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Abstract: The satellite-based cloud condensation nuclei (CCN) proxies used to quantify the aerosol-
cloud interactions (ACIs) are column integrated and do not guarantee the vertical co-location of
aerosols and clouds. This has encouraged the use of height-resolved measurements of spaceborne
lidars for ACI studies and led to advancements in lidar-based CCN retrieval algorithms. In this
study, we present a comparison between the number concentration of CCN (nCCN) derived from
ground-based in situ and spaceborne lidar cloud-aerosol lidar with orthogonal polarization (CALIOP)
measurements. On analysing their monthly time series, we found that about 88% of CALIOP
nCCN estimates remained within a factor of 1.5 of the in situ measurements. Overall, the CALIOP
estimates of monthly nCCN were in good agreement with the in situ measurements with a normalized
mean error of 71%, normalized mean bias of 39% and correlation coefficient of 0.68. Based on
our comparison results, we point out the necessary measures that should be considered for global
nCCN retrieval. Our results show the competence of CALIOP in compiling a global height- and
type-resolved nCCN dataset for use in ACI studies.

Keywords: CCN validation; CALIPSO validation; OMCAM; POLIPHON; aerosol-cloud interactions

1. Introduction

Aerosol particles form an important component of Earth’s radiative budget by either
interacting directly with short- and longwave radiation, or indirectly by acting as cloud
condensation nuclei (CCN), which affect cloud properties. Under most atmospheric condi-
tions, aerosols are required for water vapor to condense into cloud droplets. Thus, changes
in aerosol concentration may alter the number of cloud droplets formed within a cloud [1]
and adjust the cloud’s extent and lifetime [2]. These aerosol-cloud interactions (ACIs) are
the major contributor to the total aerosol effective radiative forcing and still remain the
most uncertain component of anthropogenic radiative forcing [3].

The impact of changes in aerosol concentration on cloud droplets is non-linear. It
depends not only on the aerosol’s physical (size and shape) and chemical properties
(hygroscopicity) but also on ambient meteorological parameters such as water vapor
content and atmospheric stability [4–6]. The aerosol concentration may vary regionally
by several orders of magnitude (10 to 105 cm−3) depending on the type, strength, and
proximity of sources and sinks. Today, in situ aerosol observatories provide continuous and
temporally highly resolved long-term measurements of cloud-relevant aerosol properties
such as aerosol-sized distribution and chemical composition and CCN concentrations at
different supersaturations (ss). However, they are limited to selected geographical locations.
In contrast, satellite instruments can provide global observations of aerosols and clouds and,
thus, are used extensively for studying ACIs with constrained meteorology and selected
cloud regimes [7–9].

The fundamental aerosol information needed to study ACIs for liquid clouds is the
number of available CCN close to the cloud base as only those will interact with the
cloud droplets. Satellite retrievals, however, give aerosol optical properties, which are
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used either directly as proxies for the number concentration of CCN (nCCN) or to derive
information on the cloud-relevant aerosol fraction. Most satellite-based ACI studies use
aerosol optical depth (AOD) [10–12] or an aerosol index (AI) [13–16] as CCN proxies.
The AOD may not be an accurate proxy for CCN as it does not include any information
about the size of the observed aerosol particles. For instance, a large number of small
particles can result in the same AOD as a small number of large particles. Furthermore,
hydrophobic particles that are less efficient CCN compared to hygroscopic particles may
contribute significantly to the AOD. Conversely, the AI, as the product of the AOD, and
the Ångström exponent form a slightly better qualitative CCN proxy than the AOD as it
is weighted more towards fine aerosols [17,18]. To better quantify the radiative forcing
associated with ACI, Hasekamp et al. [19] used polarimetric observations over oceans to
infer column-integrated, aerosol-sized distributions. They further used the aerosol number
concentration with a wet radius >150 nm as the CCN proxy and found the forcing estimates
to be almost 50% higher than those where the AOD or AI were used. One of the intrinsic
limitations of using any of the three CCN proxies is that they are all column-integrated
parameters, i.e., they may not necessarily represent aerosols close to the cloud base, which
are the ones relevant for ACI [20,21]. Moreover, the AI and polarimetric retrievals are
not reliable over land [18,22], where most of the anthropogenic aerosols are generated
and the concentrations are the highest. A way to overcome the shortcomings associated
with CCN products inferred from observations with passive sensors is to shift towards
height-resolved aerosol and cloud observations using spaceborne lidar, which is available
over both land and ocean [18].

Shinozuka et al. [23] used in situ measurements to report a linear relation between
nCCN and the aerosol extinction coefficient on a log–log scale. Following their work,
Mamouri and Ansmann [24] present the first CCN retrieval algorithm for ground-based
lidar, where specific aerosol-type extinction-to-number-concentration conversion factors
are used to infer the number concentration of particles larger than a set radius. This particle
concentration is subsequently used in CCN parametrizations to estimate nCCN at multiple
supersaturations. The application to spaceborne Cloud-Aerosol Lidar with Orthogonal
Polarization (CALIOP) observations was found to give aerosol number concentrations
that were in reasonable agreement with in situ measurements [25–27]. In a recent study,
Choudhury and Tesche [28] presented a CCN retrieval algorithm that had been developed
specifically for CALIOP application. The algorithm used normalized size distributions
in the CALIOP aerosol model [29] and scaled them to reproduce the CALIOP-derived
extinction coefficient. These inferred aerosol-type specific-size distributions were integrated
to obtain aerosol number concentrations that were found to be in reasonable agreement
with airborne in situ measurements [27]. However, a direct comparison of CALIOP-derived
CCN concentrations with in situ CCN measurements is still missing in the validation of
both algorithms.

Schmale et al. [30] presented multi-year continuous co-located in situ measurements
of nCCN and aerosol size distributions at 11 ground stations that covered a variety of
environments with varying aerosol signatures. Here, we compare the nCCN estimated from
spaceborne CALIOP data using the aforementioned methodologies with the ground-based
in situ measurements of Schmale et al. [30]. The concurrent in situ measurements of nCCN
and aerosol-sized distribution were furthermore used to assess the applicability of CCN
parameterizations related to different aerosol types and size ranges. Based on our results,
we also suggest necessary measures for compiling a global CCN climatology. The article
is structured as follows. We describe the datasets, retrieval algorithms, and comparison
methodology in Section 2. The comparison between the in situ and satellite derived nCCN
is given in Section 3. The findings and possible steps forward are summarized in the
final section.



