
BALANCING PRIVACY AND ACCURACY IN IOT USING DOMAIN-SPECIFIC

FEATURES FOR TIME SERIES CLASSIFICATION

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Pranshul Lakhanpal

June 2023

© 2023

Pranshul Lakhanpal

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Balancing Privacy and Accuracy in IoT us-

ing Domain-Specific Features for Time Se-

ries Classification

AUTHOR: Pranshul Lakhanpal

DATE SUBMITTED: June 2023

COMMITTEE CHAIR: Sumona Mukhopadhyay, Ph.D.

Assistant Professor of Computer Science

COMMITTEE MEMBER: Franz Kurfess, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Joydeep Mukherjee, Ph.D.

Assistant Professor of Computer Science

iii

ABSTRACT

Balancing Privacy and Accuracy in IoT using Domain-Specific Features for Time

Series Classification

Pranshul Lakhanpal

ε-Differential Privacy (DP) has been popularly used for anonymizing data to protect

sensitive information and for machine learning (ML) tasks. However, there is a trade-

off in balancing privacy and achieving ML accuracy since ε-DP reduces the model’s

accuracy for classification tasks. Moreover, not many studies have applied DP to

time series from sensors and Internet-of-Things (IoT) devices. In this work, we try to

achieve the accuracy of ML models trained with ε-DP data to be as close to the ML

models trained with non-anonymized data for two different physiological time series.

We propose to transform time series into domain-specific 2D (image) representations

such as scalograms, recurrence plots (RP), and their joint representation as inputs

for training classifiers. The advantages of using these image representations render

our proposed approach secure by preventing data leaks since these image transforma-

tions are irreversible. These images allow us to apply state-of-the-art image classifiers

to obtain accuracy comparable to classifiers trained on non-anonymized data by ex-

ploiting the additional information such as textured patterns from these images. In

order to achieve classifier performance with anonymized data close to non-anonymized

data, it is important to identify the value of ε and the input feature. Experimental

results demonstrate that the performance of the ML models with scalograms and RP

was comparable to ML models trained on their non-anonymized versions. Motivated

by the promising results, an end-to-end IoT ML edge-cloud architecture capable of

detecting input drifts is designed that employs our technique to train ML models

on ε-DP physiological data. Our classification approach ensures the privacy of indi-

iv

viduals while processing and analyzing the data at the edge securely and efficiently.

v

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my thesis advisor, Dr. Sumona

Mukhopadhyay, for her invaluable insight, guidance, and knowledge throughout the

research process. Her expertise and support have been instrumental in shaping this

thesis and overcoming challenges along the way.

I am also grateful to the members of my thesis committee, for their valuable feedback

and suggestions that greatly enhanced the quality of this work.

I would like to extend a heartfelt appreciation to my parents for their unwavering

support and the opportunities they have provided me. Their encouragement and

belief in my abilities have been a constant source of motivation.

I would also like to thank my colleague, Asmita, for collaborating with me while

writing our first conference paper. Her assistance and contribution have been truly

invaluable, and I am grateful for her support throughout this journey.

I would like to thank Andrew Guenther, for uploading this template on Git Hub.

Lastly, I would like to thank all my friends and well-wishers who have offered their

encouragement and understanding during this undertaking.

Without the collective support and guidance of these individuals, this thesis would

not have been possible.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . xi

LIST OF FIGURES . xii

CHAPTER

1 Introduction . 1

1.1 Background and Motivation . 1

1.2 Research Objective and Questions . 3

1.3 Thesis Contribution . 5

1.4 Thesis Organization . 7

2 Background and Related Work . 9

2.1 Background . 9

2.1.1 EEG and Wearable Headbands 9

2.1.2 Feature Engineering: Transforming Time Series to Scalogram
and Recurrence Plot Images 11

2.1.2.1 Time Frequency Analysis 11

2.1.2.2 Morlet Wavelet Transformation 12

2.1.2.3 Scalogram . 12

2.1.2.4 Recurrence Plot . 13

2.1.3 Machine Learning . 15

2.1.3.1 Supervised . 15

2.1.3.2 Unsupervised . 16

2.1.3.3 Semi-Supervised . 16

2.1.4 Deep Learning . 17

vii

2.1.4.1 Convolutional Neural Network 17

2.1.4.2 LSTM . 18

2.1.4.3 Self-Attention . 19

2.1.5 Gated Recurrent Unit . 19

2.1.6 Differential Privacy . 20

2.1.6.1 Differential Privacy Types and Mechanisms 21

2.1.7 Cloud . 23

2.1.8 Data Drift . 24

2.1.8.1 Kolmogorov-Smirnov Test 25

2.2 Related Work . 27

2.2.1 Classification of EEG . 27

2.2.2 DP for Time Series and EEG/Physiological Data 28

2.2.3 DP for Images . 30

2.2.4 IoT Architecture for DP and ML 31

2.2.5 Domain-Specific Features . 32

2.2.6 Data Set and Experimental Tasks 33

2.3 Summary . 33

3 System Design and Methodology . 34

3.1 System Design for DP-ML-IoT . 34

3.1.1 Edge . 35

3.1.2 Cloud . 36

3.1.3 Data Flow . 37

3.1.4 Advantages of Edge-Cloud Architecture 38

3.2 Methodology . 39

3.2.1 Data Collection . 39

viii

3.2.2 Data Collection Tasks . 39

3.2.2.1 Cognitive Motor Integration Task 39

3.2.2.2 Eye State Task . 40

3.3 Data Cleaning and Preprocessing . 40

3.4 Feature Engineering . 40

3.4.1 Scalograms . 41

3.4.2 Recurrence Plot . 41

3.4.3 Multi-Modal . 42

3.5 Data Anonymization . 42

3.6 Summary . 43

4 Model Training and Establishing Baselines 44

4.1 Introduction . 44

4.2 Evaluation Metrics . 44

4.2.1 Evaluation Metrics for Binary Classification 44

4.2.2 Evaluation Metrics for Comparing Anonymized and Non-Anonymized
Data . 45

4.3 Deep Learning . 46

4.3.1 Birectional LSTM . 47

4.3.2 Multi-channel CNN-LSTM With Self Attention 47

4.3.3 ChronoNet . 48

4.3.4 Modified ChronoNet . 49

4.4 The Training Procedure for Training and Testing 50

4.5 Results . 50

4.5.1 Baseline Results . 50

4.6 Summary . 51

ix

5 Training models with Differential Privacy 53

5.1 Introduction . 53

5.2 Data Preprocessing and Feature Engineering 53

5.2.1 Results for Sabotage Detection Data 54

5.2.2 Results for Alpha Wave Data 54

5.3 Summary . 54

6 Results . 55

6.1 Introduction . 55

6.1.1 RQ 1: Comparison of ML classification performance with and
without DP . 55

6.1.2 RQ 2: Selecting ε value that can guarantee classifier accuracy
close to non-anonymized data 56

6.1.3 Results for RQ 3: IoT Architecture capable of supporting DP
and ML on images and time series data. 59

7 Conclusion and Future Work . 61

7.1 Conclusion . 61

7.2 Future Work . 62

BIBLIOGRAPHY . 63

APPENDICES

x

LIST OF TABLES

Table Page

4.1 Baseline Scores for Each Feature 51

6.1 Baseline Scores for Each Feature 56

6.2 Average Performance of Chrononet DP With Different features where
ε ∈ [0.25, 0.30] . 59

xi

LIST OF FIGURES

Figure Page

2.1 Brain wave samples with dominant frequencies belonging to different
frequency bands [5] . 10

2.2 Morlet’s wavelet . 12

2.3 Scalogram . 13

2.4 Recurrence Plot . 15

3.1 End-To-End ML Pipeline [67]. 34

3.2 ε-DP capable IoT-ML architecture 35

3.3 Cloud Architecture with drift detection 36

3.4 Scalograms with varying levels of noise added to them 42

3.5 Recurrence Plots with varying levels of noise added to them 43

4.1 PSNR between anonymized and non-anonymized data for different
values of ε . 47

4.2 Cosine Similarities between anonymized and non-anonymized data
for different values of ε . 48

4.3 Architecture for modified ChronoNet model 52

6.1 Performance of models Trained on Time Series, Scalogram, and Re-
currence Plot Images with and Without DP on Sabotage Data . . 57

6.2 Performance of models Trained on Time Series, Scalogram and Re-
currence Plot Images with and Without DP on Eye Blink Dataset
. 58

xii

Chapter 1

INTRODUCTION

1.1 Background and Motivation

Recently, there has been an increase in the use of physiological time series data col-

lected from IoT devices for machine learning (ML) classification tasks [13]. However,

it is well-known that using IoT devices enabled by the cloud to collect and process

data, and then training ML models is susceptible to privacy breaches. Protecting pri-

vacy is critical in healthcare that involves physiological data but there has been little

progress in meeting this demand [72, 6]. ε-Differential Privacy (DP) is a mathemat-

ical framework that ensures privacy protection by introducing noise into data [31].

ε is an important parameter that quantifies the degree of privacy protection offered

by a differentially private method. It determines the trade-off between data utility

and privacy. A stronger privacy guarantee is associated with a smaller ε value which

limits the amount of information about any particular data that can be deduced. On

the other hand, a greater ε value permits a significantly higher level of privacy loss,

enabling more precise data analysis or outcomes.

A key advantage of using ε-DP is its resilience against linkage attacks that occur on

anonymized data [63]. However, adding too much noise may deteriorate the quality

of the ε-DP anonymized data which limits the usability of the anonymized data and

leads to poor generalization and performance of ML models. Most of the existing

ML techniques trained using ε-DP exhibit lower accuracy than non-DP [15, 29, 75].

Therefore, there is a need for privacy-preserving techniques in healthcare that guar-

antee privacy to patients without compromising the performance of the classifier. To

1

this end, this thesis suggests a differential privacy IoT edge-cloud architecture that

uses state-of-the-art image classifiers trained on domain-specific features that ensures

privacy. The objective of this research is to develop a technique to improve

the performance of ML classifiers for time series that has been anonymized

with ε-DP. Physiological time series (signals) such as Electroencephalogram (EEG)

recordings are measured in the time domain [71] using non-invasive methods which

are not high-resolution recordings and tend to pick up a lot of noise. Since these

measurements are not very useful in their raw form, the data is often processed using

the appropriate signal-processing technique to obtain signals with useful informa-

tion. Since physiological time series are generated from dynamical systems, this work

proposes to transform the physiological time series into dynamical features that are

represented by recurrence plots (RP) and scalogram images. The benefit of using

such image representations are (a) exploit the merit of state-of-the-art image classi-

fiers that extract patterns from the textures of these images (b) these domain-specific

images capture the dynamical properties of the time series data that are inherently

generated from dynamical systems and (c) these image representations are irreversible

transformations which prevent data leakage by delinking the anonymized data to orig-

inal time series data. Results from comparative classification performance with DP

anonymized time series vs anonymized image representation of time series show that

the image representations as the input data features for classification worked best

with data anonymization under small values of ε. The suggested IoT-ML architec-

ture reduces the amount of processing and analysis required by using edge devices,

such as smartphones or wearable technology.

2

1.2 Research Objective and Questions

This thesis focuses on finding a balance between data anonymization and data util-

ity for improving the classification of physiological time series data with ε-DP and

proposing a modular edge-cloud IoT architecture that can be used for collecting,

cleaning, processing, anonymizing, training, and deploying ML models for classifica-

tion of time series. Based on the literature, the following are the existing limitations

that this thesis is trying to address.

• In our review, we weren’t able to find any studies exploring the effect of anonymiz-

ing different feature types on the performance of ML classifiers with ε-DP data.

• Past research does not explore the possibility of a universal value of ε that

can be used for anonymizing data in a way that provides an adequate privacy

guarantee and performs at par with non-anonymized data in ML tasks.

• There are no robust techniques for time series classification with ε-DP time

series such that the ML classifier’s performance is close to the classification

with non-anonymized ε-DP time series.

The goal of this research is to answer the following research questions (RQ):

1. RQ 1: Is it possible to achieve ML classification performance with DP

anonymized time series data close to non-anonymized time series?

2. RQ 2: Does there exist an ε value for time series data that can guar-

antee classifier accuracy close to non-anonymized time series and the

image representation of time series?

