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Abstract—Agent-based simulation models are an important tool
to study the effectiveness of policy interventions on the uptake of
residential photovoltaic systems by households, a cornerstone of
sustainable energy system transition. In order for these models
to be trustworthy, they require rigorous validation.

However, the canonical approach of validating emulation models
through calibration with parameters that minimize the difference
of model results and reference data fails when the model is
subject to many stochastic influences. The residential photovoltaic
diffusion model PVact features numerous stochastic influences
that prevent straightforward optimization-driven calibration.

From the analysis of the results of a case-study on the cities
Dresden and Leipzig (Germany) based on three error metrics
(mean average error, root mean square error and cumulative
average error), this research identifies a parameter range where
stochastic fluctuations exceed differences between results of
different parameterization and a minimization-based calibration
approach fails.

Based on this observation, an approach is developed that
aggregates model behavior across multiple simulation runs and
parameter combinations to compare results between scenarios
representing different future developments or policy interventions
of interest.

Index Terms—Agent-based Modeling; Computer Model Valida-
tion; Computer Model Calibration; Innovation Diffusion; Rooftop
Photovoltaic Diffusion.

I. INTRODUCTION

A. Motivation

The adoption of rooftop photovoltaic systems by decentral
residential actors is commonly seen as a cornerstone of a
transformation towards a decarbonized energy system [1]. Yet,
the uptake of residential photovoltaic systems fails to meet
the needs for achieving ambitious climate protection goals.
This is due to numerous reasons, which are not all fully
understood (e.g, [2], [3]). Simulation-based models can help
to investigate grounds for this shortcoming, as well as analyze
policy instruments to encourage a larger uptake of residential
photovoltaic systems. For this, agent-based models are seen as
an appropriate tool.

While agent-based innovation diffusion simulation models
can help to understand both the individual and collective
household behavior, as well as the effect of policy interventions
on the modeled systems [4], they need to correspond well to the
modeled context. In order for simulation-based models to allow
inferring the effectiveness of policy measures, modelers need
to ensure that the model corresponds ’as closely as possible’

to the modeled domain. For this, thorough model validation
is crucial. Model calibration, understood as finding a set of
input values that allow the model to match the observed data as
closely as possible [5], is an important part of model validation.

B. Object of investigation & Research Problem

This article presents the validation framework developed
for the PVact simulation model1. PVact is an agent-based
innovation diffusion model for the adoption of rooftop photo-
voltaic systems (PV) by residential households developed at
Leipzig University. It aims at modeling the decision behavior of
individual households embedded in a social and spatial context
under socio-economic and attitude-based considerations.

Operational validation (i.e., the comparison of model results
and real-world data) of agent-based emulation models is
commonly done through model calibration in order to set
free parameters of the model before comparing the respective
simulation results with reference data [7]. However, model
calibration through history matching can be challenging in
contexts involving stochastic influences. The remainder of this
paper thus investigates issues that can be encountered during
the calibration of empirically grounded agent-based technology
diffusion models. In addition, it presents a joint calibration-
validation approach that is designed to address calibration
issues associated with the underlying stochastic nature of these
processes. As an illustrative example, the calibration of the
agent-based diffusion model for decentral PV systems PVact
is considered.

C. Structure

This research problem is addressed by describing the cali-
bration of the model through history matching, the discussion
of the results and its issues, followed by the development
of an approach to evaluate the simulation of different policy
instruments of interest to the modeled system. After the model
is briefly sketched below, section II presents the framework
in which the validation takes place and briefly outlines how
aspects of validation other than operational validation were
addressed. It emphasizes on operational validation and describes
the approach taken in subsequent sections. It thus provides the
methodological background for the rest of the article.

1As a model instance of the IRPact modeling framework [6], which is
published under a GPL-3.0 license under https://github.com/IRPsim/IRPact.

https://github.com/IRPsim/IRPact
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Section III presents the results of the calibration attempt and
discusses issues with the followed approach, which leads to
the development of a more refined approach coined PVactVal
presented in section IV. The paper closes with an outlook to
research avenues addressed in future papers (see section V).