Remote Sens. 2022, 14, 3342 3 of 12

2. Data and Methods
2.1. In Situ Observations

The in situ observations used in this study were obtained from Schmale et al. [30].
The dataset consists of simultaneous measurements of aerosol-sized distributions and
nCCN at multiple supersaturations for 11 ground-based stations. The data have a temporal
resolution of one hour and include a total of 98,677 h and 157,880 h of nCCN and size
distribution measurements, respectively. Of the 11 stations, we used measurements from
7 stations: Barrow, Cabauw, Finokalia, Melpitz, Vavihill, Puy de Dôme, and Seoul. Station
selection was based on the availability, location, and proximity of the CALIOP overpasses
relative to the station location. Other factors, such as very low aerosol concentrations
(Mace Head) and presence of clouds (Jungfraujoch) close to the surface, hindered CALIOP
retrievals; thus, such stations were not considered in our comparison. Among the selected
stations, Puy de Dôme is a high-altitude station that represents the continental background
and free-tropospheric air masses. Barrow and Finokalia are coastal stations covering
Arctic and Mediterranean conditions. Cabauw, Melpitz, and Vavihill represent continental
background conditions, while Seoul characterizes the polluted urban environment. The
geographical location of these stations is shown in Figure 1. Details about the altitude,
environment, and temporal coverage of each site are listed in Table 1. A comprehensive
description of the instruments, inlet system, sampling procedure, and quality control
measures used in the data collection at each station is given in Schmale et al. [30].
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Figure 1. Location of the in situ sites used in this study. The large inset gives a closer look of Europe.
The small insets present daytime (blue) and nighttime (black) ground tracks of CALIOP that fall
within a 3◦ × 3◦ latitude–longitude grid box centered at Melpitz and Barrow, respectively, for a
randomly selected month. The world map in the background is taken from http://www.shadedrelief.
com/natural3/pages/textures.html (accessed on 7 July 2022).

Table 1. Details of the in situ stations considered in this study.

Station Environment Location Elevation Temporal Coverage

Cabauw,
The Netherlands

near coast, continental
background 51◦58′N, 4◦56′E −1 m 1 January 2012–31

December 2014

Melpitz, Germany continental background 51◦32′N, 12◦56′E 86 m 1 January 2012–31
December 2014

Vavihill, Sweden rural background 56◦01′N, 13◦09′E 172 m 20 December 2012–11
November 2014

Seoul, South Korea urban,
monsoon-influenced 37◦34′N 126◦58′E 38 m 1 January 2006–31

December 2010

http://www.shadedrelief.com/natural3/pages/textures.html
http://www.shadedrelief.com/natural3/pages/textures.html
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Table 1. Cont.

Station Environment Location Elevation Temporal Coverage

Puy de Dôme, France mountain, continental
background 45◦46′N, 02◦57′E 1465 m 1 January 2014–1

January 2015

Barrow, USA Arctic maritime 71◦19′N, 156◦37′W 11 m 20 July 2007–25 June
2008

Finokalia, Greece coastal background,
Mediterranean 35◦20′N, 25◦40′E 250 m 1 January 2014–31

December 2015

2.2. CALIOP

CALIOP is a two-wavelength polarization-sensitive lidar on the Cloud-Aerosol Lidar
and Infrared Pathfinder Satellite Observations (CALIPSO) satellite, which has been observ-
ing the vertical distribution and occurrence of aerosols and clouds since June 2006 [31].
CALIPSO aerosol products include vertical profiles of the aerosol extinction coefficient,
aerosol backscatter coefficient, particle–linear depolarization ratio, and aerosol subtype.
CALIPSO aerosol subtypes defined in the most recent version 4 data products include
marine, dust, dusty marine, polluted dust, clean continental, polluted continental/smoke,
and elevated smoke [32]. In the present work, we used the CALIPSO level 2 version 4.20
aerosol profile product [33], which included aerosol optical properties and subtype infor-
mation at a uniform horizontal resolution of 5 km and a vertical resolution of 60 m within
the troposphere. We also used the relative humidity profiles included in the CALIPSO
product obtained from the Global Modelling and Assimilation Office Data Assimilation
System [34].

CCN Concentrations from CALIOP

The Optical Modelling of CALIPSO Aerosol Microphysics (OMCAM) [28] and the
Polarization Lidar Photometer Networking (POLIPHON) [24,35] are the two techniques
for estimating CCN concentrations from CALIOP measurements. Prior to the application
of the CALIPSO aerosol parameters, we applied all the quality control measures suggested
by Tackett et al. [36] and only selected high-quality cloud-free retrievals. We also separated
the dust mixtures into dust and non-dust contributions following Tesche et al. [37]. In
both methods, we first needed to convert the CALIOP extinction coefficient to dry number
concentrations of aerosols within a size range where they were likely to act as CCN. The
number concentration was then used in aerosol-type specific CCN parametrizations to
compute nCCN at defined supersaturations. POLIPHON uses a set of equations to convert
the CALIOP extinction coefficient (α) to a dry aerosol number concentration with radius
greater than j nm (nj,dry) as

nj,dry = C αx, (1)

where j is 50 nm for continental and marine aerosols and 100 nm for dust aerosols; C is the
conversion factor; and x is the extinction exponent obtained from the regression analysis of
long-term AERONET measurements of AOD and size distributions [24,38,39]. The values
of C and x used in this work are listed in Table 2. Similar to Choudhury et al. [27], we
used regression constants for continental (clean continental and polluted continental) and
marine aerosols from Mamouri and Ansmann [24], desert dust from Ansmann et al. [38],
and smoke aerosols from Ansmann et al. [39].

