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Optimal sparsity allows reliable system-aware
restoration of fluorescence microscopy images
Biagio Mandracchia1,2,3*, Wenhao Liu1, Xuanwen Hua1, Parvin Forghani4, Soojung Lee1,
Jessica Hou5, Shuyi Nie5,6, Chunhui Xu4,6, Shu Jia1,6*

Fluorescencemicroscopy is one of themost indispensable and informative driving forces for biological research,
but the extent of observable biological phenomena is essentially determined by the content and quality of the
acquired images. To address the different noise sources that can degrade these images, we introduce an algo-
rithm for multiscale image restoration through optimally sparse representation (MIRO). MIRO is a deterministic
framework that models the acquisition process and uses pixelwise noise correction to improve image quality.
Our study demonstrates that this approach yields a remarkable restoration of the fluorescence signal for a wide
range of microscopy systems, regardless of the detector used (e.g., electron-multiplying charge-coupled device,
scientific complementarymetal-oxide semiconductor, or photomultiplier tube). MIRO improves current imaging
capabilities, enabling fast, low-light optical microscopy, accurate image analysis, and robust machine intelli-
gence when integrated with deep neural networks. This expands the range of biological knowledge that can
be obtained from fluorescence microscopy.
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INTRODUCTION
Faithful recording and displaying of diverse anatomical and func-
tional signals within the densely packed cellular space unfold the
basic details of living organisms. In this regard, fluorescence mi-
croscopy has been a revolutionary driving force for biological re-
search. In essence, all fluorescence microscopes can allocate a
finite photon budget from biological specimens for interrogation
at various spatiotemporal scales. However, the sensitivity of
current sensors to the influx of photons remains nonideal and ex-
hibits pixel-to-pixel variation, leading to the uncertainty of photon
detection (1). The resultant noise inevitably produces artifacts and
hinders accurate observation of fluorescent signals, impairing fast,
low-light, and quantitative imaging (2–6).

Physically, the nonideal photon detection results from mixed
processes owing to imaging conditions and sensor architecture
(7). For fluorescence microscopy, these processes can be grouped
into four major categories—charge-to-voltage conversion (read
noise), photon-detector interaction (photon shot noise), thermal
currents (dark shot noise), and pixel nonuniformity (fixed pattern
noise) (section S1.1). Various strategies for image restoration have
been developed to exploit noise statistics using models such as
signal-independent additive white Gaussian noise (8–10) or spa-
tially variant mixed Poisson-Gaussian noise (11–14). However, clas-
sical denoising methods perform less satisfactorily for fluorescent
image processing. This is mainly due to the trade-off between
noise correction and detail preservation under low-light conditions
and the lack of consideration for the actual microscopy system or

relevant noise sources such as dark or fixed-pattern noise (15,
16). Recent years have witnessed the development of denoising
models that address fluorescence microscopy (17–20), but their ap-
plicability remains limited to specific microscopy or camera types
(e.g., multiphoton microscopy (17) or scientific complementary
metal-oxide semiconductor (sCMOS) cameras (18, 19)). Therefore,
a deterministic, generalizable solution for effective image restora-
tion throughout major microscope systems remains unexplored
yet highly demanded.

Here, we introduce MIRO, an algorithm for multiscale image
restoration based on the optimally sparse representation of fluores-
cence microscopy data. MIRO formulates an adaptive framework
that encompasses camera modeling, pixelwise noise correction,
and sparse filtering to correct all microscopy-relevant noise
sources. Contrary to existing approaches, MIRO is based on a the-
oretical model that considers all common pattern, uniform, and
nonuniform noise statistics and leverages shearlet optimal sparse
representation to extract biological features from noise. To this
end, we devised a microlocal domain shrinkage strategy that effi-
ciently extracts the fluorescence signal at multiple scales, achieving
quantitative image restoration with substantially enhanced accura-
cy. Applying this method, we have demonstrated its usability and
significance by showing considerable improvements in a variety
of fluorescence microscopy techniques and downstream image
analysis. Last, we have synergized MIRO with deep learning to
use deterministic a priori knowledge in conjunction with neural
networks to simplify and optimize the training task. We anticipate
that this hybrid approach could offer a promising pathway to
further integrate sparsity and machine intelligence for enhanced
denoising quality, speed, and generalizability in imaging
discoveries.
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RESULTS
MIRO framework: Concept and characterization
Digital sensors are composed of different elements that convert the
impinging photons (S) into electrons and electrons into a digital
number (DN). Each of these elements introduces uncertainty to
the detection process, which theoretically can be modeled as

DNðp; tÞ ¼ gðpÞ � ðPfS; p; tg þ PfIDτ; pg þ Gf0; σ2R; pg

þ Gf0; σ2FPN; p; tgÞ þ oðpÞ ð1Þ

where P{·} indicates the Poisson distribution, P{·, p} the heteroske-
dastic Gaussian distribution, ID the dark current, τ the camera ex-
posure time, g(p) the pixel gain, o(p) the offset, and σ2R and σ2FPN the
variance of readout and fixed pattern noise, respectively
(section S1.2).

