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Abstract

Background: Whole-genome shotgun sequencing, which stitches together millions of short sequencing reads into
a single genome, ushered in the era of modern genomics and led to a rapid expansion of the number of genome
sequences available. Nevertheless, assembly of short reads remains difficult, resulting in fragmented genome
sequences. Ultimately, only a sequencing technology capable of capturing complete chromosomes in a single run
could resolve all ambiguities. Even “third generation” sequencing technologies produce reads far shorter than most
eukaryotic chromosomes. However, the ciliate Oxytricha trifallax has a somatic genome with thousands of
chromosomes averaging only 3.2 kbp, making it an ideal candidate for exploring the benefits of sequencing whole
chromosomes without assembly.

Results: We used single-molecule real-time sequencing to capture thousands of complete chromosomes in single
reads and to update the published Oxytricha trifallax JRB310 genome assembly. In this version, over 50% of the
completed chromosomes with two telomeres derive from single reads. The improved assembly includes over 12,000
new chromosome isoforms, and demonstrates that somatic chromosomes derive from variable rearrangements
between somatic segments encoded up to 191,000 base pairs away. However, while long reads reduce the need for
assembly, a hybrid approach that supplements long-read sequencing with short reads for error correction produced
the most complete and accurate assembly, overall.

Conclusions: This assembly provides the first example of complete eukaryotic chromosomes captured by single
sequencing reads and demonstrates that traditional approaches to genome assembly can mask considerable structural
variation.
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Background
Whole-genome shotgun sequencing, first pioneered in
eukaryotes during the human genome project, has become
such common practice that over 38,000 genome assemblies
are available from NCBI today [1]. Despite its ubiquity,
genome assembly is still a challenge, requiring the compu-
tation of overlaps among millions of short reads. In par-
ticular, the use of short reads makes it difficult to place
repetitive elements, resolve the length of microsatellite

repeats, or capture haplotypes over large genomic regions.
Traditional whole-genome shotgun sequencing leaves
much to be desired for non-model genomes that exhibit
either long repeats or high polymorphism rates that fall
outside the assumptions of most assembly programs, such
as plant genomes that contain high levels of repetitive
elements and high ploidy [2, 3], or genomes with large
stretches of similarity that result from whole-genome
duplications, such as the ciliate Paramecium [4]. Despite
improvements in assembly algorithms, the best way to
completely overcome these issues would ultimately be to
use a sequencing method capable of accurately reading the
sequence of each chromosome in full. Although current
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sequencing technologies fall far short of this mark, read
lengths have increased substantially. Pacific Biosciences’
single-molecule real-time (SMRT) sequencing platform
achieves read lengths as high as 50,000 base pairs [5], while
reads over 200,000 base pairs long have been reported
from Oxford Nanopore’s MinION [6]. The higher reso-
lution provided by these long reads has made it possible to
produce high-quality reference sequences that capture
structural variation that short-read sequencing cannot re-
solve [7, 8] and even automate the completion of microbial
genomes [9].
While it is not yet possible to produce reads long

enough to capture most eukaryotic chromosomes, Oxytri-
cha trifallax’s tiny “nanochromosomes” fall well within
the range of recent long-read sequencing technologies
and, themselves, offer powerful models for studying
eukaryotic chromosome biology [10, 11]. Like all ciliates,
Oxytricha has two nuclear genomes, a transcriptionally
silent germline and a compressed somatic genome used
for most of the cell’s transcription. The germline genome
has a complex architecture containing > 225,000 short
genic sequences (macronuclear destined sequences,
MDSs) that assemble during development to form the
somatic genome. In addition, approximately 22% of
MDSs are present in a permuted order or inverse orien-
tation in the germline, and require descrambling during
formation of the somatic chromosomes, together with
removal of thousands of noncoding sequences (intern-
ally eliminated sequences, IESs) that interrupt MDSs
[12]. While the germline genome contains hundreds of
long chromosomes, the somatic genome is highly frag-
mented with ~ 20,000 different chromosomes that
average just 3.2 kb in length [13, 14], possess very few
well-positioned nucleosomes [10], and derive from a
copy of the germline through an elaborate process of
RNA-guided genome rearrangement that eliminates 90–
95% of the germline sequence, including all IESs, stitches
together the remaining germline segments in the correct
order [15, 16], and adds telomeres to chromosome ends
(reviewed in Yerlici and Landweber [17]).
In addition to small chromosome size, Oxytricha’s

