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ABSTRACT

A Novel Approach to Extending Music Using Latent Di↵usion

Keon Roohparvar

Using deep learning to synthetically generate music is a research domain that has

gained more attention from the public in the past few years. A subproblem of music

generation is music extension, or the task of taking existing music and extending it.

This work proposes the Continuer Pipeline, a novel technique that uses deep learning

to take music and extend it in 5 second increments. It does this by treating the mu-

sical generation process as an image generation problem; we utilize latent di↵usion

models (LDMs) to generate spectrograms, which are image representations of music.

The Continuer Pipeline is able to receive a waveform as an input, and its output will

be what the pipeline predicts the next five seconds might sound like. We trained

the Continuer Pipeline using the expansive di↵usion model functionality provided by

the HuggingFace platform, and our dataset consisted of 256x256 spectrogram images

representing 5-second snippets of various hip-hop songs from Spotify. The musical

waveforms generated by the Continuer Pipeline are currently at a much lower qual-

ity compared to human-generated music, but we a�rm that the Continuer Pipeline

still has many uses in its current state, and we describe many avenues for future

improvement to this technology.
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Chapter 1

INTRODUCTION

Recent innovation in the industry of artificial intelligence in image generation has

yielded great success, and it has generated a lot of attention from the general public.

Tools like OpenAI’s famous image generator DALL-E are able to generate an image

from only a text description [14]. An area that is not as explored as much by academia

is music generation - there are many techniques that have been explored, but the

results are not up to the same quality as the results we see today with image generation

techniques.

Synthetic music generation is the task of creating music using some statistical tech-

nique. When tackling this problem, researchers often focus on the musical waveforms

themselves, or they discretize the problem by only performing synthesis on the mu-

sical notes rather than the raw frequencies. What we propose in this paper is to

treat this problem like an image generation problem. Due to recent advancements in

the space of image synthesis, this research was proposed due to the authors’ belief

that there is merit in using these image synthesis techniques in the context of music

synthesis.

To treat music generation as an image generation problem, we need techniques to

extend musical waveforms to and from the image domain. Fortunately, techniques

in signal processing have allowed us to do this; Fourier transformations allow us to

convert musical waveforms to a frequency representation, and we can utilize a method

called the Gri�n-Lim Algorithm to approximate the transformation back from the

image domain to the time domain. When music is in this frequency domain, we

1



can simply treat songs as images; these 2-D representations of music are known as

Spectrograms [6].

A subdomain of the problem of generating music is extending music. Many of the

existing algorithms that aim to synthetically generate music simply create a short

snippet of a song; to a consumer, this is not feasible as a user would very likely

want to listen to audio that is longer than a few seconds. Because of this, many

implementations utilize di↵erent techniques to attempt to extend songs, as this makes

their products much more feasible for consumer usage.

In this paper, we propose a new technique to extend music, and we have named it the

Continuer Pipeline. We detail our novel pipeline that uses latent di↵usion techniques

to take an audio file and extend it by an additional 5 seconds; successive calls to the

Continuer Pipeline can be made so that the music is extended for periods longer than

5 seconds. We also detail the current results of our novel pipeline, and we discuss

future areas of research to improve the results of this work.
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Chapter 2

BACKGROUND

This chapter will give background information regarding concepts needed to under-

stand the subsequent chapters.

2.1 Spectrograms

Spectrograms are based o↵ of successive Fourier transforms of data using a sliding

window [4]. They allow us to take data in the time domain, like audio files representing

music, and convert them to the frequency domain. Where this fits in the context of

our problem is that we can use spectrograms to treat musical pieces as images. If we

apply Fast Fourier Transformations (FFTs) to a musical waveform, we can convert our

musical waveforms to spectrograms; these 2-D arrays are now image representations

of the musical waveforms, and we can now use deep learning applications that receive

images as their inputs to tackle this problem.

Mel-spectrograms are a subset of spectrograms that are limited to information only

within the Mel-frequencies, which are the frequencies that human ears are tuned

to focusing on [13]. This allows us to reduce the information of the frequencies

that are not important to humans, which simplifies the information being fed to our

deep learning methods. This ultimately allows the models to focus their learning on

information regarding the most important frequencies.

A raw spectrogram is complex-valued, and thus cannot be an input to our deep learn-

ing models. To alleviate this issue, we take the square of the raw spectrograms to
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Figure 2.1: Waveform Transformations Possible in Torchaudio [21].

remove the complex values; this is called a power spectrogram. This is a necessary

step as our model cannot take complex-valued inputs, but this creates a new prob-

lem: the data is now not perfectly invertible, as we do not know which values in

the spectrogram were complex when we try to convert the spectrogram back to a

waveform. Fortunately, the famous Gri�n-Lim Algorithm is an approximation that

lets us estimate a waveform from a power spectrogram [6]. Figure 2.1 details how the

transformations occur between waveforms and their associated spectrograms using

the Transforms library from Torchaudio [21].
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2.2 Generative Models

Deep generative models are a subset of the deep learning space that focus on generat-

ing novel pieces of data. The main idea that led to the creation of these models is that

data of a certain class has an innate probability distribution, and training a model

on this probability distribution will allow the model to create novel, but similar, data

examples [11].

There are many techniques that have been used for years in the space of gener-

ative models, including autoencoders, generative adversarial networks, Boltzmann

machines, deep belief networks, and more. There are also more recent techniques

that have emerged, which include di↵usion probabilistic approaches. Depending on

the nature of one’s problem, there are often better techniques to use, as each approach

has di↵erent potential use cases.

In the domain of generative models, there are two subdomains that are addressed in

this paper: unconditional generation, and conditional generation.

2.2.1 Unconditional Generation

Unconditional generation is the problem of having a model attempt to learn the

probability distribution from a set of data, and exploit this to create new pieces of data

from this estimated probability distribution. This is more specific than generative

models as the model receives no other information in its generative process; once

trained, the model will generate its estimation of a new sample from the target data

distribution, and the user is unable to a↵ect this generative process.
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2.2.2 Conditional Generation

Conditional generation is the act of generating new pieces of data from a target distri-

bution, but its generation process can have influence from user input. The work done

by Van den Oord et al. highlights how an unconditional generator can be converted

to a conditional variation [19]. They took a previously constructed architecture, Pix-

elRNN, and created a conditional generator that could generate outputs from three

di↵erent classes specified by a user. This conversion from unconditional to condi-

tional generation occurred because the new architecture was able to take information

from user inputs on what class to generate to, which di↵ers from its unconditional

generator counterpart.

