
SIMPLE OPEN-SOURCE FORMAL VERIFICATION OF INDUSTRIAL

PROGRAMS

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Christopher Peterson

March 2023

© 2023

Christopher Peterson

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Simple Open-Source Formal Verification of

Industrial Programs

AUTHOR: Christopher Peterson

DATE SUBMITTED: March 2023

COMMITTEE CHAIR: Stephen R. Beard, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Aaron Keen, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: John Clements, Ph.D.

Professor of Computer Science

iii

ABSTRACT

Simple Open-Source Formal Verification of Industrial Programs

Christopher Peterson

Industrial programs written on Programmable Logic Controllers (PLCs) have become

an essential component of many modern industries, including automotive, aerospace,

manufacturing, infrastructure, and even amusement parks. As these safety-critical

systems become larger and more complex, ensuring their continuous error-free op-

eration has become a significant and important challenge. Formal methods are a

potential solution to this issue but have traditionally required substantial time and

expertise to deploy. This usability issue is compounded by the fact that PLCs are

highly proprietary and have substantial licensing costs, making it difficult to learn

about or deploy formal methods on them.

This thesis presents the OPPP (Open-source Proving of PLC Programs) system as a

solution to this usability issue. The OPPP system allows the end-to-end creation and

verification of PLC programs from within the development environment. The system

is created with an emphasis on being easy to use, with formal constraints presented

in English phrases that require no special knowledge to understand. The system uses

entirely open-source components, including modified versions of both the OpenPLC

[1] development environment and the PLCverif [2] verification platform. The OPPP

system is then demonstrated to formalize the requirements of two college-level in-

troductory PLC programming problems. It is further demonstrated to correctly find

errors in and verify the correctness of a known good and known bad solution to each

problem.

iv

ACKNOWLEDGMENTS

Thanks to:

• My parents, for supporting my passion for science and technology, and for in-

spiring this thesis topic.

• Dr. Beard, for guiding me through the entire thesis process and for providing

critical advice.

• Ignacio David Lopez, for answering my questions about PLCverif.

• Desiree Bryan, for being a wonderful and caring girlfriend and for giving me her

constant support throughout the more stressful days.

• Hanson, Jose, and all of my friends who helped keep me sane and on track.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 Introduction . 1

1.1 Usability Concerns . 2

1.2 Contributions . 3

2 Background and Motivation . 5

2.1 Programmable Logic Controllers . 5

2.1.1 PLC Programming Languages 5

2.1.2 Proprietary Nature . 6

2.2 Program Verification . 7

2.2.1 Model Checkers . 8

2.3 OpenPLC . 9

2.4 Compilers . 10

2.4.1 Context-Free Grammar . 10

2.4.2 Abstract Syntax Tree . 11

2.4.3 ANTLR . 11

2.5 PLCverif . 11

2.5.1 Control-Flow Automata . 13

2.5.2 Verification Requirements . 14

2.5.3 STEP7 Frontend . 14

2.6 This Thesis: The OPPP System . 15

vi

3 System Design . 16

3.1 Initial System and Contributions . 16

3.2 OpenPLC Editor . 18

3.2.1 Verification Mod . 21

3.3 Built-in POU Library . 21

3.4 PLCverif . 22

3.5 NuSMV . 24

4 Implementation . 26

4.1 LD Programming . 26

4.2 ST Transformation . 27

4.3 Parsing and Validation . 30

4.3.1 Built-in POU Library . 30

4.3.2 Parsing . 31

4.3.3 AST Generation . 33

4.3.4 Validation . 33

4.3.5 Optimizations . 34

4.4 CFA Network Generation . 35

4.5 Requirements Definition . 38

4.6 Result Reporting . 40

5 Case Studies . 42

5.1 Stoplight Control . 42

5.1.1 Problem Definition . 42

5.1.2 Formal Requirements . 44

5.1.3 Known Bad Program . 46

5.1.4 Known Good Program . 49

vii

5.2 Tank Control . 52

5.2.1 Problem Definition . 52

5.2.2 Formal Requirements . 54

5.2.3 Known Bad Program . 56

5.2.4 Known Good Program . 60

6 Conclusion and Future Work . 63

6.1 Conclusion . 63

6.2 Future Work . 63

BIBLIOGRAPHY . 65

APPENDICES

A PLCverif Phrases . 69

B OpenPLC ST Grammar . 70

viii

LIST OF TABLES

Table Page

4.1 Variable declarations for example LD program. 26

4.2 Information about the POUs included in the built-in POU library file. 31

5.1 Variable declarations for stoplight control signals. 43

5.2 Known bad stoplight program verification results. 48

5.3 Known good stoplight program verification results. 52

5.4 Variable declarations for tank control signals. 53

5.5 Known bad tank program verification results. 57

5.6 Known good tank program verification results. 62

ix

LIST OF FIGURES

Figure Page

2.1 A simple LD program that performs two mathematical operations
and assigns the result back. 6

2.2 Example automaton for the selection function. 13

3.1 The initial interactions between OpenPLC and PLCverif before this
thesis. 17

3.2 OPPP System. Red boxes indicate this thesis’s contributions. . . . 19

3.3 A simple LD program created in the OpenPLC Editor. The program
turns the alarm LED on and off when the value of the overflow sensor
is true. 20

3.4 A definition for the built-in function block SEL (two-item selection).
Most built-in POUs are defined using ST operations, which can in-
clude calls to other built-in POUs. 22

3.5 A simple CFA created using the program from Figure 3.3. Variable
declarations are not shown to save space. 23

4.1 Example LD program. 27

4.2 Example program after ST transformation. 28

4.3 Expression parsing rules for the ST grammar. Order of operations is
enforced using ANTLRs v4’s prioritization of rules that appear first. 31

4.4 Order of operation for ST expressions. 32

4.5 AST for the example program. 34

4.6 Data structure for the selection function block. The incoming arrow
represents the reference from the root data structure. 35

4.7 Part of the data structure for program0. SEL1 uses the SEL data
structure shown in Figure 4.6 as its type. 36

4.8 Automatons for the example program. 37

x

4.9 A verification case file, which contains all of the information needed
to execute PLCverif. 39

4.10 The menu added by the verification mod. 39

4.11 Editing a verification case using the verification mod. Most settings
are irrelevant or have fixed values and therefore hidden from the user. 40

4.12 The results of the verification settings in Figure 4.11 on the program
in Figure 4.2. 41

5.1 3-way intersection stoplight problem with a main and a side road.
The blue sensor detects cars that are waiting to turn onto the main
road. 43

5.2 Main stoplight must have exactly one light on. 44

5.3 Side stoplight must have exactly one light on. 44

5.4 Only one stoplight can let traffic through at a time. 45

5.5 Main stoplight cannot immediately go from green to red. 45

5.6 Side stoplight cannot immediately go from green to red. 45

5.7 Main stoplight green light is reachable. 46

5.8 Side stoplight green light is reachable. 46

5.9 Side stoplight will only turn green if a car is waiting on the sensor. 46

5.10 Looping state counter in the known bad stoplight implementation. . 47

5.11 Light assignment in the known bad stoplight implementation. . . . 47

5.12 Counterexample for the sensor verification case on the known bad
stoplight program. 49

5.13 Light assignment in the known good stoplight implementation. . . . 50

5.14 State machine used to keep track of state in the known good stoplight
implementation. 51

5.15 Steam production and consumption problem. The tank must manage
its output valves based on the devices requesting steam. 53

5.16 Only one valve may be open at a time. 54

xi

5.17 If steam levels are below the low sensor, both valves must be closed. 55

5.18 If steam levels are above the overflow sensor, at least one valve must
be open. 55

5.19 If only the turbine is requesting steam and the tank has steam to
give, the turbine valve will be open. 55

5.20 If only the humidity is requesting steam and the tank has steam to
give, the humidity valve will be open. 55

5.21 If both consumers are requesting steam, there is steam available, and
the turbine got it last, humidity must get it next. 56

5.22 If both consumers are requesting steam, there is steam available, and
humidity got it last, the turbine must get it next. 56

5.23 Known bad tank control implementation. 57

5.24 Counterexample for the second responsiveness verification case on
the known bad tank program. 58

5.25 Counterexample for the first fairness verification case on the known
bad tank program. 59

5.26 Counterexample for the second fairness verification case on the known
bad tank program. 60

5.27 Known good tank implementation. 61

B.1 ST grammar parsing rules. 70

B.2 ST grammar lexing rules. 71

xii

Chapter 1

INTRODUCTION

Industrial programs have become an essential component of many modern industries,

including automotive, aerospace, manufacturing, infrastructure, and even amusement

parks. These programs run on Programmable Logic Controllers (PLCs), specialized

computers that act as a modern replacement for large physical relay control systems.

PLCs provide real-time control and monitoring of machines and processes, and typi-

cally operate with other components as part of Industrial Automation Systems (IAS).

They are optimized for high reliability, uptime, and ease of maintenance for years af-

ter deployment [3]. The ability of IASs and PLCs to reliably process large amounts

of data in real-time and to connect, monitor, and control disparate systems has led to

massive increases in modern industrial efficiency, productivity, and standardization

[4] [5].

