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ABSTRACT In the past decades, a number of technological developments made it possible to continuously
collect various types of sport activity data in an unobtrusive way. Machine learning and analytical methods
have been applied to flows of sensor data to predict the conducted sport activity as well as to calculate
key performance indicators. In that scenario, researchers started to be interested in leveraging pervasive
information technologies for sport climbing, thus allowing, in day-to-day climbing practice, the realization
of systems for automatic assessment of a climber’s performance, detection of injury risk factors, and virtual
coaching. This article surveys recent research works on the recognition of climbing activities and the
evaluation of climbing performance indicators, where data have been acquired with accelerometers, cameras,
force sensors, and other types of sensors. We describe the main types of sensors and equipment adopted for
data acquisition, the techniques used to extract relevant features from sensor data, and the methods that have
been proposed to identify the activities performed by a climber and to calculate key performance indicators.
We also present a classification taxonomy of climbing activities and of climbing performance indicators,
with the aim to unify the existing work and facilitate the comparison of methods. Moreover, open problems
that call for new approaches and solutions are here discussed. We conclude that there is considerable scope
for further work, particularly in the application of recognition techniques to problems involving various
climbing activities. We hope that this survey will assist in the translation of research effort into intelligent
environments that climbers will benefit from.

INDEX TERMS Climbing, activity recognition, machine learning, performance monitoring, sensors,
sport-related activity monitoring.

I. INTRODUCTION
Rock climbing is considered to be born in the 19th century
with alpine mountaineering in northern England and the Ital-
ian Dolomites. It developed as a sport for the general public
in the 1950s. Today, various types of climbing are practiced
all around the world [1]. The last few decades have seen a
growing popularity of climbing both as a recreational activ-
ity and as a competitive sport. For example, in 2018, the
Association of British Climbing Walls reported that climb-
ing was one of the fastest growing sports in the UK, with
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15-20% annual growth among the population [2]. Similar
reports in the United States show that the number of climbing
enthusiasts and climbing gyms continue to grow [3]. These
trends have contributed to the debut of sport climbing at the
Tokyo 2020 Olympic Games (held in the Summer of 2021).

The rising importance of sport of climbing is also reflected
in a growing interest in it by the scientific community. The
review by Woollings et al. [4] presented the existing liter-
ature on risk factors and prevention measures in climbing.
A review of studies that have investigated the characteristics
of skilled climbing performance can be found in the work
of Orth et al. [5]. Stien et al. [6] conducted a mini sys-
tematic review of climbing-specific tests and procedures for
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predicting performance and measuring training effects.
Finally, the physiological aspects [7], [8] and the psycho-
logical determinants [9] of climbing performance have been
studied.

Monitoring sport activities by using ubiquitous computing
technologies has become popular in the recent past. Com-
mercial devices are effective for tracking the general levels
of physical activity for sports such as running, cycling, and
swimming (e.g., [10], [11], [12], and [13]). In contrast, the
sport of climbing has not received much support in terms of
portable devices and sensor-based electronics. A handful of
studies have so far developed initial prototypes for automatic
analysis of climbing activities. Notable examples are the use
of a body-mounted sensing system for climbing performance
monitoring [14], [15], [16], and the exploration of wrist-worn
devices for automatic detection of the climbed route [17].
Thanks to decreasing cost of devices with various sensors and
novel information and communication technologies, a wealth
of applications for day-to-day use in climbing practice can be
built. Examples include applications for improving climbers’
technical skills by suggesting new and interesting routes
to climb, applications for providing climbers with effective
and personalized training programs, virtual climbing coaches
that give frequent and detailed feedback to climbers as it is
received by professional athletes, automatic detection of risk
injury factors, as well as usage analytics for climbing gym
managers.

Automatic, rapid, and reliable recognition of human activ-
ities is an important building block of activity monitor-
ing applications [18]. Historically, research on sensor-based
activity recognition has been driven by the intensive research
effort toward creating intelligent pervasive environments for
ambient assisted living [19]. Methods of activity recognition
have since been ported to a number of diverse application
domains, including security, healthcare, and different types
of intelligent environments. This survey is meant as a starting
point for new projects, in order to get an overview of existing
algorithms and systems, before designing new systems that
will be an integral part of intelligent climbing environments.

This article presents an overview of the studies produced
in recent years that made use of different types of sen-
sors and techniques to automatically recognize a climbing
activity or assess a climbing performance indicator. More
specifically, we investigate research that analyzed data flows
acquired from sensors that are either worn by climbers,
embedded into the climbing equipment, or placed on fixed
locations in the climbing environment. We present the main
sensor types adopted for data acquisition, such as optoelec-
tronic systems, inertial measurement units, and force sensors.
We describe the various techniques that have been consid-
ered to pre-process sensor data, extract features from sensor
data relevant to climbing activity recognition, and analyti-
cal and machine learning methods used to detect and rec-
ognize the activities performed by climbers and assess their
performance. The climbing activities and performance indi-
cators we consider are those derived from the analysis of
the studies in relevant papers, and we organize them into

two taxonomies. Considered climbing activities include, for
example, traction, postural regulation, and hold gripping.
The performance indicators found in the literature we exam-
ined include, for example, fluency, endurance, control, and
stability.

While reviews similar to ours have been written for sports
in general, treating, among others, basketball, soccer, ten-
nis, and swimming (see, for example, [20], [21], and [22]),
this is to our knowledge one of the first specific reviews
focused on climbing. We note that we do not include in
this review studies that have focused on climbing motions
by parsing a climber’s body area or skeletal information,
as the state-of-the-art of this niche research area has already
been covered in a recent review by Richter et al. [23]. More-
over, we do not include here the literature that has described
tests and procedures for measuring climbing-related phys-
iological and motor characteristics of a climber, such as
those included in the review by Stien et al. [6]. We hope
that this review offers a useful summary of existing work
concerning climbing activity recognition and climbing per-
formance assessment and will motivate more focused and
complementary applied research that will prove useful in
practice.

The main contributions of this work are: (i) a taxonomy of
climbing activities, (ii) a taxonomy of climbing performance
indicators, (iii) an overview of the state-of-the-art research in
the context of activity recognition and performance assess-
ment in climbing, (iv) an overview of sensors and work flow
of sensor data analysis, and (v) a list of challenges and oppor-
tunities in the domain.

The rest of this paper is organized as follows. In Section II
we introduce the main concepts related to climbing.
Section III presents the methodology for identifying all rele-
vant papers. In Sections IV and V we present, respectively,
a proposed classification taxonomy of climbing activities
and performance indicators found in the reviewed literature.
Section VI presents the main types of sensors that have
been used for the collection of climbing data. Section VII
describes a work flow for climbing activity recognition and
performance assessment. In Section VIII we present some of
the research challenges and future opportunities to improve
the development of systems for automatic climbing activity
recognition and performance assessment. Finally, we con-
clude this paper in Section IX.

II. CLIMBING IN A NUTSHELL
Climbing is a collective term for many sub-disciplines each
having its own distinctions in terms of the type of climbing
surface, use of protection, and tactics used to ascend [24].
Climbing venues can be found both outdoors (e.g., on natural
cliffs or mountain rock walls) and indoors in climbing gyms.
A climbing gym usually provides a large number of different
climbing routes on artificial walls, often constructed from
plywood and synthetic holds. These holds can differ consid-
erably in size and shape (see, for example, the description of
basic holds in [25]), and can be assembled in various positions
and orientations.
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Popular types of climbing are bouldering, which is prac-
ticed on low rock formations and with just a crash pad to
protect the climber in case of a fall, and sport climbing,
where the climber ascends along a predefined route using a
rope and bolts that are pre-placed in the rock, and a second
person (‘‘belayer’’) holds the rope to prevent the climber
from hitting the ground in case of a fall. Based on how
the rope is used, sport climbing is differentiated into lead
climbing, where the rope is carried up by the climber who
has to clip it to the wall, and top rope climbing, where the
climber is tied on a rope that is anchored at the top of the
route. A particular competitive discipline is speed climbing,
where the goal is to climb as quickly as possible a standard-
ized route in a top rope style without falling. Ice climbing
is a discipline that involves an ascend on ice or hard snow
formations with the assistance of crampons and ice tools.
To name but a few other types of outdoor climbing, we have:
traditional (shorten trad), a discipline that follows a strict
principle that all protectionmust be placed in the rock by hand
and be removable without damaging the rock; aid climbing,
where the climber is permitted to use gear to aid their ascend;
and deep water solo, where the water (e.g., sea, or lake)
at the base of a climb serves to protect against injury from
falls.

