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Referat 

Steigende Zahlen von Patienten mit neurodegenerativen Erkrankungen sind ein 

überzeugender Grund, das menschliche Gehirn und seinen fortschreitenden Verfall 

zu untersuchen, wobei aber viele essenzielle biochemische Funktionen bisher noch 

nicht vollends geklärt sind. In vitro Forschung zur Hirnfunktion auf geeigneten 

Plattformen ist ein vielversprechender Weg, diese Lücke zu schließen. Eigenschaften 

der brain-machine Grenzfläche müssen erforscht werden, um neue Biomaterialien 

effektiv für lab-on-a-chip Anwendungen wie bspw. Multielektrodenarrays (MEAs) 

einzusetzen. Diese brain-on-a-chip Anwendungen können dazu dienen, die Zahl der 

Tierexperimente zu reduzieren, damit Forschung zu beschleunigen und Kosten zu 

senken. In dieser Hinsicht erfordert die Miniaturisierung von MEAs für eine 

detailliertere Messung von neuronalen Funktionen die Entwicklung von neuen 

Biomaterialien mit vorteilhaften elektrischen Eigenschaften. Die Wechselwirkung 

dieser Biomaterialien mit Zellen muss untersucht werden, um gute Zelladhäsion, 

Proliferation und elektrische Kopplung zu gewährleisten.  Die vorliegende Arbeit 

dient der Charakterisierung der Wechselwirkung von humanen neuronalen Zellen 

und Gliazellen (neuronenartige SH-SY5Y und gliaartige U-87 MG Zellen) mit dem 

Elektrodenmaterial Titannitrid mit nanokolumnarer Oberfläche (TiN nano) und 

dessen Vorteile bezüglich elektrischer und bioaktiver Eigenschaften im Vergleich mit 

Gold (Au) und Indiumzinnoxid (ITO), welche derzeit für MEAs und Neuroelektroden 

verwendet werden. Das Ziel der Arbeit ist die Implementierung neuer aus der 

theoretischen Physik, Mathematik und Computerwissenschaft entlehnten 

Techniken, um eine bildbasierte Methode zu entwickeln, die auf minimalen 

Experimenten beruht und trotzdem wichtige Hinweise zur Biokompatibiliät eines 

Materials liefert. Das schließt die Analyse von Zellnetzwerken, Zellverteilung, 

Adhäsion und elektrochemischer Eigenschaften in mono- und co-Kultur ein. Dazu 

werden Autokorrelation, selbstlernende Algorithmen und die Analyse 

nächstgelegener Nachbarn eingesetzt, um einen Weg von klassischen biochemischen 

Assays weg zu einem rechnerischen Ansatz zu finden. Die Ergebnisse zeigen eine 

Überlegenheit von Tin nano als potenzielles Biomaterial für lab-on-a-chip 

Anwendungen und in vivo neuraler Stimulation. Die präsentierte bildbasierte 

Analysemethode für die Untersuchung von Zellverteilungen erweist sich als 

wertvolles Werkzeug für die Bewertung von Biokompatibilität. Sie ist universell 

einsetzbar für verschiedene Zelltypen und quantifiziert die Wechselwirkung von 

Zellen mit Biomaterialien. 
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Abstract 

Rising numbers of patients with neurodegenerative diseases are a compelling reason 

to study the human brain and its progressive deterioration but many essential 

biochemical functions are still under investigation. Conducting research on brain 

function in vitro with suitable platforms is a promising solution to close these gaps. 

Characteristics of the brain-machine interface need to be investigated to effectively 

employ new biomaterials for lab-on-a-chip devices, such as multielectrode arrays 

(MEAs) for example. These brain-on-a-chip devices will potentially reduce the 

number of conducted animal experiments and therewith accelerate future research 

and reduce costs. In this context, miniaturization of MEAs for more detailed 

measurements of neuronal function calls for new biomaterials with advantageous 

electrical characteristics. The interaction of these biomaterials with cells needs to be 

investigated to ensure good cell adhesion, proliferation, and electrical coupling. This 

thesis aims to study and characterize the interaction of human neuronal and glial cells 

(neuron-like SH-SY5Y and glia-like U-87 MG cells) with the electrode material titanium 

nitride with nanocolumnar surface topography (TiN nano) and its advantages in terms 

of electric and bioactive properties compared to gold (Au) and indium tin oxide (ITO) 

which are currently employed for MEAs and neuroelectrodes. The overall goal of this 

study is the implementation of new techniques drawn from theoretical physics, 

mathematics, and computer science to establish an image-based method that relies 

on minimal experimental effort but nevertheless yields important evidence of 

biocompatibility of the material. Analysis includes the investigation of cellular 

networks, cell distribution, adhesion, and electrochemical properties in mono- and 

co-culture experiments. To this end, autocorrelation function, self-learning 

algorithms, and nearest neighbor analysis are deployed to move away from classical 

biochemical assays toward a more computational approach. Results show the 

superiority of TiN nano as a potential biomaterial employed for lab-on-a-chip designs 

as well as for in vivo neural stimulation. The proposed image-based analysis method 

for the investigation of cellular distribution turns out to be a valuable tool for the 

assessment of biocompatibility. It is universally applicable to cell types other than 

neuronal and quantifies the interaction of cells with biomaterials.  
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1. Introduction 

 

The human brain is an extraordinarily complex system such that, unsurprisingly, its 

cellular architecture and function are not entirely understood. Surprisingly, some 

basic knowledge as the number of neurons and glial cells in different compartments 

of the brain is still under debate [1,2]. Thus, even seemingly easy questions 

concerning the brain are actually very difficult to answer. Diseases of the brain and 

the accompanying nervous system which are characterized by the progressive loss of 

neurons are called neurodegenerative disorders [3]. The number of patients 

diagnosed with neurodegenerative disorders such as epilepsy, Alzheimer’s, and 
Parkinson’s disease is growing such that neurological diseases are the leading cause 

of disability and the second major cause of death worldwide [4]. In the past 30 years, 

suffering from neurodegenerative diseases has increased in such a way that the 

number of deaths has grown by 39 % and disability-adjusted life years have increased 

by 15 % [4]. Aging is the primary risk factor for neurodegenerative disorders [5] and 

patient numbers will continue to rise due to an aging population caused by growing 

life expectancy [6,7]. The overlap of brain aging and the development of 

neurodegenerative disorders is still not fully understood [8]. The number of people 

affected by Alzheimer’s disease is expected to double every 20 years to 81.1 million 

by 2040 and the number of patients with Parkinson’s disease 50 years and older in 
the world’s most populated areas will increase to 9.3 million by 2030 [9,10].  

Research on neurodegenerative diseases is constantly developed further and 

treatment methods are improved. However, medical procedures are still mostly 

limited to weakening degeneration and symptoms instead of stopping or even 

reversing the neuronal damage [11,12]. Thus, early diagnosis is important but 

hindered due to the molecular and clinical heterogeneity of neurodegenerative 

disorders which is addressed by technologies to investigate the molecular pathways 

involved in the development of neurodegenerative diseases [13]. Recently, shared 

genetic and molecular pathophysiology mechanisms across major psychiatric and 

neurodegenerative diseases have been investigated to refine early treatment stages 

[14]. Research on neurodegenerative diseases has branched out and lately identified 

a role for T cells of the immune system for Alzheimer’s disease, Parkinson’s disease, 

and amyotrophic lateral sclerosis [15]. 

Great effort has been put into both in vivo and in vitro experiments with the aim to 

study the human brain and its progressive deterioration due to degenerative diseases 

but many essential biochemical functions are still under investigation [16]. In vivo 

animal models fail to represent the complexity of the human brain, lack crucial 

features, exhibit interspecies differences, are accompanied by high cost, low 

throughput, and optical non-transparency, and moreover, raise ethical concerns 

regarding animal experiments [17]. Mice and human brains are similar in terms of cell 

types and tissue architecture for evolutionary reasons but a recent study found that 

mice brain cells activate different genes in comparison with human neuronal cells 
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leading to the formation of receptors on different cell types resulting in diverse 

responses to drugs of human and mice cells [18,19]. In vitro culture models are easier 

to handle and offer the possibility to investigate cellular function and the cells’ 
reaction to drugs for the development of new treatments [20,21]. On the other hand, 

many in vitro models are considered too simplistic for practical applications since 

they do not provide insights into behavioral responses or systemic responses such as 

organ-organ interactions [17]. Isolated in vitro cell cultures lack interplay with other 

cell types and do not account for cell-matrix interactions [22]. In vitro cultures can be 

appropriate for some, but not all, types of pharmacological studies as shown by Belle 

et al. comparing cortical rat neurons’ in vivo and dissociated neurons’ in vitro 

response to drugs [23]. However, in vitro experimental approaches permit the study 

of cellular interaction of neurons and glial cells with biomaterials which for example 

are employed as brain pacemaker devices for deep brain stimulation [24].  

Neural probes need a stable interface between neural cells and biomaterial that 

guarantees reliable and selective recording and neural activation with minimal tissue 

damage and scarring [25]. The interaction of neuronal and glial cells with the surface 

of the neuroelectrodes is crucial for the brain pacemaker’s functionality and 
therewith therapy success. Consequently, research on bioelectronics focuses on the 

development of materials and devices that enhance cell adhesion, proliferation, and 

physiological function, and yield stable long-term high-resolution transfer of 

electrical signals between the bioelectronic device and neuronal cells [26,27]. 

Employed electrode materials are often fabricated based on carbon and silicone 

compounds [28,29], but due to their high biocompatibility, chemical stability, and 

high electrical conductivity, noble metals such as gold and platinum are also often 

employed as electrode materials in conjunction with biological matter [30–32]. 

Neurons sense the surface topography of neuroelectrodes and are stimulated by the 

size, shape, and pattern of the biomaterial, which influence neuron adhesion, neurite 

alignment, and neurite formation [33]. A plethora of different surface topography 

designs have been developed and continuously improved to optimize the platforms 

for fundamental research on the development of brain cells as well as for practical 

biomedical applications. Such designs include for example microgrooves, 

micrometer-sized pillars, nanofabricated structures like nanowires, nanopillars, and 

nanotubes [34–41]. Novel materials in conjunction with bioengineering technologies 

enabled the research on biomimetic neural micro-environments [42,43]. These are 

complex neural 3D cultures composed of cells, biomaterials, and biological factors 

that model brain tissue architectures in the lab [42]. These systems are meant to 

bridge the gap between in vivo animal experiments and in vitro cell culture. These 

micro-environments are technically still in vitro culture systems but are developed 

with the aim to avoid the typical drawbacks of in vitro culture and provide some of 

the advantages of animal models, essentially making them the Swiss army knife of 

biomedical research. They can be used to study for example neurodevelopment or 

neuroregeneration processes. 
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In fact, brain-on-a-chip devices have proven to be beneficial to study neural function 

mimicking physiological interactions of different brain cell types [44–46]. Brain-on-a-

chip has become an umbrella term for different research approaches to design 

engineered systems to cultivate neurons and observe their connections for a wide 

range of applications from pharmaceutical studies to research on neurodegenerative 

disorders [44]. The <brain= part in brains-on-a-chip can be derived employing ex vivo 

brain slices from vertebrates, in vitro derived brain organoids, or in vitro cultured 

neurons from human induced pluripotent stem cells. Lab-on-a-chip research is 

actually not limited to the investigation of the human brain but includes other tissue 

types such as heart, lung, kidneys, liver, bone, and skin [47–52]. Such organ-on-a-chip 

technologies combine microfabrication and tissue engineering to mimic important 

human physiologic functions and therewith prove to be useful for preclinical drug 

testing in terms of effectiveness and safety [53,54]. Research on brain-related lab-on-

a-chip technologies has advanced considerably so they have been dubbed <mini-
brain= models in a recent review article [55]. Neurons-on-a-chip technology is used 

to study neurite outgrowth, synaptogenesis, axon development, and network 

dynamics in vitro [56]. 

Multielectrode arrays (MEAs) as a type of brain-on-a-chip device are used for 

electrophysiological studies with electrically active cells which are found in neural 

networks such as the brain and associated nervous system and the cardiac system. 

MEAs usually consist of an array of micro-sized electrodes attached to the bottom of 

a multi-well plate. Cells are cultured on the electrodes for studies on cell 

differentiation and maturation, drug screening, toxicology studies, or modeling of 

neurodegenerative diseases. They offer the possibility to record and stimulate 

neuronal cells at different locations at the same time which renders them a 

widespread instrument to observe neuronal activity in vitro and in vivo [57]. More 

specifically, MEAs are used to observe cell health and function in a noninvasive way 

[58,59]. MEA biosensors detect changes in electrical current, impedance, and 

potential in electrophysiological studies. They are produced by microfabrication 

which includes methods like photolithography, screen printing, and laser patterning 

for example [60]. Proceedings in the manufacturing of MEAs nowadays make even 

3D neural cell cultures and long-term recordings of up to 79 days possible [61,62]. 

Recent technological advances have even enabled large-scale neural recordings with 

single-neuron resolution which can be used in interoperative settings paving the way 

to comprehend the dynamics of clinically relevant neural activity [63]. 

The interaction of cells or tissue material with the surface of the MEA is a critical 

feature for the function of the biosensor. Only a stable and close attachment of the 

cells to the material’s surface guarantees continuous and reliable electrical 

stimulation of cells and high-quality readouts in electrophysiological studies. A wide 

range of potential electrode materials has been explored in the search for 

biomaterials that provide a suitable brain-machine interface with focus on 

biocompatibility, mechanical mismatch, and electrical performance [64]. The Young’s 
modulus of electrodes is usually in the range of several GPa but neuronal cells and 
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brain tissue are much softer which creates a mechanical mismatch at the brain-

machine interface resulting in an inflammatory response of the cells and the 

formation of scar tissue leading eventually to the breakdown of signal recording and 

electrical stimulation of the biomedical sensor [65,66]. The dreaded glial scarring 

occurring at surgically inserted brain pacemakers for deep brain stimulation also 

impedes regeneration of neurons at the local surgical injury [67]. Research addresses 

this drawback with the development of soft and bio-inspired electrodes [68–71]. Cell 

adhesion also plays a major role in the functionality of biosensors and other 

biomedical applications [72]. Only stable coupling of the cells to the electrode 

material of MEAs enables long-term recording and stimulation. Various strategies to 

control neuronal adhesion have been developed with the goal of tissue repair and 

medical treatment in mind which rely on the understanding and controlling of the 

neuron-surface interaction [73].  

Miniaturization of MEAs offers the possibility for more detailed cellular stimulation 

and neural recording on smaller length scales with denser arrays. But this downsizing 

of the electrodes gives rise to new requirements for materials like a lowered self-

impedance since electrical impedance usually scales inversely with the electrode size, 

the smaller the electrode the larger is the impedance. Conductive polymers have 

been employed for this reason as they generally exhibit a lower impedance in 

comparison with inorganic materials [74,75]. However, also inorganic materials such 

as TiN for example can be used for the miniaturization of microelectrodes [76]. 

Further shrinking electrode sizes without the loss of detection sensitivity could be 

possible with TiN employing sophisticated surface morphologies which increase the 

material’s surface area. The signal-to-noise ratio of MEAs also has a considerable 

influence on the quality of electrophysiological studies. Biocompatibility of 

biomaterials used for medical probes and implants is as important as it is time-

consuming and laborious with standardized testing [77]. Safety assessment is often 

based on animal experiments or complex in vitro studies [78]. 

The goal of this thesis is to study and characterize the interaction of human neuronal 

and glial cells (neuron-like SH-SY5Y and glia-like U-87 MG cells) with different types 

of electrode materials, i.e. gold (Au), indium tin oxide (ITO), titanium nitride (TiN), 

and TiN with nanocolumnar surface topography (TiN nano), analyzing cellular 

networks, cell distribution, and adhesion in mono- and co-culture experiments. 

Suitability of electrode materials for applications in in vivo medical treatment of 

patients suffering from neurodegenerative disorders as well as in vitro lab-on-a-chip 

studies will be explored. The results of the individual experiments conducted for this 

thesis could hint at possible biocompatibility of the electrode materials. Diverse 

challenges like glial scarring at the interface between brain tissue and neuroelectrode 

after surgical treatment but also miniaturization of MEAs need to be solved. This 

thesis does not aim to offer complete solutions to these giant challenges but I want 

to demonstrate new methods and consider biological systems from a physics point 

of view. The proposed mathematical and physical methods are used to gain insight 

into cellular organization and pattern formation. I combine the results from these 
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novel approaches with data collected from tried and true methods such as single-cell 

adhesion force spectroscopy to understand cellular behavior at the interface with a 

biomaterial. I pursue a novel approach to analyze bioactivity of electrode materials 

using experimental data in conjunction with computational methods. This process is 

comparably fast, inexpensive, easy, and transferable to other applications. I combine 

diverse scientific disciplines borrowing knowledge from physics, mathematics, 

biology, and computational science to leave worn-out tracks and explore new paths. 
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2. Background 

 

2.1.  Neuronal Cells 

 

Brains consist of different types of cells that do not only coexist but also communicate 

and form functional networks. These cells can be broadly categorized as neurons and 

glial cells. Neurons are responsible for environmental sensing and signal transduction 

in the nervous system or in other words <thinking=. Glial cells on the other hand fill a 
rather supportive role for the neurons, providing insulation and nutrition for 

example. But the opinion of the scientific community on the characterization of glial 

cells viewed solely as support providers for neurons has started to crumble due to 

recent scientific studies which indicate a more influential role of glial cells than only 

neuronal support [79]. Glial cells are not regarded as passive support cells or even 

<packing material= to fill the gaps in the network made of neurons anymore.  

Generally, human brains are made up of equal quantities of both cell types, i.e. about 

85 billion neuronal and non-neuronal cells. However, different parts of the brain have 

different ratios of neurons to glial cells. The gray and white matter of the human 

cerebral cortex consists of about 20 % neurons and 80 % non-neurons, whereas we 

find the inverse ratio in the human cerebellum [2]. Hence, cellular architecture seems 

to be important for the compartmentalization and therewith function of brains. 

Neurons and glial cells form networks to perform specific tasks and complement each 

other’s functions. 

Information presented in this chapter is, if not stated otherwise, textbook knowledge 

and can be found in M. Bear's <Neuroscience Exploring the Brain= [80], C. Molnar's 

<Concepts of Biology= [81], and E. Kandel's <Principles of Neural Science= [82]. 

 

Neurons 

Nerve cells, also called neurons, are the signaling units of the nervous system. They 

are able to receive and send electrical signals from other neurons which enables 

communication in the neuronal network. A schematic representation of a neuron is 

shown in Figure 1. The cells consist of a cell body (soma) containing a cell nucleus, 

endoplasmic reticulum, Golgi apparatus, mitochondria, and other cell organelles. 

Neurons generally form two types of processes: short dendrites and a single long 

axon. Dendrites resemble tree branches fanned out around the cell’s soma, hence 

their name dendrite derived from the ancient Greek dendron meaning tree. Neurons 

use them mainly for signal reception. The axon is a long tubular structure extending 

far out of the cell soma which branches out at the end. It is used to carry signals to 

other neurons sitting at a distance from the sending neuron. The interaction site of 

neurons where the axon meets a dendrite or soma of another neuron is called the 

synapse. The electrical signal is converted into a chemical signal at the synapse 

releasing neurotransmitters that can cross the synaptic cleft (gap between the two 
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meeting cells). The incoming chemical signal is reconverted into an electrical signal 

at the receiving neuron and can be sent further to other cells or triggers an action in 

the receiving cell. The sent electrical signals, also called an action potential, can travel 

over considerable distances of 0.1 mm up to 1 m. All physiological signals and stimuli, 

such as vision and odor, for example, are transmitted in the nervous system by action 

potentials. The information is always carried in the same form no matter the type of 

information that needs to be transmitted. The only difference is the pathway that the 

signal takes in the nervous system. That is a key principle of brain function. Incoming 

electrical signals are categorized in the brain by the specific pathway on which they 

are carried which enabled us to differentiate between sensations of sight and smell 

for example.  

Neurons are a rather diverse class of cell types and the classification of subtypes is 

based on several different features of the cells. Neurons are categorized into 

unipolar, pseudounipolar, bipolar, and multipolar for example according to the 

number of their processes also called neurites (axons and dendrites). See Figure 2 for 

an illustration. Classification based on the arrangement of dendrites into stellate cells 

(stars) and pyramidal cells (pyramids) or according to the number of spines on 

dendrites into spiny and aspinous is possible. Another option to classify neuronal cell 

types is the cell’s function in the nervous system. Sensory neurons transfer 
information from the peripheral regions of the body to the central nervous system 

and are also called afferent cells. The opposite, efferent cells, carry information from 

the central nervous system to the motor organs of the body (muscles and glands for 

example). Hence, they are named motor neurons. The third type is named 

interneuron and its main task is to connect neurons with other neurons for extended 

signal transfer. The different types of neurons overlap and form even more subtypes. 

Recently, new studies revealed the possibility to categorize neurons according to RNA 

Figure 1: Schematic representation of a neuron including characteristic 
components. 
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sequences which makes the entire neuronal classification system even more 

sophisticated [83]. 

 

Glial Cells 

This neuronal cell type is named after the ancient Greek word for glue and was long 

believed to only provide a supporting role for neurons in the nervous system. They 

do not really glue neurons together but rather surround them and form some kind of 

matrix for them. Glial cells have different morphological characteristics in comparison 

with neurons. They exhibit different cell membrane properties which explains why 

they are not electrically excitable and they also lack the dendritic morphology of 

neurons. Glia supply nutrients and oxygen to neurons, provide electrical insulation, 

destroy pathogens, and remove dead cells. Their proper functions are vital such that 

many brains tumor are caused by mutations in glial cells. 

Glial cells are categorized according to their function in the nervous system. A 

schematic representation of different types of glia cells is shown in Figure 3. 

Astrocytes mostly fill the extracellular space between neurons in the brain and 

regulate chemical content for example by enveloping synapses and inhibiting the 

spread of neurotransmitters or removing neurotransmitters from the synaptic cleft. 

They also regulate the concentration of ions and chemicals in the extracellular fluid. 

Astrocytes form the blood-brain barrier, blocking toxic compounds from entering the 

brain and therewith filling a vital role in our life. Myelinating glia, like 

Figure 2: Classification of neurons based on the number of processes. 
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oligodendrocytes and Schwann cells, form membrane layers insulating neurons’ 
axons which are called myelin sheaths. Myelin promotes the speed of signal 

propagation along the axon of neurons. Satellite glia are found in the peripheral 

nervous system and provide structure and nutrient supply for neurons there. There 

are also glial cells that serve macrophage functions, degrading dead cells and 

protecting the brain from entering microorganisms. These are called microglia. 

Overall, there exists quite a range of glial cell types but their diversity is much lower 

in comparison to neurons which exhibit great variability in morphology and 

distribution [84]. Non-neurons are much more evolutionary conserved and 

constrained in their development. Current research is working on the answer to the 

question of why that is the case. Possibly, restricted glial variation is simply a 

consequence of late glial cell differentiation or it is due to physiological constraints in 

the sense that small changes in glial cells could lead to severely compromised brain 

function. This would emphasize the view of glial cells as more than just glue holding 

neuron networks together. 

  

Figure 3: Schematic representation of different types of glial cells. Astrocytes are 
shown in green, oligodendrocytes in purple, and microglia in yellow. 
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2.2.  Cell Adhesion and Biocompatibility on Biomaterials 

 

Biomaterials 

Biomaterials are generally defined as non-living materials which are designed to be 

used in conjunction with biological systems. There is also an IUPAC definition 

describing biomaterials as <materials exploited in contact with living tissues, 
organisms, or microorganisms= [85]. A comprehensive overview of biomaterials is 

available from W. Wagner in <Biomaterials Science – An Introduction to Materials in 

Medicine= [86] from which information presented in this and the following section is 

drawn if not stated otherwise.  

The research field of biomaterials science addresses both diagnostics and treatment 

and is about 70-80 years old. Nowadays, biomaterials come in many shapes and sizes 

and are made of a variety of materials such as metals, ceramics, polymers, and 

hydrogels for example. Biomaterials are used for medical disease treatment but also 

for in vitro cell culture research and assays. The common denominator of these 

systems is the interface between artificial (or natural but modified) materials and 

biological matter. The specific properties of biomaterials are always governed by 

their intended application. Implants for bone structures might need to be more rigid 

than devices inserted into the brain for instance. Also, specific cell types interact 

differently with a material’s surface depending on cell shape and morphology. 
Endothelial cell types tend to grow in dense cell layers whereas neuronal cells are 

more likely to form mesh-like network structures with nodes. Cells need biomaterials 

that enhance or at the least maintain their physiological morphology, growth 

patterns, and function. Concepts have evolved over time and biomaterial 

implementation has come from simply adapting industrial materials over the design 

of new passive materials with desired physical and chemical properties to fabrication 

of bioactive substrates which trigger biological response and self-assembling 

materials to integrate even more functionalities and allow in situ assembly or 

disassembly.   

 

Biocompatibility 

The <ability to be in contact with a living system without producing an adverse effect= 
[85] is known as biocompatibility. The concept of biocompatibility is central to the 

development of biomaterials since materials can only become biomaterials because 

they are biocompatible. This common definition of the term biocompatibility is in 

principle not wrong, but rather impractical for most applications since it is quite 

blurry. Can we answer the question on biocompatibility of a certain material with a 

simple yes or no or is there a biocompatibility spectrum? Biomaterials are not 

inherently biocompatible since it all depends on the interaction with biological 

matter and different cell types might react differently to the chosen material. Hence, 

not only is the answer to questions of biocompatibility generally not binary, but also 

the specific application of the material plays a role. Additionally, time and intensity 
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of the interaction of biomaterial and biological matter also influence 

biocompatibility. Cells sense their environment and signal transduction pathways are 

triggered in contact with biomaterials to evaluate whether the material provides 

suitable conditions in accordance with the cells’ normal biological activity. Cells can 

only survive on non-toxic materials that do not trigger immunological rejection [87–
89]. This is the absolute minimum quality that a biomaterial needs to provide. On top 

of that, materials are required to yield a suitable performance depending on the 

intended use of the biomaterial device. These properties need to be tested before 

the application of a biomaterial in medical devices or in vitro assays to ensure both 

patient safety and robust results in cell culture experiments. Otherwise, adverse 

effects induced by the employed materials could lead to serious consequences. 

In vitro biocompatibility tests comprise cytotoxicity assays, cell adhesion 

measurements, and studies on cell activation and death. Tests are categorized as 

direct contact cell culture, extract dilution, and indirect contact diffusion. Generally, 

direct cell culture methods are used to assess biocompatibility of a new material. Cell 

types for these experiments are chosen according to the later intended use and 

application field of the material. Results are compared with positive or negative 

control materials. Extract dilution tests require solvent extraction of the biomaterial 

and are used to gain knowledge on cytotoxicity for regulatory compliance. These first 

tests are followed by more application-specific analyses. A drawback of such in vitro 

tests is the usually comparably short cell culture duration. This could result in 

problems for medical applications of biomaterials as long-term implants but might 

not affect short-term in vitro applications of biomaterials. In vitro tests of 

biomaterials are followed by in vivo assessment of biocompatibility with the main 

goal to examine the functionality of a substrate for its intended use. The analysis is 

twofold: The general tissue biocompatibility is investigated and the applicability of 

the final device is tested. In vivo tests generally require animal models  [90,91].  