However, as industrial systems become larger, more complex, and more relied upon,

ensuring their continuous error-free operation has become a significant and important

challenge. Errors in industrial programs can lead to serious consequences, including

equipment damage, operational downtime, and potentially life-threatening safety haz-

ards. These problems represent significant human and capital costs, especially when

considering critical infrastructure systems such as power systems, water treatment,

and emergency services [6]. As a result, requirement design, verification, and valida-

tion are critical challenges for the development of industrial programs. Automated

testing of programs is widely used and reasonably effective for this purpose, but strug-

gles to exhaustively cover all possible program states, especially since it is difficult

to formulate tests that will guarantee an unsafe state is never reached [3]. Formal

1

verification is an approach that aims to help solve this issue by using mathemati-

cal techniques to rigorously prove that a program meets its intended specification.

Formal verification techniques vary widely, with methods such as model checking cre-

ating a mathematical model of a system and checking it against requirements [7],

and theorem proving, which uses mathematical principles to make inferences about

a program’s possible states [8]. Formal verification, however, has yet to be widely

adopted in industry due to its substantial time and expertise requirements [9] [10].

In spite of these challenges, there is a growing interest in making verification tools

more practical and accessible, and using them to ensure the correctness and reliabil-

ity of critical code, particularly in hardware design [11]. A recent example of this

trend is PLCverif, an extensible open-source framework created and used to verify

the correctness of safety-critical PLC systems at CERN [2].

1.1 Usability Concerns

Although formal verification faces many challenges that have historically made it dif-

ficult or impossible to verify the correctness of large-scale systems, including difficulty

modeling and computationally expensive execution, this thesis will specifically focus

on usability concerns. Formal verification tools, such as the widely used model checker

NuSMV [12] [13], require a strong understanding of complex theory and concepts, in-

cluding formal semantics, logic, and automata theory. As such, accurately translating

requirements into formal specifications and interpreting and analyzing outputs from

these tools typically requires substantial expertise and attention to detail. This high

knowledge barrier presents a usability concern that can prevent non-expert developers

from using formal verification tools to verify the correctness of their code.

2

Another usability concern regarding the verification of industrial programs is the

specialized tools required to develop and test industrial programs in the first place.

Access to these tools is often limited by their high cost and proprietary nature. Many

industry-standard development environments, such as those developed by Siemens

and Rockwell Automation, require significant licensing fees, which can make them

prohibitively expensive for small businesses, let alone individuals [1]. Furthermore,

the proprietary nature of these tools makes them difficult to customize, modify, or

understand, which can act as a further obstacle for developers interested in creat-

ing specialized verification solutions. This area has seen some development in re-

cent years, with the Eclipse-based PLC development environment 4diac [14] and the

Python-based OpenPLC [1], but neither specifically addresses program verification

usability.

Together, the knowledge requirements to use and understand formal verification tools,

as well as the high licensing fees and proprietary nature of PLC development environ-

ments present a clear problem with the usability of formal PLC program verification,

which this thesis aims to address.

1.2 Contributions

In order to address the usability concerns associated with PLC program verification

and allow simple, end-to-end formal verification of PLC programs, this thesis con-

tributes the following:

1. Integration of the open-source industrial program development environment

OpenPLC [1] and the open-source model checking framework PLCverif [2] to

allow end-to-end creation and verification of PLC programs from within the

3

development environment. The resultant OPPP system (Open-source Proving

of PLC Programs) is entirely open-source and easy to modify.

2. Modifications to the OpenPLC development environment, written in Python,

that interface with PLCverif to add easy-to-use verification functionality. The

modified version of OpenPLC allows for the creation and management of verifi-

cation requirement files from within OpenPLC. This software also manages the

execution of PLCverif and the result, counterexample, and error reporting.

3. The OpenPLC frontend for PLCverif, a program written in Java that automati-

cally translates code produced by the OpenPLC development environment into

a control-flow automaton (CFA) that can be understood by PLCverif. This

allows PLCverif to further translate the automaton and user requirements into

a model that can be used as input to a model checker and ultimately proven or

disproven.

4. A POU library file that contains definitions for OpenPLC’s built-in library

functions, which allows programs that reference them to be verified.

5. A demonstration of using the resultant OPPP system to formalize requirements

and validate attempted solutions to college-level introductory industrial pro-

gramming problems with minimal specialized knowledge.

4

Chapter 2

BACKGROUND AND MOTIVATION

2.1 Programmable Logic Controllers

PLCs are specialized industrial computers that are used to control and automate most

industrial processes. They have the ability to interface with a variety of components,

including sensors, motors, network devices, computers, and more. They are designed

to function for years after deployment and are often ruggedized against a variety

of conditions, including temperature, electrical noise, and vibration. PLCs are hard

real-time systems that operate in cycles, meaning that each cycle must occupy a fixed

amount of time or else a fault is raised. PLCs often contain redundant systems or

entire processors to facilitate error-free operation [15].

2.1.1 PLC Programming Languages

IEC 61131-3 is a widely used international standard published by the International

Electrotechnical Commission (IEC) in 2013 that describes the programming languages

used to develop PLC programs [4]. These include three graphical languages, Lad-

der Diagram (LD), Function Block Diagram (FBD), and Sequential Function Chart

(SFC). Additionally, the standard defines two textual languages, Instruction List (IL),

and Structured Text (ST), which is based on Pascal. A simple LD program can be

seen in Figure 2.1. The IEC 61131-3 languages are structurally similar, with many

editors supporting programs consisting of mixed languages. Although the program

languages are standardized, the machine code they are compiled into is proprietary

and depends on the vendor of the target PLC (see Section 2.1.2).

5

Figure 2.1: A simple LD program that performs two mathematical oper-
ations and assigns the result back.

LD is likely the most widely used and understood PLC programming language, used

in an estimated 95% of applications [16]. LD resembles an electrical circuit with

assignments written as a connection between an input and output signal, making it

easy to use and powerful for representing and debugging boolean operations. Despite

its popularity, LD usage is beginning to fall in favor of ST, whose textual nature is

better suited for complex mathematical calculations or control systems [17].

An additional nuance of the IEC 61131-3 languages is the distinction between func-

tions and function blocks. Functions, such as MIN and MAX, cannot have any internal

memory and will always produce the same output when given the same inputs. Func-

tion blocks, such as counters and state machines, are expected to have internal (static)

memory and may produce different outputs when given the same inputs. A section

of code that may be a function or a function block is called a Program Organization

Unit (POU).

2.1.2 Proprietary Nature

Currently, most industrial PLCs are proprietary and vendor-locked. These PLCs

demand vendor-specific development software and compilers to program, which re-

quires expensive licenses and offers little flexibility or extensibility. Common pro-

6

prietary vendors of PLCs include Siemens, Rockwell Automation, and Mitsubishi

Electric. Some open-source alternatives to vendor-locked PLC development tools

exist, such as OpenPLC (discussed further in Section 2.3) and 4diac, but none have

seen widespread adoption or hardware support [1] [14]. This presents a clear usability

problem, especially in the case of non-professional developers or those in third-world

countries.

2.2 Program Verification

Verification is defined by the IEEE Standard Glossary of Software Engineering Ter-

minology as “the process of determining if the artifacts produced in the current phase

of the SDLC fulfill the requirements established during a previous phase” [18]. As

such, verification determines whether a more detailed implementation complies with

a more abstract specification previously created [3]. Validation, on the other hand,

checks if the specification itself matches customer needs.

Verification is typically split into online (or runtime) and static (or offline) verification.

Online verification is used to observe running programs and often takes the form of

monitoring, testing, and error reporting. Static verification, on the other hand, is

used to observe programs that are not yet running and instead uses the code to make

inferences about how the program can behave once executed.

Verification is further split into formal and informal verification. Formal verification

checks a program against unambiguous requirements written using precise syntax

and semantics, whereas informal verification checks a program against subjective

requirements, such as those specified in natural language [3].

7

Although formal verification is an appealing and powerful option to unambiguously

prove that a program meets its specification, current formal verification options are

incredibly expensive in terms of both time and expertise. Many of the great suc-

cesses of formal verification, such as the formally verified OS microkernel seL4, have

required significant expert-level time investment. The verification of seL4’s 8700 lines

of code took a staggering 20 person-years of PhD-level expertise [10]. An appealing

direction to improve this time cost is model checking, which can (in certain systems)

automatically formally verify code once specifications have been developed.

2.2.1 Model Checkers

Model checkers are static formal verification tools, which create a finite representation

of a program, known as a model, and determine whether or not that model meets

a given specification [7]. As formal tools, model checkers require that all inputs are

precisely defined using logical formalisms, which are often temporal logic phrases such

as “the value of a will never exceed 10”. The output of a model checker typically

takes two possible forms: the requirement is satisfied, or a counterexample that proves

that the requirement is not satisfied [12]. A popular model checker is the open-

source NuSMV [12] [13], which has been used in applications such as automatically

generating and verifying railway control interlocks [19].

The state space of a program represents all of its possible values and configurations.

