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Abstract: Structures made of the thermoplastic polymer polyether ether ketone (PEEK) are widely
used in dynamically-loaded applications due to their high-temperature resistance and high mechan-
ical properties. To design these dynamic applications, in addition to the well-known stiffness and
strength properties the vibration-damping properties at the given frequencies are required. Depend-
ing on the application, frequencies from a few hertz to the ultrasonic range are of interest here. To
characterize the frequency-dependent behavior, an experimental approach was chosen and applied
to a sample polymer PEEK. The test setup consists of a piezoelectrically driven base excitation of
the polymeric specimen and the non-contact measurement of the velocity as well as the surface
temperature. The beam’s bending vibrations were analyzed by means of the Timoshenko theory
to determine the polymer’s storage modulus. The mechanical loss factor was calculated using the
half-power bandwidth method. For PEEK and a considered frequency range of 1 kHz to 16 kHz, a
storage modulus between 3.9 GPa and 4.2 GPa and a loss factor between 9 × 10−3 and 17 × 10−3

were determined. For the used experimental parameters, the resulting mechanical properties were
not essentially influenced by the amplitude of excitation, the duration of excitation, or thermal
degrad.ation due to self-heating, but rather slightly by the clamping force within the fixation area.

Keywords: dynamic mechanical analysis (DMA); Euler–Bernoulli theory; high frequency modal
testing; laser scanning vibrometry; mechanical loss factor; piezoelectric actors; polyether ether ketone
(PEEK); self-heating; thermoplastic polymers; Timoshenko theory

1. Introduction

Dynamically-loaded structures made of thermoplastic polymers are used in the au-
tomotive and aerospace industry as well as in medical technology. In particular, the
high-temperature resistant thermoplastic polymer polyether ether ketone (PEEK) with high
mechanical and comparable low vibration-damping properties seems to be a promising
polymer for dynamic applications where high vibration amplitudes have to be achieved.
For a vibration-optimized design of these applications, the characterization of the dynamic
mechanical properties at a high frequency range using a reliable experimental approach is
required. The dynamic-mechanical analysis (DMA) only covers a relatively low frequency
range [1]. To overcome this drawback, a time–temperature superposition (Williams–Landel–
Ferry equation) on a multi-frequency DMA measurement can be used [1–3]. For isotropic
materials, ultrasonic immersion methods are particularly suitable [4,5]. However, the
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application of these methods to characterize anisotropic materials is more challenging and
the resulting properties are generally less accurate [4]. Both measurement approaches
do not take into consideration the realistic thermo-mechanical behavior of thermoplastic
polymers, such as self-heating effects.

Further measurements of the mechanical properties of polymers and composites at the
ultrasonic frequency range were focused on very high cycle (VHC) fatigue testing as well
as on thermographic investigations. Almaraz et al. [6] determined the ultrasonic fatigue
endurance, the general crack initiation and propagation on the polymeric material PMMA
at a frequency of 20 kHz using hourglass-shaped cylindrical specimens. Backe et al. [7]
carried out fatigue testing of carbon fiber-reinforced polyphenylene sulfide in a very high
cycle fatigue regime at ultrasonic frequencies of 20 kHz by means of an ultrasonic testing
apparatus for cyclic three-point bending. Almaraz et al. [8] analyzed the crack initiation and
propagation on the polymeric material acrylonitrile–butadiene–styrene under ultrasonic
fatigue testing at a frequency of 20 kHz using a dog-bone test specimen. Mignogna et al. [9]
investigated the thermal effects of high-power ultrasound at a frequency of 20 kHz on
polychlorotrifluoroethylene using a rod-shaped test specimen.

