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The role of homologous recombination deficiency (HRD) in lower grade glioma (LGG) has not
been elucidated, and accurate prognostic prediction is also important for the treatment and
management of LGG. The aim of this study was to construct an HRD-based risk model and to
explore the immunological and molecular characteristics of this risk model. The HRD score
threshold = 10 was determined from 506 LGG samples in The Cancer Genome Atlas cohort
using the best cut-off value, andpatientswith highHRDscores hadworse overall survival. A total
of 251 HRD-related genes were identified by analyzing differentially expressed genes, 182 of
which were associated with survival. A risk score model based on HRD-related genes was
constructed using univariate Cox regression, least absolute shrinkage and selection operator
regression, and stepwise regression, and patients were divided into high- and low-risk groups
using the median risk score. High-risk patients had significantly worse overall survival than low-
risk patients. The riskmodel had excellent predictive performance for overall survival in LGG and
was found to be an independent risk factor. The prognostic value of the riskmodelwas validated
using an independent cohort. In addition, the risk score was associated with tumor mutation
burden and immune cell infiltration in LGG. High-risk patients had higher HRD scores and “hot”
tumor immune microenvironment, which could benefit from poly-ADP-ribose polymerase
inhibitors and immune checkpoint inhibitors. Overall, this big data study determined the
threshold of HRD score in LGG, identified HRD-related genes, developed a risk model
based on HRD-related genes, and determined the molecular and immunological
characteristics of the risk model. This provides potential new targets for future targeted
therapies and facilitates thedevelopment of individualized immunotherapy to improve prognosis.
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INTRODUCTION

World Health Organization (WHO) grade II and III gliomas are
considered lower grade gliomas (LGGs), which have a slower course
as well as a better prognosis compared to glioblastoma (GBM, grade
IV) (Jiang et al., 2016; Lapointe et al., 2018). Unfortunately,
recurrence and malignant progression of LGG are almost
unavoidable, even with comprehensive treatments, including
surgical resection, radiotherapy, and chemotherapy
(Comprehensive, 2015). This may be due to the limited
treatment options and treatment resistance in LGG
(Comprehensive, 2015; Wu et al., 2020). In addition, there is a
wide range of survival (from 1 to 15 years) in LGG (Comprehensive,
2015), and a growing number of studies have shown that even with
similar grades, patients with LGG differ greatly in clinical outcomes
(Xiao et al., 2020). However, traditional methods based on
histopathological classification are not sufficient to predict clinical
outcomes (Van Den Bent, 2010). Therefore, clinicians and
oncologists are increasingly inclined to use genetic testing to
predict prognosis and guide clinical decisions (Theeler et al.,
2012; Appin and Brat, 2014; Eckel-Passow et al., 2015).
Currently, several biomarkers, including isocitrate dehydrogenase
1 (IDH1) (Kwon et al., 2020) and O6-methylguanine DNA
methyltransferase (MGMT) (Binabaj et al., 2018), have become
important markers of LGG clinical behavior and are closely
associated with prognosis. To gain additional insights, further
development of prognostic markers for LGG is needed to
facilitate individualized treatment and provide additional potential
therapeutic targets.

Recently, poly ADP-ribose polymerase (PARP) inhibitors were
approved for use by the Food and Drug Administration and
recommended for the treatment of tumors with BRCA1/2
mutations, including pancreatic cancer and prostate cancer
(Rescigno et al., 2018; Li et al., 2021; Zhuang et al., 2021).
Tumors with BRCA1/2 mutations are often accompanied by
homologous recombination deficiency (HRD), and cancer cells
with HRD are more sensitive to PARP inhibitors (Rescigno et al.,
2018; Chen et al., 2021). Extensive studies in gliomas have
demonstrated the radiosensitizing and chemosensitizing
properties of PARP inhibitors (Gupta et al., 2014; Lesueur et al.,
2017; Gupta et al., 2019). In a recent study, increased homologous
recombination made glioma cells resistant to temozolomide (TMZ),
while homologous recombination inhibition re-sensitized resistant
cells, demonstrating that HRD cells are more sensitive to TMZ
(Ohba et al., 2021). The HRD score developed based on genomic
scars was designed to quantify HRD and has now been applied to
breast cancer (Telli et al., 2016), prostate cancer (Sztupinszki et al.,
2020), and ovarian cancer (Davies et al., 2017) with the same
threshold. However, due to the great heterogeneity among
different tumor types, it could be more rational to use different
thresholds for classification in different tumor types (Jonsson et al.,
2019). In addition, because HRD is a genomic event, its changes can
be reflected by transcriptome level assays (Peng et al., 2014; Ladan

et al., 2021; Zhuang et al., 2021), and changes in the transcriptome
can also provide new insights into the changes in HRD. However,
the threshold of HRD score in LGG is not known and the
transcriptomic features of HRD in LGG have not been fully
investigated.