Characterization of the surface of biomaterials including parameters such as 

topography and roughness is a mandatory step towards the optimization of the 

materials for their intended application.  Cellular adhesion on the biomaterial’s 
surface is a vital factor for biocompatibility and finding correlations between cellular 

behavior and material surface properties propels biomaterials science forward. New 

insights into the interaction of cells with biomaterials give rise to the opportunity to 

tune the material’s physic-chemical properties for physiological cell function [87,92]. 

 

Cell Adhesion and Bioactivity 

For biomedical research, cell-substrate adhesion plays a major role in medical 

implant as well as lab-on-a-chip designs. The functionality, applicability, and longevity 

of the device depend on the interaction of cells with the biomaterial surfaces which 

is governed by cell adhesion processes. Different applications of biomaterials give rise 

to specific requirements for cell adhesion. Sometimes strong cellular adherence is 

desired for example in scaffolds for tissue regeneration. However, applications like 
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artificial heart valves need to be designed in such a way that blood and plasma cells 

do not stick to the device. Here, strong cellular adhesion would lead to thrombosis 

and embolism [72,93]. In case of neuronal tissue, surface topography, stiffness, and 

electrical properties of biomaterials play a vital role in cell adhesion and neurite 

outgrowth [94]. 

Cell adhesion is a dynamic process that connects a single cell with its environment. 

Generally, one can distinguish between cell-cell adhesion and cell-matrix adhesion. 

Cell-cell adhesion describes the attachment of one cell to another cell and cell-matrix 

adhesions occur wherever a cell adheres to the extracellular matrix (ECM). Ligand 

proteins in the plasma membrane of a cell link its cytoskeleton to an adjacent cell or 

the ECM. Adhesion is a vital property of cells since it does not only hold multicellular 

organisms together but also serves as a means for intercellular signal transduction 

pathways which in turn regulates for example gene expression, cytoskeletal 

dynamics, cell differentiation, and survival [72,87,92]. 

Cell adhesion is crucial for communication and regulation of cells and therewith 

influences the development and sustenance of tissues. Abnormal cellular adhesion 

behavior is associated with various diseases such as arthritis, osteoporosis, 

atherosclerosis, and even cancer [72,95–98]. 

The ECM proteins found in in vivo tissue are missing on biomaterials made of metals 

or ceramics. Hence, cells usually deposit these proteins, such as fibronectin and 

laminin for example, onto the substrate surface enabling the cells to form adhesion 

spots via anchoring ligands in their plasma membrane. Early adhesion can occur in 

seconds via focal complex formation when cells get in contact with biomaterials. 

Mature adhesion complexes are formed subsequently from this soft binding step 

linking cellular adhesion receptors in the plasma membrane to ECM molecules 

[99,100]. Nascent adhesions are formed within some ten seconds and these early 

adhesions mature into focal adhesion points on a time scale of minutes [99,101–105].  

More specifically, a type of cell adhesion molecule named integrin is generally 

responsible for cell-ECM adhesion. Integrins are transmembrane proteins linking the 

extracellular matrix to the intracellular cytoskeleton of a cell. The type of cell-ECM 

junction is called focal adhesion if the integrin binds to actin filaments in the cells and 

hemidesmosome if integrins are attached to intermediate filaments. Integrins have 

an active and a passive state and need to be activated before adhesion points can 

form. This can happen via inside-out and outside-in activation whereby extracellular 

matrix proteins bind to integrins from outside of the cell or intracellular activator 

proteins such as talin, in case of focal adhesions, for example, attach to the integrins 

from the inside of the cell membrane. Either way, integrins undergo conformational 

changes and switch from their inactive to an active state enabling signal transduction 

in both ways across the plasma membrane. Complex protein assemblies form on the 

intracellular tail of integrins upon activation. Cell-ECM junctions involving integrins 

are capable of mechanotransduction, i.e. cells can sense and also respond to 

mechanical cues across the junction. Processes involved in cellular adhesion play a 



14 

 

much larger role in cell function than simple mechanical attachment. Integrins help 

cells to convert mechanical and biochemical signals and therewith enable them to 

actively interact with their environment. Assembly and disassembly of cytoskeletal 

links inside the cell and formation as well as cutting off of extracellular attachments 

on the outside allow the cell to migrate. This dynamic adhesion process also involves 

the clustering of integrins upon their activation to form large complex structures 

resulting in mature cell-ECM junctional complexes. The <cell adhesion model= states 
that the strength of cellular adhesion is related to the number of chemical bonds on 

its membrane surface [106–109]. 

In vitro adhesion of cells to a substrate is a dynamic process that can be divided into 

three stages: initial attachment of the cell to the substrate, flattening and spreading 

of the cell, and formation of focal adhesion junctions involving organization of the 

cell’s actin fibers. The cell sediments on the substrate and electrostatic interaction 

between the cell and biomaterial occur. Afterward, the cell starts to form integrin 

bonds with the substrate surface forming single receptor-ligand pairs and the cell 

body flattens and starts to spread. The last stage is characterized by fully matured 

focal adhesions and a maximum spread cell area accompanied by reorganization and 

distribution of the cell’s actin cytoskeleton [72,110].  

Cell adhesion is studied with a variety of techniques focusing on different aspects of 

the mechanical interactions between cells and the ECM [72,109]. Firstly, attachment 

and detachment events need to be distinguished. Cell attachment studies, as their 

name already suggests, investigate the bond formation between cells and the ECM 

on a substrate whereas detachment experiments focus on the load application to 

remove cells from a substrate. Secondly, cell adhesion studies can be performed on 

either single cells or entire cell populations. Experiments concerning cell attachment 

processes are for example carried out using polyacrylamide gel-based traction force 

microscopy, micropatterning technique, microfluidics, and wash assays. Cell 

population detachment events are measured with centrifugation, flow chambers, or 

using spinning disk techniques. This thesis involves single-cell detachment 

experiments with a focus on whole-cell detachment instead of single-bond breaking. 

Here, atomic force microscopy (AFM)-based single-cell force spectroscopy has been 

used to investigate detachment force and work for both neuron-like and glia-like cells 

on electrode substrates with different adhesion times [111–113].  

 

Atomic Force Microscopy 

Atomic force microscopy (AFM) is a multifunctional tool that can be used for imaging, 

rheological measurements, and adhesion experiments on both hard- and soft-matter 

specimens [114–124]. A comprehensive overview of atomic force microscopy 

functions and applications in a biological context is available from V. Morris's <Atomic 
Force Microscopy for Biologists= [125]. Briefly, the working principle of an atomic 

force microscope is based on a tiny (micrometer-sized) leave spring made of metal 

called cantilever that interacts with the specimen. The cantilever is mounted on a 
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piezo element and can probe or manipulate the sample. The light beam generated by 

a laser diode in the AFM is pointed to the tip of the cantilever and is reflected onto a 

quadrant photodiode. If the cantilever exerts a force on the specimen or the other 

way around, the beam path changes, and the reflection spot on the photodiode is 

displaced. Hence, a registered signal at the photodiode is associated with a 

deformation of the cantilever due to an exerted force. The deflection force ý needs 

to be calculated from the deflection signal of the photodiode (voltage Ă) using 

Hooke’s law assuming a linear relation: ý = ý ∙ Ā ∙ Ă 

( 1 ) 

where ý is the spring constant and Ā is the sensitivity of the cantilever. These 

quantities can be derived from the calibration of the cantilever before the 

experiment using for example the thermal noise technique [126,127]. 

For this thesis, single-cell force spectroscopy measurements were performed to study 

the adhesion of neuronal cells on electrode material substrates. To this end, a single 

cell (neuron-like or glia-like cell) was attached to the tip of a cantilever using Poly-D-

Lysine and then pressed for either 5 s or 30 s onto an electrode material substrate 

(gold, indium tin oxide, titanium nitride). After this adhesion time, the cantilever with 

the attached cell was lifted up again in the z-direction and the maximum force and 

work to completely detach the cell from the substrate was extracted from the 

resulting force-distance curves.  

 

2.3.  Cell Networks 

 

Organization of Cells 

The organization of cells and formation of growth patterns on biomaterials is an 

indicator of the interaction and response of the cells to the material. Hence, it can be 

viewed as a marker for biocompatibility. Materials that are biocompatible will 

promote proliferation and formation of in vivo-like cellular organization of the 

specific cell type. The desired cellular organization on the surface of biomaterials 

always depends on the specified application of the material or device. Biomaterials 

intended to be used as implants for example should promote the organization of cells 

that is comparable to healthy in vivo cells to yield optimal tissue regeneration at the 

interface between the implanted biomaterial and biological matter. Otherwise, scar 

tissue might develop at the implantation site diminishing the functionality of the 

device or even rendering it essentially useless. This phenomenon can occur after the 

implantation of pace makers for deep brain stimulation for example when glial cells 

form an insulating layer covering the implanted electrodes. A biocompatible 

electrode should promote the growth and reorganization of neurons into 

physiological patterns conserving healthy cytoarchitecture and brain function. 
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Complex signal transduction in the nervous system is enabled by the connections 

formed between single neurons via synapses and axonal pathways. The neurons need 

to be organized in local circuits which communicate between different brain regions. 

Disturbance and damage of this structural network usually lead to cognitive 

dysfunction. Hence, the organization and formation of healthy growth patterns are 

of great importance for neuronal cells. Neuronal structures are nowadays studied in 

depth merging neuroscience with the science of complex networks. Not only the 

elementary components of the systems, i.e. the cells but also the interactions 

between these components have come into focus. A comprehensive overview of the 

topic can be found in the literature for example in O. Sporn's <Networks of the Brain= 
[128] and A. Fornito's <Fundamentals of Brain Network Analysis= [129]. 

 

K-means Cell Clustering Algorithm 

Machine learning algorithms can be utilized to analyze patterns in networks. 

Networks of neuronal cells grown on biomaterials are characterized by the positions 

of the individual cells on the substrate. Unsupervised machine learning algorithms 

can now identify agglomerations of cells in the network and group them into clusters. 

Hence, these algorithms can be used to compare growth patterns and spatial cellular 

distributions in a standardized way reducing human errors in the analysis. The 

position of every single cell is treated as a data point on a 2d plane. 

An unsupervised machine learning algorithm based on K-means clustering is 

implemented in the work of this thesis to assess cellular distribution and growth 

patterns. The algorithm is used to sort data into a predefined number of clusters 

[130–132]. It randomly initializes data points as cluster centers (centroids) and then 

iteratively assigns data points to the cluster whose centroid has the shortest 

Euclidean distance to the data point. During each cycle, the centroids are recalculated 

based on new data point assignments to clusters. This process continues until the 

algorithm attains a stable situation, meaning the centroids do not move anymore and 

the reassignment of data points to the clusters stops. More specifically, the algorithm 

tries to minimize the so-called within-cluster variation þ. It is defined as the sum of 

squared distances between data points and their corresponding centroid: þ(��) =  ∑ ‖ý� 2 ��‖2��∈��  

( 2 ) 

where ý� is the position of a cell (data point) in cluster �� with �� as the mean value 

of all data points in this cluster. The sum of all within-cluster variations for each 

cluster in the data set is defined as the total within-cluster variation: 
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āýāþ(�) = ∑ þ(��)�
�=1  

( 3 ) 

This sum needs to be iteratively minimized until a stable point is reached. � 

(uppercase) is the total and optimal number of clusters in the data set and needs to 

be specified by the user before running the sorting algorithm. The lowercase ý serves 

as the index of summation for the clusters in the above-mentioned equations. The K-

means algorithm is named after the number of clusters � into which data is sorted. 

Selecting the appropriate value for the optimal number of clusters for a given data 

set is challenging but vital to obtain meaningful results from a K-means algorithm. 

The so-called elbow method can be used to solve this problem. 

The elbow method is a heuristic approach to identifying the optimal number of 

clusters in a data set. It makes use of the fact that the total within-cluster variation āýāþ(ý) decreases for an increasing number of clusters ý. The total within-cluster 

variation is calculated for several different choices of cluster number ý. This method 

looks for an <elbow=, i.e. a kink, in the graph of total within-cluster variation as a 

function of the number of clusters. The elbow marks the point where the decrease of 

the within-cluster variation slows down. This is considered to be the optimal number 

of clusters � for the given data set. The elbow method is based on the work by 

Thorndike [133]. But since this approach is only heuristic, the elbow method is not 

always a reliable source of information for the optimal number of clusters in data 

sets. Hence, backup procedures are needed to verify the results drawn from the 

elbow method.  

Another possible approach to identify the optimal number of clusters in a data set is 

based on gap statistics. This method relies on the comparison of the within-cluster 

variation of real data with results from hypothetical uniform data sets [134]. The so-

called gap value þþþ(ý) is calculated from the total within-cluster variation of the 

real data set āýāþ(ý) and the same quantity drawn from fabricated uniformly 

distributed data sets āýāþuni(ý): þþþ(ý) = log āýāþuni(ý) 2 log āýāþ(ý) 

( 4 ) 

The total within-cluster variation of the uniform data āýāþuni(ý) is extracted from a 

simulation of 50 individual uniform data sets of the same size as the real data set. The 

standard error Ā(ý) associated with the generated data sets is also measured. Finally, 

the optimal number of clusters � is obtained from this equation: � = min{ý ∈ {1, & , ýmax}: þþþ(ý) ≥ þþþ(ý + 1)2Ā(ý + 1)} 

( 5 ) 
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Following Tibshirani et al. [134], for this thesis Ā(ý) is based on the standard deviation Āý(ý) of the 50 Monte Carlo simulated data sets as follows: Ā(ý) = √1 + 150 Āý(ý) 

( 6 ) 

Practically, the smallest ý value for which equation (5) holds is the optimal number 

of clusters �. Hence, the þþþ value is maximized so that þþþ(ý) lies within one 

standard deviation from the þþþ value at ý + 1. 

Once the optimal number of clusters is found for a given data set, the K-means 

algorithm can sort the data points, i.e. positions of cells grown on biomaterials for 

this thesis, into their associated clusters. It is advisable to check and verify the final 

sorting of data points into clusters. Just because the K-means algorithm starts with 

the correct number of clusters as input, the outcome of the algorithm does not 

necessarily yield the best possible sorting of data points. There are several 

procedures to review the quality of K-means results such as the silhouette method.  

The silhouette method is based on the work of Rousseeuw [135] and assigns a 

quantity called silhouette coefficient to the generated clusters that measures the 

clusters’ tightness and separation. The graphical display shows which data points lie 
well within a cluster and which ones are outside of clusters or at their edge. It is a 

tool to compare the relative quality of clusters. The silhouette coefficient ��þ�ýþÿ is 

calculated as following for each data point �: ��þ�ýþÿ(�) =  ý(�) 2 þ(�)max{ý(�),þ(�)} 

( 7 ) 

where ý(�) is the smallest mean distance to a data point in any other cluster and þ(�) 

is the mean intracluster distance. This equation yields values from -1 to +1. -1 means 

the data point is assigned to the wrong cluster, 0 corresponds to the data point sitting 

right at the edge of a cluster, and +1 represents a data point assigned to the correct 

cluster. Hence, high-quality cluster results of the K-means algorithm are represented 

by a high average silhouette coefficient. Running the algorithm with various start 

values of a number of clusters ý and plotting the mean silhouette coefficient of the 

data set as a function of the number of clusters ý is also an additional way to verify 

the choice of the optimal number of clusters. 

 

Radial Autocorrelation Function 

The radial distribution function is a key quantity in statistical mechanics and is used 

for example to measure the correlation between atom or molecule pairs. It is built 

on the hard-sphere model which describes model particles of fluids and solids as hard 

impenetrable spheres that cannot overlap spatially.  The radial distribution function 
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which is also called pair correlation function quantifies how particle density varies 

depending on the distance from the reference particle. 

In other words, this function yields the probability of finding a second particle at a 

distance ÿ from the reference particle. This is illustrated in Figure 4 where the black 

sphere depicts the reference particle and three blue particles are found at a distance ÿ. This principle can also be applied to pixels in a binary image instead of hard 

spheres. The pair correlation function can then be used to measure the probability of 

finding a black pixel at a distance ÿ from the reference black pixel on a white 

background. This yields information on the typical object size and distance between 

objects. Here, objects are not the individual pixels in an image but rather pixel 

agglomerations as shown in Figure 4. 

Spatial radially averaged autocorrelation can be used to measure the spatial 

distribution and organization patterns in an image. Historically, Berryman and Blair 

proposed the method to analyze porous materials via image processing techniques 

combined with Fourier transform and radially averaging methods [136,137].  

For the work of this thesis, spatial radially averaged autocorrelation has been applied 

to fluorescent images of cell nuclei on biomaterials. Hence, the black pixel 

agglomerations on white background represent the nuclei of either neuron-like or 

glia-like cells. As the autocorrelation function exhibits typical object sizes and 

distances for each image, it measures the probability of finding cell clusters and their 

distribution in the experiments. Cell agglomerations are characterized by small or no 

gaps at all between the cell nuclei in an image. Thus, the closer the cells sit together, 

the more probable is it to detect the cell cluster as a single large object instead of 

individual small cell nuclei.  A comprehensive illustration of the radially averaged 

autocorrelation function and its meaning for evenly distributed data and clustered 

data is available from Baker et al. [138]. Briefly, the first minimum of the function 

gives an estimate of the typical object size in the image and the first maximum depicts 

Figure 4: Illustration of radial distribution function using the example of a (a) hard 

sphere model and (b) pixel graphics. 
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the typical object spacing. Homogeneously distributed objects result in a pronounced 

undulation of the curve. More heterogeneous data, i.e. various object sizes and non-

homogenous spatial distribution is represented by a rather flat curve with very subtle 

minima and maxima. 

 

Nearest Neighbor Analysis 

Nearest neighbor analysis is another tool in physics and material sciences to study for 

example structure and organization of materials on the molecular or even atomic 

level. The nearest neighbors of each atom in a material are identified and bond 

angles, as well as spatial arrangement of atoms, are determined. The same method 

is also applied in theoretical physics to study for example lattice models with particles 

and analyze phase transitions, energy, entropy, and thermodynamic quantities. 

Additionally, nearest-neighbor models play a role in Monte Carlo simulations and 

density functional theory. Thus, it is a versatile physical method to understand 

complex systems in condensed matter physics, statistical mechanics, and even 

quantum field theory. However, applications in a biological context to identify spatial 

cellular distribution and network patterns are also feasible. 

In the context of this thesis, nearest-neighbor analysis is used to measure the 

distribution of co-cultured neuron-like and glia-like cells grown on electrode 

biomaterials based on fluorescent images. The center-to-center distance ý of a cell 

nucleus to the next nearest cell nucleus is computed for every cell using the Euclidian 

norm: ý = √(ý1 2 ý2)2 + (þ1 2 þ2)2 

( 8 ) 

Where ý and þ denote the positions of data points (here centers of cell nuclei) in two 

dimensions. This technique provides a numerical value that reflects to which extent 

cells cluster together. Moreover, nearest-neighbor analysis gives insight into the 

spatial distribution of cell types. It shows whether cells sit in close proximity to cells 

of their own type or whether they are attracted to the other cell type in co-culture. 

Statistical significance of the results of nearest-neighbor analysis should also be taken 

into account. Organization of co-cultured cells of different types on a substrate might 

just be random and the next neighbor analysis could just show noise instead of real 

co-localization [139]. To this end, the cumulative distribution of center-to-center 

nearest neighbor distances of neuronal to glial cells is computed and compared with 

simulated randomized data sets that are of the same size as the original data. 
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2.4.  Multielectrode Arrays 

 

Function and Applications 

Multielectrode arrays (MEAs) are devices consisting of electrode grids attached to 

glass or plastic chips that are used to monitor the activity of cells and biological 

tissues. MEA devices vary in form, chip size, electrode thickness and number, grid 

density, and conducting path layout but they all follow the same principle to enable 

parallelized and correlated electronic cellular read-out with multiple interaction 

points. Their customizable design and non-invasive function make MEAs a valuable 

tool for long-term observation of cellular networks. They can be used to analyze for 

example the electrical activity of neuronal and muscle cells making them useful for 

applications in electrophysiological and drug development studies. Cellular processes 

such as neurotransmitter release and muscle contraction can be observed in real-

time on multielectrode arrays. Moreover, electrical stimulation of cells and recording 

of their immediate response is also possible.  Clinical applications of MEAs include 

the monitoring of electrical activity of the heart in patients with cardiac disease, as 

well as muscle stimulation in paralyzed patients. Historically, MEA techniques have 

been around since at least 1972 when Thomas et al. successfully conducted action 

potential measurements [140]. A comprehensive overview of in vivo and in vitro 

multielectrode array technologies is available from Spira et al. [141] and Tanwar et 

al. [60].  

The quality of signal recording and transduction in multielectrode arrays is defined 

by the spatial resolution and coupling efficacy of the device. Good spatial resolution 

of data recording is achieved using a dense array of small-sized electrodes. Ideally, 

the diameter of an electrode should be smaller than the average size of a cell that is 

seeded onto the MEA. Dense arrays of small electrodes enable detailed observation 

of cellular networks. However, high-density MEAs with sub-cellular spatial resolution 

give rise to new challenges to signal read out and material design. Several thousand 

interaction points need to be read out simultaneously and continuously over long 

periods of time. Possible solutions include for example CMOS (complementary metal 

oxide semiconductor) techniques that essentially use multiplexing methods with 

electronic switches to reduce the number of necessary connections between 

electrodes and amplifiers [142,143]. Miniaturization of electrodes leads to an 

increased self-impedance and eventually to enhanced thermal noise (Johnson-

Nyquist noise). This issue can be addressed with an increased surface area of 

electrodes using (nano) porous materials or surface roughening fabrication 

techniques. For the work of this thesis, titanium nitride with nanocolumnar surface 

modification has been tested as a possible material for high-density multielectrode 

arrays with lowered self-impedance. The second issue that defines the usability of 

MEAs is the coupling of cells to the device. Cells seeded onto MEAs form adhesion 

points on the substrate material whereby a cleft filled with cell culture medium (or a 

similar ionic solution) is formed between the cell membrane and the electrode array. 

In an electrical circuit analog of the neuron-electrode-interface, this cleft gives rise to 
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the so-called seal resistance [141]. During an action potential, ions flow in the cleft 

and the quality of signal recording of the electrode is characterized by the seal 

resistance. MEAs usually show seal resistance vales of 100 kΩ up to several MΩ which 

makes an amplitude of up to 1 mV of an action potential (100 mV) measurable [141]. 

Signals with lower amplitudes remain undetectable or cannot be distinguished. To 

solve this issue, multielectrode arrays with improved cell-electrode contact are 

needed.  

A limiting factor of medical in vivo application of implantable multielectrode arrays is 

the fundamental mismatch of stiff electrodes (Young’s modulus of Si: 150 GPa) and 

soft biological tissue (elastic modulus of brain tissue: 100 kPa) [64]. The insertion of 

electrodes into the brain leads to an acute inflammatory response resulting in tissue 

swelling. The trauma response also involves necrosis of tissue at the insertion site. 

Activated microglia invade the site within one day and release chemokines, cytokines, 

and neurotransmitters. After about 6-8 days, the microglia have cleared the injury 

site from cellular debris by phagocytosis, and excess fluids are reabsorbed [144]. The 

acute immune reaction is followed by a chronic response which involves continued 

inflammation leading to glial scarring due to adhesion of activated microglia at the 

implant and additional astrocyte activation [144]. The glial scar essentially insulates 

the implanted electrodes from neurons and therewith increases the impedance and 

decreases recordable signal intensities. 

 

Electrochemical Impedance Spectroscopy 

The quality of signal recording and transduction of systems of cellular networks 

grown on multielectrode arrays can be assessed using electrochemical impedance 

measurements. To this end, an alternating voltage is applied to the system, and the 

resulting current is measured. Ohm’s law is then used to compute the system’s 
impedance from the voltage and current. This procedure is done for several 

frequencies on a spectrum (frequency sweep), hence the name electrochemical 

impedance spectroscopy. The impedance is a complex quantity ý(�) and can be 

written as follows [145]: 

ý(�) = ý̃(�)�̃(�) = |ý̃(�)�̃(�) | (cos φ(�) + � sin �(�)) = ýr + � ýi 
( 9 ) 

Where � is the angular frequency related to the frequency ÿ by � = 2�ÿ, and � is 

the phase angle between the input and output signals. � denotes the imaginary 

number and the variables ý̃(�) and �̃(�) are complex time-invariant numbers 

accounting for the amplitude and phase of the sinusoidal functions for the voltage 

and current. The real part of the impedance ýr is called resistance and the imaginary 

part ýi is known as reactance. 
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A valuable tool to measure the signal recording and transduction quality of a cell-

MEA system is the relative impedance ýrel which quantifies the cellular contribution 

to the impedance magnitude spectra. It is obtained from measurements of 

electrodes covered with cells and corresponding blank values: ýrel = |ý|covered 2 |ý|cell-free|ý|cell-free  

( 10 ) 

Electrochemical impedance spectroscopy measurement results in terms of spatial 

resolution are limited by technical characteristics of the used multielectrode array. 

Employed electrode materials and electrode areas influence the quality of recorded 

signals or more precisely the signal-to-noise ratio (SNR) which is a measure of the 

strength of the measured signal in comparison with background noise [146].  
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3. Results and Discussion 

 

3.1.  Proliferation and Cluster Analysis of Neurons and Glial Cell 

Organization on Nanocolumnar TiN Substrates 

 

The content of this chapter has been published in the manuscript <Proliferation and 
Cluster Analysis of Neurons and Glial Cell Organization on Nanocolumnar TiN 

Substrates= [147]. 

DOI: 10.3390/ijms21176249 

Reprinted with permission from Alice Abend, Chelsie Steele, Sabine Schmidt, Ronny 

Frank, Heinz-Georg Jahnke, and Mareike Zink, International Journal of Molecular 

Sciences 21, 6249 (2020). Copyright 2020 by MDPI. 
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Abstract: Biomaterials employed for neural stimulation, as well as brain/machine interfaces, offer 
great perspectives to combat neurodegenerative diseases, while application of lab-on-a-chip devices 
such as multielectrode arrays is a promising alternative to assess neural function in vitro. For 
bioelectronic monitoring, nanostructured microelectrodes are required, which exhibit an increased 
surface area where the detection sensitivity is not reduced by the self-impedance of the electrode. 
In our study, we investigated the interaction of neurons (SH-SY5Y) and glial cells (U-87 MG) with 
nanocolumnar titanium nitride (TiN) electrode materials in comparison to TiN with larger surface 
grains, gold, and indium tin oxide (ITO) substrates. Glial cells showed an enhanced proliferation on 
TiN materials; however, these cells spread evenly distributed over all the substrate surfaces. By 
contrast, neurons proliferated fastest on nanocolumnar TiN and formed large cell agglomerations. 
We implemented a radial autocorrelation function of cellular positions combined with various 
clustering algorithms. These combined analyses allowed us to quantify the largest cluster on 
nanocolumnar TiN; however, on ITO and gold, neurons spread more homogeneously across the 
substrates. As SH-SY5Y cells tend to grow in clusters under physiologic conditions, our study 
proves nanocolumnar TiN as a potential bioactive material candidate for the application of 
microelectrodes in contact with neurons. To this end, the employed K-means clustering algorithm 
together with radial autocorrelation analysis is a valuable tool to quantify cell-surface interaction 
and cell organization to evaluate biomaterials’ performance in vitro. 

