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ABSTRACT

Representations from Group Actions on Words and Matrices

Joel Anderson

We provide a combinatorial interpretation of the frequency of any irreducible repre-

sentation of Sn in representations of Sn arising from group actions on words. Rec-

ognizing that representations arising from group actions naturally split across orbits

yields combinatorial interpretations of the irreducible decompositions of representa-

tions from similar group actions. The generalization from group actions on words

to group actions on matrices gives rise to representations that prove to be much less

transparent. We share the progress made thus far on the open problem of determin-

ing the irreducible decomposition of certain representations of Sm × Sn arising from

group actions on matrices.
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Chapter 1

PRELIMINARIES

In this chapter, we present background information necessary to entering the realm

of representation theory. We assume the reader has an understand of linear algebra

and an understanding of the fundamentals of group theory. We specifically introduce

permutations, partitions, the symmetric group, and group actions.

1.1 Permutations

Definition 1.1.1. A permutation of a positive integer n is a bijection σ : [n] → [n]

where [n] denotes the set of integers from 1 to n.

Example 1.1.2. We can represent permutations in various notation. Consider the

permutation σ of 6 defined by the following mappings:

1 7→ 3 2 7→ 2 3 7→ 6

4 7→ 5 5 7→ 4 6 7→ 1

In two line notation, we write the integers 1 through n in one line and we write their

image under σ directly below to form another line:

1 2 3 4 5 6

3 2 6 5 4 1
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In one line notation, we omit top line of two line notation since it provides no new

information and we write:

3 2 6 5 4 1

Since 4 maps to 5 which maps to 4, we say that (4 5) is a cycle of σ. Since 3 maps

to 6 which maps to 1 which maps to 3, (3 6 1) is a cycle of σ. Since 2 maps to itself,

it is in a 1-cycle: (2). Listing these cycles side by side,

σ = (45)(361)(2)

is a way of writing our permutation in cycle notation.

At the moment however, this is not unique, the choice to begin our cycles at 4, 3,

and 2 was arbitrary, as was the choice to arrange the cycles in this particular order.

Standard convention is to write cycles with their smallest element first in order of

increasing smallest element,

σ = (136)(2)(45)

called canonical cycle notation. We often omit 1-cycles for brevity and simply write

σ = (136)(45).

1.2 Partitions and Young Diagrams

Definition 1.2.1. A partition of a positive integer n is a multiset of positive integers

that sum to n.

We write λ ⊢ n to indicate that λ is a partition of n.
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Example 1.2.2. By convention we write partitions as a list ordered from largest part

to smallest part. For example,

λ1 = 4 λ2 = 3 1 λ3 = 2 2 λ4 = 2 1 1 λ5 = 1 1 1 1

are the five partitions of 4. As a shorthand, the partition λ = 4 4 4 3 1 1 1 1 1 ⊢ 20

can be written as 43 3 15 ⊢ 20.

We can represent partitions visually with Young diagrams.

Definition 1.2.3. A Young diagram for a partition λ is a grid of cells where each

row represents one part of λ by setting the length of that row equal to that part of λ.

The two conventions for drawing these diagrams are English notation and French

notation, putting the largest part in the top row or in the bottom row respectively.

We will adopt the French notation. For example,

is the Young diagram for the partition 5 4 2.

Example 1.2.4. Young diagrams are useful in proving facts about partitions. For

example, the number of partitions of n with largest part k is equal to the number

of partitions of n into at most k parts. We can prove this by describing a bijection

between the set of partitions of n with largest part k and the set of partitions of n

into at most k parts. An elegant visualization of such a bijection is recognized by

representing these partitions with their Young diagrams
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and reflecting across the diagonal through the bottom left corner. This pairs every

partition that had largest part k with a partition into at most k parts.

Describing bijections by their effect on Young Diagrams is effective in proving a host

of other partition identities. Furthermore, this strategy of visually representing some-

thing combinatorial, like our partitions, as an object or diagram will prove itself to be

tremendously fruitful. It will allow us to prove algebraic statements combinatorially

through bijections between particular sets of objects.

1.3 The Symmetric Group

Definition 1.3.1. For a positive integer n, the symmetric group Sn is the set of all

permutations of n equipped with the operation of function composition.

Example 1.3.2. Using ∗ to denote our group operation, we observe that

(134)(26) ∗ (24)(35) = (135462)

by first applying (24)(35) and then applying (134)(26) to each number in [n]. It is

not difficult to verify that this is in fact a group.

Definition 1.3.3. A transposition is a permutation that consists of a single 2-cycle.

Definition 1.3.4. If a transposition has the form (i, i+ 1) for some positive integer

i, we say that it is an adjacent transposition.
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Proposition 1.3.5. Every permutation can be written as a product of adjacent trans-

positions.

Definition 1.3.6. We say that a permutation is even if it can be written as a product

of an even number of transpositions. We say that a permutation is odd if can be

written as a product of an odd number of transpositions.

There are multiple ways to write a given permutation as a product of transpositions,

but parity of permutations is nevertheless well defined. Every permutation is either

even or odd.

Example 1.3.7. We could rewrite the permutation σ = (136)(45) as

σ = (13) ∗ (36) ∗ (45),

a product of transpositions. Splitting up each of these transpositions, we could write

σ as

σ = (12) ∗ (23) ∗ (12) ∗ (34) ∗ (45) ∗ (56) ∗ (45) ∗ (34) ∗ (45),

a product of adjacent transpositions. Since σ can be expressed as a product of 3 or

9 transpositions, σ is an odd permutation.

If two even permutations are multiplied, or if two odd permutations are multiplied,

the result will be even. If an even permutation is multiplied with an odd permutation,

the result will be odd.

Definition 1.3.8. The cycle type of a permutation is the partition consisting of the

length of each of its cycles.

For example, if n = 7 and σ = (134)(26), then the cycle type of σ is the partition

3 2 1 1
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because σ has one cycle of length 3, one cycle of length 2, and 2 cycles of length 1:

(5) and (7).

Definition 1.3.9. Two group elements a, b ∈ G are conjugate if there exists another

g ∈ G such that gbg−1 = a.

Conjugacy defines an equivalence relation on the group. The equivalence classes of

this relation are called conjugacy classes. It turns out that the conjugacy classes of

the symmetric group are determined by cycle type.

Theorem 1.3.10. Let σ, τ ∈ Sn. We have that σ is in the same conjugacy class as

τ if and only if σ and τ have the same cycle type.

Proof. Let σ, τ ∈ Sn. If τ(i) = j, then (στσ−1)(σ(i)) = σ(τσ−1σ(i)) = σ(τ(i)) = σ(j).

Since σ is a permutation, every number in [n] is equal to σ(i) for some i. When we

write the cycle notation for τ , τ(i) = j means that j follows i in a cycle. Since this

implies (στσ−1)(σ(i)) = σ(j), the cycle notation for στσ−1 will have σ(j) follow σ(i)

in a cycle. Thus, we can write στσ−1 in cycle notation by substituting σ(i) in for i

in the cycle expression of τ . As a consequence, στσ−1 has the same cycle type as σ.

Furthermore, for any two permutations σ and τ of the same cycle type, there exists

a third permutation π by which we can conjugate to send one to the other. We can

describe π explicitly. List σ in cycle notation. Then list τ in cycle notation directly

below σ, ordering the cycles in a way that matches the lengths of the cycles of σ

above it. This may not be unique. Define π to be the permutation that maps any

number in σ to the number immediately below it in τ .

For example if n = 7, σ = (236)(45), and τ = (17)(465), we write

σ = (1) (2 3 6) (4 5) (7)
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τ = (2) (4 6 5) (1 7) (3)

rearranging τ to match the cycle structure of σ. We read off π in two line notation,

π =
1 2 3 4 5 6 7

2 4 6 1 7 5 3
(1.1)

by removing the parenthesis and rearranging the columns so the top row is increasing.

Observe, πσπ−1 = τ . Therefore, having the same cycle type is equivalent to being

conjugate.

Since cycle types are partitions, we can index the conjugacy classes of Sn by partitions.

1.4 Group Actions

Definition 1.4.1. Let C be a set and G be a group. An action of G on C is a

function ϕ : G× C 7→ C that satisfies

1. ϕ(e, c) = c

2. ϕ(g, ϕ(h, c)) = ϕ(gh, c) for all g, h ∈ G

for any c ∈ C where e represents the identity in G.

When there is only one action defined, we use the shorthand notation

g · c := ϕ(g, c). (1.2)

An action is a way for a group to operate on a set. In other words, it can also be

viewed as a group homomorphism from G to the set of bijections of C.
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Definition 1.4.2. If C is a set along with an action of a group G on C, we say that

C is a G-set.

Definition 1.4.3. For a finite group G with a finite G-set C, we define

1. the stabilizer of c ∈ C to be the subgroup Gc := {g ∈ G : g · c = g}.

2. the fixed point set of g ∈ G to be the subset Cg := {c ∈ C : g · c = g}.

3. the orbit of c ∈ C to be the set G · c = {g · c : g ∈ G}.

Example 1.4.4. Consider C = {112, 113, 121, 123, 131, 132, 211, 213, 231, 311, 312, 321},

the set of all words whose letters come from the multiset A = {1, 1, 2, 3}. The multi-

plication

σ · (c1c2c3) = cσ(1)cσ(2)cσ(3) (1.3)

has σ · c ∈ C for all σ ∈ Sn and c ∈ C and satisfies the two properties in Definition

1.4.1. So it defines a group action of S3 on C, allowing us to view C as an S3-set.

Lets compute the stabilizer, orbit, and fixed point sets for some specific elements.

Consider c = 131 ∈ C. We say that the permutations e and (12) fix c because e ·c = c

and (12) · c = c. Since these are the only permutations that fix c, the stabilizer of c is

(S3)c = {e, (13)}.

The orbit of c is the subset of C that is reached by acting on c, which in this case is

the subset consisting of the permutations of c. So the orbit of c is

S3 · c = {113, 131, 311}.

Consider σ = (12) ∈ S3. The fixed point set of σ consists of the elements of c that

are unchanged by switching the first two letters of the word. So the fixed point set
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of σ is

Cσ = {112, 113}.

Theorem 1.4.5. For a finite G-set C, the set of all orbits of elements of C partitions

the set C.

Proof. We will prove that the property of two elements sharing an orbit is an equiva-

lence relation. We have reflexivity because e · c = c. We also have symmetry because

if g · c1 = c2, then g
−1 · c2 = c1.

Assume c1 shares an orbit with c2 and c2 shares an orbit with c3. Then there exist

g1, g2 ∈ G such that c1 = g1 ·c2 and c2 = g2 ·c3. Substituting, c1 = g1 · (g2 ·c3). By the

definition of action, c1 = g1g2 · c3. So c1 and c3 share an orbit, proving transitivity.

Since the orbits of C are the equivalence classes of this relation, they partition C.

Definition 1.4.6. For a finite G-set C, the orbit space C/G is the set of all orbits of

elements of C.

Theorem 1.4.7. Let C be a finite G-set. For any c ∈ C, there is a bijective corre-

spondence between G · c and the quotient group G/Gc.

Proof. Define the map ϕ : G 7→ G · c by ϕ(g) = g · c. Since c is acted on by every

group element, this map is surjective. Observe that

ϕ(g1) = ϕ(g2) ⇐⇒ g1 · c = g2 · c

⇐⇒ g2
−1g1 · c = c

⇐⇒ g2
−1g1 ∈ Gc

⇐⇒ g1 ∈ g2Gc

9



where g2Gc denotes the coset of Gc in G/Gc containing g2. It follows that the map

f : G/Gc 7→ G · c defined by f(gGc) = g · c is a well defined bijection.

Corollary 1.4.8. Let C be a finite G-set. For any c ∈ C, the order of the stabilizer

of c times the order of the orbit of c equals the order of the group: |Gc||G · c| = |G|.

Proof. Equating the cardinality of two sets in the aforementioned bijection, |G/Gc| =

|G · c|. It follows that
|G|
|Gc|

= |G · c|

and multiplying both sides by |Gc| completes the proof

Theorem 1.4.9 (Burnside). For a finite G-set C, we have

|C/G| = 1

|G|
∑
g∈G

|Cg|.

Proof. Since C/G is finite, we can index its elements as O1, . . . , On. Observe that

|C/G| =
n∑
i=1

1 =
n∑
i=1

∑
c∈Oi

1

|Oi|
.

By Theorem 1.4.5, the orbits of C partition C so the double sum can be rewritten as

a sum over all elements of C:

|C/G| =
∑
c∈C

1

|G · c|

By Corollary 1.4.8,

|C/G| = 1

|G|
∑
c∈C

Gc. (1.4)
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Noticing that

∑
c∈C

|Gc| = |{(g, c) ∈ G× C : g · c = c}| =
∑
g∈G

|Cg| (1.5)

completes the proof.
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Chapter 2

INTRODUCTION TO REPRESENTATION THEORY OF FINITE GROUPS

In this chapter, we introduce and study matrix representations. At their core, matrix

representations are a way in which we can utilize the powerful tools of linear algebra

to understand more about the often non-linear structure of groups.

2.1 Matrix Representations

Definition 2.1.1. A matrix representation of a finite group G, of dimension d > 0,

is a function X that assigns each element in G to a d× d matrix, satisfying

1. X(e) = Id

2. X(gh) = X(g)X(h) for all g, h ∈ G

where e represents the identity in G and Id represents the d× d identity matrix.

In other words, a matrix representation is a homomorphism X : G → GLd, where

GLd denotes the general linear group of d × d invertible matrices. We will refer to

matrix representations simply as representations.

Definition 2.1.2. The function X(g) = [1] for all g ∈ G is called the trivial repre-

sentation for any group G.

Since X(e) = [1] and

X(g)X(h) = [1][1] = [1] = X(gh) (2.1)
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for all g, h ∈ G, this is in fact a representation. Representations preserve all, none,

or only some of the structure of the group they represent. The trivial representation

preserves none—every group has a trivial representation and it does not reveal any

information about the group.

Definition 2.1.3. The function X(σ) = [1] if σ is even and X(σ) = [−1] if σ is odd,

for σ ∈ Sn is called the sign representation.

This representation of Sn captures the structure in parity of permutations. Both the

trivial and sign representations have dimension one because they map to GL1.

A common way to construct representations is from group actions. Every group

action gives rise to a representation of that group in the following way.

Theorem 2.1.4. Consider an action of a group G on a finite set C = {c1, . . . , cd}.

The function X : Sn 7→ GLd defined by X(g) = ||Xij(g)|| where

Xij(g) =


1 if g · cj = ci

0 if g · cj ̸= ci

is a representation of G.

Proof. Since e · ci = ci for all i ∈ [d], X(e) = Id. Let g, h ∈ G. Observe that X(gh)

and X(g)X(h) both have exactly one 1 in each row and column and zeros elsewhere.

Suppose the i, j entry of X(g)X(h) is a 1 for some i, j ∈ [d]. This entry is given

by the dot product of the ith row of X(g) with the jth row of X(h). So there exists

k ∈ [d] such that Xik(g) = 1 and Xkj(h) = 1. This means that g · ck = ci and

h · cj = ck. Substituting and applying properties of group actions gives gh · cj = ci.

So X(gh)ij = 1. Thus, X(g)X(h) = X(gh).
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When we construct representations as described above, we say that X is the rep-

resentation arising from the action of G on C. Notice that dim(X) = |C| where

dim(X) denotes the dimension of X. Let us see how some group actions actually

define representations.

Definition 2.1.5. The defining representation of Sn is the representation arising

from the natural action of Sn on [n].

In other words, the defining representation of Sn is the function X that assigns each

σ ∈ Sn to an n × n matrix whose i, j entry is 1 if and only if σ(j) = i and is 0

otherwise. This representation has dimension n because it maps to n by n matrices.

Example 2.1.6. Let n = 4 and consider the permutation (142) ∈ Sn. Since σ(1) = 4,

σ(2) = 1, σ(3) = 3, and σ(4) = 2, the matrix

X((142)) =



0 1 0 0

0 0 0 1

0 0 1 0

1 0 0 0


has ones in positions (4,1), (1,2), (3,3), and (2,4).

The defining representation is convenient because if we permute the indices of a

vector (x1, . . . xn) by σ, we get the same result as if we right multiply by X(σ). When

σ = (142) as above, we observe

(x1, x2, x3, x4)



0 1 0 0

0 0 0 1

0 0 1 0

1 0 0 0


= (x4, x1, x3, x2) = (xσ(1), xσ(2), xσ(3), xσ(4)).
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So we can apply permutations with matrix multiplication. The matrix X(σ) is some-

times called the permutation matrix of σ for this reason.

