
PolyFlowBuilder: An Intuitive Tool for Academic Planning at Cal Poly San Luis Obispo

A Senior Project Report

presented to
the Faculty of California Polytechnic State University

San Luis Obispo

In Partial Fulfillment
of the Requirements for the Degree

Bachelor of Science in Computer Engineering

By
Duncan Thomas Applegarth

June 2023

 © 2023 Duncan Applegarth

 Applegarth 2

Table of Contents
LIST OF FIGURES 4
LIST OF TABLES 5
ABSTRACT 6
ACKNOWLEDGEMENTS 6
I. INTRODUCTION 7

PROBLEM STATEMENT 7
BIRTH OF THE ORIGINAL POLYFLOWBUILDER 9
THE NEED FOR A NEW POLYFLOWBUILDER 9

II. SCOPE OF WORK 10
PHASE I: DATA API 10
PHASE II: USER ACCOUNT MANAGEMENT 11
PHASE III: FLOWCHART MANAGEMENT 11
PHASE IV: FLOWCHART MANIPULATION 11
PHASE V: FLOWCHART UTILITIES 12
DEVELOPMENT TIMELINE 12

III. BACKGROUND 13
DEFINITIONS 13
WEB APPLICATION ANATOMY 14
FRONTEND COMPONENT FRAMEWORKS 15
BACKEND FRAMEWORKS 16
WEB APPLICATION FRAMEWORKS 16
DATA PERSISTENCE 16
ANATOMY OF A POLYFLOWBUILDER FLOWCHART 17

IV. APPLICATION DESIGN 19
DESIGN TENETS 19
DESIGN DECISIONS 19
APPLICATION ARCHITECTURE DESIGN 21
USER INTERFACE DESIGN 22

V. APPLICATION INTERFACE 24
APPLICATION INTERFACE OVERVIEW 24
FLOWCHART EDITOR INTERFACE 29
FLOWCHART VIEWER INTERFACE 29
FLOWCHART INFO PANEL INTERFACE 31

VI. POLYFLOWBUILDER DATA API 34
DATA SOURCES 34
DATA COLLECTION TECHNIQUES 35
DATA CLEANING TECHNIQUES 36

VII. USER ACCOUNT MANAGEMENT 38
CREATE ACCOUNT 39
DELETE ACCOUNT 40
LOGIN/LOGOUT 41
PASSWORD RESET 42

VIII. FLOWCHART MANAGEMENT 45
CREATE A NEW FLOWCHART 45

 Applegarth 3

DELETING AN EXISTING FLOWCHART 46
SELECT A FLOWCHART TO EDIT 47

IX. FLOWCHART MANIPULATION 48
MODIFY FLOWCHART TERMS 49
MODIFY FLOWCHART METADATA 51
MODIFY FLOWCHART COURSE CONTENT 53

Move Course(s) 54
Add New Course(s) 54
Course Selection(s) 54
Delete Course(s) 55
Change Color of Course(s) 55
Modify Course(s) Contents 55
Persisting Term Changes 56

X. FLOWCHART UTILITIES 58
DUPLICATE FLOWCHART 58
EXPORT FLOWCHART AS PDF 59

XI. STATE MANAGEMENT 60
USER AUTHENTICATION 60
USER DATA SYNCING 61
FRONTEND STATE MANAGEMENT 63

XII. BACKEND 66
SERVING CONTENT EFFECTIVELY 66
BACKEND APIS 67

XIII. DATABASE 68
DATA TABLES 68
INTERACTING WITH THE DATABASE 69

XIV. EVALUATION 71
EVALUATION METRICS 71
EVALUATION RESULTS 72

Feature Implementation 72
Feature Parity 74
End-to-End and Integration Tests 74
Unit Tests 75
User Feedback 76

XV. CONCLUSIONS 78
CURRENT PROJECT STATE 78
PROJECT TAKEAWAYS 78
FUTURE WORK 79

REFERENCES 80

 Applegarth 4

List of Figures

Figure 01. Sample Cal Poly PDF flowchart 7
Figure 02. Scheduler Builder 8
Figure 03. Sample PolyFlows Photo 8
Figure 04. Web Application Architecture High-Level Diagram 14
Figure 05. Common JavaScript Frontend Frameworks 15
Figure 06. Common JavaScript Backend Frameworks 16
Figure 07. Database Categorization Diagram 17
Figure 08. PolyFlowBuilder Architecture Diagram 21
Figure 09. Side-by-side Comparison of Old vs. New PolyFlowBuilder User Interfaces 22
Figure 10. Responsive User Interface Example 23
Figure 11. PolyFlowBuilder Home Page 25
Figure 12. PolyFlowBuilder About Page 25
Figure 13. PolyFlowBuilder Submit Feedback Page 26
Figure 14. PolyFlowBuilder Login Page 26
Figure 15. PolyFlowBuilder Registration Page 27
Figure 16. PolyFlowBuilder Forgot Password Page 27
Figure 17. PolyFlowBuilder Reset Password Page 28
Figure 18. PolyFlowBuilder Flowchart Editor Page 28
Figure 19. Flowchart Editor Decomposition 29
Figure 20. Flowchart Viewer Decomposition 29
Figure 21. Interacting with The Flowchart Viewer 31
Figure 22. Flowchart Info Panel Decomposition 32
Figure 23. Create Account Sequence Diagram 39
Figure 24. Delete Account Sequence Diagram 40
Figure 25. Login Sequence Diagram 41
Figure 26. Logout Sequence Diagram 42
Figure 27. Initiate Password Reset Sequence Diagram 43
Figure 28. Complete Password Reset Sequence Diagram 44
Figure 29. Create New Flowchart Modal 45
Figure 30. Create New Flowchart Sequence Diagram 46
Figure 31. Delete Existing Flowchart Sequence Diagram 47
Figure 32. Flowchart Actions Dropdown Menu 48
Figure 33. Add Flowchart Terms Modal 49
Figure 34. Add Flowchart Terms Sequence Diagram 50
Figure 35. Remove Flowchart Terms Modal 50
Figure 36. Remove Flowchart Terms Sequence Diagram 51
Figure 37. Edit Flowchart Properties Modal 52
Figure 38. Edit Flowchart Properties Sequence Diagram 53

 Applegarth 5

Figure 39. Course Search Sequence Diagram 54
Figure 40. Course Color Selector Interface 55
Figure 41. Customize Course Modal 56
Figure 42. Persist Term Changes Sequence Diagram 57
Figure 43. Duplicate Flowchart Sequence Diagram 58
Figure 44. Export Flowchart as PDF Sequence Diagram 59
Figure 45. Session-Based vs Token-Based Authentication Diagram 61
Figure 46. Naïve User Data Update Sequence Diagram 62
Figure 47. Update Chunking Sequence Diagram 63
Figure 48. State Management via Component Props 64
Figure 49. State Management via Component Bindings 64
Figure 50. State Management via Custom Events 65
Figure 51. State Management via Svelte Stores 65
Figure 52. Web Rendering Techniques Comparison 67
Figure 53. Database Entity-Relationship Diagram 69
Figure 54. Explicit SQL Statement Code Example 70
Figure 55. Object-Oriented Database Interaction Code Example 70
Figure 56. End-to-end/Integration Test Runner 75
Figure 57. Unit Test Runner 76

List of Tables

Table 01. Pertinent Definitions 13
Table 02. PolyFlowBuilder Flowchart Components 17
Table 03. PolyFlowBuilder Design Decisions 19
Table 04. Web Application List of Pages 24
Table 05. Flowchart Viewer Components Description 30
Table 06. “Manage Flows” Tab Components Description 32
Table 07. “Add Courses” Tab Components Description 33
Table 08. Data API Sources 34
Table 09. Data Collection Techniques 35
Table 10. Data Cleaning Techniques 36
Table 11. User Account Management System Components 38
Table 12. PolyFlowBuilder Backend APIs 67
Table 13. Database Data Tables 68
Table 14. Senior Project Evaluation Criteria 71
Table 15. Feature Implementation Results 72
Table 16. User Testing Feedback 76

 Applegarth 6

Abstract

PolyFlowBuilder is a web application that lets users create visually intuitive flowcharts to aid in
academic planning at Cal Poly. These flowcharts can be customized in a variety of ways to
accurately represent complex academic plans, such as double majors, minors, taking courses out-
of-order, etc. The original version of PolyFlowBuilder, released Summer 2020, was not written
for continued expansion and growth. Therefore, a complete rewrite was determined to be
necessary to enable the project to grow in the future. This report details the process to completely
rewrite the existing version of PolyFlowBuilder over the course of six months, using NodeJS,
SvelteKit, TypeScript, MySQL, Prisma, and TailwindCSS + DaisyUI for the primary tech stack.
The project was determined to be largely successful by a variety of holistic evaluation criteria,
with the main limiting factor to complete success being time constraints. The rewritten version of
PolyFlowBuilder will ensure the project’s continued success.

Acknowledgements

Taking on such a monumental project in a short period of time is no easy task that I could not
have done alone. This project represents a culmination of years of education and experience
afforded through my education at Cal Poly. To this end, I would like to thank:

1. My advisor, Dr. Nico, for supporting this project’s development and guiding me in the
right direction to success.

2. The Cal Poly Computer Engineering Department and its faculty for giving me a high-
quality education during my time here and teaching me the necessary skills to
successfully accomplish a project of this scale.

3. My family and friends for supporting the project and pushing me to continue this project
(especially when I felt unmotivated to do so).

4. Everyone who uses PolyFlowBuilder and contributes feedback to make the project better.

The initial and continued success of PolyFlowBuilder would not have been possible without the
contributions of everyone mentioned above. Thank you all so much!

 Applegarth 7

I. Introduction

Problem Statement
As a university student, planning one’s academic schedule to fulfill all degree requirements in a
timely fashion is no easy task. Students need to take the correct courses in the correct order over
the course of several years, taking care that:

1. Course prerequisites are satisfied.
2. All other degree requirements are satisfied (USCP, GWR, GE, etc.).
3. Sections of courses are taught by faculty that work best for the student.
4. The course load for each term is well balanced.
5. Adequate degree progress is being made every term.
6. A variety of other considerations are met.

Things get more complicated if the student chooses to pursue additional educational goals, such
as obtaining a minor or additional majors along with their primary degree coursework. Unique
academic circumstances must also be considered that alter the standard timeline for course
scheduling.

At Cal Poly, a variety of official and unofficial resources have been made available to students
over the years to make this process more manageable. A non-exhaustive list of these resources is
mentioned below:

1. Sample “flowcharts” are made available online [1] that visualize the standard progression
of degree progress for each major and concentration in PDF form. This progress is shown
with an intuitive list of courses to be taken each term during the student’s time at Cal
Poly.

Figure 1: Sample PDF flowchart for the B.S. in Computer Engineering (2021-2022 catalog) at Cal Poly [2].

2. Publicly available Cal Poly course catalog information [3].
3. Internal resources available to current students such as Degree Progress Report, Schedule

Builder, Degree Planner, Projected Course Schedules, and others.

 Applegarth 8

Figure 2: Schedule Builder, an internal tool that allows students to plan, visualize, and enroll in courses for

a particular term.

4. External websites that have rating information for professors (e.g., Rate My Professor [4]
and Polyratings [5])

5. Academic advisors

What is distinctly missing from this list is an intuitive visual tool that allows students to
experiment and plan out their academic programs, by using the well-known format of the sample
flowchart PDFs.

The concept of a tool to visualize course scheduling like the sample flowchart PDF templates is
not new. In fact, a tool like this previously existed, created by Cal Poly students Connor Batch
and Ian Meeder years ago, called PolyFlows. Archives of PolyFlows can be viewed on the
Internet Archive “Wayback Machine” as early as 2015 [6]. Many students, me included, utilized
this tool to visualize complex academic schedules.

Figure 3: Photo of my flowchart on PolyFlows before it went offline. Photo taken 6/1/2020.

 Applegarth 9

However, PolyFlows suffered from the fate that a majority of student-run projects encounter:
once the core maintainers of the project graduate, the project does not get maintained and it
eventually goes offline. PolyFlows went offline ~Summer 2020, and a replacement was sorely
needed.

Birth of The Original PolyFlowBuilder
To fill the gap of visualization tools for academic planning, “PolyFlowBuilder 1.0” [7] was
created as a tool that aimed to achieve the same goals as PolyFlows but with more utilities, data,
and long-term support. It ended up becoming my first full-stack web development project written
before my sophomore year at Cal Poly, and it was a fantastic learning experience.