In order to measure the vibration-damping properties at lower frequencies, a can-
tilever beam test specimen configuration is a standardized method according to ASTM
E756-05 (2017). Therefore, the deformation of the specimen can be obtained among other
techniques by means of a non-contact electromagnetic excitation [3,10–12], the excitation
due to the mechanical coupling to an electrodynamic shaker [13,14], or the loading due
to the connection to two nylon wires [15]. Whereas the non-contact realization using an
electromagnetic excitation suffered the drawback of a highly limited frequency range, the
contacted approaches introduce an additional source of joint damping and are, therefore,
more difficult to implement in thermal chambers. To overcome these disadvantages, several
authors described the excitation of the cantilever beam at the clamped end of the beam or at
the midpoint of the beam. Ledi et al. [16] investigated the frequency dependent viscoelastic
material properties of sandwich beams using this approach. The sandwich beams were
attached to a shaker by means of an apparatus, that allowed the measurement of different
lengths of the specimens. A similar test configuration was used by Liao and Wells [17] for
the estimation of the complex Young’s modulus of non-stiff materials. Wojtowicki et al. [18]
carried out measurements of the damping properties of composite beams using central
clamped and excited beams. Kucher [19] introduced a test setup for the determination of the
mechanical properties of PEEK at a higher frequency range for the design of polymer-based
endodontic irrigation tips using a piezoelectric actuator.

For the polymer PEEK or fiber-reinforced PEEK, there are only a few studies concern-
ing the cyclic deformation or the fatigue behavior of this polymer, which were carried out
at low frequencies up to 5 Hz [20–26] or at frequencies up to 100 Hz [27]. These studies are
not focused on the mechanical properties (storage modulus, loss modulus) of harmonic
deformed PEEK at a higher frequency range. For this purpose, a suitable test configuration
and an evaluation approach of the viscoelastic properties of PEEK are required, as described
by Kucher [19].

In the current study, the mechanical properties of flat specimens made of the high-
performance biocompatible polymer PEEK were analyzed by means of a harmonic base-
excited test configuration as introduced by Kucher [19]. Thereby, the use of a piezoelectric
actuator enables the determination of the mechanical properties at higher frequencies and
an adaption of the displacement amplitude of excitation. For the used test configuration
and due to the existing high vibration modes, the mechanical properties were determined
using the Timoshenko beam theory and the half-power bandwidth method.

2. Materials and Methods
2.1. Specimen Preparation

Commercially available extruded plates with a nominal thickness of t = 1 mm made of
PEEK (Sustapeek, Röchling Systaplast, Lahnstein, Germany) were used. The flat specimens
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(n = 5) with dimensions of 140.03 ± 0.12 mm × 4.94 ± 0.09 mm × 1.21 ± 0.01 mm
were prepared by means of a fully automatic high volume cutting machine (Axitom,
Struers, Willich, Germany), all oriented in the same direction according to the plate’s main
directions. The specimens had a mass of m = 1.08± 0.02 g. According to the manufacturer’s
datasheet, the investigated PEEK had a density of ρ = 1.31 g/cm3 [28]. Prior to testing, all
specimens were stored in a standard atmosphere at ambient temperature. A temperature
of ϑ = 23 ± 0.7 ◦C and relative humidity of 31 ± 1.8% were measured.

2.2. Experimental Apparatus and Procedure

The specimens were fixed with a length of ls − l = 10 mm using the clamping adapter
(Figure 1a). The adapter was then excited by means of a base excitation. This excitation
was realized by means of a piezoelectric actuator (PSt 1000/10/7 VS18, Piezosystem,
Jena, Germany), which was driven by a signal generator (PSV-400 junction box, Polytec,
Waldbronn, Germany) and amplified by a voltage amplifier (LE 150/100 EBW, Piezosystem,
Jena, Germany) to a sinusoidal voltage signal with an offset

U(t) = Ûe sin(2π fe) + Ûe, (1)

where Ûe is the voltage amplitude as well as the offset and fe is the frequency of excitation
(compare Figure 1a,b). The backside of the actor was mounted on a steel profile, which
was fixed by four M6 cylinder head screws on an optical table. The specimen was fixed
using a modified one-end threaded circular post. By tightening a grub screw with a defined
tightening torque Mt, an insertion plate was pressed on the specimen’s clamping area to
hold it in position (compare Table 1). The resulting clamping force in the fixation area was
modified by varying the tightening torque.
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Figure 1. Experimental setup: (a) arrangement of the used measurement devices, (b)detailed view 
of the base-excited specimen, (c) simplified model (single point laser vibrometer, A; scanning laser 
vibrometer, B; infrared camera, C; function generator, D; optical table, E; amplifier, F; specimen, G; 
clamping adapter, H; fixed piezoelectric adapter, I; mounting of actor, J; grub screw, K; clamping 
plate, L). 

Table 1. Experimental parameters for vibration measurement. 