Let us look at a second representation constructed in this way. For a group G, there

is a natural action from G×G 7→ G defined by g · h = gh. In other words, G acts on

itself by left multiplication.

Definition 2.1.7. For a group G, the representation X arising from the action of G

on itself by left multiplication is called the (left) regular representation of G.

In other words, the regular representation of G is defined to be the function X that

assigns each h ∈ G to a matrix whose i, j entry is a 1 if and only if hgj = gi and is 0

otherwise.

Example 2.1.8. Consider the group S3. It has order 3! = 6 so the regular repre-

sentation X of S3 will have dimension 6. Let us compute the value of the regular

representation at σ = (12). Indexing the 6 group elements as

g1 = e, g2 = (12), g3 = (13), g4 = (23), g5 = (123), g6 = (132),

we can compute what matrix will result. Since σg1 = (12)e = (12) = g2, the first

column will have a one in the second row and zeros elsewhere. Since σg2 = (12)(12) =

e = g1, the second column will have a one in the first row and zeros elsewhere. Since

σg3 = (12)(13) = (132) = g6, the third column will have a one in the sixth row and

15



zeros elsewhere. Computing the last three rows,

X(σ) =



0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0


.

We only have a notion of the defining representation for Sn, but the regular represen-

tation is defined for any group G. We saw that every group has the trivial represen-

tation, preserving none of its structure. The regular representation, for any group,

preserves all of its structure. The matrices that are formed can be viewed as recipes

for how to compute the group operation. As it turns out the regular representation

will prove to be quite interesting to explore.

2.2 Combining Representations

In this section, we introduce notions of addition and multiplication of representations.

Definition 2.2.1. Two representations X and Y of a group G are equivalent, denoted

X ∼= Y , if there exists a fixed change of basis matrix B such that B−1X(g)B = Y (g)

for all g ∈ G. Otherwise, we say X and Y are inequivalent.

Theorem 2.2.2. Representation equivalence as described above defines an equivalence

relation.
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Proof. Let X, Y , and Z be representations of a group G and let g ∈ G. Since

I−1X(g)I = X(g), we have reflexivity. Suppose B−1X(g)B = Y (g). Then

(B−1)−1Y (g)B−1 = X(g)

which implies symmetry. Now also suppose that C−1Y (g)C = Z(g). Then

(BC)−1X(g)BC = X(g)

which implies transitivity.

To define the addition of two representations we first consider a slightly less common

notion of addition of matrices.

Definition 2.2.3. Let A and B be matrices. The direct sum A ⊕ B is the block

matrix

A⊕B =

 A 0

0 B


where 0 is a nonempty matrix of zeros.

Note that this direct sum is associative.

Theorem 2.2.4. Let A and B be d× d matrices and let C and D be f × f matrices.

We have

(A⊕B)(C ⊕D) = AB ⊕ CD.
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Proof. This is theorem just acknowledges that multiplication of block diagonal ma-

trices works nicely. We observe

(A⊕B)(C ⊕D) =

 A 0

0 B


 C 0

0 D

 =

 AC 0

0 BD

 = AB ⊕ CD.

Definition 2.2.5. Let X, Y be matrix representations of group G with dimension d

and f respectively. We define the direct sum representation X ⊕ Y of G to be

(X ⊕ Y )(g) = X(g)⊕ Y (g).

Verifying that

(X ⊕ Y )(e) =

 Id 0

0 If

 = Id+f

and by Theorem 2.2.4 that

(X ⊕ Y )(g)(X ⊕ Y )(h) = (X(g)⊕ Y (g))(X(h)⊕ Y (h))

= (X(g)X(h)⊕ Y (g)Y (h))

= (X(gh)⊕ Y (gh))

= (X ⊕ Y )(gh)

confirms that X⊕Y is in fact a representation of G. Notice that this notion of direct

sum of representations is associative and the dimension of X⊕Y is d+f . For positive

integer m, we define

mX = X ⊕ . . .⊕X︸ ︷︷ ︸
m times

(2.2)

for a notion of scalar multiplication.
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Theorem 2.2.6. If X = m1X1 ⊕ · · · ⊕mkXk, then the dimension of X is

dim(X) =
k∑
i=1

mi dim(Xi)

Proof. Reindex, allowing repeats, such that X = X1 ⊕ · · · ⊕ Xl. We observed that

the dimension of the direct sum of two representations is the sum of the dimensions.

With this, induction on l proves the result.

Now we define a notion of multiplying representations together.

Definition 2.2.7. For matrices A = ||aij|| and B, the tensor product A ⊗ B is the

block matrix

A⊗B =


a11B a12B . . .

a21B a22B . . .

...
...

. . .

 .
Theorem 2.2.8. Let A and B be d× d matrices and let C and D be f × f matrices.

We have

(A⊗B)(C ⊗D) = AB ⊗ CD.

Proof. Suppose A = ||aij|| and C = ||cij||. Then

(A⊗B)(C ⊗D) = ||aijB|| · ||cijD||

= ||
∑
k

aikBckjD||

= ||
∑
k

aikckjBD||

= AC ⊗ CD.
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Definition 2.2.9. Let X and Y be representations for groups G and H respectively.

The tensor product representation X ⊗ Y of G×H is defined by

(X ⊗ Y )(g) = X(g)⊗ Y (h) =


x11(g)Y (h) x12(g)Y (h) . . .

x21(g)Y (h) x22(g)Y (h) . . .

...
...

. . .


where xij(g) denotes the i, j entry of X(g).

To verify that this is a representation, observe

(X ⊗ Y )(e, e) = (X(e)⊗ Y (e)) = I ⊗ I = ||δi,jI|| = I.

Now let (g1, h1), (g2, h2) ∈ G×H. By Theorem 2.2.8,

(X ⊗ Y )(g1, h1) · (X ⊗ Y )(g2, h2) = (X(g1)⊗ Y (h1)) · (X(g2)⊗ Y (h2))

= X(g1)X(g2)⊗ Y (h1)Y (h2)

= X(g1g2)⊗ Y (h1h2)

= (X ⊗ Y )(g1g2, h1h2),

confirming that this is in fact a representation of G×H.

Note that dim(X ⊗ Y ) = dim(X) dim(Y ).

2.3 Irreducible Representations

Often, representations can be realized as combinations of other representations of

smaller dimension. The ones that cannot be broken down in this way are called

irreducible representations and they are the building blocks from which all other
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representations emerge. There are infinitely many representations of any finite group,

but as we will prove in Theorem 2.6.14, only a handful of them are irreducible.

Definition 2.3.1. Let X and Y be representations of a group G. If X ∼= Y ⊕ Z for

some representation Z of G, then Y is a subrepresentation of X.

Definition 2.3.2. Let X be a representation of a group G. Then X is reducible if it

has a subrepresentation and X is irreducible otherwise.

Equivalently, a representation of a group G is reducible if there exists a basis with

respect to which every g ∈ G is assigned to a block matrix of the form

B−1X(g)B =

 A(g) 0

0 C(g)

 (2.3)

where B is the change of basis matrix, 0 is a nonempty matrix of zeros, and A(g) is

a square matrix of the same size for each g.

Theorem 2.3.3. If a representation X of a group G has dimension 1, then X is

irreducible.

Proof. Suppose that X has dimension 1 and is reducible. Then there exist represen-

tations Y and Z of G such that X ∼= Y ⊕Z. By Theorem 2.2.6, taking the dimension

of both sides gives 1 = dim(Y ) + dim(Z). This is a contradiction because we require

representations to have dimension at least 1.

Theorem 2.3.4 (Maschke). Let X be a representation over C of a finite group G

with dimension d > 0. Then

X ∼= X1 ⊕ · · · ⊕Xk

where each Xi is an irreducible representation of G.
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Proof. We will use strong induction. Assume the result holds for any representation

of dimension less than d. If X is irreducible, the result is immediate. Assume X is

reducible. Then there exist representations Y , and Z of G such that X ∼= Y ⊕ Z.

Since all representations have dimension at least 1, dim(Y ) < n and dim(Z) < n.

By the inductive hypothesis, Y ∼= X1 ⊕ · · · ⊕ Xj and Z ∼= Xj+1 ⊕ · · · ⊕ Xk where

X1, . . . Xk are irreducible. Thus, X ∼= X1 ⊕ · · · ⊕Xj ⊕Xj+1 ⊕ · · · ⊕Xk

It follow from definitions that Theorem 2.3.4 is equivalent to the existence of a change

of basis matrix B such that

B−1X(g)B =



X1(g) 0 . . . 0

0 X2(g)
. . .

...

...
. . . . . . 0

0 . . . 0 Xk(g)


(2.4)

where each Xi is an irreducible representation of G. Note that this is still a block

matrix even though we omitted the vertical and horizontal lines.

As it turns out, we can relax the requirements on what suffices to showing that a

representation is reducible. We include the following theorem without proof.

Theorem 2.3.5. A representation of a group G is reducible if there exists a basis B

with respect to which every g ∈ G is assigned to a block matrix of the form

B−1X(g)B =

 A(g) D(g)

0 C(g)


where B is the change of basis matrix, 0 is a nonempty matrix of zeros, and A(g) is

a square matrix of the same size for each g.
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This is commonly taken to be the definition of irreducible and then it is proven that

this agrees with our definition over C.

Example 2.3.6. Consider the defining representation X of S3. Recall that this

representation acts on C3, by permuting the entries of a vector. So X acts invariantly

on the subspace of C3 spanned by the vector (1, 1, 1) ∈ C3. Since the change of basis

matrix

B =


1 0 0

1 1 0

1 0 1


has (1, 1, 1) as a column it will isolate the invariant subspace. This will show that X

is reducible.

The defining representation for S3 is the function X consisting of the following six

mappings:

X(e) =


1 0 0

0 1 0

0 0 1

 X((12)) =


0 1 0

1 0 0

0 0 1



X((13)) =


0 0 1

0 1 0

1 0 0

 X((23)) =


1 0 0

0 0 1

0 1 0



X((123)) =


0 1 0

0 0 1

1 0 0

 X((132)) =


0 0 1

1 0 0

0 1 0

 .
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We compute the matrices corresponding to each of the six group elements with respect

to this new basis:

B−1X(e)B =


1 0 0

0 1 0

0 0 1

 B−1X((12))B =


1 1 0

0 −1 0

0 −1 1



B−1X((13))B =


1 0 1

0 1 −1

0 0 −1

 B−1X((23))B =


1 0 0

0 0 1

0 1 0



B−1X((123))B =


1 1 0

0 −1 1

0 −1 0

 B−1X((132))B =


1 0 1

0 0 −1

0 1 −1


By Theorem 2.3.5, we conclude that the defining representation of S3 is reducible

because every matrix fits the required form with zeros in the first column after the

first entry.

By the definition of reducible, we can find a different change of basis matrix B that

completely breaks our representation into block diagonal form. We need the other

two columns of our change of basis matrix to span the orthogonal complement of the

space spanned by (1, 1, 1). The new change of basis

B =


1 −1 −1

1 1 0

1 0 1


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has the latter two columns orthogonal to the first. This can be verified by computing

dot products. For example, since

(1, 1, 1) · (−1, 1, 0) = 1(−1) + 1(1) + 1(0) = 0, (2.5)

the first two columns are orthogonal.

We again compute the matrices corresponding to each of the six group elements with

respect to this new basis:

B−1X(e)B =


1 0 0

0 1 0

0 0 1

 B−1X((12))B =


1 0 0

0 −1 −1

0 0 1



B−1X((13))B =


1 0 0

0 1 0

0 −1 −1

 B−1X((23))B =


1 0 0

0 0 1

0 1 0



B−1X((123))B =


1 0 0

0 0 1

0 −1 −1

 B−1X((132))B =


1 0 0

0 −1 −1

0 1 0


As expected these matrices all take a block diagonal form. The upper left block is

[1] for all of them, the trivial representation. The bottom right block, however is

something new.
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Peeling off the bottom right 2×2 block, we can verify by direct matrix multiplication

that the function Y : S3 7→ GL2 defined by

Y (e) =

 1 0

0 1

 Y ((12)) =

 −1 −1

0 1


Y ((13)) =

 1 0

−1 −1

 Y ((23)) =

 0 1

1 0


Y ((123)) =

 0 1

−1 −1

 Y ((132)) =

 −1 −1

1 0


is another representation of S3. Letting Z denote the trivial representation, we have

observed B−1X(σ)B = Z(g)⊕ Y (σ) for all σ ∈ S3. So we can say that X ∼= Z ⊕ Y .

Thus both Y and Z are subrepresentations of S3.

The trivial representation, we know is irreducible by Theorem 2.3.3 because it has

dimension 1. We will prove it later on, but it turns out this representation Y is irre-

ducible as well. The representation Y is sometimes called the standard representation

of S3.

The results in this section tell us that any representation of a finite group can be

completely broken down into a combination of irreducible representations of the same

group. This naturally gives rise to two big questions. Given any finite group, what are

all of its irreducible representations up to equivalence? And, given a representation of

a finite group, what is its irreducible decomposition? In other words, how many copies

of each irreducible representation of the group are contained in our representation?
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2.4 Characters

One downside of representations is that assigning each element to a matrix, especially

larger matrices, requires storing a lot of information. To circumvent this issue, we

introduce the character of a representation, which we will prove to be a numerical

invariant under our notions of addition and multiplication.

Characters of representation are surprisingly powerful. As we will see in Section 2.5,

for finite representations of a group G over C, the character actually determines the

representation up to equivalence.

Definition 2.4.1. Let X be a representation of a group G. The character of X is

the function χ : G→ C defined by

χ(g) = tr(X(g))

where tr(A) denotes the trace of the matrix A.

Example 2.4.2. Consider the defining representation X of S3 defined. Let χ be the

character of X. Computing the value of χ on specific elements of S3, we see that

χ(e) = tr(X(e)) = tr


1 0 0

0 1 0

0 0 1

 = 1 + 1 + 1 = 3,

and

χ((12)) = tr(X(g)) = tr


0 1 0

1 0 0

0 0 1

 = 0 + 0 + 1 = 1.
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Continuing, we observe that χ((13)) = 1, χ((23)) = 1, χ((123)) = 0, and χ((132)) =

0. With the value of χ on all elements of the group, we could completely describe the

function χ in a table:

e (12) (13) (23) (123) (132)

χ 3 1 1 1 0 0
.

In this example it appears that χ is constant on each of the three conjugacy classes of

S3. As we will prove with Theorem 2.4.3, this holds in general for any representation

of any group. So we still retain all the information of χ when we write the table more

concisely as

K1 K2 K3

χ 3 1 0
,

where the number below K1, K2, and K3 indicates the value of χ on each of the

three conjugacy classes of S3. This is called the character row of χ. Recall that the

conjugacy classes of the symmetric group correspond precisely to cycle type. So, for

a representation of the symmetric group, it is typical to write

K1,1,1 K2,1 K3

χ 3 1 0
,

where Kλ denotes the conjugacy class corresponding to cycle type λ.

Theorem 2.4.3. Let X be a representation of a group G with character χ. If g1 and

g2 are in the same conjugacy class of G, χ(g1) = χ(g2).
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Proof. LetX be a representation of a group G with character χ. Suppose g1, g2, h ∈ G

have g1 = h−1g2h. Then

χ(g1) = χ(h−1g2h)

= tr(X(h−1g2h))

= tr(X(h−1)X(g2)X(h))

= tr(X(h−1)X(h1)X(g2))

= tr(X(g2))

= χ(g2).

Definition 2.4.4. A class function for a group G is any function from a G to C that

is constant on conjugacy classes.

As we proved in the previous theorem, characters are examples of class functions.

Example 2.4.5. Now let X be the defining representation on S4 with character χ.

We will use the previous theorem to compute the character row. Summing the entries

of the main diagonal of

X((142)) =



0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0


reveals that χ((124)) = 1. We could repeat for the other 23 matrices and we would

have a complete picture of χ, but we can be much more efficient than that. Since χ is

constant on conjugacy classes, we know that χ((123)) = 1 as well without computing

X((123)), since (123) and (142) are in the same conjugacy class. In general we just

compute the value on the character for one representative from each conjugacy class.
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In this example we can reason through the other character values without computing

the matrices. By definition of the defining representation, a 1 on the main diagonal

corresponds to a fixed point of the permutation. So in this case the character function

counts the number of fixed points for a given permutation. Our example, (142) had

a single fixed point, 3, hence a character of 1. Since the conjugacy classes of Sn

are indexed by partitions of n, choosing a representative element from each of the

conjugacy classes and computing

χ((1234)) = 0 χ((12)(34)) = 0 χ((123)) = 1 χ((12)) = 2 χ(e) = 4

allows us to fill out the character row,

K1111 K211 K22 K31 K4

χ 4 2 1 0 0
.