PolyFlowBuilder 1.0 first went live Summer 2020, and currently has over 3,000 users at the time
of writing. These users include students, parents, faculty, advisors, and prospective students from
all over the world. This broad user base shows the real need and usefulness of a tool such as
PolyFlowBuilder for academic planning.

The Need for a New PolyFlowBuilder
Over time, as more features were developed and more people became dependent on
PolyFlowBuilder, it became clear that the codebase was fragmented, primitive, and unsustainable
for scale and further development. The original codebase was written very quickly and not
intended for large-scale use. As an example, to further illustrate this point, all frontend logic of
PolyFlowBuilder 1.0 is written in a single JavaScript file (as opposed to using a more scalable
solution such as a component framework).

Ideas were tossed around about how to rectify these issues and continue development. In the end,
the only solution to permanently solve these issues was to simply rewrite the entire project from
the ground up. Care would have to be taken to ensure decisions were made with the long-term in
mind, to make sure another rewrite-scale effort would not need to happen in the future.

This rewrite prioritizes longevity, reliability, and ease of maintenance, so that the project can
continue to be of use to the thousands of people who use it. The long-term scope for this effort is
to make PolyFlowBuilder a production-quality application that will allow it to live long after I
graduate in the care of other Cal Poly students. Hopefully, this ensures that PolyFlowBuilder will
not suffer from the same fate that many other student software projects at Cal Poly face.

Therefore, this senior project is dedicated to creating “PolyFlowBuilder 2.0” from the ground up,
using modern software development practices and tooling. As such, the final deliverable is a
rewritten PolyFlowBuilder codebase that has feature parity with the existing PolyFlowBuilder
1.0 website.

 Applegarth 10

II. Scope of Work

To ensure that progress towards the final deliverable could be tracked adequately, a scope of
work was developed. Therefore, the following specification was defined, divided into five
distinct phases:

I. Data API
II. User Account Management
III. Flowchart Management
IV. Flowchart Manipulation
V. Flowchart Utilities

These feature requirements were wholly defined by the current feature set in PolyFlowBuilder
1.0. The remainder of this chapter details these requirements.

Phase I: Data API
This phase includes collecting and organizing all data that will be consumed by
PolyFlowBuilder, as well as making this data available as the “Data API”. This dataset includes
data such as course information, prerequisite information, template flowcharts, etc.

The scope of work for this phase is:

1. To be able to access and store course data for all supported course catalogs (>2015). This
includes:

a. standard metadata about each course (name, description, number of units, etc.).
b. whether a course fits into any categories, such as GEs, USCP courses, or GWR

courses.
c. requisites for a course (which includes prerequisites, corequisites, concurrent

requisites, and recommended requisites).
2. To be able to access and store course data for all supported programs (catalog, major, and

concentration combinations).
3. To be able to access and store template flowchart data, which represents the template

flowcharts made available online [1].
4. All data mentioned above should be stored in the PolyFlowBuilder database and a

consistent API interface must be available for the web application to consume these data.
5. Automated mechanisms should exist to collect all data mentioned above. Sources these

data are collected from must be authoritative.

 Applegarth 11

Phase II: User Account Management
This phase includes developing the various flows for account management on the platform.

The scope of work for this phase is:

1. To design, develop, build, and test the following user account flows:
a. Registration flow
b. Login/Logout flow
c. Delete account flow
d. Reset password flow

The work for each of these processes includes the frontend work as well as building all
relevant backend APIs.

2. To design, develop, build, and test the APIs to access relevant user data.
3. All user data should be stored in the PolyFlowBuilder database and must be accessible

via APIs for the frontend to consume.

Phase III: Flowchart Management
This phase includes implementing features for flowchart management.

The scope of work for this phase is:

1. To design, develop, build, and test the ability to create new flowcharts.
2. To design, develop, build, and test the ability to view all flowcharts that belong to the

logged in user.
3. To design, develop, build, and test the ability to delete existing flowcharts that belong to

the logged in user.
Each of these high-level features includes all frontend and backend work required.

Phase IV: Flowchart Manipulation
This phase includes implementing features related to manipulating a selected flowchart.

The scope of work for this phase is:

1. To design, develop, build, and test the ability to search for new courses to add to a
selected flowchart.

2. To design, develop, build, and test the ability to add new terms to a selected flowchart.
3. To design, develop, build, and test the ability to delete existing terms from a selected

flowchart.
4. To design, develop, build, and test the ability to manipulate the following flowchart

metadata:
a. Flowchart name
b. Flowchart notes
c. Associated flowchart programs

 Applegarth 12

5. To design, develop, build, and test the ability to manipulate courses within a selected
flowchart:

a. Adding new courses (from course search)
b. Moving courses in a flowchart
c. Deleting existing courses in a flowchart

6. To design, develop, build, and test the ability to customize course(s) within a selected
flowchart:

a. Changing the metadata for a particular course, which includes:
i. Course name (e.g., “MU101”)

ii. Course display name (e.g., “Introduction to Music Theory”)
iii. Course description
iv. Course units

b. Changing the course colors in the flowchart

Phase V: Flowchart Utilities
This phase includes implementing various flowchart utilities.

The scope of work for this phase is:

1. To design, develop, build, and test the ability to duplicate a selected flowchart.
2. To design, develop, build, and test the ability to export a selected flowchart as a PDF.
3. To design, develop, build, and test a suite of flowchart validation tools:

a. Total minimum units – this validates whether a flowchart has the minimum
number of units to graduate (180).

b. Total upper-division minimum units – this validates whether a flowchart has the
minimum number of upper-division units to graduate (60).

c. Class prerequisite validation – validate whether course requisites were met for
each course.

d. GWR/USCP validation – validate whether a flowchart has courses that satisfy the
GWR/USCP requirements to graduate.

Each phase of feature requirements was approached roughly in the order presented here.

Development Timeline
The planned timeline for this work was very volatile and unstructured due to the nature of
uncertainty of the rewrite effort. However, in hindsight, each of the five phases of scope of work
were roughly approached in the order presented, dividing the two quarters of work into five
chunks. Phases IV and V took significantly longer than anticipated, with time constraints
preventing the full completion of portions of these phases (see the Evaluation chapter).

 Applegarth 13

III. Background

This chapter contains a variety of background topics that are relevant to the architecture and
design of the PolyFlowBuilder project.

Definitions
This section includes a variety of definitions pertinent to the report content, shown in Table 1.

Table 1. Pertinent definitions
Term Definition
Flowchart A document that visualizes one’s course

progression to complete academic program(s)
at Cal Poly.

Web Application An interactive website that provides the user
with functionality that would traditionally be
seen in a standalone desktop application.

Frontend The portion of an application that the users
directly interact with. This includes things
such as the GUI.

Backend The portion of an application that users do not
directly interact with. The frontend usually
communicates with the backend to achieve
expected functionality. This includes things
such as APIs and servers.

Database The portion of an application that stores large
volumes of data. Databases are highly
optimized to store and query these large
volumes of data efficiently.

Examples of databases are MySQL [8],
PostgreSQL [9], and MongoDB [10].

Application Programming Interface (API) An exposed set of defined rules (interfaces)
that allow different types of applications to
communicate with each other in a standard
way.

As an example, the frontend of a web
application communicates with the backend
through a variety of developer-defined APIs.

 Applegarth 14

Object Relational Mapper (ORM) A piece of software that allows the backend to
interact with the database via object-oriented
paradigms instead of issuing declarative
database commands.

Router The portion of the backend that determines
where to send an incoming request from a
client.

Academic Program In the context of this report, this is either a
(catalog, major, concentration), or a (catalog,
minor) tuple.

HyperText Markup Language (HTML) The markup language that gives all web pages
their basic structure. HTML forms the
“skeleton” of a web page.

JavaScript The programming language that enables static
HTML pages to become interactive.

Cascading Style Sheets (CSS) The stylesheet language that gives all web
pages their visual properties and styles.

Web Application Anatomy
A vast majority of web applications contain at least three core components, seen in Figure 4: the
server, the client, and the database.

Figure 4: High-level diagram of a web application architecture [11]. RDBMS here stands for Relational Database

Management System, which allows users to interact with the core database.

 Applegarth 15

These components work together to achieve the following tasks:
1. Serve the frontend content to users on various web clients (desktops, phones, tables, etc.)
2. Handle web requests that come from these web clients to achieve various actions.
3. Fetch and persist data in the database.

With these fundamental components in place, any type of application can be built. As web
applications scale, architectural upgrades may be necessary to keep performance and
functionality at a level users expect. However, PolyFlowBuilder does not need these additional
upgrades and is built with the standard frontend, backend, and database combination.

Frontend Component Frameworks
Interactive webpages became possible with the introduction of JavaScript in the mid-1990s. As
website complexity increased and interactivity became more important, it was clear that websites
would not scale well with developers writing plain scripts for their websites – this was the
approach PolyFlowBuilder 1.0 took and is the reason why this rewrite effort is necessary.

This is when the idea of a “component framework” was introduced. These component
frameworks allow the interactive portions of a webpage to be encapsulated into a single
“component”, which acts as its own unit independent from other components. These components
can be hierarchical in nature and allows developers to abstract high-level functionality very well.

Figure 5: Depiction of some of the top frontend JavaScript frameworks [12]. Note that jQuery is a standard

JavaScript library instead of a component framework. All other frameworks pictured are frontend component
frameworks.

The frontend of PolyFlowBuilder 2.0 uses a frontend component framework for these reasons.
This enables the application to scale easily as the interfaces become more complex over time.

 Applegarth 16

Backend Frameworks
There are a variety of backend frameworks that allow developers to create and run web servers
that host APIs and other resources for the application frontend. Each framework is usually
associated with a particular programming language, which in turn allows each of them to have
their own ecosystem of tooling and software for developers to implement applications with.

Figure 6: Depiction of common backend frameworks used in the industry [13].

PolyFlowBuilder 1.0 uses ExpressJS, which is a backend framework written in JavaScript that
runs on NodeJS, a backend JavaScript runtime. The advantage of JavaScript backend
frameworks is that since the frontend is commonly written in JavaScript (and must eventually be
converted to JavaScript to run in the browser), the entire application (minus the database) is
using the same programming language, which unifies development efforts. Other frameworks,
written in other languages, have their own ecosystems and integrations.

Web Application Frameworks
Usually, the frontend and backend are developed as two separate pieces of software to ship and
are treated as such. However, there has recently been a shift to create frameworks that encompass
both the frontend and backend development processes. These are called “web application
frameworks” and unify the development experience substantially as the entire application is a
single project instead of multiple smaller projects (for the frontend and backend). These include
frameworks such as NextJS [14] (React [15]), GatsbyJS [16] (React [15]), NuxtJS [17] (Vue
[18]), Angular [19] (Angular), SvelteKit [20] (Svelte [21]), and others.

PolyFlowBuilder 2.0 elected to use a full-stack web application framework instead of a separate
frontend and backend system for this enhanced unity and improved developer experience.

Data Persistence
Arguably, the most important part of an application apart from its functionality is its data.
Therefore, a robust data persistence system needs to be in place to handle the appropriate amount
of traffic the application expects to see. These data persistence systems are usually databases.

 Applegarth 17

There are many different types of databases depending on the types of data being stored/queried.
The common types of databases can be seen in Figure 7.

Figure 7: Common types of databases [22]. Databases are split into two categories: SQL databases, which are

conventionally more structured and tabular in nature, and NoSQL databases, which are usually less structured and
varied in shape.

The data used by PolyFlowBuilder is all tabular and relational in nature, so SQL databases are
the natural choice.

Anatomy of a PolyFlowBuilder Flowchart
A flowchart is at the core of everything PolyFlowBuilder provides to users. Therefore, each
flowchart contains a rich amount of information to encapsulate as much about the user’s
academic plan as possible. See Table 2 for a high-level overview of the various pieces of
metadata that make up a flowchart.

Table 2. Components of a PolyFlowBuilder flowchart.
Component Single/Multiple Allowed

Values
Description/Notes

ID Single UUID The unique identifier for this flowchart.
Owner ID Single UUID The unique identifier for the user that

created this flowchart.
Name Single Any string Name of the flowchart.
Starting Year Single Year in YYYY

format, starting
from 2015

Starting year of the flowchart.

Programs Multiple Entries from list
of available
programs

The academic programs associated with
the flowchart. These programs are

 Applegarth 18

currently in the form of (catalog, major,
concentration) tuples.

Each major can only appear in a
flowchart once, regardless of if the
catalog or concentration are different.