somatic genome displays several features that complicate
traditional genome assembly. Approximately 25% of chro-
mosomes contain one or more internal sites used for telo-
mere addition, which terminates the chromosome. The
same proportion of chromosomes use alternative recom-
bination between germline segments. The use of internal
telomere addition sites and alternative chromosome frag-
mentation produces a family of chromosome isoforms that
contain only part of another chromosome’s sequence [14].
Furthermore, somatic chromosomes exhibit copy number
variation that can range over orders of magnitude, which is
well outside the assumptions of most assembly programs
and sequencing techniques.

However, while long-read sequencing has the potential to
solve many issues associated with the assembly of Oxytricha’s
macronuclear genome, it also has a major drawback: SMRT
sequencing and other long-read technologies produce reads
with a much higher error rate than those produced by short-
read sequencers. Raw PacBio reads may have up to a 13%
error rate, compared to a ~ 0.5% error rate for Illumina [18].
The raw reads therefore require an additional pre-processing
“error correction” step prior to assembly. Traditionally, this
has been accomplished by aligning short reads to error-
containing long reads and using a consensus call method to
infer the correct sequence of the long read. The advent of
pipelines like PBcR that produce corrected long reads by
aligning raw long reads to long reads [5], may eliminate the
need for pre-processing correction with short read sequen-
cing but they require much greater PacBio coverage. After
self-correction, PacBio reads still exhibit a basal error rate of
~ 2–3% [19], compatible with modern assemblers, but the
resulting assembly needs to be further improved with post-
assembly correction by short-reads.
In 2013, our lab published a high-quality assembly of

Oxytricha’s somatic genome using a combination of
Sanger, 454 and Illumina data. Here we present an updated
version incorporating SMRT sequencing. The improved
assembly includes over 13,000 complete chromosomes
captured in single reads, entirely without assembly. We
find that long reads are ideal for capturing the large num-
ber of structural variants in the Oxytricha somatic genome
and discuss the relative merits of different sequencing
strategies for producing the highest-quality assembly for an
extensively fragmented genome.

Results
Over half the Oxytricha somatic genome can be
completely sequenced without assembly
We isolated Oxytricha trifallax strain JRB310 somatic,
macronuclear DNA for SMRT sequencing, combining a
pilot sequencing run using the P2 chemistry with a sec-
ond, full run using P3 chemistry, for a total of 10 SMRT
cells and 264x genome coverage (Table 1). After filtering

Table 1 SMRT sequencing of the Oxytricha somatic genome

P2 Chemistry P3 Chemistry Combined Self-corrected

Number of
Flow Cells

2 8 10 −/−

Total Subreads 584,388 4,622,662 5,207,050 1,637,578

Total Sequence
(GB)

1.37 11.90 13.27 3.5

Mean Read
Length (bp)

2350 2575 2545 2152

Max Read
Length (bp)