2.3 Di↵usion Models

Di↵usion probabilistic models, abbreviated as di↵usion models for brevity, are a gen-

erative deep learning technique that emerged in 2020, and a recent innovation in the

image synthesis domain [7]. The technique has gained a lot of popularity as it has

demonstrated excellent success in various image generation tasks. While the industry

has devoted a lot of resources to exploring di↵usion models in the context of image

generation, less e↵ort has been invested in the study of its use in musical generation.

The inspiration of di↵usion models is derived from the di↵usion laws found in ther-

modynamics. Ho et al. believed that having a deep learning model generate an image

from pure noise is too challenging, but a Markov chain model that incrementally de-

noises a sample of Gaussian noise to a realistic image is a lot more feasible [7]. Thus,

a di↵usion model is characterized as a parameterized Markov chain that is trained to

incrementally denoise an image through each transition of the chain. After training is
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Figure 2.2: The Di↵usion Model Markov Chain [7].

done, a sample of Gaussian noise that is incrementally denoised by our trained model

through the Markov chain will generate a novel piece of synthetic data that appears

to be from the original data distribution.

The training for di↵usion models can be broken down into two related processes: the

forward process q and the learned reverse process p✓. The main goal is for our model

to learn an approximation of the reverse process p✓, as this will allow us to apply the

model to incrementally denoise a sample of Gaussian noise to generate new pieces of

synthetic data. Figure 2.2 illustrates the process of q and p✓ being applied to images

in the Markov chain. We will now discuss the forward process q and the reverse

process p✓ in more detail.

2.3.1 The Forward Process

For the forward process, we first take a training image x, and apply noise via the

posterior function q. What makes di↵usion models di↵erent than other latent variable

models is that the noise is added via a fixed Gaussian noise schedule in a Markov

chain according to a variance schedule �1, ...�T :

q(x1:T |x0) =
TY

t=1

q(xt|xt�1)

q(xt|xt�1) = N (xt;
p
1� �txt�1, �tI)
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This is done for a fixed number of timesteps T , and the noise added to the image xt

in the chain is in accordance with the respective value from the scheduler, namely Bt.

2.3.2 The Reverse Process.

The reverse process is done by removing Gaussian noise from images through learned

Gaussian transitions in the Markov chain. The di↵usion model is tasked to learn this

reverse process by approximating the transitions. These transitions are modeled by

the function p(xT ) = N (xT ;0; I):

p✓(x0:T ) = p(xT )
TY

t=1

p✓(xt�1|xt)

p✓(xt�1|xt) = N (xt�1;µ✓(xt, t),⌃✓(xt, t)

2.3.3 Training and Sampling the Di↵usion Model

Training is done by optimizing the usual variational bound on negative log-likelihood,

but it has been reparameterized by Ho et al. to improve training stability and e�-

ciency. The algorithm for training a di↵usion model is seen in Algorithm 2.1; N is

the Gaussian noise function, ✏✓ is our denoising model that predicts the noise at a

given timestep, T is the number of timesteps in the di↵usion process, ↵t = 1 � �t,

and ↵̄t =
Qt

s=1 ↵s.
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Algorithm 2.1: Training Di↵usion Models

begin

repeat

x0  � q(x0)

t � Uniform(1, 2, ..., T )

✏ � N (0, I)

/* Perform gradient descent of ✏ and ✏✓’s prediction */

r✓||✏� ✏✓(
p
↵̄tx0,

p
1� ↵̄t✏, t)||2

until converged

If training is done correctly, and the model is able to approximate the reverse process

p✓, we can sample the model for generated pieces of data. We do this by feeding

the model samples of Gaussian noise, and it will extrapolate new, synthetic pieces of

data. Because the function p✓ maps samples of pure noise to the domain of the original

input data, a di↵usion model that has learned this mapping will be able to convert

a sample of Gaussian noise to new, synthetic data examples that resemble what the

model saw from the training data. Algorithm 2.2 details the sampling process for

a di↵usion model; N is the Gaussian noise function, ✏✓ is our denoising model that

predicts the noise at a given timestep, T is the number of timesteps in the di↵usion

process, ↵t = 1� �t, and ↵̄t =
Qt

s=1 ↵s.
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Algorithm 2.2: Sampling Di↵usion Models

begin

xT  � N (0, I)

for t = T, ..., 1 do

if t > 1 then

z � N (0, I)

else

z = 0

xt�1 =
1p
↵t
(xt � 1�↵tp

1�↵̄t
✏✓(xt, t)) + �tz

return x0

2.3.4 Embedding Time

One important piece is to incorporate time into the di↵usion process; our model needs

to know where it is in the Markov chain when learning the reverse approximation p✓.

The method for incorporating this temporal information is transformer sinusoidal time

embeddings, which is a technique used in transformer architectures [20]. Transformer

sinusoidal time embeddings are a technique to use sinusoidal functions to transform

an integer representation of time into something easier for our model to understand.

Denoted as positional embeddings in the original paper, the functions for determining

the position pos with a dimension i and output model dimension of dmodel can be seen

below:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)
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This allows us to embed a position pos into a vector of dimension dmodel with ease,

and this new information is vital to our learned di↵usion process as this will allow

our model to know what step it is in the di↵usion Markov chain for each training

example.

2.4 Latent Di↵usion Models

Latent di↵usion models (LDMs) are a subset of di↵usion models developed by Rom-

bach et al., as described in the paper High-Resolution Image Synthesis with Latent

Di↵usion Models [15]. LDMs di↵er from common di↵usion models as they split up

the training process into two parts: the autoencoder training phase, and the di↵usion

model training phase.

2.4.1 Training the Variational Autoencoder

For the first step of the training process, Rombach et al. propose training a variational

autoencoder (VAE) that can provide a lower-dimensional representational space for

the data. VAEs are a deep learning architecture with an encoder-decoder structure,

and in the middle, they contains a compressed, latent representation of the data [18];

this latent representation is a much more condensed representation of the original

data space, which makes these latent vectors computationally simpler to interact

with than images.

2.4.2 Training the Latent Di↵usion Model

Once the VAE is trained, latent di↵usion models perform their training on data repre-

sented in the latent space, as opposed to data in its original image space. Rombach et

11



Figure 2.3: The Latent Di↵usion Model Architecture [15].

al. depicts how training di↵usion models in the latent space allows for reduced com-

plexity in the model, which ultimately leads to e�cient image generation from the

latent space with one single network pass on the decoder-portion of the autoencoder

[15].

As seen in Fig. 2.3, the Latent Di↵usion Model encodes the data, x, in the pixel space

via the encoder ✏ to the latent space, where it is represented as the vector z. During

training, this z vector undergoes a di↵usion process to yield zT , before it goes through

a denoising U-Net model ✏✓ which yields an approximation of the vector zT�1. This

vector finally undergoes a denoising step which returns z, and this is finally passed

through the decoder D to give us a reconstructed image x̃, which is the approximation

of the original input x in the image space.