3

3. RQ 3: Is it possible to design robust ML software architecture for se-

quential time series data from IoT devices that can ensure flexibility,

extensibility, and scalability?

The RQs are described in detail below:

RQ 1: You can balance the privacy and usability levels of your data using a positive

value named ε (epsilon) when using ε-Differential Privacy (ε-DP) [12]. This work will

use Laplace Noise to add noise to our dataset to make it ε−Differentialy Private.

The noise added to our dataset will have a Laplace distribution centered around 0

with a sensitivity of 1. The noise will be scaled according to the value of 1/ε.

The value of ε ranges from 0 to infinity. So, if ε is small, more privacy is preserved,

but data accuracy worsens. If ε is large, privacy will be worse but data accuracy will

be preserved [12].

This study used different features to train the ML models, such as Raw Time Se-

ries, scalograms, recurrence plots, and Multi-modal Data (combining scalograms and

recurrence plots), and compare the performance of these models under different val-

ues of ε and explore if our ML models trained with anonymized data can achieve

accuracies as close to ML models trained with non-anonymized data.

RQ 2: Since DP affects different datasets in diverse ways [58], this thesis will explore

possible values of ε that are relatively low and the noisy data can still provide the

same level of performance when compared to data without any noise when training

machine learning models.

RQ 3: ML is not only focused on various intricate models, but it also includes

multiple stages that contribute to the overall performance of the model [48]. All

4

these steps are necessary for the ML pipeline to accept raw data and then transform

it into something meaning full from which information can be inferred. The data is

collected, stored, cleaned, and pre-processed to isolate important features from the

data.

In scenarios where limited bandwidth is available and data size far surpasses the

capabilities of resources available to run the ML pipeline smoothly, organizations opt

for fog computing and edge-cloud computing to distribute the workload across the

cloud [50]. This thesis aims to propose a flexible and scalable IoT-ML architecture

where IoT devices could easily be integrated and every part of the ML pipeline can

be divided into individual components that can be easily switched with different

components depending on the IoT device or the data.

1.3 Thesis Contribution

The aim of this work is to develop a robust classifier for ε DP time series such that

the classifier yields performance close to non-DP data. To address these research

gaps, this thesis explores the possibility of suggesting a universal value or a range

of ε values that can be used for applying DP on physiological datasets and still

perform comparably to non-DP data with ML models. Since DP affects different

datasets in diverse ways [58], this thesis also explores the possibility of finding a feature

representation of time series data that performs similarly with and without DP applied

to it. This study addresses these problems from a new perspective by transforming

physiological time series into domain-specific image representations for classification.

This study transforms the time series data into scalograms [23], recurrence plots (RP),

and a third feature that stacks both scalograms and RP together to create a joint

representation [7].

5

This work also developed a DP-enabled ML-IoT architecture that can apply DP and

evaluate our trained ML models. Our IoT architecture is designed to work with both

raw time series and image data. Our focus is on finding a balance between time series

data anonymization and accuracy in training ML models on physiological time series

data that is generated from IoT devices.

• RQ 1: Is it possible to achieve ML classification performance with

DP anonymized time series data close to non-anonymized time series

data?

This study proposes to transform physiological time series into domain-specific

features represented by RP and scalogram images. This allowed us to use state-

of-the-art image classifiers to extract patterns from the textures of these im-

ages. Results from comparative classification performance with DP anonymized

time series vs. non-anonymized image representation of time series show that

the image representations as the input data features worked best with data

anonymization for classification under small values of ε.

• RQ 2: Does there exist an ε value for time series data that can guar-

antee classifier accuracy close to non-anonymized time series and the

image representation of time series?

This thesis experimented with different values of ε and used them to anonymize

the time series data and its image representation using Laplace noise. Results

demonstrate that ε values in the range 0.25 - 0.30 generated ML performance

close to that of the non-anonymized data.

• RQ 3: Is it possible to design a robust ML software architecture for

sequential time series data from IoT devices that can ensure flexibil-

ity, extensibility, and scalability?

6

This work produced a robust DP-ML-IoT architecture that fully utilizes the

potential of its edge and cloud components. This architecture is an extension of

the architecture proposed by [40]. This architecture is designed to accommodate

sequential data such as time series and image data whereas the architecture in

[40] was developed for structured data. In the design proposed in this work, the

edge is used for data generation, cleaning, preprocessing, feature engineering,

and data anonymization of raw time series data. Another major change this

work introduced in the architecture was the evaluation of the model on the cloud

which saved time and computation power on the edge device. The anonymized

data is stored in a cloud storage solution instead of the edge because of resource

limitations. The cloud storage is also constantly monitored for data drifts and if

detected the ML model is automatically updated and the latest model is sent to

the edge. This architecture is designed in a way to ensure that each module is

independent of the others which allows future users to modify each component

to make it compatible with their desired data. Only the best and fully vetted

model is then sent to the edge where it is used to make inferences.

1.4 Thesis Organization

This research work is structured as follows. Chapter 2 presents the background and

research related to the field. Chapter 3 presents the framework of the architecture

and methodology. Chapter 4 explains the methodology behind training the models

and establishing the baseline performance of each feature type. Chapter 5 presents

the methodology of how noise is added to make the data ε-Differentially Private and

compares the performance of models of different features with different ε values, and

Chapter 6 discuss the results of this work and answers the research question asked in

this thesis. Finally, Chapter 7 presents a conclusion of the work done in this thesis

7

and presents the next steps to improve the architecture based on the current research

trends.

8

Chapter 2

BACKGROUND AND RELATED WORK

2.1 Background

2.1.1 EEG and Wearable Headbands

Electroencephalogram, or EEG is a method to measure a person’s brainwaves [19].

Used in psychophysiological research, it is a neuroimaging style of monitoring and

recording the electrical activity of the brain in the form of signals measured in micro-

volts [22]. Raw EEG signals contain five major brain waves distinguishable by their

frequency: Delta δ with a frequency between 0.5 Hz - 4 Hz (state of meditation, deep

sleep or coma), Theta θ with a frequency between 4 Hz - 8 Hz (sleep or daydreaming),

Alpha α with the frequency between 8 Hz - 13 Hz (calm and deep relaxation), Beta

β with the frequency between 13 Hz - 30 Hz (conscious, logical-analytical thinking),

and Gamma γ with a frequency between greater than 30 Hz (higher processing tasks,

cognitive functioning) [53, 1]. Figure 2.1 shows the different waves present in EEG

separated on the basis of their frequencies.

These brainwaves can be recorded by two broadly used methodologies, invasive and

non-invasive. Invasive recordings are obtained by intracranially implanting the elec-

trodes, whereas non-invasive EEG recordings are obtained by the electrodes attached

to the scalp surface [16]. Since implanted electrodes are much closer to the brain

than scalp electrodes, they record brain signals with higher amplitudes and spatial

resolution than scalp EEG [16].

9

Figure 2.1: Brain wave samples with dominant frequencies belonging to
different frequency bands [5]

Generally, it is observed that portable EEG headbands utilize non-invasive method

to record brain waves, and these wearable EEG devices have a lower number of

electrodes or channels [22] in comparison to medical-grade EEG which have 64 or

more electrodes or channels [60]. Consumer-grade EEG headsets like NeuroSky, Muse,

Emotiv, and OpenBCI have 1 channel, 4 channels, + 5 or 14 channels, and 8 – 16

channels respectively.

10

2.1.2 Feature Engineering: Transforming Time Series to Scalogram and Re-

currence Plot Images

2.1.2.1 Time Frequency Analysis

Time-Frequency Analysis (TFA) is a method used in digital signal processing to eval-

uate a signal in the time domain, for us EEG signal, in both the time and frequency

domains. TFA is the representation of the power intensity of a particular frequency

at a particular point of time in a signal [22]. One can also detect the presence of

different bands of frequency of the EEG signal, i.e. Delta, Gamma, Alpha, Beta, and

Theta, by applying TFA on the signal.

There are various techniques to perform TFA on a signal such as short-time Fourier

transform, wavelet transform, quadratic time-frequency transforms, advanced wavelet

transforms, and adaptive time-frequency transforms [64]. This study used the Mor-

let Wavelet Transform to get the time-frequency representation of the EEG signals.

There are numerous methods for analyzing data with respect to time, including auto-

correlation, crosscorrelation, stationarity, seasonal adjustment/decomposition, singu-

lar spectrum analysis, and count series analysis. Similarly, there exist many frequency

domain analyses to analyze data with respect to the frequency domain, such as Fourier

analysis, wavelet analysis, and Laplace transform analysis, assuming the time series

is stationary. Time-frequency analysis (TFA), on the other hand, simultaneously an-

alyzes both time and frequency and is especially useful for non-stationary time series

with time-varying trends, irregular cycles, time-varying periodic cycles, and other

time-dependent characteristics.

11

Figure 2.2: Morlet’s wavelet

2.1.2.2 Morlet Wavelet Transformation

As described by authors Francois Tadel, et al. [74] Complex Morlet wavelets are very

popular in EEG/MEG data analysis for time-frequency decomposition.

They have the shape of a sinusoid, weighted by a Gaussian kernel, and they can

therefore capture local oscillatory components in the time series. An example of this

wavelet is shown in Figure 2.2.

Contrary to the standard short-time Fourier transform, wavelets have a variable reso-

lution in time and frequency. For low frequencies, the frequency resolution is high but

the time resolution is low. It is the opposite for high frequencies. Therefore wavelets

are able to provide both frequency and temporal precision [74].

2.1.2.3 Scalogram

A scalogram is a visual way of representing the signal strength, or “loudness”, of a

signal over time at various frequencies present in a particular waveform. Not only

12

can one see whether there is more or less energy at, for example, 2 Hz vs 10 Hz,

but one can also see how energy levels vary over time. Scalograms are basically

two-dimensional graphs, with a third dimension represented by colors. Figure 2.3

visualizes an example of a wave and its representation as a scalogram.

Figure 2.3: Scalogram

Scalograms are created using a technique called the Continuous Wavelet Transform

(CWT) that indicates how strong different frequencies of a signal are over time. A

Morlet wavelet was used to perform CWT after which Fast Fourier transformation

(FFT) was applied to the Morlet wavelet and the signal. The output received after

applying FFT is convoluted and an inverse Fourier transform is applied to it which

gives a time-domain representation of the data.

2.1.2.4 Recurrence Plot

A recurrence plot is a graphical representation of a recurrence analysis. It is a two-

dimensional plot that visualizes the recurrence of states or patterns in a time series of

data. In a recurrence plot, the vertical and horizontal axes represent the time points

13

of the time series, and each point in the plot represents a recurrence of a state or

pattern in the time series.

Recurrence plots can provide useful insights into the behavior of a system, such as its

periodicity, stability, and complexity. They can be used to identify patterns or states

in the EEG data that may be related to specific brain activity, such as seizures [73],

sleep stages [76], or cognitive states.

Let us assume the physiological time series {xt} of length T denoted by:

{xt|t = 1, 2, . . . , T} (2.1)

Then the recurrence plot between two data points xi and xj would be denoted as:

Ri,j = Θ (ε− ∥xi − xj∥) (2.2)

where the Θ is known as the Heaviside function that compares any two points of the

trajectory and is defined as follows:

Θ (x) =

1, ifx ≥ 0,

0, otherwise

(2.3)

where ∥·∥ is the norm and ε is the threshold. If the norm is less than ε, it is regarded

as a recurrence point and is indicated as a black dot else it is shown as a white dot.

ε was set to 0 in the experiments.

14

Figure 2.4 visualizes an example of a wave and its representation as a recurrence plot.

Figure 2.4: Recurrence Plot

2.1.3 Machine Learning

Machine learning (ML) is an application of AI that enables computer systems to

learn and improve from experience without being explicitly programmed [3]. These

algorithms help the system learn specific tasks training them on some examples or

data. ML algorithms can commonly be divided into four categories: supervised,

unsupervised, semi-supervised, and reinforcement learning [14]. These algorithms

can be used to perform a variety of tasks such as protection, clustering, classification,

etc. This thesis has used ML for time-series classification.

2.1.3.1 Supervised

Supervised Learning is a subset of ML that uses labeled data to train algorithms that

are used to classify data or predict outcomes accurately. Labeled data means that

each input in the training dataset is implied to have a specified output, known as

15

the class label. In simple terms given a training sample, supervised learning trains a

function f with the goal that f(x) predicts the true label on unseen data. Two major

applications of supervised learning are to solve classification and regression problems.