Notice that the character of the identity reveals the dimension of the representation,

because tr(Id) = d. In this case we can read off from the left entry of the table that

we have a 4-dimensional representation.

This method of counting fixed points holds more generally.

Theorem 2.4.6. Let X be a representation of a group G arising from an action of

G on a set C. For any g ∈ G, χ(g) = |Cg|, where Cg is the fixed point set of g.

Proof. Recall that χ(g) := tr(X(g)), which equals the sum of the diagonal entries of

X(g). But each nonzero entry on the diagonal of X(g) corresponds to an element of

C that is fixed by g. Since each of these nonzero entries is a one, χ(g) = |Cg|.

Theorem 2.4.7. Let X be a representations of a group G with characters χ. Let

X ∼= X1 ⊕ · · · ⊕Xk
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where the Xi are irreducible representations of G with characters χi. Then χ =

χ1 + · · ·+ χk.

Proof. Let g ∈ G. Then

χ(g) = tr(X(g))

= tr(X1(g)⊕ · · · ⊕Xk(g))

= tr(X1(g)) + · · ·+ tr(Xk(g))

= χ1(g) + · · ·+ χk(g).

Definition 2.4.8. If we have a character of an irreducible representation, we call it

an irreducible character.

2.5 Inner Products

In this section, we define a way to multiply character functions with an inner product.

We will prove that the inner product of two characters reveals critical information

toward answering the question posed at the end of Section 2.3: How does a given

representation of a group breakdown into irreducible components?

Definition 2.5.1. Let X and Y be representations of G with characters χ and ψ

respectively. The inner product of χ and ψ is

⟨χ, ψ⟩ = 1

|G|
∑
g∈G

χ(g)ψ(g−1).
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Since characters are constant on conjugacy classes, we can rewrite the inner product

of two characters as

⟨χ, ψ⟩ = 1

|G|
∑
K

|K|χ
K
ψ

K
(2.6)

where K iterates through all conjugacy classes of G and χ
K
and ψ

K
are the constant

values of χ and ψ on the conjugacy class K respectively.

The inner product of characters reveals information about the relationship between

the representations they correspond to. Specifically, as we will prove in Theorem

2.5.4, the inner product of two irreducible characters is 1 if they are the equivalent

and 0 if they are inequivalent. We set the stage for the proof of this powerful result

with a few lemmas.

Lemma 2.5.2 (Schur). Let X and Y be inequivalent irreducible matrix representa-

tions of a group G. If X(g)B = BY (g), the B is the zero matrix.

Proof. If B was invertible, then Y (g) = B−1X(g)B for all g ∈ G. So X and Y would

be equivalent, a contradiction. Since B is not invertible, there exists a nonzero vector

u such that Bu = 0 or uB = 0.

Suppose Bu = 0. Then the kernel of B has dimension at least one. Let P be the

projection matrix onto the kernel of B. For any vector v, Pv ∈ ker(B). So BPv = 0.

Multiplying on the right by P ,

BY (g)P = X(g)BP = 0

because BP = 0. It follows that for any vector v ∈ ker(B), BY (g)v = 0, which

implies that Y (g)v ∈ ker(B). In other words, Y (g) acts invariantly on ker(B). Since

Y is irreducible, ker(B) must be the whole space on which B acts. So B = 0.

If uB = 0, a similar argument shows B = 0.
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Lemma 2.5.3. For an irreducible representation X of a group G, if X(g)B = BX(g)

for all g ∈ G, then B = λI, a scalar multiple of the identity matrix.

Proof. The square matrix B has at least one eigenvalue c = λ because its charac-

teristic equation det(B − cI) = 0 has at least one root over C, by the fundamental

theorem of algebra. So the kernel of B − λI has dimension at least one. Since

(λI)X(g) = λX(g) = X(g)(λI), we have

(B − λI)X(g) = X(g)(B − λI).

Let P be the projection matrix onto the kernel of B − λI. For any vector v, Pv ∈

ker(B − λI). So BPv = 0. Multiplying on the right by P ,

(B − λI)Y (g)P = X(g)(B − λI)P = 0

because (B − λI)P = 0. It follows that for any vector v ∈ ker(B − λI), (B −

λI)Y (g)v = 0, which implies that Y (g)v ∈ ker(B − λI). In other words, Y (g) acts

invariantly on ker(B − λI). Since Y is irreducible, ker(B − λI) must be the whole

space on which B acts. So B − λI = 0. Thus, B = λI.

Now we are ready to state and prove the powerful character relation.

Theorem 2.5.4. The inner product of two irreducible characters χ and ψ of a group

G is 1 if and only if χ = ψ and 0 otherwise. In symbols,

⟨χ, ψ⟩ = δχ,ψ
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where

δχ,ψ =


1 if ψ = χ

0 if ψ ̸= χ

.

Proof. Let X and Y be representations of G with characters χ and ψ respectively.

Let A = ||Ai,j|| be a matrix of indeterminates. The matrix

B =
1

|G|
∑
g∈G

X(g)AY (g−1)

satisfies

X(h)BY (h−1) =
1

|G|
∑
g∈G

X(h)X(g)AY (g−1)Y (h−1)

=
1

|G|
∑
g∈G

X(hg)AY (g−1h−1)

=
1

|G|
∑
g∈G

X(g)AY (g)

= B

which implies that X(h)B = BY (h) for all h ∈ G. We chose the matrix B such that

this would be the case because we can now apply Lemma 2.5.2 and Lemma 2.5.3.

Case 1: Suppose χ ̸= ψ. Then X ≇ Y . By Lemma 2.5.2, B = 0. Examining the i,

j entry of the matrix B,

0 = Bij =
1

|G|
∑
g∈G

∑
k,l

Xik(g)AklYlj(g
−1)

for all i and j. Since the Aij are all indeterminate, equating coefficients of Aij gives

0 =
1

|G|
∑
g∈G

Xik(g)Ylj(g
−1) (2.7)
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for all i, j, k and l. Since the character of a representation is the trace of the matrix,

χ(g) =
∑

iXii(g) and ψ(g−1) =
∑

j Yjj(g
−1). Substituting these into the definition

of inner product and reordering the sums,

⟨χ, ψ⟩ = 1

|G|
∑
g∈G

χ(g)ψ(g−1)

=
1

|G|
∑
g∈G

∑
i

Xii(g)
∑
j

Yjj(g
−1)

=
∑
i,j

1

|G|
∑
g∈G

Xii(g)Yjj(g
−1)

= 0

by Equation 2.7.

Case 2: Now suppose χ = ψ. Since the result we are proving only involves the

characters, we can assume without loss of generality that X = Y . By Lemma 2.5.3,

B = cId for some scalar c. Computing the trace of B,

cd = tr(B) =
1

|G|
∑
g∈G

tr(X(g)AY (g−1))

=
1

|G|
∑
g∈G

tr(X(g)Y (g−1)A)

=
1

|G|
∑
g∈G

tr(A)

= tr(A).

So Bii = c = 1
d
tr(A). This can be written as

Bii =
1

|G|
∑
g∈G

∑
k,l

Xik(g)AklYlj(g
−1) =

1

d

∑
i

Aii.
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Equating coefficients of monomials,

1

|G|
∑
g∈G

Xik(g)Ylj(g
−1) =

1

d
δij

for all i, j, k, and l. As in Case 1,

⟨χ, ψ⟩ =
∑
i,j

1

|G|
∑
g∈G

Xii(g)Yjj(g
−1).

Since Bij = 0 for i ̸= j, these terms of the sum are zero for the same reason as before.

So

⟨χ, ψ⟩ =
∑
i

1

|G|
∑
g∈G

Xii(g)Yii(g
−1)

=
∑
i

1

d

= 1.

Corollary 2.5.5. Let X, Y be matrix representations of a group G with characters

χ and ψ respectively. Let

X ∼= m1X1 ⊕ · · · ⊕mkXk

where the Xi are pairwise inequivalent irreducible representations of G with characters

χi. Then,

1. ⟨χ, χj⟩ = mj for all j.

2. ⟨χ, χ⟩ = m2
1 + · · ·+m2

k.

3. X is irreducible if and only if ⟨χ, χ⟩ = 1.
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4. X ∼= Y if and only if χ = ψ.

Proof. 1. By the previous theorem,

⟨χ, χj⟩ = ⟨
∑
i

miχi, χj⟩ =
∑
i

mi⟨χi, χj⟩ =
∑
i

miδij = mj.

2. Again by Theorem 2.5.4,

⟨χ, χ⟩ = ⟨
∑
i

miχi,
∑
j

mjχj⟩ =
∑
i,j

mimj⟨χi, χj⟩ =
∑
ij

mimjδij =
∑
i

m2
i .

3. Theorem 2.5.4 gives the forward direction. For the reverse, assume ⟨χ, χ⟩ = 1.

Then by 2, 1 = m2
1 + · · ·+m2

k. Since the mi are positive integers, one of them must

be one and the rest zero. So X is irreducible.

4. The forward direction is true because trace is invariant under change of basis. For

the reverse, assume χ = ψ. Since χ = ψ, ⟨χ, χi⟩ = ⟨ψ, χi⟩ for all i. So the irreducible

decomposition of contains exactly mi copies of Xi for each Xi.

As a consequence of this corollary, the irreducible decomposition given by Theorem

2.3.4 is unique.

Theorem 2.5.6. Let X be the regular representation of a group G with character χ.

If Y is an irreducible representation of G with character ψ, then ⟨χ, ψ⟩ = dim(Y ).

Proof. Let Y be an irreducible representation of G with character ψ. Since χ(g)

counts the number of ones on the diagonal of X(g), χ(g) is the number of group

elements fixed by g. Since the identity fixes every element of the group, χ(e) = |G|.

On the other hand, gh = h forces g to be the identity. So, if g is not the identity,
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g fixes no elements of the group. Thus, χ is constantly 0 on all non-identity group

elements.

Since χ is 0 on all non-identity group elements,

⟨χ, ψ⟩ = 1

|G|
χ(e)ψ(e) = dim(Y )

because ψ(e) = dim(Y ).

This implies that every irreducible representation of G shows up exactly a number of

times equal to its dimension in the irreducible decomposition of the regular represen-

tation of G. Specifically, if we can decompose the regular representation of a group,

we will have a complete list of irreducible representations of that group.

Corollary 2.5.7. Let X1, . . . , Xk be a complete list of pairwise inequivalent represen-

tations of a group G. Let di = dim(Xi) for each i ∈ [k]. Then

|G| =
k∑
i=1

d2i .

Proof. Let X be the regular representation of G with character χ. By Theorem 2.5.6,

X ∼= d1X1 ⊕ · · · ⊕ dkXk. (2.8)

Since dim(X) = |G|, taking the dimension of both sides by Theorem 2.2.6 proves the

result.
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2.6 Modules and Group Algebras

With this powerful inner product now in our toolkit, we need a complete list of irre-

ducible representations for whatever group we want to study. By Theorem 2.5.6, we

now know that any finite group is guaranteed to have finitely many irreducible repre-

sentations. However, we do not know in general how many irreducible representations

a given group has.

In this section, we define the vector space analog of matrix representations: G-

modules. We also define the group algebra and use inner products to completely

break it down into its irreducible decomposition. This will be used to prove that

the number of irreducible representations of a finite group is equal to the number of

conjugacy classes of that group.

Definition 2.6.1. Let G be a group. A G-module V is a vector space equipped with

a homomorphism ϕ : G 7→ GL(V ) where GL(V ) is the set of linear transformations

from V to itself. If the group is obvious, we just just call V a module.

For a G-module, as a short hand for (ϕ(g))(v), we write gv, for any g ∈ G and v ∈ V ,

thinking of the maps to linear transformations as notion of multiplication of group

elements times elements of the vector space. So an equivalent definition of G-module

is a vector space with a notion of multiplication of group elements times vectors such

that

1. gv ∈ V ,

2. g(cv + dw) = cgv + dgw,

3. gh(v) = g(hv), and

4. ev = v
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for all g, h ∈ G, v, w ∈ V , and c, d ∈ C.

If we fix a basis, the linear transformations can all be written as matrices with respect

to that basis which defines a representation of G. So every G-module corresponds to

an equivalence class of representations of G.

Definition 2.6.2. An algebra A is a vector space, equipped with an additional notion

of multiplication of vectors, · : A× A→ A that respects the following properties:

1. x · (y + z) = xy + xz

2. (x+ y) · z = xz + yz

3. (cx) · (dy) = (cd)(x · y)

where x, y, z ∈ A and c and d are scalars from the field.

Theorem 2.6.3. If a G-module V contains no nontrivial subspace that is invariant

under the action of G, V corresponds to an irreducible representation of G.

Proof. Suppose V contains a nontrivial subspace W invariant under the action of

G. Then there exists an orthogonal basis with respect to which for all g, the matrix

corresponding to the linear transformation of multiplication by g has a block diagonal

form. The two blocks apply the transformation individually to W and its orthogonal

complement. But then the corresponding representation is reducible, a contradiction.

Definition 2.6.4. For a G-set S, we define

CS = {c1s1 + · · ·+ cksk : ci ∈ C, si ∈ S}

to be the G-module of formal linear combinations of elements of S.

The module CS corresponds to the representation arising from the action of G on S.
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Definition 2.6.5. The group algebra C[G] of a group G = {g1, . . . , gk} is the vector

space of formal linear combinations

C[G] = {c1g1 + · · ·+ ckgk : ci ∈ C}

along with multiplication defined by
∑

i cigi ·
∑

j cjgj =
∑

i,j cicj(gigj), an extension

of the group multiplication.

The group algebra C[G] is a module where both the vector space and the group are

G. The corresponding representation is the regular representation, where the group

acts on itself.

Proposition 2.6.6. The set of all d× d matrices, Matd, is an algebra.

Definition 2.6.7. Let X be a representation of a group G. The commutant algebra

of X is

Com(X) = {T ∈ Matd : TX(g) = X(g)T for all g ∈ G}.

Noticing that Com(X) is closed under addition and multiplication is sufficient to con-

firm that Com(X) is in fact an algebra because the other requirements are inherited

from Matd.

Definition 2.6.8. Let V be a G-module. The endomorphism algebra of V is

End(V ) = {ϕ : V 7→ V : V is a homomorphism}.

Proposition 2.6.9. If X is a representation of G with corresponding module V , then

Com(X) ∼= End(V ).

Definition 2.6.10. The center ZG of a group G is the set of all elements of g that

commute with everything in g.
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Proposition 2.6.11. The center of Matd only contains scalar multiples of the iden-

tity.

Theorem 2.6.12. Let X be a representation of a finite group G with dimension d > 0

such that

X = m1X1 ⊕ · · · ⊕mkXk

where the Xi are pairwise inequivalent irreducible representations of G with dimension

di. Then A ∈ Com(X) if and only if there exist Mi ∈ Matmi
such that

A =
k⊕
i=1

Mi ⊗ Idi .

Proof. Expanding each scalar multiplication, rewrite

X = (X1 ⊕ . . .⊕X1︸ ︷︷ ︸
m1 times

)⊕ · · · ⊕ (Xk ⊕ . . .⊕Xk︸ ︷︷ ︸
mk times

) = Y1 ⊕ · · · ⊕ Yl

where Yi = X1 for i ∈ [m1], Yi = X2 for i ∈ [m1 + 1,m1 + m2], etc. Suppose

A = ||Aij|| ∈ Com(X) is a block matrix with corresponding blocks matching the sizes

above. Specifically we force Aii to be the same size as Yi for all i. Computing block

matrix products and equating corresponding blocks in the equation AX = XA gives

AijYj = YiAij.

By Lemma 2.5.2, if Yi ≇ Yj, Aij = 0. Since equivalent Yi are grouped together, A

is a block diagonal matrix. So A = A1 ⊕ · · · ⊕ Ak for some matrices A1, . . . , Ak. By
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Lemma 2.5.3, if Yi ∼= Yj, Aij = cijI for some cij ∈ C. So

A1 =


c11Id1 . . . c1m1Id1

...
. . .

...

cm11Id1 . . . cm1m1Id1


is a block diagonal matrix whose blocks are all scalar multiplies of the identity. By

definition of matrix tensor product, we recognize

A1 = ||cij|| ⊗ Id1 . (2.9)

The same argument gives Ai =Mi⊕Idi for someMi ∈ Matmi
which proves the result.