Parameter 1 Used Value/Description 
General settings 
Output voltage amplitude and offset 𝑈e From 2.3 V to 54 V 
Investigated frequency range From 1 kHz to 16 kHz 
Measurement velocity of excitation 𝑣 ,e(𝑡) Scanning laser vibrometer (SLV) 
Measurement velocity of excitation 𝑣 (𝒙, 𝑡) One-point laser vibrometer (OLV) 
Tightening torque 𝑀t From 0.5 Nm to 1.7 Nm 
Determination of natural frequencies 𝑓  and mechanical loss factors tan𝛿(𝑓 ) 
Excitation signal actuator 𝑈e(𝑡) Linear sweep 
Measuring time 12.8 s 
Excitation frequency 𝑓e 1 kHz to 16 kHz 
Sampling frequency 128 kHz 
Signal filter No filter 
Window function Rectangular window 
Data collection mode Fast Fourier transform (FFT) 
Determination of natural bending vibration modes 

Excitation signal actuator 𝑈e(𝑡) Harmonic mono-frequency excitation, Equation 
(1) 

Measuring time 0.512 s 
Excitation frequency 𝑓e = 𝑓  Resonant excitation 
Sampling frequency 128 kHz 
Signal filter No filter 

Figure 1. Experimental setup: (a) arrangement of the used measurement devices, (b) detailed view
of the base-excited specimen, (c) simplified model (single point laser vibrometer, A; scanning laser
vibrometer, B; infrared camera, C; function generator, D; optical table, E; amplifier, F; specimen, G;
clamping adapter, H; fixed piezoelectric adapter, I; mounting of actor, J; grub screw, K; clamping
plate, L).
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Table 1. Experimental parameters for vibration measurement.

Parameter 1 Used Value/Description

General settings
Output voltage amplitude and offset Ûe From 2.3 V to 54 V
Investigated frequency range From 1 kHz to 16 kHz
Measurement velocity of excitation v2,e(t) Scanning laser vibrometer (SLV)
Measurement velocity of excitation v2(x, t) One-point laser vibrometer (OLV)
Tightening torque Mt From 0.5 Nm to 1.7 Nm

Determinationof naturalfrequencies f jandmechanicallossfactors tan δ
(

f j

)
Excitation signal actuator Ue(t) Linear sweep
Measuring time 12.8 s
Excitation frequency fe 1 kHz to 16 kHz
Sampling frequency 128 kHz
Signal filter No filter
Window function Rectangular window
Data collection mode Fast Fourier transform (FFT)
Determination of natural bending vibration modes
Excitation signal actuator Ue(t) Harmonic mono-frequency excitation, Equation (1)
Measuring time 0.512 s
Excitation frequency fe = fn Resonant excitation
Sampling frequency 128 kHz
Signal filter No filter

1 The parameters were determined on the basis of various preliminary investigations.

The velocities of the beam were measured by means of a scanning laser vibrometer
(SLV) (PSV-400 scanning head, Polytec, Waldbronn, Germany). The SLV consisted of a
scanning head, which allowed the measurement of the beam’s normal velocity at different
measurement positions of the visible measured objects. The vibrometer operated at a
velocity range of up to 20 m/s with a maximum sampling frequency of 20 MHz. The
velocity of the base excitation v2,e(x, t) =

.
u2,e(x, t) was determined using an additional

one-point laser vibrometer (OFV-505 sensor head, Polytec GmbH, Waldbronn, Germany).
For the calculation of the loss factor, the average frequency spectrum v̂2( f ) of the beam’s
normal velocity v2(x, t) =

.
u2(x, t) with x = (x1, x2, x3)

T was used (Figure 1a). The vibration
measurements were pre- and post-processed using the manufacturer’s original software
(PSV 9.2, Polytec, Waldbronn, Germany) and further analyzed using the multi-paradigm
numerical computing environment (MATLAB 9.5, MathWorks, Inc., Natick, MA, USA).

Similar to the vibration measurements, the surface temperature of the specimen
and the clamping were determined using an infrared thermographic camera (Variocam,
Jenoptik, Jena, Germany). All thermographic images were produced with a sampling
frequency of 2 Hz. For the quantification of self-heating effects, the resulting temperature
difference of the specimen’s surface ∆ϑ(t) = ϑ(t) − ϑ(t)|t=0 and average temperature
difference 〈∆ϑ〉 were analyzed to identify the temperature-related effect on the polymer’s
cyclic deformation behavior.