Classification models/algorithms are mapping functions (f) that map input variables

(X) to discrete output variables (y). The output variables are often called labels or

categories. Regression models are mapping functions (f) that translate continuous

output variable (y) to input variable (X) pair. A real value, such as an integer or

floating point value, is the continuous output variable [18].

2.1.3.2 Unsupervised

Unsupervised Learning is a subset of ML that does not require the use of labeled

data to train the model. These algorithms analyze and cluster unlabeled datasets.

These algorithms identify hidden patterns or data clusters without the assistance of a

human. These algorithms are generally used for clustering, dimensionality reduction,

and exploratory data analysis.

2.1.3.3 Semi-Supervised

As the name suggests, semi-supervised machine learning is a combination of super-

vised and unsupervised learning techniques. It uses both unlabeled data and labeled

data, combining the advantages of both supervised and unsupervised learning with-

out the difficulties associated with obtaining a lot of labeled data. It really shines

in situations where labeled data is difficult to obtain, such as in medical imaging or

financial fraud detection.

16

2.1.4 Deep Learning

Deep Learning is a subfield of machine learning that involves training artificial neural

networks with multiple layers to learn complex patterns in data. It is inspired by

the structure and function of the human brain, where neurons are interconnected and

work together to process information.

2.1.4.1 Convolutional Neural Network

Convolutional Neural Networks (CNNs) [43] are a type of artificial neural network

that is widely used in computer vision tasks, such as image and video recognition,

object detection, and segmentation. A typical CNN may contain the following layers:

• Convolutional Layer: A convolutional layer is a basic component of a CNN

that performs convolution by multiplying and summing filter elements with an

input image. It takes a 3D tensor input volume and applies filters to produce a

set of feature maps. Each filter is a matrix of weights applied to a small region

of the input volume, resulting in feature maps that capture local patterns and

structures, such as edges or textures.

• Pooling Layer: A pooling layer is used in CNNs to reduce the spatial di-

mensions of feature maps produced by a convolutional layer. It operates inde-

pendently on each feature map, retaining important information while reducing

the size and computational cost. Max pooling is the most common type, us-

ing a fixed-size window to take the maximum value within it. The layer helps

prevent overfitting and introduces translation invariance. Stacking multiple

convolutional and pooling layers allows CNN to learn complex representations.

17

• Fully Connected Layer: A fully connected layer is a type of neural network

layer where each neuron receives input from every neuron in the previous layer.

Each connection has a weight that is learned during training, and the output of

each neuron is computed by applying an activation function to a weighted sum

of the inputs. Fully connected layers are commonly used for classification tasks,

particularly in convolutional neural networks where they are used to map the

learned features to the desired output. They can also be used in other types of

neural networks, such as feedforward or recurrent networks.

CNNs have lately demonstrated state-of-the-art performance on challenging tasks

with very little or no data feature engineering. Instead, they rely on feature learning

on raw data, which is why they are used in this work.

2.1.4.2 LSTM

LSTM stands for Long Short-Term Memory, which is a type of recurrent neural net-

work (RNN) architecture designed to handle sequential data and address the vanishing

gradient problem in traditional RNNs [47]. Due to its ability for capturing long-term

relationships, handle variable-length sequences, resilience to noisy data, model com-

plicated temporal patterns, and analysis of multivariate time series, LSTM networks

are ideally suited for time series data. In addition to processing sequences of various

lengths, filtering out the noise, and capturing complex patterns, LSTMs solve the

vanishing gradient problem.

The original LSTM described in [47] consists of a memory cell and three multiplicative

gating units: the input gate, the forget gate, and the output gate. These gates control

the flow of information through the memory cell and allow the model to selectively

store, update, and retrieve information over time.

18

2.1.4.3 Self-Attention

The Transformer model’s core element is the self-attention layer, which was first

mentioned in the [78]. It enables each element of a sequence, such as time series

data, to pay attention to and consider how important other components are. Captur-

ing long-range relationships, enabling parallel computing, managing variable-length

sequences, and resilience to positional information are some advantages of the self-

attention layer. Models can successfully identify patterns and temporal correlations

in time series data by using self-attention, which enhances their performance in tasks

like predictions and detecting anomalies.

2.1.5 Gated Recurrent Unit

Gated Recurrent Unit (GRU) is a specific kind of recurrent neural network (RNN)

layer [24]. To address the challenge of capturing long-term dependencies in sequential

input, the GRU was designed. It uses gating techniques, such as reset and update

gates, to regulate the flow of information inside the network.

The GRU layer decides how much new information should be retained using the

update gate and lets the model to selectively keep or reject data from the prior

hidden state depending on the reset gate. This minimizes the vanishing gradient

problem and enables the model to represent long-term relationships with accuracy.

The GRU’s unit is capable of capturing long-range relationships, managing variable-

length sequences, and demonstrating computing efficiency are advantages for time

series data and sequential tasks. GRU layers are an alternative to conventional RNNs

and LSTM units in applications such as sequence modeling [25], natural language

processing [9], speech recognition [68], and time series analysis [85].

19

This study uses GRUs with a combination of Residual Convolutional Networks to

extract local patterns, capture long-term dependencies, and model temporal dynamics

for the time series data.

2.1.6 Differential Privacy

Differential privacy is a mathematical framework that provides a formal notion of

privacy for individuals in a dataset while allowing for accurate statistical analysis of

the data [45]. The concept of differential privacy was first introduced by Dwork et

al. in 2006 as a response to the increasing concern over the privacy risks associated

with the growing use of data in various fields, including healthcare [31].

The primary goal of differential privacy is to protect the privacy of individuals whose

data is included in a dataset while still allowing for accurate statistical analysis. This

is achieved by adding random noise to the data before it is analyzed, which makes it

difficult for an attacker to determine the presence or absence of an individual in the

dataset [32].

Differential privacy has several important properties that make it an attractive ap-

proach for privacy-preserving data analysis. One of the main properties is that it

provides a mathematical guarantee of privacy protection, meaning that it is possible

to quantify the level of privacy protection provided by a differential privacy mecha-

nism. Additionally, differential privacy is flexible and can be applied to various types

of data and analysis methods [32].

To implement differential privacy, various technologies, and tools can be used, includ-

ing differentially private algorithms, privacy-preserving data management systems,

and programming languages and libraries that support differential privacy. Addition-

20

ally, researchers may use simulations or real-world datasets to evaluate the effective-

ness of differential privacy.

2.1.6.1 Differential Privacy Types and Mechanisms

Differential privacy can broadly be classified into the following types:

• ε-Differential Privacy: According to [31] ε-DP is a rigorous mathematical

formulation of privacy guarantees for statistical inquiries and analysis of data.

Any algorithm is considered to be ε-DP if it meets the following conditions:

For any neighboring datasets D and D′, where there is just one element that

differs, an algorithm M satisfies ε-DP if S ⊂ Range(M):

Pr[M(D) ∈ S] ≤ exp(ε) × Pr[M(D) ∈ S] (2.4)

In this equation the probability that the algorithm M outputs a result in subset

S on any dataset D is represented by Pr[M(D) ∈ S]. The inequality makes

sure that the ratio of these probabilities, where ε is a privacy parameter, is

constrained by exp(ε).

It guarantees that the presence or absence of an individual data point will not

materially affect the result or the information obtained by an attacker and gives

a quantitative level of privacy protection.

• (ε, δ)-Differential Privacy: (ε, δ)-Dp is an extention of (ε)-DP. Along with the

constrains of privacy leakage allowed by ε it relaxes the strict privacy guarantee

of ε-DP by allowing a small probability δ (0 ≤ δ ≤ 1) of a privacy breach [31].

Any algorithm is considered to be (ε, δ)-DP if it meets the following conditions:

21

For any neighboring datasets D and D′, where there is just one element that

differs, an algorithm M satisfies ε-DP if S ⊂ Range(M):

Pr[M(D) ∈ S] ≤ exp(ε) × Pr[M(D) ∈ S] + δ (2.5)

This means that the output of algorithm M on dataset D and D′ are almost as

likely to occur with the ratio of probabilities bounded by exp(ε), except with a

small probability δ of a breach in privacy.

• Concentrated Differential Privacy (CDP): In [34] the authors introduced

an new DP framework called Concentrated Differential Privacy which offers

tighter restrictions on privacy leakage as compared to ε-DP. It addresses the

problem of cumulative privacy losses when multiple requests are made to a DP

method.

Instead of focusing on the privacy loss of each individual request, CDPs goal is to

limit the privacy loss throughout an entire series of requests. By accounting for

the composition of numerous queries, it provides better assurances and lessens

the effects of sequential composition.

Differential privacy techniques are a core method for protecting privacy while allowing

for accurate data analysis in knowledge management. These techniques involve adding

noise to data to make it more difficult to identify individual records or extract sensitive

information.

The Laplace mechanism is a commonly used differential privacy technique that in-

volves adding noise to the output of a query. This technique adds noise that follows

a Laplace distribution with a scale determined by the sensitivity of the query. The

Laplace mechanism is often used for answering numeric queries such as mean or sum

queries [32].

22

Another differential privacy technique is the exponential mechanism, which is often

used for non-numeric queries. The exponential mechanism involves selecting a query

result that minimizes the difference between the true result and a perturbed version of

the result. The perturbation is based on the sensitivity of the query and is determined

by the exponential distribution [32].

The Gaussian mechanism is another commonly used differential privacy technique

that is often used for differentially private machine learning. This technique involves

adding Gaussian noise to the data to make it more difficult to identify individual

records or extract sensitive information. The scale of the noise is determined by the

sensitivity of the query or the model [32].

This study uses ε-DP and adds Laplace noise to perturb the input data before being

used to train the machine learning models.

2.1.7 Cloud

Talking in terms of computing, the cloud refers to the network of remote servers that

are connected and can be accessed over the internet [2]. A third-party provider, such

as Amazon Web Services (AWS), Microsoft Azure, or Google Cloud Platform (GCP),

often owns and runs these servers. Users may remotely store, administer, and process

data and applications thanks to cloud infrastructure, which in return eliminates the

need for hardware and infrastructure on-site.

Through the use of multiple on-demand services and resources, cloud computing

enables its users to expand their computing resources as required. Common cloud

services consist of Infrastructure as a Service (IaaS), Platform as a Service (PaaS),

and Software as a Service (SaaS) [51]

23

Since cloud services do not require on-premise hardware it provides a lot of benefits

as well:

• Scalability: Based on user resource requirements cloud services can be easily

scaled up or down without significant infrastructure investments.

• Cost Efficiency: The users only pays for the resources they actually used and

also save the cost of hardware and software purchases and maintenance, as those

are taken care of by the cloud provider.

• Reliability: Cloud providers boast high availability and redundancy across

multiple data centers, ensuring data and applications are accessible even in the

event of hardware failures or disasters.

The way companies and people manage and use computing resources has been trans-

formed by cloud computing. As it offers flexibility, scalability, and cost-effectiveness in

the deployment and management of IT infrastructure and services, it has established

itself as an essential component in a number of sectors.

2.1.8 Data Drift

Data drift refers to the change in the statistical properties of the data over time. Ir

happens when the characteristics, distribution, or relationships of the data pivot from

the initial or the expected state [66].

It is an important concept in ML and data analysis because these models are generally

trained on historical data, assuming that future data will follow the same patterns.

However, if the underlying data-generating process changes, the trained model may

become less accurate or fail to perform well.

24

Data drift can be caused due to several reasons such as a shift in the population, a

change in the data collection process, a change in end-user behavior, etc [11]. For

example, as a population grows older their preferences also keep changing thus it

would be hard for a recommendation system to give relevant recommendations if the

model was never updated with the change in population preferences

Thus timely detection of data drift is a very important task that can ensure model

reliability. Drift detection involves monitoring and comparing the incoming data to

the reference or training data. Statistical techniques can be used to assess the presence

and significance of data drift.

Detecting data drift is crucial to ensure the reliability and effectiveness of models.

It involves monitoring and comparing the incoming data to the reference or training

data. Statistical techniques, such as hypothesis testing, control charts, or distribution

comparisons, can be used to assess the presence and significance of data drift [66].