In contrast to POLIPHON, OMCAM uses the aerosol microphysical properties (nor-
malized size distributions and refractive indices) in the CALIPSO aerosol model [29] and
scales the size distribution to reproduce the CALIOP extinction coefficient [28] using the
MOPSMAP modelling package [40]. The scaled size distribution is then used to com-
pute the required aerosol number concentration to be used in the corresponding CCN
parametrization. While evaluating the OMCAM estimated aerosol number concentrations
with airborne in situ measurements, Choudhury et al. [27] found that the marine model
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from Omar et al. [29] resulted in an underestimation of n50,dry and suggested using the
AERONET-based marine model from Sayer et al. [41]. We thus used the OMCAM algorithm
with an updated marine model in our validation study. To correct the ambient CALIOP
extinction coefficient for the hygroscopicity of hydrophilic aerosols, we used the kappa
parametrization [42] included in the MOPSMAP package with globally averaged kappa
values of 0.3 for continental aerosols (clean continental, polluted continental, elevated
smoke), and 0.7 for marine aerosols [43]. Schmale et al. [44] also found similar kappa
values using the in situ data considered in this study. Dust is treated as hydrophobic, so
no hygroscopicity correction was applied for dust retrievals. To apply the hygroscopicity
correction, following Choudhury et al. [27], we first estimated the growth factors at differ-
ent relative humidity (RH) values for different aerosol subtypes using the microphysical
properties from the CALIPSO aerosol model and Sayer et al. [41] (for marine subtype). We
then correct the CALIOP extinction coefficient by using these growth factors. Previous
studies found this method to yield reasonable results even under highly humid conditions
such as within the marine boundary layer [27,28]. Choudhury et al. [27] parametrized
the dry aerosol number concentrations linearly (x = 1 in Equation (1)) for the dry aerosol
extinction coefficient. The corresponding values are given in Table 2. It is worth noting that
the linear relationship in OMCAM held only for the dry extinction coefficient. In contrast,
the POLIPHON technique was originally formulated for ambient conditions assuming a
constant RH of 80 and 60% for marine and continental aerosols, respectively [24]. Thus, for
POLIPHON, we only applied the hygroscopicity correction when the ambient RH exceeded
these values for the corresponding aerosol types.

Table 2. Conversion factor (C in Mm cm−3) and extinction exponent (x) values for POLIPHON and
OMCAM algorithms used to estimate nj,dry from Equation (1). Note that x = 1 for OMCAM.

Type
POLIPHON (Ambient) OMCAM (Dry)

C x C

Dust 8.855 0.7525 11.085

Clean
continental 25.3 0.94 3.6

Marine 7.2 0.85 2.4

Elevated
smoke 17 0.79 22

Polluted
continental 25.3 0.94 24.93

The fraction of aerosols that can act as CCN depends not only on the particles’ physical
and chemical properties but also on the atmospheric water vapor supersaturation, depends
on meteorological parameters such as temperature, pressure, water content, vertical wind
velocity and the resulting cooling rate. Given the complexities in measuring atmospheric
nCCN, Mamouri and Ansmann [24] defined nj,dry in Equation (1) as representing the nCCN
at ss = 0.15–0.20%. The nCCN at higher supersaturations are expressed as a multiple of
nj,dry. In the present work, we considered CALIOP-derived nCCN at ss = 0.2% (i.e., nj,dry) in
the comparison study because this parameter was provided by all of the in situ stations.
The in situ data included simultaneous measurements of hourly nCCN and aerosol-sized
distributions [30]. To assess the CCN parameterizations used in our retrievals, we com-
pared the nj,dry as estimated from the size distributions with measurements of the nCCN at
0.2% supersaturation. Figure 2 shows a comparison of the in situ nCCN from direct measure-
ments and nj,dry inferred from the concurrent in situ size-distribution measurements for
the sites listed in Table 1. We considered n50,dry for all stations except Finokalia, for which
we compared n100,dry as this particular site is frequently influenced by dust aerosols [30,44].
This approach was also supported by the CALIOP profiles within a 3◦ by 3◦ grid box
surrounding the station in which 70–90% of the monthly extinction coefficients were clas-
sified as related to dust, polluted dust, and dusty marine aerosol subtypes (not shown).
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Figure 2 shows very good agreement between in situ nj,dry and nCCN with a Spearman
correlation coefficient (R) of 0.9, a normalized mean bias (NMB) of 20%, and normalized
mean error (NME) of 34%. We therefore concluded that the use of aerosol-size-based
CCN parametrizations as suggested by Mamouri and Ansmann [24] provided reasonable
estimates of nCCN.
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Figure 2. Comparison of concurrent in situ measurements of hourly nCCN at 0.2% supersaturation
and nj,dry (j = 100 nm for dust influenced Finokalia station and j = 50 nm for other sites). The values
of correlation coefficient (R), total number of bins (N), normalized mean bias (NMB) and normalized
mean error (NME) are given in the legend.

2.3. Comparison Methodology

Compared to passive sensors and the resulting column-integrated parameters, CALIOP
measures height-resolved aerosol properties that can be aggregated to obtain their spa-
tial and vertical distribution. However, CALIOP has a very small footprint on the order
of tens of meters compared to the hundreds of kilometers of passive sensors. Hence,
monthly CALIPSO level 3 data products are reported at a coarse 2◦ × 5◦ latitude–longitude
grid [36,45]. To compare CALIOP observations with those at the in situ stations considered
in this study, we defined a 3◦ × 3◦ latitude–longitude grid box centered at the geographical
location of a station and then considered all the CALIPSO level 2 profiles within that do-
main. Thus, the selected profiles were used to compute the nCCN as discussed in Section 2.2.
These individual profiles were then averaged to obtain monthly mean profiles of nCCN
for each grid box that was compared to the in situ data. Monthly averaging was used to
compensate for (i) the relatively large area in the satellite-to-surface comparison that might
include scenarios in which CALIOP and an in situ site observed different air masses and
(ii) the local extremes in the in situ time series that were unlikely to be covered in the satel-
lite observations. Note that our grid was finer than the 5◦ × 5◦ in Fanourgakis et al. [46]
for comparing multi-model simulations of nCCN with surface in situ measurements. For
comparison to the in situ data at ground, CALIOP-derived profiles of CCN concentration
were averaged from the surface to 1 km in height (to capture boundary-layer aerosols)
except for the alpine site (Puy de Dôme), for which the averaging was extended to a height
of 2 km. The comparison method used to determine the absolute error between the satel-
lite and in situ measurement was the NME and to assess the relative bias of the satellite
retrieval it was the NMB. The Spearman correlation coefficient (R) was used to assess the
ability of satellite retrievals to represent the variability in the in situ measurements. As
the CALIOP-derived nCCN represented nj,dry (j = 50 nm for continental and marine, and
100 nm for dust aerosols) at 0.2% supersaturation, we also compared them with the in situ
measurements of nj,dry (j = 100 nm for dust influenced Finokalia station and 50 nm for
other stations). This approach enabled us to consider in situ measurements also for months
that were lacking CCN measurements and to increases the number of data points to be
considered in the statistical analysis.
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3. Comparison of CCN Concentrations