The MIRO image restoration comprises three main stages (fig.
S1). First, it corrects the pixel output using a calibrated map of
the offset, gain, and variance for each pixel. This step removes the
uncertainty correlated with the spatial variance of the pixel response
across the sensor, σ2FPN, which results in the nonuniform collection
efficiency for each pixel. Then, once pixel response nonuniformity
is removed, the remaining noise contribution can be modeled as a
heteroskedastic Gaussian distribution, i.e., with a spatially varying
noise variance. This has been shown to be a reasonable approxima-
tion even at low-photon regimes (S < 10 photons per pixel, see
section S1.2.2), so we can write

Iðp; tÞ � GfS; Sþ IDτþ σ2R; p; tg þ o0ðp; tÞ ð2Þ

where o0(p, τ) = o(p) + g(p) · ID(p)τ (section S1.3).
Next, to correct the time-dependent noise component and re-

trieve the signal S, MIRO uses the optimal sparsity conferred by
the shearlet transform (21) (section S1.4). Shearlets are an emerging
extension of wavelets that allow for multiscale analysis with the ef-
ficient encoding of anisotropic features, particularly relevant to bi-
ological phenomena (22–24). Shearlets provide optimally sparse
representation for a large class of multivariable, multidimensional
functions, allowing for simplified mathematical analysis and fast al-
gorithmic implementation (25–27). Exploiting the shearlet trans-
form for fluorescence images, we then conducted transform-
domain thresholding to restore the input signal. We derived a mi-
crolocal analysis to estimate and correct noise for each voxel in the
shearlet space, avoiding any assumptions about the noise uniformi-
ty (Fig. 1, A to D, and section S1.4). Last, lingering noise can be
further reduced by taking advantage of the nonlocal similarity of
the imaged sample (section S1.5).

To characterize the performance of MIRO, we used both numer-
ical and experimental datasets of varying signal-to-noise ratios
(SNRs), resolution, and sampling rates. Specifically, we simulated
fluorescence acquisitions in the presence of all the microscopy-rel-
evant noise sources and restored the images using MIRO under dif-
ferent SNR conditions (Fig. 1, E to L). As observed, MIRO allows for
the removal of fixed-pattern, dark, and readout noise and a remark-
able reduction of photon shot noise, exhibiting an improvement of
~90% over the ideal camera behavior (i.e., containing pure photon
shot noise) even at low photon counts (<3 photons per pixel,
Fig. 1M). The experimental data processed under similar conditions
showed robust and accurate noise correction in accord with the sim-
ulated results (section S2.1). Moreover, we assessed using both nu-
merical and experimental data that MIRO can effectively restore the

image quality without feature smoothening. On the contrary, our
results showed a substantial resolution recovery even at low SNRs
due to the reduction of the detrimental noise influence that deteri-
orates resolution (section S2.2).

Furthermore, we examined the performance of MIRO at varying
sampling rates commonly adopted for fluorescence microscopy. In
practice, an optimal sampling rate to balance the SNR and detail
preservation may not be achieved because of the actual imaging
configuration and the fact that major noise sources exist at all sam-
pling rates. Here, we demonstrated the viability of MIRO to perform
consistent noise correction independently from the image sampling
rate (section S2.3). The results also confirmed the robustness of
MIRO noise correction as the sampling rate affects the image spar-
sity, especially when below the Nyquist limit. Last, we used quanti-
tative metrics such as peak SNR and structural similarity index
(SSIM) to measure image enhancement for sparse and dense
samples. In both cases, we observed improved image restoration
compared to several state-of-the-art denoising methods
(section S2.4).

Sensor-agnostic restoration of fluorescence
microscopy images
To show general usability, we first implemented MIRO to process
images obtained using a wide range of fluorescence microscopy
techniques. As validated, MIRO provides effective noise correction
and recovers the image quality and resolution for microscopy
systems diversely equipped with sCMOS, electron-multiplying
charge-coupled device (EMCCD), and photomultiplier tube
(PMT) detectors (Fig. 1, N to V). Notably, the MIRO restoration
allows for consistent biological observation at a photon budget
two orders of magnitude lower with no noticeable loss of image
quality, empowering standard microscopy with better temporal res-
olution and less photodamage (fig. S2 and table S1).

In addition, effective noise removal can enhance quantitative
image analysis and, thereby, the range of biological knowledge
that can be extracted from fluorescence microscopy data (28, 29).
For instance, the presence of noise can complicate the interrogation
of subcellular morphology and dynamic processes. Using MIRO for
live-cell imaging, dim subcellular objects observed with conven-
tional epifluorescence microscopy can be distinguished with
higher clarity, which leads to the improved identification of subcel-
lular organelles (fig. S3 and movies S1 and S2). Notably, MIRO ex-
hibited viable and consistent noise correction without
oversmoothening the dense cellular regions that contain substantial
nonuniform shot noise due to the diffuse background (Fig. 2, A to F,
and movie S3). Such robustness allows for integrating MIRO with
image analysis tools and procedures for better biological interroga-
tion. For example, the use of MIRO before Mitometer (30) can ef-
fectively suppress the misidentification of mitochondrial objects
and their trajectories, resulting in improved automated mitochon-
drial segmentation and tracking during fast time-lapse observations
(Fig. 2, G and H).