Theorem 2.6.13. Let X be a representation of a finite group G with dimension d > 0

such that

X = m1X1 ⊕ · · · ⊕mkXk

where the Xi are pairwise inequivalent irreducible representations of G with dimension

di. Then, dim(ZCom(X)) = k

Proof. Let A ∈ ZCom(X). By Theorem 2.6.12, there exist Mi ∈ Matmi
such that

A =
k⊕
i=1

Mi ⊗ Idi and B =
k⊕
i=1

Ni ⊗ Idi . (2.10)

Let Ni ∈ Matmi
for all i. Then

B =
k⊕
i=1

Ni ⊗ Idi
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is in Com(X). By the definition of center, AB = BA. By Theorem 2.2.4,

AB =
k⊕
i=1

(Mi ⊗ Idi)(Ni ⊗ Idi).

By Theorem 2.2.8,

AB =
k⊕
i=1

(MiNi ⊗ Idi).

Similarly,

BA =
k⊕
i=1

(NiMi ⊗ Idi).

Equating blocks in the direct sum, MiNi = NiMi for all i. Since this is true for any

matrices Mi, Ni ∈ ZMatmi
, by Proposition 2.6.11, Mi = ciImi

for some ci ∈ C. Thus

A =
k⊕
i=1

ciImi
⊗ Idi =



c1Im1d1 0 . . . 0

0 c2Im2d2
. . .

...

...
. . . . . . 0

0 . . . 0 ckImkdk


. (2.11)

Since each ci is a degree of freedom of the center, dim(ZCom(X)) = k, the number of

ci.

If we have a representation Y of G not equal to a direct sum of irreducible repre-

sentations, the previous theorem still holds. By Theorem 2.3.4, Y = B−1XB for

some B ∈ Matd where X satisfies the hypothesis for the above theorem. We observe

that Com(X) ∼= Com(Y ) by the map A 7→ B−1AB. So the centers of Com(X) and

Com(Y ) are isomorphic as well and specifically, they have the same dimension.

Theorem 2.6.14. Let X1, . . . , Xk be a complete list of pairwise inequivalent repre-

sentations of a group G. Then k is the number of conjugacy classes of G.
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Proof. Let X be the regular representation of G with character χ. By Theorem 2.5.6,

X ∼= d1X1 ⊕ · · · ⊕ dkXk. (2.12)

By Theorem 2.6.13, dim(ZCom(X)) = k. Since the regular representation corresponds

to the module C[G], dim(ZEnd(C[G])) = k. We will define a vector space isomorphism

from G[C] to End(C[G]). Define ϕv to be right multiplication by v. Define ϕ : G[C] 7→

End(C[G]) by ϕ(v) = ϕv. Computing the kernel of ϕ, if ϕv = 0, then evaluating at e

gives v = 0. So ϕ is injective. Let θ ∈ End(C[G]). Let v = θ(e). Then

θ(g) = θ(ge) = gθ(e) = gv = ϕv(g) (2.13)

for all g ∈ G. So θ = ϕv. So ϕ is surjective. Since ϕ(v)ϕ(w) = ϕ(wv), ϕ is an anti-

isomorphism of algebras which induces an anti-isomorphism on the centers of these

algebras. So k = dim(ZC[G]).

Examining the elements of this center, let z = c1g1 + · · · + ckgk ∈ XC[G] where

g1, . . . , gk is a complete list of group elements. By the definition of center, for all

h ∈ G, z = h−1gh, which gives

z = c1h
−1g1h+ · · ·+ ckh

−1gkh. (2.14)

Since h can be any group element, h−1gih takes on all values in the conjugacy class

of gi. So if gi and gj share a conjugacy class, ci = cj. Similarly, if gi and gj do not

share a conjugacy class, ci and cj can vary independently. So we can freely choose

one ci for a representative element gi of each conjugacy class and then the rest of the

ci are forced. Thus dim(ZC[G]) equals the number of conjugacy classes of G.

45



Corollary 2.6.15. Let C(G) be the vector space of class functions for a group G.

Then the set of irreducible characters of G is a basis for C(G).

Proof. The dimension of C(G) is equal to the number of conjugacy classes which by

the previous theorem is equal to the number of irreducible characters of G. Since

Theorem 2.5.4 gives us that the irreducible characters of G are orthonormal, they

must form a basis.

2.7 Character Tables

We can list all of the irreducible characters of a group in a table. This will be called

the character table of the group.

Example 2.7.1. Once again lets revisit the group S3. Since there are three partitions

of 3, by Theorem 2.6.14, there will be three irreducible representations of S3. As it

so happens, we have already found all three irreducible representations of S3: the

trivial representation, the sign representation, and the standard representation. The

character row for the trivial representation is

K111 K21 K3

χ 1 1 1
.

The character row for the sign representation is

K111 K21 K3

χ 1 -1 1
.
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Recall the standard representation X of S3 defined by these six mappings:

X(e) =

 1 0

0 1

 X((12)) =

 −1 −1

0 1


X((13)) =

 1 0

−1 −1

 X((23)) =

 0 1

1 0


X((123)) =

 0 1

−1 −1

 X((132)) =

 −1 −1

1 0


Computing the value of the character for one representative from each conjugacy

class, the character row for the standard representation is

K111 K21 K3

χ 2 0 -1
.

By Theorem 2.5.4, the computation

⟨χ(3), χ(3)⟩ = 1

|S3|
∑
σ∈S3

χ(3)(σ)χ(3)(σ)

=
1

6

(
1(2 · 2) + 3(0 · 0) + 2(−1 · −1)

)
= 1

finally confirms that this representation is in fact irreducible. Labeling these three

irreducible characters χ(1), χ(2) and χ(3) respectively, we form a table with the irre-

ducible character rows. A table like this listing all of the values of the irreducible

characters on the conjugacy classes of a group G is called the character table of G.
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Table 2.1: Character Table of S3

K111 K21 K3

χ(1) 1 1 1

χ(2) 1 -1 1

χ(3) 2 0 -1

Since the number of irreducible characters is equal to the number of conjugacy classes

for any finite group, character tables are always square.

We can verify that the character relations hold for inner products of irreducible char-

acters of S3. We expect

⟨χ(1), χ(1)⟩ = ⟨χ(2), χ(2)⟩ = ⟨χ(3), χ(3)⟩ = 1

and

⟨χ(1), χ(2)⟩ = ⟨χ(1), χ(3)⟩ = ⟨χ(2), χ(3)⟩ = 0.

It is a good exercise to compute all of these and see that the above is true. We include

the computation that

⟨χ(2), χ(3)⟩ = 1

|S3|
∑
σ∈S3

χ(2)(σ)χ(3)(σ)

=
1

6

(
(1(1 · 2) + 3(−1 · 0) + 2(1 · −1)

)
= 0.

We successfully constructed the full character table of S3 because we had already

stumbled across the three irreducible representations of S3. However, at this point

we could not construct the character table for S4. In Chapter 3, we will find the
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irreducible representations of Sn for any positive integer n and in Chapter 4, we will

learn how to find the character rows for these representations, allowing us to construct

the character table of Sn for any positive integer n.
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Chapter 3

IRREDUCIBLE REPRESENTATIONS OF THE SYMMETRIC GROUP

In this chapter, we utilize the combined power of module theory and combinatorial

objects to construct a certain module of Sn associated with each partition of n. We

will prove that these modules correspond to irreducible representations and construct

an explicit basis for them, revealing their dimensions. This will unveil the holy grail

of the symmetric group: a complete list of irreducible representations.

3.1 Tableau and Tabloids

Definition 3.1.1. Given n ∈ N, a Young tableau of shape λ ⊢ n (also called a

λ-tableau) is a filling of the Young diagram for λ with the integers 1 to n.

Definition 3.1.2. Two tableaux t1 and t2 are row equivalent, denoted t1 t2 if they are

of the same shape and there corresponding rows are rearrangements of one another.

Example 3.1.3. If n = 9 and λ = 5, 3, 1,

6 4 2 7 5
9 3 1
8

2 7 4 6 5
3 1 9
8

are examples of Young tableaux. The two tableaux above are row equivalent because

taken as sets their rows are the same.

Proposition 3.1.4. Row equivalence defines an equivalence relation on tableaux.

Definition 3.1.5. The equivalence class of a λ-tableau t,

{t} = {s : s is row equivalent to t},
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is a Young tabloid of shape λ (also called a λ-tabloid).

We use braces around a tableau to denote the corresponding tabloid, not to be con-

fused with set notation. We draw λ-tabloids with thick horizontal lines between the

rows to indicate that ordering within rows does not matter. The tabloid containing

each of the two tableaux in the previous example is

{t} =

6 4 2 7 5
9 3 1
8

.

There is a natural action of Sn on tableaux given by applying the permutation to

each entry. For example if σ = (274)(39), then

σ ·
6 4 2 7 5
9 3 1
8

=

6 2 7 4 5
3 9 1
8

In this case, σ yields an equivalent tableau, because it stabilizes the rows. This action

extends to an action on tabloids by defining σ · {t} = {σ · t} for any tabloid {t}.

Definition 3.1.6. Let λ = λ1, . . . , λk be a partition of n. The Young Subgroup Sλ of

Sn is

Sλ = S{1,...,λ1} × S{λ1+1,...,λ1+λ2} × · · · × S{n−λk+1,...,n}

where SA is the set of permutations of A for any set A.

Note that Sλ ∼= Sλ1 × · · · × Sλk for any λ ⊢ n.

Definition 3.1.7. If a tableaux t has rows R1, . . . , Rk and columns C1, . . . , Cl, the

row stabilizer of t is

Rt = SR1 × · · · × SRk
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and the column stabilizer of t is

Ct = SC1 × · · · × SCl
.

Note that {t} = Rtt for any tableau t.

Example 3.1.8. Consider the tableau

t = 1 2 3
4 5 6 7

.

The column stabilizer is

Ct = {e, (14), (25), (36), (14)(25), (14)(36), (25)(36), (14)(25)(36)}.

Let us find the column stabilizer after applying a permutation. Let σ = (256). Since

σ · t = 1 5 3
4 6 2 7

,

the new column stabilizer is

Cσ·t = {e, (14), (56), (23), (14)(56), (14)(23), (56)(23), (14)(23)(560)}.

Note that Cσ·t could also be obtained by substituting σ(i) in for i in the cycles in Ct.

Specifically,

Cσ·t = σCtσ
−1 (3.1)

The same is true for the row stabilizer.

Proposition 3.1.9. Let t be a λ-tableau and σ ∈ Sn. Then Cσ·t = σCtσ
−1 and

Rσ·t = σRtσ
−1.
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3.2 Specht Modules

In this section we the modules that will correspond to the irreducible representations

of Sn.

Definition 3.2.1. Let t be a Young tableau. The corresponding polytabloid et is

et =
∑
σ∈Ct

sign(σ)
(
σ · {t}

)
,

a formal signed sum.

Example 3.2.2. If

t = 3 1
45 2
,

then

et = sign(e)

(
e · 3 1

45 2

)
+sign((35))

(
(35) · 3 1

45 2

)

+sign((12))

(
(12)· 3 1

45 2

)
+sign((12)(35))

(
(12)(35)· 3 1

45 2

)

= 3 1
45 2

− 5 1
43 2

− 3 2
45 1

+ 5 2
43 1

is the associated polytabloid.

The action of Sn on tableau extends naturally to an action on polytabloids, by ap-

plying σ to each tabloid in the formal sum.

Theorem 3.2.3. Let t be a tableau. For all σ ∈ Sn, σ · et = eσ·t.
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Proof. By Proposition 3.1.9,

eσ·t =
∑
τ∈σ·Ct

sign(τ)
(
τ · {σ · t}

)
=
∑
τ∈Ct

sign(τ)
(
στσ−1 · {σ · t}

)
= σ ·

∑
τ∈·Ct

sign(τ)
(
τ · {t}

)
= σ · et.

Definition 3.2.4. Let λ ⊢ n and let {t1}, . . . , {tk} be a list of all tabloids of shape

λ. The Specht Module Sλ is

Sλ = C{et1 , . . . , etk},

the module generated by all polytabloids of tableaux with shape λ.

We are interested in the irreducible representations of Sn. Let us examine some of

these Specht modules and see which representations they correspond to.

Example 3.2.5. Let λ = n. The Young diagram of λ is a single row with length n.

The only tabloid of shape λ is

{t} = 1 2 ... n ,

because it contains all tableau of shape λ. Since t has a trivial column stabilizer,

Sλ = C
{

1 2 ... n
}
∼= C{1} (3.2)
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corresponds to the trivial representation. In general, Sλ corresponds to the represen-

tation arising from the action of Sn on the basis elements of Sλ. In the above case, for

any σ ∈ Sn, σ · et = et. Since the action is trivial, the corresponding representation

is the trivial representation.

Example 3.2.6. Let us apply this same technique to another Specht module. Let

λ = 1, . . . , 1 be a partition of n. Then every tabloid consists of only one tableau

because the row stabilizer is trivial. So there are n! tabloids of this shape. Since the

column stabilizer of any of them is the whole group Sn,

σ · et = σ ·
∑
τ∈Ct

sign(τ)
(
τ · {t}

)
=
∑
τ∈Sn

sign(τ)
(
στ · {t}

)
=
∑
τ∈Sn

sign(σ−1στ)
(
στ · {t}

)
=
∑
τ∈Sn

sign(σ−1)sign(στ)
(
στ · {t}

)
= sign(σ−1)

∑
στ∈Sn

sign(στ)
(
στ · {t}

)
= sign(σ−1)et

= sign(σ)et

for any σ ∈ Sn and λ-tableau t. So Sλ corresponds to the representation arising from

this action: the sign representation.

3.3 Irreducibility of Specht Modules

We have proven that there is one irreducible representations of Sn for every partition

of Sn and we have constructed the Specht Module for each of these partitions. In this
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section, we will show that the Specht modules correspond to a complete list of the

irreducible representations of Sn.

Lemma 3.3.1. Let s and t be two λ-tableau. Then

∑
σ∈Ct

sign(σ)
(
σ · {s}

)
is either equal to 0 or equal to ±et.

Proof. Case 1: Suppose there exist two entries a and b in the same column of t, but

in the same row of s. Since a and b share a column in t, Ct = {σ(ab) : σ ∈ Ct}. Since

a and b share a row in s, (ab) · {s} = {s}. Since the sign of (ab) is −1,

∑
σ∈Ct

sign(σ)
(
σ · {s}

)
=
∑
σ∈Ct

sign(σ(ab))
(
σ(ab) · {s}

)
= −

∑
σ∈Ct

sign(σ)
(
σ · {s}

)
,

which implies ∑
σ∈Ct

sign(σ)
(
σ · {s}

)
= 0. (3.3)

Case 2: Now suppose any two entries in the same column of t are in different rows of

s. Then there exists another λ-tableau, row-equivalent to s, whose columns are the

same as the columns of t. So there exists τ ∈ Ct such that {s} = τ · {t}. In a similar
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argument to Example 3.2.6, observe that

∑
σ∈Ct

sign(σ)
(
σ · {s}

)
=
∑
σ∈Ct

sign(σ)
(
σ ·
(
τ · {t}

))
=
∑
σ∈Ct

sign(σ)
(
στ · {t}

)
=
∑
σ∈Ct

sign(στ)sign(τ−1)
(
στ · {t}

)
= sign(τ−1)

∑
σ∈Ct

sign(στ)
(
στ · {t}

)
= sign(τ−1)

∑
στ∈Ct

sign(στ)
(
στ · {t}

)
= sign(τ−1)et

= ±et.

Lemma 3.3.2. Let λ ⊢ n. Let V be a nontrivial subspace of Sλ with nonzero v ∈ V .

For any λ-tableau t, ∑
σ∈Ct

sign(σ)
(
σ · v

)
= c · et

for some c ∈ C.

Proof. Since v ∈ Sλ, v can be written as as a linear combination of its basis elements,

v =
∑
i

ci{ti}, (3.4)

where ci ∈ C and the {ti} are λ-tabloids. By the previous lemma, for all i,

∑
σ∈Ct

sign(σ)
(
σ · {ti}

)
= ±et
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or equal to zero. Suppose, without loss of generality, that the previous sum is nonzero

for c1, . . . , cj and is zero for all other ci. It follows that

∑
σ∈Ct

sign(σ)
(
σ · v

)
= ±c1et ± c2et ± · · · ± cjet = cet (3.5)

for some c ∈ C.

Theorem 3.3.3. The Specht Modules correspond to irreducible representations of Sn.