The comparison of the monthly mean nCCN (at ss = 0.2%) at the in situ stations
and inferred from CALIOP measurements is presented in Figure 3 and Table 3. At all
sites, monthly in situ nj,dry are either comparable or larger than the directly measured
in situ nCCN with average NMB and NME values of 20.7 and 39.8%, respectively and
nearly identical monthly variations. Overall, the CALIOP estimates of monthly nCCN
using OMCAM algorithm were larger than the in situ observations with a mean NMB and
NME of 49% (31%) and 76% (93%) for nighttime (daytime) retrievals, respectively. The
POLIPHON algorithm resulted in even larger CCN values with NMB and NME values
of 129% (89%) and 138.5% (133.2%) for nighttime (daytime) retrievals, respectively. A
fraction of this overestimation comes from the consideration of pure size-based CCN
parameterization (Equation (1)), which considers all aerosols within the selected size limit
to be CCN active. This is also seen in Figures 2 and 3, where nj,dry overestimated nCCN
with a positive bias of about 20%. The statistics improve somewhat for the comparison
of nj,dry (Table 3). The best nCCN absolute error agreement was found at Puy de Dôme
with nighttime OMCAM estimates resulting in an absolute error of about 43%. Overall,
worst agreement between CALIOP and in situ measurements was found at dust-influenced
Finokalia with NME values as high as a factor of 1 for OMCAM and 1.5 for POLIPHON
retrievals. Such disagreement was also reported in Choudhury et al. [27] for dust and
marine aerosol mixtures and may be because of changes in the microphysical properties of
the aerosol types caused by either chemical or cloud processing. Assuming dust aerosols to
be hydrophobic may also have contributed to the disagreement. Overall, about 88% (91%)
and 77% (88%) of either of the daytime or nighttime monthly CALIOP nCCN estimates
from OMCAM and POLIPHON algorithms, respectively, stayed within a factor of 1.5 of
the monthly in situ nCCN (nj,dry) measurements. In some cases, the findings from CALIOP
daytime and nighttime retrievals differed by several orders of magnitude. On closer
inspection, we found that the daytime and nighttime tracks covered different geographical
locations within a grid box. Furthermore, in any given month, the number of days with a
daytime CALIPSO track within the considered domain was not always the same as that for
nighttime overpasses. Also, the sensitivity of CALIOP to aerosols was different during day
and night. These factors were likely to have caused the differences observed between the
daytime and nighttime nCCN retrievals.

Table 3. Comparison statistics of monthly nCCN at ss = 0.2% (in cm−3) and nj,dry (in cm−3) derived
from in situ and CALIOP measurements. The values enclosed within brackets are for daytime
CALIOP retrievals and the unbracketed values represent nighttime retrievals. The normalized mean
bias (NMB) and normalized mean error (NME) are given along with their averages weighted by the
number of observation months for each station.

Stations

NMB (%) NME (%)

OMCAM POLIPHON OMCAM POLIPHON

nCCN nj,dry nCCN nj,dry nCCN nj,dry nCCN nj,dry

Cabauw 44 (−9.9) 14.2 (−30.3) 123.3 (36.7) 79.8 (6.13) 72 (53.2) 66.6 (40.6) 134.8.1 (84.6) 102.6 (47.7)

Melpitz 47 (7.8) 43 (53.1) 134.9 (62.5) 128.5 (135) 82.7 (70) 78 (97.8) 151.6 (104.6) 140.3 (154.1)

Vavihill 17 (54.3) 12.1 (33.7) 99.6 (147.6) 83.6 (115) 44.2 (82.2) 47.8 (66.5) 105.4 (159.2) 92.1 (129)

Seoul 31.5 (19.6) 2.7 (−10.6) 88.3 (62.9) 48.9 (23.5) 75.3 (80) 39.7 (49) 106.5 (97.9) 63.5 (59)

Puy de Dôme 29.5 (100.8) 23.5 (122.2) 125.7 (219.2) 115.2 (254.6) 43 (157.3) 41.4 (172.3) 125.7 (254.1) 115.2 (281.1)

Barrow 113.6 (−41.7) 1 (−15) 241.7 (−15.7) 61.6 (56.7) 117.5 (84.9) 72.5 (55.8) 241.7 (94.2) 80.7 (70.9)

Finokalia 93.9 (127.3) 109.8 (126.3) 151.9 (146.1) 167.8 (150) 106.8 (189.3) 109.8 (170.4) 154.7 (196) 167.8 (174.1)

Average 48.8 (31.1) 26.7 (25.3) 128.6 (89) 91.2 (78.4) 75.9 (93.3) 62.6 (79.4) 138.5 (133.2) 104.3 (107.9)
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Figure 3. Monthly time series of nj,dry (green) and nCCN (red) as derived from ground-based in situ
measurements and nCCN inferred from CALIOP observations using the OMCAM (gray dots for
nighttime data and blue for daytime data) and POLIPHON (gray diamonds for nighttime and blue
for daytime data) algorithms at Cawbauw (a), Melpitz (b), Vavihill (c), Seoul (d), Puy de Dôme (e),
Barrow (f), and Finokalia (g) stations. The semi-transparent data points are for the cases where the
number of CALIOP data bins with finite aerosol retrievals used to produce the monthly average are
less than 100.

It is known that CALIOP may fail to detect aerosol layers with a lower aerosol
load [18,47,48]. On analyzing the number of CALIOP data bins with valid aerosol retrieval
(Nbins) used to compute the monthly nCCN time series in Figure 3, we identified several
cases where Nbins < 100 (25th percentile) coincided with outliers (semi-transparent points
in Figure 3). Figure 4 shows how the comparison of CALIOP-derived CCN concentrations
with the in situ measurements improved when only months with Nbins > 100 are consid-
ered in the analysis. In that case, the CALIOP estimates of nCCN using POLIPHON are in
reasonable agreement with the in situ nj,dry and nCCN with NME values of 83 and 123%,
NMB values of 62 and 108%, and R values of 0.61 and 0.7, respectively. The OMCAM
estimates were in even better agreement with the in situ nj,dry and nCCN with NME values
of 54 and 71%, NMB values of 9 and 39%, and R values of 0.63 and 0.68, respectively.