Keywords: 1 neurons; 2 glial cells; 3 electrode materials; 4 autocorrelation function; 5 cluster 
analysis; 6 cell proliferation; 7 TiN; 8 nanocolumnar surface 

 

1. Introduction 

The human brain is such a complex system that its composition and architecture are still not 
fully understood. Even the number of neurons and glial cells in the brain remains questionable [1,2]. 
Besides structural heterogeneities within the brain and related unsolved questions in neuronal 
science [3], in light of the currently increasing numbers of cases of neurodegenerative diseases such 
as Parkinson’s disease, the study of cell behavior and cellular function in the brain is more important 
than ever before [4]. 
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In vivo animal studies of diseases, such as Parkinson’s disease, are difficult to assess because 
they comprise a varying age of onset, symptoms, and rate of progression. This heterogeneity requires 
the use of a variety of animal models to study different aspects of the disease [5]. Alternatively, 
organotypic cultures offer the possibility to investigate brain tissue slices ex vivo [6]. However, 
especially for adult mammalian tissues, organotypic preservation is difficult and tissue distortion 
often takes place within a few days in culture. As shown by Kallendrusch et al., nanostructured 
surfaces employed as tissue scaffolds, such as titanium dioxide nanotube arrays, can overcome this 
issue and allow us to culture adult tissue slices of the brain for at least 10 days [7]. 

In vitro cell cultures are much easier systems to use to assess cellular function/dysfunction and 
the effect of drugs to develop new treatments and tailored therapies [8,9]. Moreover, cell cultures also 
offer good testbeds to study the interaction of neurons and other brain cells in contact with 
biomaterials employed, e.g., for application as brain pacemaker devices for deep brain stimulation 
[10]. The interaction of the neurons with the surface of the pacemaker’s electrodes plays a major role 
in the functionality of the device and, consequently, therapy success [11]. Thus, research focuses on 
the fabrication of biocompatible materials that promote cell adhesion, proliferation, and physiological 
function and provide stable charge transfer at the brain/machine interface [12]. These materials are, 
for example, based on metals [13], carbon [14,15], or silicone compounds [16]. Commonly used 
electrode materials for the electrochemical analysis of biological samples, such as cells and tissues, 
are noble metals, like gold and platinum, because of their high conductivity, chemical stability, and 
biocompatibility [17321]. 

Not only the material itself but also the surface topography plays an important role in the 
interaction with cells [22]. Surface topography designs vary from simple microgrooves [23,24] and 
micrometer-sized pillars [25,26] down to nanofabricated structures [27], nanowires [28,29], 
nanopillars [30], and nanotubes [31], and can also be combined with novel surface coatings [32,33]. 

Beyond that, there are alternative electrode materials that offer application-specific advantages, 
like optical transparency (indium tin oxide, ITO [17]) or an increased surface area (titanium nitride, 
TiN [34]). The latter allows the shrinking of microelectrode size without losing detection sensitivity 
due to a lowered self-impedance of the electrode [35337]. These materials offer great perspectives for 
in vitro lab-on-a-chip devices, such as multielectrode arrays (MEA). For example, as shown by Jahnke 
et al., MEAs have already been successfully employed for in vitro screenings of hallmarks of 
neurodegenerative diseases by impedance spectroscopy [38]. Additionally, microelectromechanical 
systems (MEMS) and microsystems composed of the above-mentioned materials have enabled the 
study of neurons from the single unit to the scale of large populations and neural circuits (for an 
overview, see Ref. [39,40]). Lab-on-a-chip formats even allow the combination of electrical function 
with optical analysis and biochemical patterning to enhance cell-surface interaction [41]. 

For any in vitro cell cultures with the aim to determine the interaction of biomaterials with cells, 
it is of great importance to define quantitative measures that determine if a biomaterial is bioactive 
and supports proliferation on the surface. Research methods to examine the compatibility of the 
electrode material often involves immunostaining of relevant cellular components. In addition, the 
number of cells and cell division rates can easily be determined. However, how cells organize on the 
surface, if they homogeneously spread or agglomerate, is often neglected, and a quantitative measure 
of cellular organization is missing. For example, under physiologic conditions, neurons such as SH-
SY5Y4an established human neuroblastoma cell line to study Parkinson’s disease4tend to cluster 
on a surface [42]. 

Radial autocorrelation functions and cluster formation algorithms can offer powerful tools to 
quantify the spatial organization of particles up to cells on two-dimensional surfaces, as well as three-
dimensional environments. While radial autocorrelation functions have been employed before to 
determine spatial correlations of particles in supercooled liquids [43], Pan et al. [44] showed that 
autocorrelation functions calculated for cultured cells can also be used to quantify cell sizes. 

Here, we show how proliferation assays, in combination with a quantitative cellular 
organization analysis performed by radial autocorrelation functions and clustering analysis, can be 
used to quantify cellular performance on potential biomaterials. In our study, we investigated the 
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behavior of neurons and glial cells on different surfaces such as TiN substrates and nanocolumnar 
TiN, which exhibit an increased surface area compared to TiN with larger grain sizes. The interaction 
of cells with this nanocolumnar TiN has never been studied before, and good biocompatibility would 
offer great potential for the development of miniaturized multielectrode arrays as described above. 
Our results show a clear superiority of these materials in terms of cell division rate and the cellular 
organization of neurons in contrast to cell behavior on gold and ITO surfaces. The latter two materials 
were employed for control experiments as these materials are considered non-toxic and are often the 
materials of choice for electrodes in contact with neurons [45]. Future applications of the presented 
nanocolumnar TiN materials aside, our combined analysis tool of clustering algorithms and radial 
autocorrelation calculations allows for a fast evaluation of biomaterials’ performance in vitro, by 
simply measuring cell positions from fluorescent images. 

2. Results 

2.1. Topographies of Electrode Materials 

Before investigating the interaction of neurons and glial cells with different electrode materials, 
the topographies of the surfaces were characterized by atomic force microscopy (AFM), as shown in 
Figure 1. The gold substrates exhibited the smoothest surface features with a root-mean-square (RMS) 
roughness of (2.95 ± 1.63) nm, comparable to the thin TiN coating with (2.98 ± 1.24) nm. By contrast, 
ITO showed the highest RMS roughness of the tested materials with a value of (8.36 ± 0.99) nm, also 
significantly exceeding the thick TiN layers (in the following, termed TiN nano and nanocolumnar 
TiN) with a RMS roughness of (6.42 ± 0.99) nm. With respect to the surface area increase (viz. the 
dimensionless ratio of surface area to projected area), TiN nano showed the highest increase with 1.27 
± 0.08 of the projected surface area, while the other materials were below 1.1 (Au: 1.02 ± 0.01, ITO: 
1.10 ± 0.02, TiN: 1.07 ± 0.01). 

 

Figure 1. Atomic force microscopy characterization of the tested electrode materials: (a) 1 × 1 µm 
images of gold (Au), indium tin oxide (ITO), titanium nitride (TiN), and TiN nano with nanocolumnar 
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structure; (b) area-derived metrics of the AFM images (root-mean-square (RMS) roughness and ratio 
of surface area to projected area (surface area increase)); the horizontal lines represent the mean values 
of the data points (red dots), while the vertical lines show the standard errors (mean ± se, ANOVA 
with Tukey’s post-hoc test, * = p < 0.05, ** = p < 0.01, *** = p < 0.001); (c) one-line profiles of AFM images.  

Besides the different surface roughness, varying-grain-sizes of the different surfaces became 
visible (see Figure 1). While Au exhibited smooth transitions between the grains with a mean grain 
size of (82 ± 10) nm, ITO showed clearly distinguishable crystallites with a larger mean grain size of 
(109 ± 19) nm. Besides different film thicknesses of the TiN layers due to different sputter times: 1503
200 nm for TiN and 5003550 nm for TiN nano, their surface morphologies differed remarkably. While 
TiN exhibited a cauliflower motif with a mean grain size of (90 ± 11) nm and subgrains of (17 ± 4) nm, 
TiN nano appeared to have a nanocolumnar structure with sharply delimited single-type grains with 
a size of (38 ± 9) nm, being the origin of the high surface area increase. 

2.2. Cell Growth on Electrode Materials 

In order to investigate neuronal and glial cell behavior on potential electrode materials, the 
human neuroblastoma cell line SH-SY5Y and the human glioblastoma cell line U-87 MG were grown 
on the four different electrode materials presented above. Cells were fluorescently labeled, imaged, 
and subsequently counted one and three days after seeding for the glial cell type, while the number 
of neuronal cells was investigated 1 and 3 days after differentiation. The results of the average cell 
numbers for each substrate are shown in Figure 2. 

 

Figure 2. (a) Average number of SH-SY5Y and U-87 MG cells grown on different electrode materials 
(Au, ITO, TiN, nanocolumnar TiN) after one and three days in culture. Values marked with x are not 
statistically significant (p > 0.05); (b) fluorescent image of U-87 MG cells cultured on TiN 
nanocolumnar surfaces for 1 day. Cell nuclei are blue and actin fibers are colored orange. The scale 
bar represents a length of 100 µm; (c) fluorescent image of SH-SY5Y cells grown on a TiN 
nanocolumnar substrate for 1 day plus additional 72 h incubation with culture medium 
supplemented with staurosporine to induce cell differentiation. Colors and scale bar as in (b). 

For the neuronal cells, within the first day after differentiation, the number of cells on all four 
substrates shows no statistical difference. Around 2000 cells adhered to all surfaces. However, after 
3 days on ITO, the cell number remained constant and even halved on Au, while on TiN and TiN 
nanocolumnar surfaces, cells proliferated with an around three-fold increase to approximately 5400 
cells on TiN and 6000 cells on nanocolumnar TiN. 
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Similar results were found for the glial cells: 1 day after seeding, similar cell numbers were seen 
for Au (2400 cells), TiN (2600 cells), and TiN nanocolumnar substrates (2700 cells) and fewer cells on 
ITO (1800 cells). Two days later, cell numbers more than doubled to approximately 6000 cells with 
Au as the only outlier on which we counted approximately 4000 cells, thus 2000 cells less than on the 
other materials. 

Comparing the experimental results for the neuronal SH-SY5Y and glial U-87 MG cells, we 
observed a similar growth behavior on TiN and TiN nanocolumnar substrates for both cell types. Here, 
seeding the same number of cells led to equal numbers of cells for short and longer culture times. The 
situation for gold and ITO materials seems to be completely different. The SH-SY5Y cells did not 
proliferate as fast on these materials as the U-87 MG cells. We found about three times more U-87 MG 
cells on ITO substrates as SH-SY5Y cells for the longer growth time. For the gold material, that factor 
rose to four, while the SH-SY5Y cell population decreased, and the U-87 MG cell number grew. 

2.3. Radial Autocorrelation of Cell Positions 

We performed a radially averaged autocorrelation analysis for the cell nuclei positions for all 48 
samples, viz. glia and neuronal cells cultured on Au, ITO, TiN, and TiN nanocolumnar substrates for 
1 and 3 days. Representative results of the radially averaged autocorrelation functions are presented 
in Figure 3. As shown by Baker et al. [46], the undulating autocorrelation curves represent a 
homogeneous distribution of objects and uniform object size. The first minimum of the curves marks 
the typical size of objects in an image, whereas the first peak gives an estimate on the object spacing. 
On the other hand, flattened autocorrelation curves indicate an inhomogeneous distribution of 
objects and several different object sizes in an image. The point where the curve bends from a steep 
slope to an almost constant regime characterizes the average size of objects. 

 

Figure 3. Radially averaged autocorrelation analysis for cell nuclei positions obtained from 12 individual 
experiments with U-87 MG cells (green) and SH-SY5Y cells (red) cultured on different materials. 
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We see rapidly decreasing autocorrelation functions for the U-87 MG cells on all materials (green 
curves in Figure 3). The graphs of the 1 day culture experiments show a small but noticeable 
undulating form with distinct first minima (20 µm for gold and ITO, 50 µm for TiN materials). 
Additionally, for gold, the curve displays a peak at about 30 µm and for ITO and both TiN materials, 
around 70380 µm, which mark the distance to the next object. Comparing the graphs to the original 
fluorescent images, we notice an even distribution of U-87 MG cells, viz. the cell population was 
homogeneously spread over the entire surface. In fact, the observed correlation length of 
approximately 20 µm for the U-87 MG cells cultured on gold for 1 day corresponds to objects 
composed of two cell nuclei in the fluorescent image, while single-cell nuclei were also present on 
the substrate. By contrast, the radially averaged autocorrelation curves of glial cells cultured for 3 
days on gold do not show the undulations anymore. Looking at the associated cell images revealed 
that the cells still grew uniformly distributed over the entire substrate area. Nevertheless, small cell 
agglomerations of various sizes became visible. We see objects of about 20 to 40 µm in diameter, 
which corresponds to agglomerations of 2 to 5 cells in the images of glial cells cultured on gold 
substrates for 3 days. Thus, U-87 MG cells proliferated rapidly, as can be seen from Figure 2, and 
grew homogeneously distributed on all tested materials. Such behavior became visible in the 
autocorrelation curves after 3 days of culture, which are shifted toward larger distances in 
comparison to their 1 day counterparts, indicating the existence of (on average) larger cell 
agglomerations. A very similar behavior of glial cells became present on the ITO substrates. After one 
day of culture, mainly single cells and pairs were homogeneously distributed on the surface, reflected 
by the autocorrelation curve minimum around 20 µm, while, after 3 days, smaller aggregates4still 
homogeneously distributed4were seen, represented by a shift in the autocorrelation minimum 
toward larger correlation distances around 40350 µm. Additionally, we observed larger cell 
agglomerations (50 µm) on TiN and TiN nanocolumnar substrates in comparison to their gold and 
ITO counterparts after 1 day of culture. These objects are still homogeneously distributed. The 
correlation length is shifted for TiN and nanocolumnar TiN after additional growth time, and the 
comparison with fluorescent images reveals cell agglomerations of various sizes up to about 100 µm. 

However, in the case of the SH-SY5Y cells (red curves in Figure 3), we see considerably different 
results. While, after 1 day, the correlation length, viz. the first minimum where the steep slope transits 
into an almost constant regime, was found for 60 µm (Au), 70 µm (ITO), 90 µm (TiN), and 160 µm 
(nanocolumnar TiN), there are noticeable shifts in the correlation curves to longer distances for longer 
culture times on all substrate types. This long-range correlation indicates the growth of cell clusters 
of various sizes. We do not see any undulating graphs for the gold and ITO substrates. Comparison 
with fluorescent images revealed cell agglomerations of various sizes, which correlate with the 
position of the minimum of the autocorrelation graphs. However, for the neuronal cells grown on 
TiN and nanocolumnar TiN for 1 day, the autocorrelation curves, in fact, show the undulating form 
as similarly seen for glial cells on Au. However, this behavior vanished after additional culture time, 
and we noticed correlation lengths of up to 500 µm for TiN samples and even larger values for 
nanocolumnar TiN. Figure 4 shows the autocorrelation curves for all experiments of SH-SY5Y cells 
with three days of culture time. The three graphs with the prominent steep decrease correspond to 
experiments where the cells formed especially large agglomerations of about 120032000 µm. Overall, 
we see cluster formation of greatly varying sizes on different substrate types but also between 
individual experiments on the same material. 
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Figure 4. Radially averaged autocorrelation function of cell nuclei positions of SH-SY5Y neuronal cells 
after 3 days of culture on various substrate materials. The experiment and data points marked with * 
serves as an example of the K-means cluster analysis shown in Figures 5 and 6. 

2.4. Cell Clustering Results 

To further investigate the spatial distribution and the formation of cellular clusters on the 
substrates, we employed a K-means algorithm as described in the Methods. As we saw that the glial 
cells were almost evenly distributed over the surface of all materials, we only considered the neuronal 
cell distributions here. One example of such an analysis is shown in Figure 5. Each data point 
represents a single SH-SY5Y cell grown on a TiN nanocolumnar surface4corresponding to the 
autocorrelation graph marked with a * in Figure 4. The algorithm sorted the cells into four clusters, 
indicated by the different colors. Although there seems to be an overlap of clusters, every cell belongs 
to exactly one cluster and is not counted twice. The ellipses mark the area of the clusters surrounding 
the cluster centroid, while there are only a few outliers visible. In order to validate if the calculated 
cluster number is correct, we compared the results by employing the elbow method and gap statistics 
as described in the Materials and Methods. The corresponding elbow graph denotes the optimal 
cluster number at the point where the steep decline bends over to a flattened regime. Here, we found 
this bending point of the elbow graph (Figure S1) for an ideal cluster number of four for the example 
of neuronal cells on a TiN nanocolumnar substrate4in line with the results from the K-means 
algorithm. Moreover, our results from gap statistics (see Figure S2) corroborate four as the ideal 
cluster number by showing a maximum peak at k = 4. 
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Figure 5. Result of K-means clustering of SH-SY5Y cells grown on TiN nanocolumnar substrates after 
3 days. Each data point represents a single cell. The different colors denote cluster 1 (red), cluster 2 
(green), cluster 3 (blue), and cluster 4 (purple). The cell distribution corresponds to the autocorrelation 
function marked with * in Figure 4. Note that the graph does not represent the entire substrate area 
of 0.22 cm², but only the area covered by cells. 

Additionally, we used the silhouette method (see Materials and Methods) to verify our choice 
of the optimal number of clusters for each experiment and validate if the cells are sorted into the right 
cluster. Figure S3 shows the average silhouette coefficient as a function of cluster numbers. The peak 
of the curve marks the optimal number of clusters. In this example, it is four, which corroborates our 
choice of four clusters. If the silhouette width turned out to be lower than a certain threshold, which 
was chosen to be 0.35 after several test simulations, the cluster number was considered wrong. Thus, 
other cluster numbers were iteratively tested until the silhouette width exceeded the value of 0.35. 
Figure 6 shows the silhouette plot for neuronal cells on nanocolumnar surfaces corresponding to the 
cluster analysis of Figure 5 (here, the calculated silhouette width was 0.48). This indicates a high-
quality clustering result as there are very few falsely grouped cells, which would be indicated by 
negative silhouette coefficient values. 
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Figure 6. Silhouette width plot associated with the example experiment shown in Figure 5 (neuronal 
cells on TiN nanocolumnar surfaces after 3 days). The four clusters are color-coded. Positive values 
indicate a high-quality cell sorting result. 

Besides the cluster analysis shown above for neuronal cells on TiN nanocolumnar surfaces after 
3 days, we used the K-means clustering algorithm to investigate cluster formation on all substrate 
materials. As shown in Figure 7, we can see a great difference in the clustering behavior of SH-SY5Y 
cells: The density of the cell clusters is much lower on gold and ITO substrates than on TiN-containing 
substrates. The clusters do not grow significantly denser on gold and ITO with longer cell growth 
times. By contrast, the clusters of cells grown on TiN and TiN nanocolumnar substrates double their 
density on average for the longer growth time. 

 

Figure 7. Cell density in clusters of SH-SY5Y cells grown on different electrode materials (Au, ITO, 
TiN, TiN nano) after one and three days of growth as a result of K-means clustering. Values marked 
with X are not statistically significant (p > 0.05).  
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3. Discussion 

In our study, we investigated the proliferation and organization of neuronal (SH-SY5Y) and glial 
(U-87 MG) cells on planar and nanocolumnar TiN, which offer great potential for application as a 
multielectrode array material. Results were compared to cell behavior on ITO and gold surfaces as 
both materials are well-known to promote adhesion of neurons and are used for neural stimulation 
systems and brain/machine interfaces [47,48]. Furthermore, by employing radial autocorrelation 
functions in combination with clustering analysis, we quantified the cellular arrangement on the 
surfaces. We found that high cell numbers, viz. fast proliferation, do not necessarily lead to large cell 
clusters. In the case of U-87 MG cells, we obtained rapid cell proliferation on all materials, while only 
the formation of small cell agglomerations in comparison to their neuronal counterparts was seen. 
Judging from the corresponding radially averaged autocorrelation functions and fluorescent images, 
the glial cells form small cell agglomerations of different sizes rather than large clusters after 3 days 
of culture time. However, SH-SY5Y cells form large clusters on TiN and nanocolumnar TiN substrates 
after 3 days of growth, and we saw the highest neuronal cell numbers on these materials. 
Surprisingly, the SH-SY5Y cell numbers remained constant on ITO and even shrank on gold 
substrates for longer growth times, while the cellular organization changed, and agglomerations of 
different sizes became visible as similarly observed for U-87 MG cells. Nevertheless, glial cells 
proliferated much faster under the same conditions on these materials. Even though gold and ITO 
are considered non-toxic as mentioned before, the reduced proliferation rate of SH-SY5Y cells points 
toward altered physiology and metabolism, which should be addressed in future studies. 

For a more detailed analysis of neuronal cluster formation, we employed K-means cluster 
analysis of the SH-SY5Y cell experiments. Here, the cell density inside clusters mirrored the cell 
proliferation behavior of the neuronal cells on planar TiN and TiN nanocolumnar substrates. Thus, 
higher overall cell numbers resulted in denser cell clusters for these materials. On the other hand4
although not statistically significant4the cell density in clusters grown on gold and ITO increased 
with growth time, while the overall cell number on these substrates decreased in the case of gold 
(statistically significant) and stayed constant on ITO. 

SH-SY5Y cells on gold and ITO formed several small agglomerations of different sizes, which 
are scattered homogeneously over the substrate. On first sight, the K-means algorithm contrarily sorts 
these agglomerations in no more than four clusters. Nevertheless, the cluster algorithm results are 
consistent with the outcome of the autocorrelation curve as well as our visual inspections of the 
fluorescent images. Here, the cell patterns hardly changed after additional culture time, and the cells 
still grew homogeneously distributed but arranged in small agglomerations of different sizes. These 
small clusters grew over time, which is also represented by the shifted radially averaged correlation 
length; however, the entire cell patterns did not change fundamentally, i.e., no large and dense 
clusters were formed. Such behavior is indeed reflected by the K-means algorithm, which did not 
give any statistically significant change in cell density in clusters for the gold and ITO materials for 
neuronal cells with longer culture times. Thus, we conclude that the K-means clustering algorithm 
works well for detecting large, dense cell clusters (on TiN and nanocolumnar TiN in our case) but 
fails to identify smaller cell agglomerations and, instead, pools them into bigger but therefore less 
dense clusters. For small agglomerations, the radially averaged autocorrelation function can reliably 
quantify such cellular arrangements and also predicts large cell clusters. Similar observations were 
reported by Baker et al. by applying the radially averaged autocorrelation method to analyze natural 
quartz crystal patterns [46]. Very long correlation lengths of several hundred micrometers always 
occurred for our experiments where we saw especially large cell clusters. We cannot read the actual 
size of the largest object directly from the autocorrelation graphs, due to the blurring effect of the 
radial averaging (here, the K-means algorithm is the analysis of choice); however, the curve gives an 
average size of the objects on the respective substrates. 

While the proliferation data clearly show that the TiN and nanocolumnar TiN substrates support 
cell division best, the radial autocorrelation function in combination with cluster analysis alone 
cannot indicate if a surface exhibits optimal conditions for the in vitro cell culture. As shown by Chan-
Ling et al., as well as Ogata et al., a physiological pattern for astrocytes is a homogeneously 
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distributed cell layer where only the most peripheral cell processes are in contact with neighboring 
cells [49,50]. Cells are shaped more like polyhedrons instead of stars [50]. The star-like shape stems 
from the distribution of fluorescently labeled glial fibrillary acidic protein (GFAP) in cells [51]. An in-
depth review of the role of astrocytes in the function and architecture of the brain is available from 
Nedergaard et al. [52]. In our study, we can see from the associated fluorescent images of U-87 MG 
cells that the cells look indeed more like polyhedrons than stars. Moreover, our cells show a 
homogeneous distribution for short and longer culture times but develop small cell agglomerations. 
In this context, glial cells form physiological patterns on all investigated material types in our 
experiments in vitro. Thus, comparison of fluorescent images with cluster analysis is a valuable tool 
for improved quantification of biocompatible surfaces. 

Considering the effect of surface topography, Vallejo-Giraldo et al. investigated SH-SY5Y cells 
grown on ITO substrates with varying surface roughness [47]. They reported that the semi-rough 
substrates (Ra = 19 nm) performed best in terms of cell growth, while neuronal cells do not attach well 
on very smooth (Ra = 1 nm) or especially rough surfaces (Ra = 81 nm) [47]. Thus, poor proliferation of 
SH-SY5Y cells on ITO in comparison to the TiN substrates might be attributed to the surface structure, 
which hinders cell adhesion. Khan et al. came to similar conclusions while investigating the adhesion 
of neuronal cells (rat cortical neurons) on silicon wafers [53]. According to their study, neuron 
adherence increases with substrate surface roughness until a certain limit is reached. Interestingly, 
Fan et al. found analogous results for neuronal cells cultured on SiO2 layers and, moreover, reported 
that the cells migrated to areas of optimal roughness on patterned surfaces [54]. Recently published 
work from Yoon et al. showed the superiority of nanostructured surfaces (carbon nanotubes) in 
comparison to smoother graphene substrates and polystyrene films in terms of neuronal marker 
expression and neural activity in multielectrode arrays, recording experiments for differentiated SH-
SY5Y cells [55]. A lower differentiation-induced apoptotic rate and a higher cell proliferation rate are 
reported for the nanostructured materials, in comparison to the smoother surfaces. Researchers here 
concluded that the overall improved performance of the neuronal cells on carbon nanotube surfaces 
does not originate from the choice of the material (carbon), but rather from the nanoscale topography 
of these substrates. This article included bright-field images, which show the formation of more and 
larger cell agglomerations on the nanostructured material in comparison to the graphene and 
polystyrene films. Thus, we expect that the formation of cell clusters might be beneficial for the 
performance of neuronal cells4in agreement with Shipley et al., who reported that SH-SY5Y tend to 
grow in clusters under physiologic conditions [56]. In line with Yoon et al., we saw an improvement 
in cell proliferation and the formation of especially large clusters of our SH-SY5Y cells on the 
nanostructured TiN material in comparison to the widely used gold and ITO materials. In contrast to 
Yoon et al., we expect that the chemical composition of the surface strongly influences cell behavior, 
and it is not only the topography that determines proliferation and cell adhesion. Even though our 
Au and TiN substrates exhibited a very similar RMS roughness ((2.95 ± 1.63) vs. (2.98 ± 1.24) nm, 
respectively) and similar grain sizes ((82 ± 10) vs. (90 ± 11) nm, respectively), neurons proliferated 
and organized very differently on the surfaces. Thus, it is not only the structure but also the surface 
chemistry that determines cell behavior. 