Because model checkers must often exhaustively search the state space, their perfor-

mance is heavily tied to the size of the state space being explored, which grows expo-

nentially as more variables are added [20]. This is a significant problem for deploy-

ing model checkers on large-scale interconnected industrial systems, which may have

thousands of high-dimension variables. As a result, considerable research has been

conducted on improving the efficiency of generated models and the model-checking

8

process itself [20][21] [22]. In practice, this limitation often forces model checking

techniques to be deployed on individual components or libraries of a system, rather

than the system as a whole [23]. This in turn adds further verification complexity, as

the integration and interactions between components must then be verified. These

issues add substantial knowledge and experience requirements when using formal ver-

ification techniques on industrial systems, a challenge that is multiplied by limited

access to these systems in the first place.

2.3 OpenPLC

OpenPLC is a free and open-source PLC programming ecosystem created by Thiago

Alves in 2016 that is under active development [1]. The project consists of two main

components: a development environment written in Python and a PLC runtime sim-

ulator written in C. OpenPLC implements the IEC 61131-3 languages (LD, ST, FBD,

and SFC) and operates as an end-to-end alternative for traditional PLC development.

Instead of using the proprietary PLC hardware discussed in Sections 2.1 and 2.1.2,

OpenPLC targets C code which can be executed on a variety of accessible and inex-

pensive platforms, such as the Raspberry Pi. This significantly increases OpenPLC’s

usability, but the lack of ruggedized, highly reliable, purpose-built hardware has so

far prevented it from seeing industry adoption [1].

However, due to its unique position as a completely open-source development en-

vironment and runtime, OpenPLC has been used for a variety of research papers,

particularly those related to security [24] [25]. Despite this, there has been little re-

search interest in using OpenPLC to promote the usability of industrial programming

topics, something it is well-suited for.

9

2.4 Compilers

In order to prove a program’s correctness using a model checker, the program must

first be transformed into a model. This is typically done using a compiler.

A compiler is a program that translates code from one language (the source) to

another (the target). Modern compilers generally consist of two distinct phases:

a frontend and a backend. These phases are kept separate and use a standardized

intermediate representation, which allows for the isolation of source and target-specific

properties and optimizations. This separation also makes accommodating new source

or target language easier, as only one end of the compiler needs to be rewritten to

accommodate a new language.

The goal of a compiler frontend is to translate the input language into the intermediate

representation and to apply source-specific optimizations. This typically includes

tasks such as lexing (turning the source into tokens), parsing (creating a tree from the

tokens), and AST creation (discussed in Section 2.4.2). The compiler backend is then

responsible for applying target-specific optimizations and translating the intermediate

representation into the target language. This often includes linking the generated code

with library files.

2.4.1 Context-Free Grammar

Context-free grammars (CFGs) are a widely used formalism for describing program-

ming languages. CFGs describe a language using a set of production rules. Each of

these production rules uses terminal symbols, those which appear in the final lan-

guage (such as “a” or “9”), and nonterminal symbols, which only represent abstract

concepts (such as an identifier or a constant). In a CFG, a single nonterminal symbol

10

is replaced by any number of ordered terminal or nonterminal symbols, creating a tree

structure that extends from a single root symbol.

2.4.2 Abstract Syntax Tree

An abstract syntax tree (AST) is a representation of the structure of a program,

where each node corresponds to a construct from the original program (an addition

expression node would refer to two children, the expressions being added together).

Because of its structure as an N-ary tree, an AST can discard much of the original

bookkeeping text from the parse tree, such as semicolons, comments, parentheses, and

whitespace, as this information is all encoded into the tree structure. This creates an

“abstract” tree that is much easier to traverse, examine, and modify than the original

text or parse tree.

2.4.3 ANTLR

ANTLR (ANother Tool for Language Recognition) is a free and open-source parser

generator led by Terence Parr [26]. As a parser generator, ANTLR takes a CFG

representation of a source language and uses it to generate a lexer and parser for that

language. The lexer and parser generated by ANTLR can then be used to walk the

parse tree of provided source files in order to generate their ASTs.

2.5 PLCverif

PLCverif is an open-source model checking platform, written in Java, created and

published by CERN engineers between 2016 and 2019. PLCverif was constructed

to be usable by any automation engineer and targets the practical use of formal

11

verification. The platform was found to be beneficial and practicably applicable to

various PLC programs [2]. Despite being open-source, PLCverif targets expensive

and proprietary Siemens PLCs and the SCL (Structured Control Language) language

used by their development software.

PLCverif functions as a compiler, whose frontend translates PLC program source

code into a control-flow automaton network (discussed in Section 2.5.1). PLCverif’s

backend then optimizes and uses the control-flow automaton and the verification

requirements specified by the user (see Section 2.5.2) to create a formal model and

specification. This model is then checked against the specification and the result—

satisfied, counterexample, or timeout—is reported to the user. PLCverif is engineered

for extensibility, and adding a new frontend, backend, or reporter is well-supported

by the platform.

12

2.5.1 Control-Flow Automata

Figure 2.2: Example automaton for the selection function.

The core intermediate abstraction used by PLCverif to represent and optimize pro-

grams is the control-flow automaton (CFA) network (part of which is shown in Figure

2.2). The CFA network is used during several steps of verification and represents

programs as two abstractions: a single data structure and one automaton for each

function. The data structure is used to represent the hierarchy of local, global, and

13

struct variables in a program. Automata are used to represent the control flow of a

program as a set of locations with conditional transitions, assignments, and calls [27].

2.5.2 Verification Requirements

Verification requirements in PLCverif are typically expressed as a combination of

English phrases and one or more user-inputted prepositions. For example, if a user

wanted to prove that the output variable “var6” of program “foo” never exceeded 10,

they would select the phrase “{1} is always true at the end of the PLC cycle.” and

enter the preposition “foo.var6 <= 10” [27]. For a full list of possible verification

phrases, see Appendix A.

Verification requirements can also be represented by assertions placed throughout the

code, or as a static requirement that states that the program can never attempt to

divide by zero.

2.5.3 STEP7 Frontend

Because of their use at CERN, the built-in frontend for PLCverif uses the proprietary

Siemens SCL language and its associated development software known as STEP7 as

its source. Not only is this built-in frontend incompatible with the ST files produced

by OpenPLC, but it also requires additional library files not included in the open-

source distribution in order to have definitions for some common built-in functions

such as MIN, MAX, ABS, and TON. Although the built-in STEP7 frontend is a useful

tool for the engineers at CERN, the lack of OpenPLC compatibility and additional

required files present a clear usability concern for those without access to Siemens

PLCs.

14

2.6 This Thesis: The OPPP System

In order to address the usability issues present in current solutions used to create and

formally verify PLC programs, the OPPP (Open-source Proving of PLC Programs)

system is proposed. This system uses a modified version of the OpenPLC Editor and

a custom-built PLCverif frontend in order to allow for the end-to-end creation and

formal verification of PLC programs from within the development environment. As

it is based on PLCverif, the verification tasks are easy to perform and require no

specialized knowledge.

The rest of this thesis will discuss the design and implementation of the various

components of the entire OPPP system, as well as demonstrate its effectiveness at

finding errors and proving the correctness of programs.

15

Chapter 3

SYSTEM DESIGN

This section describes the contributions of this thesis toward creating the OPPP

system, its core components, and the choices behind major design decisions. The

OPPP system was designed to be a completely open-source, easy-to-use end-to-end

solution to design and verify typical PLC programs, and many design decisions were

made toward that purpose. The implementation of this system and the interactions

between its components will be discussed in Chapter 4.

3.1 Initial System and Contributions

The initial interactions between OpenPLC and PLCverif before this thesis are shown

in Figure 3.1 below. As they were not created to work together, these systems have

several integration issues that this thesis resolves in order to create the end-to-end

OPPP system:

1. OpenPLC has no built-in verification functionality and offers no help specifying

requirements or executing verification tasks, making the process difficult for

users unfamiliar with PLCverif.

2. The STEP7 POU library file is completely missing from the PLCverif distribu-

tion.

3. PLCverif only takes in the proprietary and closed-source SCL code produced

by the Siemens STEP7 IDE, which is incompatible with the ST code produced

by the OpenPLC Editor.

16

F
ig
u
re

3
.1
:
T
h
e
in
it
ia
l
in
te
ra

ct
io
n
s
b
e
tw

e
e
n

O
p
e
n
P
L
C

a
n
d

P
L
C
v
e
ri
f
b
e
fo
re

th
is

th
e
si
s.

17

The following integration steps, discussed further throughout this section, were taken

in order to address these issues and create the OPPP system:

1. Adding a modification to OpenPLC that handles all verification tasks, including

creating, editing, and executing verification cases and reporting the results back

to the user (see Section 3.2.1).

2. Creating a library file with definitions for OpenPLC’s built-in POUs (see Section

3.3).

3. Rewriting the PLCverif frontend, allowing it to handle the ST files produced

by OpenPLC (see Section 3.4.

The final OPPP system design, with these changes, can be found in Figure 3.2 below,

which shows novel pieces contributed by this thesis in red.

3.2 OpenPLC Editor

The OpenPLC Editor is the core component and inspiration of the OPPP system. It

is an open-source Python-based development environment created by Thiago Alves

that allows users to create, simulate, and export PLC programs in the IL, ST, LD,

and FBD languages. An example of a simple LD program written using the OpenPLC

Editor can be seen in Figure 3.3. As part of its simulation and exporting process,

the OpenPLC Editor transforms programs created in it (from any of the supported

languages), into the text-based language ST. The text-based version of the program

is stored in a file at build/generated plc.st. Using a modification contributed by

this thesis (see Section 3.2.1), this ST program, the built-in function library .ST file,

and the verification requirements .VC3 file are then sent to PLCverif to be formally

verified.