Climbing typically requires the use of a range of equip-
ment to protect a climber against the consequences of a fall.
The use of a climbing rope is essential in top rope and lead
climbing disciplines. One end of the rope is tied to a climber’s
harness, normally worn around their pelvis and hips, while
the belayer passes the other end of the rope through a belay
device. A belay device uses friction to control how much
rope passes and when to stop it. In lead climbing, a rope
must be clipped to the wall by quickdraws installed every two
or three meters during the climber’s ascent. Examples of a
climber’s harness and a quickdraw, instrumentedwith sensing
devices, are depicted in Table 4 (middle column). Other types
of equipment that facilitate climbingmotion are powder chalk
to remove perspiration, worn in a chalk bag attached to the
back of the harness, specialized climbing shoes, and belay
gloves, among others.

To declare the difficulty of a climbing route, several grad-
ing systems are used around the world. Commonly used
scales include the Yosemite Decimal System and the French
Numerical System, among others. The Yosemite Decimal
System is primarily used in the United States and Canada
to rate walks, hikes, and climbs in five classes of increas-
ing technical difficulty, the fifth being subdivided with a
decimal notation. It also has indicators of the length of
the route and of the quality of the protection available on
it. The French Numerical System is dedicated to climb-
ing only and rates a climb according to the overall techni-
cal difficulty and strenuousness of the route. Grades start
at level 1 (easiest climb) and there is no maximum level,
as the scale is open-ended. For a broader overview of the
various systems, the reader is directed to the report on
comparative grading scales, climber descriptors, and ability
grouping [26].

III. RESEARCH FOCUS AND METHOD
The focus of this review is on activity recognition and perfor-
mance assessment during climbing, by using data obtained
from sensors that are either worn by climbers, integrated into
climbing equipment or placed on fixed locations in the climb-
ing environment. To identify the studies presented in this
article, we used a systematic review technique in accordance
with the Preferred Reporting Items for Systematic reviews
and Meta-Analyses (PRISMA) guidelines [27].

A. SEARCH QUERY
Papers were searched in six different databases: Web of Sci-
ence, Scopus, PubMed, IEEE Xplore, Science Direct, and
ACM Digital Library. The search was conducted on July
31, 2022, and included a filter to select studies which were
published in English after 2005. We limited the search to
journals and conference papers. The search was performed
using relevant search terms formed by two groups of key-
words related to (i) activity recognition and (ii) performance
assessment in climbing, and also excluding unrelated key-
words. The search strategy included the query on study title:
’’climb‘‘ or ’’climber‘‘ or ’’climbing‘‘ and not ’’stair‘‘ and not
’’robot‘‘ and not ’’fish‘‘ and not ’’spider‘‘ and not ’’gait‘‘ and
not ’’ladder‘‘, and the query on full study text: ’’activity‘‘
OR ’’action‘‘ OR ’’move‘‘ OR ’’state‘‘ OR ’’session‘‘ OR
’’performance‘‘ OR ’’skill‘‘. We also used wildcard (*) where
supported to broaden the search for words starting or ending
with the keyword. The references of the selected studies and
found review papers were further checked in order to include
relevant works inadvertently omitted from the keyword-based
search. The search strings used are given in the appendix
(Table 9).

B. INCLUSION AND EXCLUSION CRITERIA
To be included in our review, the study needed to use at least
one sensor, either mounted at a fixed location in the (indoor
or outdoor) climbing environment, embedded in the climbing
equipment, or worn on the body. Additionally, collected data
had to be used to calculate at least one indicator or climb-
ing performance or recognize at least one climbing activ-
ity. Studies that focused on measurement of physiological
responses during climbing or biomechanical description of a
climbing-related activitywere excluded. Review articles were
also excluded. Finally, all papers needed to be published after
2005 in order to avoid inclusion of out-of-date technologies
and research.

C. SEARCH PROCEDURE
The literature search resulted in 1699 studies on Web of
Science, 3546 studies on Scopus, 769 studies on PubMed,
389 studies on IEEE Xplore, 660 studies on Science Direct
and 95 studies on ACM Digital Library. After removing
2355 duplicated papers, 4803 studies remained for screening.
As a result of title and abstract screening, 4760 studies were
excluded from the review. The full texts of remaining 43 stud-
ies were read and checked for eligibility. Three review studies
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TABLE 1. Classification of studies based on the type of sensor and scope.

were excluded. Additional three studies were found through
the reference lists. Finally, 43 studieswere considered eligible
to be included in this review. A summary of the studies in
terms of sensing approach and scope is given in Table 1. The
PRISMA flow chart is provided in the appendix (Fig. 3).

IV. CLIMBING ACTIVITIES TAXONOMY
In essence, climbing is a sport in which people use their
arms and legs to reach and grip holds while moving the
body upward on either a natural or artificial rock formation.
In addition to dynamic phases, in which a climber proceeds
along the route, climbing also involves static moments, when
a climber rests or plans the following sequence ofmovements.

Although no unique definition for the notion of activity
exists in the literature, common to the use of this notion is
its characterization in terms of an agent (e.g., a person) that
performs it, and spatio-temporal properties (e.g., the location
where the activity takes place, the time the activity starts,
the time the activity finishes, and the duration of the activ-
ity [68]). It is also common to represent activities in a hier-
archy at different levels of granularity [69] and to understand
them as aggregations of actions, which may, in turn, be aggre-
gations of atomic operations [70]. A classical example is a
taxonomy of the so-called Instrumental Activities of Daily
Living (IADL) [71], which have been proposed to describe
various living scenarios. Such activity modeling is devoted to
formally describing the activities of interest and providing a
basis for their recognition.

To the best of our knowledge, a unifying way to orga-
nize the activities characterizing the climbing domain has not
yet been proposed. We believe that the lack of such a view
resulted in the presence of ambiguous terms in the literature
on climbing activity recognitionwe examined, leading tomis-
understandings of some concepts. As an example, in the paper
by Ladha et al., [15], the terms ‘‘episode’’ and ‘‘activity’’
are used to describe essentially the same notion, i.e., a full
ascent of a climber. The same authors use the term ‘‘limb
movement’’ to refer tomovements of a handwhile reaching or
adjusting on a hold. By contrast, Ebert et al. [55] use the term
‘‘rest period’’ to denote the same hand adjustment movement.
Boulanger et al. [16] use the terms ‘‘activity’’ and ‘‘state’’
interchangeably, while Tonoli et al. [43] use the term ‘‘event’’
to denote the same concept.

Hence, we examined the 43 selected papers with the goal
of defining a taxonomy of climbing activities that provides
terminology and a set of concepts that, at various levels of
granularity, denote the activities that are relevant to be rec-
ognized. The view we propose is shown in Fig. 1, where
solid rectangles denote activities of climbing whose auto-
matic recognition has been addressed in the literature we
examined, while dashed rectangles represent activities whose
recognition, to our knowledge, has not been addressed yet.

Our view is inspired by the notable work on activity recog-
nition in indoor climbing by Boulanger and colleagues [16],
extending the previous work presented in [58]. In these stud-
ies, the authors proposed a method to automatically recog-
nize five main climbing activities, i.e., postular regulation,
traction, immobility, hold change and hold gripping. In sev-
eral follow-up studies, e.g., [35] and [56], the authors used
the proposed activity recognition approach in order to assess
climbing performance (see Section V). We have extended
their scheme with activities found in the other papers we have
analyzed.