There are several statistical methods that can be used to detect data drift, we have

decided to use the Kolmogorov-Smirnov test.

2.1.8.1 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (KS) test is a statistical test used to compare two datasets

or to compare a dataset to a theoretical distribution [17]. It helps determine if the

two datasets or the dataset and the theoretical distribution come from the same

underlying population or if they differ significantly.

The KS test is based on the maximum difference between the cumulative distribution

functions (CDFs) of the two datasets being compared [17]. The test calculates a test

25

statistic, denoted as D, which represents the largest vertical distance between the two

CDFs.

We typically follow these steps to perform the KS test:

1. Formulate hypotheses: Define the null hypothesis (H0) as the assumption that

the data at different time points come from the same distribution. The alterna-

tive hypothesis (Ha) suggests that there is a significant difference between the

distributions, indicating data drift.

2. Split the data: Divide collected data into subsets based on time points or in-

tervals of interest.

3. Calculate Empirical Cumulative Distribution Functions (ECDFs): Compute

ECDFs for each data subset, representing proportions of data points less than

or equal to a value. It estimates the distribution of the data at each time point

4. Compare ECDFs: Use KS test to compare ECDFs, calculating maximum ver-

tical difference (D) for test statistic

5. Determine critical value: Obtain critical value based on chosen significance level

(alpha) from KS test table or statistical software.

6. Compare test statistic to critical value: If D exceeds the critical value, reject

H0 in favor of Ha, indicating significant differences and data drift.

The KS test assumes that every point in the dataset is continuous, which means that

there are no gaps or discontinuities in the data values and that the data points in the

dataset are independent of each other. Since our dataset comprises multiple subjects

the recorded signals for each subject are independent from each other. And signals

are continuous by nature so we can use the KS test to detect drift.

26

2.2 Related Work

2.2.1 Classification of EEG

This study analyzed previous work that use machine learning to solve problems closely

related to the dataset being used in this study. In [35] the authors propose using a

Deep Neural Network (DNN) with a Wavelet Packet Transform (WPT) to identify

deceit information based on brain EEG signals. The proposed approach achieved a

95% classification accuracy and outperformed traditional learning methods.

[8] proposes a new method for analyzing (EEG) signals for eye state prediction, using

Self-Organizing Map (SOM) clustering and Deep Belief Network (DBN) approaches.

The proposed method was able to significantly improve the accuracy of the EEG

prediction and outperformed other classification techniques, such as Linear SVM,

Gaussian Näıve Bayes, and Decision Trees.

Chaudhary et. al., [23] propose a deep learning approach to detect intentionally poor

performance on a cognitive-motor integration (CMI) task by analyzing EEG data.

The proposed model converts the EEG signal to scalogram images and used those

images to train their Deep Learning models, they achieved an accuracy of 98.71%

in differentiating between maximal effort and intentionally poor task performance.

They use deep learning models with CNN, LSTM, and Attention layers.

This study [57] presents a new deep learning method for effectively classifying ar-

rhythmia using 2-second segments of 2D recurrence plot images of ECG signals. The

method was tested using publicly available ECG databases, and achieved high test-

ing accuracies in the first and second classification stages, respectively, after five-fold

cross-validation. The method was found to be superior to other studies that used 1D

ECG data, confirming that converting ECG signals into 2D segments enhances the

27

accuracy of arrhythmia classification. The study provides an advanced methodology

for detecting and discriminating between different arrhythmia types.

This study generates a recurrence plot of the raw time series data and compares the

performance of both non-DP and DP recurrence plots.

In [7] the authors propose two efficient multimodal fusion frameworks, called Multi-

modal Image Fusion (MIF) and Multimodal Feature Fusion (MFF), for ECG heart-

beat classification. They convert ECG signals into three types of images using

Gramian Angular Field (GAF), Recurrence Plot (RP), and Markov Transition Field

(MTF). They combine the input images to create a three-channel input image to be

used for their deep-learning models. This is what they call Multimodal Image Fu-

sion. They achieved classification accuracy of 99.7% and 99.2% on arrhythmia and

MI classification, respectively which was a huge performance improvement for them

when compared to using individual modalities.

This thesis intends to follow their study to create its inputs by combining the different

channels of the data to get a multi-channel output that will be used to train its model.

In [70] the authors propose a novel recurrent neural network architecture called

ChronoNet for automated analysis of EEG data to identify abnormal or normal brain

activity, which is the first step in diagnosing neurological conditions.

This thesis uses ChronoNet for performing classification tasks on its datasets.

2.2.2 DP for Time Series and EEG/Physiological Data

In [58, 82], the authors discovered that training the ML model with DP affects the

performance of the ML model while preserving the data’s privacy. They also show

that the effect of DP varies from one dataset to another. While the overall quality of

28

the data is reduced, it is still able to convey the information it was intended to [33].

Thus, DP is a promising approach to data privacy.

Debie et al. [29] used EEG data from 9 subjects to perform motor imagery classifica-

tion performance. In their study, they used Generative Adversarial Networks (GAN)

to generate and classify EEG data. They trained two GAN models, one with privacy

and the other without privacy. Their model achieves data privacy by limiting the

maximum influence of any single user while the model is training and adding noise

to the model gradients. The results indicated that the model without privacy worked

slightly better than the model with privacy.

Similarly, Ziller et al. [86] demonstrated that complex-valued neural networks could

be trained with rigorous privacy and excellent utility. In their experiments, they

trained a complex-valued neural network to detect Left Bundle Branch Block (LBBB)

using ECG data and achieved almost the same accuracy on models trained with and

without DP data. In another experiment, they used the SpeechCommands dataset

to train a Convolutional Neural Network (CNN) on complex spectrogram data. Each

waveform signal was transformed to a complex-valued 2-D spectrogram and used ζ-

DP-SGD to train a complex-valued CNN. In this experiment, they did notice a drop

in accuracy score when DP was applied to the data.

In [75] they trained state-of-the-art CNNs on high-quality chest radiographs to predict

chest radiographs diagnosis with non-DP deep CNNs and DP models. They found

that there was a very slight decrease in performance in the privacy-preserving models

while providing high user privacy and model fairness [75].

In [81] the author proposed some ways to secure sensitive EEG data. The paper

explores a lack of trusted third-party data centers to store and publish DP data.

They then discuss how users can use their DP mechanism to anonymize private data

29

before releasing them to an untrusted server. This however might degrade the utility

of the data thus the user will need to decide between utility and privacy.

In [29, 86, 75] the authors propose a privacy-protecting ML mechanism that applies

DP on the gradients or the weights of their ML models however this study proposes

a mechanism that applies DP to its input data rather than apply it to the model

gradients.

2.2.3 DP for Images

There has been a rise in the popularity of the Differentially Private Stochastic Gra-

dient Descent (DP-SGD) [4] technique that is used to modify the gradients used in

stochastic gradient descent. Similar to other uses of DP in ML, DP-SGD’s perfor-

mance also deteriorates as privacy is increased [28]. The authors in [28] proposed an

improved version of DP-SGD with careful hyper parameterization to improve model

performance in pre-trained models such as Wide-ResNet, NFNet-F3, and ImageNet

used for image classification on the CIFAR-10 dataset. Although they contribute sig-

nificantly towards improving privacy-protected ML models for image classification,

there still remains the question of how to protect/anonymize the image data.

In [21] the authors propose a privacy-preserving face recognition framework called

Privacy using Eigenface Perturbation (PEEP). PEEP works by adding Laplace noise

to the Eigenfaces of a face image before it is shared with a central server. This makes

it difficult for an attacker to learn anything about the individual in the image, even

if they have access to the entire dataset of Eigenfaces. In their experiments, they

showcased that PEEP gave a classification accuracy of around 70% - 90% with an

MLPClassifier when ε = 4 on the CelebA dataset.

30

2.2.4 IoT Architecture for DP and ML

In [84], the authors introduced a classification system for IoT devices that protects pri-

vacy in an edge-computing setting. Their technique adds noise to extracted features

in the cloud in order to address the privacy issue when ML models are released from

the cloud to the edge nodes. According to experimental findings on several datasets,

their approach successfully balances utility and privacy protection. This study only

uses the cloud for model training and evaluation, and all the data processing such as

data cleaning and feature extraction

In [30] the authors propose a fog-assisted healthcare system to maintain the blood

glucose level. Their system displayed improved performance in terms of energy effi-

ciency, prediction accuracy, computational complexity, and latency compared to cloud

computing healthcare systems.

In [44] the authors propose a novel fog-based healthcare system for Mechanized Di-

agnosis of Heart Diseases using ML algorithms. The proposed system employs IoT

devices, cloud/fog computing platforms, and ML algorithms to predict heart disease

using ECG data. The author also suggests that further improvements can be made

by incorporating blockchain and applying the fog model to real-time data.

In [77] they propose a wearable sensor-based system that uses a Recurrent Neural

Network (RNN) for activity prediction. The system utilizes multiple healthcare sen-

sors and an edge device, and the trained RNN outperforms traditional methods on

a publicly available dataset. The proposed approach could be applied in healthcare

services for real-time analysis and predicting human activities in smartly controlled

environments. The authors have proposed a proposes a three-tier sensor-edge-cloud

architecture to reduce the overload on the cloud by using an edge machine with a

31

GPU that performs the model training and prediction as an improvement to the

current system.

In [80] the authors proposed an edge-based differential data collection scheme for

wireless sensor networks (WSNs) that addresses privacy concerns in sensor-cloud sys-

tems. The scheme stores sensitive data in a hierarchical storage system, reducing

communication costs and improving storage efficiency. However, storing the data in

a hierarchical manner leaves the data less useful.

In [40] the authors propose a privacy-preserving edge-cloud ML architecture based

on DP strategies. The proposed architecture protects data privacy while maintaining

ML accuracy, using a three-tier sensor-edge-cloud computing framework. This study

proposed an architecture similar to [40] however the major difference is that models

trained in this work are evaluated on the cloud rather than on the edge as that

saves more time. This architecture is also geared towards time series and image data

whereas their architecture only focused on categorical and discreet data.

2.2.5 Domain-Specific Features

The reason to convert one-dimensional time series to two-dimensional image data

was to highlight and capture the regional trends that would otherwise be scattered

over time to improve time series classification with DP. This also enabled us to use

state-of-the-art image classification deep learning models for classification [39]. This

study is conducted with four different features, namely raw time series, scalograms,

recurrence plots (RP), and a joint representation, called multi-modal representation,

comprising RP and scalograms stacked together. Scalograms and RP images are well-

known techniques that capture the dynamical properties of dynamical systems [56].

32

Scalograms are pictorial feature representations that denote the strength of various

frequencies of a signal over time [23].

2.2.6 Data Set and Experimental Tasks

The experiments in this thesis are conducted using two datasets:

1. Sabotage Data: EEG signals are recorded of patients performing simple tasks.

The patients were given specific instructions to either complete the task with

maximum speed and accuracy (true effort condition) or deliberately perform

poorly while still completing the trials (sabotage condition) [23].

2. EEG Alpha Waves dataset: This dataset contains EEG recordings of sub-

jects for an eye open/closed experiment [20]. From here on this dataset will be

referred to as the alpha wave or the eye dataset.

2.3 Summary

This chapter discussed introductory content and provided a background for the pro-

posed methodology. It also discussed relevant work done in the field of EEG signal

classification, making physiological signals differentially private, DP for images and

ML, and deferentially private ML-IoT architectures, and introduced the datasets that

are being used. This chapter points out that not many studies have applied DP to

time series from sensors and Internet-of-Things (IoT) devices. This study aims to fill

in this knowledge gap.

33

Chapter 3

SYSTEM DESIGN AND METHODOLOGY

3.1 System Design for DP-ML-IoT

The traditional end-to-end ML pipeline used in the industry has been described in

Figure 3.1 [67]. We follow the same procedure described in the framework. For our

implementation, each step is divided into different sections and is completely indepen-

dent of each other to make our framework more modular and customizable. Dividing

each component into individual components reduces dependencies and opens the door

to cross-platform models, it also makes it easier for the user to scale individual com-

ponents and add more functionality into the pipeline without affecting the existing

components.

Figure 3.1: End-To-End ML Pipeline [67].