Notes Single Any string User-defined notes about this flowchart.
Version Single Integer Defines the version of the data model

that the flowchart is using. The latest
version, and the one associated with this
rewrite, is the integer 7.

Term Data Multiple List of term
information

Each entry in the term data collection
represents a term in the flowchart.

Each term has the following pieces of
information:

1. Term index – uniquely identifies
which term this is when
combined with the starting year

2. Term units – the number of units
in this term

3. Term courses – the individual
courses contained in each term

Total unit
count

Single String Records the total number of units in the
flowchart. This is simply an aggregation
of the units from each term.

 Applegarth 19

IV. Application Design

This chapter details the various design aspects that went into choosing the tools and frameworks
that would be used to build PolyFlowBuilder 2.0.

Design Tenets
This effort is being done with the end goal that this codebase should be production-grade and
easy to maintain, as its future will eventually be in the hands of future Cal Poly students via a
collaborative effort. Therefore, while making the design decisions that would dictate the
direction and eventual success or failure of the project, I kept the following design tenets in
mind:

1. Code Quality and Robustness: This codebase should not be “prototype quality” where
spaghetti code is used to implement major features. All code should be developed while
thinking about implications for the entire system. All new production-facing code must
include tests to verify that the intended features are working (test-driven development),
and all success and failure cases should be considered.

2. Reliability: All features implemented should be written to be reliable under any
reasonable deployment scenario.

3. Code and API Readability: Going together with code quality, the written code and data
flow throughout the application should be explicit and reasonably clear for other
developers to understand.

4. Performance: Care should be taken to ensure that new code is reasonably optimized. With
the speed of modern-day systems, however, the above three tenets take priority over this
one (so code that is a marginally slower is acceptable if it is more readable/robust/reliable
than other implementations).

Design Decisions
Before major development could begin, a variety of design decisions had to be made about the
“tech stack” of the platform. These design decisions are documented in Table 3.

Table 3. Design decisions for the PolyFlowBuilder tech stack.
Application
Component

Options
Considered

Option
Selected

Rationale

Application
framework

NextJS [14]
NuxtJS [17]
SvelteKit
[20]

SvelteKit
[20]

This is the companion web framework for the
frontend framework Svelte (see the next design
decision). I am satisfied with the features it
offers and its ease-of-use to create complex web
applications with it. It is now also stable for

 Applegarth 20

Angular
[19]

production use, whereas previously this was not
the case.

Frontend
component
framework

React [15]
Angular
[19]
Svelte [21]
Vue [18]

Svelte
[21]

Required by the selection of SvelteKit as the
application framework. Svelte is a very easy
frontend framework to pick up and has lots of
“elegant” features built in. It is arguably more
performant than other popular frameworks like
React, Vue, or Angular due to Svelte’s lack of a
browser runtime and shadow DOM.

Backend
runtime

NodeJS
[23]

NodeJS
[23]

Required by the selection of SvelteKit as the
application framework. NodeJS has been the
backend runtime for PolyFlowBuilder since its
inception, and it has scaled well. NodeJS is
extremely popular due to not requiring
knowledge of an additional programming
language on the backend, and many developers
are quite familiar with it. It is also quite
performant and easy to setup for web
applications like PolyFlowBuilder.

Primary
Implementation
Language

TypeScript
[24],
JavaScript
[25]

TypeScript
[24]

Usually, the language that NodeJS and
Svelte/SvelteKit use is JavaScript. However,
since JavaScript is weakly typed, this is
unfavorable for long-term reliability and
robustness. Instead, TypeScript (which is
strongly typed JavaScript) is the language
chosen for the project so that type errors are
caught sooner, and features can be built with
more confidence.

Another note to make is that the language(s)
used for the frontend and backend are usually
not the same. The explicit decision was made to
have the frontend and backend language be the
same for PolyFlowBuilder as it reduces the
friction for onboarding and unifies the backend
and frontend logic.

Data Storage
Type

Relational,
Document

Relational PolyFlowBuilder has always modeled its data in
a relational fashion with tables because this
model works well for the data that
PolyFlowBuilder provides and consumes.

 Applegarth 21

Database
Engine

MySQL [8]
PostgreSQL
[9]
MongoDB
[10]

MySQL
[8]

MySQL is a robust, free, and open-source
RDBMS for storing relational data using SQL. It
has been battle-tested and is more than adequate
for the project requirements.

Database
Communication
Layer

Prisma
[26],
TypeORM
[27],
MikroORM
[28]

Prisma
[26]

In the original version of PolyFlowBuilder, no
object relational mapper was used to transform
data stored in the SQL relational format to its
JSON equivalent for application use – raw SQL
queries and manual transforms were used.

For this version of PolyFlowBuilder, reliability,
robustness, and readability are preferred over
immediate speed and performance, so the
popular MySQL ORM, Prisma, was chosen to
interact with the database. This allows for
application logic to interact with the database in
a much more object-oriented approach versus
using issuing direct SQL queries to the database.

Less significant design decisions were made throughout the course of the project, which will be
detailed in their respective sections. The design decisions mentioned here are the ones that
guided development for the entire project.

Application Architecture Design
Once the pertinent design decisions were made, the high-level architecture of the application was
developed for the projected needs of the application. See Figure 8 for a diagram of the
application architecture.

Figure 8: Architecture diagram of the PolyFlowBuilder application. It consists of a frontend, backend, database, and

data ingest system for the Data API.

 Applegarth 22

User Interface Design
One of the changes that will be the most apparent to users switching to the new version of
PolyFlowBuilder are the user interface design language differences between the old and new
versions. An example of the UI differences can be seen in Figure 9.

Figure 9: Side-by-side comparison of the existing UI (left) and the new UI (right) of the PolyFlowBuilder flowchart

editor.

The differences in the UI/UX can be mainly attributed to a greater experience with web UI
design as well as the use of UI component frameworks. In particular, the existing UI was built
using the CSS library Bootstrap [29], whereas the new UI was built using the CSS library
TailwindCSS [30] along with the TailwindCSS UI framework DaisyUI [31]. In both cases,
custom styles were applied to the standard components to tailor to the exact UI that was required.

While using Bootstrap was simpler, the TailwindCSS + DaisyUI option selected for this rewrite
allows for a variety of benefits, some of which are listed below:

1. It allows developers to create elegant interfaces easier, as one does not need to know
specifics about user interface design (many of the nuances are abstracted away by these
libraries).

2. The UI framework breaks up the interface pieces into components, which are all styled
similarly and allow for a unified design language across the application.

3. The UI framework considers accessibility and responds to various accessibility features
(such as “prefer reduced motion” with animations).

4. This option allows for responsive interfaces to be built easier. Responsive interfaces are
ones that change to best accommodate the device that users access the application on.

 Applegarth 23

Figure 10: The main flowchart editor interface responding appropriately to different screen sizes. The interface on

the left is meant for taller screens (e.g., phones), whereas the interface on the right is meant for screens that are
larger than phones but smaller than a full desktop (e.g., tablets).

 Applegarth 24

V. Application Interface

Application Interface Overview
The PolyFlowBuilder interface is a web application comprised of a collection of web pages.
These pages are documented in Table 4.

Table 4. List of webpages that make up the PolyFlowBuilder interface.
Page URL Access Control Description
Homepage / Only viewable

when signed out
The landing page when the user
navigates to the PolyFlowBuilder
website.

About /about None This page describes what the project is,
how it came to be, and some history
behind the project.

Submit
Feedback

/feedback None This page allows users to submit feature
request, bug reports, and other feedback
to the PolyFlowBuilder development
team (currently just me) for review.

Register
Account

/register Only viewable
when signed out

This page allows the user to create a new
account on the PolyFlowBuilder
platform.

Login to
Account

/login Only viewable
when signed out

This page allows the user to log into
their existing account on the
PolyFlowBuilder platform.

Forgot
Password

/forgotpassword Only viewable
when signed out

This page is where users navigate where
they have forgotten their password. A
password reset request is initiated here.

Reset
Password

/resetpassword Only viewable
when signed out

Only viewable if a
valid token is
presented

This page is inaccessible to users
without an existing password reset
request. If the user can view this page,
the user can use it to reset their
password.

Flowchart
Editor

/flows Only viewable
when signed in

This page is where the main flowchart
editor lives. Users can only access this
page after authenticating on the login
page.

Users can navigate between these pages by hyperlinks/buttons on other pages, or by directly
entering them into the browser address bar. Some pages have access controls on them that allow

 Applegarth 25

users to view them only if certain conditions are satisfied. For pages that are only viewable when
signed out, users are redirected to the flowchart editor page if they are signed in. For pages that
are only viewable when signed in, users are redirected to the login page if they are signed out.

See Figure 11 – Figure 18 for how each of these pages look from the user perspective.

Figure 11: PolyFlowBuilder Home page. It includes a carousel of photos that represent features that

PolyFlowBuilder provides to users, and links to PolyFlowBuilder-related resources.

Figure 12: PolyFlowBuilder About page.

 Applegarth 26

Figure 13: PolyFlowBuilder Submit Feedback page. Users can provide a feedback subject and return e-mail address
along with their feedback. Feedback submitted here is forwarded to the PolyFlowBuilder administrator’s e-mail for

review and stored in the database for recordkeeping.

Figure 14: PolyFlowBuilder Login page.

 Applegarth 27

Figure 15: PolyFlowBuilder Registration page.

Figure 16: PolyFlowBuilder Forgot Password page.

 Applegarth 28

Figure 17: PolyFlowBuilder Reset Password page. This page can only be accessed if the user has a valid reset token

(which comes from the reset password email the user receives).

Figure 18: PolyFlowBuilder Flowchart Editor page. The flowcharts pictured here are from my personal

PolyFlowBuilder account.

 Applegarth 29

Flowchart Editor Interface
The flowchart editor is rich with features and information to allow users to customize their
flowcharts effectively. The editor is made up of two major parts:

1. The flowchart info panel – this is the left pane of the UI where you can interact with and
manipulate the flowchart being viewed.

2. The flowchart viewer – this is the portion of the UI where the flowchart is displayed.
These parts can be seen in Figure 19.

Figure 19: The flowchart editor broken down into its core components.

Flowchart Viewer Interface
See Figure 20 and Table 5 for a breakdown of the constituent pieces of the flowchart viewer and
their purpose.

Figure 20: Flowchart viewer labeled by its constituent parts.

 Applegarth 30

Table 5. Description of the various flowchart viewer components.
Component Description
1 Name Where the flowchart name is displayed.
2 Scroll buttons Each scroll button is independently enabled when there is

more content to the left/right of the current view. When the
scroll button(s) are enabled, the user can press these buttons to
scroll the flowchart horizontally in the left and right directions,
respectively.

3 Term The view for each term in the flowchart. Multiple terms are
stacked horizontally next to each other as columns to create an
intuitive chronological view of a user’s academic progression.

4 Term unit count The total number of units in the respective term. The number
of courses in the term is also indicated by the number in
parentheses.

5 Term name The name of the respective term.
6 Unit counts (by category) The number of units across the entire flowchart, grouped by

category. Each category is a type of course that can be taken as
part of someone’s academic plan. These categories mirror the
types present in the publicly available Cal Poly template
flowcharts [1].

7 Total unit count The total number of units in the entire flowchart.
8 Credit Bin A special term that is meant to include courses that a user has

already earned credit for before starting the academic plan
shown in the flowchart. The visibility of this term can be
toggled and is hidden if no courses are in it by default.

In the flowchart viewer, users can interact with each course in the displayed flowchart as
follows:

1. Courses can be selected by clicking them (and deselected by clicking a second time).
2. Courses can be moved around in the flowchart by an intuitive drag-and-drop operation.
3. The user can view information about the course by hovering over it with their mouse.

See Figure 21 for a visual of these three operations in a selected flowchart.

 Applegarth 31

Figure 21: Left: A course being dragged around the selected flowchart. Right: The courses boxed in red are courses
that are currently selected, and the user is hovering over the “MATH142” course with their mouse (not pictured) to

reveal metadata about the highlighted course. This metadata includes course code, display name, description,
additional metadata (GE information, prerequisites, etc.), and dynamic term typically offered information.

Flowchart Info Panel Interface
The flowchart info panel contains two tabs: the “Manage Flows” tab, and the “Add Courses” tab.
The “Manage Flows” tab is the place where all operations on a user’s flowcharts are performed.
The “Add Courses” tab is where the user can search for courses to add to the currently selected
flowchart. See Figure 22 for a visual of these tabs, Table 6 for a description of the manage flows
tab components, and Table 7 for a description of the add courses tab components.