18

F
ig
u
re

3
.2
:
O
P
P
P

S
y
st
e
m
.
R
e
d

b
o
x
e
s
in
d
ic
a
te

th
is

th
e
si
s’
s
co

n
tr
ib
u
ti
o
n
s.

19

Figure 3.3: A simple LD program created in the OpenPLC Editor. The
program turns the alarm LED on and off when the value of the overflow
sensor is true.

Because of its popularity, considered ease of use (see Section 2.1.1), and greater

support by the OpenPLC Editor than other IEC 61131-3 languages, OPPP currently

focuses support for features and patterns present in the LD language. This decision

results in a few important design consequences:

• Many built-in POUs must be supported in order to compile the resultant .ST

files (discussed further in Section 3.3).

• PLCverif’s ASSERT statements which are inserted into text-based code using

a comment such as //#ASSERT a = 4, is not supported as it has no LD

equivalent.

• Constructs that do not appear in OpenPLC’s implementation of LD, such as

FOR, GOTO, and JMP do not need to be supported.

The OpenPLC Editor was chosen for this project because of its prominence in re-

search, large community, and open-source nature. Additionally, OpenPLC’s relatively

simple interface and out-of-the-box conversion of LD files into ST made it well-suited

for the goals and requirements of this project.

20

3.2.1 Verification Mod

The verification mod to the OpenPLC Editor is the first major contribution of this

thesis to the OPPP system. It is a direct modification of OpenPLC’s Python code

and aims to provide easy access to verification of OpenPLC programs with no major

skill or knowledge requirements. To this end, the mod serves three primary purposes:

1. Allows for the creation, viewing, and editing of PLCverif verification case files.

These files use the extension .VC3 and contain all of the information needed

to execute PLCverif. More information about the format of these files and the

verification options can be found in Section 4.

2. Gathers the necessary source files, executes the command-line PLCverif pro-

gram (in accordance with the previously created .VC3 files), and displays the

verification results to the user.

3. Displays the executed PLCverif program’s runtime information, allowing the

user to see the current files being used, the verification step, and any reported

errors.

3.3 Built-in POU Library

The built-in POU (Program Organization Unit) library is the second major contribu-

tion of this thesis. It is located in oplc standard library.st and provides definitions for

the implicitly-defined built-in POUs (such as MAX, rising edge trigger R TRIG, and

up counter CTU) found in the code generated by the OpenPLC Editor. An example

of the definition for a built-in POU can be seen in Figure 3.4.

21

Figure 3.4: A definition for the built-in function block SEL (two-item
selection). Most built-in POUs are defined using ST operations, which
can include calls to other built-in POUs.

When possible, the built-in POU definitions are sourced from the open-source MatIEC

compiler [28], which the OpenPLC Editor uses for its simulations. This ensures parity

between the simulation and verification results. More information about the form the

built-in POUs take and their role in compilation can be found in Section 4.

User-defined POUs are equivalent to functions in other programming languages and

their definitions are included as part of the generated code. As such, they require no

special treatment or consideration.

3.4 PLCverif

PLCverif is an open-source modular verification framework, written in Java 11 by

CERN engineers. It takes a program (supported formats depend on the chosen fron-

tend) and a .VC3 verification case file as input and ultimately generates a verification

report as its output. PLCverif is comprised of three modular components: the fron-

22

tend (sometimes referred to as the parser), the verification backend, and the reporter.

These components are fully replaceable Java plugins, which are described below:

Figure 3.5: A simple CFA created using the program from Figure 3.3.
Variable declarations are not shown to save space.

1. The frontend is responsible for translating code into a Control-Flow Automaton

(CFA) network, a generic intermediate representation of a program (example

in Figure 3.5). The third major contribution of this thesis is a custom frontend

that is capable of parsing the generated plc.st file produced by OpenPLC. The

custom frontend uses this file and the built-in function library to produce a

CFA network representation of the program. This process is discussed in more

detail in Sections 4.3 and 4.4.

23

The custom frontend is necessary because PLCverif’s existing frontend only

targets .STL and .SCL files, which are proprietary Siemens implementations

of the IEC 61131-3 standard. Although the .ST files produced by OpenPLC

share many similarities with .STL and .SCL files (as they all comply with IEC

61131-3), the built-in frontend cannot parse them. As an additional benefit,

the custom frontend is a significantly simpler program and is therefore easier to

maintain and update.

2. The verification backend translates the CFA network and .VC3 file into a model

and script for the model checker. It then executes the model checker and uses

its output to populate a VerificationResult object.

3. The reporter takes the filled VerificationResult and outputs it in a human-

readable form to the user. PLCverif comes with two built-in reporters: plaintext

and HTML. The HTML reporter is used by OPPP because it presents the result

and counterexample more clearly.

PLCverif was chosen for this system because of its prominence in research, proven

practical use (verifying programs at CERN), open-source nature, high code quality,

stand-alone executable, modularity, and stated emphasis on usability without spe-

cialized knowledge.

3.5 NuSMV

NuSMV 2 is an open-source symbolic model checker written in C as a joint project

between several research institutes. It is used by the PLCverif backend in order to

prove that a program meets a specification, or show that the specification is violated

by providing a counterexample. In the OPPP system, NuSMV takes a model file

24

(.SMV) and a script file (.SCRIPT) as input and produces a result file (.CEX) as

output.

NuSMV was chosen over the PLCverif backend’s other supported model checkers

(nuXmv, Theta, and CBMC) because it is open-source and seemed to support the

most PLCverif operations.

25

Chapter 4

IMPLEMENTATION

This chapter provides a detailed account of how the OpenPLC-compatible ST fron-

tend, the built-in function library, and the OpenPLC verification mod operate and

how they were implemented. The goal of this chapter is to comprehensively explain

how OPPP produces its results, in enough detail that the system and its novel com-

ponents could be recreated by a reader. To this end, this chapter will take an in-depth

walk through the end-to-end verification of a simple program, with a large emphasis

on explaining the components introduced by this thesis.

4.1 LD Programming

The first step of verifying a program is creating a program to be verified. This is

done in the OpenPLC Editor using the LD language. Variables, constants, and POUs

are visually represented using named blocks, and assignments are represented using

connecting wire lines. The variables for each POU are declared separately from the

blocks. Internally, the program blocks are stored as Python objects and are displayed

using the wxPython graphics library.

Table 4.1: Variable declarations for example LD program.
program0

Name Class Type Initial Value
OVERFLOW SENSOR Input BOOL
ALARM LED Output BOOL FALSE
TOGGLE Local BOOL

26

Figure 4.1: Example LD program.

An LD program, created using the OpenPLC Editor, is shown in Figures 4.1. Its

variable declarations are shown in Table 4.1. This program uses common LD con-

structs and a call to an external function. It represents a simple alarm LED control,

and will toggle the alarm LED on and off when the sensor is activated:

1. The value of TOGGLE is toggled each program cycle.

2. When OVERFLOW SENSOR is false, ALARM LED is assigned to false.

3. When OVERFLOW SENSOR is true, ALARM LED is assigned to TOGGLE.

4.2 ST Transformation

In order to be passed into PLCverif, the LD program must be transformed into a

file. Thankfully, this is done automatically by the OpenPLC Editor whenever the

program is built. The resulting .ST file is stored in build/generated plc.st along with

other build artifacts and can be grabbed by the verification mod without issue. The

transformed file is shown in Figure 4.2 below.

27

Figure 4.2: Example program after ST transformation.

There are several interesting and important semantic details to note when parsing

the .ST files produced by the OpenPLC Editor. These semantic details inform the

implementation of the parser frontend, which must be able to read them:

• Temporary variables are used throughout the program to represent the connec-

tions between POUs found in the original LD source code. These variables are

given unique names that begin with an underscore based on their role in the

program.

28

• All POUs and variable declarations are present within a single .ST file, no

matter how many different windows the LD program occupied in the OpenPLC

Editor.

• Definitions for built-in functions do not appear in this file and must be provided

by the compiler frontend, as discussed in Section 3.3.

• POU calls are not nested, even when it would save the use of a temporary

variable.

• If a variable is not assigned an initial value, it is implicitly assumed to begin at

0 or false.

• The highest level of the OpenPLC execution hierarchy is the CONFIGURA-

TION block, which contains information about which programs are executed

and their cycle times. Since having multiple concurrently executing programs

with different cycle times is a relatively niche use and not supported by the

CFA, this block is ignored and the PROGRAM block is considered to be the

entry point.

• Functions may have implicit input assignments (built-in functions only), ex-

plicit input assignments (of the form callee var := INT#10), or explicit output

assignments (of the form callee var =¿ caller var) in their invocation. This al-

lows functions to have more than one output value. Functions in OpenPLC’s

implementation of LD must return a value, and they will always be assigned to

something in the ST transformation.

• Because they have internal memory, function blocks are declared as a variable

in the calling function, with the variable type as the name of the function block

itself. Because they do not return a value, function blocks are always called on

their own line. The inputs to function blocks are given when they are called

29

(the assignments are always explicit), and the outputs are accessed afterward

using the dot expression. Function block calls are not allowed to have output

assignments.