In a study conducted by Piret et al. with neuronal cells cultured on gallium phosphide materials, 
a cluster formation of cells was found for both flat and nanostructured (nanowire) surfaces [57]. 
However, for neurons cultured on flat and nanostructured silicon substrates [58], the cells formed 
clusters only on the flat surfaces, whereas a homogeneous cell distribution was found on the nanowires. 
The even cell pattern was apparently accompanied by the loss of functional neuronal network abilities. 
Thus, it can be concluded that the cluster formation of neurons reflects a favorable cell behavior in in 
vitro conditions in line with good proliferation, as also seen in our experiments. Here, nanocolumnar 
TiN offers the best culture conditions for SH-SY5Y cells compared to ITO and gold surfaces, and TiN 
with larger grain sizes. To this end, our study presents a quantitative tool to assess the neural cell 
organization on various surfaces in vitro by employing radial autocorrelation functions in combination 
with cluster analysis. Studies of cell organization can show to what extent the biomaterial supports 
physiologic growth conditions for specific cell types. The study of biocompatibility and bioactivity of 
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materials in vitro can be complemented by the investigation of characteristics, such as cell morphology, 
cell3cell interactions, and physiological and differentiation status. 

4. Materials and Methods 

4.1. Electrode Materials Preparation 

Cover glasses with a diameter of 13 mm and a thickness of 0.1330.16 mm (VWR GmbH, 
Darmstadt, Germany) with four different coatings were employed to deposit thin films of indium tin 
oxide (ITO), gold (Au), and titanium nitride (TiN) in two different surface topographies. 

Before film deposition, all coverslips were cleaned in a standard procedure with acetone and 
isopropanol in an ultrasonic bath and subsequently in 3% hydrofluoric acid for 2 min, and then rinsed 
with ultra-pure water. The metallic coatings were applied by using the sputter process (CREAMET 
500, Creavac GmbH, Dresden, Germany). For the ITO plating, a 4“ indium tin oxide target (90:20 
wt.%, EVOCHEM GmbH, Offenbach am Main, Germany) was used at a working pressure of 4.5 × 
10−3 mbar with an argon (Ar) flow rate of 18 sccm, a combined power of 250 W (DC) and 85 W (RF), 
and a working distance of 150 mm for 20 min. A heat treatment at 400 °C was performed for 10 min 
to increase the transparency of the layers. For the gold plating, it was necessary to apply an adhesion 
promoter layer before, which was realized by the deposition of a 50 nm layer of indium tin oxide. 
The subsequently applied gold layer was produced at 4.5 × 1033 mbar, 350 W (DC), a working distance 
of 150 mm, and an argon flow rate of 18 sccm with a 4” gold target (99.99%, Heimerle&Meule GmbH, 
Pforzheim, Germany) for 3 min. The same ITO target and sputtering parameters in terms of working 
distance, working pressure, and argon flow rate were also employed to gain the ITO surfaces for later 
cell experiments. Here, the sputtering time was 3 min at 350 W (DC). 

In order to produce two different titanium nitride (TiN) layers with different topographies, first, 
titanium (Ti) was used as an adhesion promoter with a 4” titanium target (99.99%, Kurt J. Lesker 
Company, Jefferson Hills, PA, USA) at 4.5 × 1033 mbar with an Ar flow rate of 18 sccm, power of 500 
W (DC), working distance of 150 mm, and a sputtering time of 5 min. Afterward, a gold layer was 
coated on top, as described above. Subsequently, the titanium nitride layer was produced by sputter 
deposition with the same titanium target used before at the same pressure and working distance. In 
addition to the process, nitrogen with a purity of 99.95% was added at a flow rate of 6 sccm, whereby 
the Ar flow rate was reduced to 11 sccm. The sputtering power during the process was 600 W (DC). 
For the thin TiN layers, a coating time of 2.5 min was chosen, and 40 min for the thick layers. The 
thick layer is defined as TiN nano or nanocolumnar TiN in the Results section. 

4.2. Atomic Force Microscopic Analysis 

Surface morphologies of the electrode materials were imaged using a JPK NanoWizard 3 atomic 
force microscope (Bruker Nano GmbH, Berlin, Germany). Data acquisition was performed in direct 
drive AC mode with a TESPAHAR cantilever (fnom = 320 kHz, dnom = 42 N/m, Bruker). The height 
(measured) channel was used for image analysis in Gwyddion 2.55. Image analysis included leveling 
data by mean plane subtraction and, subsequently, a row alignment using the program in-built 
median of differences method. The root-mean-square roughness and surface areas of the samples 
were calculated by the statistical quantities tool. For determination of grain sizes, diameters of 
defined grains were manually measured using the point-to-point distance tool, measuring at least 30 
grains/image. 

Statistical analyses were performed using GraphPad Prism 5.02. Multiple group comparisons 
were performed by 1D ANOVA with Tukey’s post-hoc test. Differences between two means with p < 
0.05 were considered significant (*), p < 0.01 very significant (**), and p < 0.001 extremely significant 
(***).  
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4.3. Cell Lines and Cell Culture 

We chose two human brain cell lines for our studies: The human neuroblastoma cell line SH-
SY5Y (Cat.No. CRL-2266, ATCC LGC Standards GmbH, Wesel, Germany) and the human primary 
glioblastoma cell line U-87 MG (Cat.No. 300367, CLS Cell Lines Service GmbH, Eppelheim, 
Germany). 

U-87 MG and SH-SY5Y cells were cultured in 1:1 MEM Eagle/Ham’s F12 medium containing 
Earle’s salts, L-glutamine, and sodium bicarbonate (Cat.No. M4655 and N6658, Sigma-Aldrich 
Chemie GmbH, Munich, Germany) supplemented with 10% fetal bovine serum (Cat.No. S0615, 
Biochrom GmbH, Berlin, Germany) and 1% penicillin/streptomycin (Cat.No. P0781, Sigma-Aldrich 
Chemie GmbH, Munich, Germany). Both cell lines were incubated in separate culture flasks at 37 °C 
in a 95% air and 5% CO2 atmosphere. Cell culture medium was changed every 233 days. A mixture 
of phosphate-buffered saline (PBS, Cat.No. 18912014, Gibco Thermo Fisher Scientific, Waltham, MA, 
United States ), 0.025% (w/v) trypsin, and 0.011% (w/v) ethylenediaminetetraacetic acid (EDTA, 
Cat.No. L2143, Biochrom GmbH, Berlin, Germany) was applied for 334 min to detach the cells prior 
to cell counting and seeding. 

4.4. Cell Staining and Imaging 

Cells were counted in an automatic optical cell counter prior to cell seeding onto the substrate 
materials (EVETM, NanoEntek Inc., Seoul, Korea). Subsequently, cells were seeded onto different 
substrate materials (Au, ITO, TiN, nanocolumnar TiN) at a density of 130 cells/mm² in cell culture 
medium. U-87 MG cells were fixed 24 or 72 h after seeding, respectively. We did not employ longer 
culture times, to avoid the formation of very dense cell layers for which a cluster analysis would not 
be possible. Cells were fixed with paraformaldehyde (Cat.No. HT5011, Sigma-Aldrich Chemie 
GmbH, Munich, Germany) for 15 min. In order to fluorescently label actin fibers and cell nuclei, cells 
were washed with PBS and cell membranes were permeabilized with a PBS solution containing 1% 
(w/v) Triton X-100 (Cat.No. 9002-93-1, Sigma-Aldrich Chemie GmbH, Munich, Germany) and 0.5% 
(w/v) bovine serum albumin (Cat.No. A2153, Sigma-Aldrich Chemie GmbH, Munich, Germany) for 
10 min at room temperature. Afterward, cells were incubated with a PBS solution supplemented with 
1 µg/mL Hoechst 34580 (Cat.No. H21486, Molecular Probes, Eugene, OR, USA) and 0.44 µM Alexa 
Fluor 532 Phalloidin (Cat.No. A-22282, Molecular Probes) at room temperature for 15 min. 
Subsequently, substrates with fixed cells were washed again with PBS and placed upside down into 
clean Petri dishes (Cat.No. 80136, ibidi GmbH, Gräfeling, Germany) with mounting medium (Cat.No. 
50001, ibidi GmbH, Gräfeling, Germany) to prepare the samples for imaging in an inverse confocal 
laser scanning microscope. Samples were stored at 4 °C until imaging. 

For the SH-SY5Y cells, 24 h after seeding onto the different substrate materials, cells were 
supplemented with 25 nM staurosporine (Cat.No. S5921, Sigma-Aldrich Chemie GmbH, Munich, 
Germany) to initiate the cell differentiation process, which takes 72 h to complete [59]. The first 
samples of SH-SY5Y cells for each substrate type were fixed directly upon removing the culture 
medium containing the staurosporine, while the second samples were cultured for another 72 h in 
growth medium and fixed afterward as described above. After fixations, actin fibers and cell nuclei 
were fluorescently labeled according to the U-87 MG cells. 

Cell network morphology was investigated using confocal laser scanning microscopy. Images 
were acquired with an inverted Zeiss Axio Observer.Z1 microscope equipped with a spinning disk 
unit (Yokogawa CSU-X1A 5000, Tokyo, Japan) and a 25 × glycerin immersion objective. The complete 
cell network for each substrate material was imaged as an array of individual dual-channel 
fluorescence images. Each image encompassed a substrate area of 0.22 cm². Thus, up to 54 images 
were required to image the entire substrate area. 

4.5. Image Analysis and Autocorrelation of Cell Positions 

Images of neuronal cell networks were processed using Fiji distribution [60] (Windows 10, 64-
bit version) based on ImageJ software [61]. The position of the cells was identified by the location of 
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fluorescently labeled cell nuclei using the particle tracker tool on previously thresholded and 
binarized images. Thus, for all images, we extracted the following parameters for each cell type and 
substrate: Number of cells, growth area, and mean cell density. 

In order to analyze the cellular network organization in terms of the nearest neighbors of each 
cell, the macro “Radially Averaged Autocorrelation” combined with the “Radial Profile” plugin was 
employed to evaluate a radially averaged two-point autocorrelation function S2 for all images. Such 
analysis allows measurement of the average size of objects (patches of cell clusters) in conjunction 
with the distance between these objects as similarly shown by Baker et al. [46] and described in detail 
by Berryman et al. [62]. Briefly, the ImageJ plugin computes the probability of finding a black pixel 
in increasing radial distance to an initially chosen black pixel. This process is repeated multiple times 
with different initial pixels. The results are radially averaged in a second step. The chosen plugin 
utilizes a fast Fourier transform (FFT) to reduce computation time, while simultaneously correcting 
for the periodicity of the FFT and finite image size, so the results do not suffer from artifacts. The 
results are normalized such that the value of the radially averaged autocorrelation function will 
always be 1 (perfect correlation) at a distance r = 0. It directly follows that an output value of 0 
demonstrates the case of no correlation. 

4.6. Cluster Analysis of Cellular Network Organization 

Additionally, we employed self-written cluster analysis tools programmed in R for further 
investigation of the spatial distribution of cells on the substrates, including network patterns such as 
cluster formation. The goal of these cluster analysis methods is to minimize the within-cluster 
variation. In other words, the clusters are supposed to be dense but located far apart. The within-
cluster variation W is defined as the sum of squared distances between cells and their corresponding 
centroid (i.e., cluster center): �(��) = � ∥ �� − �� ∥���∈��  (1) 

 

where �� refers to a cell position in the corresponding cluster �� with �� being the mean value of all 
data points assigned to this cluster. The total within-cluster variation for any given data set (cell 
image) is then defined as: 

��������ℎ�� = ����(�) = ��(��)�
���  (2) 

 

This function needs to be minimized in order to make the clusters as compact as possible. 
Our analysis is based on a K-means clustering algorithm [63]. It groups the positions of cell 

nuclei iteratively from a previously set number of clusters K. Initially, the positions of the cluster 
centers are chosen randomly. The distance of each cell to its nearest cluster center is calculated using 
the Euclidean norm. The algorithm then calculates iteratively new positions of cluster centers to 
optimize the distances of all cells to their assigned cluster centers, while the number of clusters K is 
kept constant. Thus, the position of the cluster centers changes in every iteration of the algorithm. 
The sorting of cells into clusters is finished once the cluster center positions stabilize. The outcome of 
the K-means algorithm and the quality of the results depend highly on the initial choice of the number 
of clusters K. Therefore, we performed gap statistics and used the elbow method to verify the 
credibility of our choice of K. 

Determination of the number of cell clusters (1): The optimal number of clusters for each 
specimen is obtained by employing the elbow method [64]. The K-means algorithm is run for several 
different numbers of clusters, i.e., values of k. The total within-cluster sum of squares ����(�) is 
calculated as indicated in the equations above from the sum of squared distances of data points in 
the cluster and its centroid for all k values. We then find the appropriate k value, i.e., the optimal 
number of clusters, by plotting ����(�) as a function of k (see Supplementary Materials, Figure S1). 
This curve starts to flatten at some point and forms an “elbow,” which is regarded as an indicator of 
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the optimal number of clusters. To avoid possible deviations by the correct choice of K from the 
resulting curves, we compared our results to gap statistics to check our choice of K. 

Determination of the number of cell clusters (2): To confirm our results drawn from the elbow 
method, we additionally used a gap statistic tool in our analysis code. The gap statistic is based on 
the comparison of within-class variation of real data and what we would expect from a hypothetical 
uniform data set [65]. To this end, we compared the total within-cluster variation ����(�) of our cell 
network data with a model of uniformly distributed data points. The Gap for k clusters is calculated 
as follows: ���(�) = ����������(�) − �������(�) (3) 

 

The total within-cluster variation �������(�)  of the uniform data set is found by a computer 
simulation of 50 uniformly distributed data sets. The code also measures the standard error �(�) 
associated with the simulated data sets, and gives the optimal number of clusters K based on this 
equation: � = ���{� ∈ {1,… , ����}: ���(�) ≥ ���(� + 1)−�(� + 1)} (4) 

 

We follow the suggestion of Tibshirani et al. [65] and set �(�) = �1 + ��� ��(�) where sd(k) denotes 

the standard deviation of the 50 Monte-Carlo-simulated data sets. 
A graphical illustration of the value ���(�) as a function of different k values is shown in Figure 

S2, Supplementary Materials. The optimal number of clusters is represented by the smallest value of 
k, where the above-mentioned inequality is fulfilled. That means we maximize the Gap value such 
that ���(�) is within one standard deviation of the Gap at k + 1. 

Cellular grouping within clusters: In addition to these two techniques, we used the silhouette 
method to check and verify the quality of the grouping of cells into certain clusters [66]. It delivers 
one of three outcomes of the silhouette coefficient ������� for each cell: 31, 0, or + 1. The value 0 means 
the cell is positioned at the edge of the cluster, 31 corresponds to the cell being assigned to the wrong 
cluster, and + 1 means we sorted the cell into the correct cluster. The silhouette coefficient is calculated 
for every cell i as follows: �������(�) = �(�) − �(�)���{�(�), �(�)} (5) 

 

where �(�) depicts the smallest mean distance to cells in any other cluster, and �(�) is the mean 
intracluster distance. A high average silhouette width indicates a good clustering result. Thus, the 
silhouette method can also be used to check the chosen optimal number of clusters in our 
experiments. We plotted the mean silhouette width as a function of various values of clusters k. The 
location of the maximum of that curve is considered to be the optimal number of clusters for the 
experiment. 

From the cluster analysis, the following parameters were extracted for both cell types and all 
employed substrate materials: The number of cells in each cluster, cluster area, and spatial cell density 
within clusters. 

4.7. Statistical Analysis of Cell Analysis 

For both cell types, three specimens per substrate were made for all combinations of the four 
substrate materials and both cell growth times. In total, we analyzed around 160,000 cells for our 
investigations. 

Averages of data within individual samples or independent experiments were expressed as the 
arithmetic mean ± standard error of the mean. Statistical significance between data sets was evaluated 
using the two-sample t-test tool in OriginLab software (OriginPro 2017G, OriginLab Corporation). 
Values differing by p ≤ 0.05 were significant, and values differing by p ≤ 0.01 were considered as 
highly significant.  
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5. Conclusions 

The importance of in vitro neuron and glial cell experiments as preliminary tests for not only in 
vivo applications such as neuroelectrodes [67369] but also as stand-alone research, e.g., to investigate 
neural activity and neurodegenerative diseases on lab-on-a-chip devices such as multielectrode 
arrays (MEA), has become apparent lately [70]. This technique has been continuously improved over 
the past decade [38] and offers great potential to shift expensive and ethically questionable in vivo 
animal experiments to cost-efficient and easy-to-use high-throughput in vitro assays. 

In our study, we showed that fluorescent imaging, to identify the size and position distribution 
of cell agglomerations in combination with a proliferation assay, is a quantitative tool to measure the 
biocompatibility of novel biomaterials. In fact, the combination of the K-means clustering algorithm 
and calculation of the radially averaged autocorrelation function is able to identify the whole range 
of cell patterns from large dense clusters down to individual and homogeneously distributed cells, 
giving an individual fingerprint for different cell types. Here, we found nanocolumnar TiN surfaces 
to perform best in terms of cell division and the network formation characteristic for SH-SY5Y cells. 
Future studies will focus on the question of how cellular organization on nanocolumnar TiN surfaces 
correlates with the physiological status of neurons and glial cells. As thin films of nanocolumnar TiN 
exhibit excellent bioactive properties in combination with optical transparency and low electric 
resistance, the application of this material in multielectrode arrays will be tested soon. 

Supplementary Materials: Figure S1: Result of the application of the elbow method to the data shown in Figures 
5 and 6 (SH-SY5Y cells grown on TiN nanocolumnar substrates after 3 days). Figure S2: Result of gap statistics 
method applied to the data set shown in Figures 5 and 6 (SH-SY5Y cells grown on TiN nanocolumnar substrates 
after 3 days). Figure S3: Average silhouette width associated with the example from Figures 5 and 6 (SH-SY5Y 
cells grown on TiN nanocolumnar substrates after 3 days). Supplementary materials can be found at 
www.mdpi.com/xxx/s1. 
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Figure S1: Result of the application of the elbow method to the data shown in Figures 5 and 6 (SH-SY5Y cells 

grown on TiN nanocolumnar substrates after 3 days). The red dashed line marks the optimal number of 

clusters k=4 for this example.  
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Figure S2: Result of gap statistics method applied to the data set shown in Figures 5 and 6 (SH-SY5Y cells 

grown on TiN nanocolumnar substrates after 3 days). The value ���(�) was calculated according to Equation 

3. The optimal number of clusters (red dashed line) is found to be k=4 in this case indicated by the peak of the 

graph. Most of our gap statistics graphs show this distinct maximum and thus reveal a reliable result for the 

optimal number of clusters. The gap statistics curve could theoretically also exhibit a slowly ascending and 

then flattening form so that the condition ���(�) ≥ ���(� + 1) is never fulfilled. Therefore, this condition is 

extended by the standard deviation term in Equation 4. The condition ���(�) ≥ ���(� + 1) 2 �(� + 1) can 

usually be fulfilled somewhere in the graph. 
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Figure S3: Average silhouette width associated with the example from Figures 5 and 6 (SH-SY5Y cells grown 

on TiN nanocolumnar substrates after 3 days). The maximum of the curve represents the optimal number of 

clusters for this experiment (red dashed line). We therewith verify our results drawn from the elbow method 

and gap statistics (see Figures S1 and S2). 
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Abstract: Coupling of cells to biomaterials is a prerequisite for most biomedical applications;

e.g., neuroelectrodes can only stimulate brain tissue in vivo if the electric signal is transferred

to neurons attached to the electrodes’ surface. Besides, cell survival in vitro also depends on the

interaction of cells with the underlying substrate materials; in vitro assays such as multielectrode

arrays determine cellular behavior by electrical coupling to the adherent cells. In our study, we

investigated the interaction of neurons and glial cells with different electrode materials such as TiN

and nanocolumnar TiN surfaces in contrast to gold and ITO substrates. Employing single-cell force

spectroscopy, we quantified short-term interaction forces between neuron-like cells (SH-SY5Y cells)

and glial cells (U-87 MG cells) for the different materials and contact times. Additionally, results

were compared to the spreading dynamics of cells for different culture times as a function of the

underlying substrate. The adhesion behavior of glial cells was almost independent of the biomaterial

and the maximum growth areas were already seen after one day; however, adhesion dynamics of

neurons relied on culture material and time. Neurons spread much better on TiN and nanocolumnar

TiN and also formed more neurites after three days in culture. Our designed nanocolumnar TiN

offers the possibility for building miniaturized microelectrode arrays for impedance spectroscopy

without losing detection sensitivity due to a lowered self-impedance of the electrode. Hence, our

results show that this biomaterial promotes adhesion and spreading of neurons and glial cells, which

are important for many biomedical applications in vitro and in vivo.

Keywords: neurons; glial cells; electrode materials; cell adhesion; cell spreading; TiN; nanostructured

surfaces; cell-surface interaction; neuroelectrode

1. Introduction

Many cellular processes such as proliferation and migration rely on the ability of
cells to adhere to a surrounding medium such as the extracellular matrix (ECM) or a
biomaterial [1]. In vivo cells mainly connect to the ECM, which constitutes different
proteins with specific binding sites for cellular adhesion. In contact with a biomaterial
composed of metals or ceramics, these proteins are missing. However, cells express specific
proteins, such as fibronectin or laminin, which can then be deposited onto the biomaterial.
This enables the cells to form specific adhesion points via surface receptors connecting to
the previously deposited proteins. First adhesion sites for cells in contact with biomaterials
can occur within seconds when early focal complexes form [2]. Subsequently, maturation
of this soft binding step to focal adhesion results in specific adhesion sites in which cellular
adhesion receptors interact with ECM molecules and form mature adhesion complexes [2,3].

Within the last decade, a large variety of biomaterials have been developed, ranging
from diagnostic tools [4] to dental [5] and orthopedic implants [6], organ replacement [7],
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and tissue engineering [8] to vascular grafts [9] and pharmaceutical applications [10]. Nev-
ertheless, the functioning of medical devices and implants relies on good integration and
cellular adhesion in vivo. In terms of neuroelectrodes used for deep brain stimulation to
treat diseases such as Parkinson’s disease [11] or treatment-resistant depression [12], the
coupling of neurons to the electrode is crucial for electric signal transfer. However, a me-
chanical mismatch of the stiff electrode which exhibits Young’s moduli in the range of GPa
and the soft brain tissue often generates inflammatory responses and the formation of scar
tissue around the electrode, causing degradation of recording and implant failure [13,14].
Additionally, glial scarring hinders regeneration of neurons after local injury, which
inevitably has to be accepted after implantation of the electrode [15]. Alternatively,
soft [16,17] and bioinspired electrodes [18,19] can overcome this drawback, while im-
plantation strategies are still a matter of debate [20]. Nevertheless, electronic features such
as low impedance, and a suitable signal-to-noise ratio have to be ensured. Other strategies
employ nanotechnology to reduce scar formation by optimization of neural electrode-tissue
interfaces, including carbon nanotube fiber-based surfaces [21] and nano-coatings [21,22].

Brain-machine interfaces such as lab-on-a-chip devices and multielectrode arrays
(MEA) also offer great potential for in vitro and in vivo application to study neuronal
circuit-connectivity, physiology, and pathology [23]. As recently shown by Vafaiee et al.,
carbon nanotube modified microelectrode arrays show improved electric properties im-
portant for neural interfaces [24]. Currently, 384-multiwell microelectrode arrays are used
for the impedimetric monitoring of Tau protein-induced neurodegenerative processes [25].
To further miniaturize future brain-machine interfaces, electric materials with a lowered
self-impedance of the electrode are required. A possible candidate is titanium nitride
(TiN), which exhibits an increased surface area and allows the shrinking of microelectrode
size without losing detection sensitivity [26–29]. By further increasing the surface area
of TiN with a nanocolumnar pattern, we have previously shown that neurons and glial
cells cultured on these surfaces exhibit a much better proliferation behavior, in contrast to
conventional electrode materials such as gold and indium-tin-oxide (ITO) [30]. In addition
to research on multielectrode arrays, the functional properties of primary cortical neurons
and neuron-like cells have also been studied on promising organic [31–34], as well as
inorganic [35], memristive brain-machine interfaces.

The formation of glial scars is not present during in vitro application in MEA devices
when investigating neurons in a cell culture system. However, adequate coupling of
neurons to the underlying MEA is still a major prerequisite in order for neural recording to
become possible. Additionally, in terms of neuron-surface interaction, understanding cell
adhesion in terms of response and control of cellular interaction with their environment is
an important feature during repair mechanisms and possible medical treatment related
to diseases of the central and peripheral nervous systems [36]. Thus, promoting neuron
adhesion and growth on a biomaterial is an ongoing task.

In our study, we investigated the short-term adhesion behavior of human neuron-like
SH-SY5Y and glial-like U-87 MG cells on several electrode materials (TiN, nanocolumnar
TiN, ITO, and gold) using atomic force microscopy-based single-cell force spectroscopy.
To this end, we analyzed the maximum adhesion force of single cells and measured
the total work required to completely detach the cell from the substrate to quantify the
bioactivity of the different surfaces. Adhesion on longer time scales goes in line with
maturation of specific cell-surface binding sites, e.g., via integrin receptors [37] which
correlates with cell spreading and the formation of neurites. Therefore, we further studied
the dynamics of spreading and changes in cell growth areas over several days of cultured
SH-SY5Y and U-87 MG cells. While the adhesion and spreading behavior of the glial
cells was almost independent of the investigated electrode materials, the neurons showed
an enhanced cell spreading on TiN and nanocolumnar TiN in contrast to ITO and gold.
Additionally, glial cells already developed their maximum growth areas after one day in
culture: neurons needed more time to spread, and the final growth areas were observed
after 3 days. Together with the observation that the neurons proliferated much better
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on TiN and nanocolumnar TiN, as well as formed clusters and agglomerations on these
surfaces (a hint for improved physiologic behavior as shown before), our study reveals that
nanocolumnar TiN exhibits suitable bioactive properties together with enhanced electric
features important for brain-machine interfaces.

2. Results

We investigated the short-term adhesion behavior of U-87 MG and SH-SY5Y cells
on several electrode materials (see Figure S1 for information on surface topography,
Supplementary Material) using single-cell force spectroscopy for both 5 s and 30 s cell
contact times on TiN and nanocolumnar TiN, as well as Au and ITO substrates as control.
Representative examples of the resulting force-distance curves are shown in Figure 1. We
noticed that characteristic plateau-shaped retract curves mainly occurred for U-87 MG
cells (see Figure 1a). The tearing off process while pulling the cell upwards away from
the surface happened for the SH-SY5Y cells, usually at much smaller distances from the
substrate than for U-87 MG cells. For these cells, we usually observed a single rupture
event instead of multiple plateaus as shown in Figure 1b.

 

Figure 1. (a) Representative example of a force-distance curve of a U-87 MG cell in contact with a TiN
substrate. The approach segment is shown in red and the blue graph indicates the retraction of the
cell from the sample. The minimum of the retract segment corresponds to the maximum adhesion
force; (b) Same experiment as in (a) but measured with a SH-SY5Y cell.