32,258 42,863 42,863 13,629

Genome
Coveragea

26x 238x 264x 70x

aBased on a genome size of 50 MB
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and self-correction, we recovered 599,310 reads. As ex-
pected, the distribution of sequencing read lengths closely
matches the length distribution of Oxytricha somatic
chromosomes (Fig. 1), and 324,445 corrected subreads
contained telomeric sequences on both ends, indicating
that they are complete chromosomes. These reads with
two telomeres represent 11,378 distinct chromosomes or
51% of the contigs in the published assembly; thus, over
half of the genome can be completely sequenced without
assembly. We used the Celera Assembler to assemble the
corrected reads that lacked telomeric sequences on both
ends into contigs and combined these contigs with the
single-read chromosomes to produce a long-read-only
assembly (Pure PacBio Assembly) (Table 2). Although this
assembly contains over 9000 more contigs than the previ-
ously published assembly, the majority of the new addi-
tions are alternatively fragmented isoforms of previously
sequenced chromosomes (Fig. 2 and see “Long-read se-
quencing discovers novel chromosome isoforms”). While

SMRT sequencing provided good coverage of chromo-
somes around the somatic genome’s mean 3.2kbp length,
it was unable to capture most of the shortest chromo-
somes, largely because short reads (< 300 bp) were filtered
out at several points during the data cleaning process. The
shortest gene-containing two-telomere chromosome in
our assembly was 314 bp, compared to 502 bp in the
published assembly. Meanwhile, the longest chromosome
captured by a single read was 13,906 bp, which encodes
three genes including a Serine/Threonine kinase. Overall,
13% of contigs ≥10,000 bp were present in the long read
data, compared to 63% of contigs between 1000 bp and
10,000 bp. This indicates that SMRT sequencing was able
to capture long chromosomes in addition to short ones.
To produce a final assembly that combines the

strengths of the short read assembly with long read data,
we combined our pure long read (PacBio) assembly with
high-confidence contigs from the published assembly to
create a hybrid assembly containing all high-confidence

Fig. 1 SMRT sequencing reads are long enough to capture complete Oxytricha chromosomes. The length distribution of corrected SMRT
subreads is similar to the length distribution of Oxytricha chromosomes. To improve readability, a random subsample of 50,000 SMRT subreads is
shown, and the twelve chromosomes longer than 20,000 bp (from ~ 22,000 bp to ~ 66,000 bp) have been omitted from the plot
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chromosome isoforms identified by either approach. The
hybrid assembly was scrutinized and polished by correct-
ing remaining PacBio sequencing errors with Illumina
reads. Of the 38,668 contigs in the final assembly, alter-
native fragmentation detection revealed 18,617 distinct
chromosomes, with 5226 possessing at least one isoform.
Note that this number of distinct chromosomes is
approximately 2000 more than previously reported in
Swart et al. [14]. The previously published genome
assembly had been judged largely complete based on its

complement of tRNA genes and overlap with the CEG
database of core eukaryotic proteins [14]. Here, we mea-
sured the completeness of the published and hybrid As-
sembly using BUSCO [20, 21], both assemblies showed a
similar completeness score of 85%. While 100% would
be the ideal level of genome completeness expected from
BUSCO, this is just one metric for assessing the quality
of an assembly. Our lab previously published a study
[22] that assembled the somatic genome of six ciliates
and assessed completeness using the representation of core
eukaryotic genes (CEGs). When we rechecked the com-
pleteness of these genomes using BUSCO it produced a
range of scores from 70 to 85%. Furthermore, in Chen
et al. 2018 [23] the authors used BUSCO to evaluate the
completeness of the Euplotes vannus genome, as well as
the Oxytricha and Tetrahymena genomes, and observed a
similar trend. Moreover, the complement of unique pre-
dicted proteins is much higher for the hybrid assembly be-
cause we used RNA-seq data from vegetatively-growing,
starved, and encysted Oxytricha cells for gene prediction
with Augustus. The domain analysis of these proteins
shows that the hybrid assembly contain only 94 more pro-
tein domains that were not identified in the previous as-
sembly. This suggests that, rather than having missed large

Table 2 Assembly statistics for long- and short-read genome
assemblies

Published
Assembly [14]