• The language is explicitly typed. Constants are typically typed as well, although

that feature is optional.

4.3 Parsing and Validation

The next step of compilation is transforming the generated plc.st file produced by the

OpenPLC editor into an AST so that it can be validated, optimized, and ultimately

used to produce the CFA network. These steps all take place inside of custom .ST

frontend proposed by this thesis, which is a Java drop-in plugin that can interface

with PLCverif using the cern.plcverif.base.extensions.parser extension point.

4.3.1 Built-in POU Library

As discussed in Section 3.3, the generated plc.st file cannot be parsed on its own

and requires definitions for the built-in POUs defined by IEC 61131-3. These defini-

tions are stored in the oplc standard library.st file presented by this thesis, which is

compiled alongside generated plc.st in all future steps.

Table 4.2 contains information about the POUs included in the library file. Functions

with an expression equivalent (such as AND, OR, and NOT) are not included in

this table or in the library file, as they are transformed into their corresponding

expression during CFA network generation. There are several POUs omitted from

this list, notably niche ones that do not have a sensible PLCverif equivalent (such

30

Table 4.2: Information about the POUs included in the built-in POU
library file.

Category Name Type In Out Description
Selection MAX Function 2 1 Maximum

MIN Function 2 1 Minimum
LIMIT Function 3 1 Limitation
SEL Function 2 1 Binary selection (1 of 2)

Bistable SR Function Block 2 1 Latch, Set dominates
RS Function Block 2 1 Latch, Reset dominates

Edge Detection R TRIG Function Block 1 1 Rising edge trigger
F TRIG Function Block 1 1 Falling edge trigger

Timer TP Function Block 2 2 Pulse generator
TON Function Block 2 2 Delay-on timer
TOF Function Block 2 2 Delay-off timer

Counters CTU Function Block 3 2 Up counter
CTD Function Block 3 2 Down counter
CTUD Function Block 5 3 Up-Down counter

as TCP CONNECT and Arduino sensor reads) and ones that are not supported by

NuSMV (such as SIN and COS).

4.3.2 Parsing

Figure 4.3: Expression parsing rules for the ST grammar. Order of oper-
ations is enforced using ANTLRs v4’s prioritization of rules that appear
first.

The .ST files are parsed using an ANTLR v4 grammar, part of which can be seen

in Figure 4.3 (the entire grammar can be found in Appendix B). For simplicity,

31

this grammar does not support every aspect of the ST language and focuses on the

patterns and constructs that can appear in the OpenPLC Editor’s generated files.

For example, nested POU calls are perfectly valid ST code but do not appear in the

grammar since the OpenPLC Editor will never produce them (see Section 4.2 for

more details).

Figure 4.4: Order of operation for ST expressions.

The grammar reflects several implementation observations and decisions:

• For simplicity, only three built-in data types are currently supported: integers,

booleans, and time. These cover all of the built-in functions and most veri-

fication use cases. Although the OpenPLC Editor’s LD implementation does

32

not support structs, custom types and field access must be supported to use

function blocks.

• It is necessary to support comments in the grammar, as the generated code can

contain them. They are also useful for organizing and annotating the built-in

library functions.

• Else-if statements are not supported because they do not appear in generated

code and are not necessary for built-in library functions.

• The order of operations for expressions (see Figure 4.4) is maintained using

ANTLR v4’s prioritization of parsing rules that appear first.

4.3.3 AST Generation

Next, the parse tree is traversed using ANTLR visitors and important information is

transferred into the Java classes that make up the AST. These classes hold all relevant

information about the source POUs they were created from. At this point, function

calls are further abstracted into a collection of input and output assignments, as seen

in Figure 4.5.

4.3.4 Validation

As the primary input files are a library file and an automatically generated file,

they are assumed to be valid ST code. This means many common tasks of AST

validation (such as type checking and invocation argument checking) do not need to

be performed. The custom frontend checks that all referenced POUs are present and

that all variable accesses correspond to something that has been defined. Although

33

Figure 4.5: AST for the example program.

these validation steps are mostly for debugging, they will catch and report users

attempting to use unsupported POUs in verification.

4.3.5 Optimizations

The only optimization performed at this stage is a simple reachability analysis, which

finds and returns the names of any POUs the program references (even if those POUs

may never be reached in practice) and eliminates those it does not. This optimization

allows unused library functions to be ignored, significantly reducing the size of the

generated AST and CFA network.

34

Common compiler optimizations such as constant folding, dead store elimination, and

removing code that will not affect the program’s output do not need to be performed

by the frontend, as PLCverif’s backend already employs these optimizations (and

more) to reduce model size [22].

4.4 CFA Network Generation

Next, the custom PLCverif frontend must transform the AST into a CFA network.

The CFA network is a language-independent abstraction used to represent a program.

Although not specific to PLC programming, many of its design decisions were made

with PLC programs in mind. The CFA network is split into two components: data

structures and automatons.

Figure 4.6: Data structure for the selection function block. The incoming
arrow represents the reference from the root data structure.

35

Figure 4.7: Part of the data structure for program0. SEL1 uses the SEL
data structure shown in Figure 4.6 as its type.

1. Data structures contain all variable declaration, initialization, and hierarchy

information. Fields inside data structures are explicitly typed and must be given

initial values. Each POU has its own data structure, which includes declarations

for each of its local variables. The top-level data structure is called the root

data structure and contains information about the program’s global variables,

as well as a reference to each POU’s data structure. The data structure for the

selection function block can be seen in Figure 4.6. Data structures also act as

type declarations. Figure 4.7 shows the declaration for SEL1, which has type

global.SEL.

2. Automatons contain all of the information needed to describe a program’s ex-

ecution. They consist of locations and conditional transitions between those

locations. These transitions can assign values, call other automatons (using

a data structure as the context), or do nothing. Each automaton has a start

location and an end location, and there is one automaton for each POU in the

original program. Each automaton has an associated data structure, which de-

scribes its local variables. The entry point of the CFA network is declared as

the main automaton. The automatons for the program0 function block and the

SEL function can be seen in Figure 4.8.

In order to manage the creation of data structures and automatons, a factory object

is used. The factory keeps track of all of the current CFA network objects and handles

the creation of new ones. Additionally, a symbol table is used in order to map POU

36

Figure 4.8: Automatons for the example program.

names to their data structures and automatons, as well as to keep track of the type

associated with each symbol.

The algorithm used to transform the AST into the CFA network then proceeds as

follows:

1. Each data structure is created and added to the symbol table.

2. The fields in each data structure are populated, using entries in the symbol

table to refer to other data structures when custom types are used. This must

be done after all of the data structures are created so that custom types have

37

a data structure to refer to. During this process, TIME variables are changed

into 32-bit signed integers, which represent milliseconds.

3. The global variables are created. Currently, these consist only of the platform-

level PLCverif variables: GLOBAL TIME and T CYCLE, which are used in

timing POUs to represent the current time and the amount of time that passes

each cycle.

4. One automaton for each block is created and added to the symbol table.

5. Automatons are populated, using their entries in the symbol table to refer

to other automatons when called. Each ST statement stored in the AST is

directly converted into one or more locations and transitions. During this step,

any invocation statements which referenced built-in expressions (such as ADD

or MOD) are converted into their expression form.

4.5 Requirements Definition

The next step in verifying a program is creating a verification case file (.VC3). Verifi-

cation case files contain all of the information used to execute PLCverif and report the

result. They include many options for the frontend, the backend, and the reporter.

A verification case file is shown in Figure 4.9.

The process of creating the verification case file is handled by the OpenPLC verifica-

tion mod, which is accessed using a menu added to OpenPLC. The menu, which is

shown in Figure 4.10, has three options:

1. Create a new verification case file. The file is automatically populated with all

of the necessary settings to prove that the trivial condition true will never be

violated.

38

Figure 4.9: A verification case file, which contains all of the information
needed to execute PLCverif.

Figure 4.10: The menu added by the verification mod.

2. Edit a verification case file. In order to make specifying requirements simple,

only the non-trivial verification-relevant settings are given to the user. The

format for describing PLCverif specifications is described in Section 2.5.2. This

dialog can be seen in Figure 4.11.

3. Execute PLCverif using a verification case file. This begins the verification

process discussed in Chapter 3. PLCverif is executed using the verification

case file as an argument, which contains the locations of both input files (the

library and code generated by the OpenPLC Editor), the output directory, and

the desired backend NuSMV. The default verification settings are used, except

for the custom frontend oplc and the disabling of diagnostic intermediate file

output. PLCverif’s command-line output is printed to a custom console in the

OpenPLC Editor. The HTML report generated by PLCverif is then displayed

using the default web browser.

39

Figure 4.11: Editing a verification case using the verification mod. Most
settings are irrelevant or have fixed values and therefore hidden from the
user.

4.6 Result Reporting

Once PLCverif has finished executing, it returns a created HTML report detailing

verification details and the result. There are three typical verification results:

1. Violated. If relevant, a counterexample will also be given.

2. Satisfied.

3. Unknown. This result is given if there is an error or if the backend model checker

times out, using the timeout value specified by the user (See Figure 4.11).

