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Abstract—Chlor-alkali electrolysis indicates significant demand response potential, accounting for over 2% of Germany’s total elec-

tricity demand. To fully analyze this potential, digital models or digital twins are necessary. In this study, we use the IRPopt modeling 

framework to develop a digital model of an electrolysis process and examine the cost-optimal load shifting application in the day-ahead 

spot and balancing reserve market for various price scenarios (2019, 2030, 2040). We also investigate the associated CO2 emissions. 

Combined optimization at both markets results in greater and more robust cost savings of 16.1% but cannibalizes the savings that are 

possible through optimization separately at each market. In future scenarios, the shares of savings from spot and reserve market could 

potentially reverse. CO2 savings between 2.5% and 9.2% appear only through optimization at the spot market and could even turn 

negative if optimized solely at the reserve market. 

Index Terms--Demand response, Balancing reserve market, Electricity spot market, Digital model, Chlor-alkali electrolysis 

I. INTRODUCTION 

A. Background 

Electricity supply faces the challenge of continuously balancing supply and demand within a small tolerance window. While 
day-ahead spot markets optimize the medium term supply and demand balance, supply-side management through markets and 
regulations, such as balancing reserves and redispatch is applied for short-term balancing[1]–[3]. Demand side management, on 
the other hand, is also applied through the reserve market and the ordinance for interruptible loads (in Germany: AbLaV - Ver-
ordnung zu abschaltbaren Lasten) but with lower contributions [4]. However, energy-intensive industries like the chlor-alkali 
electrolysis (CAE), responsible for producing chlorine, sodium hydroxide, and hydrogen, indicates great flexibility potential with 
over 2% share of Germany’s total electricity demand and relatively low cost for shifting load [5]. This could potentially reduce 
overall balancing costs and at the same time electricity procurement costs which are a key factor for industrial competitiveness in 
times of rising energy costs. The flexibility potential for demand response load shifting (no load shedding) depends largely on 
intermediate product storage capacity or flexibility of the downstream processes. The flexibility potential can be used to generate 
cost savings at the day-ahead spot market through increasing electricity consumption and substance production during times of 
lower electricity prices and vice versa. It can also be used to generate revenues by providing balancing reserve which contributes 
to further cost savings. Related CO2 emissions will likely also change with the altered load. Determining these potential cost and 
CO2 savings requires advanced digital multi market optimization models. 

B. Review 

Despite numerous existing studies on the savings potential of the spot market, little attention has been paid to the related CO2 
emissions (Table I). Since none of the CAE studies analyzed potential CO2 savings one study about the cement industry is added 
in the review table. No known study analyzed present and future savings potential of a CAE through demand response load shifting 
optimization at the day-ahead spot and balancing reserve market, including its related CO2 emissions.  
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TABLE I.  STUDY REVIEW: INDUSTRIAL DEMAND RESPONSE 

     Savings 

Industry Ref. Year Author A-Z Electricity cost  CO2 

CAE 

[6] 2018 Otashu et al. 7.3% - 

[7] 2019 Roh et al. 1.9 – 7.3%. - 

[8] 2014 Wang et al. 4.83% - 

[9] 2019 Brée et al. 3.4 – 7.1% - 

[10] 2008 Babu et al. 3.97 – 9.06% - 

[11] 2020 Richstein et al.  12.54 – 18.84% - 

Cement [12] 2017 Summerbell et al.  4.2% 4% 

 

C. Objective 

In an effort to fill the research gap, this study aims to investigate the savings potential of demand response load shifting at the 
day-ahead spot and balancing reserve markets, both for present and future scenarios, while also taking into account the associated 
CO2 emissions. The objective of this study is two-fold:  

1) Present savings: Determining the maximum electricity cost and related CO2 savings through utilizing the demand 

response load shifting potential of a CAE at the day-ahead spot and balancing reserve market separately and combined for 2019 

price levels in Germany. 

2) Future savings: Determining 1) for assumed future day-ahead spot and balancing reserve prices for the key years 2030 

and 2040. 

II. METHOD 

A.  Methodical outline 

The general methodical approach is based on quantitative techno-economic analysis with the help of mathematical optimiza-
tion modeling. The study utilizes the IRPopt mixed-integer modeling framework [13]–[15] to develop a digital model of an 
empirical CAE process and optimize it over different markets and scenarios. We focus on key performance indicators such as 
electricity cost and related CO2 savings, generated by cost optimal load shifting based on the day-ahead spot and balancing reserve 
market prices. This study considers balancing reserve provision, but not the statistical reserve activation. CO2 emissions are cal-
culated by multiplying the hourly CO2 emission factor of the German electricity system with the hourly (shifted) CAE load. The 
savings generated through load shifting are compared across different scenarios. The future scenarios for the development of the 
electricity day-ahead spot and balancing reserve prices and related CO2 emissions are based on previous analyses with the funda-
mental electricity market models MICOES-Europe and MICOES-Barometer [16], [17]. 