In order to assess the reliability of the calculated properties, a conventional DMA
(DMA Q800, TA Instruments, New Castle, DE, USA) in a frequency range from 5 Hz to
60 Hz was carried out using a single cantilever beam configuration and air cooling at an
ambient temperature of ϑ = 23 ◦C.

For the used test configuration and a harmonic excitation, the polymer’s mechanical
properties can be described by means of the complex modulus (see [29] for example)

E∗(ω) = E′(ω) + jE′′ (ω) = E′(ω)[1 + j tan δ(ω)], (2)

where E′ is the storage modulus, E′′ is the loss modulus, j is the complex unit, ω = 2π f
is the circular frequency and tan δ is the mechanical loss factor. The mechanical loss factor
tan δ = ∆ f / fr was estimated via the half-power bandwidth method, where ∆ f is the 3 dB
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bandwidth and fr is the related resonance frequency [30,31]. Satisfying Equation (2), the
loss modulus was calculated using the loss factor E′′ = tan δE′ [31]. The storage modulus
was determined by evaluating the beam’s resonance behavior as described in the following.

2.3. Beam Vibrations

For the used test configuration of a base-excited beam, a direct measurement of the
applied forces and the resulting strains to obtain the cyclic stress–strain response with the
used non-destructive measurement methods cannot be given. For this reason, the mechani-
cal properties are determined by analyzing the resonance behavior of a one-dimensional
beam with a length ls, a width bs, a thickness hs, a cross-sectional area A = bshs, an area
moment of inertia I around axis x1 and the constant mass density ρ (see Figure 1c). For the
investigated base-excited beam, the displacement of the beam

u2(x, t) = u2,rel(x, t) + u2,e(t) (3)

can be described by the sum of relative beam displacement u2,rel and base excitation

u2,e(t) = û2,e sin(2π fet), (4)

where û2,e is the amplitude of the base excitation and fe is the frequency of excitation.
The description of flexural vibrations of an elastic beam is commonly given by the Euler–
Bernoulli beam theory [4]. This approach assumes that plane cross sections remain plane
and perpendicular to the neutral surface after deformation and thus the shear deformations
are neglected. For higher frequency modes, this classical theory becomes inadequate due
to the subdivision of the beam by the nodes into comparatively short sections [4]. The
Timoshenko beam theory considers the tensile-compressive strains, as well as the rotational
motions and the shear deformations of the beam elements. To compare the applicability of
both theories, the storage modulus was determined using both these theories.

2.3.1. Euler–Bernoulli Beam Theory

Considering the Euler–Bernoulli beam theory, the equation of motion of a beam is
defined as (compare, e.g., [32])

ρA
..
u2(x3, t) + EIu′2(x3, t) = 0, (5)

with Young’s modulus E. Using substitution (3) Equation (5) yields

ρA
..
u2,rel(x3, t) + EIu2,rel

′ ′ ′ ′ (x3, t) = ŭe(t). (6)

with
ŭe(t) = ρA f 2

e û2,e sin(2π fet). (7)

Thereby, the partial deviations
( .
�
)
= ∂(�)/∂t and (�′) = ∂(�)/∂x3 are used. This

Equation (5) has the form of single cantilever beam for the relative displacement u2,rel(x, t).
Satisfying the following boundary conditions:

u2,rel(x3, t)|x3=0 = 0 (8)

u2,rel
′(x3, t)

∣∣
x3=0 = 0 (9)

u2,rel
′ ′ (x3, t)|x3=L = 0 (10)

u2,rel
′ ′ ′ (x3, t)|x3=L = 0 (11)

the elastic storage modulus of the cantilever beam with base excitation can be calculated
by [32]

E′ =
48ρπ2l4 fr,n

2

h2λj
4 (12)
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where fr,n = ωr,n/(2π) is the resonance frequency of the n-th mode of natural vibration of
the beam, ωr,n is the damped angular frequency and λn is the corresponding characteristic
eigenvalue (compare [4]). Thereby, the circular frequency ω and the Young’s modulus E,
were substituted with their complex values [4]

E→ E∗ = E′(1 + j tan δ) , ω → ω∗ = ω′ + jω′ ′ , (13)

with
ω2

r = ω′2 −ω
′ ′2 (14)

This modulus represents the flexural storage modulus.