Pure PacBio
Assembly

Hybrid
Assembly

Assembly Size 64 MB 87 MB 108 MB

Total Contigs 22,450 31,664 38,668

Unique Predicted
Proteins a

24,963 16,251 27,528

% Identified
Busco genes

85% 58% 85%

% Illumina read
mapping

96% 85% 95%

a Based on a 90% similarity cut off

Fig. 2 Distribution of the number of isoforms for each chromosome in the hybrid assembly. The distribution of the number of isoforms shows
that the majority of the chromosomes have only one isoform. There are few cases with more than one isoform, with a maximum of nine for
one chromosome
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numbers of functional proteins in the previous assembly,
the larger proteome size in the hybrid assembly is mostly
accounted for by the presence of variants of existing
proteins. Also, while approximately 13,500 new
chromosome variants were identified in the long read
data, only two entirely new, incomplete chromosomes
were discovered. This suggests that the hybrid assem-
bly is virtually complete.

Long-read sequencing discovers novel chromosome
isoforms
Oxytricha’s somatic chromosome isoforms are often
masked by genome assembly pipelines that merge short
chromosomes into larger ones with the same sequence.
Previous estimates of the level of alternative fragmenta-
tion in Oxytricha were based either on PCR examination
of individual loci [24] or on the inference of telomere
addition sites by identifying pileups of telomere-
containing reads [14]. SMRT sequencing captures these
variants in their entirety. Our genome-wide analysis of
alternative fragmentation sites identified 25,312 distinct
chromosome variants, with 5226 of the 18,617 (28%)
detected chromosomes demonstrating at least one alter-
native fragmentation site (Fig. 2). The functional analysis
of the proteins encoded by these chromosomes with iso-
forms suggests that they are mostly involved in cellular
processes and signaling functions (Fig. 3). They are

enriched in three KOG functional categories: “T” (Signal
transduction mechanisms), “O” (Posttranslational modifi-
cation, protein turnover, chaperones) and “U” (Intracellular
trafficking, secretion, and vesicular transport). Curiously,
chromosomes that lack isoforms in our study display an
excess of predicted proteins with unknown functions.
Mapping telomere-containing Sanger sequencing reads

predicted 6695 isoforms [14], 76% of which are also
found among the isoforms in the long read assembly.
This indicates that SMRT sequencing captures the same
kind of isoforms, but notably it finds more of them.
Furthermore, the ability of long read sequencing to re-

trieve complete sequences of the isoforms, not just their
lengths, allows us to examine alternative fragmentation
on a genome-wide scale. Previous studies have inferred
that multiple germline loci may contribute to families of
alternative fragmentation isoforms [24, 25]. With the
current data provided by long-read sequencing, we find
that some isoforms may derive from mixing and match-
ing between these different loci, rather than from pro-
cessing each locus separately. Figure 4 shows one of the
chromosomes with the most fragmentation isoforms in
our dataset, Contig14329.0, that has nine isoforms. Of
these, four incorporate sequence from two separate
germline loci, suggesting that alternative fragmentation
and assembly can recombine segments from multiple
loci, which would require inter-chromosomal

Fig. 3 Chromosomes with alternative fragmentation encode for proteins involved in cellular processes and signaling functions. Functional
analysis using the KOG database revealed that the encoded proteins on chromosomes with isoforms (blue) are enriched in functions belonging
to the cellular processes and signaling category (Fisher test, p-value < 0.05). Curiously, the proteins encoded on chromosomes without isoforms
are mostly unannotated
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recombination. The other five isoforms include segments
from only one locus or the other. To produce the full
complement of isoforms for this chromosome the cell
must therefore undertake variable processing within a sin-
gle locus, as well as combine sequences from multiple loci.
Several of the alternatively fragmented isoforms also con-
tain segments from just one locus or the other, suggesting
that an unknown mechanism might regulate which iso-
forms a locus produces. We find that variable processing
is widespread, with 2522 out of 5226 (48%) alternatively
fragmented chromosomes deriving from two or more par-
alogous germline loci. Moreover, it will be illuminating to
mine the data for evidence of interallelic rearrangements
in Oxytricha’s somatic genome. However, we found that
the current data and methods were insufficient to phase
each chromosome from the hybrid assembly to produce a
high quality haploid version of the genome assembly.