 Applegarth 32

Figure 22: Left: the “Manage Flows” tab of the flowchart info panel annotated with its different components. Right:

the “Add Courses” tab of the flowchart info panel annotated with its different components. This screenshot shows
the search results for the query “bowling” in the 2020-2021 catalog, which is the associated catalog for the program

in this flowchart.

Table 6. Components of the “Manage Flows” tab in the Flowchart Info Panel.
Component Description
1 New Flow Button Used to create a new flowchart. See the Flowchart

Management section for more information.
2 Actions Button Contains a dropdown with various actions that can be

performed on a selected flowchart. See the Manipulating a
Flowchart section for more information.

3 Delete Flow Button Used to delete a selected flowchart. See the Flowchart
Management section for more information.

4 Flowchart List Area where all flowcharts created by this user are located.
5 Flowchart List Item A single flowchart entry in the flowchart list. A user can do

various things with this:
1. Select this flowchart by clicking on it.
2. Rearrange the flowchart list by drag-and-dropping this

to another location in the flowchart list.
3. View flowchart information by hovering over the

“information” icon in the bottom-right of this item (see
entry #6 in this table).

 Applegarth 33

6 Flowchart Information
Tooltip

A tooltip that displays the following flowchart information
when activated:

1. Name
2. Starting year
3. Academic program(s)
4. Notes

Table 7. Components of the “Add Courses” tab in the Flowchart Info Panel.
Component Description
1 Program Selector Selector for which program the searched courses should be

associated with. This selection also specifies which catalog
the course search should occur with.

2 Search Query Box Textbox for the search query.
3 Search Query Course Results Area where the relevant courses to the search query are

displayed. These courses can then be added to the selected
flowchart by a drag-and-drop operation.

 Applegarth 34

VI. PolyFlowBuilder Data API

One of the most important things PolyFlowBuilder needs to be useful to users is abundant, high-
quality data related to all facets of academic scheduling. Unfortunately, acquiring this data is
tedious and time consuming due to the lack of public Cal Poly APIs. This section details where
the data was collected from, how it was collected, and how it was cleaned.

Data Sources
Over the course of development of the entire project (since Summer 2020), a variety of data has
been scraped for PolyFlowBuilder use (accessible through the Data API). The rewritten version
of PolyFlowBuilder uses the same dataset as the existing version. The sources for these data are
detailed in Table 8.

Table 8. Data sources for PolyFlowBuilder’s Data API.
Data Type Source(s) Notes
Valid
Catalogs

n/a This information was manually added to
the Data API by including the catalogs that
users were likely using at the time the
original PolyFlowBuilder project started
(>=2015-2017).

Valid Start
Years

n/a This information was manually added to
the Data API by including the starting
years that users were likely using at the
time the original PolyFlowBuilder project
started (>=2015).

Academic
Programs

Public Template Flowcharts [1] The academic program information was
scraped from here versus other publicly
available sources because this source has
the programs in the (catalog, major,
concentration) format that
PolyFlowBuilder uses.

Course
Information

2015-2017 Course Catalog [32]
2017-2019 Course Catalog [33]
2019-2020 Course Catalog [34]
2020-2021 Course Catalog [35]
2021-2022 Course Catalog [36]
2022-2026 Course Catalog [3]

n/a

Course
Requisite
Data

From course information This information was pulled from the
existing course data that was scraped.
Heavy data cleaning was required for these

 Applegarth 35

data (see the Data Cleaning Techniques
section).

Course
Category
Information
(GWR,
USCP, GE,
etc.)

From course information This information was pulled from the
existing course data that was scraped.

Term
Typically
Offered
Data

Public Term Typically Offered
Website [37]

n/a

Academic
Program
Template
Flowcharts

Public Template Flowcharts [1] This information was manually pulled
from the PDFs made available on Cal
Poly’s website. Tedious data collection and
cleaning was required (see the Data
Collection Techniques and Data Cleaning
Techniques sections).

Data Collection Techniques
To collect these data, several techniques were used:

1. HTML web scrapers: scripts were written to programmatically visit web pages and
extract information from the HTML markup.

2. CSV parsing: scripts were written to download and parse CSV files.
3. Text scraping: scripts were written to pull relevant information from existing data

sources.
Manual collection: data were collected by miscellaneous manual procedures.

See Table 9 for the different ways data were collected.

Table 9. Data collection techniques for each data type.
Data Type Collection Technique(s) Notes
Valid Catalogs Manual n/a
Valid Start Years Manual n/a
Academic Programs HTML web scraping n/a
Course Information HTML web scraping n/a
Course Requisite Data Text scraping n/a
Course Category Information
(GWR, USCP, GE, etc.)

Text scraping n/a

 Applegarth 36

Term Typically Offered Data CSV parsing n/a
Academic Program Template
Flowcharts

HTML web scraping/manual The enumeration of all
template flowcharts was
done via HTML web
scraping.

The actual data collection
for each template
flowchart was done
manually via a tedious
process of inspecting and
copying data from each
template flowchart PDF
into PolyFlowBuilder.

Data Cleaning Techniques
In most cases, the collected raw data is not yet suitable for clean consumption by
PolyFlowBuilder. Therefore, a variety of data cleaning techniques need to be employed to do
things such as structuring the data and fixing anomalous observations. Due to the nature of these
data, the data cleaning procedures were a combination of automated and manual techniques. See
Table 10 for how each data type was cleaned.

Table 10. Data cleaning techniques for each data type
Data Type Cleaning Technique(s) Notes
Valid Catalogs n/a Did not need to be cleaned
Valid Start Years n/a Did not need to be cleaned
Academic Programs n/a Did not need to be cleaned
Course Information n/a Did not need to be cleaned
Course Requisite Data Automated/manual Several edge cases with these

data were common enough to
warrant automated scripts to
correct them.

For these data, tedious
manual cleaning via
inspection had to be done due
to the large unstructured
variation in textual input for
course requisite information.

 Applegarth 37

Course Category Information
(GWR, USCP, GE, etc.)

Automated/manual Several edge cases with these
data were common enough to
warrant automated scripts to
correct them.

The remainder of these data
were cleaned manually via
inspection.

Term Typically Offered Data n/a Did not need to be cleaned
Academic Program Template
Flowcharts

n/a Did not need to be cleaned

Once these data are sourced, collected, and cleaned, they are ready to be consumed by the
PolyFlowBuilder application.

 Applegarth 38

VII. User Account Management

To allow PolyFlowBuilder to have personalized data for each user, a user account management
system had to be implemented. This system encompasses all account-related operations someone
can perform on the PolyFlowBuilder platform. The user interacts with this system through a
variety of interfaces on the frontend, which in turn interacts with the user account management
APIs. See Table 11 for the components that make up the user account management system.

Table 11. Associated components for the user account management system.
Management
Feature

Associated
Webpages

Associated API
Endpoints

Notes

Create a
PolyFlowBuilder
account

Register Account
(/register)

/api/auth/register
(POST)

Upon success, a new user
record in the database is
created.

A user’s password is
hashed using the argon2
algorithm [38] before
being stored for security.

Delete a
PolyFlowBuilder
account

Flowchart Editor
(/flows)

/api/auth/login
(DELETE)

Upon success, the
requested user record is
deleted in the database,
along with all records
associated with this user
(e.g., flowcharts).

Log Into a
PolyFlowBuilder
Account

Login to Account
(/login)

/api/auth/login (POST) Upon success, a session
record for this user is
created in the database.

Log Out of a
PolyFlowBuilder
Account

Flowchart Editor
(/flows)

/api/auth/login
(DELETE)

Upon success, the
associated session record
for this user is deleted in
the database.

Reset password
for an existing
PolyFlowBuilder
account

Forgot Password
(/forgotpassword)

Reset Password
(/resetpassword)

/api/auth/forgotpassword
(POST)

/api/auth/resetpassword
(POST)

The reset password process
has two steps:

1. Initiating the
password reset
request

2. Completing the
password reset
request

 Applegarth 39

Each step has its own
associated page and API
endpoint.

Create Account
Every user that wants to use PolyFlowBuilder to create customized flowcharts must first create
an account on the platform. The process to create an account is described in Figure 23.

Figure 23: Sequence diagram for the account creation routine in PolyFlowBuilder. This diagram assumes the POST

request sent to the web server from the frontend is formatted properly.

Account Creation Routine

User
Register Page Web Server Database

User not logged in

Navigate to /register page

Fill out registration form

Submit registration request

POST /api/auth/register
(username, email, password, confirmPassword)

400 Response("account exists")

Display "account already exists" message

500 Response("internal error")

Display "internal error occurred" message

Create account record (username, email, hashed password)

Database error occurred

500 Response("internal error")

Display "internal error occurred" message

OK

201 Response("account created")

Redirect to /login and
display "account created" message"

alt [account already exists]

[internal error]

alt [database error]

 Applegarth 40

Delete Account
Users on the platform also can delete their account, along with all associated data, if they wish
to. The process to delete an account is described in Figure 24.

Figure 24: Sequence diagram for the account deletion routine in PolyFlowBuilder. This diagram assumes the

DELETE request sent to the web server from the frontend is formatted properly and that the user is authenticated.

Account Deletion Routine

User
Flow Editor Page Web Server Database

User logged in

Click "Delete Account" and
confirm account deletion via dialog

DELETE /api/auth/login?deleteAcc=1

400 Response("not valid")

Redirect to /

500 Response("internal error")

Display "internal error occurred" message

Delete user session

Delete user record

Delete all associated records
(foreign keys)

Database error

500 Response("internal error")

Display "internal error occurred"

OK

200 Response("user logged out and account deleted", delete session cookie)

Redirect to /

alt [session not valid/does not exist]

[internal error]

alt [database error]

 Applegarth 41

Login/Logout
For a user to use the account that they’ve created on the system, they need to be able to perform
login and logout operations. Figure 25 and Figure 26 describe these two processes.

Figure 25: Sequence diagram for the login routine in PolyFlowBuilder. This diagram assumes the POST request

sent to the web server from the frontend is formatted properly.

Account Login Routine

User
Login Page Web Server Database

User not logged in

Navigate to /login

Fill out login form

Submit login request

POST /api/auth/login
(username, password)

401 Response("incorrect credentials")

Display "incorrect credentials" message

500 Response("internal error")

Display "internal error occurred" message

Upsert user session record (user UUID, username, email, expiry)

Database error

500 Response("internal error"

Display "internal error occurred" message

OK

200 Response("login successful", set session cookie)

Redirect to /flows

alt [incorrect credentials]

[internal error]

alt [database error]

 Applegarth 42

Figure 26: Sequence diagram for the logout routine in PolyFlowBuilder. This diagram assumes the DELETE

request sent to the web server from the frontend is formatted properly and that the user is authenticated. Observe this
routine is nearly identical to the account deletion routine seen in Figure 24.

Password Reset
If a user forgets the password to their account, they should be able to reset it in a secure and
convenient manner. For PolyFlowBuilder, the password reset process looks as follows:

1. The user initiates a password reset by navigating to the appropriate page and submitting a
request.

2. A password reset email gets sent to the user’s email account with a unique password reset
link. This link has a secure token associated with it to guarantee the user with access to
the requested email account can reset the password.

3. The user opens the sent link, the token is verified, and they are taken to a page to enter a
new password.

4. The user submits a new password, and their password is reset after the token is verified
once more.

5. The user can now log into their account with the new password.
Figure 27 describes the first two steps of this process (initiating a password reset), and Figure
28 describes the second two steps (completing the password reset).

Account Logout Routine

User
Flow Editor Page Web Server Database

User logged in

Click "Logout"

DELETE /api/auth/login

400 Response("not valid")

Redirect to /

500 Response("internal error")

Display "internal error occurred" message

Delete user session

Database error

500 Response("internal error")

Display "internal error occurred"

OK

200 Response("user logged out", delete session cookie)

Redirect to /

alt [session not valid/does not exist]

[internal error]

alt [database error]

 Applegarth 43

Figure 27: Sequence diagram for the initiate account password reset routine. This diagram assumes the API request

is properly formatted.

Initiate Account Password Reset Routine

User
Forgot Password Page Web Server Database

User not logged in

Navigate to /forgotpassword

Fill out forgot password form

Submit forgot password form

POST /api/auth/forgotpassword (email)

Generate password reset token

Upsert reset password token (email, token, expiry)

Database error

500 Response("internal error")

Display "internal error occurred" message

OK

Send password reset email to provided email
(reset password link with token)

500 Response("internal error")

Display "internal error occurred" message

201 Response("reset request initiated")

Display "password reset initiated" message

alt [database error]

alt [internal error]

 Applegarth 44

Figure 28: Sequence diagram for the reset account password routine. This diagram assumes the user has initiated a

password reset and that the API requests are formatted properly. Observe the token is verified multiple times
throughout this process.