2.3.2. Timoshenko Beam Theory

Involving the transverse displacement u2, the bending slope ϕ and the shear strain γ,
the equation of motion can be described as [33]

ρA
..
u2(x3, t) + EIu2

′ ′ ′ ′ (x3, t)− ρI
(

1 +
E

κsG

)
..
u2
′′ (x3, t) +

ρ2 I
κsG

u2
′ ′ ′ ′ (x3, t) = 0, (15)

where κs = (5 + 5ν)/(6 + 5ν) is the shear constant [34], ν is the constant Poisson ratio and
G = E/(2 + 2ν) is the shear modulus. Using the substitution (3), the homogenous part of
Equation (15) is obtained

ρA
..
u2,rel(x3, t) + EIu′ ′ ′ ′2,rel(x3, t)− ρI

(
1 +

E
κsG

)
..
u′′2,rel(x3, t) +

ρ2 I
κsG

u′ ′ ′ ′2,rel(x3, t) = 0 (16)

which is equivalent to a single clamped beam considering the Timoshenko theory. For this
beam, the following boundary conditions have to be satisfied [33]

u2,rel(x3, t)|x3=0 = 0, (17)

ϕ(x3, t)|x3=0 = 0, (18)

ϕ′(x3, t)
∣∣
x3=L = 0, (19)

u2,rel
′(x3, t)− ϕ(x3, t)

∣∣
x3=L = 0. (20)

This results analogously to (12) in the equation for the determination of the storage
modulus using the Timoshenko theory [4]

E′ =
48ρπ2l4 fr,n

2

h2βn4 , (21)

where βn are the eigenvalues of the Timoshenko beam (compare [4]) which were
calculated iteratively.

3. Results and Discussion
3.1. Influence of Applied Base Excitation of Beam’s Vibration Behavior

Figure 2 shows the measured resonance frequencies and loss factors for different
voltage amplitudes at two different frequencies. The comparison of these measured quan-
tities showed almost no dependence of the measured properties on the exciting voltage
amplitude for an increasing voltage amplitude Ûe, both for the resonance frequencies and
for the loss factors (Figure 2). However, the measured quantities were subject to the typical
test-related variations, which were higher in the upper frequency range.
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Figure 2. Influence of the actuator’s voltage amplitude 𝑈e on the specimen’s vibration behavior 
(evaluation of the average frequency spectra 𝑣 (𝑓), tightening torque 𝑀t = 1.1 Nm): (a) resonance 
at around 2.4 kHz, (b) resonance at around 15 kHz. 

The repeated clamping and unclamping (12 repetitions) of the same specimen and 
the subsequent determination of the natural frequencies as well as the loss factors resulted 
in a relative error of less than 0.4% for the natural frequencies and less than 4% for the loss 

Figure 2. Influence of the actuator’s voltage amplitude Ûe on the specimen’s vibration behavior
(evaluation of the average frequency spectra v̂2( f ), tightening torque Mt = 1.1 Nm): (a) resonance at
around 2.4 kHz, (b) resonance at around 15 kHz.

The repeated clamping and unclamping (12 repetitions) of the same specimen and the
subsequent determination of the natural frequencies as well as the loss factors resulted in
a relative error of less than 0.4% for the natural frequencies and less than 4% for the loss
factors, respectively. The lower repeat accuracy of the loss factor is evident, especially at
higher frequencies (compare Figure 2). Furthermore, it should be noted that the conditions
at the specimen’s clamping influence its resonance behavior. Thus, the variations of natural
frequencies and loss factors can also be seen as the result of the slightly differing tightening
torque Mt (see also Figure 3).
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Figure 3. Influence of the tightening torque Mt (voltage amplitude of the actuator Ûe = 11 V):
(a) Resonance at 1.5 kHz, (b) Resonance at 15 kHz.

To justify that the investigated material behaves in accordance with the linear vis-
coelastic theory, the performed damping measurements have to be made in the linear
range. The assumption was verified considering the fact that the increasing voltage ampli-
tude, associated with the applied force, only had a negligible influence. For the following
measurements, a voltage amplitude of Ûe = 11 V was used.