Hybrid error correction produces the most complete
somatic genome assembly
To determine whether pure long-read sequencing pro-
duces an assembly of similar quality to a hybrid strategy
that uses short reads to correct PacBio reads, we sub-
sampled our long read data and assessed the complete-
ness of assemblies produced using the two correction
methods. Overall, hybrid error correction outperforms
long-read-only error correction at all sequencing depths
(Fig. 5), and while the number of contigs recovered by
hybrid error correction begins to saturate with eight flow
cells’ worth of data, the steep slope of the long-read-only
curve suggests that considerably more sequencing depth
would be necessary to correct all chromosomes using
only long reads.
The heterogeneous copy number of chromosomes in

Oxytricha’s somatic genome may be the root cause for

Fig. 4 Long-read sequencing reveals underlying structural variation among chromosomes. Segments of four germline contigs (1–4) rearrange to
produce nine high-confidence isoforms (A-I) of one somatic chromosome, Contig14329.0. The four germline contigs most likely represent two
paralogous loci; contig 2 terminates in repetitive sequences at both ends. These match repetitive sequence at the 3′ end of contig 3 and the 5′
end of contig 4. Dotted lines indicate that a contig extends beyond the region shown. Dark gray blocks on the germline contigs represent
somatic sequence that is 100% identical between the two paralogs, while colored sequence represents regions that differ between the two
germline loci. Colored segments in the somatic isoforms indicate the corresponding germline segments of origin; two boxes stacked vertically
indicate ambiguity when the germline paralogs are identical. While most isoforms contain only sequence from one locus or the other, isoforms
“A,” “B,” “D,” and “I” have variants that incorporate sequence from both loci, suggesting that alternative fragmentation and assembly can
recombine segments from multiple loci, in addition to variable retention of segments within a single locus
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the inadequacy of long-read error correction. While the
average somatic chromosome copy number is approxi-
mately 2000n [13], some chromosomes can be amplified
to over 200,000 copies. This reduces the effective cover-
age for low-copy number chromosomes, as more abun-
dant chromosomes absorb a disproportionate amount of
sequencing depth. Both the hybrid-corrected and self-
corrected genome assemblies were biased towards chro-
mosomes with significantly greater copy number than
average read coverage, even when all flow cells were
incorporated (Welch’s one-sided t-test, t = 4.1652, p =
1.559e-05 for hybrid correction, t = 4.7637, p = 1.559e-05
for self-correction). However, hybrid error correction
resulted in a steeper decline in mean chromosome copy
number across the genome as sequencing depth increased,
compared to self-correction (79 fewer for the hybrid error
correction, 13 fewer for self correction). This indicates
that the hybrid error correction incorporated more low-
abundance chromosomes as the amount of long read data
increased, relative to the self-correction method. While we

recovered 135x coverage of corrected sequence from
strictly long reads, this derived from only hundreds of
thousands of PacBio reads, each an individually sampled
molecule, compared with tens of millions of short-read
Illumina sequences. The increased depth that can be
achieved with short reads is thus more important to the
completeness of the final genome assembly than the in-
creased resolution provided by long-read sequencing.

Discussion
As long-read sequencing technology improves, it may
eventually be possible to sequence complete chromo-
somes of most organisms in a single contiguous read.
For now, Oxytricha’s highly fragmented genome pro-
vides the first opportunity for genome sequencing with-
out assembly. This approach permitted the discovery of
structural chromosome isoforms that were masked by
traditional assembly pipelines. Long-read sequencing
dramatically increased the number of alternative iso-
forms that we could identify. Furthermore, we conclude

