGSC and
clear cell tumors to various molecularly targeted agents
(Fig. 3c and Additional file 7: Table S6). Notably, several
multi-kinase inhibitors, including dovitinib (FLT-3/c-Kit,
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FGFR1/3, and VEGFR) and cediranib (VEGFR, FIT1/4, and
c-KIT), showed significantly high anti-tumor activities in
HGSCs (P=2.92x 10" and P = 3.98 x 10~ for dovitinib
and cediranib, respectively). HGSCs were also widely sensi-
tive to LY-2835219, a CDK4/6 inhibitor (P =2.46 x 10™%),
as well. As inferred by enrichment of PIK3CA somatic mu-
tation, clear cell carcinomas demonstrated superior sensi-
tivities to PAM pathway inhibitors, including BKM120
(PI3K, P=1.88 x 10™*) and AZD2014 (mTOR, P = 2.25 x
107%%). Comparative analysis between serous and clear
cell carcinomas also revealed that serous type tumors
were markedly sensitive to VEGEFR inhibitors, including
cediranib, pazopanib, and sunitinib (Fig. 3d). These
findings were consistently confirmed in vivo using PDX
models that were established from HGSC (Fig. 3e) and
clear cell type PDCs (Fig. 3f).

Identification of genomic biomarkers for drug sensitivity
in gynecologic cancers

Previous studies have shown that a single genetic alter-
ation could be employed as a surrogate biomarker for
predicting clinical response to various drug classes [4, 5,
9, 10, 12, 13, 19]. To identify genomic correlates of di-
verse pharmacological responses in gynecologic tumors,
we evaluated individual drug profiles against single gen-
omic alterations (Fig. 4a, Additional file 8: Table S7).
Among the numerous interactions, PIK3CA mutation
was the most robust genomic predictor of sensitivity to-
wards PAM pathway inhibitors, including AZD2014
(mTOR, P =520 x 10*) and BKM120 (PI3K, P = 3.34 x
107°%). Pharmacological activities of erlotinib (EGFR)
and vandetanib (VEGFR) were significantly associated
with genomic aberrations of ARIDIA (P =4.07 x 107%%)
and NOTCH2 (P=4.96 x107%), respectively. BRCAI
mutation was also linked to therapeutic resistance
against a CDK4/6 inhibitor, LY2835219 (P= 3.53 x
107%*). Gynecologic PDCs that harbored somatic muta-
tions in KRAS and GNAS were widely resistant to dasati-
nib (Bcr-Abl, P=1.03 x 10°°*) and bosutinib (Abl and
SRC, P =2.81 x 10™°%), respectively. TP53-mutant tumors
were highly resistant to a wide range of therapeutics, in-
cluding lapatinib (EGFR, P=2.52x10"%), AZD5363
(AKT, P=328x10"%), and trametinip (MEK, P=
3.24 x 107°%). Conversely, TP53 mutated tumors were
significantly sensitive to olaparib (PARP) treatment (P =
9.39 x 107%%).

PARP inhibition demonstrated potent therapeutic effica-
cies in patients who were diagnosed with either metastatic
breast or advanced ovarian cancers with germline BRCA1/
2 mutations [43, 44]. Although statistically not significant,
BRCA1/2 mutations were enriched in olaparib-sensitive
PDCs (represented with Z-score <0) (Fig. 4b). Interest-
ingly, TP53 mutation also portrayed profound anti-tumor
activity towards olaparib, regardless of histopathological
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subtype. Receiver operating characteristic (ROC) analysis
revealed that genomic alterations of BRCA1/2 demon-
strated positive correlations with olaparib sensitivity (AUC
of ROC > 0.5; Fig. 4c). Furthermore, sole TP53 mutation
or combination of TP53 with BRCA1/2 mutations re-
vealed enhanced predictability to olaparib treatment
(AUC = 0.9074 and 0.9 for TP53 and TP53 with BRCA1/2,
respectively; Fig. 4c). To functionally validate our findings,
we established cancer cell-line models that stably express
various dominant-negative mutant forms of T7P53
(R273H, R249S, and R175H) [45] in an OVISE ovarian
cancer cell-line (TP53 wild-type). As suspected, cytotoxic
activities of olaparib were significantly enhanced on all
TP53 mutants (log (ICsp) values for TP53 wild-type,
R273H, R249S, and R175H mutants were 2.155 (95% CI
2.055 to 2.259), 1.421 (95% CI 1.336 to 1.506), 1.269 (95%
CI 1.177 to 1.362), and 1.408 (95% CI 1.296 to 1.520) uM,
respectively) (Fig. 4d).