We analyzed the maximum adhesion forces exerted by the cells while being detached
from the substrate. The mean values for each cell normalized by the average contact area
are shown in Figure 2a,b. We observed that the maximum adhesion values are generally
higher for longer contact times for both cell types and all materials. Gold showed the lowest
adhesion forces for both neuronal and glial cells with 3.8 pN and 5.4 pN for 5 s contact time,
respectively, as well as 7.1 pN and 6.5 pN for 30 s contact time, respectively. The largest
adhesion force was found for glial cells on ITO after 30 s with a value of 20.4 pN compared
to 8.6 pN for 5 s, while for the neuronal cell type the adhesion force increased from 8.3 pN
after 5 s to 12.5 pN after 30 s contact time. TiN and nanocolumnar TiN both delivered a
comparable ratio of adhesion forces for U-87 MG and SH-SH5Y cells for different contact
times. However, neurons generally comprised comparatively higher adhesion forces on
the nanocolumnar TiN surface (12.1 pN for 30 s) with very similar forces as found for the
glial cells (12.9 pN for 30 s).
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Figure 2. (a) Maximal adhesion force of single U-87 MG (green) and SH-SY5Y (red) cells mea-
sured with a contact time of 5 s on different electrode materials (TiN, nanocolumnar TiN, ITO, Au);
(b) Same as in (a) but with a contact time of 30 s. We marked data values as significant (*) for p ≤ 0.05
and highly significant (**) for p ≤ 0.01.

In addition to the maximal adhesion forces, we also studied the total work required
to completely detach a single cell from the electrode substrate, i.e., the area between the
retract part of the force-distance curve and the baseline. The mean values for each cell are
presented in Figure 3a,b with a logarithmic scale. This detachment work represents the
overall cell adhesion because it includes every single separation event while pulling the cell
upwards away from the electrode substrate. Interestingly, glial cells generally exhibited
a broader distribution of data points with more outliers in comparison to their neuronal
counterparts. The electrode material gold shows the lowest median values for SH-SY5Y
cells for both adhesion times (with 1.5 × 10−4 fJ/µm2 for 5 s and 4.7 × 10−4 fJ/µm2 for
30 s contact time), whereas the U-87 MG cells seemed to adhere much stronger to this
substrate type with 1.9 × 10−3 fJ/µm2 for 30 s and 1.4 × 10−2 fJ/µm2 for 5 s adhesion time.
Comparing the two TiN materials, neurons adhered weaker regarding the detachment
work on TiN than nanocolumnar TiN. We see the highest median value of the detachment
work on nanocolumnar TiN for SH-SY5Y for 5 s contact time with 1.1 × 10−3 fJ/µm2. On
the other hand, U-87 MG cells exhibited their second-poorest adhesion behavior with a
median detachment work of 1.1 × 10−3 fJ/µm2 on nanocolumnar TiN, right behind ITO
with a value of 1.7 × 10−3 fJ/µm2 for 30 s contact time.

≤
≤
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− −

−

−

−

≤
≤

Figure 3. (a) Total work required to completely detach a single cell from the electrode substrate
with a contact time of 5 s. Results of U-87 MG cells are shown in green and SH-SY5Y cells in red;
(b) Same as in (a) but with a contact time of 30 s. We marked data values as significant (*) for p ≤ 0.05
and highly significant (**) for p ≤ 0.01.
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Additionally, with regards to the analysis of the single-cell short-term adhesion be-
havior, we also investigated the spreading of cells in networks over longer time scales
of several days cultured on the electrode materials. Cell spreading, and thereby increase
of cell size, is usually coupled to an increased number of adhesion points, which in turn
leads to enhanced cell adhesion and improved bioactivity of the underlying substrate
material [38,39]. Here, we measured the size of actin phalloidin labeled U-87 MG and
SH-SY5Y cells, viz. the projected cell areas grown on TiN, TiN nano, ITO, and gold electrode
substrates for one day and three days, respectively. Examples of the fluorescent images of
actin fibers of SH-SY5Y and U-87 MG cells grown on ITO and TiN nano that were used for
these experiments are shown in Figure 4 and Figure S2, Supplementary Materials. Results
of the projected cell area analysis are presented in Figure 5.

 

≤
≤

Figure 4. (a) Fluorescence image of SH-SY5Y cells grown on ITO substrate for 3 days. Actin fibers are
shown in orange and cell nuclei in blue; (b) Same as in (a) for cells cultured on nanocolumnar TiN.

 

≤
≤

Figure 5. Cell size (viz. projected cell areas) on different substrate materials extracted from fluorescent
images of actin phalloidin labeled glial U-87 MG (green) and neuronal SH-SY5Y (red) cells for different
growth times. We marked data values as significant (*) for p ≤ 0.05 and highly significant (**) for p ≤ 0.01.

The size of U-87 MG cells after 1 day of culture was almost identical for all substrate
materials with values around 90 µm2. After 3 days, cell areas hardly increased due to
spreading and only small differences became visible. In fact, on ITO, the cell area mean
value decreased by around 13% after 3 days compared to 1 day, while on TiN an increase
of around 20% was observed.
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In contrast, the growth areas of neurons increased strongly from day 1 to day 3 on ITO
and Au. We also observed much larger cells on TiN and TiN nano, while on both materials
there was great variation of cell sizes after 3 days. Thus, on both materials, cells were found
much smaller than seen after 1 day, as well as cell sizes up to 5 times larger. On TiN, the
mean value doubled from day 1 to day 3, while on TiN nano, the mean value decreased.
Even though very large cells were seen on TiN nano, the number of very small cells was
highest. Since the SH-SY5Y cells organized in clusters on the TiN and TiN nano surface
in contrast to ITO and Au [30], cells in the center of the clusters could not be included in
our evaluation because of the high density, which resulted in optical separation of adjacent
cells becoming impossible. Thus, our evaluation only included cells in less dense areas, viz.
in the vicinity of cluster centers.

3. Discussion

In our study, we investigated the adhesion behavior of both human neuron-like
SH-SY5Y and glial-like U-87 MG cells on short time scales of seconds. To this end,
single-cell force spectroscopy with cell-material adhesion times of 5 s and 30 s was used
to obtain data on the cells’ maximum adhesion force, as well as the work required to
completely detach a single cell from the electrode substrate. In our experiments, we do
not take wetting behavior effects into account (viz. spreading of cells in contact with a
surface due to surface tension effects when cells are considered liquid-like [40]) since the
force spectroscopy microscope actively pushes the cell onto the electrode substrate with
a constant setpoint of 500 pN, and then sustains the reached z-position for the adhesion
time of either 5 s or 30 s, respectively. The results were normalized to the cell-material
contact area (see Materials and Methods) to exclude the influence of sheer cell size, which
likely correlates with the number of formed adhesion points and therewith adhesion force
itself [41]. As expected [42], we found higher values of the cell-substrate adhesion force
for both cell lines on all materials for the longer contact time. Our results show the lowest
adhesion forces on gold substrates for both neuronal and glial cells. Since bad cell adhe-
sion can also reduce proliferation, our results go in line with our previous findings that
neurons and glial cells show a reduced proliferation rate on gold compared to ITO, TiN,
and nanocolumnar TiN [30]. However, reduced proliferation rates could also be partly
attributed to the influence of differentiative processes on the neuron-like SH-SY5Y cells
caused by the surface nanotopography of the substrate material as shown recently [43–45].
Optically judging from Figure 4, we did indeed notice differences in the differentiation
state of SH-SY5Y cells on particular electrode materials.

Additionally, we noticed an overall broader distribution of adhesion force and de-
tachment work values for U-87 MG cells than SH-SY5Y cells. As previously shown by
Dao et al. for CHO cells [46], cell adhesion variability stems from cell to cell variation
within populations and does not depend on changes of adhesion behavior of single cells
after repetitive measurements and is also likely not due to different cell cycle phases. In
contrast, Panagiotakopoulou et al. [47] reported periodic variations of cancer cell traction
forces on substrates connected to proliferative cycle phases. Moreover, Lock et al. [48] even
identified a specific form of adhesion complex which is assembled during the mitotic phase
of cells. The dependency of our cell adhesion force results on cell cycle phase is challenging
to analyze because it is difficult to determine the phase of cells which are attached to the
AFM cantilever for measurements.

We want to mention that our single-cell force spectroscopy study is subject to similar
technical limitations as reported by other research groups, see e.g., Helenius et al. [42].
Specifically, in our case, the adhesion forces exerted by the cells for contact times of
more than 30 s were too high to be reliably and reproducibly measurable in our atomic
force microscopy setup. Here, adhesion forces originating from contact times above
30 s usually exceeded the measurable range and the cell could not be completely detached
from the substrate, which leads to our decision to limit the single-cell force spectroscopy
measurements to contact time values up to 30 s. We attribute the increase in binding
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strength to the beginning of specific binding site formations. Dot-like nascent adhesions
and focal complexes form on time scales of tens of seconds before maturation into focal
adhesions occurs, matching the time scales employed in our single-cell force spectroscopy
measurements [2,49–53].

As recently shown by Chighizola et al. for SCFS measurements of PC12 cells, adhesion
forces of these cells in contact with nanostructured colloidal ZrO2 probes revealed a reduced
number of adhesion sites after 60 s contact time [54]. This drop is considered to be caused by
mechanotransductive interactions at the cellular level which result in excessive force loading
in single adhesion sites. This process was not observed on the respective time scales when flat
ZrO2 probes were employed. In our experimentally accessible time scales, such force drop as
a possible early marker of integrin adhesion complex maturation was not visible. However,
since the size of focal adhesions depends on their maturation stage [55,56], we expect that
for differently structured nanosurfaces with various length scales, time scales on which the
observed actomyosin-generated forces occur might vary as well.

Due to the short time scale of our experiments, it is challenging to conclude which
type of substrate material supports maturation of focal contact adhesions best, which is
important for long-term cell behavior. In fact, interaction of cells and substrate materials can
have a great variety of short-term, as well as long-term, consequences on cell behavior and
functions, such as adhesion complex formation, spreading, proliferation, differentiation,
gene expression, and mechanotransduction. Unraveling the connections between these
diverse interactions remains challenging and even the definition of “good adhesion” can
vary greatly for different cell types. In case of neurons, delicate cellular adhesion is not
automatically a disadvantage [57,58]. Thus, in order to better understand adhesion of
neurons and glial cells on the different electrode materials, we compared the single-cell
force-spectroscopy data with long-term adhesion studies in order to investigate possible
correlations between short-term adhesion and the spreading area of cells as an indicator of
strong cell-surface interaction. To this end, we calculated the growth areas of cultured cells
after one and three days on the four different materials. However, it is important to note that
cellular organization and proliferation can strongly influence spreading: fast proliferation and
the formation of cell clusters lead to a reduction of substrate space available for spreading.

As we have shown previously, U-87 MG cells showed the poorest cell proliferation on
gold substrates (the cell number increased on gold by a factor of 1.6 and nearly tripled on
ITO, TiN, and nanocolumnar TiN with additional growth time) [30]. Thus, the available
space for spreading was largest on gold. However, the size of their cell bodies did not
increase significantly. Hence, the adhesion behavior of glial cells hardly evolves on gold
substrates over time. In contrast, U-87 MG cells proliferated much better on ITO, TiN, and
nanocolumnar TiN substrates but still lacked a significant increase in cell size. The cells
tended to form evenly distributed cell patterns instead of agglomerations and clusters
on these materials [30] which would allow spreading in the empty intercellular spaces.
However, we saw no significant changes in cell area, and thereby, cell adhesion for the glial
cells. Overall, U-87 MG tended to behave the same on all utilized materials: cells arranged
themselves in homogenous agglomeration-free patterns and hesitated to change their size
independent of their proliferation behavior.

In contrast, neuronal SH-SY5Y cells exhibited a completely different response in
contact with the electrode materials. We noticed an increase in cell size on gold and ITO,
but the number of cells was halved on gold and stagnated on ITO after three days of growth
time in comparison to the one-day experiment. The cells were distributed homogeneously
and had enough space to spread (for an example of cell distribution on a surface see
Figure S3, Supplementary Material). Additionally, optical inspection of cells revealed that
cell networks lacked alterations: there were no new neurite formations, which in turn lead
to only slight changes of the overall cell size since the central cell body hardly changed
in size. We noticed only small variances of the cell size data of neuronal cells on TiN and
TiN nano after one day. The cells had not yet formed clusters on the substrates and all
cells had more or less the same amount of space available to them for spreading. The
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situation changed after additional growth time when the number of SH-SY5Y cells had
more than doubled, and the variance of cell sizes increased significantly. There were now
giant and tiny cells that were only half as big as the mean cell size after one day. The cells
started to agglomerate in clusters, whereas the cluster density was larger on TiN nano than
TiN (for an example of cluster formation see Figure S4, Supplementary Material). This
could very well give answers to the question of why there were overall fewer giant cells
visible. Even if areas of very high densities are excluded from the results due to technical
properties of the analysis algorithm which only allowed us to quantify cells we could fully
see and distinguish from their immediate neighbors, the SH-SY5Y cells still grew densely
and appeared therefore on average smaller than on TiN. There were areas in the vicinity
of cell clusters and in the inter-cluster space of the samples where cells grew very large.
This means that the cells produced long neurites and formed networks in the less-occupied
substrate areas to connect with the cells in clusters. In summary, SH-SY5Y cells tended to
spread more on TiN and nanocolumnar TiN in areas where there was enough empty space
available in comparison to the ITO and gold materials. This suggests an increased adhesion
of neuronal cells on TiN and TiN nano. Moreover, the cells formed more and longer
neurites on these materials to build a network with cells in high-density areas in clusters
(see Figure 4 and Supplementary Material). This behavior mirrors physiological conditions
much better than a homogeneous cell distribution and weaker network formation of
SH-SY5Y cells on ITO and gold.

We have to emphasize that during short-term adhesion, as present during single-cell
force spectroscopy, unspecific bonds formed during cell-surface contact, while for longer
culture times specific bonds, e.g., via integrin binding motifs, occurred [59]. Formation of
such specific ligand-receptor pairs is also the origin of the observed neurite formation [60]
mainly seen on TiN and TiN nano. Since TiN and TiN nano promote cell spreading to a
much larger extent compared to gold and ITO (in fact the size of the cell body remained
almost constant and it was the formation of new neurites which contributed to the growth
area increase), we conclude that the maturation of specific bonds is directly correlated with
cell size during long-term adhesion and a measure for the surfaces’ bioactivity.

The effect of nanostructured surfaces on adhesion and proliferation of SH-SY5Y
was recently reported by Boehler et al. [61]. They showed that nanostructured platinum
coatings of neuroelectrodes, as well as unstructured surfaces, do not exhibit cytotoxic
effects on the SH-SY5Y cells. Dominguez-Bajo et al. [62] grew neuronal cells derived from
rats on both flat and nanostructured nickel and gold electrodes. Increased neural cell
survival, improved neuronal differentiation, and fewer glial cells were measurable on
nanostructured nickel in comparison to its flat counterpart. The surface topography of
the gold samples seemed to have only little effect on cell proliferation and differentiation,
while the nanostructure still reduced the number of glial cells in culture. Thus, apparently,
the electrode material’s surface chemistry, as well as topography, seems to play a major role
in finding biocompatible candidates. In our experiments, we do not attribute differences
in cell adhesion on Au and TiN substrates to surface roughness differences, since both
materials exhibited a very similar RMS roughness and similar grain sizes [30]. Nevertheless,
adhesion and spreading of neurons were different on these materials, most likely due to
chemical influences.

In terms of tissue adhesion in contrast to single-cell adhesion, we want to point out
that our previous study with neuronal tissues such as adult retinae and adult brain slices
in contact with TiO2 nanotube scaffolds clearly showed that the size of the nanotubes, viz.
the length scale of the surface nanostructure, strongly influences tissue adhesion and cell
viability [63,64]. From this study, we expect that the nanostructure of an electrode material
might promote adhesion of neurons and even reduce the risk of glial scar formation and
encapsulation, an important feature for the application of a neuroelectrode in vivo. Thus,
even though the mechanical mismatch between brain tissue and electrode material cannot
be avoided, the nanotopography of the electrode’s surface might be a valuable tool to
improve the connection between neurons and electrode. To this end, future studies should
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address the interaction of neuronal tissue explants with nanocolumnar TiN to determine
tissue adhesion ex vivo, while in vivo investigation of the material can give rise to the
question if a nanostructure can reduce glial scarring.

Finally, we want to mention that the bioactivity of a material is often connected to
the ability of protein adsorption, which in turn is important for cell adhesion. As we
have shown previously, surface topography can change the adsorption behavior, and
surfaces that promote fibronectin adsorption exhibit an enhanced ability for improved cell
adhesion and spreading [39,65]. To investigate possible differences in protein adsorption
behavior, we soaked our Au, ITO, TiN, and TiN nano materials in purified water including
fluorescently labeled laminin, an extracellular matrix protein, which is widely expressed in
the central nervous system and important for specific binding of the ECM to neurons (see
Figure S5, Supplementary Material). In fact, we observed only very small differences in
laminin adsorption. Thus, we conclude that the observed cell behavior in terms of short-
term adhesion and spreading after 1 to 3 days is hardly influenced by possible protein
adsorption, but determined by other material properties such as chemical cues.

4. Materials and Methods

4.1. Electrode Materials Preparation

The following substrates were used for our experiments: indium tin oxide (ITO), gold
(Au), as well as titanium nitride in two different surface topographies (TiN and TiN nano).
All materials were produced by thin film deposition on glass cover slits and characterized
in terms of surface topography by electron microscopy and atomic force microscopy as
described previously in Abend et al. [30]. Briefly, the different films exhibit the following
features: the gold substrates showed the lowest root-mean-square (RMS) roughness and
even transitions between the individual grains. In contrast, ITO exhibited the highest
RMS roughness of all four materials and a crystalline surface structure. TiN samples were
produced with two different sputter times which lead to a film thickness of 150–200 nm
for TiN and 500–550 nm for TiN nano and widely different surface morphologies. TiN
showed a cauliflower-like formation with several grain sizes, whereas TiN nano exhibited a
nanocolumnar structure with single-type grains. This resulted in a surface area increase of
(1.27 ± 0.08) nm for TiN nano. All of the other materials scored below 1.1 with (1.02 ± 0.01)
nm for Au, (1.10 ± 0.02) nm for ITO, and (1.07 ± 0.01) nm for TiN (for more details see
Abend et al. [30]).

4.2. Cell Lines and Cell Culture for Single-Cell Force Spectroscopy

We used the glioblastoma cell line U-87 MG (Cat.No. 300367, CLS Cell Lines Service
GmbH, Eppelheim, Germany) and the neuroblastoma cell line SH-SY5Y (Cat.No. CRL-
2266, ATCC LGC Standards GmbH, Wesel, Germany) for our studies. Both cell lines
were grown in culture flasks in a 1:1 mixture of MEM Eagle/Ham’s F12 medium with
Earle’s salts, L-glutamine, and sodium bicarbonate (Cat.No. M4655 and N6658, Sigma-
Aldrich Chemie GmbH, Munich, Germany) and kept at 37 ◦C in a 95% air and 5% CO2
atmosphere. Medium change was performed every 2–3 days. We supplemented the cell
culture medium with 10% fetal bovine serum (Cat.No. S0615, Biochrom GmbH, Berlin,
Germany) and 1% penicillin/streptomycin (Cat.No. P0781, Sigma-Aldrich Chemie GmbH,
Munich, Germany). Cells were passaged using phosphate-buffered saline (PBS, Cat.No.
18912014, Gibco, Thermo Fisher Scientific, Waltham, MA, USA) with 0.025% (w/v) trypsin
and 0.011% (w/v) ethylenediaminetetraacetic acid (EDTA, Cat.No. L2143, Biochrom GmbH,
Berlin, Germany). Trypsinization took 3–4 min for each culture flask.

For normal cell passages, regular serum-containing cell culture medium was added
to the detached cells to inactivate the trypsin, and cells were seeded in fresh complete
medium afterward. To perform single-cell force spectroscopy experiments with the de-
tached cells, serum-free medium consisting of a 1:1 mixture of MEM Eagle/Ham’s F12
medium containing Earle’s salts, L-glutamine, and sodium bicarbonate (Cat.No. M4655
and N6658, Sigma-Aldrich Chemie GmbH, Munich, Germany) supplemented with 1%
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penicillin/streptomycin (Cat.No. P0781, Sigma-Aldrich Chemie GmbH, Munich, Germany)
was added to the detached cells. Cells were then centrifuged for 1 min at 800 rounds/min.
The resulting supernatant liquid was aspirated and the cell pellet was resuspended in fresh
serum-free cell culture medium.

4.3. Single-Cell Force Spectroscopy

We quantified adhesion of glial cells (U-87 MG) and undifferentiated neuron-like
cells (SH-SY5Y) on electrode materials (Au, ITO, TiN, and TiN nano) by single-cell force
spectroscopy. Prior to measurement, we attached a single cell to a tipless arrow-shaped
cantilever (Arrow™ TL1, NanoWorld AG, Neuchâtel, Switzerland) utilizing a Poly-D-
Lysine coating (PDL, Cat.No. A-003-M, Sigma-Aldrich Chemie GmbH, Munich, Germany).
PDL was diluted with sterile PBS to a concentration of 20 µg/mL and each cantilever
was coated with 50 µL of that solution in a petri dish overnight at 4 ◦C. Each cantilever
was used once and cleaned after a measurement with one cell using piranha etch solution
consisting of 70% sulfuric acid (Cat.No. 84727, Sigma-Aldrich Chemie GmbH, Munich,
Germany) and 30% hydrogen peroxide (Cat.No. H1009, Sigma-Aldrich Chemie GmbH,
Munich, Germany).

For single-cell force spectroscopy, the CellHesion atomic force microscope (CellHesion
200, JPK BioAFM–Bruker Nano GmbH, Berlin, Germany) equipped with the JPK Instru-
ments SPM and DP software Version 6.1.146 was used for the cell adhesion experiments.
A CCD camera (FireWire CCD Color Camera DFK 41AF02, The Imaging Source Europe
GmbH, Bremen, Germany) was mounted onto the CellHesion system to visualize cell
capture and adhesion to the cantilever. For our experiments, we used standard 4 cm petri
dishes (TPP Techno Plastic Products AG, Trasadingen, Switzerland) coated with a solution
of 1% bovine serum albumin (BSA, Cat.No. A2153, Sigma-Aldrich Chemie GmbH, Munich,
Germany) diluted in PBS. The dishes were stored at 4 ◦C overnight, shortly rinsed with
Millipore water, and dried with nitrogen the next day. An electrode substrate was glued
to the petri dish bottom using nail polish to avoid slippage. Once the polish had dried
completely, 2 mL serum-free cell culture medium was added and the dish heating system
was set to 37 ◦C. Additionally, an atmosphere consisting of 95% air and 5% CO2 was created.
A PDL-coated cantilever was then mounted on the glass block of the CellHesion-AFM.
After reaching thermal equilibrium in the 37 ◦C warm serum-free culture medium, the
cantilever was then calibrated with the built-in contact-based calibration tool of the JPK
software, which is based on the spring constant calibration method proposed by Hutter
and Bechhoefer [66]. Cells were passaged as described in the section above. The scanning
head of the CellHesion-AFM was briefly removed to flush 10 µL of the cell solution into
the petri dish. One cell of average size and smooth spherical form was chosen for the
measurement. It was captured by positioning the tip of the cantilever over the cell and
running a single scan repetition in the constant force mode with a 500 pN setpoint, 5 µm/s
constant speed, 5 s contact time and 100 µm pulling length. Once the cell was successfully
captured, we waited 30 min before starting the measurements to ensure that the cell firmly
adhered to the cantilever. The cantilever was then positioned over the electrode substrate
in the petri dish and the cell adhesion behavior on the material was probed by acquiring
force-distance curves with 500 pN setpoint and 100 µm pulling length. The extend speed
was set to 2 µm/s and retract speed was chosen as 1 µm/s for each scan repetition. Contact
time was set to either 5 s or 30 s. The cell was probed 5 times with an adhesion time of
5 s with 120 s recovery breaks in between repetitions. After a 5 min rest time, the cell was
probed again 5 times with a contact time of 30 s and 120 s recovery breaks in between,
respectively. The position of the cell on the electrode substrate was changed after every
run. Having finished the measurements with one cell, the cell culture medium in the petri
dish was replaced with fresh serum-free medium. The cantilever was replaced by a new
one with a different cell attached to repeat the entire experimental procedure.
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4.4. Growth Area of Cells

The growth area of both U-87 MG and differentiated SH-SY5Y cells on electrode
materials (Au, ITO, TiN, and TiN nano) was determined using fluorescence microscopy.
We employed the following protocol as previously described [30]. Briefly, for this experi-
ment, we seeded the cells at a density of 130 cells/mm2 onto electrode substrate materials
(Au, ITO, TiN, TiN nano). Accurate cell numbers were obtained using an automatic optical
cell counter (EVETM, NanoEntek Inc., Seoul, Korea). The U-87 MG cells were fixed with
paraformaldehyde (Cat.No. HT5011, Sigma-Aldrich Chemie GmbH, Munich, Germany)
for 15 min. at time points of 24 h or 72 h after seeding. We did not utilize longer culture
times because usually cells then start to grow into dense layers which hinders the cell area
analysis. After fixation, cells were washed with PBS and treated with 1% (w/v) Triton X-100
(Cat.No. 9002-93-1, Sigma-Aldrich Chemie GmbH, Munich, Germany) and 0.5% (w/v)
bovine serum albumin (Cat.No. A2153, Sigma-Aldrich Chemie GmbH, Munich, Germany)
for 10 min at room temperature as preparation for fluorescent labeling of actin fibers and
cell nuclei. To this end, 1 µg/mL Hoechst 34580 (Cat.No. H21486, Molecular Probes,
Eugene, OR, USA) and 0.44 µM Alexa Fluor 532 Phalloidin (Cat.No. A-22282, Molecular
Probes, Eugene, OR, USA) diluted in PBS was added to the cells at room temperature for
15 min. Cells were washed again with PBS and placed upside down in petri dishes
(Cat.No. 80136, ibidi GmbH, Gräfeling, Germany). We applied mounting medium
(Cat.No. 50001, ibidi GmbH, Gräfeling, Germany) between the sample and the petri
dish. Specimens were stored at 4 ◦C before imaging.

Treatment of samples with SH-SY5Y instead of U-87 MG cells was slightly different: we
added 25 nM staurosporine (STS, Cat.No. S5921, Sigma-Aldrich Chemie GmbH, Munich,
Germany) to the SH-SY5Y samples 24 h after seeding to initiate the cell differentiation
process, which takes 72 h to complete [59]. Half of the SH-SY5Y specimens were fixed
directly upon removing the STS. For the remaining samples, we replaced the STS containing
medium with regular growth medium and let the cells grow for another 72 h before
fixation. Subsequently, cells were fluorescently labeled as reported before. The cell network
morphology was imaged using confocal laser scanning microscopy. We employed an
inverted Zeiss Axio Observer.Z1 microscope equipped with a spinning disk unit (Yokogawa
CSU-X1A 5000, Tokyo, Japan) for image acquisition. An array of dual-channel images of
whole cell networks was taken with a 25 × glycerin immersion objective for each sample.
Each file enclosed a substrate area of 0.22 cm2. Up to 54 individual images were required
to cover the complete sample area.