Please note that Fig. 2.3 contains conditional inputs that are embedded into the zT

vector both during the Denoising U-Net ✏✓ and the denoising step; our implementation

utilizes an unconditional latent di↵usion model, so this conditioning is not used in

the context of our work.

12



Chapter 3

RELATED WORK

The domain of synthetic music generation is extremely broad, and researchers are able

to take vastly di↵erent approaches when attempting to create music. One distinction

that we aim to define in the context of this paper is that there is a di↵erence between

music generation and music extension; music generation aims at synthetically creating

a piece of music, while music extension receives musical information as input and

attempts to extend the music by predicting the following portion of music. A majority

of implementations are only focused on the generation problem, while we are focused

on the extension problem.

As there are many attempts to synthetically generate music, we will narrow the focus

of this chapter to only cover the subset of methods that involve spectrograms, as we

believe these methods pertain to the subject of our thesis the most.

3.1 Audio Di↵usion

HuggingFace is an online platform that provides users with easily accessible models,

datasets, and demo apps [1]. A library provided by HuggingFace is the Di↵users

library, which allows users to interact with state-of-the-art di↵usion models with

ease. It also allows users to utilize transfer learning with pretrained di↵usion models

hosted on the platform. One package hosted on HuggingFace that is similar to our

work is the Audio Di↵usion package; Robert Dargavel Smith was the author of this

package, and it contains various implementations of di↵usion probabilistic models in

13



the context of spectrogram music generation [16]. Our project utilizes this repository

to convert audio waveforms to and from Mel spectrograms.

To extend their music, the Audio Di↵usion package generates variations of a root

image by tweaking the starting step of the di↵usion process; this allows them to

create and concatenate di↵erent variations of similar synthetic audio, which ultimately

creates longer periods of novel music.

3.2 Ri↵usion

Another related method is the Ri↵usion library, which uses stable di↵usion in the

context of spectrogram music generation [3]. They create music by generating mul-

tiple spectrograms of novel music via a text prompt from the user, and they use

tools to loop between these spectrograms to extend their songs. The Ri↵usion team

trained their denoising model via a predefined di↵usion architecture provided by the

HuggingFace platform [1]. Their implementation di↵ers from Audio Di↵usion in that

it uses stable di↵usion, which uses transformers to embed textual information that

can influence the di↵usion process. This ultimately allows users to specify what kind

of music they want to generate via a text prompt.

The Ri↵usion team’s technique for extending music is to interpolate vectors in the

latent space, which is possible due to properties of variational autoencoders. They

generate various spectrogram images of music from the same text prompt, and then

convert each to the latent space using the encoder portion of their trained VAE. If

they were to simply concatenate these spectrograms, the combined music would sound

very disjoint as the transitions between the music derived from the spectrograms

are often abrupt. To improve the transitions between two seed images, they take

the linear interpolation of two latent z vectors of these images at fixed intervals in

14



Figure 3.1: Ri↵usion’s Music Extension Technique [3].

the latent space, and each of these interpolations corresponds to a new image once

decoded by the VAE. Thus, this allows them to seamlessly transition between two

seed images without the harsh jumps. Figure 3.1 shows the images that result from

the interpolation done in the latent space.
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Chapter 4

IMPLEMENTATION

We have split this implementation chapter into two distinct parts: our attempted

methods while navigating the domain of music generation using di↵usion, and the

implementation details of the Continuer Pipeline, which is our proposed, novel tech-

nique to extending music.

4.1 Attempted Methods

At the start of this thesis work, music synthesis techniques using di↵usion were nonex-

istent; thus, the scope of what we were working on was variable, and it depended on

where the scientific community was in the process of creating di↵usion-driven audio

synthesis techniques. At the start of the work, our goal was to demonstrate that

di↵usion could be done on spectrograms to generate novel music, because this was

originally a completely novel idea that we created. As the scientific community was

able to implement this idea faster than the authors, we changed the scope of the

thesis to the Continuer Pipeline. Below, we detail the work done before creating the

Continuer Pipeline in the same sequence that they were developed.

4.1.1 Di↵usion from Scratch on Images

At the start of the thesis, we first wanted to create a codebase that was able to gener-

ate images using di↵usion from scratch, without the help of di↵usion libraries. To do

this, we followed various open-source tutorials to implement a di↵usion model on the
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Stanford Cars dataset [8]. Once our implementation matched what was found online,

we tweaked the model architecture and hyperparameters to try and improve the qual-

ity of the newly generated images. We also wanted to extend the model architecture

to support the generation of 256x256 images, as a di↵usion model implemented in the

tutorial could only generate images with a 64x64 resolution. We deemed 64x64 res-

olution spectrograms as not adequate for the audio generation problem as the lower

resolution would only correspond to a very small increment of music.

The goal of this intermediate implementation was to demonstrate that di↵usion could

be done from scratch, and we planned on extending the framework to train on spec-

trograms instead of the cars dataset.

4.1.2 Spectrogram Converter

To handle the conversions between spectrograms and waveforms, we decided to im-

plement a custom class that is able to do these conversions dynamically. Using the

Python audio library Librosa, we were able to successfully convert audio waveforms

to spectrograms with ease [9]. With the nature of this problem, this work is pointless

if we are not able to convert Spectrograms back to audio waveforms.

As described in the Background Section, the Gri�n-Lim algorithm allows us to re-

construct waveforms from a spectrogram using an approximation technique [6]. To

see how this would be used in the context of our problem, we took a segment from a

Jazz song, converted it to a Spectrogram, and then approximated the original audio

using the Gri�n-Lim algorithm.

In this early stage, we initially determined that the lossy nature of the Gri�n-Lim

algorithm was going to severely hinder the results of our work. Because of this, we
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decided to experiment into determining if we can derive tangible results by performing

di↵usion on the raw waveforms themselves.

4.1.3 Di↵usion on Waveforms

This work was tangential to the original research focus, and our hope was to create

a baseline of results that we could improve when returning to Spectrogram-focused

di↵usion techniques.

To attempt this, we simply modified the architecture of the model described previ-

ously that performed di↵usion on the Stanford cars dataset [8]. Because the dimen-

sionality of our data was di↵erent, we needed to make various changes to the model

architecture. For example, the waveform data contains two dimensions, which di↵ered

from the three dimensions that the spectrogram has. Because of this, we adjusted

our model to have 1-D convolutional layers instead of 2-D convolutional layers.

We then trained this on a dataset that was obtained via a custom-built script that

downloaded songs from a YouTube Jazz playlist and split them into five-second wave-

forms.