Along with the aerosol load, the number of days in a month observed (DMO) by
CALIOP within a grid box may also have a significant impact on the nCCN retrieval. In
general, CALIOP-derived monthly values are expected to be more representative of a region
within higher DMO. The DMO value depends on the geographical location (about 19 days at
high latitude Barrow and 7 days at Melpitz station) and the size of the grid box, especially
along the longitude. As the former cannot be modulated, increasing the grid box for
CALIOP sampling is the only possible way to get higher DMO values. We therefore suggest
using a relatively coarse 2◦ × 5◦ latitude–longitude grid (also used in CALIPSO level 3
data [36]) to estimate a global height-resolved nCCN to obtain a regionally representative
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result. Even so, CALIOP has the potential to provide height- and type-resolved nCCN over
both land and oceans. With regards to the ACI study, the height-resolved measurements
can be used to estimate the nCCN close to cloud base and the type-resolved measurements to
quantify the anthropogenic component. The availability of more than a decade of CALIOP
measurements provides a unique opportunity to study the global and seasonal distribution
of CCN concentrations for different aerosol types. However, such a study is not within the
scope of the present work and will be presented in future studies.

Remote Sens. 2022, 14, 3342 9 of 12 
 

 

 

Figure 4. Comparison of nCCN (a,c) and nj,dry (b,d) from in situ and CALIOP (day and night combined) 

measurements using OMCAM (a,b) and POLIPHON (c,d) for Nbins > 100 at all sites given in Table 1. 

Along with the aerosol load, the number of days in a month observed (DMO) by 

CALIOP within a grid box may also have a significant impact on the nCCN retrieval. In 

general, CALIOP-derived monthly values are expected to be more representative of a re-

gion within higher DMO. The DMO value depends on the geographical location (about 

19 days at high latitude Barrow and 7 days at Melpitz station) and the size of the grid box, 

especially along the longitude. As the former cannot be modulated, increasing the grid 

box for CALIOP sampling is the only possible way to get higher DMO values. We there-

fore suggest using a relatively coarse 2° × 5° latitude–longitude grid (also used in 

CALIPSO level 3 data [36]) to estimate a global height-resolved nCCN to obtain a regionally 

representative result. Even so, CALIOP has the potential to provide height- and type-re-

solved nCCN over both land and oceans. With regards to the ACI study, the height-resolved 

measurements can be used to estimate the nCCN close to cloud base and the type-resolved 

measurements to quantify the anthropogenic component. The availability of more than a 

decade of CALIOP measurements provides a unique opportunity to study the global and 

seasonal distribution of CCN concentrations for different aerosol types. However, such a 

study is not within the scope of the present work and will be presented in future studies. 

4. Conclusions 

We presented a comparison of monthly in situ CCN concentrations (nCCN) and dry 

aerosol number concentrations (nj,dry) with the spaceborne lidar CALIOP retrievals. POL-

IPHON and OMCAM algorithms were used to estimate nj,dry and nCCN from CALIOP meas-

urements. Both techniques rely on size-based CCN parametrizations. A comparison of the 

concurrent in situ measurements of nCCN and nj,dry at all stations supported the applicabil-

ity of the size-based CCN parametrizations. We found that the CALIOP estimates of 

monthly nCCN at 0.2% supersaturation were generally in good agreement with the in situ 

measurements: about 88% (91%) and 77% (88%) of nCCN (nj,dry) estimates from OMCAM 

and POLIPHON algorithms remaining within a factor of 1.5 of the in situ measurements, 

Figure 4. Comparison of nCCN (a,c) and nj,dry (b,d) from in situ and CALIOP (day and night
combined) measurements using OMCAM (a,b) and POLIPHON (c,d) for Nbins > 100 at all sites given
in Table 1.

4. Conclusions

We presented a comparison of monthly in situ CCN concentrations (nCCN) and
dry aerosol number concentrations (nj,dry) with the spaceborne lidar CALIOP retrievals.
POLIPHON and OMCAM algorithms were used to estimate nj,dry and nCCN from CALIOP
measurements. Both techniques rely on size-based CCN parametrizations. A comparison
of the concurrent in situ measurements of nCCN and nj,dry at all stations supported the
applicability of the size-based CCN parametrizations. We found that the CALIOP estimates
of monthly nCCN at 0.2% supersaturation were generally in good agreement with the in situ
measurements: about 88% (91%) and 77% (88%) of nCCN (nj,dry) estimates from OMCAM
and POLIPHON algorithms remaining within a factor of 1.5 of the in situ measurements,
respectively. Disagreement was primarily found for the monthly retrievals where the num-
ber of aerosol samples detected by CALIOP was less than 100 (25th percentile). Excluding
such retrievals, we found the OMCAM nCCN estimates to have better agreement with the
in situ measurements with a normalized mean error of 71%, normalized mean bias of 39%,
and correlation coefficient of 0.68.

The in situ stations considered in this validation study cover different continental
environments. Future studies involving a direct comparison of CALIOP retrievals with
measurements over oceans, (e.g., from Hudson et al. [49]) will provide better insight into
the ability of CALIOP to estimate marine nCCN. Having said that, our findings along
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with previous comparison studies [25–28] support the feasibility of constructing a global
height-resolved nCCN climatology from CALIOP measurements. Such a dataset would
be invaluable not only for studying aerosol-cloud interactions [8,18] but also serve as a
benchmark for regional and global climate models.

Author Contributions: G.C. conceptualized the study, performed the data analysis, and prepared
the plots under the guidance of M.T., G.C. prepared the initial version of the paper. G.C. and M.T.
contributed to the discussion of the findings and the revisions of the paper. All authors have read
and agreed to the published version of the manuscript.