Next, we validatedMIRO restoration for three-dimensional (3D)
microscopy image formation. Laser scanning confocal microscopy
(LSCM) is a major imaging technique that offers optical sectioning
and 3D imaging capability (31, 32). However, conventional LSCM
setups are typically equipped with single-pixel PMT detectors with a
low quantum efficiency (<30%). This deficiency is usually addressed
by increasing the laser power or scan duration (pixel dwell time ≥ 1
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to 3 μs), which may lead to severe photodamage and reduced acqui-
sition speed (33). Here, we validated that MIRO effectively alleviates
the limitation of PMT in photon collection while maintaining low
laser power and fast pixel dwell time (~0.6 μs). Undistorted 3D
LSCM data can be recovered despite the highly nonuniform
photon shot noise, allowing for faster volumetric acquisition

without compromising the sample health and underlying signal
details (Fig. 2, I to L, movie S4, and fig. S4).

Notably, image restoration can also recover the functionality of
conventional microscopy, otherwise hindered owing to the noise. In
theory, LSCM can gain a

ffiffiffi
2
p

× improvement in resolution over the
diffraction limit with a pinhole closed well below 1 Airy Unit [AU,
i.e., the size of the central lobe of the Airy disc (32)]. However, in

Fig. 1. Multiscale processing
through optimal sparsity enables
system-aware image restoration.
(A to D) Concept of microlocal
shearlet shrinkage for MIRO image
restoration. The input fluorescent
image (A) is transformed to the
shearlet space (B), where the spatially
overlapping noise and signal features
become microlocally distinguishable
across shearlet components (ϑ).
MIRO pipeline leverages this feature
to perform microlocal pixelwise
shrinkage and restore image quality
without any assumption about noise
uniformity [(C) and (D)]. (E to H)
Siemens star images generated by
simulating an average signal of 1 e−

(E), 3 e− (F), 10 e− (G), and 50 e− (H)
and corrupted by shot, readout, dark,
and fixed-pattern noise. (I to L) MIRO-
restored images corresponding to (E)
to (H). (M) Image SNRs before (gray)
and after (yellow) noise correction as
a function of the average number of
impinging photoelectrons per frame.
Each point represents the average
SNR measured over 100 simulated
images. The solid lines are the relative
best-fit curves obtained via polyno-
mial regression. The dashed line
represents the behavior of an ideal
digital camera, i.e., only affected by
Poisson shot noise. (N to V) MIRO
restoration of fluorescent images of
peroxisomes in human embryonic
kidney (HEK) cells acquired using an
EMCCD camera [(N) and (Q)], actin
and mitochondria in bovine pulmo-
nary artery endothelial (BPAE) cells
acquired using an sCMOS camera [(O)
and (R)], and microtubules in BPAE
cells acquired using a PMT with the
pinhole set at 0.25 AU [(P) and (S)].
[(T) to (V)] Corresponding cross-sec-
tional profiles along the dashed lines
marked in the (N) to (P) insets, re-
spectively, exhibiting the recovery of
image details and resolution by
MIRO. Scale bars, 4 μm [(A), (E), and
(N)], 10 μm (O), 1 μm [(N) inset, (O)
inset, and (P)], and 500 nm [(P) inset].
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Fig. 2. MIRO processing enhances the data analysis and functionality of fluorescence microscopy. (A to F) Representative time-lapse frames of mitochondria in live
HEK cells recorded at 50 Hz before (A) to (C) and after (D) to (F) MIRO processing. (G andH) Tracking individual mitochondria in the raw (G) andMIRO-processed (H) videos
using Mitometer, showing substantially reduced misidentification. (I to L) Cross-sectional views in xy (I) and yz (J) and corresponding images recovered by MIRO [(K) and
(L)] of a mouse kidney cryostat slice stained with 40 ,6-diamidino-2-phenylindole (purple), phalloidin (orange), and wheat germ agglutinin (blue) imaged using a confocal
microscope equippedwith a standard PMT. (M andN) Immuno-stainedmicrotubules of a BPAE cell acquired using a confocal microscope equippedwith a GaAsP PMT at a
consistent illumination level with the pinhole set to 1 AU (M) and 0.2 AU (N). (O) MIRO-processed image of (N), exhibiting an enhanced SNR comparable to (M) with
substantially improved optical sectioning and subdiffraction-limited resolution due to the closed pinhole. The insets of (M) to (O) show the zoomed-in images of the
corresponding boxed region asmarked in (M), displaying arrow-marked filaments separated as close as 158 nm can be resolved in (O) (white cross-sectional profiles). (P to
R) Cross-sectional images of (M) to (O) along the corresponding solid line as marked in (M), showing suppressed noise influence and improved FWHMmeasurements of
the circled filament at 260 and 740 nm (P), 115 and 460 nm (Q), 158 and 344 nm (R) in the lateral and axial dimensions, respectively. The results in (R) obtained with MIRO
processing are consistent with the expected resolution for a confocal microscope with a closed pinhole at 152 and 340 nm, respectively. Scale bars, 2 μm [(A) and (G)], 5
μm [(I), (J), and (M)], and 1 μm [(I), (M) insets, and (P)].
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practice, the loss of signal and drastically elevated noise influence
outpace the resolution gain (31). As a result, achieving this super-
resolution capability requires alternative strategies such as image-
scanning microscopy (34–36), which increases the instrument com-
plexity. Using MIRO, we demonstrated its viability for obtaining
subdiffraction-limited images from conventional LSCM using
both standard and GaAsP PMTs (33). Specifically, as the pinhole
was nearly closed below 0.25 AU, the noise level became detrimen-
tal to the image quality and effective resolution in both the lateral
and axial dimensions (Fig. 2, M and N). In contrast, the MIRO-pro-
cessed data at reduced pinholes not only displayed restored SNRs
comparable to those generated through an open pinhole (1 AU)
but also were benefitted from tighter pinholing and optical section-
ing, leading to a noticeably improved rendering of cellular struc-
tures in all three dimensions (Fig. 2, O to R, movie S5, and figs.
S5 to S7). The recovered results exhibited a subdiffraction-limited
resolution consistent with the predicted values of ~150 nm
(lateral) and ~340 nm (axial) for LSCM with a closed pinhole
(Fig. 2, M to R), prompting a practicable 3D super-resolution func-
tionality based on commonly available confocal systems.