The results of this were poor; the model either produced waveforms that resembled

noise, or the output waveform was too quiet to hear. It was around this time that

di↵usion approaches to spectrogram generation became prevalent in the scientific

community, so we decided to switch our focus to analyzing the existing implementa-

tions.
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4.1.4 Recreating Ri↵usion

Around this point of the developmental process, the Ri↵usion team in San Francisco

was able to deploy an open-source implementation of a stable di↵usion model that

utilized spectrograms to create novel music [3]. This implementation was essentially

a superset of what we had originally planned to do: our initial goal was to create a

di↵usion model that generated Jazz segments, while the Ri↵usion team built a music

generator that allowed a user to pass in text specifying a desired genre. Thus, we

deemed that the next step in our process was to recreate the Ri↵usion project in the

context of unconditional generation only on Jazz songs.

The Ri↵usion team had left their interface with their trained model open source, but

their training script was in a private repository; thus, we took inspiration from how

they interacted with their trained model in our implementation.

4.1.5 HuggingFace Audio Di↵usion Implementation

Around this time in the thesis work, we discovered the Audio Di↵usion library within

the HuggingFace platform [16]. Using this package, we utilized the Mel class, which

gives streamlined functionality to convert audio waveforms to Mel spectrograms and

back with ease.

After reviewing this library, we wanted to extend their techniques to our dataset. To

do this, we trained a latent di↵usion model from scratch on our Jazz dataset. We

used a pretrained variational autoencoder from the Audio Di↵usion package that was

able to bring spectrograms of 256x256 resolution to the latent space with a resolution

of 64x64. This allowed us to focus on the di↵usion model’s training, rather than

spending e↵ort attempting to also fine-tune a VAE.
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4.2 The Continuer Pipeline

At this point in the thesis work, we aimed to contribute something new to this

domain. Our initial goal was a novel idea at the start of this thesis work, but it

was implemented in an excellent fashion by groups such as the Ri↵usion team and

the contributors of the Audio Di↵usion library.

Thus, we decided to focus on a related problem: extending music. We found that the

existing techniques are focused primarily on generating novel music; we determined

that once the music is generated, there was room for improvement in how these models

are able to extend the existing music. Thus, we propose a new method for extending

music that we coined as the Continuer Pipeline.

The main idea for this technique revolves around changing how we extend music.

Inspiration was drawn from how recurrent neural networks (RNNs) are able to handle

temporal data; we have created a custom di↵usion architecture that takes in multiple

spectrograms of a song stacked on top of each other in the depth axis, and the model

is trained to produce the next spectrogram. This is described in more detail below.

4.2.1 The Pipeline Implementation

First, we must address the format in which this pipeline was created in. Because of the

accessibility and functionality that HuggingFace provides, we decided to implement

this pipeline extending HuggingFace’s Di↵usionPipeline interface.
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4.2.1.1 The Di↵usionPipeline Interface

Because di↵usion is becoming such a popular deep learning technique for generative

tasks, HuggingFace has devoted a large portion of its platform to hosting various

di↵usion models; the main interface for developing and using these models is the

Di↵usionPipeline class [1]. A custom class that extends the Di↵usionPipeline class

will have a lot of functionality provided by HuggingFace, including methods that can

access many existing models and datasets that are already hosted on the HuggingFace

platform. Because of this, we decided to implement ours in this fashion; specifically,

the Continuer Pipeline extends the Di↵usionPipeline class, and it contains all of

functionality implemented in the Di↵usionPipeline class.

4.2.1.2 Pipeline Architecture

This section describes the architecture details of the pipeline. At a high level, our

pipeline takes in an input of two spectrograms stacked on each other, denoted as x0

and xt, which correspond to both the start and a portion of the same song. The

output of the pipeline is the model’s prediction of the spectrogram representing the

next five seconds of the song, denoted as x̂t+1. Figure 4.1 illustrates this process at a

high level with example spectrograms for the inputs and generated output.
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Figure 4.1: Input and Output of the Continuer Pipeline.

To define this in more clarity, imagine a song is split into five-second increments,

and each increment is converted to a Mel spectrogram. Thus, we can imagine that a

song can be converted to the form x0, x1, x2, ..., xt where x0 is the Mel spectrogram

representing the first five seconds of the song, and xt is the spectrogram representing

the seconds 5t to 5t + 5 of the song. This can be illustrated in Figure 4.2 below;

there is a 15-second waveform, and its partition into into three Mel spectrograms is

illustrated.
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Figure 4.2: The Partitioning of a Waveform into Spectrograms.

Our initial goal was to have our model simply predict the spectrogram that represents

the next five seconds of a song. Our first plan to achieve this was to have our model

receive any spectrogram xt, and use latent di↵usion to predict what the spectrogram

xt+1 could look like. If we achieve this, this will allow us to extend music infinitely, as

iteratively calling the model will continuously keep extending the song by five seconds.

In theory, this could work, but we foresaw a problem with this approach.

Imagine the scenario where we want to create a 30-second synthetic extension to

a song. First, we must generate seconds 0 through 5 of the synthetic extension.

This process would entail taking the last spectrogram of the original song, namely

xt, and using it as input to the Continuer Pipeline. The output would then be the

synthetic spectrogram representing the next five seconds, xt+1. The next step in

this process is to generate seconds 5 through 10; this would entail passing in the

generated spectrogram xt+1 to our model as input, and the output of the pipeline

would be xt+2. This process would repeat four more times to generate the remaining

20 seconds, and we can see that the last call to the pipeline would be passing in xt+5
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as input, and the resultant output would be xt+6. This could work in theory, but any

small imperfections that could occur in any given synthetic spectrogram will very

likely be exacerbated in the generation of all future spectrograms.

This concept heavily resembles the game of telephone, which is a game where a

message is passed sequentially from one person to the next through whispered com-

munication. One of the main issues with this game, and the reason that it often

proves to be a challenge, is that any altercations to the original message will be

propagated onward through the chain; for example, if a person mishears the word

”chains” as ”brains”, their error will be propagated onward as the subsequent person

will incorrectly tell the next person that the secret message is the word ”brains.”

Thus, we hypothesized that only including xt in the input would be poor, and some

information of the original, non-synthetic song should always be included as part of

the input to the model. Our current approach is the following: the input to the

Continuer Pipeline will include information from both the first five seconds of the

song and the last five seconds of the song. To define this more concretely, the input

to our Continuer Pipeline would be the spectrograms [x0, xt] stacked on top of each

other, and the output would be the predicted spectrogram xt+1 that represents the

following five seconds.

For the internal neural networks within the Continuer Pipeline, we have a variational

autoencoder (VAE) that can bidirectionally convert the spectrograms to the latent

representation and back, and we have our denoising U-Net that is responsible for

learning the di↵usion process of these latent vectors.