In this study, we explored the role of HRD in LGG, determined
the threshold of HRD, and identified HRD-related genes based on
transcriptome sequencing. Importantly, we explored the
prognostic role of HRD-related genes in LGG and constructed
a risk model that not only effectively predicted prognosis, but also
distinguished different immunological and molecular features.

MATERIALS AND METHODS

Patients and Datasets
Normalized RNA-seq data and clinical information for 506 LGG
samples from The Cancer Genome Atlas (TCGA) cohort and 431
LGG samples from the Chinese Glioma Genome Atlas (CGGA)
cohort were obtained from GlioVis (http://gliovis.bioinfo.cnio.es/
) (Bowman et al., 2017). In addition, we also obtained a
microarray cohort (Rembrandt cohort) containing 141 LGG
samples from GlioVis. The RNA-seq and microarray data
were log2(x + 0.5) transformed. Only samples with complete
survival information were included in this study. Somatic
mutation counts, microsatellite instability (MSI)-sensor scores,
aneuploidy scores, and fraction genome altered scores were
obtained from the cBioPortal database (http://www.cbioportal.
org). The VarScan-processed mutation dataset in the TCGA
cohort was obtained from the Genomic Data Commons Data
Portal (https://portal.gdc.cancer.gov/). The basic clinical
information of all RNA-seq samples included in this study is
summarized in Supplementary Table S1.

Homologous Recombination Deficiency
Score Analysis
The HRD score was defined as the unweighted sum of loss of
heterozygosity (LOH), telomeric allelic imbalance (TAI), and large-
scale state transition (LST) scores (Sztupinszki et al., 2018; Takaya
et al., 2020). LOH (Abkevich et al., 2012), TAI (Birkbak et al., 2012),
and LSL (Manié et al., 2016) were defined according to previous
studies. The HRD score can be obtained from a pan-cancer study by
Thorsson et al. (2018). The HRD scores of individual patients are
summarized in Supplementary Table S2.

Identification of Homologous
Recombination Deficiency-Related Genes
First, we searched for the optimal threshold of HRD score based
on “survminer” and “survival” R packages to classify LGG into
high and low HRD score groups. Subsequently, we used the R
package “limma” to obtain differentially expressed genes (DEGs)
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between the high and low HRD score groups using the threshold
of log2|fold change (FC)| >1 and adjusted p value < 0.05, and these
DEGs were defined as HRD-related genes.

Construction of the Risk Model
First, we assessed the prognostic role of each HRD-related gene in
LGG based on univariate Cox regression analysis, and
prognostic-related genes were screened at a threshold of p <
0.05. Subsequently, the prognosis-related genes were further
downscaled using least absolute shrinkage and selection
operator (LASSO)-Cox regression analysis (Tibshirani, 1997).
Finally, the genes obtained from the LASSO-Cox regression
analysis were entered into a stepwise regression analysis to
obtain the best risk model. The risk model was calculated
using the following formula:

Risk score � ∑ βi × Expi

where βi is the coefficient of each gene in the final risk model and
Expi is the gene expression value.

Functional and Pathway Enrichment
Analysis
Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analysis of HRD-related
genes were performed using the R package “clusterProfiler” (Yu
et al., 2012). In addition, we assessed the biological processes and
pathways enriched in the high-and high-risk score groups using gene
set enrichment analysis (GSEA) based on the KEGG and
HALLMARI gene sets from the MSigDB database (Subramanian
et al., 2005). Adjusted p values < 0.25 were considered statistically
significant. In addition, to explore the relevance of the risk model to
immune-related biological processes, we obtained an immune
activation-related gene set, an immune checkpoint-related gene
set, and the T transforming growth factor (TGF)β/epithelial-
mesenchymal transition (EMT) pathway-relevant gene set from a
study by Zeng et al. (2019). Furthermore, a total of 18 important
gene signatures, including CD8 T-effector signature and pan-
fibroblast TGFβ response signature (Pan-F-TBRS) were obtained
fromMariathasan et al. (2018) to explore the correlation between the
risk model and other known core biological processes.