Reduction of image reconstruction artifacts
Furthermore, the presence of noise produces artifacts andmiscalcu-
lated biological information for microscopy techniques relying on
computational processing (1, 37, 38). For this reason, MIRO can be
instrumental in improving the processing pipeline of a broader
range of computational microscopy techniques. For instance,
using MIRO, we observed a noticeable reduction of noise-related
artifacts and improved reliability of the processed image in decon-
volution microscopy (39, 40) (Fig. 3, A to D). Similarly, structured
illumination microscopy (SIM) relies on image processing to
achieve super-resolution but can be prone to spatially random re-
construction artifacts induced by low SNR (41) (Fig. 3E). Conven-
tional approaches using Wiener deconvolution remain unable to
fully suppress these artifacts while retaining the optimal resolution
(42). On the contrary, we observed that postprocessing of SIM
images by MIRO presented a considerable reduction of excessive
random, noncontinuous artifacts while preserving the fine resolu-
tion of cellular details (Fig. 3, F to J, fig. S8, and movie S6). Notably,
while other strategies for artifact minimization for SIM depend on a
priori assumptions of either Poisson-distributed noise (42) or spa-
tiotemporal continuity (43), MIRO showed an effective data recov-
ery without posing such constraints (figs. S9 to S11).

Last, we verified MIRO noise correction for time-lapse function-
al imaging with Fourier light-field microscopy (FLFM, or extended
LFM) (44–47). This emerging light-field approach computationally
recovers biological sample volumes from scanning-free snapshot re-
cording, achieving high spatiotemporal resolution with minimum
photodamage per volumetric rendering (48–52). Nonetheless, the
deconvolution-based reconstruction process is highly sensitive
and may miscalculate 3D objects or cause computational artifacts
due to a low image SNR. First, we conducted the time-lapse light-
field observation of cardiac spheroids, 3D human-induced plurip-
otent stem cell–derived cardiomyocytes (hiPSC-CMs) that effec-
tively recapitulate the human heart’s cellular and extracellular
microenvironment (53). As seen, the use of MIRO to facilitate
light-field acquisition resulted in a remarkable improvement in dif-
ferentiating every single cell across intact hiPSC-CMs (Fig. 3, K and
L, and fig. S12). The enhanced results revealed the simultaneous

morphological and functional variations of cardiomyocyte beating
and Ca2+ transients in the volumetric spheroidal context (>350 μm
by 350 μm by 240 μm per 10-ms acquisition), permitting longitudi-
nal observation with low illumination for tens of thousands of time
points and more accurate, volumetric characterization of the 3D
cardiac spheroids (Fig. 3, M to T, fig. S13, movie S7, and table
S2). Next, we observed the embryonic frog heart in vivo using
FLFM. With MIRO, light-field imaging provides a clear visualiza-
tion of the morphological changes between relaxation (diastole)
and contraction (systole) of the ventricular chamber (Fig. 3, U to
X, fig. S14, and movie S8), allowing for effective quantification of
the embryonic heart function (table S3).