As described previously, the Variational Autoencoder is a pretrained VAE from

the Audio Di↵usion library [17]. The model was trained on the audio-di↵usion-

instrumental-hiphop-256 dataset, which is described in more detail below. The VAE
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has an encoder-decoder structure; the encoder has four down blocks with each block

containing two convolutional layers. In each block, the two convolutional layers are

the same size, and the sizes of the blocks are 128, 256, 512, and 512, respectively.

The decoder is essentially a mirrored architecture of the encoder, but it has deconvo-

lutional blocks, with sizes 512, 512, 256, and 128 over its four blocks.

The core model that learns the di↵usion process is a U-Net model that extends the

UNet2DModel class from the Di↵users package [1]. The model architecture was

inspired by the architecture of the U-Net present in the Audio Di↵usion package, and

it resembles a classic U-Net shape; it has 6 blocks in the first half, each with two

layers. The block sizes in the first half of the U-Net are 128, 128, 256, 256, 512, and

512. The second half is a mirrored representation of the first half; there are 6 blocks

in this portion, each with two deconvolutional layers, and they have sizes 512, 512,

256, 256, 128, and 128. Also, there are residual connections that connect the blocks

in the first half to their corresponding block in the other half; for example, there is a

residual connection that connects the first block with the last block of the U-Net, a

connection that connects the second block with the second-to-last block, etc. Figure

4.3 depicts graphically the architecture of the denoising U-Net model.
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Figure 4.3: The Continuer Pipeline’s U-Net Architecture.

4.2.2 The Data

The data used to train the Continuer Pipeline is the audio-di↵usion-instrumental-

hiphop-256 dataset [17]. This is a publicly hosted dataset on the HuggingFace hub,

and it was created by the same author of the Audio Di↵usion library. The dataset con-

sists of 256x256 spectrograms of hip-hop songs, where each spectrogram corresponds

to five seconds of audio. The dataset contains three columns: image, audio filename,

and slice. The image column contains the raw image data of the spectrograms, the

audio filename column contains the name of the song that spectrogram was created

from, and the slice column is an integer that states what slice of a song a specific

spectrogram corresponds to. For example, if a song had a slice value of zero, we would

know that this corresponds to seconds 0-5 of the song. Table 4.1 contains the first

few entries of the dataset.

26



Table 4.1: The audio-di↵usion-instrumental-hiphop-256 Dataset from HuggingFace
[17].

image (image) audio file (string) slice (int16)

”./Onra and Quetzal - Gotta Have It.mp3” 0

”./Onra and Quetzal - Gotta Have It.mp3” 1

”./Onra and Quetzal - Gotta Have It.mp3” 2

”./Onra and Quetzal - Gotta Have It.mp3” 3

4.2.3 Custom Data Loading

The HuggingFace Di↵users library is built upon the popular deep learning library

PyTorch, which is a Python library that implements various deep learning archi-

tectures and methods [12]. Because of the unique way that the Continuer Pipeline

handles the training data, we had to develop an algorithm to dynamically load in

data from the audio-di↵usion-instrumental-hiphop-256 dataset during the training of

our model; this algorithm is described in more detail below.

This algorithm can be broken into two portions; the first one is done statically, and it

is counting the number of slices in each song in the data set, and storing the individual
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lengths of each song in a hashmap. The second part is creating a function that allows

us to dynamically retrieve the correct three spectrograms for any index given by the

PyTorch library.

4.2.4 Counting the Number of Slices

The reason for counting the number of slices in each song is because this is necessary

data for our indexing algorithm. It is not necessary information if you are randomly

retrieving a chosen spectrogram at any time, but the nature of how we train our

Continuer Pipeline makes the total number of slices in each song a necessary piece of

information. To give a concrete example, we will look at the song ”Gotta Have It”

by Onra and Quetzal. The song has 20 total slices, which indicates that it is a length

of 5 ⇤ 20 = 100 seconds long. Thus, the resultant hashmap entry for ”Gotta Have It”

will have a value of 20.

4.2.5 Developing a One-to-One Function for Dynamic Indexing

The second part is creating a one-to-one function that is able to dynamically convert

any specified index within a certain range to a data example that we will use to train

our model. The reason this needed to be created is because of how the PyTorch

library handles loading data for training a neural network; to create a custom class

for data loading that the PyTorch API can interact with, you need to specify two

items: the length of the dataset, and what piece of data a certain index corresponds

to.

To describe this in more detail, we will first concretely define a single training example

for a Continuer Pipeline; the di↵usion model ultimately needs three spectrograms to

train: x0, xt, and xt+1. x0 is the spectrogram pertaining to the first five seconds of a
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song, xt is the spectrogram of the seconds 5t to 5t + 5 of the same song, and xt+1 is

the spectrogram corresponding to seconds 5t+5 to 5t+10. With supervised learning

tasks like this, we need a feature vector X, and a corresponding label vector y to

perform train of a model. In this context, we defined our feature vector X and label

vector y as seen in Algorithm 4.1.

Algorithm 4.1: Preparing the Continuer Pipeline’s Training Data
Data: S is a collection of songs where each si 2 S can be represented with

the form si = (x0, x1, x2, ..., xl(i)�1), where each xi is a five-second

spectrogram, and the function l(i) returns the number of

spectrograms inside of the song si.

begin

X,y � ;

for si 2 S do

for j 2 (0, 1, 2, ..., (l(i)� 2)) do

X � X [ {(x0, xj)}

y � y [ {xj+1}

As we can see, our algorithm takes our dataset of individually sliced spectrograms

and aggregates them in a way that we can easily get tuples of three spectrograms cor-

responding to (x0, xt, xt+1), which is what we ultimately need to train our model. We

can see that the our training data will for each example take in the first spectrogram

of a song and a spectrogram xt from X, and the corresponding element in y will be

the spectrogram xt+1. Figure 4.4 details this song partitioning in further detail; we

can see that we have two songs, a and b, with lengths of four and three, respectively.

The song with a length of four will yield three examples for training, and the song

with a length of three will yield two examples to train on.
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Figure 4.4: The Partitioning of Songs for Training.

4.2.6 Training the Continuer Pipeline

To train the denoising U-Net at the core of the Continuer Pipeline, we converted a

training script provided by HuggingFace to train our model using the custom data

loading class that implements the Algorithm 4.1 above. We wanted to focus our atten-

tion on training the U-Net model, so we utilized a pretrained Variational Autoencoder

from the Audio Di↵usion library.