Fig. 5 Hybrid error correction outperforms long read self-correction. With 50x coverage of short-read data, hybrid error correction produces a
more complete assembly than self-correction, even at twice the minimum recommended long-read coverage
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that many of these isoforms may derive from recombin-
ation among multiple germline loci, in addition to vari-
able processing within a locus. Where allelic variation is
present, this implies that genome rearrangement may
occur between—as well as within—germline chromo-
somes. The observation that some isoforms derive exclu-
sively from one locus or the other also raises the
question of what regulates this selection and what deter-
mines the range of isoforms produced. The finding that
piRNAs can strongly influence chromosome fragmenta-
tion patterns and lead to alternatively processed chro-
mosomes [26] suggests that the piRNA pathway is
involved [27, 28] in this process.
The long read sequencing in this study permitted a

higher quality examination of closely-related chromosome
isoforms than the previously published assembly. However,
for de novo genome assembly, the variation in chromo-
some copy number in Oxytricha makes the approach less
economical than short-read sequencing. Alternatively, for
species that possess highly fragmented genomes and gene-
sized chromosomes with variable chromosome copy
number, the challenge of genome assembly is similar to
transcriptome assembly. As such, the PacBio isoform se-
quencing (Iso-Seq) pipeline for transcriptome assembly
could also be modified for genome sequencing, just as it is
capable of capturing complete transcripts without assembly
and identifying novel genes and isoforms produced via
alternative splicing [29–32]. Overall, we recommend that
future studies perform an initial assembly based on short
read data and use long reads to investigate structural
variants, the area where we reaped the most benefit for this
genome.

Conclusions
The combination of high coverage long and short reads
permits the most complete assembly of a ciliate genome,
together with the discovery of novel structural variants.
The improved Oxytricha trifallax macronuclear genome
assembly presented here will allow further investigation
of chromosome rearrangements in this species and
lineage.

Methods
Cell growth and culture
Cell growth, harvest, and nuclei isolation of Oxytricha
trifallax strain JRB310 were carried out as described in
[12], with the exception that the pellet was collected
after the initial centrifugation step rather than from the
10% gradient fraction to isolate macronuclei rather than
micronuclei.

Library preparation and sequencing
Library preparation and sequencing were per the manu-
facturer’s instructions for P5-C3 and P6-C4 sequencing

enzyme and chemistry, as previously described [12].
Aliquots of 5 μg of extracted high-quality genomic DNA
were enriched for MAC DNA and verified using Qubit
analysis. DNA was quantified and diluted to 150 μL in
Qiagen elution buffer (33 μg/μL). The sample was pipet-
ted into the top chamber of a Covaris G-tube spin
column, gently sheared 60 s, 4500 rpm in an Eppendorf
5424 bench top centrifuge, followed by 0.45X AMPure
XP purification. ~ 1.2 μg of this sample was used in li-
brary preparation exactly as described in [12].
After library preparation, samples were validated as ~

5 kb via an Agilent DNA 12000 gel chip. Blue Pippin
0.75% agarose cassettes (Sage Science) were used to pre-
pare a MAC-enriched library (5000 bp – 50,000 bp). In
2014 we sequenced two SMRT Cells as a proof of con-
cept. For these initial SMRT Cells the polymerase-
template complex was bound to the P5 enzyme using a
ratio of 10:1 polymerase to SMRTbell at 0.5 nM, 4 h,
30 °C, then incubated at 4 °C prior to magbead loading
and sequencing with the C3 chemistry. In 2015 we se-
quenced 8 additional SMRT Cells to have enough mater-
ial for long read self-correction. For these additional
SMRT Cells the complex was bound to the P6 enzyme
and sequenced using the C4 chemistry. The magnetic
bead-loading step was conducted at 4 °C for 60 min. The
magbead-loaded, polymerase-bound SMRTbell libraries
were placed onto the RSII machine at a sequencing con-
centration of 100 to 110 pM and sequenced across two
SMRT Cells using P5-C3 and 8 additional SMRT Cells
using P6-C4 chemistry.