Immune Cell Infiltration Analysis
Based on the R package “GSVA,” we assessed the level of immune
cell infiltration in each sample using single-sample gene set
enrichment analysis (ssGSEA). A total of 28 immune cells
from previous studies were included in this study
(Charoentong et al., 2017). In addition, the ImmuneScore,
StromalScore, and ESTIMATEScore were calculated for each
sample using the ESTAMATE algorithm (Yoshihara et al.,
2013) (Supplementary File S1).

Statistical Analysis
Differences between the two groups were compared using the
Wilcoxon rank sum test. The correlation between the two
variables was explored using Spearman’s correlation analysis.

The R package “pROC” was used to plot receiver operating
characteristic (ROC) curves to verify the validity of the model
and obtain the area under the curve (AUC). The R package
“survival” was used for Kaplan-Meier (KM) curve analysis and
univariate and multivariate Cox regression analyses. All statistical
analyses were performed using R software (Version 4.1.1).
Statistical significance was set at p < 0.05, and unless
otherwise stated and p values were two-sided.

RESULTS

Association of Homologous Recombination
Deficiency Score With Prognosis and
Genomic Instability in Lower Grade Glioma
Patients
After obtaining the HRD scores based on LOH, TAI, and LSL, we
divided the LGG patients into high (HRD score > 10) and low
HRD (HRD score ≤ 10) groups using the HRD score = 10 as the
best cut-off value. Survival analysis showed that patients in the
highHRD group had worse overall survival (OS) than those in the
lowHRD group (p = 0.032). Further, we explored the relationship
between HRD scores and other genomic instability markers. As
shown in Figures 1B–E, the high HRD score group had
significantly higher somatic mutation counts (p < 0.0001),
fraction genome altered (p < 0.0001), MSI-sensor scores (p <
0.001), and aneuploidy scores (p < 0.01) compared to the low
HRD score group. GSEA analysis revealed that the high HRD
score group was mainly enriched in genomic-related pathways
such as homologous recombination, cell cycle, and DNA repair
(Figures 1G,H). Interestingly, we also found that the high HRD
score group was enriched in immune response-related pathways
such as inflammatory response and interferon-gamma (IFNγ)
response (Figures 1G,H). In addition, as shown in the volcano
plot (Figure 1F), we identified 251 HRD-related genes by
comparing the DEGs between the high and low HRD score
groups, with 84 upregulated and 167 downregulated genes in
the high HRD score group compared to the lowHRD score group
(Supplementary Table S3). GO and KEGG analyses showed that
the HRD-related genes were mainly enriched in genome-related
biological processes and pathways, such as chromatin separation,
DNA binding, and cell cycle (Supplementary Figure S1).

Construction of the Risk Model
First, we explored the prognostic value of HRD-related genes in
LGG using univariate Cox regression analysis, and it is
noteworthy that most HRD-related genes were associated with
prognosis in LGG (182 out of 251). (Supplementary Table S4).
Subsequently, we further screened 23 prognosis-related genes
using LASSO-Cox regression analysis (Figures 2A,B), and finally
constructed the optimal risk model using stepwise regression.
This risk model had the largest C-index (C-index = 0.873) and
contained 11 key HRD-related genes (KCNK3, ASPM, HOXD4,
SLC7A14, OSR2, ZNF560, IRX5, ATP8A2, SPOCD1, FOXE1,
and CHST9), of which four were favorable prognostic factors for
LGG and seven were unfavorable prognostic factors (Figure 2C).
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FIGURE 1 | Association of HRD score with prognosis and genomic instability in LGG patients. (A), Kaplan-Meier curve depicts the survival difference between high
HRD score (HRD score > 10) and low HRD score (HRD score ≤ 10) groups (log-rank p = 0.032), with high and low HRD groups grouped by the best cut-off value. Red
represents the high HRD group and blue represents the lowHRD group. (B–E), Violin plots of the differences in somatic mutation counts (B), fraction genome altered (C),
MSI-sensor scores (D) and aneuploidy scores (E) between the high HRD and low HRD groups. **p < 0.01, ***p < 0.001, ****p < 0.0001. (F), Volcano plot of
differentially expressed genes in the high HRD group relative to the low HRD group. Red dots represent up-regulated genes (n = 84) and green represents down-
regulated genes (n = 167). (G,H), GSEA enrichment plots base on HALLMARK (G) and KEGG (H) gene sets showing the relatively significantly enriched pathways in high
HRD score group.
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The coefficients of each gene in the risk model are shown in
Figure 2D, and it is noteworthy that the expression of the genes in
the risk model possesses a wide range of correlations with each