During training, the VAE used in the pipeline is pretrained, so our training suite

only focuses on updating the weights of the denoising U-Net. The training process

is similar to what is present in literature for training di↵usion models, but it di↵ers

in that the model takes in two spectrogram latents, namely z0 and zt, in addition

to Gaussian noise. The algorithm for training our denoising U-Net model ✏✓ can be

found below in Algorithm 4.2. The intuition behind this algorithm is described in

more detail in the Background chapter, but N is the Gaussian noise function, ✏✓ is

our denoising model that predicts the noise at a given timestep, T is the number of

timesteps in the di↵usion process, ↵t = 1� �t, and ↵̄t =
Qt

s=1 ↵s.

30



Algorithm 4.2: Training the Continuer Pipeline’s U-Net ✏✓
Data: X, y are our datasets from Algorithm 4.1, where each element of X

can be represented in the form (x0, xt), and the corresponding

element in y is xt+1.

begin

for epoch = 1, 2, ...,Number of Epochs do

for (x0, xt), xt+1 2 X, y do

/* Convert spectrograms to latent space */

z0, zt, zt+1  � VAE(x0),VAE(xt),VAE(xt+1)

x0  � [z0, zt, zt+1]

t � Uniform(1, 2, ..., T )

✏ � N (0, I)

/* Perform gradient descent of ✏ and ✏✓’s prediction */

r✓||✏� ✏✓(
p
↵̄tx0 +

p
1� ↵̄t✏, t)||2

As we can see in Algorithm 4.2, we choose pairs (x0, xt) and xt+1, transform them

to latent vectors z0, zt, and zt+1, and we perform training by having our model, ✏✓

predict what the noise is given the stacked input [z0, zt, zt+1] and timestep t. Once

our model learns this approximation of the Gaussian noise at a certain timestep, the

sampling process for creating new examples is identical to what is found in di↵usion

model literature. This ultimately trains the U-Net to predict the noise that was added

to the previous spectrogram in the Markov chain, which is what allows us to use this

model to predict a spectrogram xt+1 given spectrograms x0 and xt.

For the training process, our model trained for a total of 5 epochs over the entire

dataset, and our batch size was set to 1. As described previously, the dataset was the

audio-di↵usion-instrumental-hiphop-256 dataset, which were 256x256 spectrograms

that correspond to five-second increments of various hip hop songs.
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The environment that this pipeline was trained in is the Massively Parallel Accelerated

Computing (MPAC) laboratory located at California Polytechnic State University,

San Luis Obispo. The system that this model was trained on contains two AMD

Ryzen Threadripper 3990X 64-Core Processor CPUs, and one NVIDIA RTX A6000

GPU with around a total of 48GB of RAM.
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Chapter 5

DISCUSSION OF RESULTS

The nature of the problem that we are attempting to solve is to have our model

essentially guess what the next five seconds of a song will sound like. Because of this,

challenges arise when attempting to evaluate the results of our Continuer Pipeline.

In this chapter, we will first discuss the challenges of creating an objective evaluation

metric for the quality of our pipeline. We will then provide a subjective evaluation,

detailing both the existing limitations of the Continuer Pipeline, and what its intended

use should be in its current state.

5.1 Challenges of Defining Objective Criteria

There exist means to evaluate music in an objective manner, but we will show that

they are not applicable in the context of our problem. Some of the objective metrics

that exist, such as FAD (Frechet Audio Distance), Scale Consistency (SC), and Pitch

Entropy (PE), are metrics that can measure the closeness between two pieces of

music, but this is not applicable towards our problem [23].

In the other implementations of synthetically creating music, utilizing these objec-

tive evaluation metrics is possible, as the focus of these other implementations is

di↵erent than that of the Continuer Pipeline. To give an example of where that these

techniques are applicable, we will analyze inpainting in the context of music synthesis.

Inpainting is a technique that allows a deep learning model to generate only portions

of a larger image. It allows a user to pass in a mask detailing what specific pixels the
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Figure 5.1: Spectrogram Inpainting Illustrated.

deep learning model should synthetically fill, and the model will replace that mask

with the pixel values it believes are in the image [2]. This is used specifically in the

context of music generation by a user masking a portion of a spectrogram, and the

model filling in the masked portion with what it thinks the spectrogram should look

like; Figure 5.1 illustrates this process. The inpainted spectrogram is finally converted

back to audio by the same techniques done in our work, and this is how inpainting is

able to create music.

The evaluation process of this is defined via the nature of the problem: you can

simply compare the inpainted prediction with the true image. For example, assume

a spectrogram corresponds to 10 seconds of audio. The user specifies the mask over

seconds 5 through 8, and the inpainting technique attempts to fill in this three-second

mask by looking at the context of the surrounding pixels. The evaluation for this is

clear and can be done quantitatively; you can simply utilize the existing tools that

measure the distance between audio, such as FAD, SC, and PE, and measure the

distance between the audio of the original spectrogram and its inpainted counterpart.

This will yield an objective evaluation for the performance of the inpainting technique,
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as the nature of the inpainting problem is to correctly inpaint an image with the

correct pixels.

The Continuer Pipeline’s goal is di↵erent than this, as it aims to extend music by

adding new, unique spectrograms based o↵ of previous portions of a song. To train the

Continuer Pipeline, we implemented a di↵usion-model training suite which ultimately

used an objective loss function. Although this was a way to quantify how close the

Continuer Pipeline’s predicted music was to the original audio, we believe that this

does not accurately reflect the true intentions of the Continuer Pipeline.

We want the Continuer Pipeline to maintain some creativity in its generation process

when extending songs, and using an objective metrics to measure audio distances

fail at quantifying the pipeline’s goal. Because the Continuer Pipeline is aiming to

extend work with its own creative motifs, we believe that quantifying the work in

an objective manner is nearly impossible. If one were to use the objective measures

described previously on the results of the Continuer Pipeline and the true music

samples, we believe that creativity from the Continuer Pipeline would be punished.

Thus, we a�rm that objective metrics in this problem’s context are inapplicable, and

the best way to evaluate this work is to provide a subjective evaluation.

To further evaluate this work, we believe that utilizing musical professionals or lis-

teners of our target musical domain should be consulted as they will provide the best

subjective evaluations. Unfortunately, this was not practical due to time constraints

of the thesis, so we will instead provide a subjective evaluation from the authors

below; it will reflect the authors’ opinions on the current state of the work.
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5.2 Subjective Evaluation

This section is the authors’ attempt at providing an evaluation for the current status

of the Continuer Pipeline; as detailed previously, it is very di�cult to provide an

objective evaluation, but we will describe the results qualitatively while attempting

to be as objective as possible.

The current state of the Continuer Pipeline is that it is extremely early in develop-

ment, and the music quality is definitely not at the quality of the original samples. A

listener could definitely tell that this music was synthetically created. The synthetic

extensions of music from our pipeline generally sound like they could be in the same

song as the original samples, but they would never pass as being human-generated.