The images of actin fibers were used to determine the cell growth area. We pro-
cessed them with a Fiji distribution [67] (Windows 10, 64-bit version) based on ImageJ
software [39,68]. Images were thresholded, binarized, and subsequently analyzed with the
edge detection of the particle tracker tool to detect cell shapes and determine the size of the
cells. The images of cell nuclei were processed similarly and used for cell counting. Results
of the cell proliferation analysis can be found in our previous publication [30].

4.5. Statistical Analysis

We employed CellHesion single-cell force spectroscopy measurements to determine
the adhesion force of 15 cells for each of the 4 substrate types and 2 adhesion times (5 s and
30 s). For each cell, 10 force-distance curves were acquired, i.e., 5 recordings for each of the
adhesion times. Overall, 120 cells were used for the single-cell spectroscopy experiments
which resulted in the acquisition of 1200 force-distance curves. The JPK Data Processing
software (JPK Data Processing Version 6.1.169, JPK BioAFM–Bruker Nano GmbH, Berlin,
Germany) was used to extract the maximum adhesion force and the work required to
completely detach a single cell from the electrode substrate of each force-distance curve.

We repeated the cell area measurements three times for each cell type and material
combination. In total, we analyzed 160,000 cells.

Two-sample t-test in OriginLab software (OriginPro 2017G, OriginLab Corporation,
Northampton, MA, USA) for unequal sample sizes was employed to analyze statistical
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significance of data sets. We marked data values as significant (*) for p ≤ 0.05 and highly
significant (**) for p ≤ 0.01.

5. Conclusions

Many biomedical applications such as neuroelectrodes, for example, rely on fine-tuned
coupling of cells and tissue to the electrode’s surface. Thus, cell survival, proliferation,
and biochemical function all depend on the electrode materials’ surface chemistry and
topography. We investigated the short-term adhesion dynamics and long-term evolution
of cell spreading and neurite formation with culture time of human neuron-like SH-SY5Y
and glial-like U-87 MG cells on four different electrode materials (TiN, TiN nano, ITO,
and gold). We found the adhesion behavior of U-87 MG cells to be mostly independent
of the substrate material and we found cells stopped spreading after one day of culture
time. In contrast, neuronal cells spread much better on TiN and nanocolumnar TiN in
comparison with ITO and gold. Here, spreading was mainly determined by the formation
of long and numerous neurites for longer culture times. The lowered self-impedance of
nanocolumnar TiN combined with our findings of the cells’ adhesion and spreading makes
the material a promising candidate for building miniaturized microelectrodes. Even though
our material might induce the formation of glial scars due to the mechanical mismatch
of the material and the brain tissue, novel treatments are under consideration to restore
local neuron density and improve the long-term recording stability as recently shown by
Zhang et al. [69]. Moreover, Shur et al. recently demonstrated that soft printable coatings
improve the mechanical properties on the electrode surface towards more physiologic
conditions important to reduce the formation of scar tissue [70]. Thus, surface structures that
promote coupling to neurons, as seen in our study, offer great perspectives for brain-machine
interfaces, ranging from MEA to deep brain stimulation. Future studies should address the
interplay of neurons and glial cells on nanocolumnar TiN, e.g., in a co-culture system of
primary cells or even in an in vivo system to further develop our nanostructured TiN towards
possible biomedical applications. Here coatings with suitable electric properties might be a
valuable option to enhance neuron adhesion important for long-term recording in vivo.
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Figure S1. Atomic force microscopy-based topology characterization. The electrode materials of 

gold (Au), indium tin oxide (ITO), titanium nitride (TiN), and titanium nitride with nanocolumnar 

structure (TiN nano) were imaged with a JPK NanoWizard 3 atomic force microscope in direct 

drive AC mode with a TESPAHAR cantilever (Bruker). 

 

Figure S2. (a) Fluorescence image of U-87 MG cells grown on ITO substrate for 3 days. Actin fibers 

are shown in orange and cell nuclei in blue; (b) Same as in (a) for cells cultured on nanocolumnar 

TiN. 
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Figure S3. Fluorescent image of SH-SY5Y cells grown on ITO substrate for 3 days after differentia-

tion. Actin fibers are shown in orange and cell nuclei in blue. 

 

Figure S4. Fluorescent image of SH-SY5Y cells grown on nanocolumnar TiN substrate for 3 days 

after differentiation. Actin fibers are shown in orange and cell nuclei in blue. 
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Laminin adsorption 

We quantified the adsorption of the cell matrix glycoprotein laminin on electrode 

materials (Au, ITO, TiN, and TiN nano) using microplate reader measurements. To this 

end, we applied rhodamine-labeled laminin (Cat.No. LMN01, Cytoskeleton Inc., Denver, 

Colorado, USA) with a concentration of 10 µg/ml diluted in Millipore water to an area of 

0.22 cm² resulting in a final concentration of 1.5 µg/cm² to the electrode substrates � a 

coating concentration often used for cell culture, see e.g. Pixley et al. [1] � and incubated 

the samples for 30 min at room temperature protected from light. Afterwards, non-ad-

sorbed liquid was pipetted into a 96-well plate (Cat.No. 655086, Greiner Bio-One GmbH, 

Frickenhausen, Germany) and the fluorescence signal was analyzed with a microplate 

reader (Synergy H1 microplate reader, BioTek Instruments GmbH, Bad Friedrichshall, 

Germany). The light units were converted into protein mass using a calibration curve 

ranging from 0 µg to 1.5 µg rhodamin laminin diluted in Millipore water. We repeated 

this experiment three times for each electrode material type. The results of the analysis are 

shown in Figure S3. The relative adsorption is the difference between the initially applied 

and the non-adsorbed protein mass divided by the initial protein mass. 

 

Figure S5. Relative laminin adsorption on different electrode material substrates.  
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3.3.  Neuronal and glial cell co-culture organization and impedance 

spectroscopy on nanocolumnar TiN films for lab-on-a-chip devices 

 

The content of this chapter has been published in the manuscript <Neuronal and glial 
cell co-culture organization and impedance spectroscopy on nanocolumnar TiN films 

for lab-on-a-chip devices= [149]. 

DOI: 10.1039/D2BM01066F 

Reprinted with permission from Alice Abend, Chelsie Steele, Sabine Schmidt, Ronny 

Frank, Heinz-Georg Jahnke, and Mareike Zink, Biomaterials Science 10, 5719 (2022). 

Copyright 2022 by The Royal Society of Chemistry. 
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Neuronal and glial cell co-culture organization
and impedance spectroscopy on nanocolumnar
TiN films for lab-on-a-chip devices†
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Heinz-Georg Jahnke ‡b and Mareike Zink *‡a

Lab-on-a-chip devices, such as multielectrode arrays (MEAs), offer great advantages to study function

and behavior of biological cells, such as neurons, outside the complex tissue structure. Nevertheless,

in vitro systems can only succeed if they represent realistic conditions such as cell organization as similarly

found in tissues. In our study, we employ a co-culture system of neuron-like (SH-SY5Y) and glial-like

(U-87 MG) cells with various neuron-glial ratios to model different brain regions with different cellular

compositions in vitro. We find that cell behavior in terms of cellular organization, as well as proliferation,

depends on neuron-glial cell ratio, as well as the underlying substrate material. In fact, nanocolumnar tita-

nium nitride (TiN nano), which exhibits improved electric properties for neural recording on MEA, shows

improved biocompatible features compared to indium tin oxide (ITO). Moreover, electrochemical impe-

dance spectroscopy experiments allow us to monitor cellular processes label-free in real-time over

several days with multielectrode arrays. Additionally, electrochemical impedance experiments

reveal superiority of TiN with nanocolumnar surface modification in comparison with ITO. TiN nano exhi-

bits enhanced relative cell signals and improved signal-to-noise ratio, especially for smaller electrode

sizes, which makes nanocolumnar TiN a promising candidate for research on neural recording and

stimulation.

Introduction

Neurodegenerative diseases such as epilepsy, Alzheimer’s
disease, and Parkinson’s disease are on the rise. In fact, neuro-
logical disorders are the leading cause of disability, and the
second leading cause of death worldwide.1 The number of dis-
ability-adjusted life years has increased by 15%, and the absol-
ute number of deaths by 39% during the last 30 years.1 Aging
was identified as the primary risk factor for neurodegenerative
diseases2 and rising patient numbers are no surprise in the
light of increasing life expectancy.3,4 Understanding the
mechanisms underlying brain aging and the formation of neu-

rodegeneration is still a work in progress.5 The number of
patients 50 years and older diagnosed with Parkinson’s
disease is expected to double in the world’s most populated
countries between 2005 and 2030 up to 9.3 million.6

Additionally, the number of people affected by Alzheimer’s
disease is assumed to double every 20 years up to about
80 million cases by 2040 globally resulting in a single new
patient every 7 seconds.7 It is therefore imperative to study
brain cell function to understand underlying biomechanical
and biochemical mechanisms to encourage therapy
development.

Major efforts have been made in both in vivo and in vitro

research to study function and dysplasia of the brain, but
many underlying biomedical processes are still not completely
understood.8 In vivo approaches based on animal models
usually cannot account for the complexity of a human brain
and lack some important human characteristics, in addition
to the raised ethical concern of animal experiments, optical
non-transparency, low throughput, and high cost.9 In contrast,
in vitro techniques usually do not account adequately for cell–
matrix interactions and reciprocal action of different cell types
and therefore fall short of mimicking in vivo tissue environ-
ments.10 By comparing the response of cortical neurons of rats

†Electronic supplementary information (ESI) available: Atomic force
microscopy-based topology characterization of electrode materials, histograms
of nearest neighbour distances, cumulated distribution of nearest neighbour dis-
tance, radially averaged autocorrelation data. See DOI: https://doi.org/10.1039/
d2bm01066f
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in vivo and dissociated neurons in vitro exposed to drugs, Belle
et al. proved that in vitro cultures may be appropriate for some,
but not all, pharmacological studies.11

Great efforts have been made in recent years to bridge the
gap between in vivo animal experiments and in vitro cell cul-
tures, resulting in promising advances in biomimetic neural
micro-environments, which mimic neural networks or struc-
tures found in the brain.12,13 Such systems can offer great
potential to study neural function, leading to the widespread
field of brain-on-a-chip devices as, e.g., illustrated by Brofiga
et al.,14 Maoz,15 and Bang et al.16 However, the idea to recreate
organs on chips does not end with brains, but rather extends
to other organs such as lung,17 liver,18 kidney,19 heart,20

bone,21 skin,22 and many more. Thus, such organ-on-a-chip
devices recapitulate the key features of the physiology of
human organs.23

The goal of brain-on-a-chip technologies is to mimic
physiologic neuronal and glial cell interactions. This allows
brain function replication and structural aspects on artificial
platforms. Improvements in engineering and science have
allowed for these types of lab-on-a-chip devices to be nick-
named ‘mini-brain’ models.24 Some relevant examples range
from microfluidic chambers, for mimicking the blood–brain
barrier,25 to 3D brain organoids derived from stem cells, to
explore diseases in the human brain,26 to organotypic brain
slice cultures for glioblastoma cancer research.27 However,
there are still some limitations to these systems, such as, the
number of functional interacting neuronal populations from
different brain regions is still limited (for example amygdala,
prefrontal cortex, and hippocampus cells as described by
Dauth et al.28). Unfortunately, the devices lack the ability to
simultaneously monitor relevant data on metabolic consump-
tion and neurotransmitter concentration while performing
measurements on electrophysiological activity of cells.14

Multielectrode arrays (MEAs) have become a popular tool to
measure neuronal cell activity, due to their ability to record
and stimulate cells at multiple sites simultaneously.29 These
devices can be used to study circuit connectivity, physiology,
and pathology30 long-term in vitro and in vivo. They provide
the ability to examine cell health and function non-
invasively.31,32 Manufacturing processes of these promising
lab-on-a-chip devices have already come a long way. Currently,
384-multiwell MEAs are used for impedance measurements of
tau protein-induced neurodegenerative processes.33 Even 3D
MEAs have been developed to study function in three-dimen-
sional neuronal cultures.34 In fact, recently published work
shows that long-term recordings of up to 79 days are possible
in 3D neural cell cultures as a brain-on-a-chip with multielec-
trode arrays.35

Further improvement of the multielectrode array lab-on-a-
chip devices and miniaturization of the electrodes give rise to
new requirements for biomaterials. A lowered self-impedance
of the electrodes is a prerequisite for even denser electrode
arrays. Titanium nitride (TiN) is a promising candidate for
such material, as it allows a reduction of electrode size without
loss of sensitivity due to its increased surface area.36–38 In our

previous work, we could already show an advantage of TiN
with a further increased surface area due to a nanocolumnar
surface patterning in terms of cell proliferation of neurons and
glial cells in contrast to typical electrode materials such as
gold and indium tin oxide (ITO).39

In our study, we show that a co-culture system of human
neuron-like cells (SH-SY5Y) and glial-like cells (U-87 MG) co-
cultured on titanium nitride (TiN) and nanocolumnar TiN
(TiN nano) electrode biomaterials in comparison to indium tin
oxide (ITO) substrates can be employed to investigate cell dis-
tribution and pattern formation in vitro. We study the interplay
of both cell types while seeding neurons and glial cells in
various ratios (80 : 20, 50 : 50, 20 : 80) onto the substrates and
monitor growth patterns via confocal fluorescence microscopy.
Analysis of cell organization is performed using radial autocor-
relation functions and next neighbor analysis. Since various
ratios of neurons and glial cells are present in different struc-
tures of the human brain,40 our co-culture study is an in vitro

model system for cellular organization employed on a lab-on-a-
chip device. In order to demonstrate the advantage of TiN in
contrast to ITO as electrode material, additional electro-
chemical impedance spectroscopy measurements allow us to
monitor cellular processes label-free in real-time over several
days. Our impedance spectroscopy experiments show technical
superiority of nanocolumnar TiN over ITO in terms of
enhanced relative impedance and reduced signal-to-noise
ratios of the electrodes while co-culture tests hint at improved
cell culture conditions of TiN nano. As we have shown before,
TiN and TiN nano exhibit improved biocompatibility features
compared to ITO and gold.39,41 Thus, nanocolumnar TiN
offers great potential for the fabrication of miniaturized MEAs.

Results

In our study, we investigate cell proliferation and pattern for-
mation behavior of human neuronal cells SH-SY5Y (neuronal-
like) and U-87 MG (glial cell-like) co-cultured on electrode bio-
materials titanium nitride (TiN) and TiN with nanocolumnar
surface patterning (TiN nano) in comparison with indium tin
oxide (ITO). Information on surface topography of the
materials is shown in Fig. S1, ESI.† The three materials display
the following surface features: ITO shows a crystalline topogra-
phy with the highest RMS roughness, followed by TiN nano
and TiN, as verified by atomic force microscopy measure-
ments. We see a cauliflower-like surface structure on TiN with
several different grain sizes. However, TiN nano exhibits
single-type grains with a nanocolumnar topography which
leads to a surface area increase of (1.27 ± 0.08) nm for this
material, while we measure only (1.10 ± 0.02) nm for ITO and
even less (1.07 ± 0.01) nm for TiN. Please also refer to previous
studies by Abend et al. for detailed material
characterization.39,41

In order to study possible influences of SH-SY5Y to U-87
MG cell ratios on cell behavior, cells were seeded as a co-
culture with different ratios of 80 : 20, 20 : 80, and 50 : 50 on
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the electrode materials, and cultured for either one or three
days. Subsequently, samples were fixed and imaged. Having
labeled the cell nuclei of SH-SY5Y and U-87 MG cells (for
details of cell nucleus stain see methods section) before start-
ing the co-culturing process, we are able to distinguish both
cell types in the fluorescence images. An example of such
images is shown in Fig. 1.

As a first step in assessing the cell proliferation, we counted
cell nuclei of both neurons and glial cells on all 54 samples (3
seeding ratios × 2 culture times × 3 materials × 3 samples each
= 54 samples overall). The results are shown in Fig. 2. Overall,
we notice an impact of different cell seeding ratios on the cell
proliferation of SH-SY5Y and U-87 MG cells on all tested
materials. Generally, seeding of more SH-SY5Y cells than U-87
MG cells (80 : 20) leads to poor proliferation of both cell types,
whereas starting with a superior number of U-87 MG cells
(20 : 80) leads to an overgrowth of glial cells, and an initial
ratio of 50 : 50 results in a proportional growth of neurons and
glial cells. In case of 80 : 20 seeding, starting with a four times
larger number of SH-SY5Y versus U-87 MG cells does not trans-
late to enhanced growth of neuronal cells. Instead, on the con-
trary, both cell types grow in roughly equal numbers on all
materials, but ITO provides the worst proliferation conditions
here. After one day of culture with a ratio of 80 : 20, the
number of neurons was about twice as high on TiN nano com-
pared to ITO. Even though cell number of neurons was identi-
cal for TiN and TiN nano, the cell number halved on TiN. In
contrast, when a cell ratio of 50 : 50 was employed, neurons
proliferated and doubled on TiN nano, as well as ITO, while
on TiN the cell number quintupled exceeding the glial cell

count for three days of culture. Taken together, for a ratio of
80 : 20 (neurons to glial cell ratio), best cell growth was seen on
TiN nano, which was also the case for a ratio of 50 : 50.
Culturing 20% SH-SY5Y and 80% U-87 MG cells together leads
to an overgrowth of glial cells and neuronal cells are not able
to catch up after three days of culture. This is most noticeable
for ITO samples as we count simultaneously the highest
number of glial cells and lowest number of neuronal cells for
this substrate type for a 20 : 80 seeding ratio. The number of
glial cells was almost twice as high after one day on TiN nano
compared to ITO. However, after 3 days, most glial cells were
detected on ITO, where the cell number doubled, as similarly
occurring on unstructured TiN. TiN nano seems to provide
improved culture conditions since we find the highest number
of SH-SY5Y cells on this material after three days of culture
and U-87 MG cells only proliferate moderately and do not over-
grow the neuronal cells.

For the glial cells, we also observed good proliferation and
cell growth on all three materials for a co-culture ratio of
50 : 50, where cell numbers more than doubled during culture
time. Doubling of glial cell number was also present on TiN
nano for a ratio of 80% neurons and 20% glial cells, while on
TiN and ITO the cell number remained almost constant. In
summary, U-87 MG glial cells grew well on all employed elec-
trode materials except for a seeding ratio of 80 : 20 with only
20% glial cells. Here, best cell proliferation was seen on TiN
nano.

Additionally, we further investigated cell distribution on
electrode materials, taking the neuronal to glial cell ratio into
account. To this end, we computed the nearest neighbor dis-
tance amongst SH-SY5Y cells and between U-87 MG cells. The

Fig. 1 Representative example of co-cultured SH-SY5Y cells (red) and

U-87 MG cells (green) grown on electrode material (here: TiN with an

initial seeding ratio of 50 : 50) for one day culture time. Only the cell

nuclei were fluorescently labeled. Straight lines indicate nearest neigh-

bor cells of the same type. The image shows only a small section of the

complete cell network.

Fig. 2 Average number of cells grown on electrode materials (TiN

nano, TiN, and ITO) for 1 or 3 days with diûerent initial ratios of SH-SY5Y

and U-87 MG cells. The bottom row in the diagram description shows

the initial cell seeding ratio of SH-SY5Y to U-87 MG cells. We computed

statistical signiücances within the seeding ratio groups and for the same

culture times of either 1 day or 3 days. Error bars represent the SEM of

three samples.
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straight lines connecting cell nuclei in Fig. 1 illustrate the
nearest neighbors of neuronal cells (red) and glial cells
(green). We also measured the nearest neighbor distance
between neuronal and glial cells, i.e. distance from one
SH-SY5Y cell to the nearest neighboring U-87 MG cell. Results
of the nearest neighbor analysis are shown in Fig. 3. Generally,
we observe pairs of neuronal and glial cells to sit closer
together on all materials for longer culture times indicated by
the black and gray columns in the graph. This also becomes
apparent from the histograms of nearest neighbor center-to-
center distance of neuronal cells to the closest glial cell dis-
played in Fig. S2, ESI.† Conversely, for pairs of SH-SY5Y cells
(Fig. 3 red) and pairs of U-87 MG cells (Fig. 3 green), this is not
always the case. While we see significant proliferation of U-87
MG cells for the 20 : 80 cell seeding ratio (see Fig. 2), the glial
cells do not seem to cluster together, but rather organize in
the vicinity of neuronal cells. The distance between pairs of
neuronal and glial cells is smaller than the distance amongst
SH-SY5Y cells and between U-87 MG cells. A similar situation
of rapid cell proliferation leading to close organization of
neuronal and glial cells is observed for the 50 : 50 cell seeding
ratio, albeit not as prominent. However, in case of the 80 : 20
cell seeding ratio, both SH-SY5Y and U-87 MG cells are lacking
speedy cell proliferation (see Fig. 2) and organize so that pairs
of cells of the same type sit closer together than cells of
different types after three days of culture time.

We tested the statistical significance of the neuronal-glial
co-localization to validate the results above. Measured data
were compared to randomly generated data sets of the same
size. For more details on the procedure see Gilles et al.42 and
Fig. S3, ESI.† We found our experimentally determined center-
to-center distances of SH-SY5Y and U-87 MG cell pairs to be
significantly different from randomized data.

We further study cellular distributions on the three elec-
trode materials as a function of co-culture ratios using a
radially averaged autocorrelation analysis for both neuronal
and glial cell nuclei separately for all 54 samples (3 seeding
ratios × 2 culture times × 3 materials × 3 samples each = 54
samples overall). This function provides the average size of
objects in an image (cell nuclei here) in conjunction with
information about the typical distance between objects.
Representative results of autocorrelation curves are shown in
Fig. 4, viz. one example for each combination of material type,
culture time, and cell seeding ratio. The other curves complet-
ing the data set of 54 samples can be found in Fig. S4, ESI.†

Generally, we see smooth and rapidly decreasing autocorre-
lation functions for our experiments. Similar to the findings
on cell proliferation, we notice a pattern in the experimental
results in the sense that cell behavior looks similar for
samples with the same cell seeding ratio. Absolute values vary
for different electrode materials, but the general appearance of
data stays rather constant for equal seeding ratios. In case of
the 80 : 20 seeding ratio of neuronal to glial cells, autocorrela-
tion curves of neuronal cell data drop to zero with a cutoff at
about 50 µm for TiN nano and ITO and 60 µm for TiN.
Functions of U-87 MG cells also approach zero, but at a larger
distance of 80 µm. The inverse seeding ratio of 20 : 80 exhibits
a similar pattern concerning the SH-SY5Y cells but differs for
the glial cells. The green U-87 MG functions generally have an
offset in vertical direction and lie above their corresponding
red curve for all samples. This behavior is consistent with
changing culture times. In contrast, radially averaged autocor-
relation curves of neuronal and glial cells almost always
overlap for the 50 : 50 cell seeding ratio regardless of material
type and culture time. We find the transition into the linear
regime for neuronal cells at 50 µm for one day of culture and
about 70 µm for three days. The transition for U-87 MG cells is
shifted to slightly larger distances.

To validate nanocolumnar TiN in comparison to ITO as
potential MEA material, we conducted electrochemical impe-
dance spectroscopy measurements of co-cultured neurons and
glial cells on microelectrode arrays made of TiN nano and ITO
over several days. We investigated the influence of electrode
materials as well as electrode size (diameter) on measured cell
signal of SH-SY5Y cells, U-87 MG cells, and both cell types at a
ratio of 50 : 50. In theory, smaller electrodes provide higher
spatial resolution of cells cultured on them down to single-cell
level, and even more importantly, higher cell signals can be
achieved. However, in practice, this is offset by the increasing
intrinsic impedance with decreasing electrode size. Thus, the
detectable cell signal decreases below a certain electrode size.

We aim to improve this limitation by employing TiN with a
nanocolumnar surface topography to lower the self-impedance
of electrodes. Whether the cell signal in microelectrode arrays
can be improved that way, and if so, in which frequency range
is shown in Fig. 5 and 6. An example of a multielectrode array
with circular electrodes of 10–200 µm diameter, which was
used for the experiments, is displayed in Fig. 5a. Initial charac-
terization without cells, but with cell culture medium, revealed

Fig. 3 Average nearest neighbor center-to-center distance of SH-SY5Y

(red), U-87 MG cells (green), and pairs of neuronal and glial cells (black)

grown on TiN nano, TiN, and ITO for 1 or 3 days. Bottom row of diagram

description shows initial cell seeding ratio. We computed statistical sig-

niücances within the seeding ratio groups and for the same culture

times of either 1 day or 3 days. Error bars represent the SEM of three

samples.
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impedance magnitude spectra for TiN nano and ITO electro-
des shown in Fig. 5b. We find typical curve shapes for elec-
trode–electrolyte interfaces with high impedance values in the
lower frequency range. This is followed by a decrease of impe-
dance, due to the Helmholtz double layer formed at the inter-
face (capacitive load), and a plateau mainly caused by spread-
ing resistance (ohmic load). Spreading resistance occurs when
electric current flows from the working electrode to the
counter electrode and is mainly determined by the bulk resis-
tance of the culture medium. We notice an increase of impe-
dance in the upper kHz–MHz range only for ITO electrodes,
which hints at an inductive effect. Additionally, the graph

shows a consistently lowered self-impedance for TiN nano in
comparison to ITO over the whole frequency range. The smal-
lest electrode size (10 µm) reveals the largest impedance mag-
nitude of 7400 kΩ for ITO and 4710 kΩ for TiN nano at a fre-
quency of 1 kHz. At 100 kHz, we measure 119 kΩ for 10 µm
ITO electrodes and 86 kΩ for TiN nano.

Next, we recorded impedance spectra of TiN nano and ITO
microelectrode arrays with and without cells to determine the
cell signal (relative impedance). The resulting graphs are dis-
played in Fig. 6a. For more details on the computation of the
relative impedance, please refer to the materials and methods
section. We find the maximum cell signal in the range of 10

Fig. 4 Radially averaged autocorrelation analysis for cell nuclei positions obtained from 18 samples with diûerent seeding ratios of U-87 MG cells

(green) and SH-SY5Y cells (red) cultured on TiN nano, TiN, and ITO.
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kHz–100 kHz for all experiments without notable differences
between TiN nano and ITO electrodes. Electrodes of the sizes
50 µm, 100 µm, and 200 µm yield maximum relative impe-

dance values of only 100% and much lower. Smaller 20 µm
and 30 µm electrodes deliver much larger values up to 250%
for TiN nano with a 50 : 50 ratio of neuronal and glial cells and

Fig. 5 (a) Microelectrode sensor chip consisting of electrodes fabricated on glass. Zoomed-in view of working electrodes of several diameters

(10 µm, 20 µm, 30 µm, 50 µm, 100 µm, and 200 µm) in comparison to counter electrode. (b) Impedance magnitude as a function of frequency

measured at TiN nano (blue) and ITO (red) electrodes of several diameters (mean, n = 15 electrodes).