other (Figure 2E). In the Rembrandt cohort, we excluded
ZNF560 and SPOCD1 due to the lack of expression data for
these two genes to construct the risk model.

FIGURE 2 |Construction of the risk model. (A), LASSO coefficient profiles of 23 prognostic HRD-related genes. (B), Ten-time cross-validation for tuning parameter
selection in the LASSO model. (C), Univariate Cox regression analysis reveals the association of 11 genes in the risk model with the prognosis of LGG. (D), Coefficients
for the 11 genes in the risk model. (E), Expression correlation between 11 genes in the risk model. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 3 | Prognostic predictive role of risk score. (A), The distribution of risk score and survival status and the heatmap of gene expression of the risk model in
TCGA cohort. (B), Kaplan-Meier curve depicts the survival difference between high-risk and low-risk groups (log-rank p < 0.0001) in the TCGA cohort. Red representing
the high-risk group and blue representing the low-risk group. (C), ROC curve analysis of the risk score in the TCGA cohort. (D), Kaplan-Meier curve depicts the survival
difference between high-risk and low-risk groups (log-rank p < 0.0001) in the CGGA cohort. Red representing the high-risk group and blue representing the low-
risk group. (E), ROC curve analysis of the risk score in the CGGA cohort.
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FIGURE 4 | Stratified OS analysis based on the risk model in the TCGA cohort. Based on the risk score model, stratified OS analysis performed in patients with
different clinical parameters, such as age (A,B), gender (C,D), WHO grade (E,F), IDH1 status (G,H), and histological type (I–K) in the TCGA cohort. Significance for
survival analysis was calculated using a log-rank test, with the red line representing the high-risk group and the blue line representing the low-risk group. The grouping of
LGG samples is shown at the bottom of the charts.
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FIGURE 5 | Independence of risk score as a risk factor. (A,B), The forest plots show the multivariate Cox regression analysis using age, histological subtype, WHO
grade, gender, IDH1 status and risk score as covariates in the TCGA (A) and CGGA (B) cohorts.
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The Association Between Risk Score and
Prognosis of Lower Grade Glioma
Patients with LGG in the TCGA cohort were divided into high-
and low-risk groups based on the median of risk scores, and the
high-risk group had more deaths than the low-risk group
(Figure 3A). In addition, the high-risk score group also had
significantly worse OS than the low-risk score group (p < 0.001,
Figure 3B). The ROC curve indicated that the risk model had
excellent predictive performance, and the AUCs of 1-, 3-, and 5-
year OS were 0.90, 0.95, and 0.90, respectively (Figure 3C).
Importantly, the predictive ability of our risk model for LGG
prognosis was validated in the CGGA cohort (Figures 3D,E). It is
worth noting that the risk model also has good predictive
performance in Rembrandt cohort (Supplementary Figure
S2). To further confirm the robustness of the risk model, we
performed a data stratification analysis according to the different
clinical characteristics of LGG patients. As shown in Figures
4A–K, patients with high-risk scores always had worse OS than
patients with low-risk scores in subgroups with different age,
gender, WHO grade, IDH1 status, and histological subtype in the
TCGA cohort. In addition, the excellent performance of our risk
scores in the stratification analysis was also verified in the CGGA
cohort (Supplementary Figure S3).

Univariate Cox regression analysis showed that the risk score
was a prognostic factor in both the TCGA and CGGA cohorts
(Supplementary Table S5). In the multivariate Cox regression
analysis adjusted for age, histological subtype, WHO grade,
gender, and IDH1 status as covariates, the risk score was also
an independent prognostic factor in both TCGA and CGGA
cohorts (Figures 5A,B).