We believe that future developments that yield improvements to the quality of the

sound are extremely possible, but the technology in its current state produces syn-

thetic samples that are inadequate compared to human-generated music.

Because of the inability to create music at the same quality of the samples it was

trained on, we believe that the motivation for using this technology should be changed

until the quality of generated music increases. We propose that this technology could

be used as a means for aiding musicians as a supplemental tool when creating music.

In the generated waveforms from the Continuer Pipeline, there are elements of a beat

with some melodic properties, so we believe that musicians can use the Continuer

Pipeline on their music to essentially act as a tool for inspiration. A musician could

produce a song, extend it with the Continuer Pipeline, and replicate elements of

the generated music that they find interesting. The artists can essentially use the

Continuer Pipeline to inspire them by providing new motifs that they can reproduce

in their music, and we believe that using the pipeline in this manner would be best
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until the quality of the generated audio becomes comparable with human-generated

music.

It should be noted that the output of the Continuer Pipeline will ultimately be wave-

forms, and it is not likely that musicians would directly include these in their songs

because the generated samples’ quality is currently pretty poor. Rather, we a�rm

that the musicians can first listen to the synthetic music extensions, and then draw

creative ideas from the synthetic extensions that they can reproduce later.

In the Future Work chapter, we will detail improvements we believe will aid in the

generation process, but it should be said in this evaluation that the current technology

is not capable of producing synthetic waveforms that are comparable with human-

generated music.
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Chapter 6

CONCLUSION

Although the scope of this thesis fluctuated through the development process, we

a�rm that tangible results were retrieved and valuable contributions to the scientific

community were made. Below, we detail what we achieved during the development

of this project; we will discuss our various approaches during the first portion of the

work, and then we will describe what was done to implement the Continuer Pipeline.

6.1 Various Approaches to Di↵usion on Audio Attempted

While arriving at our final implementation, we traveled down a lot of di↵erent avenues

of development. At the start of the project, we were able to implement a successful

di↵usion model that generated fully synthetic car images found in the Stanford Cars

dataset [8]. The point of doing this was to create a su�cient di↵usion suite that could

be converted to generating spectrograms, but this ultimately was not usable as the

scale of the generated images was too small; the model architecture was su�cient for

generating images with a 64x64 resolution, but this is not feasible for the music ex-

tension problem as 64x64 resolution spectrograms have too little musical information

to produce good results.

After completing this first step, we had a functional suite for training di↵usion mod-

els in PyTorch from scratch, but the models were limited to only producing 64x64

car images. Our next step was to attempt to extend the codebase towards training

di↵usion models on spectrogram images instead of the cars dataset. This entailed

analyzing if we could simply increase the model complexity to be able to generate
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256x256 spectrograms, and running various training iterations to see if this would

work. Unfortunately, this was not suitable, as we believe the basic network architec-

ture of the U-Net portion of the di↵usion model was not su�cient, so we started to

look into changing our approach to this problem.

Our next step was a quick exploration into focusing the training of di↵usion models

on the raw waveforms themselves rather than the spectrogram representations. This

was an explorative portion of the project, where we wanted to see if approaching the

problem in this manner could yield any tangible results. Unfortunately, our trained

di↵usion model was not able to reach convergence on the raw waveforms; the outputs

were either noise or empty waveforms. We hypothesize that the model could not

learn the di↵usion process on musical waveforms directly as the phase information is

extremely variable between di↵erent songs, and di↵usion on images is a much more

feasible task.

After analyzing di↵usion on waveforms themselves, we began to explore the existing

implementations to see if there were contributions to be made. We simultaneously

analyzed both the Ri↵usion library and the Audio Di↵usion work from HuggingFace;

it was after this that we performed training of an existing di↵usion model architecture

on a custom dataset generated by the Audio Di↵usion authors. This work was done

to increase our understanding of transfer learning in the di↵usion model space, and it

was during this work that we thought of the idea for our novel approach to extending

music.

We believe that all of the intermediate steps that were done on the path to construct-

ing the Continuer Pipeline were extremely valuable; although no tangible results were

derived from the work, we believe that the exploration done during these varying

branches of development is a very beneficial contribution to the scientific community.
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6.2 Novel Technique Proposed

Our main achievement in this work is the proposed, novel technique for extending

music, coined as the Continuer Pipeline. This technique was inspired by how Re-

current Neural Network nodes handle temporal data; we believe that techniques for

extending music should include the most recent increment of music as input, and

they should always include additional information regarding a portion of the original,

non-synthetic song. This was implemented by including two spectrograms for gener-

ation in our Continuer Pipeline, namely the first and most recent spectrograms of a

song, and the output will be a new spectrogram that corresponds to what the model

thinks the next five seconds of the song will be.

This was implemented as a class that extends the HuggingFace Di↵usionPipeline

interface. This was done so that once the code is published online, users can extend

music with ease. All they need to do is configure their HuggingFace credentials, and

then the process for downloading and using the pipeline will be trivial.
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Chapter 7

FUTURE WORK

As mentioned previously, there is much room for improvement in this work; we pro-

posed the basis for a novel technique for extending music, but we are confident that

the quality of the music generated by the Continuer Pipeline can increase with future

development. We describe some of these avenues for improvement below.

7.1 Changing the Influence of the Root Music

One of the core concepts behind the Continuer Pipeline is that the extension of music

should have influence from the most recent portion of the song and a portion of

the song that was not synthetically generated. To implement this, we handle music

generation by taking the spectrogram of the last five seconds of the song, which is

denoted as xt, and the first five seconds of the song, which is denoted as x0. Our

input is then the stack of these two spectrograms, [x0, xt], and the output is the model

attempting to predict the spectrogram of the next five seconds, xt+1. This is done so

that the generation has an influence of the most recent portion of the song, xt, and

it contains information from another, non-synthetic portion of the song, x0.

We believe it is very important to include influence in the generation process from

non-synthetic data, and this is why we chose x0; the first spectrogram is always going

to be part of the original music, so including it as an input is a static approach to

including original music. Although we believe it is vital to the generation process

to include information that is not synthetic, we believe that this initial approach is

naive and can be vastly improved.
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A potential means to improve generation is to include additional spectrograms. Cur-

rently, only spectrograms x0 and xt are used for generation, resulting in an input

dimension of 256x256x2. If we were to increase the depth by adding more spectro-

grams, say x0, xt/2, and xt, our resultant input dimension would be 256x256x3, and

the Continuer Pipeline would have access to more information when performing infer-

ence. Extending this, one could even implement a sliding window to include a range

of spectrograms before xt while including x0. These are some of the many ways that

the input dimensions could be tweaked to change the influence of the root music,

and these are viable options that could be explored further to see if they result in an

improvement in the quality of the extended music.