Proof. Let λ ⊢ n and t be a λ-tableau. Let V be a nontrivial subspace of Sλ that is

invariant under the action with nonzero v ∈ V . By the previous lemma,

∑
σ∈Ct

sign(σ)
(
σ · v

)
= c · et

for some c ∈ C. Since V is invariant under the action, σ · v ∈ V for all σ ∈ Ct which

implies ∑
σ∈Ct

sign(σ)
(
σ · v

)
∈ V.

Pairing these two together, c · et ∈ V . Since v ̸= 0, c ̸= 0. So, et ∈ V . Since

et ∈ V for all t, V = Sλ. Thus Sλ contains no non-trivial proper subspaces that are

invariant under the action. So by Theorem 2.6.3, Sλ corresponds to an irreducible

representation of Sn.

Definition 3.3.4. We define Xλ with character χλ to be the irreducible representa-

tion of Sn corresponding to Sλ in the standard basis.

As desired, the Xλ are a complete list of irreducible representations of Sn and the χλ

are a complete list of irreducible characters of Sn.
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3.4 Dimensions of the Irreducible Representations

In this section, we prove that the polytabloids associated with standard tableau form

a basis for the Specht modules. This will reveal that the dimension of a Xλ is equal

to the number of standard tableaux of the correct shape.

Definition 3.4.1. We say that a λ-tableaux t is standard if its rows, read left to

right, and columns, read bottom to top, form increasing sequences.

For example,

t =
7 9
4 6 8
1 2 3 5

is a standard tableau.

Definition 3.4.2. Let {t} and {r} be λ-tabloids. We write {t} < {r} if there exists

an i such that

1. i occurs in a lower row of {t} than of {r}.

2. for all j > i, j is in the same row of {t} and {r}.

For example,
2 4
5 1 7
8 3 6

<
1 5
7 3 2
6 8 4

.

In other words, suppose {s} and {t} are both λ-tabloids where λ ⊢ n. Count down

from n until we reach the first number that occurs in different rows in {s} and {t}.

The tabloid in which this number occurs in a lower row is the smaller tableau. This

defines an ordering on λ-tabloids and extends to an ordering on λ-tableaux.

Lemma 3.4.3. Let t be a standard λ-tableau. If σ ∈ Ct, {σ · t} ≤ {t}

Proof. Assume σ ∈ Ct. If σ = e, {σ · t} = {t}. Suppose σ ̸= e. Let i be the largest

number that is not fixed by σ. Any j > i is fixed by σ and is thus in the same row
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in both {σ · t} and {t}. Since σ(i) is not a fixed point, σ(i) < i. Since σ ∈ Ct and

the columns of t are strictly increasing, σ(i) occurs below i in a column of t. So,

{σ · t} < {t}.

Theorem 3.4.4. The set {et : t is a standard λ-tableau} is linearly independent.

Proof. Let t1 < · · · < tk be a complete ordered list of standard λ-tableaux. Assume

c1et1 + · · ·+cketk = 0 for some ci ∈ C. We will prove that ci = 0 for all i by induction.

Suppose for some i ∈ [k], cj = 0 for all j > i. Then c1et1 + · · ·+ cieti = 0. So

cieti = −(c1et1 + · · ·+ ci−1eti−1
). (3.6)

Consider the tabloid ti. It shows up once in the expansion of eti and shows up no

times in the expansion of any of etl for any l ∈ [i] by the previous lemma because all

the terms in the expansion of etl have the form ±(σ · tl). Equating coefficients of ti

on both sides of Equation 3.6, ci = 0. By induction, c1 = · · · = ck = 0.

To show that the standard tableaux are a spanning set, we will introduce the so-called

straightening algorithm by which we take the polytabloid for any tableau t and express

it as a linear combination of polytabloids of other tableaux that are closer to being

standard. Repeatedly applying this algorithm, we will prove than the polytabloid

for any tableaux can be expressed as a linear combination of the polytabloids for the

standard tableaux.

Definition 3.4.5. Let t be a tableau. Let A be a subset of column i of t and let B

be a subset of column i+ 1 of t. The Garnir element associated with t is

gA,B =
∑
σ∈P

sign(σ)σ
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where P is the set of permutations σ of A ∪ B such that the elements of A ∪ B are

strictly increasing in the columns of σ · t.

Since all permutations in this set P force increasing columns, we have

SA∪B = {σ1σ2σ3 : σ1 ∈ P, σ2 ∈ SA, σ3 ∈ SB} (3.7)

with no repeats, which will allow us to factor a sum over SA∪B.

We use Garnir elements in the straightening algorithm described as follows. Let t be

a tableau. Let t′ be the tableau whose columns are permutations of the columns of t

such that t′ has increasing columns. For example if

t =
2 6
7 3 4
1 8 5

,

then

t′ =
7 8
2 6 5
1 3 4

.

Scan through t′ from left to right, then bottom to top until reaching a cell x such

that the cell immediately right of x is smaller than it. Call this smaller cell y. If

the entire tableau is scanned through with no occurrences of this, then t′ is already

standard and we are done. Let A be the set of cells above x, in the same column as x,

including x. Let B be the set of cells below y, in the same column as y, including y.

In our example, x is the cell containing 6 and y is the cell containing 5. So A = {6, 8}

and B = {4, 5}. So,

gA,B = e− (56) + (456) + (586)− (4586) + (46)(58).
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Lemma 3.4.6. Let t be a tableau. Let A and B be the sets in the straightening

algorithm for t. Then gA,B · et = 0.

Proof. For any τ ∈ Ct, there exist a ∈ A and b ∈ B such that a and b share a row in

τt. Since (ab) ∈ SA∪B,

∑
σ∈SA∪B

sign(σ)
(
σ · et

)
=
∑

σ∈SA∪B

sign(σ(ab))
(
σ(ab) · et

)
=−

∑
σ∈SA∪B

sign(σ)
(
σ ·
(
(ab) · et

))
=−

∑
σ∈SA∪B

sign(σ)
(
σ · et

)

because (ab) · et = et. So the whole sum is zero. We can factor the sum as

0 =
∑

σ∈SA∪B

sign(σ)
(
σ · et

)
=
∑
σ1∈P

∑
σ2∈SA

∑
σ3∈SB

sign(σ1σ2σ3)
(
σ1σ2σ3 · et

)
=
∑
σ1∈P

sign(σ1)σ1 ·
∑
σ2∈SA

∑
σ3∈SB

sign(σ2σ3)
(
σ2σ3 · et

)
=gA,B

∑
σ∈SA×SB

sign(σ)
(
σ · et

)
.

But for any σ ∈ Ct, σ · et = sign(σ)et which implies sign(σ)
(
σ · et

)
= et. Since

SA × SB ⊆ Ct,

0 = gA,B
∑

σ∈SA×SB

et = |SA × SB|gA,B · et

by substituting. Dividing by |SA × SB|,

gA,B · et = 0.
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Theorem 3.4.7. The set {et : t is a standard λ-tableau} spans Sλ.

Proof. Let t be a λ-tableau. Suppose the Garnir element associated with t is gA,B =

e± σ1 ± · · · ± σk. By the previous lemma, 0 = gA,B · et = et ± σ1 · et ± · · · ± σk ± et.

So we can express et as

et =
k∑
i=1

±σi · et, (3.8)

a linear combination of other polytabloids. This completes the straightening algo-

rithm. By defining a partial ordering on tableaux, it can be formalized that the

polytabloids in this linear combination are closer to being standard. See page 73 of

[7] for the full details. We can the repeatedly apply the straightening algorithm until

we have expressed et as a linear combination of polytabloids associated with standard

tableaux, completing the proof by induction.

Theorem 3.4.8. The set {et : t is a standard λ-tableau} is basis for Sλ and dim(Sλ) =

dim(Xλ) = fλ where fλ denotes the number of standard tableaux of shape λ.

Proof. Since the set is linearly independent and spans, it forms a basis. The dimension

is the number of basis elements which is equal to the number of standard λ-tableaux.

Corollary 3.4.9. We have

n! =
∑
λ⊢n

(fλ)2.

Proof. This corollary is a dimension counting argument that is proven by combining

Theorem 2.5.6, Theorem 3.4.8, and Theorem 2.2.6.

Interestingly enough, this corollary could be interpreted as evidencing a bijection

between permutations as counted by the left hand side and pairs of standard tableaux
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as counted by the right. In Section 5.3, we include an additional bijective proof of a

similar dimension counting corollary that is a generalization of this one.
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Chapter 4

SYMMETRIC FUNCTIONS AND THE MURNAGHAN-NAKAYAMA RULE

In this chapter, we develop the theory of symmetric functions and introduce the

Frobenius Map revealing the duality of class functions and symmetric functions. The

realm of symmetric functions, while fascinating, is not the main focus of this thesis.

Most of this chapter is a summary of Dr. Anthony Mendes’s writing, particularly in

[4], and we omit some proofs for brevity.

The key relevant result is the Murnaghan-Nakayama Rule which will give a com-

plete combinatorial interpretation of the irreducible characters of Sn and allow us to

construct the character table of Sn for any positive integer n.

4.1 Standard Bases for Symmetric Functions

Definition 4.1.1. A polynomial f in the indeterminates x1, . . . , xN is symmetric if

for all σ ∈ SN , f(x1, . . . , xN) = f(xσ(1) . . . xσ(N)).

We write Λn(x1, . . . , xN) to denote the set of symmetric polynomials with each mono-

mial having total degree n. In practice, we always work with N >> n. For example,

Λ2(x1, x2, x3) contains the element 2x1x2 + 2x1x3 + 2x2x3 − x21 − x22 − x23.

Definition 4.1.2. A function P in the indeterminates x1, x2, . . . is symmetric if for

any N , setting xN+1 = xN+2 = · · · = 0, makes P a symmetric polynomial in the

indeterminates x1, . . . , xN .
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We write Λn = Λn(x1, x2, . . . ) to denote the set of symmetric functions with each

monomial having total degree n.

Proposition 4.1.3. The set Λn is a vector space.

Since Λn(x1, . . . , xN) is what results by setting xN+1 = xN+2 = · · · = 0, Λn(x1, . . . , xN)

inherits properties from Λn, like also being a vector space.

Definition 4.1.4. For a partition λ, we define the monomial symmetric function mλ

to be the sum over all monomials with exponents that are rearrangements of λ.

Theorem 4.1.5. The set {mλ : λ ⊢ n} is a basis for Λn.

Proof. No two different elements of this set share a monomial. Equating coefficients

of monomials in
∑

λ⊢n cλmλ, where cλ ∈ C forces cλ = 0 for all λ.

Consider f ∈ Λn. Let cλ be the coefficient of xλ11 · · · · · xλkk for any λ = λ1, . . . , λk ⊢ n.

Symmetry forces the coefficient of x
σ(λ1)
1 · · · · · xσ(λk)k to also be cλ for any σ ∈ Sn.

Since all terms have this form, f =
∑

λ⊢n cλmλ.

We will define four other basis for Λn using weighted tableau, all also indexed by

partitions. We loosen the definition of tableau to just be any filling of the Young

diagram for λ with positive integers.

Definition 4.1.6. If a tableau t has values t1, . . . , tn in its n cells, then the weight of

t is wt(t) = xt1 · · · · · xtn .

Definition 4.1.7. A λ-tableau t is column-strict if every row of t forms a weakly

increasing sequence from left to right and every column of t forms a strictly increasing

sequence from bottom to top.

66



The object

t =

1 1 2 2 5
2 3 3 4
4 5

is an example of a column strict tableaux of shape λ = 5 4 2.

Definition 4.1.8. For a partition λ, we define the power sum symmetric function pλ

to be
∑

wt(t) where the sum is over all λ-tableaux t with constant rows.

Definition 4.1.9. For a partition λ, we define the homogeneous symmetric function

hλ to be
∑

wt(t) where the sum is over all λ-tableaux t with weakly increasing rows.

Definition 4.1.10. For a partition λ, we define the elementary symmetric function

eλ to be
∑

wt(t) where the sum is over all λ-tableaux t with strictly increasing rows.

Definition 4.1.11. For a partition λ, we define the Schur symmetric function sλ to

be
∑

wt(t) where the sum is over all column strict λ-tableaux t.

We verify that these four are all in fact symmetric functions.

Theorem 4.1.12. For any λ ⊢ n, we have pλ, hλ, eλ, sλ ∈ Λn.

Proof. Since every permutation can be written as a product of adjacent transpositions,

it suffices to show that pλ, hλ, eλ, sλ are unchanged when xi and xj are switched where

j = i + 1. So on each of row constant, non-decreasing, row increasing, and column

strict tableaux we need an involution that switches the number of i’s and j’s in the

tableau.

For row constant tableaux, replacing all i’s with j and all j’s with i does the trick.

For non-decreasing tableaux and row-increasing tableaux, all occurrences of i in a

row, will be immediately followed by all occurrences of j in the same row. For each
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row, replace this string of entries with i’s followed by j’s, switching the number of i’s

and j’s.

For column strict tableau, the occurrences of i and j in a column strict tableau must

look like:
i i i j j j j

i i i i j j j

i i i j j

In the section of each row that has no i’s or j’s above or below, switch the number

of i’s and j’s. In our example,

i j j j j j j

i i i i j j j

i i i i j

would be the i’s and j’s in the new tableaux. This new tableau is also column strict

because j = i+ 1.

Theorem 4.1.13. The sets {pλ : λ ⊢ n}, {hλ : λ ⊢ n}, {eλ : λ ⊢ n}, and {sλ : λ ⊢ n}

are each a basis for Λn.

Proofs that each of these sets is actually a basis can be found in chapter 2 of [6].

4.2 Rim-Hook Tableaux

In this section we introduce the object that will ultimately appear in our combinatorial

interpretation of the irreducible characters of Sn.

Definition 4.2.1. Let λ be a partition of n. A rim-hook of length k is a sequence of

adjacent cells x1, . . . , xk in the partition diagram of λ that satisfies three conditions.

For any i = 1, . . . , k − 1,

1. x1 has no empty cell directly above it.
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2. if there is a cell in the Young diagram directly to the right of xi, it is xi+1.

3. if there is no cell directly to the right of xi, xi+1 is directly below.

Definition 4.2.2. The sign of a rim-hook h is (−1)m where m is the number of cells

in h such that the cell directly below them is also in h.

The rim-hook depicted as

has sign (−1)2 = 1.

Definition 4.2.3. A composition of n is an ordered list of n numbers who sum to n.

Definition 4.2.4. Let λ ⊢ n and µ = µ1, . . . , µk be a composition of n. A rim-hook

tableau of shape λ and content µ is a filling of the Young diagram for λ with rim-hooks

labeled 1, . . . , k with lengths µ1, . . . , µk respectively. We require that for any i, the

cells covered by rim-hooks 1, . . . , i form a valid partition shape.

When constructing a rim-hook tableau, we think of placing the rim-hooks in reverse

order. We first place a rim-hook of length µk labeled k along the upper right boundary.

Then treating the remaining empty cells as a new smaller Young diagram, place a

rim-hook of length µk−1 labeled k − 1 into this new shape, etc. We write the labels

in the head of each rim-hook—the upper left cell. If n = 22, λ = 7 6 4 4 1, and

µ = 3 4 1 5 3 6, then

t =
6

5

4

3

21
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is an example of a rim-hook tableau of shape λ and content µ.

Definition 4.2.5. The sign of a rim-hook tableau is the product of the signs of each

rim-hook it contains.

In our example, the rim-hooks labeled 1, 2, 3, 4, 5, 6 have signs −1,−1, 1, 1, 1, 1 re-

spectively. Multiplying these together, we see that sign(t) = 1. The sign of a rim-

hook tableau can also be thought of as −1 to the total number of vertical segments

in rim-hooks. For example, t has a total of 6 vertical segments and thus has sign

sign(t) = (−1)6 = 1.

We write RHλ(µ) to denote the set of all rim hook tableaux of shape λ and content

µ. For example if λ = 3 3 1 and µ = 1 2 3 1, RHλ(µ) would be the set

RHλ(µ) =

{
1 2

3

4

,
1 2

3

4 ,
1

2

3 4

}
. (4.1)

Theorem 4.2.6. Let λ be a partition of n and µ be a composition of n. If ν is a

rearrangement of µ, then

∑
t∈RHλ(µ)

sign(t) =
∑

t∈RHλ(ν)

sign(t).

For a proof of this theorem, see pages 136 through 140 of [5].

Definition 4.2.7. For λ, µ ⊢ n, we define

χλµ =
∑

t∈RHλ(ν)

sign(t)

where ν is some ordering of µ into a composition.