DISCUSSION
In conclusion, nowadays, image denoising and restoration in fluo-
rescence microscopy demand quantitative accuracy, content com-
patibility, and platform generalizability. Despite numerous
advances in the field, no physics-based solution has been demon-
strated as robust and compatible with all major imaging systems.
In this work, we presented MIRO as a system-aware solution
based on microlocal noise correction with broad applicability to
current microscopy platforms. This introduces the use of optimal
sparsity in combination with physical modeling to allow for deter-
ministic and sensor-agnostic recovery of noise-corrupted signals
free from the knowledge of the target observed. Notably, the phys-
ical model is based on the approximation of the Poisson distribution
to a heteroskedastic Gaussian to account for the spatially varying
noise. This approximation introduces virtually no error already
with S = 10 photons and is robust even at lower-photon regimes
(S ≈ 3–5 photons per pixel). These conditions on the photon flux
are usually satisfied for many applications in fluorescence micros-
copy and, remarkably, we observed that MIRO restoration still
yielded supraideal noise correction at even lower photon counts
(<3 photons per pixel) with both simulation and experimental
data. Moreover, we have validated the method with several
imaging techniques (table S4) and found that MIRO restoration
retains nominal microscopy resolution, facilitates downstream anal-
ysis, and enables otherwise impractical microscopy functionalities.
For these reasons, we anticipate that MIRO would be a valuable
toolkit to improve data visualization and processing pipelines in
digital microscopy.

Furthermore, recently, another trending avenue for image
denoising centered on learning-based approaches has been
proven highly effective, given a comprehensive training database
(54–63). In contrast, deterministic algorithms such as MIRO are
readily accessible to diverse image data formats, can maintain the
quantitative details of the signal, and become especially preferable
for discovering biological knowledge beyond available training da-
tasets (64). For this reason, hybrid strategies have lately been formu-
lated to exploit the advantages of both worlds (65–67). In particular,
it has been proposed that the shearlet transform of vast curvilinear
biological features can effectively reduce the complexity of the
learning problems, thus permitting more efficient convergence for
network training (68). Extending the concept to the field of denois-
ing, we anticipate that the MIRO framework could be feasibly syn-
ergized with existing learning-based algorithms to enhance the
performance (section S3). As a proof of principle, we implemented
a learnable shearlet shrinkage network that integrates shearlet
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Fig. 3. MIRO minimizes image reconstruction artifacts. (A) Total internal reflection fluorescence images of immunostained microtubules in BPAE cells. (B) Wiener-
Butterworth (WB) deconvolution of (A), showing nonfluorophore-related peaks. (C) WB deconvolution after MIRO processing shows closer similarity (SSIM, cross-sectional
profiles) to the ground truth (GT) (D). The profiles’ length is 1.4 μm. The peak-to-peak distance in (C) and (D) is 325 nm. (E and F) Original and MIRO-processed dual-color
SIM image of microtubules (blue) and nuclei (orange) in BPAE cells. The insets correspond to the solid boxed region in (E). Compared with wide-field (G), high-pass wide-
field (H), and SIM images (I), theMIRO-restored SIM reconstruction (J) shows a substantial artifactminimization. (K) 3D light-field reconstruction of membrane and calcium
co-labeled cardiac spheroids. (L) The MIRO-processed reconstructions show a reduction of miscalculated 3D information and noise-related peaks [(K) and (L) insets]. (M
andN) Light-field reconstruction of calcium-labeled cardiac spheroid without (M) andwith (N) MIRO processing. (O to R) Zoom-ins corresponding to the boxed regions in
(M) and (N). Depth is color-coded according to the bar in (L). (S and T) 3D beating trajectory of the cardiomyocyte indicated in (M) and (N). The trajectory from the MIRO-
processed image (T) displays less fluctuations; see arrows in (S) and (T). (U to X) Light-field reconstruction of eGFP-labeled frog embryos without (u and v) and with (w and
x) MIRO processing in XY (volume central slice) and YZ (along the dashed line) views. The insets show the ventricle and surrounding melanocytes (pigmentation) on the
surface of the gut (boxed regions). Scale bars, 2 μm [(A), (S), and (T)], 10 μm (E), 500 nm [(E) inset], 100 μm [(K), (M), (U), and (V)], 30 μm [(K) inset and (O)], and 20 μm
[(U) inset].
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transform, system-aware parameters, and a customized MIRO-like
U-Net (fig. S15A), with which we observed improved loss function
minimization and convergence in comparison with the convention-
al U-Net for denoising tasks (section S3.3). We validated this hybrid
concept by processing the 3D image datasets of single-cell and or-
ganoid specimens acquired with lattice light-sheet microscopy and
confocal microscopy, respectively (figs. S15 and S16 and movie S9).
Such hybrid implementation of deterministic models with deep
learning will mitigate many constraints owing to the availability
and quality of training data while enabling machine intelligence
for those biological observations with insufficient knowledge. Sim-
ilarly, we anticipate self-learnable frameworks (39) for image
denoising fed with MIRO-processed datasets to further expand
the efficiency and scope of the MIRO framework for broad biolog-
ical imaging and discovery.

MATERIALS AND METHODS
Camera calibration
To calibrate the pixel-dependent noise of the CMOS cameras
(ORCA-Flash-4.0 v3, Hamamatsu) used in this work, we followed
the procedure previously reported in (19). Briefly, we recorded a
series of dark images (10,000 frames) and then multiple sets of
images with different illumination intensities ranging from ~20 to
500 photons per pixel. The offset, variance, and gain for each pixel
were calculated using the relations as described in section S1.3.
Notably, new tools have been recently developed that simplify this
process allowing for automatic CMOS camera characterization (69).