Transcriptomic correlates of olaparib response in EOCs
Transcriptome analysis enables identification of unique
gene-signature correlates for particular drug sensitivity
[12, 13, 19]. To identify potential molecular determi-
nants to olaparib response, we systematically analyzed
the transcriptome profiles of EOCs based on their
pharmacological responses to olaparib [44]. We discov-
ered that expressions of SRC pathway encoding genes
were significantly enriched in olaparib-resistant PDCs,
while olaparib-sensitive tumors were marked by activa-
tion of NF-kB pathway (Fig. 5a). Functional validation of
SRC inhibition showed that saracatinib (SRC, 20 um)
significantly augmented the therapeutic effects of ola-
parib in BRCAI-mutant PDCs (P = 3.73 x 10~ Fig. 5b).
Among the list of enriched SRC pathway-encoding genes,
mRNA expressions of ID1/2/3 were predominantly upreg-
ulated in olaparib-resistant PDCs (Fig. 5¢c). Especially, tran-
scriptome expression level of ID2 was significantly
correlated with therapeutic resistance to olaparib treatment
(r=0.52, P=0.01978; Fig. 5d). To determine whether /D2
expression could be employed as a potential predictor of
response to olaparib, we retrospectively analyzed
treatment-free survival of 41 patients (ID2 positive, n = 17;
ID2 negative, n = 24), who were previously diagnosed with
HGSC, harbored BRCA1 or 2 mutation, and received ola-
parib treatment. Notably, the Kaplan-Meier survival ana-
lysis revealed that patients with low ID2 expression
demonstrated significantly prolonged treatment-free sur-
vival to olaparib (log rank test, P=0.02, median survival:
ID2P%® 4.03 months vs. ID2"°¢ 8.73 months; 95% CIL: ID2P*
2.87~6.67 vs. ID2"® 5.60~13.87; Fig. 5e, f). Collectively,
our results indicate that enrichments of SRC pathway and
ID2 expression relate to therapeutic resistance to olaparib
treatment in EOCs.
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Discussion

The success of precision oncology depends on identifica-
tion of effective drugs tailored to individual patients
based on molecular profiling of the tumor. Comprehen-
sive analyses of cancer genome have revealed a land-
scape of key genetic ablations that constitute complex
process of tumorigenesis [1, 8, 46]. A large-scale compil-
ation of pharmacological drug response with molecular
characterization of cancer cell-line models has provided
a reference point for evaluating potential genomic
markers of drug sensitivity [12, 13, 16, 17]. Moreover,
we have previously established a landscape of pharmaco-
genomic interactions using a library of short-term cul-
tured PDCs to explore dynamic gene-drug associations
and presented its clinical feasibility [19]. As an exten-
sion, we generated a collection of 139 gynecologic

tumors from patients with cervical, endometrial/uterine,
or ovarian cancers. Through integrative genomic, tran-
scriptomic, and pharmacological analyses, we have pro-
vided several new therapeutic insights for gynecologic
malignancies (Fig. 1a).

We evaluated lineage-specific drug sensitivity in gyneco-
logic tumors and discovered that EOCs demonstrated
enhanced sensitivities to multiple EGFR inhibitors, while
ECs were particularly sensitive to everolimus, an mTOR in-
hibitor. A number of clinical observations further advo-
cated our results. Despite the small number of patients and
lack of randomization, addition of erlotinib (EGFR) to plat-
inum or paclitaxel provided favorable clinical outcomes for
EOC patients, compared to platinum or paclitaxel treat-
ment alone [47]. Moreover, several clinical investigations
demonstrated potential therapeutic benefits of mTOR
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targeted therapy in EC patients [36, 48—50]. Consistent
with previous observations, we confirmed that serous and
clear cell EOCs can be distinguished by evidently distinct
genomic compositions (Fig. 3a), highlighting the need for
molecular-based therapeutic approaches. Interestingly, our
drug screening results, coupled with in vivo validations,
propose clinical utility of cediranib (VEGFR) for HGSC pa-
tients, while PAM inhibitors could be more beneficial for
those with clear cell carcinomas. Recent phase II and III
clinical trials with cediranib also revealed that cediranib
plus olaparib treatment resulted in a significant improve-
ment in progression-free survival of HGSC patients com-
pared to olaparib alone [51, 52]. As in vivo PDX results
were only representative cases, further functional valida-
tions in a larger cohort are warranted to explore potential
clinical applications of VEGFR and PAM inhibitors in ser-
ous and clear cell type tumors, respectively.