As it can be seen in Table 2, the various authors gener-
ally focused on a small subset of climbing activities. Climb-
ing encompasses more than the activities related to the pure
ascent and possible falls. Other related activities are belay-
ing, visual inspection of the route before the ascent (route
previewing), lowering of a climber back to the ground, and
pulling the rope down after the ascent is finished. Ascending
is a comprehensive activity that is composed of activities
occurring between the starting point and the highest point
of an ascent. In traction, a climber’s pelvis (i.e., the center
of mass (COM)) moves usually upward using at least one
limb while the remaining limbs are gripped to the wall holds.
Ascending not only involves continuous traction, but several
studies have also emphasized the importance of more or less
static activities, such as postural regulation and immobility.
Postural regulation occurs when a climber’s limbs are immo-
bile, while some movement of the pelvis is allowed to gain
stability on the climbing wall. Immobility is characterized by
the absence of movement of all limbs and pelvis. A portion
of climbing time devoted to immobility is spent by a climber
resting at the so-called aid-points [72]. In addition to tem-
porarily recovering from fatigue, at these points, a climber has
the opportunity to look around to find the path to follow along
the route. Stationarity, also referred to as plateau in [29],
differs from immobility in allowing movements of limbs.
While a climber is stationary, he can chalk hands (i.e., apply
magnesium carbonate to the hands to remove perspiration and
thus reduce slipping), shake the limbs to give them relief,
or clip the rope into a quickdraw.
A climber has different types of interactions with

the climbing surface using his upper and lower limbs.
Seifert et al. [30] described three interaction activities related
to ice climbing, namely, climbers typically swing their axes
and kick their crampons when the ice is dense without any
holes, and hook their axes when the ice is hollow. In rock
climbing, two principal types of hold interaction activities can
be distinguished: hold change and hold gripping. The former
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FIGURE 1. Taxonomy of climbing activities. Solid rectangles denote activities of climbing whose automatic recognition is addressed in the literature we
examined. Dashed rectangles represent activities whose recognition, to our knowledge, has not yet been addressed.

TABLE 2. Classification of studies based on climbing activity.

corresponds to a limb transition between holds. This activity
may also involve limb adjustments to reach a comfortable
position or prepare for the next traction. On the other hand,
the gripping activity corresponds to a limb holding firmly to
a hold. For clarity, in [16], the authors distinguished between
the gripping of a hold, which happens when the global posi-
tion of a climber on the wall is immobile (i.e., hold gripping),
and hold usewhich refers to gripping a hold when a climber’s
COM is in motion.

As already mentioned, visual inspection of the route to
determine the sequence of required movements and func-
tional properties of the holds may occur before the climb
(route previewing) or during the climb (route finding). Visual
inspection of the route may enhance climbing performance
as a climber can mentally plan and rehearse movements
of hands and feet as well as identify places for rest and
chalking hands [72]. An interesting example of a study
where route previewing activity data is analyzed is that of
Seifert et al. [56], where they presented a method to deter-
mine the visual strategy of a climber. They distinguished
between four strategies as defined in [54], i.e., fragmen-
tary strategy, ascending strategy, zigzagging strategy and
sequence-of-blocks.

An ascent is considered successful if a climber reaches the
top of a route without falling. Indeed, a fall in climbing is very

common when a climber tries to climb a route at the limit of
their ability [42].

V. CLIMBING PERFORMANCE INDICATORS TAXONOMY
The skill of climbers is often expressed through the highest
degree of difficulty they have achieved by climbing routes.
Successfully ascending a route, of a given difficulty grade,
on the first attempt and without prior information or rehearsal
is known as the climber’s on-sight ability level. Conversely,
ascending a route of a certain difficulty level, after hav-
ing practiced or studied the climbing route, is known as a
climber’s red-point ability level.

Difficulty grades are often used to categorise climbers into
ability groups [73] such as ‘‘intermediate’’, ‘‘advanced’’ and
‘‘expert’’. However, route difficulty scales (see Section II) do
not provide a complete mean of assessing how climbing skills
are related to route difficulty [26]. Continuous measurement
of performance parameters at different stages of a climb is
more important and informative than a single result. Thus,
alternative methods for the quantification of climbing per-
formance have been proposed to assess various aspects of
climbing performance.

In the remaining of this section, we describe what we
have identified as the most relevant indicators that quantify
an aspect of a climber’s performance, we group them into
six categories as follows: indicators of fluency; indicators
of exploration; indicators of core abilities: power, stability,
control, and endurance; indicators of hold-limb contact per-
formance; indicators of route previewing and route finding
performance; and indicators of variability of body movement
coordination patterns. Table 3 shows identified indicators
classified according to this taxonomy. We enter into fur-
ther details regarding the computation of these indicators in
Section VII-F. The following subsections describe indicators
associated with each category in detail.

A. INDICATORS OF FLUENCY
Climbing fluency has been widely cited even if it has not been
consistently defined [74]. For example, Sibella et al. [32]
defined fluency as the efficiency of the path which a climber
took through the route. Similarly, Zampagni et al. [39] took
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TABLE 3. Classification of studies based on performance indicator.

the COM-to-wall distance and the planar displacement of
the COM as indicators of fluency. Such notions of fluency

are based on spatial aspects of the performance, but do not
take into account the temporal aspects of performance, e.g.,
the pauses a climber may take for route finding or postural
regulation. Some other studies focused on temporal indicator
of fluency. For example, in their study on the influence of
anxiety on climbing performance, Nieuwenhuys et al. [53]
measured the total ascent duration and the total duration of
periods of immobility (immobile time) and traction (mobile
time). The relationship between periods of mobility to immo-
bility, i.e., the immobility-to-mobility ratio, was assessed in
the study byOrth et al. [61], while Rochat et al. [62] measured
the immobility ratio as a temporal indicator that refers to the
percentage of ascent duration spent in immobility. In an ice-
climbing study [30], average plateau duration was measured
as the total duration of periods of stationarity. Namely, the
plateau was defined as less than 0.15 m of vertical displace-
ment at hips for longer than 30 s. Examples of studies that
integrate both spatial and temporal aspects into a single indi-
cator of climbing fluency are those by Seifert et al. [29], [30]
and Pansiot et al. [14].

B. INDICATORS OF EXPLORATION
The indicators of exploration have been proposed to measure
a climber’s ability to exploit the properties of the climb-
ing environment to move upward. For example, in a rock-
climbing study [16] and in a ice-climbing study [30], the
exploration index has been defined as the ratio between
the number of exploratory and performatory activities of a
climber. In the first one, the authors calculated for all limbs
the number of exploratory activities, i.e., hold changes with-
out the hold being used to move upward, and the number
of performatory activities, whereby the hold was used for
traction. In the second one, the exploratory activities included
tool swinging and crampon kicking, while the performatory
activities included hole hooking with an axe or crampon,
when the ice is soft, or tool swinging and crampon kick-
ing that led to definitive anchorage when the ice is dense.
On the other hand, Nieuwenhuys et al. [53] measured the
duration and number of fixations (a set of gaze coordinates
restricted to a particular area) during the route finding activ-
ity. They distinguished two types of fixations: exploratory
fixations - made during immobility, and performatory fixa-
tions - made during traction.

C. INDICATORS OF CORE ABILITIES: POWER, STABILITY,
SPEED, CONTROL, AND ENDURANCE
Core abilities that every climber needs to possess and
develop, according to Ladha et al. [15], are power – the ability
to transfer isometric strength into a movement, stability –
the ability to remain composed while holding onto holds,
speed – timing observation that indicates a climber’s abil-
ity to find the path and resist fatigue, and control – the
ability to transition smoothly between holds. The authors
derived corresponding indicators from the data collected by
twowrist-worn sensors. They found that combined evaluation
of the core abilities correlated to scores a group of climbers
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achieved in a competition. The authors also acknowledged
that their sensor system was unsuited to measure endurance,
i.e., the ability to maintain prolonged effort. On the other
hand, Pansiot et al. [14] derived a measure of endurance
from data obtained using an ear-worn sensor. They used
high-frequency head shaking motion as an indicator of the
tiredness of a climber. The authors suggested that a low value
of the indicator suggests high resistance to fatigue, how-
ever, the limitation of their approach was that a low value
could also indicate that a climber spent considerable time in
stationarity.