Our proposed ML pipeline is applicable across different workflows and can be used

over both edge and cloud. Each process in this workflow is running independently

and only data is shared across various modules. Each module can be customized and

deployed on individual microservices and can be systematically called in any manner.

This chapter explains how the DP-ML-IoT architecture, visualized in Figure 3.2 which

is an end-to-end ML pipeline utilizing both edge and the cloud was designed and

explains each step of the architecture.

34

Figure 3.2: ε-DP capable IoT-ML architecture

3.1.1 Edge

Data ingestion is the key component of the edge. In a typical edge-cloud pipeline,

the edge is made up of a range of IoT sensors and devices that provide/generate

data in huge quantities. This study uses the edge as a platform that can collect and

process our data before it feeds the data to the cloud for model training purposes.

This work assumes that the edge is a device with limited resources (computer or a

mobile device). Edge being a low-powered device comes with certain drawbacks such

as storing a large amount of data might not be possible scaling up the storage for

which more hardware is required, and training of complex models is also not possible

on the edge as it would require substantial computation power which could end up

costing thousands of dollars to the user. All these problems can easily be solved using

cloud services.

Despite edge having some drawbacks it might be necessary to keep the data close to

the edge when dealing with classified or critical information. This study is working

35

Figure 3.3: Cloud Architecture with drift detection

with healthcare data, and since healthcare data is considered private and sensitive

information, it preprocess and anonymized the data at the edge layer before the data

is sent to the cloud for further steps. The edge is used for all the data ingestion,

cleaning, preprocessing, feature engineering, and Local-DP application on the data,

after which the data is uploaded to the cloud for data archival and model training.

3.1.2 Cloud

This study uses the cloud for some of the most important parts of our ML pipeline,

namely data storage/archiving and ML model training. This study uses Amazon

Web Services (AWS), which offers affordable, scalable, and efficient cloud solutions,

36

and uses S3 (Simple Storage Service) to archive our current and reference data and

AWS SageMaker on-demand instance to train our ML models. AWS CloudWatch and

Lambda functions were used to monitor drift on the training data. A lambda function

was created that pulls the current data stored in the S3 bucket. This study uses the

Evidently AI library in Python to calculate if drift occurred or not. To calculate if

drift occurred or not in this work the ks stat test from evidently was used, which

performs a Kolmogorov-Smirnov test on the current data and the reference data. If a

drift was detected the current version of data is stored as reference data in a separate

S3 bucket and calls another lambda function that calls the SageMaker instance that

trains the ML model with the latest available data. If no drift is detected the lambda

function is terminated. The lambda function is configured to be a scheduled call

triggered every 24 hours using AWS CloudWatch.

3.1.3 Data Flow

The workflow of this architecture in Figure 3.2 is described as:

After the data has arrived from a trusted data curator (1) the data is streamed into

the edge layer. The raw data (2) is cleaned and preprocessed (3) as mentioned in the

previous section. Feature extraction (4) is then performed on the cleaned data, which

is sent for data anonymization using Laplace Mechanism. A pre-selected value for ε

is used based on our research and use that value to generate Laplace noise which will

be added to our data (5). All the optimal transformation and epsilon values are then

sent stored for later use (6). The anonymized data is then sent to the cloud (8) where

it is stored in an AWS S3 bucket from where the data will be sent to AWS Sagemaker

where our model will be trained and evaluated based on the predetermined metrics

on an AWS SageMaker ’ml.p3.2xlarge’ instance which uses NVIDIA Tesla V100 GPU

with 8 vCPU and 61 GB memory. The model with the least amount of overfitting is

37

then chosen, i.e. accuracy difference between the test set and train set is less than

5% and the testing accuracy is at least 80%. If the model meets those criteria it is

deployed to the edge layer (9). The optimal data transformations (7) are then used

to transform raw data (11) collected from the patient (10) and then fed to the trained

ML model (12) to make inferences. As seen in Figure 3.2, each step in the model

training is modular and can easily be removed and replaced by a new method. It

should also be noted that only model training and evaluation are being carried out

at the cloud and the rest of the processes are carried out at the edge, which ensures

data privacy.

3.1.4 Advantages of Edge-Cloud Architecture

The biggest advantage is the price and time that the user will save by opting to

use the cloud. Setting up hardware for a large ML pipeline will be very expensive

and difficult to maintain but with cloud services, the user only pays for the time

the service was used for and does not have to deal with maintenance thus the user

ends up saving their time and money. The other advantage is that it allows us to

build an end-to-end ML pipeline, given that it provides a huge stack of services to

deal with enormous data from disparate sources. AWS’s S3 buckets also provide an

unlimited storage service for data objects which is very useful for users dealing with

a high volume of data. There is a dedicated service provided by AWS that can be

customized to detect drift in our ML pipeline, CloudWatch can be used to detect and

deal with drifts that may occur anywhere in our ML pipeline. This thesis aims to

automate the creation of S3 buckets, and classifier training using AWS Sagemaker

service and keep track of data drift using AWS CloudWatch.

38

3.2 Methodology

This work uses the sabotage and the alpha wave datasets and then performs data

cleaning, data processing, and feature extraction. The final result of our previous

steps was then fed into our Deep Learning model. These methods are thoroughly

discussed in the following sections.

3.2.1 Data Collection

This study has used two separate datasets, namely the Sabotage Data and the Alpha

wave dataset. These datasets are described in Section 2.2.6.

3.2.2 Data Collection Tasks

This section describes the task done by the participants during data collection.

3.2.2.1 Cognitive Motor Integration Task

To collect data for the Sabotage dataset, subjects were given a computer-based visuo-

motor skill assessment task where vision and action are decoupled. The task required

the integration of spatial and cognitive rules and thus required cognitive-motor inte-

gration (CMI). The task requires one to move the index finger of their dominant hand

along the touch screen of the tablet to move a cursor (white dot, 5 mm diameter) from

a central location to one of four peripheral targets (up, down, left, or right relative to

center) as quickly and as accurately as possible. The authors of this data collected

the EEG data from the Muse headband while participants performed this task.

39

3.2.2.2 Eye State Task

Each participant underwent one session consisting of ten blocks of ten seconds of

EEG data recording. Five blocks were recorded while a subject was keeping his eyes

closed (condition 1) and the others while his eyes were open (condition 2). The two

conditions were alternated. Before the onset of each block, the subject was asked

to close or open his eyes according to the experimental condition. The experimenter

then tagged the EEG signal using the in-house application and started a 10-second

countdown of a block.

3.3 Data Cleaning and Preprocessing

The input data is read from a file. The data is then separated based on the labels.

The separated data is then converted into an MNE [42] data structure. The Alpha

Wave dataset was recorded at a sampling frequency of 512 Hz. Hence, it is resampled

to 256 Hz which is the same as the sabotage dataset. The data is then divided into

small fixed-length windows containing 64 data points with a 50% overlap which are

0.25 s long and have an overlap of 0.125 s. After going through this process the raw

time series data of shape 64 x N is obtained, where N is the number of channels of

the headset through which the data was recorded (N = 4 for the sabotage dataset

and N = 16 for the alpha wave dataset).

3.4 Feature Engineering

After obtaining the raw time series data the next step in this pipeline is feature

engineering. The raw time series data is transformed into 2D grayscale images to

help improve the performance of classification tasks for time series data. Our goal in

40

converting one-dimensional time series to two-dimensional image data was to highlight

and capture the regional trends that would otherwise be scattered over time. This

also enabled us to use state-of-the-art image classification Deep Learning models for

our problem [39].

This study is using four different features: raw time series, scalograms, recurrence

plots, and multi-modal features (scalograms and recurrence plots stacked together).

3.4.1 Scalograms

This study explains how scalograms are made in Section 2.1.2.3. To create scalograms

in this study, each window of the time series data is taken, and the cwt function

from ssqueezepy library [61] is applied to each window to perform continuous wavelet

transform (CWT) on them. CWT indicates how strong different frequencies of a

signal are over time. The resultant scalograms were of the shape 162 x 64 x N, so

they are downsized to be the shape 64 x 64 x N. The performance of the ML models

trained with and without the downsampled scalograms have very minute differences.

3.4.2 Recurrence Plot

This study explains how RPs are created in section 2.1.2.4. To create RP from the

raw time series data, the RecurrencePlot.transform function from the pyts [38] library

is used. After applying this transform function, 2D RP of size 64 x 64 is created for

each channel. The recurrence plots for all N channels are stacked together and the

resultant shape of our dataset became 64 x 64 x N which was consistent with the

shape of our scalograms.

41

3.4.3 Multi-Modal

To create the multimodal dataset, the first step is to create scalograms and recurrence

plots as described before and then combine the two datasets by stacking/concatenat-

ing the channels and the resultant dataset is of the shape 64 x 64 x 2N.

3.5 Data Anonymization

After generating the images ε-DP is then applied to the images. The Laplace function

found in the numpy.random package in Python is used to implement the Laplace

mechanism for ε-DP with the value of ε ranging from 0.01 to 0.99. The noise generated

through that function follows a Laplacian distribution which is centered at 0 with a

sensitivity of 1. The noise is then added to the training data. The inputs with varying

levels of noise added to them and inputs with no noise added to them (ε = inf) are

visualized in Figure 3.4 and Figure 3.5.

Figure 3.4: Scalograms with varying levels of noise added to them

42

Figure 3.5: Recurrence Plots with varying levels of noise added to them

3.6 Summary

This chapter discussed the datasets used for this study and the tasks performed by the

subjects while the data was being collected. It also described our data preprocessing

steps and feature engineering steps to clean our data and convert the raw time series

data to images and anonymize them. It also explains different parts of our DP-IoT-

ML edge-cloud architecture.

43

Chapter 4

MODEL TRAINING AND ESTABLISHING BASELINES

4.1 Introduction

This section discusses the DL model and the different metrics used in this work to

evaluate our models.

4.2 Evaluation Metrics

4.2.1 Evaluation Metrics for Binary Classification

To evaluate the proposed approach in this study, several experiments were performed

which involved pre-processing and anonymizing time series and the consequent image

representations using different values of ε. Nested five-fold cross-validation (CV) was

used to train the ML models with and without DP. The classification metrics used in

this study is accuracy as described below:

Accuracy =
TP + TN

TP + TN + FP + FN
(4.1)

Where,

• TP = True positive, which is the number of correctly predicted positive class

values

44

• TN = True negative, which is the number of correctly predicted negative class

values

• FP = False positive, which is the number of incorrectly predicted positive class

values

• FN = False negative, which is the number of incorrectly predicted negative class

values

4.2.2 Evaluation Metrics for Comparing Anonymized and Non-Anonymized

Data

This study also compared how different the anonymized inputs were from the non-

anonymized inputs using Peak Signal Noise Ratio (PSNR) and cosine similarity.

PSNR was used for quality measurement between the original non-anonymized and

anonymized images and used cosine similarity to find similar patterns in the images.

Mathematically these metrics are defined as follows:

PSNR (I1, I2) = 10 · log10

(
MAX2

MSE(I1, I2)

)
(4.2)

where,

MSE (I1, I2) =
1

m · n

m∑
i=1

n∑
j=1

(I1(i, j) − I2(i, j))2 (4.3)

• I1 = noise-free image representation of Time series

• I2 = I1 + noise.

• MAX represents the maximum possible pixel value of the images

45

• MSE(I1, I2) represents the mean squared error between images I1 and I2

• m and n represent the dimensions of the images I1 and I2, respectively

• I1(i, j) and I2(i, j) represent the pixel values at position (i, j) in images I1 and

I2, respectively

Similarity = cos(θ) =

∑n
k=1(xk · yk)√∑n

k=1(xk)2 ·
√∑n

k=1(yk)2
(4.4)

where,

xk and yk are the corresponding elements of vectors x and y at index k and xk · yk is

calculating the dot product between the two vectors. Vectors x and y are created by

flattening image I1 and image I2. Image I1 is the image representation of our time

series data and I2 is I1 + noise. The index k denotes the position of the images in

the dataset.

Figure 4.1 visualizes the change of PSNR of the datasets with increasing values of ε.

Similarly, Figure 4.2 visualizes how the cosine similarities of the datasets increase as

the privacy budget increases.

4.3 Deep Learning

The following CNNs were implemented and their performance was compared with

each other using the classification metrics defined in Section 4.2.