B. Model embedment 

Figure 1 illustrates the embedment of the models and major input and output data flow from the perspective of IRPopt. The 
input data stream is represented in blue, the output data stream in green. The data of the CAE value chain, along with the electricity 
spot and balancing reserve prices, serve as input data for IRPopt. Our IRPopt instance is embedded in the IRPsim modeling 
platform [18], [19]. The raw output data is further processed and then used to evaluate the electricity cost and CO2 savings, which 
are the key performance indicators of this study.  

 

Figure 1.  Applied modeling framework 

C. IRPopt modeling framework 

The IRPopt modeling framework allows the design of economic dispatch energy system optimization models. It utilizes a 
dynamic, deterministic mixed-integer modeling approach, which can be adjusted to varying levels of temporal granularity and 
rolling horizons. The model framework is implemented in GAMS (General Algebraic Modeling System), utilizing the mixed-
integer feature from IBMs CPLEX solver. Its objective is to maximize profit through optimal dispatch of energy carriers and 
substances (e.g., chlorine) under a wide range of techno-economic constraints. One of the unique features of IRPopt is its ability 

          

                       
                          
                     

      
        

      

      

        

                 
            

           

              
    

            

          

                  
                  
               
                     

      
       

            
           

           
         
               
                      
                         

                        
                   

                            

      
          

          
              

                                   
                                 

      
    
       
      



 

to build energy systems from a large portfolio of consumer, storage, producer, and distribution technology components, as well as 
multiple energy carriers, including electricity, heat, hydrogen, and various fossil fuels. Configurable demand response load shifting 
settings are available for consumer components. Parameters for the components comprise technical (e.g., efficiency, ramp-rate) 
and economic (e.g., tariffs, variable costs) information. IRPopt has already been applied in the past to answer a wider range of 
research questions including questions regarding residential demand response potentials [20], [21]. 

The IRPopt modeling framework and the IRPsim platform are open-source and licensed under GPLv3 [14]. The platform 
provides back- and frontend structures for a web-based implementation including a graphical user interface. In addition, an ex-
pandable multi-scenario database is integrated. IRPopt runs on a 3.35 GHz 32 core CPU with 252 GB RAM. The calculation time 
for one case varies between 10 minutes and one hour, depending on the complexity of the model. The latest version of IRPopt and 
IRPsim can be found on GitHub [14], with the version used in this study available under the archived releases [22]. More detailed 
model descriptions are available under [13], [15]. 

D. MICOES-Europe and -Barometer model 

MICOES-Europe and -Barometer are both fundamental unit commitment models for the electricity market. They are imple-
mented in GAMS using IBM’s CPLEX solver and employ a dynamic, deterministic mixed-integer linear modeling approach with 
a discrete hourly resolution and an adjustable rolling horizon. More detailed information can be found in [23]–[26]. In the follow-
ing, the modeling process of the electricity day-ahead spot and balancing reserve prices and related CO2 emissions is briefly 
summarized. The main input data for both models are electricity demand, technical specifications of the power plant fleet on plant 
level, commodity prices and renewable electricity generation capacity including the selection of a weather year.  

MICOES-Europe determines the cost-optimal unit commitment and dispatch under the main constraint of satisfying electricity 
demand based on the input of various scenarios. The unit commitment reflects the merit order, and, assuming that operators' bids 
correspond to their marginal costs, together with electricity demand, sets the clearing price, the day-ahead spot price. MICOES-
Barometer uses these modeled spot prices as input data for calculating the balancing reserve prices based on opportunity costs. 
While the cost-optimal unit commitment for the spot market is determined by MICOES-Europe, MICOES-Barometer determines 
cost optimal unit commitment for both the spot and balancing reserve market. The difference between the results of both markets 
represents the opportunity costs. The exogenously balancing reserve demand is calculated beforehand. For the historical 2019 
scenario the reserve demand is taken as it was. For the future scenarios 2030 and 2040, the demand is calculated based on a 
dynamic method [27]. The related CO2 emissions originate from the cost optimal unit commitment. Both MICOES models run on 
a 2.1 GHz, 8 cores CPU with 48 GB RAM. Calculation time for one case varies between 2 to 5 days. 

III. CASE STUDY 

A. System 

The techno-economic specifications of the CAE are based on an existing average-sized plant in Germany. An overview of the 
process steps of the system is given in Figure 2. 