Reset Account Password Routine

User
Reset Password Page Web Server Database

User not logged in

Navigate to reset password URL provided in email sent to user
/resetpassword?token={token}&email={email}

Validate token from URL

Fetch token record

Database error

Redirect to /forgotpassword
with error message

OK

Verify token

Redirect to /forgotpassword
with "invalid token" message

Allow access to /resetpassword

Fill out reset password form

Submit reset password form

POST /resetpassword
 (email, token, password, passwordConfirm)

Fetch token record

Database error

Redirect to /forgotpassword
with error message

OK

Verify token

Redirect to /forgotpassword
with "invalid token" message

Update user password

Delete token record

Database error

Redirect to /forgotpassword
with error message

OK

500 Response("internal error")

Display "internal error occurred" message

200 Response("password reset successful")

Display "password reset successful" message

Redirect to /login

alt [database error]

alt [token not valid (does not exist and/or expired)]

alt [database error]

alt [token not valid (does not exist and/or expired)]

alt [database error]

alt [internal error]

 Applegarth 45

VIII. Flowchart Management

To manage the flowcharts in account, the user can use the flowchart info panel controls. In
particular, the user can:

1. Create a new flowchart.
2. Delete an existing flowchart.
3. Select a flowchart to edit.

This chapter describes these operations.

Create a New Flowchart
To create a new flowchart, the user clicks the “New Flow” button seen in Figure 22. This opens
a modal to create a new flowchart, which is seen in Figure 29. See Figure 30 for the
corresponding sequence diagram.

Figure 29: Modal to create a new flowchart. The user needs to specify the flowchart name, starting year, academic

program(s), and a variety of generation options (the only one that exists currently is “remove GE courses in
template”). The “Create” button will turn a solid green only if the submitted values are valid.

 Applegarth 46

Figure 30: sequence diagram for the routine to create a new flowchart. This diagram assumes the GET and POST

requests to the web server are correct from the frontend and that the user is authenticated.

Deleting an Existing Flowchart
To delete an existing flowchart, the user selects a flowchart from the flowchart list and clicks the
“Delete Flow” button (see Figure 22). After a confirmation, the selected flowchart will be
deleted permanently. See Figure 31 for the corresponding sequence diagram.

Create Flowchart Routine

User
Flow Editor Web Server Database

User logged in

Click "New Flow"

Fill out "Create New Flowchart" modal
with new flowchart information

Click "Create" in modal

Close modal

GET /api/data/generateFlowchart
(query parameters: name, start year, programIds, options)

500 Response("internal error")

Display "internal error occurred" message

 200 Response(generated flowchart)

Update local state with new flowchart

POST /api/user/data/updateUserFlowcharts
(type=FLOW_UPSERT_ALL, data=new flowchart)

500 Response("internal error")

Restore previous local state

Display "internal error occurred" message

Upsert new flowchart record (user ID, new flowchart, last updated)

Database error

500 Response("internal error")

Restore previous local state

Display "internal error occurred" message

OK

200 Response("changes saved")

Display newly created flowchart

alt [internal error]

alt [internal error]

alt [database error]

 Applegarth 47

Figure 31: Sequence diagram for the routine to delete an existing flowchart. This diagram assumes the POST

request to the web server is correct from the frontend and that the user is authenticated.

Select a Flowchart to Edit
To load a flowchart into the flow editor to view and manipulate, the user simply needs to click on
the desired flowchart in the flowchart list (see Figure 22). Changes to a particular flowchart are
described in the Flowchart Manipulation chapter.

Delete Flowchart Routine

User
Flow Editor Web Server Database

User logged in

Select Flowchart

Click "Delete Flow" and confirm deletion

Update local state
(delete selected flowchart)

POST /api/user/data/updateUserFlowcharts
(type=FLOW_DELETE, data=flowchartId)

500 Response("internal error occurred")

Restore previous local state

Display "internal error occurred" message

Delete flowchart record (user ID, flowchart ID)

Database error

500 Response("internal error")

Restore previous local state

Display "internal error occurred" message

OK

200 Response("changes saved")

Deselect deleted flowchart

alt [internal error]

alt [database error]

 Applegarth 48

IX. Flowchart Manipulation

Once a particular flowchart has been loaded into the flowchart editor, there are a myriad of
actions a user can perform on it to modify its contents. These actions are:

1. Modifying the terms in the flowchart
2. Modifying flowchart metadata
3. Modifying flowchart course content

a. Viewing credit bin
b. Adding new course(s)
c. Deleting course(s)
d. Changing colors of course(s)
e. Modifying content of course(s)

These actions can be accessed by viewing the “Actions dropdown” in the Flowchart Info Panel,
seen in Figure 32. The remainder of this section will describe these flowchart manipulation
actions.

Figure 32: The flowchart Actions dropdown, which is split into three sections: the flowchart metadata section (top),
the course manipulation (middle), and the flowchart utilities section (bottom). The flowchart utilities are described

in the Flowchart Utilities chapter.

 Applegarth 49

Modify Flowchart Terms
When a flowchart is first created, the number of terms in the flowchart are fixed and are 4-5
years with 3 terms each (Fall, Winter, Spring quarters), depending on the academic program(s)
selected. If a user wants to modify the number of terms in the flowchart, they can do so with the
“Add Terms” and “Remove Terms” actions (see Figure 32).

To add terms, a modal is displayed with the terms that can be added to the flowchart, seen in
Figure 33. See Figure 34 for the corresponding sequence diagram.

Figure 33: Modal to add new terms to a selected flowchart. Multiple terms can be selected simultaneously, and only
the terms that can be added are shown in the selector. A user must select at least one term to add. In this version of

PolyFlowBuilder, the latest term a user can add is the Spring term seven years after the flowchart’s starting year (so
a flowchart can have up to 28 terms, not including the credit bin).

 Applegarth 50

Figure 34: Sequence diagram for the routine to add terms to an existing flowchart. This diagram assumes the POST

request to the web server is correct from the frontend and that the user is authenticated.

Similarly, to remove terms, a modal is displayed with the terms that can be removed from the
flowchart, seen in Figure 35. See Figure 36 for the corresponding sequence diagram.

Figure 35: Modal to remove existing terms from a selected flowchart. Multiple terms can be selected

simultaneously, and only the terms that can be removed are shown in the selector. A user must select at least one
term to remove.

Add Flowchart Terms Routine

User
Flow Editor Web Server Database

User logged in

Select Flowchart

Open "Add Flowchart Terms" modal

Select new terms to add to flowchart

Submit new term addition request

Close modal

Update local state
(add selected terms to flowchart)

POST /api/user/data/updateUserFlowcharts
(type=FLOW_TERMS_ADD, data=term indexes to add)

500 Response("internal error occurred")

Restore previous local state

Display "internal error occurred" message

Mutate flowchart record (user ID, flowchart ID, new terms)

Database error

500 Response("internal error")

Restore previous local state

Display "internal error occurred" message

OK

200 Response("changes saved")

alt [internal error]

alt [database error]

 Applegarth 51

Figure 36: Sequence diagram for the routine to remove existing terms from a flowchart. This diagram assumes the

POST request to the web server is correct from the frontend and that the user is authenticated.

Modify Flowchart Metadata
A user may want to modify certain pieces of metadata in their flowchart as it develops. To do
this, they can use the “Edit Flow Properties” action (see Figure 32) on a selected flowchart. This
action allows users to modify the following pieces of flowchart metadata:

1. Name
2. Starting year
3. Academic program(s)
4. Notes (likely the most common piece of metadata to change)

To edit these properties, a modal is displayed that allows the user to visualize and/or change
these properties. This modal can be seen in Figure 37. See Figure 38 for the corresponding
sequence diagram.

Remove Flowchart Terms Routine

User
Flow Editor Web Server Database

User logged in

Select Flowchart

Open "Remove Flowchart Terms" modal

Select terms to remove from flowchart

Submit term removal request

Close modal

Update local state
(remove selected terms from flowchart)

POST /api/user/data/updateUserFlowcharts
(type=FLOW_TERMS_DELETE, data=term indexes to remove)

500 Response("internal error occurred")

Restore previous local state

Display "internal error occurred" message

Mutate flowchart record (user ID, flowchart ID, terms to delete)

Database error

500 Response("internal error")

Restore previous local state

Display "internal error occurred" message

OK

200 Response("changes saved")

alt [internal error]

alt [database error]

 Applegarth 52

Figure 37: Modal to view and/or edit user-accessible pieces of flowchart metadata. The user will only be able to

save changes if a) there were changes made, and b) the changes are valid. Note that at the time of writing, the ability
to modify the academic program(s) in the flowchart is not yet implemented (see the Evaluation chapter).

 Applegarth 53

Figure 38: Sequence diagram for the routine to edit the metadata of a selected flowchart. This diagram assumes the

POST request to the web server is correct from the frontend and that the user is authenticated. Observe that a
FLOW_UPSERT_ALL update type is used versus something more specific that only includes fields for the updated
properties. This is because the ability to change academic program(s) in a flowchart can mutate the entire flowchart.

Modify Flowchart Course Content
The most common thing that a user will change about their flowcharts are the courses that reside
within it. There are several ways a user can modify a flowchart’s course content:

1. Move course(s)
2. Add new course(s)
3. Select Course(s) to Modify
4. Delete course(s)
5. Change color of course(s)
6. Modify content of course(s)

These actions are described in the following subsections.

Edit Flowchart Properties Routine

User
Flow Editor Web Server Database

User logged in

Select Flowchart

Open "Edit Flow Properties" modal

Edit Flowchart Properties

Submit edit request

Close modal

Update local state
(update requested flowchart metadata)

POST /api/user/data/updateUserFlowcharts
(type=FLOW_UPSERT_ALL, data=updated flowchart)

500 Response("internal error occurred")

Restore previous local state

Display "internal error occurred" message

Mutate flowchart record (user ID, flowchart ID, terms to delete)

Database error

500 Response("internal error")

Restore previous local state

Display "internal error occurred" message

OK

200 Response("changes saved")

alt [internal error]

alt [database error]

 Applegarth 54

Move Course(s)
To move courses around in a flowchart, the user simply drags a course from its current position
and drops it into its new position. If the user wants to move a course to the special Credit Bin
term (which is meant to contain courses that the user has received credit for outside of Cal Poly),
the Credit Bin must be visible in the flowchart viewer (the toggle can be seen in the Actions
dropdown in Figure 32).

Add New Course(s)
To add new courses to a flowchart, a user must a) search for the courses to add, and b) drag-and-
drop a course from the search results into the flowchart in a manner described in the previous
subsection. See Figure 22 for the course search interface, and Figure 39 for the corresponding
course search sequence diagram.

Figure 39: Sequence diagram for the routine to search for courses to add to a selected flowchart. This diagram

assumes the POST request to the web server is correct from the frontend and that the user is authenticated. Observe
that a copy of the course API data is cached on the web server at startup. This was a legacy design decision from the
existing PolyFlowBuilder project to decrease search latency, but this will be redone to use an intermediary caching

layer (e.g., Redis [39]) in a future update to ensure scalability.

Course Selection(s)
To delete, change the color, or customize the content of courses, the user must select one or more
courses to change. See Figure 21 for how to select courses, and Figure 32 for the available
actions that can be performed once courses are selected.

Course Search Routine

User
Flow Editor Web Server

User logged in

Navigate to "Add Courses" tab
in Flow Info Panel

Select academic program to search courses for
(this also selects the course search catalog)

Type search query

POST /api/data/searchCatalog
(query, catalog)

500 Response("internal error")

Display "internal error occurred" message

search courses from cached copy
of catalog information on server
(fetched from database on startup)

200 Response
(course search results, exceededMaxSearchResults)

Display course search results

alt [internal error]

 Applegarth 55

Delete Course(s)
To delete selected courses, the user simply clicks “Delete Selected Courses” in the Actions
dropdown (see Figure 32). The course selections are cleared after this change has been persisted.
See Persisting Term Changes for how this change is persisted.

Change Color of Course(s)
To change the color of selected courses, the user must first pick the new color of the selected
courses by opening the Color Selector UI (see Figure 40), and then click “Colorize Selected
Courses” in the Actions dropdown. The course selections are not cleared after this change has
been persisted. See Persisting Term Changes for how this change is persisted.