The results of the verification case shown in Figure 4.11 can be seen in Figure 4.12.

40

F
ig
u
re

4
.1
2
:
T
h
e
re
su

lt
s
o
f
th

e
v
e
ri
fi
ca

ti
o
n

se
tt
in
g
s
in

F
ig
u
re

4
.1
1
o
n

th
e
p
ro

g
ra

m
in

F
ig
u
re

4
.2
.

41

Chapter 5

CASE STUDIES

This chapter demonstrates the efficacy of the OPPP system by using it to find errors in

and verify the correctness of attempted solutions to two simple introductory college-

level PLC programming problems. Each problem represents a real-world critical

system with multiple control elements. The systems are assumed to operate over an

indefinite period of time and must be proven to be correct over all execution paths.

For each problem, an informal problem description and an LD programming model are

given. These descriptions are then used to generate a set of formal PLCverif require-

ments to which solutions must adhere. These requirements are then tested against

a known bad and known good program in order to demonstrate the OPPP system’s

efficacy at catching errors and validating correctness. When necessary, verification

results will be explained in additional detail.

5.1 Stoplight Control

5.1.1 Problem Definition

Consider a simple 3-way intersection, with no turning signals or pedestrian crosswalks.

The intersection has one stoplight for each direction of travel, each of which can be

either green, yellow, or red. The intersection allows residents of a small neighborhood

to turn onto the larger main road, which has the majority of the traffic. As a result,

a sensor was added to the side road so that the main light need only change when a

car was waiting. Figure 5.1 shows how the intersection and sensor are set up.

42

Figure 5.1: 3-way intersection stoplight problem with a main and a side
road. The blue sensor detects cars that are waiting to turn onto the main
road.

A PLC is responsible for taking the input given by the side road sensor and using it

to determine the on or off statuses of the green, yellow, and red lights for each of the

roads. The variables used to control this system are shown in Table 5.1.

Table 5.1: Variable declarations for stoplight control signals.
stoplight control

Name Class Type Initial Value
car waiting Input BOOL
main green Output BOOL
main yellow Output BOOL
main red Output BOOL
side green Output BOOL
side yellow Output BOOL
side red Output BOOL

The stoplight system should never allow cars from the main and side roads at the

same time since it presents a significant safety concern. The stoplight system should

never become stuck, and traffic from both the main and the side roads should be able

to pass through the intersection. The main road should be prioritized, so the side

road light should only turn green if a car is on the sensor.

43

5.1.2 Formal Requirements

The informal description of the stoplight’s operational requirements can be surmised

into three groups of formal requirements, which will be explained in the rest of this

section:

1. Implicit requirements that come from our human understanding of what a stop-

light should do.

2. Safety requirements that prevent cars from entering the intersection in an unsafe

manner.

3. Operational requirements that ensure the intersection operation makes sense

and can process traffic from both directions.

Although they are not stated in the problem description, the implicit requirements

are important for validating that the stoplight system works in a sensible way. For

this problem, the implicit requirement is that each stoplight will always have exactly

one light on at a time. This is formulated using the PLCverif conditions found in

Figures 5.2 and 5.3:

(main green AND NOT main yel low AND NOT main red) OR
(NOT main green AND main yel low AND NOT main red) OR
(NOT main green AND NOT main yel low AND main red)
i s always t rue at the end o f the PLC cyc l e .

Figure 5.2: Main stoplight must have exactly one light on.

(s i d e g r e en AND NOT s i d e y e l l ow AND NOT s i d e r e d) OR
(NOT s i d e g r e en AND s i d e y e l l ow AND NOT s i d e r e d) OR
(NOT s i d e g r e en AND NOT s i d e y e l l ow AND s i d e r e d)
i s always t rue at the end o f the PLC cyc l e .

Figure 5.3: Side stoplight must have exactly one light on.

44

The safety requirements must forbid the system from allowing drivers into the inter-

section when it is unsafe to do so. This requires that only one stoplight can be green

or yellow at a time. Additionally, green lights should never be directly followed by

red lights, since drivers need to be given time to stop. These safety requirements are

formulated using the PLCverif conditions found in Figures 5.4, 5.5, and 5.6.

(main green OR main yel low) AND
(s i d e g r e en OR s i d e y e l l ow)
i s impos s ib l e at the end o f the PLC cyc l e .

Figure 5.4: Only one stoplight can let traffic through at a time.

I f
main green
i s t rue at the end o f cy c l e N and
true
i s t rue at the end o f cy c l e N+1, then
NOT main red
i s always t rue at the end o f cy c l e N+1.

Figure 5.5: Main stoplight cannot immediately go from green to red.

I f
s i d e g r e en
i s t rue at the end o f cy c l e N and
true
i s t rue at the end o f cy c l e N+1, then
NOT s i d e r e d
i s always t rue at the end o f cy c l e N+1.

Figure 5.6: Side stoplight cannot immediately go from green to red.

The operational requirements do not pose a safety risk but are necessary in order

to ensure the intersection is working as intended. They are described directly in

the problem description and require minimal interpretation. For this problem, the

intersection must never become stuck, which means that a green light must always

45

remain reachable for both traffic directions. Additionally, the side stoplight will only

turn green if a car is waiting on the sensor. These operational requirements are

formulated using the PLCverif conditions found in Figures 5.7, 5.8, and 5.9.

Any time i t i s p o s s i b l e to have even tua l l y
main green
at the end o f a cy c l e .

Figure 5.7: Main stoplight green light is reachable.

Any time i t i s p o s s i b l e to have even tua l l y
s i d e g r e en
at the end o f a cy c l e .

Figure 5.8: Side stoplight green light is reachable.

s i d e g r e en −−> ca r wa i t i ng
i s always t rue at the end o f the PLC cyc l e .

Figure 5.9: Side stoplight will only turn green if a car is waiting on the
sensor.

5.1.3 Known Bad Program

In order to demonstrate the effectiveness of the OPPP system for finding program

errors, a known bad program is used. This program implements the stoplight behavior

by ignoring the sensor and constantly cycling through a valid sequence of lights. As

a result, it is expected to satisfy the implicit and safety requirements and violate the

one which requires that the sensor is used.

46

Figure 5.10: Looping state counter in the known bad stoplight implemen-
tation.

Figure 5.11: Light assignment in the known bad stoplight implementation.

47

This program is shown in Figures 5.10 and 5.11 and consists of two main components.

The first is a looping state counter that cycles through the values 0, 1, 2, and 3. The

second component checks the current state and uses it to assign the lights to their

correct values. This program cycles the lights in the following pattern (the light not

mentioned is kept red): main green, main yellow, side green, then side yellow.

Table 5.2: Known bad stoplight program verification results.
Category Description Definition Result
Implicit Exactly one light on (main) Figure 5.2 Satisfied

Exactly one light on (side) Figure 5.3 Satisfied
Safety No both green or yellow Figure 5.4 Satisfied

No green to red (main) Figure 5.5 Satisfied
No green to red (side) Figure 5.6 Satisfied

Operational Main can become green Figure 5.7 Satisfied
Side can become green Figure 5.8 Satisfied

Side green only if car waiting Figure 5.9 Violated

Table 5.2 shows the results of the known bad program verification. As expected,

the implicit and safety requirements are fully satisfied, but the requirement that the

side stoplight will only turn green if a car is waiting on the sensor is violated. The

counterexample for this requirement is shown in Figure 5.12.

48

Figure 5.12: Counterexample for the sensor verification case on the known
bad stoplight program.

5.1.4 Known Good Program

By using the failing program from Section 5.1.3 as a base for tweaks, the OPPP

system can be used to validate code changes and show that the modified program

is an improvement. The program can be fixed by using a state machine to manage

stoplight updates based on their current state and the sensor status.

49

Figure 5.13: Light assignment in the known good stoplight implementa-
tion.

50

Figure 5.14: State machine used to keep track of state in the known good
stoplight implementation.

The known good program uses boolean logic to represent the state and to manage

transitions between them. Figure 5.13 shows the light assignments, which follow

a similar pattern to the bad program. Figure 5.14 defines a comprehensive state

machine in a separate function block. This state machine is executed from top to

bottom, and operates as follows:

1. Reset the value of the variables that contain the next state.

2. Using the current state and the sensor status, determine the next state.

51

3. Assign the next state to the current state.

Table 5.3: Known good stoplight program verification results.
Category Description Definition Result
Implicit Exactly one light on (main) Figure 5.2 Satisfied

Exactly one light on (side) Figure 5.3 Satisfied
Safety No both green or yellow Figure 5.4 Satisfied

No green to red (main) Figure 5.5 Satisfied
No green to red (side) Figure 5.6 Satisfied

Operational Main can become green Figure 5.7 Satisfied
Side can become green Figure 5.8 Satisfied

Side green only if car waiting Figure 5.9 Satisfied

Table 5.3 shows the results of the known good program verification. As expected,

all of the formal requirements are satisfied and the program is compliant with the

specifications.

5.2 Tank Control

5.2.1 Problem Definition

Consider an industrial network that produces and consumes steam. The network has

three components: a tank (produces and stores steam), a turbine (consumes steam),

and a humidification system (consumes steam). The tank has low and overflow sen-

sors indicating the current steam level, and two valves that connect it to the steam

consumers. Each of the steam-consuming systems has a signal it can use to indicate

that it needs steam from the tank. A diagram for this system can be found in Figure

5.15.