Wide-field microscopy
Wide-field acquisitions were performed on an inverted optical mi-
croscope (Ti-U, Nikon). The lasers (MPB) were coupled into an
optical fiber (Thorlabs) and sent to the microscope. We used an
oil-immersion objective (CFI-PLAN Apo Lambda 100×/1.45,
Nikon) to enable subcellular structure imaging. A lens with a
focal length of 20 cm was used to focus the laser beam at the back
focal plane of the objective. The lens could be moved to enable total
internal reflection fluorescence illumination. The emitted fluores-
cence was collected with an sCMOS camera (ORCA-Flash-4.0 v3,
Hamamatsu).

Microtubules were stained with mouse anti-Tom20 (F10, SC-
17764, Santa Cruz Biotechnology) for 2 hours while gently
shaking at room temperature. The second antibody was labeled
with Alexa Fluor 647–conjugated AffiniPure Goat Anti-Mouse
IgG (1 mg/ml; Jackson ImmunoResearch), followed by a 1-hour in-
cubation at room temperature. A triple-washing step (5 min per
wash) was conducted with phosphate-buffered saline (PBS) after
each staining and labeling step. The cells were placed in an
imaging buffer [1M tris (pH 8.0), 5MNaCl, 1.0 NHCl, cyclooctane
(COT), cysteamine (MEA), and 50% glucose] before imaging.

Human embryonic kidney–293 [CRL-1573, American Type
Culture Collection (ATCC)] cells were cultured at 5% CO2 in Dul-
becco’s modified Eagle’s medium (DMEM, Gibco) supplemented
with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin.
For mitochondrial imaging, cells were treated with MitoTracker
Green (Invitrogen) at 100 nM for 30 min.

Commercially available prepared slides (FluoCells Slide no. 1
and no. 2, Thermo Fisher Scientific) were used to image mitochon-
dria, F-actin, microtubules, and nuclei of bovine pulmonary artery

endothelial (BPAE) cells. Mitochondria were labeled with red-fluo-
rescent MitoTracker Red CMXRos, F-actin was stained with green-
fluorescent Alexa Fluor 488 phalloidin (slide no. 1) or Texas Red-X
phalloidin (slide no. 2), microtubules were stained with BODIPY
FL, and nuclei were stained with 40,6-diamidino-2-phenylin-
dole (DAPI).

The 3D motion of peroxisomes in live HeLa cells was recorded
using an inverted microscope equipped with a 63× objective lens
(Plan-Apochromat 63×/1.40 DIC, Zeiss) and an EMCCD camera
(Andor technologies). Hela cells (93021013, Sigma-Aldrich) for
imaging were seeded on a poly-D-lysin–coated 35-mm dish
(FD35PDL-100, World Precision Instruments) containing 3 ml of
DMEMmixed with 10% FBS and 1% penicillin-streptomycin (Pen-
Strep, 15140122, Thermo Fisher Scientific) at 37°C with 5% CO2.
When cells reached 80% confluency, they were rinsed twice with
Hanks’ balanced salt solution (HBSS) and then transfected in 3
ml of transfection buffer as a mixture of 3-ml modified DMEM
and 50-μl peroxisome–green fluorescent protein (GFP) (CellLight
C10604, Thermo Fisher Scientific). Imaging was taken after 1 day
of incubation. At first, the transfection buffer was removed, and
the cells were rinsed twice with HBSS. For live-cell imaging, 2 ml
of Live Cell Imaging Solution (A14291DJ, Thermo Fisher Scientific)
that was prewarmed to 37°C was added to the sample.

Confocal microscopy
A cryostat section of the mouse kidney (FluoCells slide no. 3,
Thermo Fisher Scientific) was used to image nuclei (DAPI), F-
actin (phalloidin), and microtubules (wheat germ agglutinin) with
a confocal microscope (LSM 700, Zeiss). The microscope is
equipped with a PMT, a 63× objective lens (Plan-Apochromat
63×/1.40, Zeiss), and four diode lasers, of which we used three
(405, 488, and 555 nm). The pinhole was set to 1 AU.

To culture MCF10A mammary 3D organoids, MCF10A cells
(ATCC) were seeded in a 384-well hanging drop culture plate
(70–72). Three thousand MCF10A cells were seeded in each well
at a final volume of 25 μl. The cells were supplemented with
0.24% methocel A4M (lot BCBR9701V, Sigma-Aldrich, no.
94378), 120 μg/ml Matrigel (10.7 mg/ml, lot 0337002, no. 256231,
Corning), and 10% FBS (lot A52G00J, GemiBio no. 900-108). On
day 3 of organoid culture, the organoids were collected and fixed
in 4% paraformaldehyde for 30 min at room temperature. The or-
ganoids were washed three times with PBS and kept at 4°C until
imaging analysis. For confocal imaging, the fixed organoids were
permeabilized with 0.5% Triton X-100 (lot SLBV4122, Sigma-
Aldrich, no. T8787) for 30 min at room temperature. The organoids
were washed three times with PBS and added Phalloidin Alexa 488
(diluted 1:40, no. A12379, Invitrogen) and incubated for 30 min.
The organoids were washed with PBS and added Hoechst 33342
(10 mg/ml, 1:5000, no. H3570, Invitrogen) and incubated for 20
min. After washing with PBS, they were transferred to the 35-mm
MatTek plate (P35G-1.5-14-C, No.1.5 cover glass) and mounted
with 1% low melting agarose (no. A0701, Sigma-Aldrich).