7.2 Implementing Time Embeddings

In the current implementation, there is no information passed to the model that

details the distance between the root image and where we are in the generation

process. This is something that can be improved, and it may be vital information for

the generation process.

To analyze this more in-depth, we will look at two examples. For the first example,

let us assume that we have a 20-second audio clip that we want to extend. Thus, our

generation process would entail taking two spectrograms, namely x0 and xt, where

spectrogram x0 pertains to seconds 0 through 5 and spectrogram xt would be the last

five seconds, or seconds 15-20. Our generated spectrogram, xt+1, would be what the

model would predict seconds 20-25 of the song would be.

For the second example, we will do the same generation process on a 2-minute song.

In this case, our inputs to the di↵usion model are the same two spectrograms, x0 and
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xt. Similar to before, x0 is the spectrogram corresponding to the first five seconds of

the song, but now the xt spectrogram corresponds to seconds 115-120.

The di↵erence we wanted to illustrate is that the gap between the two input spec-

trograms can drastically change; in the second example, the distance between x0 and

xt is 110 seconds, which di↵ers from the 10-second gap in the first example. This

di↵erence is not accounted for in the input to the model, so we hypothesize that this

will negatively impact the di↵usion model’s performance; to counter this, we believe

that including information about the gap between the two spectrograms will improve

the results of the generation process.

We believe that the best way to do this is transformer sinusoidal time embeddings; this

is a technique that is already apparent in the di↵usion process, so extending it to the

input of the model should be trivial. Low-level details of these time embeddings are

described in the Background chapter, but we believe that including these as explicit

inputs to the model will give the generator more information about the distance

between the x0 and xt spectrograms, and this will hopefully improve the results of

the generated music.

7.3 Di↵usion in the Image Space

Another potential method to explore is performing di↵usion in the image space rather

than the latent space. The main benefit of performing latent di↵usion rather than

pure di↵usion is that the complexity of performing di↵usion on the latent vectors is

considerably less than di↵usion on the images themselves, as the latent vectors are

condensed versions of the images. The drawback of doing this is that information

is lost during the encoding-decoding processes of the VAE; thus, latent di↵usion is

ultimately sacrificing quality for lessened computational complexity.
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If one were to train the Continuer Pipeline using an architecture that performed the

di↵usion process in the image space, one would need considerably more computing

resources, but it is almost certain that this would yield improved results. The Audio

Di↵usion team found that di↵usion done in the latent space yielded worse results

than di↵usion done in the image space, so it is likely that this same idea will hold for

the Continuer Pipeline [16].

7.4 Converting Problem to Stable Di↵usion

Another way to improve the results of this research is to convert this work to stable

di↵usion, which would allow users to pass in a text description that will influence the

generation of the Continuer Pipeline.

We do note that this is a very broad statement, and converting the approach to

stable di↵usion is not a trivial task. Fortunately, one could look at the Ri↵usion

team’s implementation for guidance when retraining the Continuer Pipeline with a

stable di↵usion architecture, as the Ri↵usion Team’s model architecture allows text

embeddings to influence the model’s inference process [3].

It should be noted that this will not necessarily increase the quality of the audio

generated, but rather it will allow the user to influence the music generation process

with textual data. Simply converting the architecture to take text embeddings will

not necessarily improve the quality of music generated with all other variables held

constant; it will only expand the capabilities of the model, as a Continuer Pipeline

trained with stable di↵usion will be able to extend music in the context of di↵erent

genres specified by textual information from the user.
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7.5 Changing the Generative Approach

The core idea that inspired the work behind the Continuer Pipeline was the fact that

we can treat the music generation problem as an image generation problem; the ability

to dynamically convert musical waveforms back and forth to spectrograms allows us

to essentially use all of the research and tools in the image synthesis domain, and we

can extend them to the domain of musical generation. The choice for explicitly using

di↵usion models was due to the fact that the di↵usion techniques have shown a lot of

promise in generating high-quality images, but the choice of this specific generative

architecture was not grounded in more logic beyond that.

An area to explore that might improve the results of the generation process is an-

alyzing how di↵erent generative architectures are able to complete this task. As

mentioned previously in this work, there are numerous deep learning generative tech-

niques that one could use; for example, Generative Adversarial Networks (GANs)

have been shown to yield excellent results in high-quality image synthesis, so it is

very feasible that they would yield excellent results in this domain. It should be

noted that GANs do occasionally have issues with reaching convergence, as the train-

ing process is a min-max approach with two combatant Neural Networks training

simultaneously.

Also, the challenge of incorporating textual embeddings has been done and researched

thoroughly with Stable Di↵usion, but GANs are generally used for unconditional

generation; this would mean that future researchers would have to find a novel way

to incorporate textual information in the music synthesis process if they were to

change the generative model in this work to a GAN.
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In the context of specifically the Continuer Pipeline, GANs may yield excellent re-

sults; it is an unconditional generation problem, as the only inputs to the generative

algorithm are the x0 and xt spectrograms. Thus, the common use case for a genera-

tive adversarial network would align with the scope of what the Continuer Pipeline

is trying to achieve, but it should be noted that the task of adding textual informa-

tion to influence the generation process will be more challenging than if a di↵usion

probabilistic model approach was taken.

7.6 Increasing the Scale

As per the context of this research, we did not have ample access to the best computing

resources that exist in the industry; because of this, we took a few approaches to

sacrifice quality of the generated audio in exchange for less required computational

complexity.

One example of this is that we only employed the use of one GPU while training. We

believe that parallel computing should be done, as this will allow future researchers to

perform more exhaustive training and improve the results of the Continuer Pipeline.

This is not a unique approach to this project, as many approaches in the industry

are improved by simply increasing the scale at which they are tackled.

Beyond the training scale, future researchers can expand the model architecture to

potentially yield better results. We settled on a model architecture that would allow

us to train on a single GPU, so we are assuming that we sacrificed a bit of quality

by this constraint architecture choice. As described earlier, the denoising U-Net is a

typical U-Net structure, so adding more layers and blocks will likely allow the model

to learn more abstract relationships regarding the data; we hypothesize that this will

ultimately improve the model’s performance.
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When running training on 512x512 images, we were running out of RAM as PyTorch

was unable to put all of the operations on the GPU. Because of this, we resorted to

using images with a resolution of 256x256. This sacrifice meant that the input to our

pipeline now had only one-quarter of the information as originally intended; thus, we

believe that performing training on 512x512 images will yield better results as the

model will be able to see four times more information on a snippet of the song than

what it would see in a 256x256 image. It should be noted that this will increase the

computational demand by much more than four times, but modern systems should

be able to do this with ease.
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