A PLC is responsible for using the inputs from the sensors and the steam consumers

to determine which steam valves to open. The variables used to control this system

are shown in Table 5.4.

52

Figure 5.15: Steam production and consumption problem. The tank must
manage its output valves based on the devices requesting steam.

Table 5.4: Variable declarations for tank control signals.
tank control

Name Class Type Initial Value
overflow sensor Input BOOL
low sensor Input BOOL
turbine needs Input BOOL
humidity needs Input BOOL
turbine valve Output BOOL
humidity valve Output BOOL

The tank system may only open one valve at a time, and should do so in the following

way to ensure safe, correct, and fair operation:

• If the steam levels do not reach the low sensor, both output valves must be

false.

• Otherwise, steam goes to the consumers that request it. If both consumers

request steam at the same time, it should be split between them by alternating

the open valve each cycle.

• If steam levels have passed the overflow sensor, one of the output valves must

be open to drain the system, even if no consumer is requesting steam. If a

consumer is requesting steam, the system should still try to fulfill that request.

53

5.2.2 Formal Requirements

The description of the tank’s requirements can be classified into three groups of formal

requirements, which will be explained in the rest of this section:

• Physical requirements that describe the tank system’s physical capabilities.

• Safety requirements that prevent the tank from becoming dangerously low or

high on steam.

• Operational requirements that ensure that the system is delivering steam as

outlined in the spec.

The physical requirements prevent the control system from asking the tank system

to do something it is not capable of. For this problem, the only physical requirement

is that steam can only be sent to one consumer at a time. This is formulated using

the PLCverif conditions found in Figure 5.16.

t u rb i n e va l v e AND humidi ty va lve
i s impos s ib l e at the end o f the PLC cyc l e .

Figure 5.16: Only one valve may be open at a time.

The safety requirements forbid the control system from allowing the steam levels to

become dangerously high or low. This means that the system cannot open a valve

when steam levels are low. Additionally, it means that the system must open a valve

when the steam levels are overflowing. These requirements are formulated using the

PLCverif conditions found in Figures 5.17 and 5.18.

54

(NOT low senso r) −−>
(NOT tu rb i n e va l v e AND NOT humidity va lve)
i s always t rue at the end o f the PLC cyc l e .

Figure 5.17: If steam levels are below the low sensor, both valves must be
closed.

(ov e r f l ow s en s o r AND low senso r) −−>
(t u rb i n e va l v e OR humidity va lve)
i s always t rue at the end o f the PLC cyc l e .

Figure 5.18: If steam levels are above the overflow sensor, at least one
valve must be open.

The operational requirements do not impact the safety of the tank system but are

necessary to ensure that it functions as intended. The specification requires that

steam will always go to a single consumer requesting it. If both consumers are re-

questing steam, the specification requires that the control system alternates between

them. These operational requirements are formulated using the PLCverif conditions

found in Figures 5.19, 5.20, 5.21, and 5.22.

(tu rb ine needs AND NOT humidity needs AND low senso r)
−−> t u rb i n e va l v e
i s always t rue at the end o f the PLC cyc l e .

Figure 5.19: If only the turbine is requesting steam and the tank has steam
to give, the turbine valve will be open.

(NOT turb ine needs AND humidity needs AND low senso r)
−−> humidi ty va lve
i s always t rue at the end o f the PLC cyc l e .

Figure 5.20: If only the humidity is requesting steam and the tank has
steam to give, the humidity valve will be open.

55

I f
tu rb ine needs AND humidity needs
AND low senso r AND tu rb i n e va l v e
i s t rue at the end o f cy c l e N and
turb ine needs AND humidity needs AND low senso r
i s t rue at the end o f cy c l e N+1, then
humidi ty va lve
i s always t rue at the end o f cy c l e N+1.

Figure 5.21: If both consumers are requesting steam, there is steam avail-
able, and the turbine got it last, humidity must get it next.

I f
tu rb ine needs AND humidity needs
AND low senso r AND humidity va lve
i s t rue at the end o f cy c l e N and
turb ine needs AND humidity needs AND low senso r
i s t rue at the end o f cy c l e N+1, then
tu rb i n e va l v e
i s always t rue at the end o f cy c l e N+1.

Figure 5.22: If both consumers are requesting steam, there is steam avail-
able, and humidity got it last, the turbine must get it next.

5.2.3 Known Bad Program

In order to demonstrate the effectiveness of the OPPP system for finding program

errors, a known bad program is used. This program implements the tank control

system by ignoring the fairness requirement and simply prioritizing one consumer over

the other. As a result, the system should satisfy the physical and safety requirements

and should violate the requirements which require the system to correctly and fairly

distribute the steam.

56

Figure 5.23: Known bad tank control implementation.

This program is shown in Figure 5.23 and represents a simple set of conditional

assignments. The program first checks if low sensor is false and turns off both valves

if it is. If it is not, the program then uses the values of turbine needs, humidity needs,

and overflow needs to set reasonable values for the valves. The program prioritizes

the turbine if the tank is overflowing, but otherwise prioritizes the humidity.

Table 5.5: Known bad tank program verification results.
Category Description Definition Result
Physical One valve maximum Figure 5.16 Satisfied
Safety Very low implies no valves Figure 5.17 Satisfied

Overflow implies a valve Figure 5.18 Satisfied
Operational Responds to requests (turbine) Figure 5.19 Satisfied

Responds to requests (humidity) Figure 5.20 Violated
Fairness (humidity next) Figure 5.21 Violated
Fairness (steam next) Figure 5.22 Violated

Table 5.5 shows the result of the known bad program verification. As expected, the

physical and safety requirements are fully satisfied, but the fairness requirements are

57

both violated. Additionally, the responsiveness requirement is violated because the

turbine is always prioritized when the tank is overflowing. The counterexamples for

these requirements can be found in Figures 5.24, 5.25, and 5.26 respectively.

Figure 5.24: Counterexample for the second responsiveness verification
case on the known bad tank program.

58

Figure 5.25: Counterexample for the first fairness verification case on the
known bad tank program.

59

Figure 5.26: Counterexample for the second fairness verification case on
the known bad tank program.

5.2.4 Known Good Program

By using the failing program from Section 5.2.3 as a base for tweaks, the OPPP

system can be used to validate code changes and show that the modified program

is an improvement. The program can be fixed by more precisely representing the

control logic and using a toggling variable to break valve ties.

60

Figure 5.27: Known good tank implementation.

Figure 5.27 shows the LD code of the known good program. The program toggles

the boolean variable toggle every cycle and uses its current value to assign steam

when both valves request it. The rest of the program is a collection of conditional

assignments based on the current program state, resembling a truth table. The truth

table reveals that the cases where neither consumer wants steam are not fully defined

by the spec, and the turbine valve is arbitrarily chosen as the overflow valve.

Table 5.6 shows the results of the known good program verification. As expected,

all of the formal requirements are satisfied and the program is compliant with the

specifications.

61

Table 5.6: Known good tank program verification results.
Category Description Definition Result
Physical One valve maximum Figure 5.16 Satisfied
Safety Very low implies no valves Figure 5.17 Satisfied

Overflow implies a valve Figure 5.18 Satisfied
Operational Responds to requests (turbine) Figure 5.19 Satisfied

Responds to requests (humidity) Figure 5.20 Satisfied
Fairness (humidity next) Figure 5.21 Satisfied
Fairness (steam next) Figure 5.22 Satisfied

62

Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

This thesis presents an OpenPLC-compatible ST frontend for PLCverif, a built-in

function library, and a modification to the OpenPLC editor which integrates verifica-

tion tasks. These components combine with existing open-source software to create

the OPPP system, which allows users to both create and formally verify industrial

PLC programs. The system as described is a completely open-source end-to-end solu-

tion, and once set up it can verify programs from within the development environment.

The system is also fairly simple to use, as it formulates verification requirements in

simple English phrases that only require knowledge of basic logic to use. Additionally,

the system provides clear counterexamples when requirements are violated, which can

aid in debugging.

The OPPP system was then demonstrated to formalize the requirements of two

college-level introductory PLC programming problems. It was further demonstrated

to correctly find errors in and verify the correctness of a known good and known bad

solution to each problem.

6.2 Future Work

As the OPPP system is fairly complex and involves the inter-operation of several

programs, there are many possible targets for future improvements. These center

around usability, performance, and applicability to more programs.

63

PLCverif Improvements More verification phrases (see Appendix A) could be

added, in order to represent a greater variety of formal requirements. Currently,

many possible CTL phrases such as “If {1} is ever true at the end of a cycle, then

{2} will always become true at the end of a later cycle” or “If {1} is true at the

end of every cycle, then {2} will always be true at the end of every cycle” are ab-

sent. Improving verification times, particularly will multi-core model checking [29]

or further compiler optimizations is another substantial area for improvement and

usability, as the PLCverif can often take hours to verify relatively simple programs.

Lastly, PLCverif’s implementation of timing-dependent features is rather unusual,

contains bugs, and definitely could be improved.