Figure 40: Color Selector UI in the Actions dropdown. A user can pick a color by selecting one of the preset colors
(from left to right: major, support, general education, concentration #1, concentration #2, free elective, GWR, and
other color categories), using the swatches and color picker, or by entering a #RRGGBB hex code for a color. The

user then must click “Save” to save this color choice. The current color is shown in the box on the right of the
“Color Selector” option in the Actions dropdown.

Modify Course(s) Contents
To modify the content of selected courses, the user must click the “Edit Selected Courses” option
in the Actions dropdown (see Figure 32). This will then open the Customize Courses modal,
which can be seen in Figure 41. See Persisting Term Changes for how this change is persisted.

 Applegarth 56

Figure 41: The customize course modal. The Course Type specifies the type of course(s) that are selected:

“Standard” means all selected courses are non-custom, “Custom” (not pictured) means all selected courses are
custom, and “Varied” means there is a mix of Standard and Custom courses in the set of selected courses. If only one

course is selected, the “Course Name”, “Course Display Name”, “Course Description”, and “Course Units” fields
will populate with data from that course. If more than one course is selected, these fields will be a mix of empty and
notes that there are multiple courses selected. The user will only be able to save course changes if a) changes were

made, and b) the changes are valid.

Persisting Term Changes
To reduce the amount of data update types that had to be built out, all changes to a flowchart that
change the contents of a particular term (e.g., changes to any courses in a term) are included in a
single type of update, aptly named a TERM_MOD update. See Figure 42 for the sequence
diagram that corresponds to this type of update.

 Applegarth 57

Figure 42: Sequence diagram for the routine to update term information for a selected flowchart. This diagram

assumes the POST request to the web server is correct from the frontend and that the user is authenticated.

TERM_MOD Update Routine

User
Flow Editor Web Server Database

User logged in

Make change(s) to term(s)
(add/remove courses, customize, change color, etc.)

Compute new term information
(unit counts, course information, etc.)

Update local state
(update term information)

POST /api/user/data/updateFlowcharts
(type=TERM_MOD,data=updated term)

500 Response("internal error occurred")

Restore previous local state

Display "internal error occurred" message

Mutate flowchart record (user ID, flowchart ID, updated term)

Database error

500 Response("internal error")

Restore previous local state

Display "internal error occurred" message

OK

200 Response("changes saved")

alt [internal error]

alt [database error]

 Applegarth 58

X. Flowchart Utilities

For any selected flowchart, there are utilities that exist to perform additional non-manipulative
functionality. These utilities are:

1. Duplicate flowchart
2. Export flowchart as PDF

This chapter will describe these utilities and how they work.

Duplicate Flowchart
The duplicate flowchart utility is quite simple but powerful for creating snapshots of academic
plans to compare against. When a user clicks “Duplicate Flow” in the Actions dropdown (see
Figure 32), a flowchart is created at the bottom of the user’s flowchart list that is a duplicate of
the original flowchart with the following changes:

1. The new flowchart name is “Copy of {original flowchart name}”
2. The new flowchart has a unique ID (does not share flowchart IDs with the original

flowchart)
See Figure 43 for a sequence diagram of this process.

Figure 43: Sequence diagram for the routine to duplicate a selected flowchart. This diagram assumes the POST

request to the web server is correct from the frontend and that the user is authenticated.

Duplicate Flowchart Routine

User
Flow Editor Web Server Database

User logged in

Select flowchart

Select "Duplicate Flow" in Actions Dropdown

Update local state
(create duplicate flowchart)

POST /api/user/data/updateUserFlowcharts
(type=FLOW_UPSERT_ALL, data=duplicated flowchart)

500 Response("internal error occurred")

Restore previous local state

Display "internal error occurred" message

Upsert new flowchart record (user ID, new flowchart, last updated)

Database error

500 Response("internal error")

Restore previouos local state

Display "internal error occurred" message

OK

200 Response("changes saved")

alt [internal error]

alt [database error]

 Applegarth 59

Export Flowchart as PDF
The export flowchart as PDF feature allows the user to download a PDF version of the currently
selected flowchart. This utility is more complex due to the PDF rendering process, as this work is
all done on the server. On the server, a special template called an Embedded JavaScript (EJS)
[40] template is used to generate an HTML representation of the requested flowchart. After this
HTML template is generated, it is loaded into a headless Google Chrome browser instance,
Puppeteer [41]. This headless browser is spun up every time a PDF export operation occurs and
is used to save the HTML template as a PDF. This PDF file is then sent back to the browser for
the user to download.

Other PDF generation options were considered, with the primary alternative being to use
JavaScript to manually create a PDF file from scratch. Initial efforts for this approach proved to
be time consuming and brittle, so the Puppeteer option was selected instead. However, the
Puppeteer option does consume extra resources as a dedicated headless browser needs to be spun
up for every PDF export operation.

See Figure 32 for the “Export Flow as PDF” option in the Actions dropdown and Figure 44 for
the corresponding sequence diagram.

Figure 44: Sequence diagram for the routine to export a selected flowchart as a PDF. This diagram assumes the
POST request to the web server is correct from the frontend, that the user is authenticated, and that the requested

flowchart exists.

Export Flowchart as PDF Routine

User
Flow Editor Web Server Database

User logged in

Select flowchart

Select "Export Flow as PDF" option in Actions Dropdown

GET /api/data/generatePDF?flowchartID={flowchartID}

500 Response("internal error")

Display "internal error occurred" message

Fetch requested flowchart (flowchartID)

Database error

500 Response("internal error")

Display "internal error occurred" message

OK

Generate HTML template
for PDF export

Puppeteer Instance
Spin up headless browser

Render and export
HTML template as PDF

Throw error

500 Response("internal error")

Display "internal error occurred" message

Save PDF

200 Response(pdf binary)

Download PDF file to computer

alt [internal error]

alt [database error]

alt [puppeteer error]

 Applegarth 60

XI. State Management

This section details the various techniques that PolyFlowBuilder utilizes to maintain state across
the application. The state management problems that to be addressed are:

1. User Authentication
2. Syncing user data between the frontend and backend
3. Maintaining frontend state

User Authentication
To have data associated with individual users, PolyFlowBuilder needs to authenticate users when
they make various requests (and to determine authorization, but this is not a state management
issue). There are two ways to authenticate users:

1. Session-based authentication
2. Token-based authentication

Session-based authentication is where the application keeps track of the current user session by
storing a session record in a database that contains a session ID and user. This session ID is then
saved as a cookie on the user’s browser and sent to the server on each request. This ID is
compared against the currently active sessions to determine which user made the request.

Token-based authentication is where a unique token (usually a JSON Web Token, or JWT) is
stored on the user’s browser, which is a small, encrypted payload that includes the user’s identity
and resources that user can authorize. This token is then sent to the server for every request,
where it is decrypted and examined accordingly.

The big difference between these types of authentication schemas is that sessions store state on
the server per active session, where token-based authenticate is stateless from the server
perspective. However, there are security benefits to having information only located on the
server to verify user identity (versus a stateless token, with JWTs in particular).

 Applegarth 61

Figure 45: Sequence diagrams comparing traditional session-based (cookie) authentication versus modern token-

based authentication [42].

PolyFlowBuilder uses session-based authentication as the mechanism to identify users when
requests are made. Sessions on the server allows for arguably stronger security and the
application is not (yet) at a scale where the overhead of a centralized database becomes a
problem (which is where stateless authentication shows a clear advantage). Token-based
authentication also introduces extra complexity that is currently unnecessary (e.g., refresh
tokens, invalidating bad tokens, security issues with using JWTs as session tokens, etc.).

User Data Syncing
Another fundamental problem that needs to be addressed is how to ensure the user data on the
frontend and backend are kept in sync with each other. The simplest but most naïve approach is
to simply to overwrite all user data on the backend whenever a change to the user data is made in
the frontend, illustrated in Figure 46.

 Applegarth 62

Figure 46: Sequence diagram representing the naïve way to update user data. Note that no failure cases are shown

here. As the user data object grows, so do the size of the requests from the frontend to the backend.

The existing version of PolyFlowBuilder semi-follows this naïve approach, where an entire
flowchart is overwritten in the database when any change is made in the frontend. This approach
does not scale very well, especially as the amount of data associated with a user grows over time.

Therefore, to alleviate these inefficiencies, for operations that modify the user data (which are
just flowcharts for the time being), a “chunking” or “update difference (diff)” system is
introduced where only the changes that were made to the data are sent to the server. The frontend
and backend then both update their current representations of the data independently from these
changes to stay in sync. The version of PolyFlowBuilder detailed in this report utilizes the update
chunking mechanism to keep user data synced when possible. Figure 47 illustrates this concept.

Naive User Data Syncing

User
Frontend Backend Database

Make changeto portion of user data in UI

Update local user data object
to reflect changes made in UI

Send update request with
entire user data object

Overwrite existing user data object
with new user data object

Database response

Backend response

Response

 Applegarth 63

Figure 47: Sequence diagram representing the “update chunking” or “update difference” way to update user data.
Observe that more work is done between the backend and database components to fetch the current version of user
data. However, the requests from the frontend to the backend are much smaller, allowing for a snappier experience
for users that might have slower Internet connections. Care must also be taken to ensure that the backend receives

the updates in the correct order so that the data is updated properly. Note that no failure cases are shown here.

Observe that in both cases, the local copy of the data is always updated first before attempting to
update the remote copy of the data. This is a form of opportunistic updating, and it allows for a
better user experience as changes are seen immediately. If the server update fails, a message is
sent back to the frontend to allow for the local change to be rolled back accordingly.

Frontend State Management
Due to the high degree of interactivity of the PolyFlowBuilder user interface, managing this state
in the browser can become complicated if not done efficiently. Luckily, Svelte, the frontend
framework that PolyFlowBuilder is built with, allows for state management to be elegant and
straightforward between components. There are four different Svelte mechanisms that
PolyFlowBuilder takes advantage of to ensure the efficient use of state:

1. Component properties (“props”): this allows for data to be passed from parent to child in
a hierarchical fashion by allowing the parent component to mutate the “props” a child
component exposes (see Figure 48).

2. Component property bindings: this allows for bidirectional data flow by enabling a parent
component to pass data to a child component using props, but also enables the child’s
changes to this prop to propagate back to the parent (see Figure 49).

3. Component events: this enables components to emit custom messages that its immediate
parent can listen for and handle (see Figure 50).

User Data Syncing via Update Chunking

User
Frontend Backend Database

Make change to portion of user data in UI

Generate update chunk by computing
the required changes to the user data object

Update local user data object
to reflect changes made in UI

Send update request with
update chunk only

Fetch current relevant user data object

OK

Update relevant portion
of remote user data object using update chunk data

Persist updated relevant portion of user data object

OK

Update successful

Update successful

 Applegarth 64

4. Svelte stores: these are global state containers that publish updates to subscribers of the
store when their internal values are modified, which are simple yet very powerful if used
correctly (see Figure 51).

Figure 48: Propagating state from a parent component to child(ren) components using props [43]. Note that the data

flow is one-way, from the parent to the child. Component props are used with things such as the PolyFlowBuilder
course cards in the flow viewer.

Figure 49: Allowing state in the parent to both be propagated and updated to/from child(ren) components using prop

bindings [43]. Note that the data flow is bidirectional between the parent and child. A good use of prop bindings
would be for textbox values – a parent can set the default value, but the child that contains the textbox can update

the current value as well.

 Applegarth 65

Figure 50: Using component custom events to send messages from a child component to its parent, where a listener

intercepts and handles the message [43]. Used for interactions such as drag-and-drop and clicking.

Figure 51: Using Svelte stores to store a plethora of state that multiple independent component trees need to interact

with [43]. Svelte stores work using a publisher/subscriber model, which allows logic to run only when state is
changed (as opposed to techniques such as polling).

 Applegarth 66

XII. Backend

The PolyFlowBuilder backend is built using SvelteKit, PolyFlowBuilder’s application
framework, which runs on the NodeJS runtime. The PolyFlowBuilder backend has two purposes:

1. Serve requests for content, such as frontend pages, pictures, etc.
2. Expose a set of APIs that the frontend/other applications can interact with to achieve

specific functionality.
This chapter will describe how the PolyFlowBuilder backend is configured to meet these needs.