46

Figure 4.1: PSNR between anonymized and non-anonymized data for dif-
ferent values of ε

4.3.1 Birectional LSTM

This work implemented an LSTM model where the input was passed to two con-

sequent bidirectional LSTM layers with 20 units each. The third layer was a Seq-

SelfAttention layer with a sigmoid activation function. The fourth layer was another

bidirectional LSTM layer with 20 units. The final layer was the dense layer with a

sigmoid activation function.

4.3.2 Multi-channel CNN-LSTM With Self Attention

This work uses the multi-channel CNN-LSTM with self-attention (MC-CNN-LSTM-

Att) model [23]. The input was passed into a Conv2D layer with 32 filters of size 5x5,

47

Figure 4.2: Cosine Similarities between anonymized and non-anonymized
data for different values of ε

and a maxpool layer of size 2x2. The output received from that was fed to another

Conv2D layer with 32 filters of size 3x3 and then to a maxpool layer. To prevent

overfitting, a dropout layer was added, the output was flattened which was passed to

two LSTM layers, and self-attention was applied and a dense layer was added followed

by the softmax function.

4.3.3 ChronoNet

ChronoNet [70] is a recurrent neural network (RNN) architecture designed to work

efficiently with physiological time series signals. Its architecture is inspired by the

latest advancements in the field of image classification. ChronoNet is constructed

by sequentially arranging several 1D convolution layers, which are then followed by

48

deep-gated recurrent unit (GRU) layers. Each 1D convolution layer employs multiple

filters with lengths that exponentially differ, and the stacked GRU layers are densely

interconnected in a forward-flowing fashion.

This work uses the image representation of time series data. Since ChronoNet can

only work with raw time series data and this study is working with images ChronoNet

had to be modified to better suit the needs of this study. So, for this study, changes

were made to the existing ChronoNet architecture, by replacing all the 1D convolution

layers with 2D convolution layers as they are more suited for image classification tasks.

4.3.4 Modified ChronoNet

This study modified the ChronoNet model to make it compatible with 2D image data

input. Figure 4.3 illustrates the modified ChronoNet model. The input is passed

to three Conv2D layers of size (2,2), (4,4), and (8,8) respectively with 32 filters of

size 2x2 each. The resultant outputs from the three Conv2D layers are concatenated

together. This process is repeated two more times and then a batch normalization

layer is added to stabilize and standardize the input. A GRU layer with 32 filters is

added whose output is then passed to another GRU layer with 32 filters after which

the result from both those layers is concatenated and passed onto the third GRU

layer. The output from all three GRU layers is concatenated together and passed

onto the fourth GRU layer with 32 filters. The output from the fourth GRU is then

passed onto the softmax function for classification.

49

4.4 The Training Procedure for Training and Testing

In this study the data was divided into training and testing data the splits were in the

ratio of 70% and 30%, respectively. Five-fold cross-validation was used for the model

training for 30 epochs for each fold. The models were validated using validation data

within each fold.

This study first collected baseline accuracies for each model trained on non-anonymized

data for each dataset. Results for the baseline tests are discussed in the following sec-

tion

4.5 Results

4.5.1 Baseline Results

This study first compared the performance of all the DL models described in the

previous section and found that ChronoNet performed the best. For both sabotage

and eye datasets Table 6.1 describes that Chrononet achieved the highest accuracy

of 87.48% and 87.29% with raw time series and scalograms respectively.

For the sabotage data, the CNN model with scalograms and recurrence plots didn’t

give a good performance baseline. The accuracy achieved was 51.36% and 57.04%

respectively. Similarly, the bidirectional LSTM model with scalograms and recurrence

plots fusion gave 49.01% and 53.46% accuracy respectively.

Table 1 describes the baseline scores achieved for each modality using ChronoNet.

50

Table 4.1: Baseline Scores for Each Feature
Baseline Accuracies for both datasets

Sabotage Detection Data Alpha Wave Data

Training Testing Training Testing
Raw Time Series 96.75 87.48 90.58 85.72

Scalograms 87.23 85.00 94.25 87.29
Recurrence Plot 92.99 86.64 89.08 86.84

Joint Representation 88.85 85.28 92.57 84.32

4.6 Summary

This chapter discussed the different evaluation metrics that were used in this study to

measure the performance of our data and to measure how different are the anonymized

and non-anonymized images. It also explained the experiments performed to establish

our baseline performance with non-anonymized data.

51

Figure 4.3: Architecture for modified ChronoNet model

52

Chapter 5

TRAINING MODELS WITH DIFFERENTIAL PRIVACY

5.1 Introduction

This chapter will discuss the results achieved after training ChronoNet with anonymized

data. It will also draw a comparison between the inputs when they were anonymized

and their originals. It then compares how different modalities performed with differ-

ent values of ε.

5.2 Data Preprocessing and Feature Engineering

After receiving data from the trusted data curator this work follows the same data

cleaning and pre-processing steps and then generates the images as described in Sec-

tion 3.3 and Section 3.4. After generating the images they are made ε-DP by applying

the Laplace mechanism to add Laplace noise to the images. The difference between

the original images and the images with ε-DP after the addition of the noise in Figure

4.1 and Figure 4.2.

This chapter will now discuss the classification results of both types of data by com-

paring the performance of their models trained on DP data to their respective baseline

accuracies in the following sections.

53

5.2.1 Results for Sabotage Detection Data

This study first used the sabotage detection data to evaluate our experiments. It

is observed that for this dataset, Scalograms performed the best out of all other

modalities with performance close to its baseline between ε values of 0.25 to 0.30

with average training accuracy of 86.07% and average testing accuracy of 81.32%.

The performance of different modalities over different values of ε is Figure 6.1.

5.2.2 Results for Alpha Wave Data

To validate our findings from the sabotage dataset the same experiments are repeated

with the alpha wave dataset. It is observed that for this dataset, recurrence plots

were performed closest to their baseline between ε values of 0.25 to 0.30 with average

training accuracy of 86.37% and average testing accuracy of 86.04%. The performance

of different modalities over different values of ε is visualized in Figure 6.2.

5.3 Summary

This chapter discussed the performance of ChronoNet trained with both datasets with

varying levels of ε. After carefully examining the results it is determined that ε values

between 0.25 to 0.30 offer the best ε-DP performance close to non-anonymized data.

This study discovered that Spectrograms and recurrence plots were the features that

gave the best performance under ε-DP.

54

Chapter 6

RESULTS

6.1 Introduction

In this section, we discuss the classification results of both types of data, non-

anonymized and anonymized, by comparing the performance of their models trained

on DP data to their respective baseline accuracies. This study divided the data into

training and testing data the splits were in the ratio of 70% and 30%, respectively.

Five-fold cross-validation was used for the model training for 30 epochs for each fold.

The models were validated using validation data within each fold.

Sections 6.1.1, 6.1.2, 6.1.3 discuss the results respective to each research question

asked at the beginning of this thesis.

6.1.1 RQ 1: Comparison of ML classification performance with and without

DP

RQ 1 is answered by comparing the highest accuracy achieved by ChronoNet during

the cross-validation trained on data with privacy budget ε ∈ [0.01, 1.0] ∪ [∞]. Data

with an infinite privacy budget has no privacy applied to it. This study started by first

collecting baseline accuracies for both datasets for each feature. Table 6.1 describes

the baseline scores calculated for each feature. The best baseline performance for

both datasets is highlighted and can be seen that for the sabotage dataset scalograms

performed the best and had the least amount of overfitting. For the alpha wave

dataset RPs performed the best with the least amount of overfitting.

55

Table 6.1: Baseline Scores for Each Feature
Baseline Accuracies for both datasets

Sabotage Detection Data Alpha Wave Data

Training Testing Training Testing
Raw Time Series 96.75 87.48 90.58 85.72

Scalograms 87.23 85.00 94.25 87.29
Recurrence Plot 92.99 86.64 89.08 86.84

Joint Representation 88.85 85.28 92.57 84.32

After collecting the baseline accuracies models with DP anonymized data are then

trained and their performance is then recorded. Figure 6.1 and Figure 6.2 describe the

performance of ChronoNet on both datasets with different features for varying levels

of ε. It is observed that for the sabotage dataset, both time series and scalograms

with DP were able to perform as well as non-DP data. Similarly, for the alpha wave

dataset, it is observed that all the features with DP were able to perform close to the

baseline.

RQ 1: This work could effectively train the ChronoNet model with image repre-

sentation of data for achieving classification performance with DP close to that of

non-DP data.

6.1.2 RQ 2: Selecting ε value that can guarantee classifier accuracy close to

non-anonymized data

This study first used the sabotage detection data to evaluate the results of the ex-

periments performed. It then highlights that for this dataset, scalograms performed

the best out of all other features with DP performance close to its baseline when

ε ∈ [0.25, 0.30] with average training accuracy of 86.07% and average testing accu-

racy of 81.32%. To validate the findings from the sabotage dataset same experiments

were performed with the alpha wave dataset (eye blink dataset). This study highlights

that for this dataset, RP images performed closest to their baseline when trained with

56

Figure 6.1: Performance of models Trained on Time Series, Scalogram,
and Recurrence Plot Images with and Without DP on Sabotage Data

57

Figure 6.2: Performance of models Trained on Time Series, Scalogram and
Recurrence Plot Images with and Without DP on Eye Blink Dataset

58

Table 6.2: Average Performance of Chrononet DP With Different features
where ε ∈ [0.25, 0.30]

Sabotage dataset Alpha Wave Dataset

Training Accuracy Testing Accuracy Training Accuracy Testing Accuracy
Raw Time Series 0.8696 0.7941 0.8841 0.8086

Scalogram 0.8607 0.8132 0.7636 0.7574
Recurrence Plot 0.63 0.6019 0.8637 0.8604

Joint Representation 0.6249 0.6166 0.832 0.7963

DP data with ε ∈ [0.25, 0.30] with average training accuracy of 86.37% and average

testing accuracy of 86.04%.

The classification performance of both datasets with different features over different

values of ε is visualized in Figure 6.1 and Figure 6.2. This study highlights the

minimum value of ε that is between [0.25 − −0.30] which gave performance close to

the non-anonymized data. Table 6.2 describes the average performance of all the

features when the model was trained with anonymized data where the value of ε was

between [0.25 − −0.30]. The results of the best features are highlighted in bold for

each dataset.

RQ 2: This study shows that ε between [0.25−−0.30] for image representation of

time series yields classification performance with DP close to that of non-DP data.

6.1.3 Results for RQ 3: IoT Architecture capable of supporting DP and ML

on images and time series data.

This study developed a robust DP-ML-IoT architecture designed to apply DP to

anonymize data and perform ML tasks on the anonymized data. This architecture

leverages the utmost capabilities of both the edge and the cloud. Each module in

the architecture is independent of each other connected only by the data flow. Mod-

ifying and adding more modules to the architecture are made easy because of the

independent and modular nature of the architecture. The proposed architecture is

59

also designed to keep utility costs down as cloud resources are only invoked when

they are needed thus cutting down idle waiting time costs.

RQ 3: This work designed a robust IoT architecture that evaluates the DP ML

model on the cloud and encapsulates our proposed method giving time series clas-

sification performance with DP close to non-DP while ensuring privacy by being

irreversible due to the domain-specific image representations of time series.

60

Chapter 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

This work tries to address the issue of applying ε-DP for time series data where it

is desired to achieve reasonable accuracy without compromising on the privacy of

time series physiological data. However, it is well-known that with ε-DP there is a

performance tradeoff since existing ML models trained using anonymized data with

ε-DP decrease the accuracy in contrast to non-anonymized ε-DP. In this work, we

present a new angle for applying ε-DP for time -series such that the ML models trained

on anonymized data achieve accuracy close to non-anonymized data. We proposed to

transform the time series data into 2D image representation such as the spectrogram

and reaped the merit of state-of-the-art image classifiers. This paper performed an

experimental study to find the optimal value for ε to anonymize physiological data,

along with finding the optimal feature type for these types of datasets for training

ML models. We validate our results on multiple data sets. We observed that the

higher the value of ε the better our ε-DP models perform. We wanted to find out

the lowest value of ε with which we can have both high data privacy and data utility

and our experiments showed that ε values between 0.25 to 0.30 offer the best ε-DP

performance close to non-anonymized data. We also discovered that Spectrograms

and recurrence plots were the features that gave the best performance under ε-DP.