D. Summary of the model

PVact is an agent-based residential rooftop photovoltaic
diffusion model based on the theory of innovation diffusion
[8], the theory of planned behavior [9] and the value-belief-
norm theory [10]. Agents represent spatially explicit households
based on their socio-demographic and psycho-social identity,
as well as their physical living situation. The model focuses
on the decision to adopt rooftop-PV systems through a
step-based decision process and household-specific utility of
the technology. Agents evaluate the technology based on
its expected financial performance, their innovativeness and
environmental concern, as well as social and local pressure.
This is done through a weighted partial utility function that
is triggered once agents develop sufficient interest and the
technology is feasible for their living situation. Interest is
generated through communication with other agents in their
social network on a point-basis until a set threshold is reached.

The model contains numerous stochastic dynamics: agents
are associated with agent groups, which exhibit different socioe-
conomic and psychological profiles2, as well as geographical
variation3. These groups are described through probability
distributions for each agent variable of the model, and during
simulation instantiation values are drawn for each agent from
these distributions. Similarly, the social network is instantiated
randomly with a set number of ties for each agent according to
their milieu, with the probability to form a link with an agent
from a given agent group based on the affinity between these
milieus. For inter-agent communication, communication events
are drawn randomly, with conversation partners being any agent
with an established link to the agent. During communication,
attitudes of agents are adjusted according to the relative
agreement algorithm presented in [11]. Finally, agents have
a chance to change their living situation (proportional to the
rate of construction and renovation associated with the case
study).

II. METHODOLOGY

Model validation is central to the credibility of models and
the use of simulation results. [12] distinguishes between three
forms of validation: the theoretical (or conceptual) verification
used to assess the adequacy of the conceptualization of the
real world, external (or operational) validation used to test
whether the simulation results correspond to the observed data
and cross-model validation used to assess in how far the results
of two models map. To these, [7] adds the forms of internal
validation used to determine the correctness of the software
code, data validation used for assessing data accuracy and

2These are largely based on Sinus® milieus; see https://www.sinus-
institut.de/en for further information.

3Through zip-codes and the possible buildings associated with them.

adequacy and security validation for ensuring minimal model
tampering through model reconfiguration.

Data validation of the model was ensured through careful
selection from different data sources and data processing.
Through hosting the model in a modern model infrastructure
with an experienced partner, security validation was given.
Internal validation was achieved through following clean
code-driven software development practices and code testing.
Additionally, a toy-model concept was implemented to improve
internal validation. Using a series of model configurations
exhibiting clear and drastic model behavior further contributed
to the conceptual validation of the model. In addition to the
toy-model concept, PVact was grounded in existing literature
[2], [3], as well as extensive empirical work during model
development [13]. Finally, cross-model validation could not be
performed as no reference models exist.

A. Operational Validation of PVact

While other forms of model validation can be addressed
during model construction, operational validation is only
possible once an implementation is finished. Operational (or
external) validation is understood as proving the correspondence
of simulation results and observed data, i.e. comparison of
model results with real time-series. This is usually done through
presenting a model instance that reproduces data for a given
case study. Often, this is done through calibrating the model
with a single parameter set that yields minimal error in a similar
model setting.

In a first step, this research addressed this through two
case studies describing the adoption of residential photovoltaic
systems in a residential context. One such case-study (PV
adoption within the city of Leipzig between 2000 and 2019)
was used to assess operational validity of the model, whereas
another case-study (PV adoption within the city of Dresden
between 2000 and 2019) was used for calibration of the
remaining free parameters.

Model calibration involved setting the free parameters for the
interest threshold (a weighted number of events with exposure
to PV for the agents) and the adoption threshold (the minimal
utility that a PV system has to be rated at in order to be
adopted). Parameters were aimed to be set through comparing
simulation results based on different parameter choice with the
observed installation of residential PV systems within the city
of Dresden based on different error metrics as discussed in
section III.

For the case studies, data on installed PV systems by non-
commercial entities within the case-study4, socio-economic
Sinus® milieus and purchase power data5, georeferenced

4taken from https://www.marktstammdatenregister.de/MaStR on a yearly
basis per post code.