 

Figure 2.  System: CAE value chain 

The primary focus of this study is to analyze the potential electricity and CO2 savings through demand response via cost-
optimal load shifting at the electricity day-ahead spot and balancing reserve market. Therefore, the input products sodium chloride 
and water were not included in the analysis, as indicated by the gray shading of the fields. The output products sodium hydroxide 
and hydrogen were also not included in the analysis. The reason for this is the fixed output mix of the three output products 
represented by 1 ECU (electrochemical unit), i.e., 1 t chlorine, 1.1 t sodium hydroxide, 0.03 t hydrogen [28], and that the relative 
chlorine storage capacity is the lowest compared to sodium hydroxide and hydrogen, making the chlorine value chain the bottle-
neck. The operator of the "CAE process" can buy electricity from the "electricity day-ahead spot market". Depending on CAE 
efficiency and operating level, chlorine is produced at a specific rate. The chlorine is transported via "Pipeline 1" to "Rail tank Car 
1-3", which then delivers it to the aggregated consumer group "Consumer 1". Via "Pipeline 2", the chlorine is transported directly 
to the aggregated consumer group "Consumer 2". The parameter specification for the various stages of the value chain can be 
found in Table V. The most important parameters are explained in the following paragraph.  

Electricity source: Source of electricity which is not further specified and economically managed through the day-ahead spot 
market. Utilization: Annual average CAE load divided by its maximum load. The load factor must be less than 100% to leave 

    

       

         

        

         

    

         

    

          

      

          

   

               
            

      

           

            

      

      

               

               

             

       

        

        
 
 
  
 
  
 
  
 
 
  

 
 
  
 
 

                                            
                                

      

            

          

    

          

       



 

room for flexible operation. Efficiency: Process conversion efficiency is the number of ECUs produced, divided by the electrical 
energy consumed. Higher efficiencies lower the utilization of a CAE at a given chlorine demand and therefore provide more room 
for load shifting. Operating range: Possible operating range of the CAE between its maximum and minimum load. It must be 
greater than 0% to allow load shifting. Ramp rate: Maximum increase or decrease of the CAE load within the operating range in 
a given time interval. It must be sufficiently fast to respond to the dynamic prices of the electricity source or the requirements of 
the balancing reserve products regarding activation time. Start-up cost: Cost of cold start of the CAE process. If the cost is lower, 
it may make sense to shift the load and shut down the plant at certain time intervals. Chlorine storage capacity: Capacity to store 
chlorine in the main static storage facility. Within the chlorine value chain, the total storage capacity must be greater than zero to 
enable load shifting when there is no consumer-side load shifting capacity for chlorine. Rail tank car capacity: Capacity to store 
chlorine in mobile storage, typically represented by three rail tank cars. Chlorine consumer demand: Chlorine demand over time 
for each consumer group. A precondition for load shifting is a chlorine demand lower than the maximum production capacity. 
Electricity day-ahead spot: Electricity market with dynamic prices in hourly resolution. It provides the first financial incentive for 
triggering load shifting activities through demand response. Balancing reserve: Reserve market with the three products ±FCR 
(Frequency Containment Reserve, ± positive/negative), ±aFRR (automatic Frequency Restoration Reserves) and ±mFRR (manual 
Frequency Restoration Reserve). The products are specified in detail in Table VI.  

B. Scenarios and data 

The present and future electricity spot and balancing reserve prices and the related CO2 emissions originate out of three un-
derlying scenarios called after their target year 2019, 2030 and 2040. 2019 represents the historical reference year while 2030 and 
2040 represent the selected future key years. The underlying current and assumed future market conditions are drawn from estab-
lished publications from Agora, ENTSO-E, European Environment Agency and the German transmission system operators [29]–
[32]. Each scenario differs in its national renewable electricity generation, CO2 price, electricity demand (Table II) and reserve 
demand (Table III), resulting in varying market prices (Table IV).  

TABLE II.  SCENARIO DATA: GENERAL PARAMETERS 

 Scenario 

Parameter 2019 2030 2040 

Renewable electricity generation [TWh] 237 364 435 

CO2 price [€/t] 25 60 80 

Electricity demand [TWh] 490 529 513 

Source: Own assumptions and data from [29]–[32]. 

TABLE III.  SCENARIO DATA: RESERVE DEMAND 

Average reserve demand [MW] Scenario 

for Product 2019 2030 2040 

±FCR 605 430 432 

+aFRR 1 903 2 092 1 308 

-aFRR 1 798 1 712 1 137 

+mFRR 1 401 2 092 1 308 

-mFRR 1 026 1 712 1 137 

Source: Preparatory model calculations and for 2019 data from [3], [33]. 