It is also noteworthy that in some cases we observed that for higher values of ε our

anonymized data was able to outperform non-anonymized data.

61

We also implemented an end-to-end IoT ML edge-cloud architecture that employs

the ε privacy technique to train ML models on physiological data collected from IoT

devices. Our architecture ensures the privacy of individuals while processing and

analyzing the data at the edge securely and efficiently.

7.2 Future Work

Our future work includes extending the approach to conduct the same experiment

with a wide variety of physiological datasets and general time series datasets. We

would also like to expand our research in terms of using different models such as

using pre-trained models well known for image classification such as Inception, Resnet,

VGG, etc. We would also like to use a different statistical method for detecting drift

the KS test requires access to both the reference data and the current data therefore

we are utilizing double the amount of storage space. In the future, we would like to

use a test that does not rely on reference data but instead relies on the statistical

measures of the reference data, which in turn frees up a lot of space. We would also

like to implement federated learning into our ε-DP-IoT-ML architecture so that data

collection and model training can be distributed and we can also observe how the

value of ε will change if the data and model training is distributed in the cloud.

62

BIBLIOGRAPHY

[1] 5 types of brain waves frequencies: Gamma, beta, alpha, theta, Delta.

https://research.kudelskisecurity.com/2020/03/11/differential-privacy-a-

comparison-of-libraries/.

[2] What is the cloud? — Cloud definition.

https://www.cloudflare.com/learning/cloud/what-is-the-cloud/, Aug 2020.

[3] What is machine learning? A definition.

https://www.expert.ai/blog/machine-learning-definition/, March 2022.

[4] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and

L. Zhang. Deep learning with differential privacy. In Proceedings of the

2016 ACM SIGSAC conference on computer and communications security,

pages 308–318, 2016.

[5] P. A. Abhang, B. W. Gawali, and S. C. Mehrotra. Chapter 2 - Technological

Basics of EEG Recording and Operation of Apparatus. In P. A. Abhang,

B. W. Gawali, and S. C. Mehrotra, editors, Introduction to EEG- and

Speech-Based Emotion Recognition, pages 19–50. Academic Press, 2016.

[6] M. Adnan, S. Kalra, J. C. Cresswell, G. W. Taylor, and H. R. Tizhoosh.

Federated learning and differential privacy for medical image analysis.

Scientific reports, 12(1):1953, 2022.

[7] Z. Ahmad, A. Tabassum, L. Guan, and N. M. Khan. ECG Heartbeat

Classification Using Multimodal Fusion. IEEE Access, 9:100615–100626,

2021.

63

https://research.kudelskisecurity.com/2020/03/11/differential-privacy-a-comparison-of-libraries/
https://research.kudelskisecurity.com/2020/03/11/differential-privacy-a-comparison-of-libraries/
https://www.cloudflare.com/learning/cloud/what-is-the-cloud/
https://www.expert.ai/blog/machine-learning-definition/

[8] N. Ahmadi, M. Nilashi, B. Minaei-Bidgoli, M. Farooque, S. Samad, N. O.

Aljehane, W. A. Zogaan, and H. Ahmadi. Eye State Identification Utilizing

EEG Signals: A Combined Method Using Self-Organizing Map and Deep

Belief Network. Scientific Programming, 2022, 2022.

[9] A. Al Wazrah and S. Alhumoud. Sentiment analysis using stacked gated

recurrent unit for arabic tweets. IEEE Access, 9:137176–137187, 2021.

[10] A. A. AlArfaj and H. A. H. Mahmoud. A Deep Learning Model for EEG-Based

Lie Detection Test Using Spatial and Temporal Aspects.

CMC-COMPUTERS MATERIALS & CONTINUA, 73(3):5655–5669, 2022.

[11] M. Ali. Understanding Data Drift and model drift: Drift Detection in Python.

https://www.datacamp.com/tutorial/understanding-data-drift-model-drift,

Jan 2023.

[12] N. Amiet. Differential Privacy: A comparison of libraries.

https://research.kudelskisecurity.com/2020/03/11/differential-privacy-a-

comparison-of-libraries/, March 2020.

[13] J. A. S. Aranda, L. P. S. Dias, J. L. V. Barbosa, J. V. de Carvalho, J. E. d. R.

Tavares, and M. C. Tavares. Collection and analysis of physiological data in

smart environments: a systematic mapping. Journal of Ambient

Intelligence and Humanized Computing, 11:2883–2897, 2020.

[14] T. O. Ayodele. Types of machine learning algorithms. New advances in

machine learning, 3:19–48, 2010.

[15] E. Bagdasaryan, O. Poursaeed, and V. Shmatikov. Differential privacy has

disparate impact on model accuracy. Advances in neural information

processing systems, 32, 2019.

64

https://www.datacamp.com/tutorial/understanding-data-drift-model-drift
https://research.kudelskisecurity.com/2020/03/11/differential-privacy-a-comparison-of-libraries/
https://research.kudelskisecurity.com/2020/03/11/differential-privacy-a-comparison-of-libraries/

[16] T. Ball, M. Kern, I. Mutschler, A. Aertsen, and A. Schulze-Bonhage. Signal

quality of simultaneously recorded invasive and non-invasive EEG.

Neuroimage, 46(3):708–716, 2009.

[17] V. W. Berger and Y. Zhou. Kolmogorov-Smirnov Test: Overview. Wiley

statsref: Statistics reference online, 2014.

[18] J. Brownlee. Difference between classification and regression in machine

learning. https://machinelearningmastery.com/classification-versus-

regression-in-machine-learning/, May 2019.

[19] A. J. Casson, S. Smith, J. S. Duncan, and E. Rodriguez-Villegas. Wearable

EEG: what is it, why is it needed and what does it entail? In 2008 30th

Annual International Conference of the IEEE Engineering in Medicine and

Biology Society, pages 5867–5870, 2008.

[20] G. Cattan, P. L. C. Rodrigues, and M. Congedo. EEG Alpha Waves dataset.

https://doi.org/10.5281/zenodo.2348892, Dec 2018.

[21] M. A. P. Chamikara, P. Bertok, I. Khalil, D. Liu, and S. Camtepe. Privacy

preserving face recognition utilizing differential privacy. Computers &

Security, 97:101951, 2020.

[22] M. Chaudhary. An Efficient Machine Learning Software Architecture for

Internet of Things.

https://yorkspace.library.yorku.ca/xmlui/handle/10315/38477, Jul 2021.

[23] M. Chaudhary, M. S. Adams, S. Mukhopadhyay, M. Litoiu, and L. E. Sergio.

Sabotage detection using DL models on EEG data from a cognitive-motor

integration task. Frontiers in human neuroscience, 15:662875, 2021.

65

https://doi.org/10.5281/zenodo.2348892
https://yorkspace.library.yorku.ca/xmlui/handle/10315/38477

[24] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio. Learning phrase representations using RNN

encoder-decoder for statistical machine translation. arXiv preprint

arXiv:1406.1078, 2014.

[25] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated

recurrent neural networks on sequence modeling. arXiv preprint

arXiv:1412.3555, 2014.

[26] A. Craik, Y. He, and J. L. Contreras-Vidal. Deep learning for

electroencephalogram (EEG) classification tasks: a review. Journal of

neural engineering, 16(3):031001, 2019.

[27] S. P. Dash. The impact of IoT in healthcare: global technological change & the

roadmap to a networked architecture in India. Journal of the Indian

Institute of Science, 100(4):773–785, 2020.

[28] S. De, L. Berrada, J. Hayes, S. L. Smith, and B. Balle. Unlocking

high-accuracy differentially private image classification through scale. arXiv

preprint arXiv:2204.13650, 2022.

[29] E. Debie, N. Moustafa, and M. T. Whitty. A Privacy-Preserving Generative

Adversarial Network Method for Securing EEG Brain Signals. In 2020

International Joint Conference on Neural Networks (IJCNN), pages 1–8,

2020.

[30] M. Devarajan, V. Subramaniyaswamy, V. Vijayakumar, and L. Ravi.

Fog-assisted personalized healthcare-support system for remote patients

with diabetes. Journal of Ambient Intelligence and Humanized Computing,

10:3747–3760, 2019.

66

[31] C. Dwork. Differential Privacy. In Automata, Languages and Programming:

33rd International Colloquium, ICALP 2006, Venice, Italy, July 10-14,

2006, Proceedings, Part II 33, pages 1–12. Springer, 2006.

[32] C. Dwork. Differential privacy: A survey of results. In Theory and Applications

of Models of Computation: 5th International Conference, TAMC 2008,

Xi’an, China, April 25-29, 2008. Proceedings 5, pages 1–19. Springer, 2008.

[33] C. Dwork, A. Roth, et al. The algorithmic foundations of differential privacy.

Foundations and Trends® in Theoretical Computer Science,

9(3–4):211–407, 2014.

[34] C. Dwork and G. N. Rothblum. Concentrated differential privacy. arXiv

preprint arXiv:1603.01887, 2016.

[35] D. R. Edla, S. Dodia, A. Bablani, and V. Kuppili. An efficient deep learning

paradigm for deceit identification test on EEG signals. ACM Transactions

on Management Information Systems (TMIS), 12(3):1–20, 2021.

[36] K. El Emam, S. Rodgers, and B. Malin. Anonymising and sharing individual

patient data. BMJ, 350, 2015.

[37] Z. Erkin, T. Veugen, T. Toft, and R. L. Lagendijk. Generating private

recommendations efficiently using homomorphic encryption and data

packing. IEEE transactions on information forensics and security,

7(3):1053–1066, 2012.

[38] J. Faouzi and H. Janati. pyts: A Python Package for Time Series

Classification. Journal of Machine Learning Research, 21(46):1–6, 2020.

[39] G. R. Garcia, G. Michau, M. Ducoffe, J. S. Gupta, and O. Fink. Temporal

signals to images: Monitoring the condition of industrial assets with deep

67

learning image processing algorithms. Proceedings of the Institution of

Mechanical Engineers, Part O: Journal of Risk and Reliability,

236(4):617–627, 2022.

[40] P. Goyal, M. Schtern, S. Mukhopadhyay, and M. Litoiu. Towards a Differential

Privacy Machine Learning Edge-Cloud Architecture - An Experimental

Study. In Proceedings of the 32nd Annual International Conference on

Computer Science and Software Engineering, CASCON ’22, page 175–180,

USA, 2022. IBM Corp.

[41] P. Goyal, M. Schtern, S. Mukhopadhyay, and M. Litoiu. Towards a Differential

Privacy Machine Learning Edge-Cloud Architecture-An Experimental

Study. In Proceedings of the 32nd Annual International Conference on

Computer Science and Software Engineering, pages 175–180, 2022.

[42] A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier,

C. Brodbeck, R. Goj, M. Jas, T. Brooks, L. Parkkonen, and M. S.

Hämäläinen. MEG and EEG data analysis with MNE-Python. Frontiers in

Neuroscience, 7(267):1–13, 2013.

[43] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang,

G. Wang, J. Cai, et al. Recent advances in convolutional neural networks.

Pattern recognition, 77:354–377, 2018.

[44] R. Hanumantharaju, K. Shreenath, B. Sowmya, and K. Srinivasa. Fog based

smart healthcare: a machine learning paradigms for IoT sector. Multimedia

Tools and Applications, 81(26):37299–37318, 2022.

[45] Harvard University Privacy Tools Project. Differential Privacy.

https://privacytools.seas.harvard.edu/differential-privacy.

68

https://privacytools.seas.harvard.edu/differential-privacy

[46] J. J. Hathaliya and S. Tanwar. An exhaustive survey on security and privacy

issues in Healthcare 4.0. Computer Communications, 153:311–335, 2020.

[47] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

[48] A. Jain, H. Patel, L. Nagalapatti, N. Gupta, S. Mehta, S. Guttula,

S. Mujumdar, S. Afzal, R. Sharma Mittal, and V. Munigala. Overview and

Importance of Data Quality for Machine Learning Tasks. In Proceedings of

the 26th ACM SIGKDD International Conference on Knowledge Discovery

Data Mining, KDD ’20, page 3561–3562, New York, NY, USA, 2020.

Association for Computing Machinery.

[49] J. P. Kelly, B. L. Golden, and A. A. Assad. Cell suppression: Disclosure

protection for sensitive tabular data. Networks, 22(4):397–417, 1992.