D. INDICATORS OF HOLD-LIMB CONTACT PERFORMANCE
Mechanical aspects of climbing performance on a hold have
been measured in sport climbing [45], [50], bouldering [47],
and speed climbing [44], [51]. Specifically, in [46] and [48],
the authors analyzed performance parameters on a climbing
hold with a curved surface. In these studies, various measures
have been extracted from contact force-time curves, i.e.,mag-
nitude of contact force, contact time, the smoothness factor,
impulse, the friction coefficient, and the Hausdorff dimen-
sion. Among these, the Hausdorff dimension, representing
the entropy of the geometry of contact force-time signal, was
identified as the most important performance measure by
Fuss et al. [45], as it was found to correlate highly with all
the other measures. Pressure systems have been applied in
[39], [49], and [66] to provide insights into foot loads. For
example, the authors in [49] and [66] proposed an insole with
pressure-sensitive foil that was able to capture if a climber
was applying enough pressure corresponding to his weight.
On the other hand, Zampagni et al. [39] estimated the amount
of weight redistribution between the two legs during the dou-
ble support phase.

E. INDICATORS OF ROUTE PREVIEWING AND ROUTE
FINDING PERFORMANCE
It is well established that athletes do not possess a better
visual system than non-athletes, and the difference lies in how
they use their eyes [75]. In climbing, visual inspection of the
route before the climb may enhance climbing performance,
as the climber has the opportunity to identify crux sections
and points for resting and chalking hands. Route previewing
is also an essential part of the ‘on-sight’ climbing competition
format, where a climber is permitted a timed inspection of
the route before attempting to ascend without prior physical
practice. While ascending a route, a climber makes pauses
to inspect the route to determine the following sequence of
movements. Using eye movement tracking technology, the
authors in [36], [53], and [56] calculated various indicators
that describe how a climber inspects a route during route pre-
viewing and route finding, respectively. For example, in [36],
the authors calculated the complexity of a climber’s visual
search strategy during route preview using entropy measure.
In [53], fixation locations were coded as corresponding either
to ‘‘handhold’’, ‘‘wall’’, ‘‘hand’’ or ‘‘other’’. In the same
study, the authors characterized a climber’s technique for

inspecting the route during route finding using the following
indicators: number of fixations, total and average fixation
duration by location, and search rate, i.e., the total number
of fixations divided into the sum of fixation durations across
all fixation locations.

F. INDICATORS OF VARIABILITY OF BODY MOVEMENT
COORDINATION PATTERNS
Several studies proposed methods for assessing variability of
a climber’s body movement coordination patterns during an
ascent. For example, Seifert et al. [67] identified clusters of
full-bodymovement patterns over time by taking into account
the combination of four limbs and pelvis orientations. On the
other hand, the authors in [63] performed a time-motion anal-
ysis taking into consideration neck and hip rotations around
the vertical axis. They calculated relative duration (in per-
centages of ascent duration) of each neck-hip coordination
pattern, i.e., in-phase, no-phase, anti-phase. In ice-climbing
studies [29], [30], [33], the variability of movement was
assessed by calculating the range and variability of angles
between the horizontal plane and the line formed by the
position of the tip of the left and right ice tools (upper-limb
coordination pattern) and the line formed by the lowest posi-
tion of the left and right crampons (lower-limb coordination
pattern).

VI. TYPE OF SENSORS
In this section, we present the three sensing modalities that
have been used for climbing activity recognition or per-
formance assessment: external, embedded, and body-worn.
External sensors are installed in a fixed, strategic loca-
tion in the environment. Embedded sensors are integrated
into climbing equipment with which the climber interacts.
For example, they can be incorporated into a harness or a
quickdraw. Body-worn sensors are portable sensing devices
that are attached directly to the climber’s body, possi-
bly organized in a body sensor network. An advantage of
body-worn sensors is that monitoring can be done at any
place.

In our classification, external sensors are those that pose
significant requirements on existing infrastructures such as
calibrated camera setups. In contrast to these, body-worn sen-
sors are suitable for long-term data collection during stan-
dard climbing sessions, in indoor and outdoor conditions.
External and embedded sensors can be complementary to
body-worn sensors as they can provide additional informa-
tion regarding the ascent in an unobtrusive way. In Table 4
there are some examples of these three types of sensors,
which are described in the following subsections. Table 5
gives details (sensors and instrumentation, sensor placement)
about different systems that have been used for collecting
climbing data for identifying activities and assessing perfor-
mance indicators. For sensor data to be useful, effective algo-
rithms are required which can extract meaningful informa-
tion on performed climbing activities and performance (see
Section VII).

VOLUME 10, 2022 108589



M. Andrić et al.: Sensor-Based Activity Recognition and Performance Assessment in Climbing: A Review

TABLE 4. Examples of external, embedded, and body-worn sensors.

A. EXTERNAL SENSORS
External sensors typically do not require to be in direct con-
tact with the climbers, although they may be required to wear
markers that reflect light back to the sensors. Examples of
studies where external sensors have been used are the ones
adopting video cameras and camera-based motion capturing
systems. 3D optoelectronic motion capture (OMC) systems
are often considered as the gold standard for motion anal-
ysis due to the high accuracy of marker position measure-
ment [76]. However, optoelectronic-based approaches have
several limitations for widespread use such as high cost, the
time and skill needed for the subject’s sensorization, and the
limited calibration volume within which the analyses can be
performed [22]. An example of a study which used OMC
system is that of Sibella et al. [32], in which the climber’s
body was modeled as a series of nine rigid body segments,
i.e., forearms, upper arms, trunk/head, thighs and legs, using
12 reflective markers. They assessed climbing fluency from
a climber’s 3D body center of mass coordinates calculated
frame by frame from the positions of the markers. On the
other hand, Seifert et al. [63] used an HD camera to calculate
climbing fluency based on digitized hip trajectory. In several
studies the authors reported using digitizing software for key
points detection and tracking [29], [30], [33].

B. EMBEDDED SENSORS
Embedded sensors include force transducers, altimeters,
and accelerometers, among others. Measurement of forces
applied to a climbing hold was done by Fuss and col-
leagues in studies involving bouldering [47], sport climb-
ing [45], and speed climbing [44]. If the instrumentation
of climbing holds is not possible - for example, in outdoor
climbing - insole pressure system can provide insight into

vertical foot loads [39], [66]. Another embedded sensor is
the sensor-enhanced quickdraw used in [28] and [41] for
activity recognition in a climbing gym. It is a quickdraw
with a small accelerometer sensor attached to the strip in its
central part. In a study conducted on natural outdoor routes,
Tonoli et al. [42] showed that the activity of falling can be
accurately detected using an accelerometer and an altimeter
embedded into the climber’s harness.

C. BODY-WORN SENSORS
Instances of body-worn sensors are accelerometers, iner-
tial measurement units (IMUs), which include a gyroscope
(also known as angular velocity sensor) and sometimes a
magnetometer, and eye movement tracking glasses. These
sensors are often assembled with a data processing unit
into custom-made prototype sensing platforms, which are
designed as small and robust. Recent advances in eye move-
ment registration technologies have allowed to record eye
tracking data of a climber without impeding his perceptual or
physical behaviour. This equipment usually consists of a pair
of glasses augmented with miniaturised cameras mounted
around the frames and a recording device to store a video
footage (top right of Table 4). The accuracy of present eye
movement tracking systems is typically within one degree of
visual angle.