We know this is well defined by the previous theorem.
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4.3 Relationships Between Bases

Since we have five different bases for the space of symmetric functions, we should be

able to convert from one to another. We can prove identities relating the different

bases of Λn. We will prove a relationship between the power sum and Schur symmetric

functions.

In the proof of following theorem it will be convenient to arrange cycles of a permu-

tation in such a way that the parentheses convey no meaningful information. In this

way we would be able to represent a permutation sorted by its cycles with a single

string of numbers.

We can write a permutation in cycle notation with the largest element first in each

cycle and arrange the cycles in order of increasing largest element. Consider the

permutation σ = (163)(2)(45) from section 1.1. We could reorder and rearrange the

cycles in this way to rewrite the permutation as

σ = (2)(54)(631),

which we call the the implicit cycle notation for the permutation σ. If we were given

just the string of numbers

2 5 4 6 3 1,

and were told that it corresponded to the implicit cycle notation for σ, we could follow

an algorithm to recover where the parenthesis must have been. Scanning from left to

right, remember the largest number. Each time we see a new largest number, it will

be the start of a new cycle.
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The implicit cycle notation is not exactly how we will arrange our cycles in the

upcoming proof, but it will be helpful to be familiar with it.

Theorem 4.3.1. For any λ ⊢ n,

n!sλ =
∑
σ∈Sn

pµ(σ)χ
λ
µ(σ)

where µ(σ) denotes the cycle type of σ ∈ Sn.

Proof. Our strategy will be to first construct a signed and weighted object that gives

a combinatorial interpretation of the right hand side. We will then define a sign

reversing, weight preserving involution on these objects and prove that the fixed

points are in a weight preserving bijective correspondence with pairs of permutations

and column strict tableaux, as counted by the left hand side. Once we do this, the

result will be proven.

Choose a permutation σ ∈ Sn. As an example consider n = 22, λ = 7 6 4 4 1 and

σ = (1 4 19 20 7 18)(2 8 15)(3 21 14 22 12)(5 6 13 11)(9 16 17)(10).

Reorder each cycle of σ to begin with its largest element. In our example,

σ = (20 7 18 1 4 19)(15 2 8)(22 12 3 21 14)(13 11 5 6)(17 9 16)(10).

Since pµ(σ) is the weighted sum over all row constant tableaux of shape µ(σ), we

account for this term by assigning the constant value of the row as a label to each of

the cycles of σ. For cycles of the same length, we establish the convention that the

cycle containing the smaller element will correspond to the lower row in the tableau.

We arrange the cycles first in order of increasing label and then by increasing largest

element, similar to the arrangement in implicit cycle notation. In our example, if our
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row constant tableau was

r =

2 2 2 2 2 2
5 5 5 5 5
3 3 3 3
2 2 2
3 3 3
1

,

then the pair of σ and r would correspond to

(10)︸︷︷︸
1

(15 2 8)︸ ︷︷ ︸
2

(20 7 18 1 4 19)︸ ︷︷ ︸
2

(13 11 5 6)︸ ︷︷ ︸
3

(17 9 16)︸ ︷︷ ︸
3

(22 12 3 21 14)︸ ︷︷ ︸
5

.

We can entirely recover our row constant tableaux by filling each row with the label

on its cycle.

Choose the ordering on µ(σ) by taking the lengths of each cycle of σ as arranged

above. In our example,

µ(σ) = 1 3 6 4 3 5.

With this choice, we will be able to insert the cycles into the rim-hooks in a canonical

way. Lastly, we combine σ and r with some t ∈ RHλ(µ(σ)). We write the ith cycle

of σ inside the cells of the ith rim-hook of t. We do this in such a way that reading

from upper left to bottom right within a rim-hook is the arrangement of the cycle as

above. We write the corresponding label in the upper left of the cell containing the

head of the rim-hook.

Suppose in the same example,

t =

1

2 3

44

5 6

.
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Then the fully combined object after inserting the labeled permutation is

1
10

2
15 2

8

2
20

7 18 1 4 19

3
13

11

5 6

3
17 9

16

5
22

12

3 21 14

.

Notice that we can omit the numbers in the head of the rim-hooks because the order

is implicit from the permutation inside the rim-hooks. The sign of these objects is

defined to be the sign of the underlying rim-hook tableaux and the weight is defined

to be the weight of the tableau if the rim-hooks and labels are ignored. Let T be the

set of all objects that can be constructed in this way. Then the left hand side is given

by
∑

t∈T sign(t)wt(t).

We will now define a sign reversing, weight preserving involution ϕ on T as follows.

Consider and object t ∈ T . Scan from left to in each row, starting at the bottom row

and working to the top row. Call the current cell x and the cell immediately above

(if it exists) y. Stop if we reach one of these two cases:

• Case I: The cells x and y are in the same rim-hook.

• Case II: The labels of the rim-hooks containing x and y match and y is the last

cell in a rim-hook.

If we scan through every cell and never end up in Case I or Case II, we define ϕ(t) = t.

Case I: In Case I, split the rim-hook containing x and y by removing the vertical

connection between x and y. Then consider the set of cells that appear in the same

row as x, including x, whose label matches the label of x, whose value is less than the

value in the head of the rim-hook containing x. The label of a cell refers to the label
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of the rim-hook in which they were contained. Call the cells in this set x1, . . . , xk.

Remove any rim-hooks on this set.

Now we will add back in rim-hooks in the following way. Run through values of i

ranging from 1 to k applying the following rules. If i = 1, form a new rim-hook in

cell xi. If i > 1, find the value in the first cell of the rim-hook containing xi−1. If the

value in xi is smaller, add xi to this rim-hook. Otherwise form a new rim-hook in cell

xi. All new rim-hooks should be labeled the same as the rim-hook containing x was

originally. In other words, cells keep their labels.

For example, consider applying ϕ to

t =

7
14 1

4
15

5 3 8

6 9 13 11
4
17

4
7 4

2
12

2

2
10

1
16

.

Scanning from left to right and bottom to top, we arrive first at a Case I. The cell

containing 6 shares a rim-hook with the cell directly above it. We remove the vertical

segment connecting them. We identify the set in the row with the same labels whose

value is less than 15 to be the cells containing 7, 4, 6, 9, 13, and 11. Removing the

rim-hooks yields

7
14 1

4
15

5 3 8

4
176 9 13 117 4

2
12

2

2
10

1
16

.

Now we add rim-hooks back in. The 7 starts a new rim-hook. Since 4 and 6 are both

less than 7, they are attached to this same rim-hook. Continuing to move to the right

through this row, 9 is the first number we hit that is larger than 7. So we start a new

rim-hook. Since 13 is bigger than 9, it again starts a new rim-hook. Since 11 is less
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than 13, it is attached to the same rim-hook. Thus

ϕ(t) =

7
14 1

4
15

5 3 8

4
17

4
7 4 6

4
9

4
13 11

2
12

2

2
10

1
16

(4.2)

is the resulting object.

Case II: In case II, let K be the set of cells in the same row as x, with the same

label as x, whose value is less than the head of the rim-hook containing y. Remove

all rim-hooks on K. Extend the rim-hook containing y to x and any cells to the right

in K. Then on the rest of K, add back in rim-hooks in the same way as was done in

Case I.

As an example, lets again apply ϕ to the object ϕ(t) from before. Scanning from left

to right and bottom to top, we arrive first at a Case II in the cell containing 6. It has

a label of 4 as does the cell above it. Notice that this is the exact same cell for which

we previously had a Case I. We identify the set K to be the same as before: the cells

containing 7, 4, 6, 9, 13, and 11. After removing the rim-hooks, the tableau

7
14 1

4
15

5 3 8

4
176 9 13 117 4

2
12

2

2
10

1
16

is the same in-between state of our object. Extending down and right, the tableau

7
14 1

4
15

5 3 8

6 9 13 11
4
177 4

2
12

2

2
10

1
16
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leaves just the final rim-hooks to be inserted in the remaining cells. Since 4 is less

than 7, we insert one rim-hook connecting them resulting in

ϕ(ϕ(T )) =

7
14 1

4
15

5 3 8

6 9 13 11
4
17

4
7 4

2
12

2

2
10

1
16

= t. (4.3)

Suppose t is an object in Case I when applying ϕ. Then in ϕ(t), above the same cell

as the Case I was found for t, there will be the end of a rim-hook that has the correct

label. Also in ϕ(t) we cannot have any occurrences of Case I in the cells to the left

that were in the modified set because they are in flat rim-hooks. We also cannot have

any Case II in these cells, because t would have then been in Case II in the first place.

We also cannot have any cells in Case I or Case II prior these because they remained

unchanged when applying ϕ. So if we apply ϕ to ϕ(t), the first cell we reach that falls

into one of the two cases will be the same cell as before and it will now fall into case

II instead. As exemplified above, when ϕ acts in the opposite case on the same cell

like this, it is its own inverse.

Now instead suppose t is an object in Case II when applying ϕ. Then in ϕ(t), there

will be a vertical rim-hook segment in the same cell as the Case II was found for t.

We cannot have any occurrences of either case prior to this for the same reasoning

as before. So if we apply ϕ to ϕ(t), the first cell we reach that falls into one of the

two cases will be the same cell as before and it will now fall into Case I instead. So

in any case, ϕ is its own inverse. Thus, the map ϕ is an involution.

Since we never change the values in the cells, ϕ is weight preserving. When applying

ϕ, the number of vertical segments in the underlying rim-hook tableau decreases by

one in Case I, and increases by one in Case II. Since ϕ always changes the number
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of vertical segments by exactly one and the sign of an object is −1 to the number of

these vertical segments, ϕ is sign reversing.

If t is a fixed point of ϕ, then t has no occurrences of Case I or Case II in any cells.

So t has no vertical segments anywhere. So sign(t) = 1. Since ϕ is a sign reversing

involution, ∑
σ∈Sn

|Cσ|χλ(σ) =
∑
t∈T

sign(t) = |{t ∈ T : ϕ(t) = t}| (4.4)

because the sign of all the fixed points is 1. Fixed points also have no occurrences of

a cell below the end of a rim-hook that shares a label. For example,

t =

8
10 2 5

7
8 1

4
6

4
3

2
12 7 4 11

5
3

is a fixed point of ϕ.

Consider all fixed points of certain weight. We will now show that the set of fixed

points with this weight is in bijective correspondence with the set of pairs (σ, r) where

σ ∈ Sn and r is a column strict tableau with the correct weight. Let t be a fixed point

of ϕ. Read of the values in the cells of t from left to right then top to bottom, like a

book, as a permutation σ in one line notation. Remove the values in the cells from t

and fill each cell with label on its rim-hook. Then remove all rim-hooks, resulting in

a column-strict tableau r. For example, the fixed point above would correspond to

the pair (σ, r) where

σ = 10 2 5 3 6 8 1 12 7 4 11 3

and

r =

2 2 2 2 3
4 4 7 7
8 8 8

.
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Originally, in choosing the order in which to insert our rim-hooks, we sorted first by

increasing label. This ensures that the tableau r will have weakly increasing values in

the rows and columns. Since t is a fixed point, we have no occurrences of a cell with

a cell above it with the same label that is the end of a rim-hook. Suppose cell x in t

has a cell y above and they share label l, but y is not the end of a rim-hook. Look

down the row at the cell at the end of the rim-hook containing y. The cell below this

must also have label l and is thus an occurrence of Case II in t, a contradiction. So

r must have strictly increasing columns. The entries in r are exactly the same as the

letters of the word c they came from. Thus r is a column strict tableau of the correct

weight.

We can verify that this is a bijective correspondence by defining the inverse map

from pairs (σ, r) to fixed points of ϕ. Insert the one-line notation expression for σ

into the cells of r from left to right and top to bottom. Now there will be both a

value and a label in each cell. Within each section of each row that has constant

label, add rim-hooks in the unique way that has the largest element at the start of

each rim-hook and has rim-hooks ordered by increasing largest element, just like we

did with cycles of permutations in implicit cycle notation. Now every rim-hook will

be labeled redundantly with the same label occurring in each cell. Instead, just label

each rim-hook once in the upper left corner with that constant value. We can verify

with the same example that applying this reverse algorithm to the pair (σ, r) recovers

t. Since this reverse algorithm is a unique construction, we have a bijection.

Equating the cardinalities of these two sets, the number of fixed points of a certain

weight is equal to the number of pairs of permutations and column strict tableau of

the same weight. Summing over all possible weights, the result is proven.
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In a similar manner, interpreting identities combinatorially, other relationships be-

tween symmetric functions can be proven.

4.4 The Frobenius Map

Definition 4.4.1. Let C(Sn) be the vector space of class functions for the symmetric

group and let Kλ be the conjugacy class of Sn associated with λ. Let 1λ be the class

function whose value is one on permutations with cycle type λ and is zero otherwise.

The Frobenius Map F : Λn 7→ C(Sn) is the linear transformation defined by

F (pλ/zλ) = 1λ

where zλ = n!/|Kλ|.

Since {1λ : λ ⊢ n} is a basis for C(Sn) and {pλ/zλ : λ ⊢ n} is a basis for Λn, the

Frobenius map is invertible.

As we saw in Theorem 2.6.15, the set of irreducible characters of Sn, which we now

know to be {χλ : λ ⊢ n}, is also a basis for C(Sn). So there exists a basis for Λ whose

image under the Frobenius Map is this set. Theorem 4.4.2 reveals that this is the

basis {sλ : λ ⊢ n}.

Theorem 4.4.2. We have

F (sλ) = χλ.

The proof of Theorem 4.4.2 relies on symmetric function identities that can be proven

combinatorially, in a similar manner to Theorem 4.3.1. For the full proof, see page

58 of [4].
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4.5 Character Tables of the Symmetric Group

Theorem 4.5.1 (Murnaghan-Nakayama). Let µ be a composition of n. If σ is in the

conjugacy class associated with the partition corresponding to µ, then

χλ(σ) = χλµ(σ)

where µ(σ) is the cycle type of σ.

Proof. Theorem 4.3.1 can be restated as

n!sλ =
∑
µ⊢n

|Kµ|pµχλµ (4.5)

where Kµ is the conjugacy class associated with µ. Dividing by n!,

sλ =
∑
µ⊢n

χλµ
pµ
zµ

because |Kµ|/n! = zµ Applying the Frobenius map,

χλ =
∑
µ⊢n

χλµ1µ

since F (sλ) = χλ and F (pµ/zµ) = 1λ. Evaluating both sides at a particular σ ∈ Sn

proves the result because 1µ(σ) zeros out all terms in the sum except the term where

µ is the cycle type of σ.

This theorem allows us to find all irreducible characters of Sn by counting signed

sums of rim-hook tableaux. In the character table for Sn, where columns correspond

to conjugacy classes and rows correspond to irreducible representations, the row λ,
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column µ entry is given by the signed sum of all rim-hook tableaux of shape λ and

content µ (once we fix an ordering of µ).

Example 4.5.2. Let us use this rule to construct the character table for S4. The five

partitions of 4 are 4, 31, 22, 211, 1111. We observed that the irreducible characters

χ(4) and χ(1111) are associated with the trivial and sign representations respectively,

which we already know the characters for. The reader can verify that the characters

we would get by counting rim-hook tableaux agrees with these.

Consider λ = 31. Let us compute the irreducible character χλ by counting rim-hook

tableaux of shape λ and content µ for each µ ⊢ n. We will assume µ as a composition

is ordered in descending order.

For µ = 1111, our tableaux

1 2 3

4
,

1 2 4

3
, and

1 3 4

2

all have sign 1. So χλµ = 1 + 1 + 1 = 3.

For µ = 211, our tableaux

1 2

3
,

1 3

2
, and

1

2 3

have sign 1, 1, and -1 respectively. So χλµ = 1 + 1− 1 = 1.

For µ = 22, we have one tableau,

1

2
,

with sign -1. So χλµ = −1.
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For µ = 31, our tableaux

1

2
and

1

2

have sign 1 and -1 respectively. So χλµ = 1− 1 = 0.

For µ = 4, we have one tableau,

1
,

with sign -1. So χλµ = −1.

Inserting the character row 3, 1,−1, 0,−1 into the table along with our known char-

acters for the trivial and sign representation, we have:

K1111 K211 K22 K31 K4

χ(4) 1 1 1 1 1

χ(31) 3 1 -1 0 -1

χ(22)

χ(211)

χ(1111) 1 -1 1 1 -1

We can use the same counting strategy with λ = 22 and λ = 211, to fill out the

remaining two rows, giving us the completed character table of S4.