Genome assembly
We used Pacific Bioscience’s SMRT Pipe 2.3.0 [33] to
quality trim and to filter raw SMRT sequencing reads,
using default parameters but enabling the artifact filter
(parameter value − 1000) in order to remove chimeric
reads. Reads that passed the filter were self-corrected
using PBcR (default parameters) [5].
Error correction deleted the telomeres from most

reads, so we gathered all raw reads that had at least
one telomere, based on matching to the regular ex-
pression [TG]*TTTTGGGGTTTT, [TG]*GGGGTTTT
GGGG, [AC]*AAAACCCCAAAA, or [AC]*CCCCAA
AACCCC with an edit distance of two. The first and
last 1000 bp of these reads were corrected using
ECTools (default parameters) [34, 35] and a 50x
coverage subset of Illumina reads from the previously
published Oxytricha somatic assembly [14]. Chromo-
some ends corrected in this manner were aligned to
the PBcR-corrected read and the missing bases filled
in from the ECTools corrected read.
Some corrected reads were chimeras of multiple chro-

mosomes, characterized by embedded telomeric sequences,
or sequencing artifacts composed almost exclusively of
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homopolymer runs. As a result, we filtered out all cor-
rected reads containing a homopolymer run of > 10 bp
or a non-terminal telomeric sequence (matching the
regular expression [AC]*(CCAAAACCCCAAAA) or
(GGTTTTGGGGTTTT)[TG] with an edit distance of
one or [AC]*CCCAAAACCCCGGGGTTTTGGG[TG*]
or [TG]*GGGTTTTGGGGCCCCAAAACCC[AC*] with
an edit distance of three).
After filtering, all reads with telomeric sequences on

both ends were considered complete chromosomes and
retained, while reads with one or fewer telomeres were
assembled using Celera Assembler 8.3rc [5]. We com-
bined the assembled contigs with the two-telomere reads
and clustered the resulting sequences at a 90% identity
threshold using VSEARCH [36] and took the centroid
contig for each of the resulting clusters to produce a
final set of unique chromosomes.
We removed duplicated sequences with BBTools dedu-

pe.sh script [37]. We polished our assembly by recursively
applying Pilon [38], an error correction tool that uses Illu-
mina reads to correct PacBio sequencing errors.
We determined alternative fragmentation isoforms by

extracting all two-telomere single reads and contigs from
our data and masking the telomeres according to the
procedure described in [14]. We then used BWA MEM
[39] to map the masked reads against the subset of
unique chromosomes in our assembly. We grouped all
reads with both start and end positions within 50 bp of
one another into distinct isoforms and clustered all reads
assigned to each isoform at a 97% similarity threshold.
We added the consensus sequence of each cluster com-
prising at least two contigs to the assembly.
To finalize the assembly, we added contigs that were

captured in the published Oxytricha assembly but not in
our long-read assembly. These included two-telomere
contigs shorter than 600 bp long and contigs either with-
out an analog in the long-read data, or where the longest
isoform in the long-read assembly was at least 75 bp
shorter than the version in the published assembly. In
cases where the published contig was longer and the
long-read version had both telomeres, we considered the
long-read form an alternative fragmentation isoform and
retained it in addition to adding the longer published
contig. If the long-read form had fewer than two telo-
meres, it was discarded instead. Finally, we removed
contigs where at least 50% of the contig sequence was
covered by a known germline repetitive element or satel-
lite repeat. We also removed as likely contaminants any
contigs without any telomeres and which were less than
20% covered in the germline genome.