VII. WORK FLOW OF CLIMBING ACTIVITY RECOGNITION
AND PERFORMANCE ASSESSMENT
In this section we present a range of computational tech-
niques that have been applied for activity recognition and
performance assessment in the surveyed literature. Building a
system for activity and performance monitoring in climbing
involves a series of steps that go from data acquisition and
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labeling to activity recognition and performance assessment.
Fig. 2 shows the overall process. The majority of works on
climbing activity recognition employs a HAR model which
consists of three parts: data segmentation, feature extraction,
and training and classification. First, the segmentation proce-
dure uses a fixed-length sliding window to divide the sensor
signal into different segments; subsequently the segments are
manipulated in order to extract features (e.g., the average
sensor measurement in a particular time window) that can
be profitably exploited to recognize the activities; finally a
machine learning classifier is used to label each segment with
an activity, according to the values of the features. On the
other hand, some researches, e.g. [16] and [55], do not seg-
ment the signal by using the sliding window approach but
instead use a threshold-based procedure that directly identi-
fies the start- and end-data points of the activity of interest.
A summary of the analysed machine learning and analytical
approaches for activity recognition is shown in the Appendix
(Table 10). In general, indicators of overall climbing perfor-
mance such as those of fluency and body movement coor-
dination patterns are derived from the entire sequence of
ascent data while activity-specific indicators such as plateau
duration and the exploration index are calculated by using
the output of the activity recognition model. In the following
subsections, each of the steps of the overall process shown in
Fig. 2 is presented.

A. DATA ACQUISITION AND LABELING
This step corresponds to data collection using sensors that
are either worn by the climber, attached to the climbing
equipment, or installed in the climbing infrastructure (see
Section VI). Generally, sensors need to be calibrated before
collecting the data for their proper functioning. For example,
in [56], before eye tracking recording, climbers were asked to
fixate upon three calibration points of set locations positioned
within the scene of view. In the study by Orth et al. [61],
climbers were asked to stand still with extended arms to
the side for 10 s before each climb in order to calibrate the
orientation of the body-worn IMUs. Several studies using
cameras adopted a calibration frame consisting of vertical and
horizontal ropes with marks every 1 m [29], [63]. Various
software tools offer support for sensor calibration. Examples
from the surveyed literature include iMotions software1 for
eye tracking glasses and SimiMotion software2 for digitizing
the position of each marker on video images.

Raw data at a high-frequency rate is usually produced by
the sensors and then transmitted and stored on a platform
where the analysis takes place. This platform can be a local
computer or a remote server. The data can be copied from a
body-worn device to a local computer through a wired con-
nection such as USB or wirelessly via Bluetooth. The data
can then be transferred to a server via an Internet connection.
For example, Ladha et al. [15] developed a wrist-worn sens-
ing platform that included an accelerometer and a memory

1https://imotions.com/
2http://www.simi.com/en/

card to store the data recorded during a climbing session.
Following the session, the data was then downloaded to a
computer via a USB connector before being uploaded to
a remote server. Alternatively, periodically transmitting the
data to an analysis platform offers the advantage that data
analysis can be performed as soon as data is available instead
of waiting until the end of the climbing session; this is espe-
cially important for virtual coaching and safety monitoring
applications.

In order to learn activity patterns, machine learning algo-
rithms require training data. It is worth mentioning that
significant effort may be required to annotate the training
data acquired by multiple sensors with the correct activ-
ity label. This problem was mitigated in the study by
Boulanger et al. [16], in which video recordings were man-
ually annotated and synchronized with sensors by finding
the optimal correlation between the sensor acceleration and
the video-tracking-based acceleration. However, the authors
cautioned that the wrong estimation of the delay between the
frame-based manual annotations and the acceleration could
have an adverse effect on the performance of classification.

B. PRE-PROCESSING
Raw sensor data often require pre-processing such as noise
removal and separating the gravitational (low-frequency)
component from the body acceleration (high-frequency)
component.

In signal processing, a filter removes the undesirable com-
ponent from the signal (for more information see, for exam-
ple, [77]). Moving average is a simple filtering technique for
reducing noise. For instance, this approach has been applied
in [14], where acceleration data along the three dimensions
were smoothed using a 50 ms time window. As an alter-
native, a Savitzky–Golay filter with a window of 140 ms
was applied in [32] for smoothing the 3D coordinates of the
COM. In a study on falling recognition by Tonoli et al. [42],
the authors developed a method based on Kalman filter [78]
which embeds a mechanism for filtering noise from altitude
and acceleration measurements. Ivanova et al. [28], [41] gen-
erated a digital low-pass filter with a cut-off frequency of
0.25 Hz to separate the movement component from the gravi-
tational component in each time series of triaxial acceleration
signals.

The gravity component can also be separated from the
acceleration signal using the gyroscope and magnetome-
ter readings of an IMU. This procedure requires estimat-
ing the orientation of the sensor in the ground reference
frame. Examples of popular and freely available algorithms
for estimating sensor based three sensor information sources
(i.e., accelerometer, gyroscope, magnetometer) are Madg-
wick’s [79] and Direction Cosine Matrix (DCM) [80].

C. SEGMENTATION
The data segmentation step determines the segments of the
pre-processed sensor data streams that are likely to include
information about activities. From the literature [81], [82],
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FIGURE 2. Overall work flow of climbing data analysis for activity recognition and performance assessment.

[83], [84], some of the methods to tackle the problem of
segmentation are: fixed-size sliding window, dynamically
varied time window, energy-based segmentation, and seman-
tic approach, which incorporates an ontological model to rep-
resent relationships for the derivation of complex activities.

From the reviewed literature on climbing, a typical way to
perform segmentation is by using a sliding (or moving) win-
dow approach, by means of which the whole data sequence
is subdivided into smaller time windows of fixed length;
classifiers are then applied separately to each window (see
Section VII-E). A range of window sizes has been used in
the included studies, ranging from less than one second [17]
to 10 s [43]. One challenge of the windowing technique is to
select an appropriate size for the time window, which decides
how often the features are extracted (see Section VII-D),
thereby influencing the classifier performance. As an exam-
ple, to recognize hold gripping from accelerometer signals,
window sizes of 280 ms [17], 750 ms [55] and 5 s [15] have
been used. In addition to duration, another important param-
eter of a sliding window procedure is the overlap between
successivewindow frames. The overlapping technique is used
to address the problem that segmentation can rarely exactly
match the beginning or end of an activity. Two consecutive
windows have usually between 50% [43] and 95% [41] of
data in common.

D. FEATURE EXTRACTION AND SELECTION
Activity recognition often relies on features that represent
statistical or mathematical quantities derived from the tempo-
ral course of the sensor data (time-domain features) or their
frequency course (frequency-domain features). In order to
derive frequency-domain features, a window of sensor data
must first be transformed into the frequency domain, typically
using a fast Fourier Transform (FFT).

An example of a study that used time-domain features
is the one of Bonfitto et al. [43] where a set of 30 fea-
tures have been defined to tackle falling recognition using
an accelerometer and an altimeter on a climber’s harness.
These features have been derived from time windows of
three types of signals i.e., the altitude variation, the (raw)
acceleration, and a pre-processed acceleration signal. On the
other hand, Ivanova et al. [41] used a combination of
60 time- and frequency-domain features for recognizing
rope pulling. In contrast to these approaches, the studies of

Kosmalla et al. [17] and Ebert et al. [55] required only one
feature for hold gripping recognition.

While in these studies, the authors used domain knowledge
to extract features, the study of Ladha et al. [15] employed a
feature learning approach. In [15], the 3D data of both wrists
obtained by segmentation are first concatenated into a unified
representation. Then, a feature learning approach based on
Restricted Boltzmann Machines (RBM) [85] is employed to
calculate the feature vectors associated with time windows.
At the end of the learning, the activation probabilities of the
hidden units of the RBM are retained as feature representa-
tions for each time window.

The set of extracted features is sometimes first screened in
order to identify those features that are the most informative
and discriminating. For example, a trial-and-error approach
was used in [43] to identify the best 23 features among the
30 initial ones. The resulting features are typically repre-
sented as a numerical array, called the feature vector, and used
as an input to the classifier (see Section VII-E).

E. TRAINING AND CLASSIFICATION
The classification approaches range from simple threshold-
basedmethods tomore advanced algorithms, such asmachine
learning (ML) algorithms, which can associate patterns in
input features with each activity. In this section, the differ-
ent classification approaches we have found in the analysed
literature are presented within several sub-categories.