Table 4.1: Character Table of S4

K1111 K211 K22 K31 K4

χ(4) 1 1 1 1 1

χ(31) 3 1 -1 0 -1

χ(22) 2 0 2 -1 0

χ(211) 3 -1 -1 0 1

χ(1111) 1 -1 1 1 -1
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And of course, we can now compute the character table of Sn of any n. The tables

of S5 and S6 are included below.

Table 4.2: Character Table of S5

K11111 K2111 K221 K311 K32 K41 K5

χ(5) 1 1 1 1 1 1 1

χ(41) 4 2 0 1 -1 0 -1

χ(32) 5 1 1 -1 1 -1 0

χ(311) 6 0 -2 0 0 0 1

χ(221) 5 -1 1 -1 -1 1 0

χ(2111) 4 -2 0 1 1 0 -1

χ(11111) 1 -1 1 1 -1 -1 1

Table 4.3: Character Table of S6

K111111 K21111 K2211 K222 K3111 K321 K33 K411 K42 K51 K6

χ(6) 1 1 1 1 1 1 1 1 1 1 1

χ(51) 5 3 1 -1 2 0 -1 1 -1 0 -1

χ(42) 9 3 1 3 0 0 0 -1 1 -1 0

χ(411) 10 2 -2 -2 1 -1 1 0 0 0 1

χ(33) 5 1 1 -3 -1 1 2 -1 -1 0 0

χ(321) 16 0 0 0 -2 0 -2 0 0 1 0

χ(3111) 10 -2 -2 2 1 1 1 0 0 0 -1

χ(222) 5 -1 1 3 -1 -1 2 1 -1 0 0

χ(2211) 9 -3 1 -3 0 0 0 1 1 -1 0

χ(21111) 5 -3 1 1 2 0 -1 -1 -1 0 1

χ(111111) 1 -1 1 -1 1 -1 1 -1 1 1 -1
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Chapter 5

REPRESENTATIONS FROM AN ACTION ON WORDS

We have finally laid sufficient groundwork to enable our exploration of new represen-

tations. In this chapter, we turn our attention to specific representations of Sn arising

from its action on words.

We first define the action and construct the representations. Next we provide a com-

plete combinatorial interpretation of the irreducible decompositions. Then, we explore

generalizations stemming from restricting the action to orbits. Finally, we examine

a dimension counting corollary and introduce an algorithm that can alternatively be

used to directly prove this and other similar corollaries.

5.1 A Combinatorial Interpretation

Let A be a finite multi-set with a complete ordering on its elements. Let C be the set

of words of length n whose letters come from the alphabet A. For example, if n = 3

and A = {1, 1, 2, 2, 4}, then

C = {112, 114, 121, 122, 124, 141, 142, 211, 212, 214, 221, 224, 241, 242, 411, 412, 421, 422}.

We define the action of Sn on C by

σ · c = cσ(1) . . . cσ(n) (5.1)

85



for σ ∈ Sn where c = c1 . . . cn ∈ C, permuting the letters in the word. Throughout

this section, let X be the representation of Sn with character χ arising from this

action.

We write CSλ(A) to denote the set of all column strict tableaux of shape λ whose

entries come from the multiset A. For example if A = {1, 1, 2, 3} and λ = 2, 1,

CSλ(A) would be the set

CSλ(A) =

{
1 1
2 ,

1 1
3 ,

1 2
3 ,

1 3
2

}
. (5.2)

Notice that

2 2
3 /∈ CSλ(A)

because even though this is a valid column strict tableau, there is only a single 2

available in the multiset A.

Theorem 5.1.1. Let λ ⊢ n. If |A| = n, the number of copies of Xλ in the irreducible

decomposition of X is equal to |CSλ(A)|.

Proof. The number of copies of Xλ in X is given by the inner product

⟨χ, χλ⟩ = 1

|Sn|
∑
σ∈Sn

χ(σ)χλ(σ) =
1

n!

∑
σ∈Sn

|Cσ|χλ(σ) (5.3)

where Cσ denotes the fixed point set of σ. By Theorem 4.5.1, χλ(σ) is the signed

sum of rim-hook tableaux of shape λ and content cycle type of σ.

We want to show that this inner product is equal to |CSλ(A)|. Multiplying by n!,

this is equivalent to proving that

∑
σ∈Sn

|Cσ|χλµ(σ) = n!|CSλ(A)|. (5.4)
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By Theorem 4.3.1, ∑
σ∈Sn

pµ(σ)χ
λ
µ(σ) = n!sλ. (5.5)

Let a1, . . . , an be the elements of A. The coefficient of xa1 · · ·xan in sλ is equal to

|CSλ(A)|. So if we can show that the coefficient of xa1 · · ·xan in pµ(σ) is equal to

|Cσ|, equating coefficients of xa1 · · · xan and substituting in Equation 5.4 will prove

the result.

The coefficient of xa1 · · ·xan in pµ(σ) is the number of ways to arrangeA into a tableaux

of shape µ(σ) with constant rows. For a given such object, associate each row of these

tableaux with a cycle of σ of the correct length, breaking ties by associating the lower

row with the cycle containing the smaller element. Create a word by setting the ith

letter in the word be the constant value on the row associated with the cycle containing

i. For example if n = 9, A = {1, 1, 2, 2, 2, 2, 2, 4, 4} and σ = (15)(2783)(46), the object

2 2 2 2
4 4
1 1
2

would correspond to the word 422141222. This is a bijection to the set of ways to

arrange A into a word that is fixed under the action of σ. So the coefficient of

xa1 · · ·xan in pµ(σ) is equal to |Cσ|.

5.2 Generalizations from Restricting the Action to an Orbit

Theorem 5.1.1 can be generalized in multiple ways. To see how, we will develop

the theory of representations arising from actions a little further with an additional

theorem.
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Theorem 5.2.1. Let X be a representation arising from the action of a group G on

a set C. If C has orbits O1, . . . , Ok, then

X = X1 ⊕ · · · ⊕Xk

where Xi is the representation of G arising from the action of G restricted to the orbit

Oi.

Proof. Suppose the O1, . . . , Ok is a complete list of orbits of C. In the construction of

X, we fix an ordering of C. Choose this ordering such that elements of Oi occur before

elements of Oj for all i < j. Recall that for any σ ∈ Sn, the column corresponding

to some c ∈ C contains a single one occurring in row σ(c) and zeros everywhere else.

Since σ(c) shares an orbit with c for any c ∈ C, the only ones in the columns associated

with a given orbit occur in the same rows. So the matrix X(σ) takes a block diagonal

form, with each block corresponding to the action of Sn on an orbit.

Now we can state a stronger version of Theorem 5.1.1 without the requirement that

|A| = n. Let X, A, and C be as described in the previous section.

Theorem 5.2.2. For λ ⊢ n, the number of copies of Xλ in the irreducible decompo-

sition of X is equal to |CSλ(A)|.

Proof. Let A1, . . . , Ak be a complete list of the subsets of A of size n. Let Ci be the

set of all words from Ai. Observe that C is the disjoint union of the Ci and that

the Ci are exactly the orbits of the action. If Xi is the representation arising from

the restriction of the action to Ci, then by Theorem 5.1.1, the number of copies of

Xλ in Xi is |CSλ(Ai)|. So by Theorem 5.2.1 the number of copies of Xλ in X is∑k
i=1 |CSλ(Ai)| which equals |CSλ(A)|.
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Corollary 5.2.3. We have

|C| =
∑
λ⊢n

fλ|CSλ(A)|

where fλ is the number of standard tableaux of shape λ.

Proof. We know the dim(X) = |C|, but by Theorem 2.2.6, dim(X) is also equal to

the sum of the dimensions of the Xλ times their multiplicities. By Theorem 3.4.8,

the dimension of each Xλ is fλ and by Theorem 5.2.2, the number of copies of each

Xλ is CSλ(A).

Example 5.2.4. As an example to demonstrate Theorem 5.2.2, suppose our alphabet

is A = {1, 1, 2, 3, 4, 4} and n = 5. Let C be the set of all words of length 5 coming

from A and let X be the representation arising from the action of S5 on C with

character χ. We know we can represent X as

X ∼=
⊕
λ⊢5

mλX
λ. (5.6)

Theorem 5.2.2 claims that mλ = CSλ(A). Let us verify this for a specific λ ⊢ 5.

Consider the partition λ = 32 ⊢ 5. On one hand, we know we can find m32 by

computing inner products. From the character table of S5,

K11111 K2111 K221 K311 K32 K41 K5

χ(32) 5 1 1 -1 1 -1 0

is the character row for χ(32). To find the character row, of χ, we count the fixed

points C for one representative permutation from each conjugacy class. All words are

fixed by the permutation e. So the the number of fixed points of e is |C|, which in this

case equals 180. The permutation (12) fixes all words that have the first two entries
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matching. So the number of fixed points of (12) is 24. The permutation (12)(34) has

only 4 fixed points:

11442, 11443, 44112, 44113,

because we require the first two entries to match and the third and fourth entries to

match. Any permutation with a cycle of length greater than 2 has no fixed points

in this example because we have at most 2 of any character in A. Interpreting these

numbers as the value of χ on conjugacy classes,

K11111 K2111 K221 K311 K32 K41 K5

χ 180 24 4 0 0 0 0
.

is the character row for χ.

We are now in a position to compute

m32 = ⟨χ, χ(32)⟩

=
1

5!

∑
K

|K|χ
K
χ(32)

K

=
1

120

[
1(180 · 5) + 10(24 · 1) + 15(4 · 1)

+ 20(0 · (−1)) + 20(0 · 1) + 30(0 · (−1)) + 24(0 · 0)
]

= 10.

On the other hand, the column strict tableau that have entries from A are:

1 1 2
3 4

1 1 2
4 4

1 1 3
2 4

1 1 3
4 4

1 1 4
2 3

1 1 4
2 4

1 1 4
3 4

1 2 3
4 4

1 2 4
3 4

1 3 4
2 4

So by Theorem 5.2.2, m32 = |CSλ(A)| = 10.
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We can also generalize Theorem 5.1.1 in other ways by placing conditions on the

words. The original formulation of the representation explored in this chapter was

not from an action on words, but an action on compositions. Let us see how we

can use this theorem to explain the irreducible decomposition of the representation

arising from the action of Sn on compositions of n.

Corollary 5.2.5. Let X be the representation arising from the natural action of Sn

on compositions of k into exactly n parts. The number of copies of Xλ in X is equal

to the number of column strict λ-tableau filled with positive integers that sum to k.

Proof. Permuting compositions changes the order in which the entries occur, but does

not change the entries themselves. In other words, the underlying partition remains

constant. Also for any two compositions with the same underlying partition, there

is a permutation from one to the other. So the orbits of this action correspond to

partitions of k into exactly n parts.

By Theorem 5.2.1, X =
⊕

Xµ over all partitions µ ⊢ k into n parts where Xµ is the

representation of G arising from the action of G restricted to the orbit corresponding

to µ. This action restricted to the orbit corresponding to µ = µ1, . . . , µn is identical

to the action on words of length n from the alphabet A = {µ1, . . . , µn}. By Theorem

5.1.1, the number of copies of Xλ in Xµ is the number of column strict λ-tableau

with entries µ1, . . . , µn. The number of copies of Xλ in X is the sum of the number

of copies contained in Xµ over all partitions µ ⊢ k into n parts, which is the total

number of column strict λ-tableaux whose entries sum to k.

Example 5.2.6. As an example to demonstrate Corollary 5.2.5, suppose C is the set

of compositions of k = 12 into exactly n = 6 parts. Letting X be the representation

arising from this action,

X ∼=
⊕
λ⊢6

mλX
λ (5.7)

91



for some mλ.

Consider the partition 321 ⊢ 6. On one hand, we know we can findm321 by computing

inner products. From the character table of S6,

K111111 K21111 K2211 K222 K3111 K321 K33 K411 K42 K51 K6

χ(321) 16 0 0 0 -2 0 -2 0 0 1 0

is the character row for χ(321). To find the character row, of χ, we count the fixed

points C for one representative permutation from each conjugacy class. Since the

character row for χ(321) has a lot of zeros, our inner product will have a lot of terms

that do not matter. We will just compute the values of the χ that are relevant. All

compositions are fixed by the permutation e. So the the number of fixed points of e

is |C|, which in this case equals 462. The permutation (123) fixes all compositions

that have the first two entries matching. So the number of fixed points of (123) is 39.

The permutation (123)(456) has only 3 fixed points:

111333, 333111, 222222,

because we require the first three and last three entries to match. The permutation

(12345) has only 2 fixed points:

111117, 222222,

because we require the first five entries to match. The partial character row of χ,

K111111 K21111 K2211 K222 K3111 K321 K33 K411 K42 K51 K6

χ 462 39 3 2
,
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allows us to compute

m321 = ⟨χ, χ(321)⟩

=
1

6!

∑
K

|K|χ
K
χ(321)

K

=
1

720

[
1(462 · 16) + 40(39 · (−2)) + 40(3 · (−2)) + 144(2 · 1)

]
= 6.

On the other hand, the column strict tableau of shape 321 with entries that sum to

12 are:

1 1 1
2 2
5

1 1 1
2 3
4

1 1 1
2 4
3

1 1 2
2 2
4

1 1 2
2 3
3

1 1 3
2 2
3

So by Corollary 5.2.5, m321 = |CSλ(A)| = 6.

Another interesting consequence of Theorem 5.2.1 regards the trivial representation.

Theorem 5.2.7. Let X be a representation arising from the action of a group G on

a set C with orbits O1, . . . , Ok. If

X = X1 ⊕ · · · ⊕Xk

where Xi is the representation of G arising from the action of G restricted to the orbit

Oi, then each Xi contains exactly one copy of the trivial representation.
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Proof. Let χ and χi denote the character of X and Xi respectively. The number of

copies of the trivial representation in Xi is given by the inner product

⟨χ, χi⟩ =
1

G

∑
g∈G

χ(g)χi(g
−1) =

1

|G|
∑
g∈G

|Cg|. (5.8)

By Theorem 1.4.9, this equals the size of the orbit space of the action of G on Oi,

which is one because for all o1, o2 ∈ Oi, there exists g ∈ G such that go1 = o2.

5.3 The Robinson-Schensted-Knuth Correspondence

Corollary 5.2.3 can be viewed as a purely combinatorial identity. In other words,

there must exist a bijection between C and the set of pairs of column strict tableau

whose entries come from A with standard tableau of the same shape. The Robinson-

Schensted-Knuth Algorithm (RSK) describes this bijection.

We will define what it means to insert a number into a column strict tableau t to yield

a new tableau, t∗. The resulting tableau t∗ will be the same shape as the original

tableau t, except it will have one more cell somewhere. Label the rows of t from

bottom to top with 1, 2, 3, . . . . The insertion algorithm functions as follows.

• Step 1: Set b equal to the number we wish to insert and set m = 1.

• Step 2: If b is greater than or equal to every cell in row m of t, go to step 7.

• Step 3: Let y be the smallest value larger than b in row m.

• Step 4: Change the value in the leftmost cell containing a y in row m to a b.

• Step 5: Set b = y.

• Step 6: Increment m. Go to step 2.
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• Step 7: Add a cell containing b to the end of row m.

Call the resulting tableau t∗. If x is the number we inserted, we write x→ t = t∗.

Example 5.3.1. Suppose we want to compute 3 → t where

t =

1 2 4 4
3 5 5
5

.

Starting at step 1, we set b = 3 and m = 1 and since the condition in step 2 fails, we

proceed to step 3. Since the smallest value in the row 1 2 4 4, larger than 3, is y = 4,

we replace the leftmost cell containing a 4 with a 3, in step 4. The bottom row then

becomes 1 2 3 4. In steps 5 and 6, we set b = 4, and m = 2. We say that the 4 has

been bumped from the bottom row.

Now trying to insert a 4 into the row 3 5 5, the condition in step 2 again fails. So the

middle row changes to 3 4 5, because the 4 we are inserting bumps the 5 up a row.

We set b = 5, m = 3, and return to step 2. We are now attempting to insert a 5 into

the top row:

1 2 4 4
3 5 5
5

3 1 2 3 4
3 5 5
5

4
1 2 3 4
3 4 5
55

Since the top row is currently just a single 5, the condition in step 2 is satisfied. We

conclude our insertion process at step 7, by adding a cell containing a 5 onto the end

of the top row, resulting in the tableau

3 → t =

1 2 3 4
3 4 5
5 5

.
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The RSK algorithm consists of recursively inserting to form a tableau from a word.

The tableau we form is called the insertion tableau and we also keep track of the order

in which the cells were created, forming another tableau of the same shape called the

recording tableau.