Clinical and Mutational Characteristics of
Risk Score
First, we compared risk scores in LGG for different histological
subtypes, and found that the risk score was significantly higher for
astrocytomas than for oligodendrogliomas and
oligoastrocytomas (p < 0.001, Figure 6A). The risk score for
grade III tumors was also significantly higher than that for grade
II tumors (p < 0.0001, Figure 6B). In addition, the risk score for
IDH1 wild-type tumors was also higher than that for IDH1
mutant tumors (p < 0.0001, Figure 6C). Figure 6D shows the
distribution of the 15 most frequently mutated genes in LGG,
including IDH1, in the high- and low-risk groups. We also
calculated the tumor mutation burden (TMB) for each LGG
patient based on the mutation dataset of the TCGA cohort and
found a significant positive correlation between TMB and risk
score (Figure 6E). Additionally, the high-risk score group had
significantly higher HRD scores than the low-risk score group
(p < 0.05, Figure 6F).

Molecular Characteristics of Risk Score
To decipher the potential mechanisms of risk score, we
performed GSEA and found that high-risk patients were
enriched not only for pro-cancer-related pathways such
as mTOR and P53 pathways, but also for immune- and

stromal-related processes such as inflammatory response, IFNγ
response, TNFα signaling, and cell adhesion (Figures 7A,B).
Therefore, we further explored the relationship between the
risk scores and immune-related gene sets. The risk score was
found to be significantly positively associated not only with most
immune activation-related genes, but also with immune
checkpoint-related genes, including CTLA4, PDCD1 (PD-1),
and CD274 (PD-L1) (Figures 7C,D). In addition, the risk
score was also positively associated with the TGFβ/EMT
pathway-related genes VIM, ACTA2, COL4A1, TGFBR2, and
TWIST1 (Figure 7E). In the core biological pathway analysis, the
risk score was positively correlated with most of the genomic and
immune signature scores, such as DNA damage repair, DNA
replication, cell cycle, homologous recombination,
CD8 T-effector, Pan-F-TBRS, immune checkpoint, and EMT
(Figure 7F).

Relationship Between Risk Score and
Immune Cell Infiltration
To further resolve the relationship between risk score and tumor
immune microenvironment (TIME) in LGG, we inferred the
infiltration abundance of 28 immune cell species in the TCGA
cohort. The distribution of the immune cell infiltrate is illustrated
in Figure 8A, and the clinicopathological features of LGG are also
included. We found that most immunostimulatory cells (such as
activated CD8 T cells and natural killer cells) and
immunosuppressive cells (such as macrophages and regulatory
T cells) were more abundant in the high-risk group (Figure 8C).
In addition, the infiltration level of most immune cells positively
correlated with the risk score (Figure 8B). TIME analysis based
on the ESTIMATE algorithm showed a significant positive
correlation between the risk score and ImmuneScore,
StromalScore, and ESTIMATEScore (Figures 8D–F. It is
worth noting that these results were validated in the CGGA
and Rembrandt cohorts (Supplementary Figures S4, S5).

DISCUSSION

The association between HRD score and tumor has been
uncovered in a variety of tumors, such as in high-grade serous
ovarian carcinoma, where the HRD score can classify patients
into different prognostic subtypes for personalized treatment
(Takaya et al., 2020). However, the role of HRD scores in
LGG has been less studied. In this big data study, we
determined for the first time that a threshold of HRD score =
10 could classify LGG patients into subgroups with different
prognoses, screened potential HRD-related genes, and
constructed a robust risk model. In addition, this study
correlated HRD with immune response in LGG for the first
time, which provides another perspective to further understand
the value of HRD in LGG.