3.2. Influence of Specimen’s Tension Torque

The contact mechanical conditions, especially the gripping force and the stiffnesses in
the clamping area, influence the specimen’s vibration behavior. In the context of the current
study, the tested specimens were fastened on one side in the clamping adapter with the
help of a grub screw (see Figure 1b). To determine the influence of different gripping forces,
the tightening torque was varied in a range from 0.5 Nm to 1.7 Nm. For the investigated
tightening torques, a subsequent visual inspection did not reveal any damage marks on the
specimen’s clamping area. Furthermore, no displacement of the test specimen could be
detected during the vibration excitation. For two exemplarily selected bending resonance
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frequencies in the lower and upper frequency range, there was an increase in the measured
resonance frequencies with an increasing tightening torque Mt (Figure 3). However, the
determined loss factors showed only a slight change for the investigated torques without
a clear tendency. To ensure a suitable mounting of the specimen and the prevention of
material damage in the clamping region based on the performed investigations, a tightening
torque of Mt = 1.1 Nm was chosen for the following investigations.

3.3. Thermal Behavior during Excitation

Due to the high mechanical material damping of the thermoplastic polymer PEEK as
well as its low thermal conductivity, the delayed dissipation of the generated heat to the
environment during cyclic loads leads to a considerable temperature increase [35].

The temperature increase varied depending on the certain position along the axis x3
(compare Figure 4). For a voltage amplitude of Ûe = 54 V, the areas with high deformations—
for the beam’s bending vibrations at the vibrational antinodes—showed the highest temper-
ature increase. Furthermore, there was a high increase in the actuator’s surface temperature
which led to a rise in temperature in the specimen’s clamping area. After an excitation of
t = 209 s, the beam’s antinode resulted in a maximum temperature increase of ∆ϑ = 1.9 K
and the actuator’s surface reached a maximum temperature of ∆ϑ = 4.8 K above the ambient
temperature (compare Figure 4). For a voltage amplitude of Ûe = 11 V and an excitation of
t = 300 s, the averaged surface temperature of the specimen did not exceed an increase of
〈∆ϑ〉 = 0.2 K (Figure 5). During this time, the displacement amplitude did not significantly
change. There was only a small decrease during the initial deformation of the specimen
(t < 20 s). Thus, for the field problem to be investigated, the assumption of isothermal
deformation can be made in a simplified manner (ϑ ≈ ϑ0, ∇ϑ ≈ 0,

.
ϑ ≈ 0). As a conse-

quence, for a voltage amplitude of Ûe = 11 V, the material behavior can be assumed as
purely mechanical.
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Figure 5. Time curve of the change of displacement amplitude v̂2 − v̂2|t=0 at the position
x = (2.5 mm, 0, 65 mm) and of the average temperature difference 〈∆ϑ〉 (new unloaded sample, tighten-
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3.4. Resulting Velocity Amplitudes and Resonance Frequencies

The investigation of the natural frequencies fn of the orders n = 5, 6, . . . , 17 of the
investigated specimens resulted in a maximum relative deviation of ( fn,ξ − fn)/ fn < 1%
with ξ = 1, 2, . . . , 10 specimens (see Figure 6). The positions of the median values of the box
graph showed right-skewed distributions. Since the vibration behavior of the polymeric test
specimens depends directly on their geometry, the variations in the resonance frequencies
that occurred were, among other factors, due to the slightly different dimensions of the test
specimens and the minimally varying clamping length.
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Figure 6. Variation of the measured natural frequencies (bending mode) f j,ξ of the polymeric specimen
ξ = 1, 2, . . . , 10 (tightening torque Mt = 1.1 Nm, voltage amplitude of the actuator Ûe = 11 V).

The natural frequencies fn as well as the mechanical loss factors tan δ were determined
using the average frequency spectrum of the velocity v̂2( f ) under the assumption that the
amplitude of the force signal applied to the excitation transducer is maintained approxi-
mately constant with frequency. However, due to resonances of the used test setup, the
force amplitude cannot be kept constant, thus the response of the beam must be divided by
the force amplitude. Furthermore, for the given experimental setup, only the velocity of the
clamping adapter v2,e and the velocities of the beam v2 were known. Consequently, the ratio
of response to force amplitude cannot be determined. For this reason, in the current study,
the natural frequencies and the loss factors were obtained using the frequency spectra of
the beam’s velocities v̂2( f ).