5acquired from MB Micromarketing with address-specific granularity for
Leipzig, and street sectional granularity for Dresden.

https://www.sinus-institut.de/en
https://www.sinus-institut.de/en
https://www.marktstammdatenregister.de/MaStR
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building data6 and construction and renovation data7 was
collected. The street sectional Sinus® milieu and purchase
power data was transposed to the address level in Microsoft
Excel, using the provided street section identifiers for each
address. Georeferenced building data sources were merged in
Q-GIS, and then matched with the Sinus® milieu and purchase
power data via the address, resulting in a dataset with 49,657
full entries for Dresden, and 48,112 for Leipzig. The data
sources and the coverage are shown in table I (for the calibration
study) and II (for the validation study).

Table I
DATA SOURCES AND THEIR OVERLAP (ABSOLUTE AND RELATIVE) OF THE

DATA USED FOR THE CASE STUDY DRESDEN

Data source Size Overlap

Absolute Relative

LoD26 141,772 141,772 100%
Inspire6 72,428 51,395 36%
Microm5 68,294 49,657 35%

Table II
DATA SOURCES AND THEIR OVERLAP (ABSOLUTE AND RELATIVE) OF THE

DATA USED FOR THE CASE STUDY LEIPZIG

Data Source Size Overlap

Absolute Relative

Gebäudelayer6 145,786 145,786 100%
Inspire6 70,979 60,197 41%
LoD26 515,513 53,367 37%
Flurstücke6 110,822 50,096 34%
Microm5 69,504 48,112 33%

III. RESULTS & DISCUSSION

For the parameter selection required for the calibration of
the model, the parameter landscape was analyzed through an
iteratively refined grid. In each iteration, a parameter region
around the minimal error in the grid of the previous runs was
analyzed with increasingly higher resolution. For the analysis,
three error metrics were used: the mean average error MAE
measuring the average yearly difference of installed PV systems
between the simulation data xi and observed data x̂i over N
years (see equation 1), the root mean square error RMSE
as the root of the square of these errors (see equation 2) and
the cumulative adoption error CAE as the average error of
installed systems between the simulation and real data (see
equation 3). To keep computational tractibility, the three error
metrics were analyzed in a reduced setting of 1341 agents,

6with address-specific granularity taken from the INfrastructure for SPatial
InfoRmation in Europe (Inspire), and open geodata from the state of Saxony
(3D-building layer with the level of detail 2 (LoD2)) for both case studies;
additional address-specific data on buildings (Gebäudelayer) and land parcel-
specific data on owner situation (Flurstücke) was provided by the city of
Leipzig for Leipzig.

7taken from https://www-genesis.destatis.de/genesis/online on a yearly basis
for Saxony.

while keeping socio-economic and geographical distributions
proportional.

MAE =
1

N

N∑
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RMSE =
1

N
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1

N

N∑
i=1

∣∣∣∣∣∣
i∑

j=1

xj −
i∑

j=1

x̃j

∣∣∣∣∣∣ (3)

The results of the simulation presented in figure 1 show that
low parameter values lead to large errors in all used metrics.
The corresponding graphs show the error (vertical axis with
redder shades corresponding to higher errors and greener shades
corresponding to lower errors) over parameter combinations
of the interest threshold and the adoption threshold in the
horizontal plane.

Figure 1. Error between the reference data and simulation results according
to the error metrics MAE, RMSE and CAE as described through the equations
above.

For other parameter regions, the picture is less clear; A closer
look at the error landscape with smaller errors shows large
variation of errors between similar parameter combinations
that are not consistent throughout the observed error metrics,
as seen in figure 2. In this, the variation between different
parameter combinations in the horizontal plane is much smaller
than in other parameter regions. As the parameter values
between low error values (downward facing green spikes)
correspond to (relatively) larger errors, the deviations between
the corresponding simulation runs and reference data were
larger. While there could be very specific combinations that
yield larger deviations between the model and the observed
data, this high and specific sensitivity seems rather unlikely.

Figure 2. Error between the reference data and simulation results below an
error value of 4.5 (MAE), 3.6 (RMSE) and 37.2 (CAE).

Reruns of parameter combinations yielding a small error term
furthermore show large deviations in measured error between
runs of same parameterization of up to one order of magnitude

https://www-genesis.destatis.de/genesis/online
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for sufficiently small errors in the reduced setting, showing
the influence of random model mechanics for well-performing
runs. An example of this is seen in figure 3, which shows the
PV adoption patterns of the same parameterization (adoption
threshold AT of 0.7092 and an interest threshold IT of 114).