TABLE IV.   SCENARIO DATA: PRICES AND CO2 EMISSIONS 

Prices and CO2 emissions Scenario  
Parameter 2019 ±% 2030 ±% 2040 ±% 

Day-ahead spot [€/MWh] 37.67 28 60.86 33 53.11 71 

CO2 emission factor [t/MWh] 0.38 23 0.21 39 0.19 49 

±FCR [€/MW/h] 13.62 33 17.91 50 4.55 55 

+aFRR [€/MW/h] 15.04 77 13.59 41 8.07 58 

-aFRR [€/MW/h] 14.46 84 0.11 191 0.00 198 

+mFRR [€/MW/h] 24.57 123 0.22 168 0.00 196 

-mFRR [€/MW/h] 9.27 107 0.07 194 0.00 200 

„±%“ = average positive and negative deviation in % (spread) 

Source: Calculations with MICOES-Europe and -Barometer  

and for 2019 data from [3], [33]. 



 

TABLE V.  CAE VALUE CHAIN DATA 

Parameter Unit Value 

1 
Electricity source: day-ahead spot    

See Table IV   

2 

CAE process     

Utilization % 82.5 

Capacity max MW 56 

Capacity min MW 28 

Efficiency ECU/MWh 0.434 

Ramp rate up ECU/h 122 

Ramp rate down ECU/h 244 

Start-up cost €/pc 50 000 

Maintenance  h/a 240 

3 

Chlorine storage     

Capacity tCl 960 

Charging rate tCl/h 960 

Charging efficiency % 100 

Self discharge %/h 0.0001 

4 

Pipeline 1     

Capacity tCl 124 

Flow rate tCl/h 124 

Loss %/h 0.0001 

Pipeline 2   

Capacity tCl 74.4 

Flow rate tCl/h 74.4 

Loss %/h 0.0001 

5 

Rail tank car -each     

Capacity tCl 124 

Charging rate tCl/h 124 

Charging efficiency % 100 

Self discharge %/h 0.0001 

6 

Chlorine consumer     

Demand tCl/a 175 644 

Demand share rail tank car % 38 

Demand share pipeline % 62 

Source: Empirical data and [28]. 

TABLE VI.  RESERVE MARKET SPECIFICATION 

Reserve market specification Product 

Parameter FCR aFRR mFRR 

Block bid length [h] 4 4 4 

Minimum bid capacity [MW] 1 5 5 

Activation time maximum [min] 0.5 5 15 

Activation length per incident [min] 15 60 60 

Obligatory bid (symmetry) + ∧ - + ∨ - + ∨ - 

Source: Cf. [3]. 

IV. RESULTS 

The study focuses on key indicators such as electricity cost savings and CO2 emissions across different markets (electricity 
spot, balancing reserve) and scenarios (2019, 2030, 2040). Figure 3 presents the results of the first research objective “present 
savings”, which analyzes the cost and CO2 savings through cost-optimal load shifting for four market combinations (none, spot 
only, reserve only, spot & reserve combined) in the present scenario 2019. Spot market optimization leads to electricity cost 
savings of 5.8% and CO2 emission savings of 2.7%. Reserve market optimization leads to electricity cost savings of 13.3% and 
CO2 emission savings of -2.7% (negative savings = increase). Optimization combined at both markets leads to the largest electricity 
cost savings of 16.1% and CO2 emission savings of 2.5%. The cost savings contribution of the reserve market is a bit more than 
double as much as the one of the spot market. 



 

 

Figure 3.  Results 1: present savings 

Figure 4 shows the results of the second research objective “future savings”, which analyzes the cost and CO2 savings through 
cost-optimal load shifting for three market combinations (none, spot only, spot & reserve combined) in the scenarios 2030 and 
2040. To ensure efficient comparability, scenario 2019 is shown again here. The costs and emissions of cases with load shifting 
(spot, spot & reserve) are compared to the reference cases without load shifting (none). Hereby the savings are displayed as 
changed total electricity costs and CO2 emissions in % compared to the reference cases.  

 

Figure 4.  Results 2: future savings 

Compared to scenario 2019, scenario 2030:spot shows a slight decrease in costs to 93.7%, while scenario 2040:spot shows a 
steeper drop in costs to 86.7%. Scenario 2030:spot & reserve shows larger savings than in scenario 2030:spot, but considerably 
smaller savings than in scenario 2019:spot & reserve. CO2 emissions barely change across spot-reserve market combinations but 
show a significant decline from 2019 to 2040 in a close to linear manner.  