We also identified genomic correlates of drug sensitivity
and resistance to olaparib. Approximately 13-18% of the
HGSCs are attributable to BRCAI or 2 germline mutations,
and PARP inhibition therapy has been a successful ap-
proach for these patients. However, the need for discover-
ing an alternative molecular biomarker to better predict the
clinical efficacy against PARP inhibition treatment has been
increasingly recognized due to global acquisition of olaparib
resistance. Notably, we demonstrated that addition of 7P53
mutation could be a significant molecular determinant for
predicting potential clinical response to PARP inhibition

therapy. The tumor suppressor protein p53 provides an es-
sential role in governing cell cycle arrest or apoptosis upon
DNA damage [53]. However, the underlying molecular cas-
cades that determine p53 protein stability and its activation
are not fully understood. Accumulation of PARP1 is an
early event where a single strand DNA break is generated
and initiates base excision repair (BER) pathway [54].
PARP-1 interacts with p53 to modulate DNA damage [55],
and genotoxic drugs promote accumulation and activation
of p53 in parp-1-deficient cells. Furthermore, p53 deficiency
enhanced pharmacological sensitivity towards PARP inhib-
ition therapy in mantle cell lymphoma [55]. Consistent with
such findings, our results suggest the prospect of targeting
p53-deficient tumors with PARP inhibitors regardless of
histopathological characteristics. Prevalence of TP53 muta-
tion in HGSCs could contribute to the clinical success of
PARP inhibitors [39, 42, 44].

Lastly, we identified SRC activation to be associated
with therapeutic resistance to olaparib. The SRC family
of non-receptor tyrosine kinases regulates essential cel-
lular programs, including cellular proliferation, differen-
tiation, migration, survival, and angiogenesis [56]. A
substantial number of studies have postulated that acti-
vation of SRC pathway contributes to inherent resistance
to chemotherapy and inhibition of SRC pathway could
potentially circumvent such mechanism [57, 58]. More-
over, transcriptional expressions of ID family genes were
identified as molecular correlates of olaparib sensitivity.
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ID proteins are members of the large family of the helix-
loop-helix (HLH) transcription factors. During develop-
ment, ID proteins govern cell cycle and differentiation
programs by modulating various cell cycle regulators
[59]. From the perspective of tumorigenesis, upregula-
tion of ID protein is mediated by a group of proto-
oncogenes, including Myc, Ras, and (EWS)-Ets, and
prevents activation of various tumor suppressor genes
[60], making it a promising therapeutic target [61].

Conclusion

Here, we generated an additional cohort at single tumor-
lineage resolution, specializing in gynecologic malignan-
cies. We performed systematic analyses of tumor genome
and transcriptome to identify molecular determinants that
dictate drug sensitivity to various molecular targeted drugs
that are currently being used or under development. Our
work provides an extension to current pharmacogenomic
database in identifying predictive biomarkers and combin-
ational approach to overcome cellular-intrinsic resistance
to particular drug classes, including PARP inhibitors.

Methods

Gynecologic cancer specimens and their derivative cells
After receiving informed consent, tumor specimens and
clinical records were obtained from patients undergoing
surgery at Samsung Medical Center (SMC) in accordance
with its Institutional Review Board. Surgical samples meas-
uring ~ 5 x 5 x 5 mm?> were snap frozen using liquid nitro-
gen for genomic analysis. Portions of the surgical samples
were enzymatically dissociated using Liberase TM (Roche)
and cultured in DMEM/F12 media with L-glutamine (Ther-
mofisher), N2 and B27 supplements (0.5x each; Thermo-
fisher), human recombinant basic fibroblast growth factor
(bFGEF), and epidermal growth factor (EGF; 20 ng/ml each;
R&D Systems).