Before entering into the classification techniques, we first
discuss the evaluation methods. The classical approach to
evaluate the accuracy of an activity recognition system is
using k-fold cross-validation (CV) [86]. The parameter k ,
whose value is typically less or equal to ten, determines the
number of groups into which the dataset is split for training
and testing the classifier. In [15] and [17], the authors split
the dataset into groups taking also into account the informa-
tion about the climber who produced records. Namely, when-
ever a dataset used for testing contained recordings of a cer-
tain climber, all the records from this climber were removed
from the training dataset. In this way the authors investigated
whether their recognition method is user independent, i.e.,
whether body of foreign user data is sufficient to accurately
identify the target user’s activity. In general, the overall accu-
racy of the classification is calculated as the average propor-
tion of correctly classified windows (or samples forming the
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windows) in each cycle. A more detailed description of the
system performance can be given by measuring precision,
recall, and specificity. Precision captures the ability of the
classifier to correctly identify instances of a certain activity
class. Recall and specificity represent true positive and true
negative rates, respectively.

1) THRESHOLD-BASED CLASSIFICATION
In threshold-based classification, a derived feature is usually
compared against a predefined threshold or a set of thresh-
olds to determine whether a particular activity has been per-
formed. A learning step may be applied to find the thresholds
that attain the highest classification accuracy while produc-
ing the least number of false identifications. For example,
in order to choose two thresholds for identifying the start
and end of each hold gripping occurrence in sensor signals,
Kosmalla et al. [17] ran an iterative procedure on a portion of
training data. A range of values was assigned to each thresh-
old; they considered the best combination of thresholds to be
the pair of values which resulted in the smallest difference
between the actual number and the detected number of hold
gripping.

The threshold-based approach has been applied to differ-
entiate between static and dynamic activity, such as hold
gripping and hold change, and immobility and traction.
To differentiate between hold gripping and hold change, fea-
tures derived from data produced by wrist-worn accelerom-
eters [15], [17] or IMUs [55] have been used. For example,
in [15], they calculated the so-called short-term energy from a
window of acceleration data, i.e., the inverse of the Euclidean
norm, while in [55] they calculated the sum of the acceler-
ation standard deviations along each of the axes. When the
energy was lower than the threshold, the window was clas-
sified as hold gripping. To differentiate between immobility
and traction, a threshold-based approach has been applied to
the hip acceleration signal [30]. From this signal the authors
derived vertical hip displacement over time; stationarity cor-
responded to a sequencewhere the displacementwas less than
0.15 m for a duration longer than 30 s.

The potential of the threshold-based approach for ascend-
ing classification has been demonstrated in the study by
Ebert et al. [55]. The authors used the wrists’ acceleration
along the vertical axis [55]. They applied a threshold of 0 g
to the mean of vertical acceleration generated from a window
of 750 ms duration to identify if the corresponding arm was
pointing upwards or downwards, whereby a value greater
than 0 g indicated an upwards direction. The ascending activ-
ity was considered to begin from the first window when both
arms were pointing upwards and finish as soon as both hands
were pointing downwards for multiple windows.

Using an accelerometer and an altimeter attached to
a climber’s harness, Tonoli et al. [42] developed a
threshold-based approach to recognizing falls. Their frame-
work exploited a Kalman-filter-based model [78] to obtain
estimates of the state vector variables, i.e., altitude, vertical
velocity, and vertical acceleration. Once the estimates were
available, a lower-bound threshold was applied to energy

density estimated from the velocity vector to determine
whether a fall happened.

The threshold-based approach has also been applied to
identify visual fixations from gaze position data based
on which insights into a climber’s route previewing and
route finding performance have been obtained. For example,
in [56], the authors used a moving window that spans con-
secutive gaze points, determined by the minimum fixation
duration of 90 ms; a window was classified as a fixation if
the spatial dispersion calculated as the sum of the difference
between the points’ maximum and minimum x and y value,
i.e., (max(x) − min(x)) + (max(y) − min(y)), did not exceed
a threshold of 100 pixels.

2) HIERARCHICAL CLASSIFICATION
In hierarchical classification, a binary decision tree is con-
structed. It is generally handcrafted based on domain knowl-
edge. At each node, a binary decision is made depending on
the input feature, leading to either the final classification or
to the following decision node.

The hierarchical classification scheme has been used to
classify five climbing activities, i.e., traction, postural regu-
lation, hold gripping, hold change, and immobility [16]. The
same approach has been instrumental in assessing perfor-
mance indicators, i.e., route previewing skills [56], variability
of body movement coordination patterns [35], exploration
index [16], [57], and temporal indicators of fluency [57]. The
proposed scheme used threshold rules which were applied
to cumulative sums of the log-likelihood ratio depending on
the norms of acceleration and angular velocity from IMUs
located on the left and right wrists, left and right feet, and hip.
In addition to threshold-based rules, a Gamma distribution
model was used to make the classification decision at each
sensor. This decision indicated whether a limb or hip was
immobile or mobile at a given time. These decisions from
individual sensor nodes were combined in a binary decision
tree in order to differentiate between the five activities. As an
example, a climber was considered to regulate his posture
when his limbs were immobile while his hip was mobile.

3) MACHINE LEARNING CLASSIFIERS
After extracting and selecting appropriate features from the
time windows, a machine learning (ML) algorithm tries
to learn a mapping from the input feature vector to the
output activity class (training phase). Once the algorithm
is trained, it can predict the unknown class of a new
unseen input feature vector. Some classifiers, instead of out-
putting a predicted class, produce a numerical output, such
as the class probabilities, from which the predicted class
is determined, e.g., by selecting the one with the highest
probability.

ML classifiers that have been tested for climbing activity
recognition are decision tree, logistic regression, k-nearest
neighbor (kNN), convolutional neural network (CNN),
AdaBoost, random forest, and artificial neural network
(ANN). Differently from hierarchical classification, in this
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case the decision tree is automatically built by a learning
algorithm. Ladha et al. [15] applied several machine learn-
ing algorithms to the ascending activity recognition prob-
lem. They found that logistic regression outperformed other
investigated classifiers, i.e., kNN and a decision tree clas-
sifier. Another study where the machine learning approach
has been applied is that of Bonfitto et al. [43]. Their study
demonstrated that falling can be differentiated with a high
success rate and very few false positive instances using
ANN.

4) DISCUSSION
This subsection has presented an overview of different tech-
niques used to classify climbing activities. This range of
techniques is summarized in Table 10. Given that the clas-
sification performance results have not been presented in
each study, we could not perform a quantitative comparison
of individual classifiers. In this section, we discuss factors,
such as ease of development and real-time execution, that
along with accuracy should influence the choice of a classi-
fier.We briefly summarize the different techniques, providing
information about the potential strengths and weaknesses of
each approach.

The threshold-based approach has often been exploited
given its simplicity and ability to effectively differentiate
between static and dynamic activity. This approach typically
uses features that are derived from fundamental knowledge
about how some activity will produce a distinctive sensor sig-
nal, and it is usually easy to develop. In order to differentiate
between a larger set of activities, it is required to use more
advanced classification techniques which take one or more
features as input.

The hierarchical classification scheme can distinguish
between a range of activities based on multiple binary deci-
sion nodes. Promising results have been obtained by using
this approach in one study [16] and further work is required
to establish whether it is applicable to other climbing activity
classification problems. In comparison to the threshold-based
classification, the hierarchical approach can take a longer
time to develop given that the exact parameters for making
a decision at each node are obtained by examination and
analysis of data in the training phase. Both threshold-based
and hierarchical classification are generally executed with
minimal computational resources and are therefore suited for
real-time applications.