Serving Content Effectively
The backend is crucial to ensuring a snappy user experience. To this end, content should be
served to the user from the backend as efficiently as possible to enable a fast time-to-interaction
(TTI). This is straightforward to do with static content, as it does not change and is very fast to
render. However, with modern web applications that have large degrees of dynamic content and
interactivity, page loads and TTI can suffer due to the need for (potentially large) JavaScript
bundles to load and execute in the browser. PolyFlowBuilder is one such application where this
can be an issue.

Fortunately, there are techniques to mitigate these issues and to ensure a snappy experience for
the user. These techniques are in the form of web rendering techniques, which are different
methods for how to fetch and render content from the backend on the frontend.

The three categories of web rendering techniques [44] are:

1. Server-side rendering (SSR): load and generate an HTML page on the server with the
dynamic content already added.

2. Client-side rendering (CSR): load the HTML and JavaScript from the server on the client
and perform all dynamic processing and rendering on the client.

3. Something in between CSR and SSR: there are more sophisticated techniques that
include advantages from both CSR and SSR techniques (e.g., hydration).

See Figure 52 for a comparison between common web rendering techniques.

PolyFlowBuilder, through SvelteKit, uses server-side rendering to deliver the initial content (see
the Application Interface chapter). The client then takes over to render and fetch additional
pieces of content/data from the various backend APIs. This approach has two core benefits:

1. Because there is limited JavaScript dynamically updating the content of the page, search
engines can better crawl and index these pages. This results in better search engine
optimization (SEO) scores.

2. The TTI for webpages with dynamic content (e.g., the flowchart editor) is much faster
and more consistent compared to the TTI for dynamic pages that need to be rendered on
the client (especially as the complexity of the web application grows).

 Applegarth 67

Figure 52: Comparison between five common rendering techniques to effectively serve content to users [44].

Backend APIs
All interactions that the frontend needs to have with the backend that don’t involve content
serving are done through the exposed APIs that the backend provides. In PolyFlowBuilder, all
APIs are HTTP-based, but other protocols and techniques exist that are optimal depending on
what the use case is. See Table 12 for the APIs exposed by PolyFlowBuilder.

Table 12. PolyFlowBuilder backend APIs.
API Endpoints Notes
User
account
management

POST api/auth/register
POST api/auth/login
DELETE api/auth/login
POST api/auth/forgotpassword
POST api/auth/resetpassword

See the User Account
Management chapter.

User
flowchart
data

GET /api/user/data/getUserFlowcharts
POST /api/user/data/updateUserFlowcharts

APIs to interact with and
manipulate user flowchart data.

Flowchart
editor data

GET /api/data/getAvailableProgramData
POST /api/data/searchCatalog

APIs to fetch data the flowchart
editor requires.

Flowchart
data utilities

GET /api/data/generateFlowchart
GET /api/data/generatePDF

APIs to perform various data-
related actions with flowcharts.

 Applegarth 68

XIII. Database

The database is a critical component of the PolyFlowBuilder architecture, as all persistent data
lives here. This includes all user data and all API data. Data in PolyFlowBuilder is inherently
relational, so MySQL was chosen as the database for its ease of use, flexibility, and wide
adoption.

Data Tables
The data required by PolyFlowBuilder is made up of the tables seen in Table 13. The entity-
relationship diagram for these tables can be seen in Figure 53.

Table 13. Data tables to organize PolyFlowBuilder data.
Table Name Description
User Table for user account information is stored

(user ID, username, email, password, etc.).
Token Table for tokens storage (session tokens,

password reset tokens).
FeedbackReport Table for feedback reports from the Submit

Feedback page.
Flowchart Table for all flowcharts created by users.
Program Table that stores data for all supported

academic programs.
Catalog Table that stores data for all supported

catalogs (YYYY-YYYY format).
StartYear Table that stores data for all supported start

years (YYYY format).
TemplateFlowchart Table that stores data for all template

flowcharts. These template flowcharts have a
1:1 mapping to the public PDF template
flowcharts [1].

Course Table that stores data for all supported courses
(all courses in all supported catalogs).

CourseRequisite Table that stores data for the course requisites
of all supported courses.

GECourse Table that stores data for the course GE
category of all supported courses.

TermTypicallyOffered Table that stores data for the course term
typically offered information of all supported
courses [36].

 Applegarth 69

Figure 53: Entity-relationship (ER) diagram for the SQL tables used to store PolyFlowBuilder data.

Interacting with The Database
To interact with a MySQL database from the backend, three techniques can be used:

1. Use a minimal driver to issue raw SQL statements to the database.
2. Use a query builder to generate SQL statements using a more developer-friendly syntax.
3. Use an object relational mapper (ORM) to map records in SQL tables to language-native

objects.
The first technique is the least abstracted and requires the most logic to integrate with an existing
system, whereas the third technique is the most abstracted. However, using the minimal driver is
arguably the most performant as you know exactly what queries you are issuing to the database.
This differs from the other two techniques, which programmatically issue SQL statements to
achieve the desired end behavior. If a poor query builder or ORM are used (or in a way that is
not recommended), these SQL statements can quickly add up and become unoptimized, yielding
a less performant experience.

The current version of PolyFlowBuilder used the minimal driver approach as performance and
granularity of what the database did was imperative, and learning SQL was of priority. However,
the design goals changed from the current version to the new version to prioritize code
maintainability, readability, and reliability over strict performance.

 Applegarth 70

Therefore, the new version of PolyFlowBuilder uses an ORM, Prisma [26], to interact with the
database. This allows for developers to focus on what operations need to occur to the database to
achieve the expected result, not how they are done. Additionally, various implementation
concerns, such as SQL injection attacks, are abstracted away when not using a minimal driver.

See Figure 54 and Figure 55 for a code comparison between using a minimal driver and an
ORM (Prisma) to interact with the SQL database.

Figure 54: Source code in the current version of PolyFlowBuilder to add a new user to the database from the

backend (does not include existing user checks). Observe how an explicit SQL statement is created and
parameterized before being issued to the database.

Figure 55: Source code in the rewritten version of PolyFlowBuilder to add a new user to the database from the

backend. Observe how no explicit SQL statements are defined; instead, database operations are performed through
function calls on the respective tables (wrapped by the Prisma ORM).

 Applegarth 71

XIV. Evaluation

As seen in the previous chapters, a monumental amount of work went into developing and
rewriting PolyFlowBuilder. Therefore, because this project is within the bounds of a senior
project, proper evaluation metrics must be stated and measured to determine whether the project
holistically was a “success”, “failure”, or somewhere in between. This chapter will describe the
various criteria to determine project success.

Evaluation Metrics
The evaluation criteria for this project are detailed in Table 14.

Table 14. Criteria for evaluating senior project success.
Evaluation Metric Acceptance Criteria
Feature implementation All features mentioned in the Scope of Work

section should be implemented and tested.
Feature parity with current live website There should be feature parity between the

flowchart functionality offered in the new
version of PolyFlowBuilder developed for
this project and the existing production
website.

End-to-end tests All end-to-end tests written to test the
implemented features should be passing.

Integration tests All integration tests written to test the
implemented features should be passing.

Unit tests All unit tests written to test the implemented
features should be passing.

User feedback Users that are beta testing the new website
should be able to verify that no critical bugs
exist in the current implementation of the
project. If bugs are reported, these are
addressed and either fixed before the project
is complete, or a plan is put in place to fix the
broken behavior after the project is finished.

These criteria ensure a holistic evaluation of the project’s many different systems and how they
interact with each other, as well as how the user experience in the rewritten version of
PolyFlowBuilder compares to the existing version.

 Applegarth 72

Evaluation Results
This section describes the evaluation results, using the evaluation metrics detailed in the
Evaluation Metrics section.

Feature Implementation
This metric evaluates to what degree the high-level features defined in the Scope of Work
chapter were completed within the senior project timeframe.

Each feature has a unique “feature code” seen in Table 15, which is derived from the bullet
number of a particular feature in the Scope of Work chapter. For example, code “I-1-a” is the
feature defined in Phase I, item 1, subitem a: “standard metadata about each course (name,
description, number of units, etc.)”.

The various levels of completion metric are defined as follows:

1. Complete (R) – the feature is fully implemented according to the specification.
2. Feature incomplete (∆) – the feature logic not fully implemented according to the

specification.
3. Tests incomplete (R) – the feature logic is fully implemented but not fully tested

according to the specification.
4. Feature not implemented (S) – the feature is not implemented.

Table 15. Feature implementation results.
Feature
Code

Completion
Metric

Feature Exists in
PolyFlowBuilder
1.0

Notes

I-1-a R Yes n/a
I-1-b R Yes n/a
I-1-c R Yes n/a
I-2 R Yes n/a
I-3 R Yes n/a
I-4 R Partial Data is currently cached on the local filesystem

from the database on startup.
I-5 R Yes n/a

II-1-a R Yes n/a
II-1-b R Yes n/a
II-1-c R Yes n/a
II-1-d R Yes n/a
II-2 R Yes n/a
II-3 R Yes n/a
III-1 R Yes n/a

 Applegarth 73

III-2 R Yes n/a
III-3 R Yes n/a
IV-1 R Yes n/a
IV-2 R Yes n/a
IV-3 R Yes n/a

IV-4-a R Yes Feature was tested via manual inspection.
Automated tests were not written due to time
constraints.

IV-4-b R Yes Feature was tested via manual inspection.
Automated tests were not written due to time
constraints.

IV-4-c ∆ No The UI to modify the associated flowchart
programs exists, but the logic to persist these
flowchart program modifications is not
implemented due to time constraints.

Additionally, this feature is not present in the
current version of PolyFlowBuilder, so it was
deprioritized in favor of features that contribute
to existing feature parity.

IV-5-a R Yes n/a
IV-5-b R Yes n/a
IV-5-c R Yes Feature was tested via manual inspection.

Automated tests were not written due to time
constraints.

IV-6-a-i R Yes Feature was tested via manual inspection.
Automated tests were not written due to time
constraints.

IV-6-a-ii R Yes Feature was tested via manual inspection.
Automated tests were not written due to time
constraints.

IV-6-a-iii R Yes Feature was tested via manual inspection.
Automated tests were not written due to time
constraints.

IV-6-a-iv R Yes Feature was tested via manual inspection.
Automated tests were not written due to time
constraints.

IV-6-b R Yes Feature was tested via manual inspection.
Automated tests were not written due to time
constraints.

 Applegarth 74

V-1 R Yes Feature was tested via manual inspection.
Automated tests were not written due to time
constraints.

V-2 R Yes Feature was tested via manual inspection.
Automated tests were not written due to time
constraints.

V-3-a S Yes Feature could not be implemented due to time
constraints.

V-3-b S Yes Feature could not be implemented due to time
constraints.

V-3-c S Yes Feature could not be implemented due to time
constraints.

V-3-d S Yes Feature could not be implemented due to time
constraints.

From the results seen in Table 15, this evaluation metric is considered mostly satisfied.

Feature Parity
From Table 15, we see that all features that contribute to feature parity with the existing version
of PolyFlowBuilder have been implemented except for the flowchart validation system
(requirements V-3-a through V-3-d).

Additionally, there are several high-level components of the new version of PolyFlowBuilder
that do not exist in the current version, which are:

1. Support for multiple flowchart programs in a single flowchart
2. Automated tests for production-facing features

These features are part of the future roadmap for new features meant to increase user
productivity. These features needed to be implemented at this stage of the project as they both
heavily influence core functionality.

From these results, this evaluation metric is considered mostly satisfied.

End-to-End and Integration Tests
To increase the quality of code and application robustness at an application level, automated tests
were used significantly. End-to-end and integration tests were written using the test runner
Playwright [45]. To test the application on a more holistic level, Playwright will:

1. Create a production build of the application.
2. run a local instance of the production application.
3. run automated tests against the local instance.

 Applegarth 75

In this version of PolyFlowBuilder, there are 184 unique end-to-end/integration tests that were
written to test the features detailed in the Scope of Work and Feature Integration sections. See
Figure 56 for a visual of the automated Playwright test runner.

Figure 56: Playwright test runner executing all automated end-to-end and integration tests against a local instance

of the production PolyFlowBuilder application.

As can be seen in Figure 56, all end-to-end and integration tests are passing successfully, so this
evaluation metric is considered satisfied.

Unit Tests
To increase the quality of code and application robustness at the “unit” level (individual
functions, components, etc.), automated tests were used significantly. Unit tests were written
using the test runner Vitest [46] to ensure individual units of the application were working before
testing their interactions with each other (in integration and end-to-end tests).

In this version of PolyFlowBuilder, there are 100 unique unit tests that were written to test the
functionality of individual functions and components in the application. See Figure 57 for a
visual of the automated Vitest test runner.