Analysis of alternative chromosome fragmentation
To compare the alternative fragmentation isoforms found
by SMRT sequencing with those predicted by older

sequencing technologies, we masked all two-telomere cor-
rected reads as described above and mapped them against
the published somatic genome assembly [14]. We then
grouped reads into distinct isoforms as described above,
choosing only the longest hit for each read. In addition,
because a size selection step was used in the Sanger se-
quencing that produced the original predicted isoforms,
we filtered the resulting isoforms to include only those less
than 6000 bp long. To determine whether an isoform
found by one method was also discovered by the other, we
used BEDTools 2.25.0 intersect [40] with the options -F
90 -f 90 to count only isoforms that were at least 90% cov-
ered in both assemblies.
To analyze how somatic isoforms relate to their germ-

line loci, we selected all isoforms supported by at least two
corrected reads and aligned them to the germline genome
[12] with Megablast [41]. Isoforms containing sequence
from more than one paralogous locus were identified by
choosing the best hit for each germline sequence compris-
ing the isoform, then filtering for isoforms containing seg-
ments from two or more different germline loci.

RNA-Seq
We prepared RNA-seq libraries from vegetatively-growing,
starved, and encysted Oxytricha cells. The vegetative cul-
ture was grown according to the same procedure used for
collecting MAC DNA. Cells for starved and cyst libraries
were placed in a clean dish and incubated at 4 °C and room
temperature, respectively, for 5 days. RNA for the starved
and vegetative samples was extracted using TRIzol® Re-
agent (Life Technologies™). RNA for the encysted sample
was extracted using 0.25 mm silica carbide beads in the
UltraClean Microbial RNA Isolation Kit (MO Bio).
Three replicates of vegetative cell RNA, three replicates
of encysted cell RNA, and one replicate of 4 °C-starved
RNA were prepared with the Epicentre Stranded kit,
along with a no-RNA input control. cDNA samples
were amplified in 12 PCR cycles. Library preparation
and sequencing was performed by the Lewis-Sigler
Institute for Integrative Genomics Sequencing Core
Facility using the Illumina Truseq Library Prep Kit.

Gene prediction
We used a gene prediction model trained on Oxytricha data
and presented in [14] in conjunction with AUGUSTUS
3.3.1 [42] to predict genes for all three assemblies. We used
the RNA-seq data collected from vegetatively-growing,
starved, and encysted cells; previously-published RNA-seq
collected from cells undergoing conjugation and genome re-
arrangement collected from vegetatively-growing, starved,
and encysted cells; (at 0, 10, 20, 40, and 60 h after cells were
mixed to initiate mating); and transcription start site data
[10] to provide hints to the gene prediction software. We
mapped reads to the genomes using HISAT2 v2.0.5 [43],
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then generated hints files according to the instructions on
the AUGUSTUS web site [44] . We ran AUGUSTUS
with the options --UTR = on and --alternatives-from-
evidence = true. We annotated the proteins using
PANNZER2 [45] using default parameters and pre-
dicted protein domains using Interproscan 5 RC5 [46]
using default parameters.

Subsampling analysis
We took random subsets of one, two, four, six, seven, and
all eight of the flow cells from the 2015 sequencing run and
used them to complete de novo Oxytricha assemblies. The
reads were first filtered using the same methodology used
for the primary assembly, then error corrected using either
the PBcR pipeline or ECTools. For the one- and two-flow
cell subsets corrected by PBcR, we used the recom-
mended high-sensitivity parameter settings intended for
low coverage assemblies (QV = 52 asmOvlErrorRate =
0.1 asmUtgErrorRate = 0.06 asmCgwErrorRate = 0.1
asmCnsErrorRate = 0.1 asmOBT= 1 asmObtErrorRate =
0.08 asmObtErrorLimit = 4.5 utgGraphErrorRate = 0.05
utgMergeErrorRate = 0.05). Otherwise, all settings used
were the default. After error correction, reads were assem-
bled using Celera assembler. To assess genome complete-
ness, we mapped corrected reads and assembled contigs
against the previously published Oxytricha assembly and
counted the number of contigs at least 80% covered by ei-
ther a single read or a single contig from the de novo
assembly.

Statistical analysis
We carried out all statistical analyses in the R program-
ming environment [47] and used the ggplot2 package
[48] to generate figures.
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