Fluorescently stained microtubules of BPAE cells (FluoCells
slide no. 2, Thermo Fisher Scientific) were used to test subdiffrac-
tion-limited confocal imaging. The datasets acquired with the stan-
dard PMT were obtained using a Zeiss LSM 700 equipped with a
63× objective lens (Plan-Apochromat 63×/1.40, Zeiss) and with
the pinhole set to 0.25 AU. The datasets acquired with the
GaAsP-PMT were obtained using a Zeiss LSM 780 microscope
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with a 100× objective lens (Plan-Apochromat 100×/1.46 Oil DIC,
Zeiss) and the pinhole set to 0.2 AU. The diffraction-limited refer-
ence images were acquired by setting the pinhole size to 1 AU. In
both cases, the sample was illuminated using a 25-mWArgon laser
with the transmittance set to 2% for an effective laser power of
500 μW.

Structured illumination microscopy
Dual-color SIM imaging was performed on a Zeiss Elyra inverted
fluorescence microscope equipped with an EMCCD camera
(Andor technologies). The images were acquired using a 63× objec-
tive lens (Plan-Apochromat 63×/1.40 DIC, Zeiss). Each super-reso-
lution image was reconstructed from 15 images acquired at three
different angles with five different phases per angle. SIM reconstruc-
tions were performed using fairSIM (73).

Fourier light-field microscopy
hiPSCs (WiCell Research Institute) were maintained mTeSR1
medium (STEMCELLTechnologies) and induced for cardiac differ-
entiation as previously described in (74). Briefly, hiPSCs cells were
treated with recombinant human activin A (100 ng/ml; R&D
Systems) in RPMI medium with 2% B27 insulin-free (RPMI/B27
insulin-free medium) on day 0. After 24 hours, the medium was re-
placed with recombinant human bone morphogenic protein–4 (10
ng/ml; R&D Systems) in RPMI/B27 insulin-free medium from day
1 to day 4. Themediumwas changed to RPMImediumwith 2% B27
containing insulin (RPMI/B27 medium) on day 4.

Cardiac spheres were generated on differentiation day 5 using
the procedure described in (74). Differentiated cells were dissociat-
ed with 0.25% trypsin/EDTA and seeded into AggreWell 400 plates
(no. 34415, STEMCELLTechnologies) at 1500 cells per microwell to
allow cells to form cardiac spheres. Before cell seeding, plates with 1
ml per well of RPMI/B27 medium were centrifuged at 1000g to
release trapped bubbles in microwells. To prevent cell death, the
medium was supplemented with 10 μM Rock inhibitor Y-27632
(Selleck Chemicals). Plates were centrifuged at 100g to distribute
the cells and then placed in an incubator. After 24 hours, spheres
were harvested to remove the Rock inhibitor, and RPMI/B27
medium was replaced in the suspension culture. 3D spheroids
were maintained until the day of testing <30 days after differentia-
tion. Medium was changed every 2 days.

For membrane staining of cardiac spheres, the culture medium
was replaced with the culture medium loaded with a 200-μl GFP
labeling medium (CellLight Nucleus-GFP, BacMam 2.0, Thermo
Fisher Scientific). On the day of imaging, the staining solution
was made by adding 4.56 μl of anhydrous dimethyl sulfoxide
(DMSO) (D12345, Thermo Fisher Scientific) into one vial of
Fluo-4 AM (F14201, Thermo Fisher Scientific) and diluting it
into 4.56 ml of prewarmed maturation medium to reach a final con-
centration of 10 μM. Then, the original maturation medium of the
cells was replaced by the fresh culture medium loaded with Fluo-4
AM, and the cells were incubated in the incubator for 45 min. After
that, the staining medium was replaced by 3 ml of 1X Normal
Tyrode [126 mM NaCl (Sigma-Aldrich, S9625-500G), 4 mM KCl
(Sigma-Aldrich, 793590-500G), 1 mM MgCl2 (Sigma-Aldrich,
63069-100 mL), and 5 mM Hepes (Sigma-Aldrich, H0887-100
mL), pH adjusted to 7.4 with 1 M NaOH] with extra 10 mM D-
Glucose (Sigma-Aldrich, G7528-250G), and 1.8 mM CaCl2
(Sigma-Aldrich, 21115), and the cells were incubated for 10 min.