Fig. 6 (a) Relative impedance as a function of frequency measured for TiN nano (blue) and ITO (red) electrodes of several sizes with either SH-SY5Y

cells or U-87 MG cells or both cell types seeded at a ratio of 50 : 50 (mean, n = 4 experiments). (b) Signal to noise ratio comparing impedance spec-

troscopy experiments with TiN nano (blue) and ITO (red) electrodes. Measurements were performed with SH-SY5Y cells or U-87 MG cells or both

cell types at a ratio of 50 : 50 grown on sensor chips (mean ± sem, n = 4 experiments).
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200% for the mono-cultured cells on TiN nano. Interestingly,
10 µm electrodes yield continuously low relative impedance
values comparable with the large electrodes. Directly compar-
ing TiN nano with ITO reveals constantly higher cell signals on
nanocolumnar TiN. Besides the measured cell signal, the
occurring signal noise and consequently the signal-to-noise
ratio (SNR) play an important role in measurements with
devices with high self-impedance such as microelectrode
arrays. We notice considerable differences in SNR between TiN
nano and ITO for our experiments due to the lowered self-
impedance of TiN nano as shown in Fig. 6b. Generally, the
lowest SNR values are measured for U-87 MG cells and highest
numbers are seen for a 50 : 50 ratio of neuronal and glial cells.
Electrode sizes 20 µm and 30 µm yield the highest SNR result-
ing in the most sensitive measurements with these microelec-
trode arrays. Most importantly, TiN nano electrodes display a
two times higher SNR for 20 µm and 30 µm size than ITO.

Discussion

In our study, we investigate neuronal (SH-SY5Y) and glial cell
(U-87 MG) growth, as well as pattern formation and cell distri-
bution on electrode materials (TiN nano, TiN, and ITO). Cells
were co-cultured with three different seeding ratios of SH-SY5Y
and U-87 MG cells: 50 : 50, 80 : 20, and 20 : 80. These specific
ratios were chosen based on the cellular composition of
human brains as described by Azevedo et al.40 Overall, human
brains consist of roughly 50% neurons and 50% non-neuronal
cells, i.e. about 86 billion neurons and 84 billion non-neurons
according to Azevedo. Hence, we investigate a 50 : 50 co-culture
of neuronal and glial cells in our experiments. Moreover, in
the gray and white matter of the cerebral cortex combined, we
find about 20% neurons and 80% non-neuronal cells. The cer-
ebral cortex accounts for more than half of the volume of the
human brain and is suspected to be involved in neuronal com-
putation necessary for perception, thought, language, and
voluntary movement.43 The composition of the cerebral cortex
inspired our choice of a 20 : 80 co-culture. However, the brain
region called cerebellum houses the highest number of
neurons in the human brain resulting in a ratio of roughly
80% neurons and 20% non-neuronal cells,40 which justifies
our 80 : 20 co-culture ratio. The cerebellum is known for its
crucial role in coordinating voluntary movement and the
control of vestibular systems, but research nowadays also
focuses on the cerebellum’s responsibility for cognitive and
emotional functions.44

The brain does not only have a heterogeneous architecture
in terms of growth ratio of neuronal and non-neuronal cell
types, but neurons and glial cells also form different cell pat-
terns in different parts of the brain. For example, Ravi et al.
show in their study about organotypic brain slices acute sec-
tions of healthy human cerebral cortex labeled for neuronal
marker NeuN and astrocyte marker GFAP.45 Both cell types are
uniformly distributed and form a homogeneous cell pattern.
We see this type of cell growth mostly for our samples with

seeding ratios of 20 : 80 and 50 : 50, especially for longer
culture times. Cells organize so that pairs of neurons and glial
cells sit closer together than cells of the same cell type. Hence,
our model of the cerebral cortex (co-culture with 20% SH-SY5Y
and 80% U-87 MG cells) resembles the real human cerebral
cortex in terms of cellular architecture. On the other hand,
neurons in the cerebellum and hippocampus for example are
more tightly packed. Immunostained tissue sections of mouse
brain slices have been published by Er et al. in their study
about a novel fluorescent probe for live neuron labeling.46

GFAP-positive astrocytes have a homogenous distribution
which is pervaded by the NeuN-positive cell layer. Studying the
samples with an 80 : 20 co-culture ratio, we notice that dis-
tances among U-87 MG cells and in between SH-SY5Y cells are
shorter than distances from one U-87 MG cell to the next
neighbor SH-SY5Y cell. Thus, cells of the same type sit closer
together than cell pairs of different types, especially for longer
culture times. Although we do not see the formation of dense
layers of neurons, as they appear in brain slices in our experi-
ments, our model system for the cerebellum (i.e. the 80 : 20 co-
culture of SH-SY5Y and U-87 MG cells) resembles the architec-
ture of the cerebellum region more than the cerebral cortex for
example.

Inserting neuroelectrodes in patients’ brains for therapeutic
purposes is always a traumatic procedure, and leads to disrup-
tion of neuronal tissue and blood vessels which triggers a
number of morphological and metabolic changes.47 Cell pat-
terns surrounding long-term implants are often characterized
by glial scar formation. Glial scars comprise astroglial encap-
sulation of the implant and persistent inflammatory response
at the brain-machine interface. This leads to a loss of neurons
in the vicinity of the neuroelectrode.47,48 Countermeasures
include biomimetic coatings of electrodes, for example brain-
derived neuronal-specific adhesion molecules, as presented by
Golabchi et al.,49 or the fabrication of neuronal probes
designed to be structurally and mechanically similar to
neurons as shown by Yang et al.50 Coatings can lead to a sig-
nificantly lowered microglial activation and increased neuronal
density at the brain-device interface which improves effective-
ness of the device.49,51–53 Also, the biomimetic neuronal
probes from Yang et al. lead to a rather uniform distribution
of neuronal and glial cell types at the implant-brain interface
instead of neuronal depletion and astroglial enhancement. We
conclude that our results of homogenously organized SH-SY5Y
and U-87 MG cells on electrode materials hint at favorable
implant conditions, especially for the 20 : 80 and 50 : 50
seeding ratios. Also taking cell proliferation experiments into
account, TiN nano seems to be a promising candidate for
medical probes.

Comparing our fluorescence images with autocorrelation
data, we notice that the offset between autocorrelation curves
of SH-SY5Y and U-87 MG cells for 20 : 80 cell ratio possibly
stems from the overgrowth of glial cells which is detected as a
large agglomeration of glial cells in comparison to sparsely
appearing neuronal cells. The overlap of autocorrelation
curves for 50 : 50 cell ratio might derive from the equal growth
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of both cell types and the homogeneous distribution of cells.
Overall equal growth of neuronal and glial cells on 80 : 20 cell
seeding ratio samples, however, results in larger distances
between SH-SY5Y and U-87 MG cells than among cells of the
same type. Small agglomerations of glial cells surrounding
neuronal cells could possibly lead to the offset of autocorrela-
tion functions in the x-direction.

Co-cultured SH-SY5Y and U-87 MG cells exhibit vastly
different cell organization on electrode materials TiN, TiN
nano, and ITO compared to mono-cultured cells. In our pre-
vious study, we noticed the formation of large cell agglomera-
tions.39 Such cell clusters were most prominent for SH-SY5Y
cells cultured in TiN materials, whereas U-87 MG cells formed
smaller agglomerations that were fairly evenly distributed on
the substrates. Here in this study, co-cultured neuron-like and
glial-like cells form more homogeneously distributed cell pat-
terns where cells of different types tend to sit closer together
than cells of the same type. The seeding density is low enough
for all cells (glial and neuronal) to occupy space on the sub-
strates and not on top of each other. Since all experimental
parameters (except fluorescent stain) and culture conditions
were equal to the former study, we conclude that the direct
interaction between neuron-like and glial-like cells is essential
for resulting cell growth and organization. In fact, the impor-
tance of cellular interaction in co-culture systems to mimic
blood–brain barrier functions with immortalized cell lines
(including SH-SY5Y) has been studied by Idris et al. with the
verdict that only direct contact of cells of different types and
triple co-culture systems closely mimic the in vivo blood–brain
barrier conditions.54

Cell morphology and adhesion studies of the employed cell
lines on electrode materials ITO, TiN, and TiN nano are
included in our previous study.41 We expect the cell-surface
adhesion and spreading behavior to be similar.

Considering ITO and TiN nano as potential candidates for
electronic brain-machine interfaces, initial characterization of
microelectrode arrays without cells revealed impedance magni-
tude spectra for ITO which are comparable with results from a
former study of ITO microelectrodes (50–200 µm) by Jahnke
et al.55 Also, the atypical increase of impedance in the upper
kHz–MHz range for ITO electrodes due to the presumed induc-
tive effect is consistent with former experiments.55 This induc-
tive impedance has not yet been observed for other materials
such as gold55 and neither do we see such an effect for TiN
nano in our study. TiN nano shows a consistently lowered self-
impedance in comparison to ITO in the lower as well as the
middle frequency range. This lowered self-impedance creates
favorable conditions for microelectrode arrays since usually
the intrinsic impedance increases with decreasing electrode
size and therefore renders cell signals undetectable below a
certain (material-dependent) electrode size. In other words,
materials with lowered self-impedance allow the fabrication of
smaller electrodes and denser electrode arrays, which
increases the spatial resolution of measurements. A lowered
self-impedance of nano rough TiN in comparison with stain-
less steel electrodes has also been reported recently by Schmitz

et al.56 In their experiments, the effect was observed only in
the lower frequency range <1 kHz. However, in our results, we
found the intrinsic impedance of TiN nano to be consistently
lower than ITO for frequencies up to 100 kHz, and even 1 MHz
due to the inductive effect in ITO. We speculate that the
lowered self-impedance effect vanishing for frequencies over 1
kHz might be caused by the much larger electrode size
(3–5 mm) in comparison to our experiments (10–200 µm).
Schmitz et al. also recorded the transepithelial electrical resis-
tance for both nano rough TiN and stainless steel electrodes in
cell culture experiments finding favorable cell conditions for
TiN nano electrodes over a culture time of 21 days.

Additionally, we employed ITO and TiN nano microelec-
trode arrays to record impedance spectra with SH-SY5Y and
U-87 MG cells, as well as co-culture systems with a 50 : 50 ratio,
to compute the cell signal, i.e. relative impedance. Resulting
curve shapes closely resemble data published by Jahnke
et al.55 measured with ITO electrodes and HEK cells. However,
their maximum measured relative impedance values are much
higher for the same size of ITO electrodes in comparison to
our experiments. Jahnke et al. observe a relative impedance of
about 200% for 50 µm ITO electrodes with HEK cells whereas
we measure only 125% for ITO electrodes with SH-SY5Y cells,
95% for U-87 MG cells, and 140% for a ratio of 50 : 50 neurons
and glial cells. We speculate that this is due to the more epi-
thelial character of the HEK cells in comparison to our neuro-
nal cell lines since epithelial cell types tend to form denser cell
layers and their cell–cell contacts differ from neuronal cells.
Also, Jahnke et al. used a collagen coating for their electrode
substrates to improve cell–substrate adhesion. Nevertheless,
we can also reach maximum impedance values of about 200%
for all cell types and seeding ratios in our experiments with a
smaller electrode size (30 µm ITO and 20–30 µm TiN nano). In
fact, we observe the highest cell signal of 250% for 30 µm TiN
nano electrodes for the 50 : 50 co-cultured neurons and glial
cells. Thus, microelectrodes composed of TiN nano exhibit
improved signal-to-noise ratios compared to ITO microelec-
trode arrays.

Experimental
Electrode material preparation

In our study, we used the following electrode material sub-
strates: indium tin oxide (ITO) and titanium nitride with two
different surface topographies (TiN and TiN nano). Specimens
were produced by thin film deposition on 13 mm glass cover-
slips with a thickness of 0.13–0.16 mm (VWR GmbH,
Darmstadt, Germany). Before coating, coverslips were washed
with acetone and isopropanol in an ultrasonic bath, treated
with 3% hydrofluoric acid for 2 min, and rinsed with ultrapure
water. A coating setup (CREAMET 500, Creavac GmbH,
Dresden, Germany) was used to sputter metallic coatings onto
the glass. ITO plating was achieved with a 4″ indium tin oxide
target (90 : 10 wt%, EVOCHEM GmbH, Offenbach am Main,
Germany) and a working pressure of 4.5 × 10−3 mbar. The
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argon flow rate was set to 18 sccm with a working distance of
150 mm for 20 min and a combined power of 250 W (DC) and
85 W (RF). Subsequent heat treatment of the samples at
400 °C for 10 min increased the transparency of the deposited
ITO material.

Titanium nitride samples were produced using a titanium
layer as adhesion promoter with a 4″ titanium target (99.99%,
Kurt J. Lesker Company, Jefferson Hills, PA, USA) at 4.5 × 10−3

mbar with an argon flow rate of 18 sccm for a sputtering time
of 5 min. Working distance was set to 150 mm and power was
500 W (DC). As the next step, we added a gold layer on top of
the titanium coating. The gold layer was produced using a 4″
gold target (99.99%, Heimerle&Meule GmbH, Pforzheim,
Germany) at 4.5 × 10−3 mbar, 350 W (DC), a working distance
of 150 mm, and an argon flow rate of 18 sccm for 3 min.
Afterward, titanium was layered on top of the gold surface
using the same titanium target, pressure, and working dis-
tance as described above. Argon flow rate was thereby reduced
to 11 sccm and we added a 99.95% pure nitrogen flow at 6
sccm. Sputtering power was set to 600 W (DC). Different
sputter times for TiN of 2.5 min and 40 min resulted in a film
thickness of 150–200 nm for TiN and 500–550 nm for TiN
nano (also termed nanocolumnar TiN), respectively.

Atomic force microscopy-based surface characterization of
the electrode materials is shown in the ESI.† ITO exhibits a
crystalline surface topography and showed the highest RMS
roughness followed by TiN nano and TiN. The latter reveals a
cauliflower-like structure with a variety of grain sizes while TiN
nano has single-type grains with nanocolumnar surface topo-
graphy. The nano-sized columns lead to a surface area increase
(1.27 ± 0.08) nm for TiN nano. In contrast, we measured (1.10
± 0.02) nm for ITO and even less (1.07 ± 0.01) nm for TiN.

Cell culture

We used the human neuroblastoma SH-SY5Y (Cat. No.
CRL-2266, ATCC LGC Standards GmbH, Wesel, Germany) and
glioblastoma U-87 MG (Cat. No. 300367, CLS Cell Lines Service
GmbH, Eppelheim, Germany) cell lines for the presented
study. Both cell types were cultured in a 1 : 1 mixture of MEM
Eagle/Ham’s F12 containing Earle’s salts, L-glutamine, and
sodium bicarbonate (Cat. No. M4655 and N6658, Sigma-
Aldrich Chemie GmbH, Munich, Germany). Cell culture
medium was supplemented with 10% fetal bovine serum (Cat.
No. S0615, Biochrom GmbH, Berlin, Germany) and 1% penicil-
lin/streptomycin (Cat. No. P0781, Sigma-Aldrich Chemie
GmbH, Munich, Germany). Cells were maintained at 37 °C in
culture flasks in a 95% air and 5% CO2 atmosphere. Culture
medium was changed every other day and cells were passaged
once a week with a ratio of 1 : 10 in case of the U-87 MG cells
and 1 : 5 for the SH-SY5Y cells. We used a blend of phosphate-
buffered saline (PBS, Cat. No. 18912014, Gibco, Thermo Fisher
Scientific, Waltham, MA, USA), 0.025% (w/v) trypsin, and
0.011% ethylenediaminetetraacetic acid (EDTA, Cat. No.
L2143, Biochrom GmbH, Berlin, Germany) applied for
3–4 minutes before cell counting and seeding.

Co-culture cell staining and imaging

In our study, we analyzed cellular organization in terms of cell
distribution and growth pattern formation of both U-87 MG
and SH-SY5Y cells as a co-culture on the electrode biomaterials
ITO, TiN, and nanocolumnar TiN, respectively. The nuclei of
both cell types were fluorescently labeled before seeding them
onto the electrode substrates in co-culture, in order to dis-
tinguish neurons and glial cells in the subsequently acquired
fluorescence microscopy images. We eventually decided
against antibody staining since we always observed some
degree of cross staining even though the antibodies should
have been specific enough according to the manufacturers.
Thus, we were not able to distinguish the cell types by antibody
staining and decided to use the following staining procedure:

Before fluorescent labeling, SH-SH5Y cells were sup-
plemented with 20 nM staurosporine (Cat. No. S5921, Sigma-
Aldrich Chemie GmbH, Munich, Germany) for 72 h. This
initiates the differentiation process.57 We used CellLight®
reagents to label the nuclei of U-87 MG cells with RFP (Cat.
No. C10603, Invitrogen by Thermo Fisher Scientific, Waltham,
MA, USA) and GFP (Cat. No. C10602, Invitrogen by Thermo
Fisher Scientific, Waltham, MA, USA) for the SH-SY5Y cells via
transduction. In doing so, we are able to distinguish between
both cell types in the fluorescent images of the co-culture by
emission color. Concentration was chosen following the manu-
facturer’s instructions as 30 particles per cell diluted in cell
culture medium. Cells were incubated with the staining solu-
tion for 24 h at 37 °C and 5% CO2.

Afterward, cells were passaged using trypsin/EDTA as
described above and counted in an automatic optical cell
counter (EVETM, NanoEntek Inc., Seoul, Korea). We seeded
neurons and glial cells with ratios of 50 : 50, 80 : 20, and 20 : 80
of both cell types at an overall density of 230 cells per mm2

onto electrode substrate materials ITO, TiN, and nanocolum-
nar TiN, respectively. Cells were cultured on the electrode sub-
strates in complete medium as a co-culture.

In order to investigate cellular organization on the sub-
strates 1 and 3 days after seeding half of the samples were
fixed after 24 h and the other half after 72 h with paraformal-
dehyde (Cat. No. HT501128, Sigma-Aldrich Chemie GmbH,
Munich, Germany) for 15 min and washed three times with
PBS. Samples were placed upside down in Petri dishes (Cat.
No. 80136, ibidi GmbH, Gräfeling, Germany) with mounting
medium (Cat. No. 50001, ibidi GmbH, Gräfeling, Germany)
sandwiched between sample and dish. Specimens were stored
at 4 °C before imaging.

Cell distribution was imaged using confocal laser scanning
microscopy. Images were taken employing an inverted Zeiss
Axio Observer.Z1 microscope equipped with a spinning disk
unit (Yokogawa CSU-X1A 5000, Tokyo, Japan) and a 25× gly-
cerin immersion objective. An area of 0.22 cm2 was imaged for
each sample. We imaged 54 samples overall using 3 cell
seeding ratios, 2 culture times, 3 electrode materials, and 3
specimens each. Up to 60 individual two-channel images were
necessary to cover the cell growth area of every specimen.
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Image analysis – nearest neighbor distance

We investigated cellular distribution on electrode materials by
analyzing the distance to the respective nearest neighbor cell
of every cell in the network. We first measured the distance of
neuronal and glial cell nuclei in the fluorescence microscopy
images using a Fiji distribution58 (Windows 10, 64-bit version)
based on ImageJ software.59 Two-channel fluorescence images
were split (single channel for each cell type), thresholded,
binarized, and watershed. The distance between two cells was
always defined by the center-to-center distance of the cell
nuclei. We employed the plugin “NnD – Nearest Neighbor
Distance” to measure the distance between cells of the same
type, i.e. cells in either the glial cell channel or the neuronal
cell channel of the microscopy images. Additionally, we used
the “Cluster Analysis of Nuclei Tool” plugin for visualization of
nearest neighbors of the same cell type. Distances of neuronal
cells to the nearest neighbor glial cell were measured using the
“DiAna – Distance Analysis” plugin42 for all samples. This tool
was also used to compare our measured data with randomized
data sets of the same size.

Image analysis – radial autocorrelation function

We employed a radial autocorrelation analysis in order to
investigate cellular distribution on the different electrode
materials. A detailed description of the data processing work-
flow can be found in the ESI† and our previous publication.39

Briefly, fluorescence microscopy images were processed using
Fiji distribution58 (Windows 10, 64-bit version) based on
ImageJ software.59 Cell nuclei positions were identified on
binarized and thresholded images with the particle tracker
tool from ImageJ. Co-cultured U-87 MG and SH-SY5Y cells
were distinguished from one another by color (red and green)
in the fluorescence images. We used the “Radially Averaged
Autocorrelation” macro and “Radial Profile” plugin to
compute the radially averaged two-point autocorrelation func-
tion for both cell types individually on all co-culture samples.
The autocorrelation function provides information on the
spatial distribution of objects in a given data set as well as on
a distribution of the size of objects (i.e. cluster of cell nuclei)
in the picture, as described by Baker et al.60 and Berryman
et al.61 We normalize the results so that the value of the auto-
correlation function at distance r = 0 will always be 1 (perfect
correlation) while the value 0 denotes the case of no
correlation.

Microelectrode array fabrication

Microelectrode arrays (MEAs) were fabricated in a clean room
with the same material depositing steps and process para-
meters as described for the “electrode material preparation”.
For the structuring, lift-off technique was used as previously
described by Jahnke et al.55

Briefly, borofloat glass substrate surfaces (49 × 49 × 1 mm,
Industriearmaturen Goettgens GmbH, Würselen, Germany)
were cleaned by piranha etching followed by intensive washing
with ultrapure water. For structuring, substrates were spin-

coated with negative resist AR-N 4340 (Allresist, Strausberg,
Germany). After soft baking, chrome photomasks
(Compugraphics GmbH, Jena, Germany) were used in combi-
nation with a MA6 mask aligner (350–405 nm, exposure time 8
s; Süss MicroTec, Garching, Germany) to transfer the chip
layout to the substrate. After a post-exposure bake step (60 s,
95 °C) structures were developed in AR-N 300–475 (Allresist,
Strausberg, Germany), rinsed, and dried. After electrode
material deposition, the negative resist was removed by incu-
bation in acetone followed by extensive washing with isopro-
panol and ultrapure water prior to dehydration at 200 °C for at
least 30 min. For electrical insulation of conducting paths and
definition of microelectrode structures, a SU-8_2 (Micro Resist
Technology GmbH, Berlin, Germany) insulation layer of 2 µm
thickness was added via spin coating, pre-bake (1 min, 65 °C)
followed by soft-bake (1 min, 95 °C), 4 s UV exposure, post-
exposure bake (1 min at 65 °C followed by 1 min at 95 °C) and
1 min development in mr-Dev 600 (MicroChem, Germany).
Finally, MEAs were cleaned in ultrapure water, spin-dried and
dehydrated at 95 °C. Finally, 3 × 3 culture chambers in 96-well
format (Greiner Bio-One GmbH, Leipzig, Germany) were
bonded with biocompatible silicone LOCTITE 5366 (Henkel
GmbH) onto MEAs.

Electrochemical impedance spectroscopy

For the impedimetric analysis of achievable cell signals, MEAs
were placed into a self-developed multiplexer55 frontend
within a cell incubator (37 °C, 5% CO2 in a humidified atmo-
sphere) and impedance spectra were acquired every 5 minutes
using a high-precision impedance analyzer Agilent 4294A
(Agilent Technologies, Santa Clara, CA, USA) with 10 mV alter-
nating voltage in a frequency range of 500 Hz to 5 MHz. After
24 hours, all recorded impedance spectra were analyzed by
self-developed software IDAT v4.55 The program can directly
import measurement raw data files, and sort and group all
electrodes according to the chosen chip layout which can be
easily chosen by the user in a graphical user interface. Thus,
large data sets can be analyzed within minutes instead of
copying and grouping thousands of spectra manually. In the
data analysis first step, the cellular contribution to the impe-
dance magnitude spectra was extracted (relative impedance)
with the help of blank value (without cells) spectra (|Z|covered
− |Z|cell-free)/(|Z|cell-free × 100%). Next, the maximum rela-
tive impedance value for every single electrode within the
monitored time range of 24 hours was identified and used for
statistical analysis. For each experiment with cells two to three
MEAs per electrode material were used with nine electrodes of
each size on each MEA.

Statistical analysis

We repeated the cell proliferation and next neighbor distance
analysis for each cell ratio, growth time, and electrode material
three times. In total, we analyzed 225 000 cells. Data averages
are expressed as the arithmetic mean ± standard error of the
mean.
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Two-sample t-test in OriginLab software (OriginPro 2017G,
OriginLab Corporation, Northampton, MA, USA) was employed
to analyze statistical significance of data sets. Data values were
marked as significant (*) for p ≤ 0.05 and highly significant
(**) for p ≤ 0.01. Statistical significances were computed for
data within the same cell seeding ratio groups and for the
same culture time of either 1 or 3 days.

Conclusions

While single-cell cultures have the advantage of being easy to
handle, they only mirror in vivo behavior to limited extent. In
contrast, our co-culture system of neurons and glial cells
makes it possible to model different brain regions in vitro by
varying the ratio of neuronal and glial cells. Co-culture experi-
ments with different ratios of SH-SY5Y and U-87 MG cells
overall show favorable growth conditions for electrode
materials composed of nanocolumnar TiN, which hint at poss-
ible in vivo applications of nanocolumnar TiN electrodes in
future experiments. These results need to be verified in future
studies involving primary mammalian neuronal and glial cells
since cell lines do not fully represent physiological features of
cells and tissue. Impedance spectroscopy experiments revealed
higher relative impedance and improved signal-to-noise values
for TiN nano in comparison with ITO. Thus, a co-culture
system of neurons and glial cells in combination with MEAs is
a promising brain-on-a-chip system that offers the possibility
to study new agents and the effect of drugs in vitro.
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Figure S1: Atomic force microscopy-based topology characterization. The electrode materials indium tin oxide (ITO), titanium nitride (TiN), and titanium nitride 

with nanocolumnar structure (TiN nano) were imaged with a JPK NanoWizard 3 atomic force microscope in direct drive AC mode with a TESPAHAR cantilever 

(Bruker).
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Figure S2: Histograms of center-to-center nearest neighbor distances of every neuronal cell to the next glial cell of the same data set. Cells 

were seeded at different ratios (80:20, 20:80, and 50:50) of SH-SY5Y to U-87 MG cells on electrode materials TiN nano, TiN, and ITO for either 

one or three days of culture time. Each graph represents the average of three individual samples (representing 54 experiments.



Figure S3: Cumulative distribution of center-to-center nearest neighbor distance of neuronal and glial cell nuclei. 

The blue curve represents the measured data, i.e. distance of nearest glial cell for every neuronal cell. We 

replaced the original data set of glial cell positions with 50 different simulated data sets of the same size while 

leaving the neuronal cell positions untouched and computed the distance of nearest glial cell for every neuronal 

cell (For more information about the methods see Gilles et al. 6). The results are shown by the red curve and the 

2.5 % and 97.5 % confidence interval in green. Our measured data curve is outside of the green confidence 

interval of randomized data meaning our results are statistically significant.