At the time t when the deflection reaches its maximum w2,e
(
t
)
= ŵ2,e, the velocity of

the base excitation reaches a value of v2,e = 0 (Figure 7). Thus, at this time, the measured
velocities v2(x, t) are equal to the relative velocities v2,rel(x, t) = v2(x, t)− v2,e(t). Consider-
ing the resulting velocities, it can be seen that the defined geometrical boundary conditions
Equations (17) and (18) were satisfied. Furthermore, the velocities v2

(
x, t

)
show a similar

distribution as the vibrations of a single cantilever beam. Furthermore, it can be seen that
the velocity maxima show a slight delay along the beam axis in the direction of the beam’s
free end. However, this delay is quite small and, thus, was not quantified by means of the
carried-out measurements. Nevertheless, it shows that the considered beam vibrations are
damped vibrational modes.
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values of 𝐸’ were obtained for both theories. The classical Euler–Bernoulli theory does 
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Figure 7. Measured velocity distribution v2
(
t
)

at the time of maximum displacement of excitation
u2,e

(
t
)
= û2,e for a harmonic mono-frequency excitation at the determined resonance frequencies

fe = fn with n = 5, 6, . . . , 17 (tightening torque Mt = 1.1 Nm, voltage amplitude of the actuator
Ûe = 11 V).

3.5. Dynamic Mechanical Properties

The storage modulus E′ calculated by means of the Euler–Bernoulli theory decreases
with increasing frequencies, while the storage modulus determined using the Timoshenko
theory increases (Figure 8). However, for a frequency range up to 2 kHz, similar values of E′

were obtained for both theories. The classical Euler–Bernoulli theory does not include the
effects of the terms involving rotary inertia or shear deformation. Thus, in this frequency
range, the Euler–Bernoulli theory is applicable. For higher frequency modes, the effects of
rotary inertia or shear deformation have to be involved. The loss modulus E′′ calculated
with the Timoshenko theory resulted in slightly higher values than the values obtained by
means of the Euler–Bernoulli theory (Figure 8).
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Figure 8. Resulting mechanical properties of PEEK (tightening torque Mt = 1.1 Nm, voltage amplitude
of the actuator Ûe = 11 V): (a) storage modulus E′, (b) loss modulus E′′ .
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The application of the used test method has been found to produce desired re-
sults when used for testing materials consisting of one homogeneous layer. The re-
sulting mechanical loss factors tan δ from DMA measurements on an identical material
complement the measured values in the low-frequency range without major frequency
dependence (Figure 9).
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Figure 9. Frequency dependence of the mechanical loss factor tan δ based on dynamic mechanical
analysis (DMA) and the evaluation of the base-excited beam’s damping behavior.

For the used test setup, large errors in the calculated properties can be a result of
relatively small measurement errors. To minimize such systematic deviations, the mea-
surement approach should be applied to well-damped viscoelastic materials only and the
signal-to-noise ratio should not be very high. Thus, the displacement amplitude of the
base excitation should not be chosen too small. The applicability of the used test configura-
tions for anisotropic material polymeric materials, such as composites, has to be tested in
further investigations. The evaluation of these materials requires a more in-depth analyti-
cal description of the base-excited beam’s vibrations and its resulting vibration-damping
properties. However, using the test method illustrated in the current study enables the
characterization of these materials, as well.

4. Conclusions

The used test setup of a piezoelectrically driven base excitation of a polymeric spec-
imen and the non-contact velocity and temperature measurement reliably enables the
measurement of the beam’s velocities, as well as its surface temperature. Evaluating the
resonance frequencies and the 3 dB bandwidth, the viscoelastic properties of the polymer
were successfully measured over a frequency range of 1 to 16 kHz. For the determination
of these properties, the application of the Timoshenko beam theory was required due to the
resulting higher frequency modes. As a result of preliminary investigations, the material
behavior could be considered linear viscoelastic; the resulting temperature increase had
no considerable effect on the specimen’s cyclic deformation and the applied displacement
amplitude had no effect on the viscoelastic properties. However, the clamping force affected
the boundary conditions and, thus, the beam’s vibrational behavior. The used test method
as well as the resulting mechanical properties can be used for different applications in
structural vibrations.
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