Let c = c1 . . . cn ∈ C be a word. We will construct a sequence of pairs of a standard

tableau along with a column-strict tableau whose entries come from c.

• Step 1: Let (t0, r0) be a pair of empty tableau. Let i = 1.

• Step 2: Let ti = ci → ti−1

• Step 3: Let ri be a new tableau, the same as ri−1 with an extra cell containing

i added in the unique way such that shape of ti and shape of ri are the same.

• Step 4: If i < |c|, increment i and go to step 2.

• Step 5: The current pair(ti, ri) is the output of the algorithm.

We write RSK(c) to denote the output of the algorithm on a word c. The algorithm

as forms a sequence of pairs of tableaux of gradually increasing size culminating in

our output.

Example 5.3.2. Consider applying the RSK algorithm to the word c = 3 1 2 1 1.

In step 1, setting our index i = 1 indicates that we are currently inserting the first

letter of the word—in this case 3. We let t1 be the result of inserting 3 into an empty

tableau depicted below on the left and we let r1 keep track of which cell was most

recently created depicted below on the right:

t1 = 3 r1 = 1
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In step 4, since we have yet to reach the end of the word, i = 2 and we return to step

2. Now we find t2, depicted below on the left by inserting the second letter of the

word, 1, into t1. To find r2, we add a single cell to r1 containing a 2 in the unique

way that makes the shape of r2 match the shape of t2:

t2 =
1
3 r2 =

1
2

Again in step 4, we have still have i less than the length of our word. So we iterate i

and repeat. The next few steps are show below with ti on the left and ri on the right

for i = 3, 4, 5—inserting 2, then 1, then 1:

t3 =
1 2
3 r3 =

1 3
2

t4 =
1 1
2 3 r4 =

1 3
2 4

t5 =
1 1 1
2 3 r5 =

1 3 5
2 4

At this point of i = 5, the condition in step 4 fails, we have reached the end of the

word, and the algorithm is complete. Our result is the final pair of tableau:

RSK(c) =

(
1 1 1
2 3 ,

1 3 5
2 4

)
(5.9)

We do not include the step by step explanation of the reverse algorithm, but the

beauty of RSK is that it is completely reversible. We could start with a pair of

tableau and peel off which letter must have been most recently inserted as well as
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what the previous pair of tableaux in the sequence must have been. Doing this

repeatedly, we could completely reconstruct the word we started with.

So this is a bijective correspondence between the set of all words C from an alphabet

A and the set of all pairs of a standard tableau and a column strict tableau of the

same shape. Thus we arrive at an alternative proof that

|C| =
∑
λ⊢n

fλCSλ(A) (5.10)

where fλ is the number of standard tableaux of shape λ. Letting A = [n], we also

have an alternative proof of Corollary 3.4.9.
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Chapter 6

REPRESENTATIONS FROM AN ACTION ON MATRICES

In the previous chapter, we were able to provide a clean-cut combinatorial inter-

pretation of our representations. The natural question that arises is how we might

generalize these results. In this chapter, we examine an extension of the action from

before to an action of Sm × Sn on matrices.

6.1 Character Tables of Sm × Sn

In order to compute inner products with irreducible representations of Sm × Sn, we

will need to construct its character table. Fortunately, with a little bit of additional

tensor product theory, we can bootstrap up from knowing the character table for Sn.

Theorem 6.1.1. If X and Y are representations of groups G and H with characters

χ and ψ respectively, then the character of the representation X ⊗ Y evaluated at

(g, h) ∈ G×H is χ(g)ψ(h).

Proof. The character of X ⊗ Y evaluated at (g, h) ∈ G×H is

tr((X ⊗ Y )(g, h)) = tr(X(g)⊗ Y (h))

=
∑
ij

Xii(g)Yjj(h)

=
(∑

i

Xii(g)
)(∑

j

Yjj(h)
)

= χ(g)ψ(h)
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where Xii(g) denotes the row i, column i entry of X(g).

Theorem 6.1.2. Let X and Y be representations of groups G and H respectively. If

{X1, . . . , Xk} and {Y1, . . . , Yl} are complete lists of pairwise inequivalent irreducible

representations for G and H respectively, then {Xi ⊗ Yj : 1 ≤ i ≤ k, 1 ≤ j ≤ l} is a

complete list of pairwise inequivalent irreducible representations of G×H.

Proof. Assume {X1, . . . , Xk} and {Y1, . . . , Yl} are complete lists of pairwise inequiv-

alent irreducible representations for G and H respectively. Denoting the character of

Xi ⊗ Yj as χi ⊗ ψj, we have

⟨χi ⊗ ψj, χi ⊗ ψj⟩ =
1

|G×H|
∑

(g,h)∈G×H

(χi ⊗ ψj)(g, h)(χi ⊗ ψj)(g
−1, h−1)

=
( 1

|G|
∑
g∈G

χi(g)χi(g
−1)
)( 1

|H|
∑
h∈H

ψj(h)ψj(h
−1)
)

= ⟨χ, χ⟩⟨ψ, ψ⟩

= 1 · 1

= 1

by part 3 of Corollary 2.5.5. Again by part 3 of Corollary 2.5.5, Xi⊗Yj is irreducible.

Similarly, denoting the character of Xp ⊗ Yq as χp ⊗ ψq, we can show that

⟨χi ⊗ ψj, χp ⊗ ψq⟩ = ⟨χi, χp⟩⟨ψj, ψq⟩ = δi,pδj,q, (6.1)

proving pairwise inequivalence of the Xi ⊗ Yj by Theorem 2.5.4.

Lastly, we know the list is complete by Theorem 2.6.14 because the number of con-

jugacy classes of G×H is the number of conjugacy classes of G times the number of

conjugacy classes of H.
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With the character table of groups G and H, the previous two theorems allow us to

construct the character table of G×H.

Proposition 6.1.3. Let A and B be the character tables of groups G and H respec-

tively taken as square matrices. Then the matrix tensor product A⊗B is the character

table of G×H.

By Theorem, 6.1, a complete list of irreducible representations of Sm×Sn is {Xλ⊗Xµ :

λ ⊢ m,µ ⊢ n} and by Theorem 6.1.2, the character of Xλ ⊗Xµ evaluated at (σ1, σ2)

is χλ(σ1)χ
µ(σ2). Since we can construct the character table of Sn for any n, we can

now construct the character table of Sm × Sn for any positive integers m and n.

6.2 An Open Problem

For the remainder of this chapter, fix m,n ∈ N and let G = Sm × Sn.

Let A be a multiset and just as before, and let C be the set of all m × n matrices

whose entries come from the alphabet A without replacement. We define the action

of G on C by

(σ, τ) · c =
∣∣∣∣cσ(i),τ(j)∣∣∣∣ij (6.2)

where σ ∈ Sm, τ ∈ Sn and c = ||ci,j|| ∈ C. We permute the rows by σ and then

permute the columns by τ . For example

((13)(24), (123)) ·



1 1 0

4 3 0

2 5 1

3 0 2


=



5 1 2

0 2 3

1 0 1

3 0 4


.

Let X be the representation of G arising from this action.
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Ideally, we would be able to find a combinatorial interpretation of the irreducible

decomposition of X, as we were in the previous chapter. However, one challenge that

presents itself when attempting to break down this representation is the sheer number

of matrices in C.

For example, suppose m = n = 4 and our alphabet consists of unlimited copies of

each of 1, 2, and 3. Then the dimension of our representation is

dim(X) = |C| = 316 = 43046721. (6.3)

Theorem 5.2.1 allows to analyze representations like this one, by examining the rep-

resentation arising from restricting the action to a specific orbit. So we do not need

to consider the action on all matrices.

Definition 6.2.1. Let XA, be the representation arising from the action of G on

G · A, where G · A denotes the orbit of A.

In this way, instead of choosing an alphabet, we just choose a matrix A to construct

XA. For reference, if again m = n = 4,

dim(XA) = |G · A| ≤ |G| = (4!)2 = 576 (6.4)

for any matrix A.

For any matrix B in G · A, XA
∼= XB. So we establish a canonical representative

element of each orbit.

Definition 6.2.2. We can obtain a word from a matrix by reading off the entries of

A from left to right, then top to bottom. Let A be a matrix. If the word obtained

from A in this way is lexicographically smaller than the word obtained from g ·A for

any g ∈ G, we say that A is minimally ordered.
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For example, the matrix

A =


1 1 2 2 2

2 3 1 1 3

2 4 1 3 1


is minimally ordered. Proposition 6.2.3 gives an equivalent definition for minimally

ordered.

Proposition 6.2.3. Let A be a matrix. Let R be a subset of a row of A with constant

values in the corresponding subsets of any rows above. Let C be a subset of a column

of A with constant values in the corresponding subsets of any columns to the left. The

matrix A is minimally ordered if and only if for all such R and C, R weakly increases

to the right and C weakly increases down.

In the previous example, the third and fourth column had constant values in the first

and second row, so the value in the third row and third column had to be less than

or equal to the value in the third row and fourth column.

We can now precisely breakdown the representation X from the previous section, by

Theorem 5.2.1, into

X =
⊕
A

XA (6.5)

where the sum is over all m × n matrices A that are minimally ordered. If we can

understand this much smaller representation XA, we can translate into an interpre-

tation of the original representation. Furthermore, we can understand other related

representations that have additional conditions.

In the previous chapter, we were able to extend to an interpretation of the repre-

sentations arising from the action on compositions (requiring a fixed sum). One

representation of interest would be the representation of G arising from its action on

the set of m by n matrices whose rows sum to n and whose columns sum to m. If
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we can find the irreducible breakdown of XA, finding all minimally ordered matrices

with the correct row and column sums would give us a complete understanding of

this representation as well. Understanding XA would be the key to breaking down

lots of different representations of G with this structure.

The argument that XA is a representation of critical importance has been made.

The open problem is this: For a matrix A, what is a general characterization of the

irreducible decomposition of the representation XA?

6.3 Current Progress

There are some things we can say about XA. For example, Theorem 5.2.7 reveals

that XA contains one copy of the trivial representation and as observed in Equation

6.4, dimXA ≤ |G|.

Theorem 6.3.1. If dim(XA) = |G|, then XA is equivalent to the regular representa-

tion of G.

Proof. Since |G ·A| = |G|, for any matrix B ∈ G ·A, g ·B = B if and only if g = e. So

if χA denotes the character of XA, χA(e) = |G| and χA(g) = 0 for all g ̸= e. Since this

is the same as the character of the regular representation of G, by part 4 of Corollary

2.5.5, we are done.

Since the complete list of irreducible representations of G is the set of all Xλ ⊗ Xµ

where λ ⊢ m and µ ⊢ n. By Theorem 2.3.4,

XA
∼=
⊕
λ,µ

Mλ,µ(X
λ ⊗Xµ) (6.6)

for some positive integers Mλ,µ.
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Theorem 6.3.2. If the rows of A, taken as multisets without order, are distinct, then

Mλ,µ = fλM(m),µ.

Proof. Assume the rows of A, taken as multisets without order, are distinct. So no

rearrangement of rows can fix any B ∈ G · A. So if B ∈ G · A is fixed by (σ, τ) ∈ G,

then σ = e. Thus χA(σ, τ) = 0 for all σ ̸= e.

For any elements of the form (e, τ) ∈ G, we have

(χλ ⊗ χµ)(e, τ) = χλ(e)χµ(τ) = fλχµ(τ) (6.7)

by Theorem 3.4.8, since evaluating a character at the identity reveals the dimension

of the representation. We also have

(χ(m) ⊗ χµ)(e, τ) = χ(m)(e)χµ(τ) = χµ(τ) (6.8)

since dim(χ(m)) = 1.
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Since χA is zero when (σ, τ) ∈ G has σ ̸= e, we can ignore these terms and factor out

fλ from the inner product. Observe that

Mλ,µ = ⟨χλ ⊗ χµ, χA⟩

=
1

|G|
∑

(σ,τ)∈G

(χλ ⊗ χµ)(σ, τ)χA(σ, τ)

=
1

|G|
∑

(e,τ)∈G

(χλ ⊗ χµ)(e, τ)χA(e, τ)

=
1

|G|
∑

(e,τ)∈G

fλχµ(τ)χA(e, τ)

=
fλ

|G|
∑

(e,τ)∈G

(χ(m) ⊗ χµ)(e, τ)χA(e, τ)

=
fλ

|G|
∑

(σ,τ)∈G

(χ(m) ⊗ χµ)(σ, τ)χA(σ, τ)

= fλ⟨χ(m) ⊗ χµ, χA⟩

= fλM(m),µ.

Example 6.3.3. Let us find the irreducible decomposition of XA for a specific matrix

to verify the previous theorem in an example. Consider the matrix

A =



1 2 1 2

1 3 1 3

1 1 1 1

1 1 1 2


.

Note that A satisfies the hypothesis for Theorem 6.3.2.
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To find the character χA evaluated at (σ, τ) ∈ G, we count the number of matrices

in G · A fixed by σ, τ . We have χA(e) = |G · A| = |G|/|GA| = (4!)(4!)/2 = 288,

χA(e, (12)) = 48, and χA is zero on all other conjugacy classes.

Now we compute the inner product of this character against each row of the character

table of S4×S4 to find the Mλ,µ from Equation 6.6. As an example, we will compute

M(211),(31). Since many of the terms in the character row for χA are zero, we will

just compute the relevant terms of the character row for χ(211) ⊗ χ(31). Since there

are 3 standard tableaux of shape 2 1 1 and three standard tableaux of shape 31,

f (211) = f (31) = 3. We have

(χ(211) ⊗ χ(31))(e) = χ(211)(e)χ(31)(e) = f (211)f (31) = 3 · 3 = 9 (6.9)

by Theorem 3.4.8 and we have

(χ(211) ⊗ χ(31))(e, (12)) = χ(211)(e)χ(31)((12)) = f (211) = 3 (6.10)

by Theorem 3.4.8 and Theorem 4.5.1.

Since the conjugacy classes containing e and (e, (12)) have 1 and 6 elements respec-

tively,

M(211),(31) = ⟨χ(211) ⊗ χ(31), χA⟩

=
1

4! · 4!
∑

(σ,τ)∈G

(χ(211) ⊗ χ(31))(σ, τ)χA(σ, τ)

=
1

576

[
1(9 · 288) + 6(3 · 48)

]
= 6.

We can find the other Mλ,µ with similar inner product computations:
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Table 6.1: Example Irreducible Decomposition of XA

4 31 22 211 1111

4 1 2 1 1 0

31 3 6 3 3 0

22 2 4 2 2 0

211 3 6 3 3 0

1111 1 2 1 1 0

The row λ, column µ entry of Table 6.1 is Mλ,µ. As anticipated by Theorem 6.3.2,

each row is a multiple of the first.

Unfortunately these results fall short of the mark when it comes to answering the

open question: How can we interpret the Mλ,µ? We conclude this chapter with a

conversation of an approach that could be taken moving forward.

Equating the dimensions of both sides of Equation 6.6

|G · A| =
∑
λ,µ

fλfµMλ,µ. (6.11)

because dim(Xλ ⊗ Xµ) = fλfµ. In Section 5.3, we gave a bijective proof of our

dimension counting corollary from the decomposition of our representation from the

action on words. An interpretation of the Mλ,µ would turn Equation 6.11 into a

dimension counting corollary that should also have a bijective proof.

An approach to attempting to understand the Mλ,µ would be the following. Find a

bijection from G · A that extracts a standard tableau with m entries and a standard

tableau with n entries from a matrix. An algorithm of this form will have an additional
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term—call it Nλ,µ. By construction the Nλ,µ will satisfy

|G · A| =
∑
λ,µ

fλfµNλ,µ.

There are multiple bijections that could make this work, but there will be a correct

bijection that has Mλ,µ = Nλ,µ.

Since the goal is to extract standard tableaux from a matrix, a starting place for

determining this mystery bijection could be RSK. We can define a total ordering on

all possible columns of A, lexicographically for example. We then run through the

RSK algorithm inserting each column of the matrix into an entry of the tableau we

are constructing. Partitioning the set G · A by which matrices yield the same shape

under column RSK seems to split the sum nicely.

This could be the first step in our desired bijection, accounting for the fµ term. To

account for the fλ term, applying RSK in a similar way on the rows of A as well

seems like a good candidate. Unfortunately, it can be verified through an example

that the Nλ,µ that arise from this bijection are not equal to the Mλ,µ. So there must

be some other second step in this mystery bijection. Sadly, whatever it is will not be

resolved here.

While some progress has been made, the open problem still stands: For a matrix A,

what is a general characterization of the irreducible decomposition of the representa-

tion XA?
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