Funding: This research has been supported by the Franco-German Fellowship Program on Climate,
Energy, and Earth System Research (Make Our Planet Great Again—German Research Initiative
(MOPGA–GRI), grant number 57429422) of the German Academic Exchange Service (DAAD), funded
by the German Ministry of Education and Research.

Data Availability Statement: The CALIPSO level 2 v4.20 aerosol profile data product used in this
work is available at https://doi.org/10.5067/CALIOP/CALIPSO/LID_L2_05KMAPRO-STANDARD-
V4-20 (accessed on 7 July 2022). The in situ data is available at http://actris.nilu.no/Content/
products (accessed on 7 July 2022).

Acknowledgments: We thank the CALIPSO science team for providing the CALIPSO data and the
AERIS/ICARE Data and Services Center for providing access to the data used in this study. We are
thankful to the PI’s, technical, and non-technical members involved in the collection and management
of the in situ dataset used in our study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Twomey, S. Pollution and the planetary albedo. Atmos. Environ. 1974, 8, 1251–1256. [CrossRef]
2. Albrecht, B.A. Aerosols, Cloud Microphysics, and Fractional Cloudiness. Science 1989, 245, 1227–1230. [CrossRef] [PubMed]
3. Forster, P.; Storelvmo, T.; Armour, K.; Collins, W.; Dufresne, J.-L.; Frame, D.; Lunt, D.J.; Mauritsen, T.; Palmer, M.D.; Watanabe, M.;

et al. The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity. In Climate Change 2021: The Physical Science Basis.
Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte,
V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge
University Press: Cambridge, UK, 2021.

4. Fan, J.; Wang, Y.; Rosenfeld, D.; Liu, X. Review of Aerosol–Cloud Interactions: Mechanisms, Significance, and Challenges. J.
Atmos. Sci. 2016, 73, 4221–4252. [CrossRef]

5. Seinfeld, J.H.; Bretherton, C.; Carslaw, K.S.; Coe, H.; DeMott, P.J.; Dunlea, E.J.; Feingold, G.; Ghan, S.; Guenther, A.B.; Kahn, R.;
et al. Improving our fundamental understanding of the role of aerosol−cloud interactions in the climate system. Proc. Natl. Acad.
Sci. USA 2016, 113, 5781–5790. [CrossRef] [PubMed]

6. Choudhury, G.; Tyagi, B.; Singh, J.; Sarangi, C.; Tripathi, S. Aerosol-orography-precipitation—A critical assessment. Atmos.
Environ. 2019, 214, 116831. [CrossRef]

7. Oreopoulos, L.; Cho, N.; Lee, N. Using MODIS Cloud Regimes to Sort Diagnostic Signals of Aerosol-Cloud-Precipitation
Interactions. J. Geophys. Res. Atmos. 2017, 122, 5416–5440. [CrossRef]

8. Bellouin, N.; Quaas, J.; Gryspeerdt, E.; Kinne, S.; Stier, P.; Watson-Parris, D.; Boucher, O.; Carslaw, K.S.; Christensen, M.; Daniau,
A.; et al. Bounding Global Aerosol Radiative Forcing of Climate Change. Rev. Geophys. 2020, 58, e2019RG000660. [CrossRef]

9. Douglas, A.; L’Ecuyer, T. Quantifying variations in shortwave aerosol–cloud–radiation interactions using local meteorology and
cloud state constraints. Atmos. Chem. Phys. 2019, 19, 6251–6268. [CrossRef]

10. Feingold, G.; Remer, L.A.; Ramaprasad, J.; Kaufman, Y.J. Analysis of smoke impact on clouds in Brazilian biomass burning
regions: An extension of Twomey’s approach. J. Geophys. Res. Earth Surf. 2001, 106, 22907–22922. [CrossRef]

11. Quaas, J.; Boucher, O.; Bellouin, N.; Kinne, S. Satellite-based estimate of the direct and indirect aerosol climate forcing. J. Geophys.
Res. Earth Surf. 2008, 113, D05204. [CrossRef]

12. Quaas, J.; Ming, Y.; Menon, S.; Takemura, T.; Wang, M.; Penner, J.E.; Gettelman, A.; Lohmann, U.; Bellouin, N.; Boucher, O.; et al.
Aerosol indirect effects—General circulation model intercomparison and evaluation with satellite data. Atmos. Chem. Phys. 2009,
9, 8697–8717. [CrossRef]

13. Nakajima, T.; Higurashi, A.; Kawamoto, K.; Penner, J.E. A possible correlation between satellite-derived cloud and aerosol
microphysical parameters. Geophys. Res. Lett. 2001, 28, 1171–1174. [CrossRef]

14. Bréon, F.-M.; Tanré, D.; Generoso, S. Aerosol Effect on Cloud Droplet Size Monitored from Satellite. Science 2002, 295, 834–838.
[CrossRef] [PubMed]

https://doi.org/10.5067/CALIOP/CALIPSO/LID_L2_05KMAPRO-STANDARD-V4-20
https://doi.org/10.5067/CALIOP/CALIPSO/LID_L2_05KMAPRO-STANDARD-V4-20
http://actris.nilu.no/Content/products
http://actris.nilu.no/Content/products
http://doi.org/10.1016/0004-6981(74)90004-3
http://doi.org/10.1126/science.245.4923.1227
http://www.ncbi.nlm.nih.gov/pubmed/17747885
http://doi.org/10.1175/JAS-D-16-0037.1
http://doi.org/10.1073/pnas.1514043113
http://www.ncbi.nlm.nih.gov/pubmed/27222566
http://doi.org/10.1016/j.atmosenv.2019.116831
http://doi.org/10.1002/2016JD026120
http://doi.org/10.1029/2019RG000660
http://doi.org/10.5194/acp-19-6251-2019
http://doi.org/10.1029/2001JD000732
http://doi.org/10.1029/2007JD008962
http://doi.org/10.5194/acp-9-8697-2009
http://doi.org/10.1029/2000GL012186
http://doi.org/10.1126/science.1066434
http://www.ncbi.nlm.nih.gov/pubmed/11823636


Remote Sens. 2022, 14, 3342 11 of 12

15. Lohmann, U.; Lesins, G. Stronger Constraints on the Anthropogenic Indirect Aerosol Effect. Science 2002, 298, 1012–1015.
[CrossRef]