[50] D. C. Klonoff. Fog computing and edge computing architectures for processing

data from diabetes devices connected to the medical internet of things.

Journal of diabetes science and technology, 11(4):647–652, 2017.

[51] E. Knorr and G. Gruman. What cloud computing really means. InfoWorld,

7(20-20):1–17, 2008.

[52] M. KOKLU and K. SABANCI. The classification of eye state by using kNN

and MLP classification models according to the EEG signals. International

Journal of Intelligent Systems and Applications in Engineering,

3(4):127–130, 2015.

[53] Z. Koudelková and M. Strmiska. Introduction to the identification of brain

waves based on their frequency. In MATEC Web of Conferences. EDP

Sciences, 2018.

69

[54] J. Lee and C. Clifton. How much is enough? choosing ε for differential privacy.

In Information Security: 14th International Conference, ISC 2011, Xi’an,

China, October 26-29, 2011. Proceedings 14, pages 325–340. Springer, 2011.

[55] E. Luo, M. Z. A. Bhuiyan, G. Wang, M. A. Rahman, J. Wu, and

M. Atiquzzaman. Privacyprotector: Privacy-protected patient data

collection in IoT-based healthcare systems. IEEE Communications

Magazine, 56(2):163–168, 2018.

[56] N. Marwan, J. Webber, Charles L., E. E. N. Macau, and R. L. Viana.

Introduction to focus issue: Recurrence quantification analysis for

understanding complex systems. Chaos: An Interdisciplinary Journal of

Nonlinear Science, 28(8), 08 2018. 085601.

[57] B. M. Mathunjwa, Y.-T. Lin, C.-H. Lin, M. F. Abbod, and J.-S. Shieh. ECG

arrhythmia classification by using a recurrence plot and convolutional

neural network. Biomedical Signal Processing and Control, 64:102262, 2021.

[58] D. Mercier, A. Lucieri, M. Munir, A. Dengel, and S. Ahmed. Evaluating

privacy-preserving machine learning in critical infrastructures: A case study

on time-series classification. IEEE Transactions on Industrial Informatics,

18(11):7834–7842, 2021.

[59] I. J. Mohammed and L. E. George. A Survey for Lie Detection Methodology

Using EEG Signal Processing. Journal of Al-Qadisiyah for computer

science and mathematics, 14(1):Page–42, 2022.

[60] J. Montoya-Mart́ınez, J. Vanthornhout, A. Bertrand, and T. Francart. Effect of

number and placement of EEG electrodes on measurement of neural

tracking of speech. Plos one, 16(2):e0246769, 2021.

70

[61] J. Muradeli. ssqueezepy. GitHub. Note:

https://github.com/OverLordGoldDragon/ssqueezepy/, 2020.

[62] M. Naldi and G. D’Acquisto. Differential privacy: An estimation theory-based

method for choosing epsilon. arXiv preprint arXiv:1510.00917, 2015.

[63] J. Near, D. Darais, and K. Boeckl. Differential privacy for privacy-preserving

data analysis: An introduction to our blog series.

https://www.nist.gov/blogs/cybersecurity-insights/differential-privacy-

privacy-preserving-data-analysis-introduction-our, Aug 2020.

[64] R. B. Pachori. Time-frequency analysis techniques and their applications. CRC

Press, 2023.

[65] M. Paul, L. Maglaras, M. A. Ferrag, and I. AlMomani. Digitization of

healthcare sector: A study on privacy and security concerns. ICT Express,

2023.

[66] P. Porwik and B. M. Dadzie. Detection of data drift in a two-dimensional

stream using the Kolmogorov-Smirnov test. Procedia Computer Science,

207:168–175, 2022.

[67] ProjectPro. How to Build an End to End Machine Learning Pipeline? https:

//www.projectpro.io/article/machine-learning-pipeline-architecture/567,

26 Apr 2023.

[68] M. Ravanelli, P. Brakel, M. Omologo, and Y. Bengio. Light gated recurrent

units for speech recognition. IEEE Transactions on Emerging Topics in

Computational Intelligence, 2(2):92–102, 2018.

71

https://www.nist.gov/blogs/cybersecurity-insights/differential-privacy-privacy-preserving-data-analysis-introduction-our
https://www.nist.gov/blogs/cybersecurity-insights/differential-privacy-privacy-preserving-data-analysis-introduction-our
https://www.projectpro.io/article/machine-learning-pipeline-architecture/567
https://www.projectpro.io/article/machine-learning-pipeline-architecture/567

[69] T. K. Reddy and L. Behera. Online Eye state recognition from EEG data using

Deep architectures. In 2016 IEEE International Conference on Systems,

Man, and Cybernetics (SMC), pages 000712–000717, 2016.

[70] S. Roy, I. Kiral-Kornek, and S. Harrer. Chrononet: a deep recurrent neural

network for abnormal EEG identification. In Artificial Intelligence in

Medicine: 17th Conference on Artificial Intelligence in Medicine, AIME

2019, Poznan, Poland, June 26–29, 2019, Proceedings 17, pages 47–56.

Springer, 2019.

[71] S. Sanei and J. A. Chambers. EEG signal processing. John Wiley & Sons, 2013.

[72] A. R. Shahid and S. Talukder. A study of differentially private machine

learning in healthcare. In 2021 Innovations in Intelligent Systems and

Applications Conference (ASYU), pages 1–6. IEEE, 2021.

[73] A. Shankar, H. K. Khaing, S. Dandapat, and S. Barma. Analysis of epileptic

seizures based on EEG using recurrence plot images and deep learning.

Biomedical Signal Processing and Control, 69:102854, 2021.

[74] F. Tadel, D. Pantazis, E. Bock, and S. Baillet. Tutorial 24: Time-frequency.

https://neuroimage.usc.edu/brainstorm/Tutorials/TimeFrequency, Jan

2022.

[75] S. Tayebi Arasteh, A. Ziller, C. Kuhl, M. Makowski, S. Nebelung, R. Braren,

D. Rueckert, D. Truhn, and G. Kaissis. Private, fair and accurate: Training

large-scale, privacy-preserving AI models in radiology. arXiv e-prints,

pages arXiv–2302, 2023.

[76] P. I. Terrill, S. J. Wilson, S. Suresh, D. M. Cooper, and C. Dakin. Attractor

structure discriminates sleep states: recurrence plot analysis applied to

72

https://neuroimage.usc.edu/brainstorm/Tutorials/TimeFrequency

infant breathing patterns. IEEE transactions on biomedical engineering,

57(5):1108–1116, 2010.

[77] M. Z. Uddin. A wearable sensor-based activity prediction system to facilitate

edge computing in smart healthcare system. Journal of Parallel and

Distributed Computing, 123:46–53, 2019.

[78] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

 L. Kaiser, and I. Polosukhin. Attention is all you need. Advances in neural

information processing systems, 30, 2017.

[79] S. Vijayarani and A. Tamilarasi. An efficient masking technique for sensitive

data protection. In 2011 International Conference on Recent Trends in

Information Technology (ICRTIT), pages 1245–1249. IEEE, 2011.

[80] T. Wang, Y. Mei, W. Jia, X. Zheng, G. Wang, and M. Xie. Edge-based

differential privacy computing for sensor–cloud systems. Journal of Parallel

and Distributed computing, 136:75–85, 2020.

[81] K. Xia, W. Duch, Y. Sun, K. Xu, W. Fang, H. Luo, Y. Zhang, D. Sang, X. Xu,

F.-Y. Wang, and D. Wu. Privacy-Preserving Brain-Computer Interfaces: A

Systematic Review. IEEE Transactions on Computational Social Systems,

pages 1–13, 2022.

[82] X. Xiao, G. Wang, and J. Gehrke. Differential Privacy via Wavelet Transforms.

IEEE Transactions on Knowledge and Data Engineering, 23(8):1200–1214,

2011.

[83] Z. Xu, B. Yu, and F. Wang. Artificial intelligence/machine learning solutions

for mobile and wearable devices. Digital Health: Mobile and Wearable

Devices for Participatory Health Applications, 55, 2020.

73

[84] W. Xue, Y. Shen, C. Luo, W. Xu, W. Hu, and A. Seneviratne. A differential

privacy-based classification system for edge computing in IoT. Computer

Communications, 182:117–128, 2022.

[85] Y.-g. Zhang, J. Tang, Z.-y. He, J. Tan, and C. Li. A novel displacement

prediction method using gated recurrent unit model with time series

analysis in the Erdaohe landslide. Natural Hazards, 105:783–813, 2021.

[86] A. Ziller, D. Usynin, M. Knolle, K. Hammernik, D. Rueckert, and G. Kaissis.

Complex-valued deep learning with differential privacy. arXiv preprint

arXiv:2110.03478, 2021.

[87] Z. Zuo, M. Watson, D. Budgen, R. Hall, C. Kennelly, and N. Al Moubayed.

Data anonymization for pervasive health care: Systematic literature

mapping study. JMIR Medical Informatics, 9(10):e29871, 2021.

74

	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	1.1 Background and Motivation
	1.2 Research Objective and Questions
	1.3 Thesis Contribution
	1.4 Thesis Organization

	2 Background and Related Work
	2.1 Background
	2.1.1 EEG and Wearable Headbands
	2.1.2 Feature Engineering: Transforming Time Series to Scalogram and Recurrence Plot Images
	2.1.2.1 Time Frequency Analysis
	2.1.2.2 Morlet Wavelet Transformation
	2.1.2.3 Scalogram
	2.1.2.4 Recurrence Plot

	2.1.3 Machine Learning
	2.1.3.1 Supervised
	2.1.3.2 Unsupervised
	2.1.3.3 Semi-Supervised

	2.1.4 Deep Learning
	2.1.4.1 Convolutional Neural Network
	2.1.4.2 LSTM
	2.1.4.3 Self-Attention

	2.1.5 Gated Recurrent Unit
	2.1.6 Differential Privacy
	2.1.6.1 Differential Privacy Types and Mechanisms

	2.1.7 Cloud
	2.1.8 Data Drift
	2.1.8.1 Kolmogorov-Smirnov Test

	2.2 Related Work
	2.2.1 Classification of EEG
	2.2.2 DP for Time Series and EEG/Physiological Data
	2.2.3 DP for Images
	2.2.4 IoT Architecture for DP and ML
	2.2.5 Domain-Specific Features
	2.2.6 Data Set and Experimental Tasks

	2.3 Summary

	3 System Design and Methodology
	3.1 System Design for DP-ML-IoT
	3.1.1 Edge
	3.1.2 Cloud
	3.1.3 Data Flow
	3.1.4 Advantages of Edge-Cloud Architecture

	3.2 Methodology
	3.2.1 Data Collection
	3.2.2 Data Collection Tasks
	3.2.2.1 Cognitive Motor Integration Task
	3.2.2.2 Eye State Task

	3.3 Data Cleaning and Preprocessing
	3.4 Feature Engineering
	3.4.1 Scalograms
	3.4.2 Recurrence Plot
	3.4.3 Multi-Modal

	3.5 Data Anonymization
	3.6 Summary

	4 Model Training and Establishing Baselines
	4.1 Introduction
	4.2 Evaluation Metrics
	4.2.1 Evaluation Metrics for Binary Classification
	4.2.2 Evaluation Metrics for Comparing Anonymized and Non-Anonymized Data

	4.3 Deep Learning
	4.3.1 Birectional LSTM
	4.3.2 Multi-channel CNN-LSTM With Self Attention
	4.3.3 ChronoNet
	4.3.4 Modified ChronoNet

	4.4 The Training Procedure for Training and Testing
	4.5 Results
	4.5.1 Baseline Results

	4.6 Summary

	5 Training models with Differential Privacy
	5.1 Introduction
	5.2 Data Preprocessing and Feature Engineering
	5.2.1 Results for Sabotage Detection Data
	5.2.2 Results for Alpha Wave Data

	5.3 Summary

	6 Results
	6.1 Introduction
	6.1.1 RQ 1: Comparison of ML classification performance with and without DP
	6.1.2 RQ 2: Selecting value that can guarantee classifier accuracy close to non-anonymized data
	6.1.3 Results for RQ 3: IoT Architecture capable of supporting DP and ML on images and time series data.

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	BIBLIOGRAPHY