Orthotopic xenograft animal models and drug treatment

Female BALB/c nude mice were purchased from ORIENT
BIO (Sungnam, Korea). This study was performed in ac-
cordance with relevant guidelines and regulations. This
study was reviewed and approved by the Institutional Ani-
mal Care and Use Committee (IACUC) of Samsung Bio-
medical Research Institute (SBRI). SBRI is an Association
for Assessment and Accreditation of Laboratory Animal
Care International (AAALAC International, protocol no.
H-A9-003)-accredited facility and abides by the Institute
of Laboratory Animal Resources (ILAR) guidelines. To
generate PDX models, patient tumor specimens were cut
into small pieces (below 2—3 mm), implanted into the sub-
renal capsule of the left mouse kidney, and propagated by
serial transplantation [34]. After 1-2 weeks, the mice (1 =
10 mice per group) were treated with either 1%
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polysorbate 80 or 0.5% methylcellulose or cediranib (6
mg/kg, qd, p.o.) or AZD8835 (25 mg/kg, bid, p.o.). Mice
were monitored daily for tumor development and postop-
erative complications and were sacrificed between day 35
and 40 or if mice seemed moribund. Total body weight
and tumor weight of each mouse were recorded. Tumors
were fixed in formalin and embedded in paraffin or snap
frozen in the OCT compound (Sakura Finetek, Japan,
Tokyo, Japan) in liquid nitrogen.

Isolation of genomic DNA and quality control

Genomic DNA was extracted from fresh tissue specimens
using the QIAamp DNA mini kit (Qiagen, Valencia, CA,
USA) or from FFPE tissues using either the Promega Max-
well 16 CSC DNA FFPE kit or the QIAamp DNA FFPE
Tissue kit according to the manufacturer’s manual. The
purity, amount, and median size of the extracted DNA
were measured by the Nanodrop 8000 UV-Vis spectrom-
eter (Thermo Scientific Inc., Wilmington, DE, USA),
Qubit 2.0 fluorometer (Life Technologies Inc., Grand Is-
land, NY, USA), and 2200 TapeStation Instrument (Agi-
lent Technologies, Santa Clara, CA, USA). In addition,
ACt values were determined using real-time PCR (Agilent
Technologies) with Mx3005p instrument (Agilent Tech-
nologies, USA), FFPE QC kit (Illumina, cat no. WG-321-
1001), and Brilliant Ultra-Fast SYBR Green qPCR (Agilent
Technologies, cat no. 600882). If DNA meets the quality
criteria such as (i) purity to absorption ratio (260 nm/280
nm) > 1.8, 260 nm/230 nm > 1.8; (ii) total amount > 250 ng;
(iii) degradation to ACt value < 2.0; or DNA median size
> 0.35 kb, it is proceeded onto the sequencing step.

Panel design and sequencing

Samples were profiled on CancerSCAN, a targeted se-
quencing platform designed at Samsung Medical Center.
This customized platform offers flexibility to include tar-
get genes that are curated from the literature or re-
quested by researchers and clinicians. To obtain cancer
panel sequencing data, CancerSCAN probes were de-
signed to enrich the exons of 80 target genes (Add-
itional file 9: Table S8). Genomic DNA was sheared
using the Covaris S220 (Covaris, Woburn, MA) to con-
struct a sequencing library using the SureSelect XT Re-
agent Kit, HSQ (Agilent Technologies) on target genes.
A paired-end sequencing library was purified and ampli-
fied with a barcode tag, and the library quality and quan-
tity were determined. Sequencing was carried out using
the 100-bp paired-end mode of the TruSeq Rapid PE
Cluster kit and TruSeq Rapid SBS kit on a HiSeq 2500
sequencing platform (Illumina, San Diego, CA, USA).

Bulk RNA sequencing
RNA-seq libraries were prepared using the Illumina
TrueSeq RNA Sample Prep kit. Sequenced reads were
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mapped onto hgl9 using the Burrows-Wheeler Aligner
(BWA). The initial alignment BAM files were sorted and
summarized into BED files using SAMtools and bed-
Tools. The BED files were used to calculate values of
RPKM (reads per kilobase of transcript per million
reads) for each gene, using DEGseq package.