In the end, the Tyrode was aspirated, and cells were incubated in
a 3 ml prewarmed maturation medium for over 30 min for recovery.
For spheroids used in Fig. 3 (M and N), the staining solution was
made bymixing one vial of Fluo-4 AM (F14201, Thermo Fisher Sci-
entific) with 45.6 μl anhydrous DMSO (D12345, Thermo Fisher Sci-
entific) and diluting 5 μl of the mixture by 1000× with 495 μl
Normal Tyrode. Then, the cells were incubated in the staining sol-
ution for 45 min and then washed with 1× Normal Tyrode for 10
min at 37°C.

Transgenic embryos of Xenopus laevis were obtained by fertiliz-
ing wild-type oocytes with myl3:eGFP testis (ordered from the Na-
tional Xenopus Resource). The fertilized embryos were screened for
fluorescent signals in the heart and raised to stage as described in
(75). The tadpoles were then mounted ventral side up on an agarose
bed in 0.1× Marc’s Modified Rinders (MMR) plus 0.1% MS222,
gently secured under a piece of cover glass. All experimental proce-
dures were performed according to U.S. Department of Agriculture
Animal Welfare Act Regulations and have been approved by Insti-
tutional Animal Care and Use Committee in compliance with
Public Health Service Policy.

The specimens were imaged using a homemade FLFM system
equipped with a water-dipping physiology objective lens (CFI75
LWD 16×/0.8 W, Nikon) and used a 300-mm tube lens (AC508–
300-A-ML, Thorlabs), a 200-mm Fourier lens (AC508–200-A-
ML, Thorlabs), and a customizedmicrolens arrayMLA that consists
3 by 3 planoconvex lenses which are 3.3 mm square with 30-mm
focal length as described in (50). The sample was illuminated
with a light-emitting diode (LED) peaked at 470 nm (M470L5,
Thorlabs), and a filter set (89402-ET-391-32/479-33/554-24/638-
31 Multi LED set, Chroma) was adopted. Videos were recorded
on an sCMOS camera (ORCA-Flash-4.0 v3, Hamamatsu) at a
frame rate of 100 Hz.

Lattice light-sheet microscopy
Lattice light-sheet microscopy images were acquired using a 3i
Lattice Light Sheet microscope. Here, lasers are individually ex-
panded in the laser launch to 2.5 mm, collimated, and aligned to
be co-linear. All lines pass through an acousto-optic tunable filter
that regulates the laser power input into the system. Then, a set of
cylindrical lenses expands the 2.5-mm input beam to uniformly il-
luminate a stripe on the spatial light modulator (SLM). This is pro-
grammed to display binary images of multi-Bessel patterns that
form an optical lattice of Bessel beams. This is projected onto an
annular mask, which filters the zeroth order, removes artifacts,
and lengthens the sheet. The mask is serially conjugate to z and x
galvo mirrors, as well as the rear pupil of the excitation objective,
allowing the light sheet to be translated in y and z and to rapidly
oscillate in x for the dithered mode of operation. The beam is
focused through the illumination objective to create a pattern of
the Bessel beams at the sample plane that is conjugate to the projec-
tion of the SLM. This pattern is dithered by the x galvo to form the
sheet of illumination. The fluorescence emitted by the sample is ob-
served by the sCMOS camera (ORCA-Flash4.0 v2, Hamamatsu)
through the detection optics, which are composed by a 1.1–numer-
ical aperture (NA) water objective and a 500-nm tube lens for a
×62.5 total magnification.

The volumetric data acquisition was performed in the sample
scan modality. Here, the stage moves while the light sheet and the
objectives remain stationary. This mode allows for scanning
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extensive areas, but because the objective is tilted at an angle with
respect to the axis of stage movement, the scan produces a lateral
offset between images from neighboring z planes. Therefore, these
images are shifted (or deskewed) in postprocessing to retrieve the
original positions. To maintain the 3D information of the sample,
we performed our denoising only after deskewing.

HaCaT keratinocytes were generously provided by Kowalczyk
Lab at Emory University. They were cultured in DMEM
(Corning, Tewksbury, MA) supplemented with 10% FBS and 1%
antibiotic/antimycotic. Cells grown on 5-mm coverslips were trans-
fected according to the manufacturer’s instruction with Viromer
RED (OriGene, Rockville, MA). Briefly, plasmids were incubated
with Viromer RED transfection reagent and buffer for 20 min at
room temperature. This plasmid/reagent mix was then added to
cells in culture dishes. Cells were then fixed 24 hours after transfec-
tion with 4% paraformaldehyde for 15 min. The mCherry-VAPB
(human) plasmid construct was purchased from Addgene
(Plasmid no. 108126).

Simulations
To characterize MIRO denoising performance, we have used three
different simulated fluorescence image datasets depicting a Siemens
star, fluorescent beads, and microtubules. In all cases, we have gen-
erated images using the following parameters: NA 1.45, wavelength
680 nm, and pixel size 65 nm. The noisy images were generated by
corrupting the signal with fixed-pattern noise, photon shot noise,
dark shot noise, and readout noise.
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