In this study, we found that patients with highHRD scores had
higher genomic instability. It is well known that genomic
instability is critical for tumor development (Negrini et al.,
2010; Andor et al., 2017). However, from another perspective,
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FIGURE 6 |Clinical andmutational characteristics of risk score. (A), Violin plot showing differences in risk score between different histopathological subtypes. ***p <
0.001, ****p < 0.0001. (B), Violin plot showing differences in risk score between grade II and grade III. ****p < 0.0001. (C), Violin plot showing differences in risk score
between IDH1 mutant tumor and IDH1 wild-type tumor. ****p < 0.0001. (D), The top 15 frequently mutated genes in high- and low-risk groups. (E), Positive correlation
between the TMB and risk score in the TCGA cohort (Spearman’s rank correlation coefficient, r = 0.44, p = 1.5e−24). (F), Violin plot showing differences in HRD
score between high- and low-risk score groups. *p < 0.05.
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FIGURE 7 | Molecular characteristics of risk score. (A,B), GSEA enrichment plots base on HALLMARK (A) and KEGG (B) gene sets showing the relatively
significantly enriched pathways in high-risk score group. (C), Correlations between risk score and immune activation-related genes expression. (D), Correlations
between risk score and immune checkpoint-related genes expression. (E), Correlations between risk score and TGFβ/EMT pathway-related genes expression. (F),
Correlations between risk score and core biological pathway signature scores. Correlation coefficients are calculated by Spearman’s correlation analysis, with red
representing negative correlations and blue representing positive correlations.
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FIGURE 8 | Relationship between risk score and immune cell infiltration in the TCGA cohort. (A), Heatmap of the relationship between risk score and 28 immune
cells in the TCGA cohort. Age, IDH1 status, gender, vital status, OS time, histologic subtype and WHO grade are shown as patient annotations. (B), Correlations of risk
score with abundance of 28 immune cells. Correlation coefficients are calculated by Spearman’s correlation analysis, with red representing negative correlations and
blue representing positive correlations. (C), Boxplots of the relationship between risk score and 28 immune cells. The upper and lower ends of the boxes
represented interquartile range of values. The lines in the boxes represented median value, and black dots showed outliers. *p < 0.05, ***p < 0.001, ****p < 0.0001. (D),
Positive correlation between the ImmuneScore and risk score (Spearman’s rank correlation coefficient, r = 0.27, p < 0.0001). (E), Positive correlation between the
StromalScore and risk score (Spearman’s rank correlation coefficient, r = 0.41, p < 0.0001). (F), Positive correlation between the ESTIMATEScore and risk score
(Spearman’s rank correlation coefficient, r = 0.34, p < 0.0001).
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high genomic instability may also result in a higher neoantigen
load to tumors, thus making it more likely to be recognized by the
immune system and trigger immune responses (Germano et al.,
2017; Mardis, 2019). In addition, genomic instability upregulates
the cGAS-STING pathway and activates anti-tumor immunity
(Chen et al., 2020a; Kwon and Bakhoum, 2020). Consistent with
this, GSEA found that LGG patients with high HRD were
enriched for inflammatory responses and IFNγ responses,
leading to the inference that the higher immune response in
patients with high HRD may be due to genomic instability. HRD
score was also found to predict the immunogenicity of BRCA1/2
breast cancer in the study by Kraya et al. (2019). Li et al. (2021)
found that prostate cancer patients with high HRD had higher
immune infiltration and immune checkpoint gene expression,
suggesting that prostate cancer patients with high HRD may
respond to immune checkpoint inhibitors (ICIs). These studies
further supported our results and demonstrated that ICIs may be
a promising treatment modality for LGG patients with highHRD.
Since monotherapy is often ineffective and PARP inhibitors are
more sensitive andmay increase chemosensitivity in patients with
high HRD (Gupta et al., 2014; Lesueur et al., 2017; Rescigno et al.,
2018; Gupta et al., 2019; Chen et al., 2021; Ohba et al., 2021),
combining PARP inhibitors with chemotherapy and ICIs may be
a potentially effective strategy in patients with high HRD.

In the univariate Cox regression analysis, we found that most of
the HRD-related genes (72.5%) were associated with the prognosis of
LGG, which implied the key role of HRD-related genes in LGG.
Subsequently, combining LASSO-Cox regression and stepwise
regression, we constructed a robust risk score model with 11 genes
and validated it in an independent cohort. Some of these genes have
been reported in previous studies of gliomas. For example, KCNK3
was also identified as a prognosis-related gene in LGG and was
associated with the development of LGG in the study by Wu et al.
(2022). The downregulation of ASPM can affect DNA double-strand
repair by the DNA-PK pathway and enhance the sensitivity of
radiotherapy in glioma cells (Kato et al., 2011), while high
expression of ASPM is negatively related to TMZ sensitivity in
LGG (Wang et al., 2019). In addition, ASPM promotes glioma
malignancy by activating the Wnt/β-Catenin signaling pathway
(Chen et al., 2020b). CRNDE expression is elevated in gliomas
and correlates with glioma grade and histopathological subtype
(Ellis et al., 2012). Matsunaga et al. (2021) found that the
downregulation of ATP8A2 in C6 glioma cells cultured under
serum-free conditions inhibited the stress-induced externalization
of annexin A2 and ablated membrane lipid asymmetry. A study
by Liu et al. (2018) revealed that SPOCD1 promotes proliferation and
metastasis of glioma cells by upregulating the expression of Pentraxin
3. These studies provide support for the prognostic role of risk scores,
and our study also provides potential targets for the development of
future targeted therapies.