16. Gryspeerdt, E.; Quaas, J.; Ferrachat, S.; Gettelman, A.; Ghan, S.; Lohmann, U.; Morrison, H.; Neubauer, D.; Partridge, D.G.; Stier,
P.; et al. Constraining the instantaneous aerosol influence on cloud albedo. Proc. Natl. Acad. Sci. USA 2017, 114, 4899–4904.
[CrossRef] [PubMed]

17. Stier, P. Limitations of passive remote sensing to constrain global cloud condensation nuclei. Atmos. Chem. Phys. 2016, 16,
6595–6607. [CrossRef]

18. Quaas, J.; Arola, A.; Cairns, B.; Christensen, M.; Deneke, H.; Ekman, A.M.L.; Feingold, G.; Fridlind, A.; Gryspeerdt, E.; Hasekamp,
O.; et al. Constraining the Twomey effect from satellite observations: Issues and perspectives. Atmos. Chem. Phys. 2020, 20,
15079–15099. [CrossRef]

19. Hasekamp, O.P.; Gryspeerdt, E.; Quaas, J. Analysis of polarimetric satellite measurements suggests stronger cooling due to
aerosol-cloud interactions. Nat. Commun. 2019, 10, 5405. [CrossRef]

20. Costantino, L.; Bréon, F.-M. Analysis of aerosol-cloud interaction from multi-sensor satellite observations. Geophys. Res. Lett.
2010, 37, L11801. [CrossRef]

21. Costantino, L.; Bréon, F.-M. Aerosol indirect effect on warm clouds over South-East Atlantic, from co-located MODIS and
CALIPSO observations. Atmos. Chem. Phys. 2013, 13, 69–88. [CrossRef]

22. Sayer, A.M.; Hsu, N.C.; Bettenhausen, C.; Jeong, M.J. Validation and uncertainty estimates for MODIS Collection 6 “Deep Blue”
aerosol data. J. Geophys. Res. Atmos. 2013, 118, 7864–7872. [CrossRef]

23. Shinozuka, Y.; Clarke, A.D.; Nenes, A.; Jefferson, A.; Wood, R.; McNaughton, C.S.; Ström, J.; Tunved, P.; Redemann, J.; Thornhill,
K.L.; et al. The relationship between cloud condensation nuclei (CCN) concentration and light extinction of dried particles:
Indications of underlying aerosol processes and implications for satellite-based CCN estimates. Atmos. Chem. Phys. 2015, 15,
7585–7604. [CrossRef]

24. Mamouri, R.-E.; Ansmann, A. Potential of polarization lidar to provide profiles of CCN- and INP-relevant aerosol parameters.
Atmos. Chem. Phys. 2016, 16, 5905–5931. [CrossRef]

25. Marinou, E.; Tesche, M.; Nenes, A.; Ansmann, A.; Schrod, J.; Mamali, D.; Tsekeri, A.; Pikridas, M.; Baars, H.; Engelmann, R.;
et al. Retrieval of ice-nucleating particle concentrations from lidar observations and comparison with UAV in situ measurements.
Atmos. Chem. Phys. 2019, 19, 11315–11342. [CrossRef]

26. Georgoulias, A.K.; Marinou, E.; Tsekeri, A.; Proestakis, E.; Akritidis, D.; Alexandri, G.; Zanis, P.; Balis, D.; Marenco, F.; Tesche, M.;
et al. A First Case Study of CCN Concentrations from Spaceborne Lidar Observations. Remote Sens. 2020, 12, 1557. [CrossRef]

27. Choudhury, G.; Ansmann, A.; Tesche, M. Evaluation of aerosol number concentrations from CALIPSO with ATom airborne in
situ measurements. Atmos. Chem. Phys. 2022, 22, 7143–7161. [CrossRef]

28. Choudhury, G.; Tesche, M. Estimating cloud condensation nuclei concentrations from CALIPSO lidar measurements. Atmos.
Meas. Tech. 2022, 15, 639–654. [CrossRef]

29. Omar, A.H.; Winker, D.M.; Vaughan, M.A.; Hu, Y.; Trepte, C.R.; Ferrare, R.A.; Lee, K.-P.; Hostetler, C.A.; Kittaka, C.; Rogers, R.R.;
et al. The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm. J. Atmos. Ocean. Technol. 2009, 26,
1994–2014. [CrossRef]

30. Schmale, J.; Henning, S.; Henzing, B.; Keskinen, H.; Sellegri, K.; Ovadnevaite, J.; Bougiatioti, A.; Kalivitis, N.; Stavroulas, I.;
Jefferson, A.; et al. Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition.
Sci. Data 2017, 4, 170003. [CrossRef]

31. Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S. Overview of the CALIPSO Mission
and CALIOP Data Processing Algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [CrossRef]

32. Kim, M.-H.; Omar, A.H.; Tackett, J.L.; Vaughan, M.A.; Winker, D.M.; Trepte, C.R.; Hu, Y.; Liu, Z.; Poole, L.R.; Pitts, M.C.; et al. The
CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmos. Meas. Tech. 2018, 11, 6107–6135.
[CrossRef] [PubMed]

33. NASA/LARC/SD/ASDC CALIPSO Lidar Level 2 Aerosol Profile, V4-20 [Data Set]; NASA Langley Atmospheric Science Data
Center DAAC, 2018. Available online: https://doi.org/10.5067/CALIOP/CALIPSO/LID_L2_05KMAPRO-STANDARD-V4-20
(accessed on 7 July 2022).