Figure 3. Example of the influence of stochastic elements on the simulation
result. Cumulative adoption patterns in two simulation runs of equal parameter-
ization and the reference series. Parameterization is set at an interest threshold
of 114 and an adoption threshold of 0.7092.

The approach of operational validation with PVact aimed at
finding the parameter combination minimizing the optimization
problem of free parameter calibration thus exemplifies a funda-
mental issue with parameter optimization of stochastic systems.
Where differences within runs are significantly larger than
differences between (averages) of runs of different parameters,
the discriminatory power of performance differences becomes
negligible and new approach for model grounding is needed.
The model validation approach PVactVal is based on this
observation.

IV. PVACTVAL

PVactVal is a simulation model validation approach that
takes into account stochasticity of system dynamics within
agent-based innovation diffusion models. Instead of seeing the
optimization for a singular parameter combination that mini-
mizes the chosen error metric as a single most parsimonious
representation of reality, the approach respects the stochasticity
of real-life systems. The approach thus does not evaluate
measures or options for action on singular model instances, but
groups comparable runs across parameters, stochastic events
and scenarios.

The evaluation phase of the modeling process is structured
as follows:

1) Define the metric M , parameter range [AT,AT ] ×
[IT , IT ]8, granularity g ∈ N+ measures K ∋ k0 (with k0
as the reference case (business-as-usual)), and the number
of repetitions n,

2) Generate a set of g2 ∗ n pair-wise different seeds SL for
the random number generator used in the simulation9,

3) Associate each i ∈ [0, g2−1] with the parameter combina-
tion (ATi, ITi) = (AT + ((i mod g) ∗ AT−AT

g ), (IT +

8With AT as the lower bound of the adoption threshold, AT as the upper
bound of the adoption threshold, IT as the lower bound of the interest threshold
and IT as the upper bound of the interest treshold.

9Two simulation runs with the same seed will yield the same result when
parallelism of the runs is deactivated, allowing comparability between runs
using the same seed.

(⌊ i
g ⌋ ∗

IT−IT
g )) to create an equidistantly spaced grid of

evaluation points within the parameter cuboid10,
4) For each k ∈ K, i ∈ [0, g2 − 1], j ∈ [0, n − 1] evaluate

the model at parameters ATi, ITi with seed sl ∈ SL, l =
i ∗ n+ j, yielding model behavior Pijk,

5) For each pair k, k̂ ∈ K, analyze M(Pijk, Pijk̂),
6) For each repetition j aggregate M(Pijk, Pijk̂) across j ∈

[0, n− 1] and generate the parameter performance matrix
across parameters ATi, ITi.

For 1) the modeler should ensure that the used parameter
range lies in a plausible region, where the model yield results
’close enough’ to the reference data in order to analyze
appropriate model instances.

A. Application of PVactVal

In order to apply the PVactVal approach, a small illustrative
proof-of-concept study was designed. Within the calibration
context of Dresden, scaled down models runs were evaluated
with two scenarios k0, k1 from 2020 until 2030, which illustrate
the influence of the economic parameters. In the reference case
k0, the price degression of PV modules was continued as in
the base model, whereas the consumer-side electricity price
was kept on the level of 2020 and the feed-in remuneration
was moderately reduced by 5% p.a. Based on challenges of
a massive need for decarbonization and the energy crises of
2022, in the pessimistic scenario k1, the residential electricity
price was heavily increased by 7% p.a. from 2022 on, along
with a linear reduction of feed-in remuneration until 2027 and
a slower price degression for PV systems.

Based on the results shown in figure 2, the parameter range of
interest was set to ([AT,AT ], [IT , IT ]) = ([0.6, 0.8], [1, 128]).
Tentative results of this small case study with parameters g =
3, n = 2 and the mean value as error metric M are seen in
figures 4 and 5.