This is the first study to develop a risk model based on HRD in
LGG. The HRD-related genes that constitute the risk model are
not only potential therapeutic targets, but also demonstrate the
critical role of HRD in LGG prognosis, which may inform further
HRD-related studies. It is well known that risk stratification is
essential for individualized treatment and management of cancer
patients. (Watson et al., 2012) Understanding the postoperative

risk stratification has a guiding role in early intervention and in the
development of individualized treatment plans. (Brana and Siu,
2012; Watson et al., 2012) Currently, in clinical work, prognosis is
usually predicted by clinical parameters of LGG patients, such as
tumor grade, histological classification, and IDH1 status. (Zhang
et al., 2013; Komori et al., 2018; McFaline-Figueroa and Lee, 2018;
Kwon et al., 2020). In the present study we propose a more
accurate risk stratification model. By comparing the C-index
between the risk model and other clinical parameters, we
found that the risk model had the highest C-index in both the
TCGA and CGGA cohorts (Supplementary Table S6). Notably,
although the risk model was constructed based on RNA-seq data,
our results also confirm its availability in microarray data
(Rembrandt cohort). Furthermore, according to the coefficients
of HRD-related genes in the riskmodel, higher expression of genes
with positive correlation coefficients is associated with higher risk,
while the opposite is true for genes with negative correlation
coefficients. Therefore, it is possible to roughly infer risk scores
based only on the expression levels of some of the genes in the risk
model, which was also confirmed in the Rembrandt cohort. We
provide an R script to facilitate the inference of risk scores and
immune characteristics for individual samples (Supplementary
File S1).

In the present study, we demonstrated that patients with high-
risk scores had higher immune cell infiltration and higher
immune responses, as well as higher stromal activation and
infiltration of immunosuppressive cells, implying that high-
risk patients had “hot” and suppressed TIME. Although
previous studies have demonstrated that pre-existing
antitumor immunity is beneficial to tumor patient survival
(Rooney et al., 2015; Li et al., 2019a), the prognosis of high-
risk patients who exhibited “hot” TIME in this study had
significantly worse survival, possibly due to intense
immunosuppression. Consistent with this, previous studies
have also shown that immunosuppression has a critical impact
on the prognosis of patients with glioma (Sampson et al., 2017;
Tomaszewski et al., 2019). Given that high-risk patients also have
higher TMB and immune checkpoint molecule expression, it is
reasonable to assume that treatment with ICIs in high-risk
patients could attenuate immunosuppression to enhance
existing antitumor immunity. In contrast, low-risk patients
with “cold” TIME may be suitable for immunostimulatory
agents such as tumor vaccines to increase anti-tumor immune
cell infiltration. However, ICI monotherapy is not currently
effective enough in gliomas (Sampson et al., 2015; Li et al.,
2019b), and new strategies are using combination therapies
such as ICIs combined with tumor vaccines to stimulate
immune responses against the tumor (Vázquez Cervantes
et al., 2021). Notably, high-risk patients also had higher HRD
scores, which makes the strategy of adding PARP inhibitors to
combination therapy worth trying.

This study has several limitations. First, we were unable to
collect LGG samples treated with PARP inhibitors and ICIs to
confirm the speculation that patients with high HRD scores or
high-risk scores may benefit from PARP inhibitors and ICIs.
Second, the prognostic, predictive role of risk score needs to be
validated in prospective cohorts, yet this may require decades of
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follow-up. In addition, the biological role of genes in the risk
model should be elucidated in further preclinical studies in LGG.

CONCLUSION

In conclusion, this study determined the threshold for HRD score in
LGG for the first time, identified HRD-related genes, and constructed
an HRD-based risk score model. Patients with high HRD scores and
high risk scores may benefit from PARP inhibitors and ICIs. The risk
score may not only serve as an effective prognostic marker, but may
also provide potential new targets for future targeted therapies and
facilitate the development of individualized treatment strategies.
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