34. Molod, A.; Takacs, L.; Suarez, M.; Bacmeister, J. Development of the GEOS-5 atmospheric general circulation model: Evolution
from MERRA to MERRA2. Geosci. Model Dev. 2015, 8, 1339–1356. [CrossRef]

35. Mamouri, R.E.; Ansmann, A. Estimated desert-dust ice nuclei profiles from polarization lidar: Methodology and case studies.
Atmos. Chem. Phys. 2015, 15, 3463–3477. [CrossRef]

36. Tackett, J.L.; Winker, D.M.; Getzewich, B.J.; Vaughan, M.A.; Young, S.A.; Kar, J. CALIPSO lidar level 3 aerosol profile product:
Version 3 algorithm design. Atmos. Meas. Tech. 2018, 11, 4129–4152. [CrossRef] [PubMed]

37. Tesche, M.; Ansmann, A.; Mueller, D.; Althausen, D.; Engelmann, R.; Freudenthaler, V.; Gross, S. Vertically resolved separation of
dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment
2008. J. Geophys. Res. Space Phys. 2009, 114, D13202. [CrossRef]

38. Ansmann, A.; Mamouri, R.-E.; Hofer, J.; Baars, H.; Althausen, D.; Abdullaev, S.F. Dust mass, cloud condensation nuclei, and
ice-nucleating particle profiling with polarization lidar: Updated POLIPHON conversion factors from global AERONET analysis.
Atmos. Meas. Tech. 2019, 12, 4849–4865. [CrossRef]

http://doi.org/10.1126/science.1075405
http://doi.org/10.1073/pnas.1617765114
http://www.ncbi.nlm.nih.gov/pubmed/28446614
http://doi.org/10.5194/acp-16-6595-2016
http://doi.org/10.5194/acp-20-15079-2020
http://doi.org/10.1038/s41467-019-13372-2
http://doi.org/10.1029/2009GL041828
http://doi.org/10.5194/acp-13-69-2013
http://doi.org/10.1002/jgrd.50600
http://doi.org/10.5194/acp-15-7585-2015
http://doi.org/10.5194/acp-16-5905-2016
http://doi.org/10.5194/acp-19-11315-2019
http://doi.org/10.3390/rs12101557
http://doi.org/10.5194/acp-22-7143-2022
http://doi.org/10.5194/amt-15-639-2022
http://doi.org/10.1175/2009JTECHA1231.1
http://doi.org/10.1038/sdata.2017.3
http://doi.org/10.1175/2009JTECHA1281.1
http://doi.org/10.5194/amt-11-6107-2018
http://www.ncbi.nlm.nih.gov/pubmed/31921372
https://doi.org/10.5067/CALIOP/CALIPSO/LID_L2_05KMAPRO-STANDARD-V4-20
http://doi.org/10.5194/gmd-8-1339-2015
http://doi.org/10.5194/acp-15-3463-2015
http://doi.org/10.5194/amt-11-4129-2018
http://www.ncbi.nlm.nih.gov/pubmed/33510819
http://doi.org/10.1029/2009JD011862
http://doi.org/10.5194/amt-12-4849-2019


Remote Sens. 2022, 14, 3342 12 of 12

39. Ansmann, A.; Ohneiser, K.; Mamouri, R.-E.; Knopf, D.A.; Veselovskii, I.; Baars, H.; Engelmann, R.; Foth, A.; Jimenez, C.; Seifert, P.;
et al. Tropospheric and stratospheric wildfire smoke profiling with lidar: Mass, surface area, CCN, and INP retrieval. Atmos.
Chem. Phys. 2021, 21, 9779–9807. [CrossRef]

40. Gasteiger, J.; Wiegner, M. MOPSMAP v1.0: A versatile tool for the modeling of aerosol optical properties. Geosci. Model Dev. 2018,
11, 2739–2762. [CrossRef]

41. Sayer, A.M.; Smirnov, A.; Hsu, N.C.; Holben, B.N. A pure marine aerosol model, for use in remote sensing applications. J. Geophys.
Res. Earth Surf. 2012, 117, D05213. [CrossRef]

42. Petters, M.D.; Kreidenweis, S.M. A single parameter representation of hygroscopic growth and cloud condensation nucleus
activity. Atmos. Chem. Phys. 2007, 7, 1961–1971. [CrossRef]

43. Andreae, M.; Rosenfeld, D. Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols.
Earth-Sci. Rev. 2008, 89, 13–41. [CrossRef]

44. Schmale, J.; Henning, S.; Decesari, S.; Henzing, B.; Keskinen, H.; Sellegri, K.; Ovadnevaite, J.; Pöhlker, M.L.; Brito, J.; Bougiatioti,
A.; et al. Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition
measurements at regionally representative observatories. Atmos. Chem. Phys. 2018, 18, 2853–2881. [CrossRef]

45. Winker, D.M.; Tackett, J.L.; Getzewich, B.J.; Liu, Z.; Vaughan, M.A.; Rogers, R.R. The global 3-D distribution of tropospheric
aerosols as characterized by CALIOP. Atmos. Chem. Phys. 2013, 13, 3345–3361. [CrossRef]

46. Fanourgakis, G.S.; Kanakidou, M.; Nenes, A.; Bauer, S.E.; Bergman, T.; Carslaw, K.S.; Grini, A.; Hamilton, D.S.; Johnson, J.S.;
Karydis, V.A.; et al. Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications
for cloud droplet formation. Atmos. Chem. Phys. 2019, 19, 8591–8617. [CrossRef]

47. Watson-Parris, D.; Schutgens, N.; Winker, D.; Burton, S.P.; Ferrare, R.A.; Stier, P. On the Limits of CALIOP for Constraining
Modeled Free Tropospheric Aerosol. Geophys. Res. Lett. 2018, 45, 9260–9266. [CrossRef]

48. Ma, P.-L.; Rasch, P.J.; Chepfer, H.; Winker, D.M.; Ghan, S.J. Observational constraint on cloud susceptibility weakened by aerosol
retrieval limitations. Nat. Commun. 2018, 9, 2640. [CrossRef]

49. Hudson, J.G.; Noble, S.; Jha, V. Stratus Cloud Supersaturations. Geophys. Res. Lett. 2010, 37, L21813. [CrossRef]

http://doi.org/10.5194/acp-21-9779-2021
http://doi.org/10.5194/gmd-11-2739-2018
http://doi.org/10.1029/2011JD016689
http://doi.org/10.5194/acp-7-1961-2007
http://doi.org/10.1016/j.earscirev.2008.03.001
http://doi.org/10.5194/acp-18-2853-2018
http://doi.org/10.5194/acp-13-3345-2013
http://doi.org/10.5194/acp-19-8591-2019
http://doi.org/10.1029/2018GL078195
http://doi.org/10.1038/s41467-018-05028-4
http://doi.org/10.1029/2010GL045197

	Introduction 
	Data and Methods 
	In Situ Observations 
	CALIOP 
	Comparison Methodology 

	Comparison of CCN Concentrations 
	Conclusions 
	References