Drug screening

PDCs were cultured in serum-free medium, dissociated
into single cells, and seeded in 384-well plates at a density
of 500 cells per well in duplicate or triplicate for each
treatment. The drug panel consisted of 37 anti-cancer
agents targeting oncogenic signals. All drug libraries were
purchased from Selleckchem. PDCs were treated with
drugs in a four-fold and seven-point serial dilution series
from 20 to 4.88 nM using a Janus Automated Workstation
(PerkinElmer, Waltham, MA, USA). After 7 days of incu-
bation at 37 °C in a 5% CO, humidified incubator, cell via-
bility was analyzed using an adenosine triphosphate (ATP)
monitoring system based on firefly luciferase (ATPLite™
1step, PerkinElmer). Viable cells were estimated using an
EnVision Multilabel Reader (PerkinElmer). The controls, di-
methyl sulfoxide (DMSO) vehicle, were used to calculate
relative cell viability for each plate and to normalize the data
on a per-plate basis. Dose response curve (DRC) fitting was
performed using GraphPad Prism 5 (GraphPad) and evalu-
ated by measuring the area under curve (AUC). In brief,
each plate was normalized to the mean of the seven condi-
tions on the plate with a DMSO control. After
normalization, best-fit lines and the resulting ICsqvalues were
calculated using GraphPad: [log(inhibitor) vs. response —
variable slope (four parameters)]. ¥ = Bottom + (Top — Bot-
tom)/(1 + 107 ((logICs — X) x HillSlope)). The AUC of each
curve was determined using GraphPad Prism, ignoring re-
gions defined by fewer than two peaks. Non-convergence or
ambiguous curves are excluded in every analysis.

Pharmacogenomic interactions on major genomic
alterations

For gene-drug associations, a list of major cancer-driver
alterations, including single nucleotide variations, small
insertions, and deletions, was considered as a predictive
genomic biomarker to evaluate drug response interac-
tions. For each drug candidate, drug sensitivity data
(AUCs) were analyzed by comparing tumors with the se-
lected genomic alteration to those without using the
Wilcoxon rank-sum test. Samples with unknown status
of a given alteration were excluded from the analysis. To
evaluate lineage-specific drug sensitivities in gynecologic
tumors, drug sensitivity data were analyzed by compar-
ing tumors from each pathologic entity to the rest using
the Wilcoxon rank-sum test. For transcriptome analysis,
tumors were classified as “sensitive” (Z-score < - 0.5) or
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“resistant” (Z-score > 0.5) based on drug sensitivity data
and subjected to Gene Set Enrichment Analysis (GSEA).

Plasmid preparation and stable cell establishment
Lentiviral vectors encoding TP53 mutants (R175H,
R273H, or R249S) in pLenti6/V5 plasmid were purchased
from Addgene (cat no. 22936, 22934, and 22935, respect-
ively). Lentivirus was prepared by transfecting plasmids
into the 293T cells using pMD2G, psPAX2 (Addgene),
and Lipofectamine 2000 (Thermofisher). After the initial
transfection, supernatants were collected after 48 and 72 h
and filtered through 0.45 puM filters (Milipore). To gener-
ate stable TP53 mutant-expressing cell lines, lentivirus
particles were incubated with ovarian clear cell carcinoma,
OVISE, and treated with polybrene (8 ug/ml, Sigma) for
48h and blasticidin (5 pg/ml, Sigma) selection was per-
formed for 2 weeks.

Immunohistochemistry

Immunohistochemical  staining was performed on
formalin-fixed, paraffin-embedded, 4-5-um-thick tissue
sections, using the Bond-maxTM automated immunostai-
ner (Leica Biosystems, Melbourne, Australia) and
BondTM Polymer Refines Detection Kit (Vision Biosys-
tems, Melbourne, Australia). Mouse monoclonal anti-ID2
antibody (1:100; NBP2-66898, Novus Biologicals, USA)
was used. Briefly, antigen retrieval was carried out at 97 °C
for 20 min in ER1 buffer. After blocking the endogenous
peroxidase activity with 3% hydrogen peroxidase for
10 min, primary antibody was incubated for 60 min at
room temperature. To verify antibody specificity, anti-
mouse IgG (AI-2000; Vector Laboratories, Burlingame,
CA, USA) was used as a control. The degree of immuno-
staining of ID2 was evaluated according to staining pro-
portion of positively stained cancer cell nucleus and the
staining intensity, as previously described [62]. Briefly, the
areas of stained cancer cells were scored as follows: the
percentage of positive cells (0-100%) and intensity scaled
from O to 2 (null = 0, weak to moderate = 1, strong = 2).

Statistics

All statistical analyses were conducted by either Wilcox-
on’s rank-sum test (two-sided), Pearson’s correlation co-
efficient test, or Fisher’s exact test (two-sided). Survival
curves were estimated with the Kaplan-Meier method.
All statistical analyses were conducted and obtained
using the R software (https://www.r-project.org).
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