Classification approaches based on machine learning
algorithms such as logistic regression, random forest, and
k-nearest neighbors are also simple to develop and can be
used to classify one or more activities. Similarly, artificial
neural networks are a powerful approach, which demon-
strated high levels of accuracy for fall recognition [43],
though generally, they can be slow to train and difficult to
implement. Real-time execution of ML algorithms may be
slower than previously considered approaches due to the
mapping of a feature vector to a set of class labels. The higher
the dimensionality of the feature space is, the more computa-
tionally intensive the classification is. Moreover, the degree

of overlap between consecutive sliding windows, which are
routinely used in this case, is subject to a trade-off. Namely,
the smaller the overlap the less frequently the subsequent
stages of activity recognition are executed, which reduces the
computational load, but also the less precisely the activity
borders can be defined.

Finally, we note that there are many methods such as sup-
port vector machines, fuzzy logic, or hidden Markov models,
which have been shown to be effective for a wide range of
activity classification problems from sensor data (e.g., see
[86] and [87] and references therein), but have not yet been
tested in climbing studies. With the limited number of studies
on climbing activity recognition, there is a considerable need
for further work to establish the suitability of the different
techniques for various climbing activity classification prob-
lems.

F. PERFORMANCE ASSESSMENT
This subsection describes computational methods for
deriving performance indicators found in the examined lit-
erature (see Section V). Some performance indicators are
computed on the sensor signal corresponding to the entire
ascent, whereas others are derived from signal segments cor-
responding to a specific climbing activity. Examples of the
former type include indicators of fluency and variability of
body movement coordination patterns, while indicators of
exploration, control, and stability, among others, require sen-
sor data to be segmented according to the activity of interest.
A correspondence relationship between a set of performance
indicators and climbing activities is shown in Table 6.

1) INDICATORS OF FLUENCY
As already indicated (see Section V-A), climbing fluency
has been assessed by spatial, temporal, and spatial-temporal
indicators. The geometric index of entropy (GIE) has often
been applied to quantify the spatial aspect of fluency. More-
over, external sensing approaches (e.g., motion capture sys-
tem in [32] or frontal camera in [63]) have been used in
these works. For example, in [32], the authors first calculated
the position of the center of mass (COM) as the weighted
average of the positions of the center of mass of nine body
segments, then, the GIE was computed by taking the natu-
ral logarithm of two times the length of the pattern traveled
by the COM divided by the perimeter of the convex hull
around that path. When assessing temporal indicators of flu-
ency, the ascent is segmented by identifying stationarity seg-
ments (e.g., for assessing average plateau duration in [30]),
immobility and traction (e.g., for estimating immobility-to-
mobility ratio in [61]. Spatial-temporal indicators have been
assessed by calculating the jerk (also called jolt) coefficient,
i.e., the derivative of the acceleration with respect to time.
Usually, a body-worn IMU sensor has been used to collect the
acceleration data. In addition to calculating jerk from the hip
acceleration data, Seifert et al. [64] calculated jerk coefficient
from the hip angular velocity data. They observed a high
correlation between the two jerk coefficients.
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TABLE 5. Overview of sensing approaches, climbing activities and performance indicators found in the reviewed literature. Symbols used: MLC = Machine
learning classifier, TBC = Threshold-based classification, HC = Hierarchical classification, var. = variability, mvt. = movement, coord. = coordination, LogR
= Logistic regression, RF = Random forest, ANN = Artificial neural network, CNN = Convolutional neural network.

2) EXPLORATION
The exploration indicators have been derived after identifying
hold change and traction activity segments in the recorded
acceleration measurements by sensors placed on wrists and
pelvis. Consequently, in [16], the authors considered a hold
change to be performatory if it was performed in paral-
lel with traction, otherwise, it was regarded as exploratory.
By counting the frequency of exploratory and performatory
hold changes, they calculated the exploration index as the
ratio between the two quantities. Exploration has also been
assessed through the duration of exploratory and performa-
tory activities [56], [57].

3) INDICATORS OF CORE ABILITIES: POWER, STABILITY,
SPEED, CONTROL, AND ENDURANCE
Indicators of core abilities have been assessed from seg-
mented acceleration signals of wrists [15], [55] and head [14].
For instance, in [15] and [55], the segmentation consisted of
identifying the ascent within a recording, using the sensor
data of both hands, followed by identifying hold gripping
segments. It is worth noting that these works are based on
the assumption that a signal is composed of alternate hold
gripping and hold change segments, thus, not accounting for

other hand activities that may occur during an ascent, such
as limb shaking or chalking. In order to assess a climber’s
ability to remain composed while gripping a hold (i.e., sta-
bility) and ability to smoothly move the hand in transitions
between holds (i.e., control), Ebert et al. [55] used the mean
and variance of identified segments i.e., a high value of these
features in hold gripping segments indicated a lack of sta-
bility, while a low variance of these features in hold change
segments implied a good level of control in hold transitions.
On the other hand, in [15], the authors assessed stability by
calculating the inverse of the variance of the first derivative of
the jerk coefficient based on hold gripping segments. Speed
of ascent has been assessed by the number of hold changes per
second [15], ascent duration [14], and average velocity [66].
Endurance has been computed in [14] as the mean jerk coef-
ficient of ascent acceleration data recorded from an ear-worn
sensor.

4) INDICATORS OF HOLD-LIMB CONTACT PERFORMANCE
As we have seen, a number of indicators characterizing a
climber’s contact with a hold have been considered (Table 3).
In a comprehensive study by Fuss et al. [45], the authors
extracted a number of parameters from the 3-axial force-time
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signal returned by the transducers such as the contact time,
the mean force (amplitude of the signal), the tangential and
normal forces, a parabolic curve of the same impulse. As a
next step, from thesemeasures, the authors derived the indica-
tors such as friction coefficient, the Hausdorff dimension, the
impulse, the smoothness factor, etc. For instance, the smooth-
ness factor was calculated by dividing the body weight by
the mean of the absolute difference between the force–time
signal and the parabolic curve of the same impulse. In sev-
eral studies where pressure sensors were used [39], [49], the
authors computed the loading force from the pressure values
as a function of time. Then, the force signal was pre-processed
to filter out the noise (see Section VII-B. From such pre-
processed signal, Zampagni et al. [39] estimated the foot load
by taking the amplitude (peak-to-peak) oscillations of the ver-
tical force oscillations under both feet, while Balas et al. [49]
took the sum of force-time integral for the left and right
foot.

5) INDICATORS OF ROUTE PREVIEWING AND ROUTE
FINDING PERFORMANCE
In the reviewed literature, route previewing and route finding
performance have been often assessed by the duration and
frequency of fixations, which are recognized from the activity
gaze data, taking also into account the area of interest (AOI)
such as a hold or the climbingwall [53], [56]. Interestingwork
is that of van Knobelsdorff et al. [36] in which they used a
first-orderMarkovmodel to calculate probabilities of fixation
transitions from one AOI to another. Based on this matrix
of transitions the authors calculated gaze transition entropy
during route previewing.

6) INDICATORS OF VARIABILITY OF BODY MOVEMENT
COORDINATION PATTERNS
Detection of body movement coordination patterns has usu-
ally been performed from orientation data collected during
an ascent by body-worn IMU sensors. As a pre-processing
step, some works reduced noise or pre-computed the sensor
directions in the Earth reference frame from recorded data
(see Section VII-B). Clusters of coordination patterns have
typically been explicitly defined (e.g. neck-hip coordination
patters [63], and inter-limb coordination patterns [29]). Alter-
natively, Seifert et al. [67] used k-means clustering method to
identify clusters of orientation data points corresponding to
full body movement orientation patterns.

VIII. RESEARCH CHALLENGES AND OPPORTUNITIES
In this section, we highlight some of the challenges, as well
as opportunities, related to aspects that need to be improved
to have fully operational, reliable, and automatic systems in
day-to-day climbing practice.

A. ACTIVITY RECOGNITION AND PERFORMANCE
ASSESSMENT METHODS
Although a variety of methods with which many climbing
activities can be recognized and assessed have been proposed

TABLE 6. Overview of performance indicators and corresponding
climbing activities. In the reviewed literature, performance indicators
(left) have been derived upon identifying data segments of climbing
activities (right).

and validated in the reviewed literature, still there is a consid-
erable need for future work in this area. In Tables 7 and 8 we
provide, respectively, suggestions for further work regarding
those activities whose recognition has been addressed in the
reviewed literature and those whose recognition has not been
addressed yet.