Image Analysis � Radial Autocorrelation Function:

In order to analyze the cellular network organization in terms of the nearest neighbors of each cell, the macro �Radially 

Averaged Autocorrelation� combined with the �Radial Profile� plugin was employed to evaluate a radially averaged two-point 

autocorrelation function S2 for all images as described in Abend et al.1 Such analysis allows measurement of the average size 

of objects (patches of cell clusters) in conjunction with the distance between these objects as similarly shown by Baker et al. 
2 and described in detail by Berryman et al.3 Briefly, the ImageJ (Fiji distribution 4 based on ImageJ platform 5) plugin computes 

the probability of finding a black pixel in increasing radial distance to an initially chosen black pixel. This process is repeated 

multiple times with different initial pixels. The results are radially averaged in a second step. The chosen plugin utilizes a fast 

Fourier transform (FFT) to reduce computation time, while simultaneously correcting for the periodicity of the FFT and finite 

image size, so the results do not suffer from artifacts. The results are normalized such that the value of the radially averaged 

autocorrelation function will always be 1 (perfect correlation) at a distance r = 0. It directly follows that an output value of 0 

demonstrates the case of no correlation.

Figure S4: Radially averaged autocorrelation analysis for cell nuclei positions. Data were obtained from 54 electrode material samples (TiN nano, TiN, ITO) with 

varying seeding ratios of neuronal and glial cells (80:20, 20:80, and 50:50) and culture times (one day and three days). Autocorrelation curves of U-87 MG cells 

are shown in green and SH-SY5Y in red.
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4. Summary and Conclusion 

 

The goal of this thesis is to study the interaction of human neuronal and glial cells 

with different types of electrode materials such as gold, ITO, TiN, and TiN nano from 

a physicist’s point of view. The analysis includes cellular network organization, cell 

distribution, adhesion, and proliferation in mono- as well as co-culture experiments 

with neuron-like SH-SY5Y and glia-like U-87 MG cells. Diverse techniques from 

physics, mathematics, biology, and computational science are used to find a new 

approach to analyzing bioactivity of the electrode substrates. The presented method 

relies on comparably fast, inexpensive, and straightforward laboratory experiments 

that seem basic but show their true potential once coupled with computational 

analysis techniques. 

In the first presented study <Proliferation and Cluster Analysis of Neurons and Glial 

Cell Organization on Nanocolumnar TiN Substrates= [147], SH-SY5Y and U-87 MG cells 

are seeded onto electrode substrates in mono-culture and grown for either one or 

three days. Subsequently, cells are fixed and cell nuclei and actin fibers are 

fluorescently stained to detect cell positions in microscopy images and count cells.  

The idea to use microscopy image analysis in the testing of biomaterials has been 

around for at least 30 years. Schreiber and Kinzl used the method already in 1991 to 

measure biocompatibility of biomaterials implanted in rats [150]. Their algorithm was 

used to identify certain cells in tissue. Results showed that the image-based method 

is superior to histological investigations since the findings were exactly reproducible. 

Small differences in biocompatibility were verifiable which other methods could not 

deliver at that time. Fast forward to 2010, Bratlie et al. already presented a method 

based on in vivo fluorescence imaging of mouse models that was able to measure 

inflammatory response to implanted biomaterials. Results were again validated 

through comparison with traditional histological analysis [151]. Using image analysis 

tools to investigate biocompatibility also in vitro is a step that comes fairly naturally 

to mind paying attention to the need to reduce the number of animal experiments. 

However, according to Uka et al., image analysis is not a <core capacity of a significant 
portion of biomaterial scientists= and mostly <ready-made tools= are used instead 

[152]. Additionally, the researchers reason that methods to investigate the 

performance and biocompatibility of biomaterials have not progressed as fast as the 

development of novel materials and modifications in their publication from 2021 

[152]. This gap needs to be closed and the latency between the development of 

materials and appropriate testing methods reduced. Validation of a biomaterial’s 
potential use in a device or lab-on-a-chip test bed is currently mainly based on the 

determination of its direct and indirect cytotoxic effects on specific cells [152]. 

However, other parameters such as cell shape and size, phenotype, and cellular 

secretions for example are tested during the development of novel biomaterials 

[152]. 
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For the work of this thesis, straightforward fluorescence microscopy imaging is 

coupled with a combination of mathematical and physical methods such as the 

radially averaged autocorrelation function and a K-means machine learning 

algorithm. Together with cell proliferation data, this can be used as a quantitative 

tool to analyze biocompatibility of novel materials. The method is especially 

convenient for opaque biomaterials which are often used for medical implants. The 

usefulness of quantitative fluorescence imaging of cell populations for the 

assessment of biocompatibility has been demonstrated by Klußmann-Fricke et al. in 

2021 [153]. Although the group only investigated cell proliferation and morphology 

instead of analyzing spatial cellular distribution on the substrates, this publication still 

supports my approach to the investigation of the interaction of neuron-like and glia-

like cells earlier in 2020 [147]. 

In my publication, the autocorrelation function is used as a tool to quantify typical 

object size and distribution in the cell layer grown on electrode materials. The shape 

of the curve gives insight into cell growth patterns and cell agglomerations revealing 

mean object sizes and distances between them. Here, an object is either a single cell 

nucleus or an agglomeration of nuclei since this fluorescently labeled part of the cells 

has been used as a basis for image analysis. Additionally, a K-means algorithm is used 

to detect the size and position of cell clusters in the fluorescent images of cells. The 

whole spectrum of cellular growth patterns from homogeneously distributed cells to 

heterogeneous cell clusters can be mapped using the presented methods which 

deliver a unique fingerprint for each combination of electrode material and cell type. 

In conjunction with experimental data from different cellular growth times, the 

results can be used to make predictions on possible biocompatibility of the electrode 

substrates. 

The radially averaged autocorrelation function looks roughly the same for U-87 MG 

cells grown on gold, ITO, TiN, and TiN nano representing the growth of fairly evenly 

spatially distributed glia cell agglomerations with little variation in object size 

indicated by the undulation of the curve for short culture times. Cells were mostly 

evenly distributed and only grew small agglomerations with longer culture time 

which is represented by the shift of the autocorrelation function to the right. The 

same behavior is also mirrored in the proliferation rates which are equal for all 

materials except for gold where cell growth is reduced. Autocorrelation functions of 

SH-SY5Y cells show much more variety between the substrate materials and growth 

times. Correlation length (transition point between steep slope and constant regime) 

shifts for all substrate types for longer culture times. This long-range correlation 

indicates the formation of cell clusters of various sizes. The undulating shape of the 

autocorrelation function that has been visible for short culture times is completely 

blurred by the existence of different-sized cell agglomerations. Especially large 

clusters are seen on TiN and TiN nano samples. Spatial distribution of SH-SY5Y cells 

was further investigated using a K-means algorithm that detects large cell 

agglomerations in the fluorescent images. It worked especially well and was reliable 

for large and dense cell clusters which were found on TiN and TiN nano samples. 
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However, the algorithm fails to identify small cell agglomerations as seen on gold and 

ITO and instead pools these data points into large but less dense clusters. This is 

essentially a mathematical artifact of the algorithm. In these cases, the radially 

averaged autocorrelation function is vital to back up the results from K-means. 

Together with proliferation data, K-means and the autocorrelation function provide 

a clear idea of variations in cellular growth on different biomaterials. 

One possible explanation for the differences in cell growth on the different electrode 

materials could be the varying degree of their surface roughness. This parameter was 

measured using atomic force microscopy for the publication (see Figure 1 in [147]). 

Vallejo-Giraldo et al. reported that SH-SY5Y cells grew best on semi-rough (Ra = 19 

nm) ITO surfaces [154]. Neuronal cells did not adhere well to very smooth (Ra = 1 nm) 

or especially rough (Ra = 81 nm) surfaces either. Additionally, Khan et al. drew similar 

conclusions while measuring the adhesion of rat cortical neurons on silicon wafers 

[155]. Cellular adhesion seems to increase with growing surface roughness until it 

reaches an optimum at a specific degree of roughness and then decreases for even 

coarser surfaces. In their study on neuronal cells cultured on patterned SiO2 layers, 

Fan et al. found the cells to migrate to areas of optimal surface roughness [156]. 

Besides, Yoon et al. proved the superiority of nanostructured surfaces (i.e. carbon 

nanotubes) with regard to the expression of neuronal markers of differentiated SH-

SY5Y cells and neural activity in MEAs in contrast with smoother graphene samples 

[157]. Experiments exhibited a lower differentiation-induced apoptotic rate and 

faster proliferation for nanostructured topographies. The group reasons that the 

improved performance of the samples does not originate from the material itself but 

rather from the surface structure. Gold and ITO exhibited the lowest and highest 

values respectively for root-mean-square roughness in my experiments and seem to 

provide the poorest growth conditions for the SH-SY5Y, and to some extend also for 

U-87 MG, cells. However, gold and TiN revealed very similar values for surface 

roughness and grain size but SH-SY5Y cells still grew quite differently on these two 

materials. This leads to the conclusion, that surface topography of the electrode 

samples cannot be the sole reason for differences in experimental outcome. Surface 

chemistry likely also determines cell behavior. Titanium nitride with nanocolumnar 

surface modification is found to deliver the most promising results concerning cell 

proliferation and network formation in this study. 

The second paper <Adhesion of Neurons and Glial Cells with Nanocolumnar TiN Films 
for Brain-Machine Interfaces= [148], builds on the work of the first as it introduces 

the assessment of adhesion parameters of single cells into the framework of this 

thesis. Short-term adhesion dynamics and long-term cell spreading characteristics 

are assessed for neuron-like SH-SY5Y and glia-like U-87 MG cells on electrode 

materials. Cell adhesion is investigated using AFM-based single-cell force 

spectroscopy on short time scales of seconds. The maximum adhesion force exerted 

by single cells being detached from the substrates and the total work required to 

remove the individual cells is measured. Results were normalized to the cell-

substrate contact area since the adhesion force usually scales with the number of 



92 

 

adhesion points and therewith likely correlates with the contact area [109]. 

Generally, larger adhesion force values were measured for all cells and substrate 

materials for longer contact times (30 s vs. 5 s) as expected [113]. The lowest 

adhesion force was found for measurements with gold substrates for both SH-SY5Y 

and U-87 MG cells. This is in line with findings from my first publication [147], where 

low proliferation rates were observed on gold substrates. Poor cell adhesion could 

contribute to reduced cell proliferation in these samples. The distribution of 

measured values is generally broader for U-87 MG cells in comparison with SH-SY5Y 

cells. Variability of measured cell adhesion forces could originate from differences in 

cell cycle phases as previously reported by Panagiotakopoulou et al. [158] and Lock 

et al. [159]. However, Dao et al. argue that these variations are neither associated 

with cell cycle phases nor do they stem from a change in adhesion behavior of cells 

after repetitive detachment experiments [160]. The reason could simply be cell-to-

cell variation. This is exactly why single-cell measurements are needed to 

complement ensemble measurements. Unfortunately, the time scale of single-cell 

force spectroscopy was limited in my experiments since longer adhesion times 

resulted in exceeding the measurable force range and cells could not be completely 

detached from the substrate. The limiting factor here is the z-range of the piezo 

crystal which is 100 µm. The increase in binding strength for contact times above 30 

s could be attributed to the formation of specific binding formations. Nascent 

adhesions and focal complexes are formed by the cells on a time scale of tens of 

seconds. These early adhesions mature later into focal adhesion points [99,101–104].  

Due to the technical limitations and the associated impaired range of single-cell force 

spectroscopy measurements, judging optimal biocompatibility of electrode materials 

with regard to cell adhesion aspects is challenging. Defining what <good adhesion= 
means depends on the cell type and intended use of the biomaterial. For example, 

delicate cellular adhesion can be an advantage in the case of neurons [161,162]. 

Hence, additionally to the AFM experiments, I carried out measurements on long-

term cell spreading behavior for the publication [148] to gain more insight into the 

possible correlations between short-term adhesion and long-term cell-surface 

interactions. To this end, fluorescence microscopy images of cells stained for actin 

fibers and cell nuclei are used to analyze cell spreading on time scales of days. Here, 

the same treatment procedure from the first publication [147] for cell-electrode 

substrate samples is used. In fact, the same samples, or more specifically the 

fluorescence imaging data from the first paper [147] are employed. Adding cell 

spreading analysis to the already proven mathematical tools gives rise to the 

possibility to draw even more results from one and the same, and admittedly rather 

simple, data set. Findings include that U-87 MG cells did not spread anymore on the 

substrates after one day of culture time.  SH-SY5Y cells did not only spread more than 

their glial cell counterpart but they also spread differently depending on the 

electrode material substrate type. Cell area of SH-SY5Y grew the most on TiN and TiN 

nano samples after three days of culture time. Also, morphological changes in the 

cells are apparent in these two materials in comparison to gold and ITO. Cells show 

many more and much longer protrusions (see Figure 4 in [148]) if they are grown on 
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TiN or TiN nano for longer culture times. These neurites mainly account for the 

surface area increase as the cell bodies stayed roughly the same size. 

In addition to the investigation of cellular behavior on different time scales, the 

publication [148] merges single-cell experiments with ensemble measurements. Both 

are important to fully understand the interaction of cells with substrate materials. 

Single-cell experiments give insight into cellular heterogeneity and represent 

variability in the response of individual cells to stimuli such as detachment from the 

substrate material with an AFM. Ensemble measurements of multiple cells 

simultaneously on the other hand, like culturing SH-SY5Y and U-87 MG cells on 

electrode substrates, provide a population average. They can reveal patterns or 

trends that might not be evident on the single-cell level.   

In the third presented study <Neuronal and glial cell co-culture organization and 

impedance spectroscopy on nanocolumnar TiN films for lab-on-a-chip devices= [149], 

co-culture experiments with both SH-SY5Y and U-87 MG cells are introduced. This 

expands the work of the first two studies [147,148] toward more physiological cell 

culture conditions. Co-culture experiments enable a better understanding of the 

interplay between the individual cell types. Neurons and glial cells not only coexist in 

the human brain under physiologic conditions but also communicate closely and 

interact frequently. This interconnection is explored in the publication using the 

fluorescence microscopy-based experimental approach introduced in the first study 

[147]. SH-SY5Y and U-87 MG cells are seeded at three different neuron-to-glia ratios 

on the electrode material substrates (TiN, TiN nano, and ITO) and are subsequently 

fluorescently stained and imaged after either one or three days of culture. Cell ratios 

are chosen based on the real physiologic composition of different parts of the human 

brain as described by Azevedo et al. [2]. Cells were co-cultured with three different 

neuron-glia ratios: 50:50, 80:20, and 20:80 for the presented study. On average, 

human brains consist of roughly 50 % neurons and 50 % non-neuronal cells. The 

cerebellum contains the highest number of neurons in the human brain which results 

in a ratio of 80 % neurons and 20 % non-neurons. On the other hand, the cerebral 

cortex (grey and white matter combined) consists of roughly 20 % neurons and 80 % 

non-neurons. Cell ratios were chosen in this study to simulate cell growth for 

different areas of the brain with different characteristics. 

Two-channel fluorescence microscopy reveals striking differences in the growth 

patterns and cellular distribution of the cell lines under mono- and co-culture 

conditions. Analysis of the distribution of cells is performed using the radially 

averaged autocorrelation approach coupled with a nearest-neighbor analysis. For the 

latter, the distance to the nearest neighbor cell is computed for each cell on a 

substrate. In this study, cells grown at a 20:80 and 50:50 neuron-glia-ratio tend to 

generally sit closer to cells of the complementary type instead of their own cell type 

resulting in fairly homogenously spatial cell distributions. However, the opposite is 

true for samples with 80 % SH-SY5Y and 20 % U-87 MG cells. For these experiments, 

neuron-like cells tend to sit closer to other neuron-like cells than glia-like cells. These 

findings are in line with examinations of in vivo brain architecture. For example, Ravi 
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et al. showed a homogeneous distribution of neurons and astrocytes (labeled with 

NeuN and GFAP) in healthy human cerebral cortex (20:80 neuron-glia-ratio) [163]. 

On the other hand, immunostained mouse brain slices of the cerebellum (80:20 

neuron-glia ratio) presented by Er et al. show a homogenous distribution of GFAP-

positive astrocytes surrounded by a NeuN-positive layer of neurons [164]. In 

conclusion, comparison of data generated by my co-culture experiments with the 

referenced publications reveals the possibility to imitate physiologic brain structures 

in vitro to some extent. The presented computer-based methods enable 

quantification of the cell structures. 

Co-cultured SH-SY5Y do not tend to grow in huge agglomerations as seen in the 

mono-culture study [147]. Hence, the K-means clustering algorithm is not suitable for 

this kind of data. However, uniformly growing cell ensembles could be beneficial for 

implantation applications of the electrode materials. Yang et al. already 

demonstrated a bio-inspired neural probe that resulted in fairly homogeneously 

distributed neurons and astrocytes upon implantation into mouse brains [165]. No 

obvious depletion of neurons or accumulation of astrocytes at the implantation site 

was visible. All experimental parameters such as culture time, culture medium, and 

electrode substrate materials are the same for the earlier mono-culture experiments 

[147,148] and this co-culture study [149]. Since the only difference, except for 

fluorescent labeling reagents applied after fixation, is the fact that both cell types are 

cultured together, I conclude that the direct interaction of SH-SY5Y and U-87 MG cells 

is responsible for the vastly different cell growth patterns. Actually, this is backed up 

by other studies such as by Idris et al. where researchers found that only direct 

contact of cells could mimic in vivo blood-brain barrier conditions in an in vitro co-

culture model [166]. 

The last part of the third presented study [149] incorporates electrochemical 

impedance spectroscopy measurements enabling the electrode materials <to be 
viewed in action= rounding off the study on biocompatibility. In addition to the 

investigation of cell adhesion and growth patterns of neuronal and glial cells on the 

electrode substrates, the performance of the electrode materials incorporated into 

multielectrode arrays is crucial. MEAs fabricated with novel materials need to be 

tested in electrochemical experiments before incorporating them into in vitro or in 

vivo applications. Electrochemical impedance spectroscopy is used to investigate the 

efficacy of indium tin oxide and titanium nitride with nanocolumnar surface 

modification in MEAs with several different electrode sizes and both cell types either 

in mono- or in co-culture. Here, TiN nano performs superior to ITO in terms of 

measured relative impedance values and signal-to-noise ratio on all electrode sizes. 

TiN nano reveals a consistently lowered self-impedance over a wide frequency range 

which is beneficial for the miniaturization of the electrodes in MEAs. Electrode arrays 

can be fabricated denser which increases the spatial measurement resolution of the 

device.    

In summary, the here presented studies propose a new approach to investigate the 

biocompatibility of materials while placing emphasis on mathematical methods and 
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computational science.  The concept is complemented and supported by tried and 

true cellular experimental techniques. It can be used to make the interaction of 

neuronal cells with electrode materials measurable and more particularly enables 

comparisons between different materials and cell types. 
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5. Outlook 

 

The here presented study on the interaction of electrode materials with neuronal and 

glial cells is two-fold. First, the interplay between neuron-like SH-SY5Y and glia-like U-

87 MG cells and the electrode materials gold, ITO, TiN, and TiN nano is evaluated 

using proliferation and cell adhesion experiments. Secondly, and perhaps more 

importantly, in the course thereof, a new image-based strategy to assess 

biocompatibility is developed that expands biomaterial scientists’ toolkits of in vitro 

analysis methods. However, as usual in science, investigating problems and 

developing new techniques give rise to even more questions that need to be 

answered. 

A question that easily comes to mind having completed the research for this thesis 

involves the issue of cell lines vs. primary cells. Using cell lines facilitates experiments 

and the development of new analysis methods because they are usually well-studied, 

and results can be compared to a lot of other researchers’ work. Another advantage 
of cell lines is their facilitated usability for the scientist concerning cell culture in 

comparison with primary cells. However, the latter needs to be introduced into the 

experimental work at some point to gain more physiologic in vitro culture conditions. 

Cell lines might lack some crucial in vivo aspects [167]. Therefore, incorporating 

primary cells would be the logical next step for the work on the presented issues in 

this thesis. The behavior and growth of primary neurons and glial cells on 

multielectrode arrays made from TiN with nanocolumnar surface modification should 

be investigated.  

The presented algorithms including K-means clustering, radially averaged 

autocorrelation function and nearest neighbor analysis could not only be applied to 

data sets of primary neuronal cells but should also be tested on completely different 

cell types. Cluster analysis or spatial autocorrelation might not be applicable to 

mono-cultured epithelial cells since this type usually grows in continuous layers 

anyway. However, nearest neighbor analysis coupled with measurements on cell 

contour [168] could prove useful for these epithelial cultures. On the other hand, 

analysis of in vitro co-cultures of different types of epithelial cells could still benefit 

from the K-means approach. Generally, the presented image-based computational 

approach to quantify biocompatibility is applicable to cell types other than neuronal 

but adjustments would need to be made to tailor the analysis method according to 

specific cellular requirements.  

Scaling the proposed methods for experiments involving three or more different cell 

types is also expected to work as long as cell types can be distinguished using 

fluorescent labeling. Data sets from several different co-cultured cell types are 

separated during image processing anyway and K-means as well as the 

autocorrelation function run on these individual data sets. Nearest-neighbor analysis 

would take more effort and look more complicated. Distances of cells could still be 

treated as a pair-wise interaction but while two cell types (A and B) result in a single 
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neighbor pair (A-B is the same as B-A), three different cell types (A, B, and C) already 

lead to three neighbor pairs (A-B, A-C, and B-C). Hence, scaling of the nearest 

neighbor method for more diverse cell cultures might result in much longer 

computation time unless parallelization of computing is implemented. 

As shown in this study, unsupervised self-learning algorithms are bound to encounter 

some limits in their usability. Here, the algorithm proved useful to detect large cell 

clusters but failed to identify small cell agglomerations. It would be interesting to see 

where the line is drawn between these two cases and how self-learning algorithms 

can be improved to deliver high-quality results on a broader range of spatial cell 

distribution patterns. The specification of the number of clusters in a data set coupled 

with the random selection of initial cluster centers could be problematic for very large 

data sets. Also, using the Euclidian norm as a metric for cell distances inevitably leads 

to the algorithm’s preference for spherical clusters. Other cluster shapes are more 
difficult to detect without adding modifications to K-means. The experiments for the 

presented thesis reveal good K-means results for large and overlapping cell clusters 

but the method fails to detect smaller non-overlapping agglomerations. This is a 

common feature of K-means [169]. Moreover, the success of K-means scales with the 

number of clusters. More clusters lead to more errors during initialization and 

iterations [170]. That is one of the main reasons for K-means to fail for small 

agglomerations of U-87 MG cells that are located far apart on the substrates. 

Published work by Fränti et al. and more recently by Ikotun et al. propose possible 

solutions to some of the problems associated with K-means [170,171]. K-means 

results depend strongly on the initialization process of centroids. Once the cluster 

centers are set, they can only move locally but not globally during iterations of the 

algorithm. Hence, optimization of the initialization process would help to improve the 

overall clustering results. Otherwise, there is a possibility to get stuck in an inferior 

local minimum [170]. Another way to improve K-means results could be to restart the 

algorithm several times with different sets of initialized centroids and simply keep 

the best result [172]. That approach usually extends computation time. Finally, a 

possible path to the improvement of the algorithms could be the simulation of 

various types of cell growth and the fabrication of data sets to test modifications to 

the K-means code. Findings could be published in a program library where common 

cell types and distributions are mapped to specific versions of K-means algorithms. 

That would generally enable more researchers to use these methods, and perhaps 

more importantly, could make computational science techniques readily accessible 

for scientist with a background in biology instead of mathematics or physics. 
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The brain is the most complex organ of a 

human being and it is not yet completely 

understood [1, 2]. Many of its essential 

biochemical functions are still under 

investigation [3, 4]. Especially in light of 

rising numbers of patients with 

neurodegenerative diseases, studies on 

architecture and function of the brain 

and its progressive deterioration in the 

case of degenerative illnesses are 

mandatory [5]. Employing suitable 

platforms to investigate neuronal 

function in vitro is a promising approach 

to closing these knowledge gaps [6]. 

Function of such lab-on-a-chip designs 

depends on suitable characteristics at 

the brain-machine interface. 

Biomaterials have to provide 

appropriate chemical and physical 

conditions for the neuronal cells. Hence, 

characteristics of the cell-machine 

interface need to be studied to 

effectively employ new biomaterials. 

Such well-developed brain-on-a-chip 

devices could potentially reduce the 

number of necessary animal 

experiments and would also help to 

solve associated problems such as high 

cost, low throughput, optical non-

transparency, and ethical concerns. 

Overall, in vitro platform assays could 

accelerate future research activities. 

Suitable lab-on-a-chip designs to study 

neuronal function include for example 

multielectrode arrays (MEAs). More 

detailed measurements of cellular 

function on smaller spatial scales require 

miniaturization of MEAs. That can be 

achieved by developing new 

biomaterials with advantageous 

electrical characteristics like a lowered 

self-impedance for example. The 

interaction of these biomaterials with 

cells needs to be investigated to ensure 

good cell adhesion, proliferation, and 

electrical coupling. 

For the project of this thesis, I studied 

and characterized the interaction of 
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human neuronal and glial cells (neuron-

like SH-SY5Y and glia-like U-87 MG cells) 

with the electrode material titanium 

nitride with nanocolumnar surface 

topography (TiN nano) and its 

advantages in terms of electric and 

bioactive properties compared to gold 

(Au) and indium tin oxide (ITO) which are 

currently employed for MEAs and 

neuroelectrodes. The overall goal of the 

presented study is to leave the beaten 

tracks of classical biochemistry assays 

and explore new ways to assess 

biocompatibility in a more 

computational approach. To this end, I 

employ techniques from theoretical 

physics, mathematics, and computer 

science to implement a new image-

based method that relies on minimal 

experimental effort but nevertheless 

provides key information on 

biocompatibility of the material. 

Generally, cellular networks and spatial 

cell distribution are investigated. To this 

end, autocorrelation function, 

unsupervised self-learning algorithms, 

and nearest neighbor analysis are 

employed to detect cell patterns and 

agglomerations. This novel approach is 

combined with tried and true techniques 

to monitor cell adhesion and 

electrochemical features like single-cell 

force spectroscopy and electrochemical 

impedance measurements. Single-cell 

experiments are combined with 

ensemble measurements to map a 

broader spectrum of cellular behavior. 

This project started with mono-culture 

for SH-SY5Y and U-87 MG cells 

respectively to establish the proposed 

algorithms. I expanded the experiments 

subsequently to co-culture 

measurements to gain a better 

understanding of the interplay between 

both cell types. Neurons and glial cells do 

not merely coexist under physiology in 

vivo conditions but communicate and 

interact constantly.  

Results of this study show the superiority 

of TiN nano as a potential biomaterial 

employed for in vitro lab-on-a-chip 

designs as well as for in vivo neural 

stimulation. TiN nano exhibits favorable 

growth conditions for neuronal cells as 

well as improved electrical 

characteristics like impedance 

magnitude and signal-to-noise ratio in 

comparison with other electrode 

materials. 

The proposed image-based 

computational analysis of spatial cellular 

distribution proves to enable 

quantification of growth patterns. Both 

small and large cell agglomerations are 

detected and cell positions relative to 

each other can be observed. 

Interestingly, SH-SY5Y and U-87 MG 

reveal very different spatial distributions 

under mono- and co-culture conditions. 

The established method is universally 

applicable to cell types other than 

neuronal and quantifies the interaction 

of cells with biomaterials. 
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