Figure 4. Illustration of the difference of the analysed scenarios. Difference
in the absolute number of adoptions throughout the simulation for scenario
k1 with respect to k0 (left) and the maximal relative spread (top curve) and
minimal relative spread (bottom curve) of the different scenario runs (right).
For the spread, the maximum and minimum difference in adoption for runs of
the same parameter combination was divided by the average spread between
the runs. The relative spread thus gives a measure of variability between the
runs.

The results demonstrate that the scenario k1 leads to
increased adoptions. They also show that there is considerable

10This transformation from a one-dimensional index to a two-dimensional
grid decomposes the fraction i

g
into its whole integer part ⌊ i

g
⌋ (with the floor

function projecting a rational number to its lowest integer neighbour) and its
remainder (i.e., i

g
= ⌊ i

g
⌋+ i mod g , ∀i, g ∈ Z).
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Figure 5. Visualisation of the number of adoptions in the scenarios. Plot of the
absolute number of adoptions through the simulation for different parameter
combinations (left) and the relative number of cases (right) as normalized by
the average number of adoptions in k0 (top) and k1.

variation both between runs (as clearly demonstrated in figure
5) and between different parameter combinations. The strong
difference in the absolute number of adoption (left plots in
figure 4 and 5), particularly for lower adoption parameters,
illustrates the different simulation behavior between the two
scenarios. The strong variability between different parameteri-
zations, however, shows that the parameter region requires more
comprehensive and granular investigation to identify suitable
parameter regions. The low granularity was chosen due to
the resources constraints in the research associated with this
conference paper and was considered to be acceptable as this
case-study was presented purely for illustrative purposes with
respect to the approach presented above.

While this scenario was designed to be pessimistic for resi-
dential consumer agents due to massively increasing electricity
cost, it leads to system behavior that, from the aggregated
perspective, can be judged rather positively with respect to
reaching ambitious decarbonization goals necessary to mitigate
the worst scenarios of the climate catastrophe. Due to the
cost pressure of not adopting, many households adopt the
technology, particularly where the burden to adoption (adoption
threshold) is low.

For the interpretation of the results, the authors want to
stress that these must not be taken normatively, even when
considering the need for massive installation of rooftop PV
systems. PVact was designed in the context of the modeling
infrastructure IRPsim [14] as an agent-based PV diffusion
model that was coupled to a techno-economic optimization
model primarily used for investigating business models for
municipal energy providers. From this perspective, a strong
increase in residential power generation by (former) customers,
can exert much pressure on these actors. For decision makers
in these companies, measures that lead to steep adoption might
be judged differently than by other actors.

V. FUTURE WORK

The presented research is part of active and ongoing research
on the simulation model PVact and is as such part of further
investigation concerning the model. Future research will focus
on the integration of this validation framework in the deeper
understanding of the model. One promising avenue for this is

seen in investigating the effect of singular model dynamics on
a component-based level. By changing or even switching off
certain model components, their effect, as well as the interaction
with other model components, can be observed. This would
not only inform understanding of the respective components,
but the model behavior itself.

Furthermore, model development has focused more on the
validation of the model than its application and the evaluation
of policy instruments. Implementing the instruments and
comparing the inter-instrument differences would lead to insight
in both the effects of the instrument and the model. The
approach described in IV is explicitly designed to compare
different policy measures and should be evaluated through its
application to these measures.

On a more theoretical side, further research should analyze
different approaches to aggregate the quality of the results.
It stands to reason that results differ regarding whether the
measures are compared between individual runs (as described
in section IV) or if the runs of the same parameter combinations
were aggregated before step 5). This would most likely hold
as well when the inter-measure comparison is done after the
parameter performance matrix is aggregated. This would also
depend on how the measures are compared. Different runs with
different parameter sets lead to a distribution of the model
results on which basis the measures are compared. Concretely,
this would concern whether the used metrics M are based on
a scalar value or a matrix of values and how distances are
measured and evaluated.

A further influencing factor on the quality of the results is
assumed to be due to the scaling of the computational resources.
It stands to reason that the model does not scale linearly and
that model behavior would differ qualitatively between the full
and the scaled version. A deeper investigation in this matter
would be fruitful for the quality of the analysis.

Finally, establishing a stronger link with the literature on
uncertainty in modeling and simulation, as well as statistical
issues, would prove helpful to anchor the discussion theoreti-
cally.
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