Reviewed approaches for identifying hold gripping occur-
rences in accelerometry data have been unable to differen-
tiate between hold gripping, limb shaking for relief, and
hand chalking activities (see Section IV). Additional machine
learning could be applied to recognize and eliminate non-hold
gripping activities, for example, by exploiting the fact that
limb shaking and chalking often occur with the arm down-
ward. Such an approach would result in better hold grip-
ping detection, which would in turn give a more accurate
assessment of the activity-related performance indicators
(Table 6).
Assessment of a crucial aspect of performance such as

endurance (resilience to fatigue) remains a challenging task.
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TABLE 7. Recommendations for future work concerning climbing activities whose recognition has been addressed in the reviewed literature.
Symbols used: RA = Recognition approach, MLC = Machine learning classifier, TBC = Threshold-based classification, HC = Hierarchical
classification.

Although the results of Pansiot et al. [14] evidenced some
ability of the proposed indicator to capture endurance, their
analysis revealed a shortcoming in dealing with the climbs
where a climber took long periods of resting during an ascent.
To overcome this issue, additional machine learning could
be applied to recognize and discard periods of stationarity.
Moreover, the approach of Pansiot et al. has been evaluated
using a small number of climbers and routes. Therefore, fur-
ther work is required to develop and also validate indicators
of endurance by collecting a large dataset of climbs. Fur-
thermore, as Schmidt et al. [89] pointed out, more research
is required to develop procedures for analyzing data at mul-
tiple levels of coordination such as body-gaze movement
coordination.

In contrast to rock climbing, less attention has been given
to the study of ice climbing activities in the surveyed litera-
ture. Notably, the activities of interaction with the climbing
surface, i.e., tool swinging, hole hooking, and crampon kick-
ing, have so far been only visually assessed from the video
footage [30]. Automatic recognition of these activities would
allow also automatic assessment of exploration indicators
(see Section V-B).

B. SENSOR DATA COLLECTION
For an extensive collection of sensor data in the climbing
domain, there are a few important challenges to be addressed.
One of them is the development of lower-priced sensing
devices for more extensive instrumentation of the climbing
facilities. That would allow, for example, to measure con-
tact forces at many footholds and handholds. Towards this
goal, Bauer et al. [90] recently showed that route instrumen-
tation with one- and two-dimensional force sensors can be
a cost-efficient alternative to standard six-dimensional force
sensors. On the other hand, Iguma et al. [91] showed early
results that suggest that a 3D motion capture system can be
exploited to simultaneously collect motion and force mea-
surements. Another challenging problem is to develop pro-
cedures for collecting and aggregating data from multiple
sensing modalities such as IMU sensors, cameras, and eye
tracking glasses [89].

To the best of our knowledge, one set of publicly avail-
able climbing data has so far been released [91]. This dataset
contains labeled 2D skeleton time series obtained from video
recordings of a large set of speed climbing performances.
Given that sensor data collection and labeling is laborious
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TABLE 8. Recommendations for future work concerning climbing activities whose recognition has not been addressed in the reviewed literature.

and time-consuming, greater availability of public data for
climbing activity recognition in the future could facilitate the
development of new algorithms and methods for climbing
applications.

C. APPLICATIONS
From the perspective of applications in the climbing domain,
there is still significant scope for further work.

The exploitation of sensor data gives recommender sys-
tems exciting new application opportunities in the sports
domain [92]. With the adoption of wearable sensors in climb-
ing practice, large quantities of data could be recorded during
training sessions. As an example, automatic recognition of
a gym route which a climber successfully ascended [17],
as well as assessment of various performance parameters
(e.g. control, stability, speed, etc.) could be exploited by
a climbing recommender systems [93] to suggest training
routes that will assist in addressing weaknesses. It would
be of further interest to investigate if such virtual train-
ing recommendations provide comparable benefits to that
of a professional and committed coach as pointed out by
Ladha et al. [15].

Activity recognition techniques could be used to build sys-
tems for securing climbers’ safety in a climbing gym. Such
systems could assist in injury and accident prevention by
detecting potentially risky situations. For example, a climber
may suffer injuries during a fall as a result of the rope
overtightening (a consequence of hard belaying), potentially
causing a strong impact into the wall. In a preliminary study,
Munz et al. [88] hypothesized that fall duration and distance,
among other features, would allow quantifying the softness of
the belaying technique. Methods for fall recognition devel-
oped in [42] and [43] could be instrumental in developing
these system. Moreover, future work should focus on the
automatic assessment of belaying as another important factor
for injury prevention.

Several studies have so far developed first prototype sys-
tems for automated climbing performance assessment [14],

[15], [16], [41]. Utilizing such a system represents an impor-
tant building block for digital cockpits for improving levels
of climbing activity by providing and visualizing statistics
to the user that are related to various aspects of performance
(see Table 3).

It should be also noted that future research should focus on
the development of real-time algorithms for climbing activity
recognition. In climbing monitoring systems developed by
Ladha et al. [15] and Kosmalla et al. [17] sensor data from a
wristband are processed off-line on an analysis platform after
climbing is finished. With real-time sensor data processing,
the knowledge about the climbing activity would instead be
immediately available, thus, for example, enabling a virtual
climbing coach to adapt to the climber and make suggestions
that would fit into the climber’s current mode of training.

D. PRIVACY PROTECTION AND ACCEPTABILITY
For complex software systems, such as those described in
Section VIII-C, protecting the privacy of sensitive user data
produced by sensors is becoming a necessity with the new EU
Data Protection regulations [94]. Moreover, a lack of users’
trust in personal data privacy may reduce acceptance of the
technology [95]. Recently, novel tools, guidelines, and frame-
works have been developed to help application developers
conform to established principles of software engineering for
protecting users’ privacy [96].

In addition to privacy preservation, several other factors
relating to climbers’ acceptance of technology have been
identified [97], [98]. As an example, Mencarini et al. [97]
concluded that wearable devices designed for climbers should
support rather than substitute the competencies of expert
climbers or help beginners acquire new abilities; they should
be reliable, easy to carry, and not obtrusive of the flow of
climbing activity.

IX. CONCLUSION
In this paper, we have surveyed the state-of-the-art of research
on using sensors to collect climbing data, with the primary
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FIGURE 3. Flowchart of the study screening procedure.

TABLE 9. Criteria for literature search. An asterisk (*) was used as a wildcard to broaden the search for words starting or ending with a keyword.

focus on their usage for the recognition of climbing activi-
ties and the assessment of a climber’s performance. We have
presented a taxonomy of climbing activities emerging from
the examined research works (Section IV), which we believe
will help to perform new research in information and com-

munication technologies for the sport of climbing, both for
the recognition of activities that have not been addressed yet
and for understanding the overall structure and relationship
between different activities. We have presented a taxonomy
of themain indicators of a climber’s performance (SectionV),
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TABLE 10. Overview of data analysis techniques that have been applied to activity recognition in the reviewed literature.
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and the techniques to practically compute them. We have
offered a comprehensive view of the various types of sen-
sors being used in the climbing domain for data collection
(Section VI): external sensors (located in the climbing envi-
ronment), embedded sensors (incorporated into the climbing
equipment), and body-worn sensors (put on by a climber).
We have also identified the key steps of the standard work
flow by means of which the collected raw sensor data can be
manipulated and analyzed in order to classify activities and
derive performance indicators, using machine learning and/or
analytical models (SectionVII).We have also presented some
of the research challenges and opportunities to advance the
field (Section VIII). Based on the reviewed literature, the
application of sensing technologies, along with data analysis
methods, represents a great opportunity of providing technol-
ogy tools that climbers can greatly benefit from.

APPENDIX PRISMA FLOW DIAGRAM AND SEARCH
QUERY
See Figure 3 and Table 9.

APPENDIX ACTIVITY RECOGNITION APPROACHES
See Table 10.
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