 Applegarth 76

Figure 57: Vitest test runner executing all automated unit tests against individual functions and components that

make up the PolyFlowBuilder application.

As can be seen in Figure 57, all unit tests are passing successfully, so this evaluation metric is
considered satisfied.

User Feedback
One of the most important evaluation metrics for an application that will eventually be used by
an entire community of people is the feedback from them before the application is launched.
When the project was close to feature-complete (in the scope of the senior project), various users
of the existing PolyFlowBuilder platform were asked to compare their experiences with the
rewritten version and to provide any feedback they had. A summary of this feedback is collected
in Table 16.

Table 16. Summary of feedback received during project development.
Type Feedback Action
Bug
(minor)

The list of flowcharts in the flowchart editor only
load when the user first navigates to the flowchart
editor. If the user navigates away from the
flowchart editor and back to it, the list of
flowcharts does not reload.

Need to perform root-cause
analysis – this bug was
reported at the end of the
development cycle.

Bug
(minimal)

The “New Flow”, “Actions”, and “Delete Flow”
buttons are slightly misaligned in Google Chrome.

Need to perform root-cause
analysis – this bug was
reported at the end of the
development cycle.

 Applegarth 77

Suggestion When multiple courses are selected, let a click in
the flowchart that is not on a course deselect all
courses.

Consider usefulness of
suggestion and implement.

Suggestion Color scheme of some components (action
buttons, courses) to ensure accessibility to
colorblind users.

Consider changing colors of
impacted components to be
more accessible and
perform A/B testing.

Suggestion Consider relocating “New Flow” action button at
the bottom of the flowchart list and the “Delete
Flow” action button next to each flowchart.

Consider impact to usability
and perform A/B testing.

Comment Course searching matches queries better in the
newer version.

None

Comment Selecting multiple terms in add/remove terms can
be nonintuitive

Consider adding
helper/guides to inform
users how to select multiple
terms.

Comment New user interface is smoother, cleaner, less
cluttered, and preferred overall to the existing
interface.

None

Comment Course selection interface and concept is preferred
to existing interface.

None

Comment Credit bin interface is very useful for storing
courses that user has received credit for.

None

Comment Cannot add programs that are not on the catalog(s)
that a flowchart is loaded for.

Consider alternative use
cases to see if this
functionality needs to be
changed.

As the feedback received from users throughout the development cycle of this project was
overall positive with all bugs and issues having a clear path to resolution, this evaluation metric
is considered satisfied.

 Applegarth 78

XV. Conclusions

Current Project State
By the end of the senior project, a significant amount of work has been accomplished. This work
is summarized in the following points:

1. A rewritten PolyFlowBuilder codebase exists and has parity with a vast majority of the
features seen in the existing version.

2. The rewritten codebase has automated tests to cover a vast majority of important
application functionality.

3. The rewritten codebase is built to a production-grade standard and is in a state where it
can scale easily to additional features and complexity.

4. The rewritten codebase has been extensively evaluated through the scope of the senior
project evaluation metrics (see the Evaluation chapter) and passed a majority of the
criteria. Only the validation features and a handful of feature tests are missing, with
everything else being fully satisfied.

5. The project is ready for further development but can run with no major issues in its
current form as a replacement to the existing PolyFlowBuilder application.

From a holistic perspective, considering the amount of work done and what this work enables for
the future of PolyFlowBuilder at Cal Poly, along with the success of the evaluation criteria, the
senior project was a success.

Project Takeaways
With a project this large, there are many lessons to be learned in project management, planning,
and software development. The largest takeaways for me are:

1. If something can go wrong, it eventually will go wrong.
2. Be realistic with timelines and how much work you can accomplish, especially if you

have other commitments. I vastly underestimated the development time for some portions
of the project, and as a result not everything was completed optimally (e.g., missing the
validation suite of features and not everything is fully tested).

3. Small incremental work is often better than occasional chunks of large work. I found that
if I worked on making small progress every day, I was able to accomplish more in the
same time frame compared to if I did all that work in a single development session.

4. Always solicit user feedback. Some features that intuitively make sense to me may not
make sense to others that use the platform. Other users may also have suggestions and
other feedback that wasn’t considered previously.

5. Developing software that is maintainable, reliable, robust, and scalable is hard! I did not
always get things right which resulted in additional development time spent rewriting
various components of systems to be more performant.

 Applegarth 79

Future Work
Although the amount of work currently done for PolyFlowBuilder is significant, there is still a
monumental amount of work to be done in the future. A non-exhaustive list of these future work
tasks can be seen below:

1. Implement the flowchart validation suite of features and add automated tests for all
missed items.

2. Perform more user testing to ensure changes are well accepted, rational, and intuitive.
3. Continue implementing support for multiple academic programs.
4. Begin implementing “shared marketplace” for flowcharts where flowcharts can be

published and imported by other users.
5. Reach out to Cal Poly to inquire about access to more structured data for things like

template flowcharts, advanced course metadata, etc.
6. Implement features to help users with the impending quarter-to-semester transition.
7. Implement curriculum sheet validation, to determine whether a collection of courses

satisfies degree requirements.
The list goes on. The future work will eventually be carried out (hopefully) by other Cal Poly
students to ensure that the project does not fizzle out due to my eventual departure from the
project. The future is exciting for PolyFlowBuilder!

 Applegarth 80

References

[1] California Polytechnic State University, San Luis Obispo. “Degree Flowcharts and
Curriculum Sheets”. Available: https://flowcharts.calpoly.edu. [Accessed June 2023]

[2] California Polytechnic State University, San Luis Obispo. “B.S. in Computer Engineering”.
Available: https://flowcharts.calpoly.edu/downloads/mymap/21-22.52CPEBSU.pdf. [Accessed
June 2023]

[3] California Polytechnic State University, San Luis Obispo. “2022-2026 Academic Catalog”.
Available: https://catalog.calpoly.edu. [Accessed June 2023]

[4] Altice USA News, Inc. “Rate My Professors”. Available: https://ratemyprofessors.com.
[Accessed June 2023]

[5] Polyratings. “Polyratings”. Available: https://polyratings.dev. [Accessed June 2023]

[6] Batch, Meeder. “PolyFlows”. Available:
https://web.archive.org/web/20151206214231/http://polyflows.com/. [Accessed June 2023]

[7] Applegarth. “PolyFlowBuilder”. Available: https://polyflowbuilder.duncanapple.io.
[Accessed June 2023]

[8] Oracle. “MySQL”. Available: https://mysql.com. [Accessed June 2023]

[9] The PostgreSQL Global Development Group. “PostgreSQL: The World’s Most Advanced
Open Source Relational Database”. Available: https://postgresql.org. [Accessed June 2023]

[10] MongoDB, Inc. “MongoDB: Build the next big thing”. Available: https://mongodb.com.
[Accessed June 2023]

[11] Learn Computer Science. “Full Stack Developer”. Available:
https://www.learncomputerscienceonline.com/full-stack-developer/. [Accessed June 2023]

[12] Raval. “Top 5 Frontend Frameworks to Look for Your Upcoming Web Project”. 29 March
2023. Available: https://radixweb.com/blog/top-front-end-frameworks-for-web-development.
[Accessed June 2023]

[13] Back4app. “Top 10 Backend Frameworks In 2023”. Available:
https://blog.back4app.com/backend-frameworks/. [Accessed June 2023]

 Applegarth 81

[14] Vercel. “Next.JS: The React Framework for the Web”. Available: https://nextjs.org.
[Accessed June 2023]

[15] Meta Open Source. “React: The library for web and native user interfaces”. Available:
https://react.dev. [Accessed June 2023]

[16] Gatsby, Inc. “Gatsby: The Fastest Frontend for the Headless Web”. Available:
https://www.gatsbyjs.com/. [Accessed June 2023]

[17] Nuxt. “Nuxt: The Intuitive Web Framework”. Available: https://nuxt.com. [Accessed June
2023]

[18] You. “Vue.js: The Progressive JavaScript Framework”. Available: https://vuejs.org.
[Accessed June 2023]

[19] Google. “Angular: Deliver web apps with confidence”. Available: https://angular.io.
[Accessed June 2023]

[20] SvelteKit. “SvelteKit: web development, streamlined”. Available: https://kit.svelte.dev.
[Accessed June 2023]

[21] Svelte. “Svelte: Cybernetically enhanced web apps”. Available: https://svelte.dev. [Accessed
June 2023]

[22] Khan et al. “SQL and NoSQL Databases Software architectures performance analysis and
assessments – A systematic literature review”. September 2022. Available:
http://dx.doi.org/10.48550/arXiv.2209.06977. [Accessed June 2023]

[23] OpenJS Foundation. “Nodejs”. Available: https://nodejs.org/en. [Accessed June 2023]

[24] Microsoft. “TypeScript”. Available: https://www.typescriptlang.org/. [Accessed June 2023]

[25] The Mozilla Foundation. “What is JavaScript?”. Available: https://developer.mozilla.org/en-
US/docs/Learn/JavaScript/First_steps/What_is_JavaScript. [Accessed June 2023]

[26] Prisma Data, Inc. “Prisma: Next-generation Node.js and TypeScript ORM”. Available:
https://prisma.io. [Accessed June 2023]

[27] TypeORM. “TypeORM”. Available: https://typeorm.io. [Accessed June 2023]

 Applegarth 82

[28] Adámek. “MikroORM: TypeScript ORM for Node.js, based on Data Mapper, Unit of Work
and Identity Map patterns”. Available: https://mikro-orm.io. [Accessed June 2023]

[29] Bootstrap team. “Build fast, responsive sites with Bootstrap”. Available:
https://getboostrap.com. [Accessed June 2023]

[30] Tailwind CSS. “Rapidly build modern websites without ever learning your HTML”.
Available: https://tailwindcss.com. [Accessed June 2023]

[31] Saadeghi. “DaisyUI. The most popular component library for Tailwind CSS”. Available:
https://daisyui.com. [Accessed June 2023]

[32] California Polytechnic State University, San Luis Obispo. “2015-2017 Academic Catalog”.
Available: https://catalog.calpoly.edu/previouscatalogs/2015-2017/. [Accessed June 2023]

[33] California Polytechnic State University, San Luis Obispo. “2017-2019 Academic Catalog”.
Available: https://catalog.calpoly.edu/previouscatalogs/2017-2019/. [Accessed June 2023]

[34] California Polytechnic State University, San Luis Obispo. “2019-2020 Academic Catalog”.
Available: https://catalog.calpoly.edu/previouscatalogs/2019-2020/. [Accessed June 2023]

[35] California Polytechnic State University, San Luis Obispo. “2020-2021 Academic Catalog”.
Available: https://catalog.calpoly.edu/previouscatalogs/2020-2021/. [Accessed June 2023]

[36] California Polytechnic State University, San Luis Obispo. “2021-2022 Academic Catalog”.
Available: https://catalog.calpoly.edu/previouscatalogs/2021-2022/. [Accessed June 2023]

[37] Office of the Registrar. “Term Typically Offered”. Available:
https://registrar.calpoly.edu/term-typically-offered. [Accessed June 2023]

[38] Biryukov, Dinu, Khovratovich. “Argon2: the memory-hard function for password hashing
and other applications”. Available: https://www.password-hashing.net/argon2-specs.pdf.
[Accessed June 2023]

[39] Redis Ltd. “Redis: The open source, in-memory data store used by millions of developers as
a database, cache, streaming engine, and message broker”. Available: https://redis.io. [Accessed
June 2023]

 Applegarth 83

[40] Eernisse. “EJS. Embedded JavaScript templating”. Available: https://ejs.co. [Accessed June
2023]

[41] Google. “Puppeteer”. Available: https://pptr.dev/. [Accessed June 2023]

[42] CodeSpot. “Token vs Session Authentication”. Available: https://www.codespot.org/token-
vs-session-authentication/. [Accessed June 2023]

[43] Joy of Code. “Svelte State Management Guide”. Available: https://joyofcode.xyz/svelte-
state-management. [Accessed June 2023]

[44] Google Developers. “Rendering on the Web”. Available: https://web.dev/rendering-on-the-
web/. [Accessed June 2023]

[45] Microsoft. “Playwright. Playwright enables reliable end-to-end testing for modern web
apps”. Available: https://playwright.dev. [Accessed June 2023]

[46] Fu, Capeletto, Vitest contributors. “Vitest: Blazing Fast Unit Test Framework”. Available:
https://vitest.dev/. [Accessed June 2023]