Frontend Improvements The custom frontend for ST files produced by the Open-

PLC Editor can be improved to support more of the niche constructs in the ST and

LD languages. It may be possible to extend some level of verification to programs

that use trigonometric functions, which are commonly used in signal processing.

OpenPLC Improvements As an open-source piece of software primarily developed

by one person in Python 2, the OpenPLC Editor has many potential areas for im-

provement. The verification mod can also be improved by better communicating

verification information and counterexamples, verifying programs in the background,

and allowing the verification of multiple requirements at once.

Usability Studies Further examining the relatively vague notion of “simplicity”

and “easy-to-use” would likely be beneficial, as it’d give concrete justifications and

evaluation of design decisions.

64

BIBLIOGRAPHY

[1] Thiago Rodrigues Alves, Mario Buratto, Flavio Mauricio de Souza, and

Thelma Virginia Rodrigues. Openplc: An open source alternative to

automation. In IEEE Global Humanitarian Technology Conference (GHTC

2014), pages 585–589, 2014.

[2] Ignacio Lopez-Miguel, Jean-Charles Tournier, and Borja Fernández Adiego.

Plcverif: Status of a formal verification tool for programmable logic

controller. 03 2022.

[3] Roopak Sinha, Sandeep Patil, Luis Gomes, and Valeriy Vyatkin. A survey of

static formal methods for building dependable industrial automation

systems. IEEE Transactions on Industrial Informatics, 15(7):3772–3783,

2019.

[4] Iec 61131-3. https://plcopen.org/iec-61131-3.

[5] Ephrem Ryan Alphonsus and Mohammad Omar Abdullah. A review on the

applications of programmable logic controllers (plcs). Renewable and

Sustainable Energy Reviews, 60:1185–1205, 2016.

[6] Critical infrastructure sectors: Cisa.

[7] Edmund M. Clarke. Model checking. In S. Ramesh and G. Sivakumar, editors,

Foundations of Software Technology and Theoretical Computer Science,

pages 54–56, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

[8] John Rushby. Theorem Proving for Verification, pages 39–57. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2001.

65

[9] Mattias Nyberg, Dilian Gurov, Christian Lidström, Andreas Rasmusson, and

Jonas Westman. Formal verification in automotive industry: Enablers and

obstacles. In Leveraging Applications of Formal Methods, Verification and

Validation. Industrial Practice: 8th International Symposium, ISoLA 2018,

Limassol, Cyprus, November 5-9, 2018, Proceedings, Part IV, page

139–158, Berlin, Heidelberg, 2018. Springer-Verlag.

[10] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,

Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski,

Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. Sel4:

Formal verification of an os kernel. In Proceedings of the ACM SIGOPS

22nd Symposium on Operating Systems Principles, SOSP ’09, page

207–220, New York, NY, USA, 2009. Association for Computing Machinery.

[11] Wen Chen, Sandip Ray, Jayanta Bhadra, Magdy Abadir, and Li-C Wang.

Challenges and trends in modern soc design verification. IEEE Design &

Test, 34(5):7–22, 2017.

[12] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto

Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani, and

Armando Tacchella. Nusmv 2: An opensource tool for symbolic model

checking. In Proceedings of the 14th International Conference on Computer

Aided Verification, CAV ’02, page 359–364, Berlin, Heidelberg, 2002.

Springer-Verlag.

[13] Nusmv: a new symbolic model checker. https://nusmv.fbk.eu/.

[14] Thomas Strasser, Martijn Rooker, Gerhard Ebenhofer, Alois Zoitl, Christoph

Sunder, Antonio Valentini, and Allan Martel. Framework for distributed

66

industrial automation and control (4diac). In 2008 6th IEEE International

Conference on Industrial Informatics, pages 283–288, 2008.

[15] Gianina Gabor, Doina Zmaranda, Cornelia Gyorodi, and Sanda Dale.

Redundancy method used in plc related applications. In 2009 3rd

International Workshop on Soft Computing Applications, pages 119–126,

2009.

[16] Understanding the iec61131-3 programming languages. https://dc-

us.resource.bosch.com/media/us/products 13/product groups 1/

electric drives and controls /pdfs 1/BRC Controller Programming.pdf.

[17] How many iec 61131-3 languages do i need?

https://www.controldesign.com/control/control-

software/article/11310344/how-many-iec-61131-3-languages-do-i-need.

[18] Ieee standard glossary of software engineering terminology. IEEE Std

610.12-1990, pages 1–84, 1990.

[19] A. Mirabadi and Mohammad YAZDI. Automatic generation and verification of

railway interlocking control tables using fsm and nusmv. Transport

Problems : an International Scientific Journal, 4, 01 2009.

[20] Zhu Xin-feng, Wang Jian-dong, Li Bin, Zhu Jun-wu, and Wu Jun. Methods to

tackle state explosion problem in model checking. In 2009 Third

International Symposium on Intelligent Information Technology

Application, volume 2, pages 329–331, 2009.

[21] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and

abstraction. ACM Trans. Program. Lang. Syst., 16(5):1512–1542, sep 1994.

67

[22] Dániel Darvas, Borja Fernández Adiego, András Vörös, Tamás Bartha, Enrique

Blanco Viñuela, and Vı́ctor M. González Suárez. Formal verification of

complex properties on plc programs. In Erika Ábrahám and Catuscia

Palamidessi, editors, Formal Techniques for Distributed Objects,

Components, and Systems, pages 284–299, Berlin, Heidelberg, 2014.

Springer Berlin Heidelberg.

[23] S. Chandra, P. Godefroid, and C. Palm. Software model checking in practice:

an industrial case study. In Proceedings of the 24th International

Conference on Software Engineering. ICSE 2002, pages 431–441, 2002.

[24] Thiago Alves and Thomas Morris. Openplc: An iec 61,131–3 compliant open

source industrial controller for cyber security research. Computers &

Security, 78:364–379, 2018.

[25] Thiago Alves, Thomas Morris, and Seong-Moo Yoo. Securing scada

applications using openplc with end-to-end encryption. In Proceedings of

the 3rd Annual Industrial Control System Security Workshop, ICSS 2017,

page 1–6, New York, NY, USA, 2017. Association for Computing

Machinery.

[26] Antlr. https://www.antlr.org/.

[27] Plcverif documentation. https://plcverif-oss.gitlab.io/plcverif-docs/.

[28] Matiec - iec 61131-3 compiler. https://github.com/nucleron/matiec.

[29] Gerard J. Holzmann and Dragan Bosnacki. Multi-core model checking with

spin. In 2007 IEEE International Parallel and Distributed Processing

Symposium, pages 1–8, 2007.

68

APPENDICES

Appendix A

PLCVERIF PHRASES

PLCverif accepts the following verification phrases:

1. If {1} is true at the end of the PLC cycle, then {2} should always be true at

the end of the same cycle.

2. {1} is always true at the end of the PLC cycle.

3. {1} is impossible at the end of the PLC cycle.

4. If {1} is true at the beginning of the PLC cycle, then {2} is always true at the

end of the same cycle.

5. If {1} is true at the end of cycle N and {2} is true at the end of cycle N+1,

then {3} is always true at the end of cycle N+1.

6. It is possible to have {1} at the end of a cycle.

7. Any time it is possible to have eventually {1} at the end of a cycle.

8. If {1} is true at the end of a cycle, {2} was true at the end of an earlier cycle.

69

Appendix B

OPENPLC ST GRAMMAR

The following is the ANTLR grammar used by the frontend in its entirety.

Figure B.1: ST grammar parsing rules.

70

Figure B.2: ST grammar lexing rules.

71

	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	1.1 Usability Concerns
	1.2 Contributions

	2 Background and Motivation
	2.1 Programmable Logic Controllers
	2.1.1 PLC Programming Languages
	2.1.2 Proprietary Nature

	2.2 Program Verification
	2.2.1 Model Checkers

	2.3 OpenPLC
	2.4 Compilers
	2.4.1 Context-Free Grammar
	2.4.2 Abstract Syntax Tree
	2.4.3 ANTLR

	2.5 PLCverif
	2.5.1 Control-Flow Automata
	2.5.2 Verification Requirements
	2.5.3 STEP7 Frontend

	2.6 This Thesis: The OPPP System

	3 System Design
	3.1 Initial System and Contributions
	3.2 OpenPLC Editor
	3.2.1 Verification Mod

	3.3 Built-in POU Library
	3.4 PLCverif
	3.5 NuSMV

	4 Implementation
	4.1 LD Programming
	4.2 ST Transformation
	4.3 Parsing and Validation
	4.3.1 Built-in POU Library
	4.3.2 Parsing
	4.3.3 AST Generation
	4.3.4 Validation
	4.3.5 Optimizations

	4.4 CFA Network Generation
	4.5 Requirements Definition
	4.6 Result Reporting

	5 Case Studies
	5.1 Stoplight Control
	5.1.1 Problem Definition
	5.1.2 Formal Requirements
	5.1.3 Known Bad Program
	5.1.4 Known Good Program

	5.2 Tank Control
	5.2.1 Problem Definition
	5.2.2 Formal Requirements
	5.2.3 Known Bad Program
	5.2.4 Known Good Program

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	BIBLIOGRAPHY
	A PLCverif Phrases
	B OpenPLC ST Grammar