V. DISCUSSION 

The combined optimization of load shifting at the spot & reserve markets yielded the highest electricity cost savings of 16.1% 
(Figure 3). However, this also led to a cannibalization effect whereby the contribution of each market is reduced. This effect can 
be attributed to the fact that both incentives, lower electricity prices or higher revenues through reserve provision, compete with 
each other and provide opportunity costs. For instance, procuring electricity during high price periods to bid and provide +aFRR 
can result in higher revenue, which can offset the increased electricity costs.  

In the case of future spot market optimization (Figure 4), the primary driver of electricity cost savings is not the larger average 
electricity price, but its fluctuation. The price variability allows the minimization of costs by maximization of production in periods 
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with lower electricity prices. Table IV shows the increasing price deviations in grey alongside average prices over the scenarios. 
The main reason for the increasing deviations is the variability of residual load through increased shares of renewable electricity 
capacity in the mix. Both, the price deviations and the electricity cost savings through load shifting based on the spot market 
slightly increase from 2019 to 2030 and increase significantly more from 2030 to 2040.  

The low future prices for -aFRR and ±mFRR assumed in this study (Table IV) led to decreasing cost savings in scenario 2030 
and 2040 (Figure 4). One reason for the low prices is the modeling approach of MICOES-Barometer with the assumption of lower 
reserve demand through the ongoing European reserve market integration and increasing reserve capacity potential like biomass, 
power-to-heat or gas power plants. These plants have low opportunity costs for reserve provision resulting from the high infeed 
of renewable electricity (II.D). In the event of a call for balancing reserve, they could generate some additional revenue through 
the activation which is not considered in this study. The total cost savings of 5.8-16.1% are within the range of the study review 
of 1.9-18.84% (Table I).  

CO2 emission savings seem to relate with spot market optimization because they appear only in spot cases and become negative 
in the reserve only case (Figure 3). The plausibility of this relationship should be explained with the help of Figure 5. It shows the 
annual duration curve of electricity spot prices of the year 2019 (blue) and the relating characteristics of further parameters like 
the CO2 emission factor (red). CAE load w/o load shifting (black) is based on an empirical production profile. CAE load with load 
shifting (yellow) is the resulting CAE load profile after load shifting based on spot market optimization of scenario 2019. Note 
that the dots stand for the averages over 438h periods for better visibility. CO2 emission factor (red) relates positively with the 
electricity spot prices. This means that a shift of load from high price to low price periods (blue) simultaneously leads to lower 
CO2 emissions. In contrast, the CO2 emission factor (red) shows little to no correlation with the positive (green) and negative (light 
green) balancing reserve prices. This is the reason that there turned out to be slightly less emission savings in the spot & reserve 
case than in the spot case and that there is even a 2% increase in emissions in the reserve only case compared to the reference case 
(Figure 3, Figure 4).  

 
Source: IRPopt model calculations and data from [3], [29], [33]. 

Figure 5.  Annual electricity price duration curve and relating parameters 

Limitations of this study are the assumption that 100% of the consumed electricity is bought on the day-ahead spot market (no 
OTC: over the counter, which is often mixed with day-ahead spot trading) and that the short term price forecasts are 100% accurate. 
For balancing reserve, only provision and no statistical activation is considered.  

VI. CONCLUSION 

The study provides valuable insights into cost savings and CO2 emission reductions achievable through optimized load shifting 
in different electricity markets (spot and reserve) and scenarios (2019, 2030, 2040). Combined optimization across both markets 
has the largest savings potential of 16.1% (reserve market: 11.5%, spot market: 4.6%) but leads to cannibalization effects. Cost 
savings through reserve provision may decrease in the future while savings through spot market optimization could multiply with 
increasing electricity price spreads. Due to these different developments, offering flexibility combined on both markets can in-
crease savings robustness. Optimization on the spot market can effectively reduce CO2 emissions by 2.7-9.2%. In contrast, 
optimization only in the reserve market can even increase emissions by 2%.  

These savings potentials are new to numerous companies. Policy makers could help to unlock the flexibility potential of energy 
intensive industries like the CAE through the implementation of supportive initiatives. The study highlights the importance of 
modeling assumptions in determining the feasibility and cost-effectiveness of load shifting strategies. Therefore, policymakers 
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and companies need to carefully consider the underlying assumptions and uncertainties when evaluating the potential benefits and 
drawbacks of load shifting strategies. Future upgrades to the digital model, including the integration of automated data connections 
to create a digital twin, could enable real-time optimization of flexibility use and electricity procurement not only for chlor-alkali 
electrolysis processes but also for other complex energy-intensive environments. Further research is needed to consider the acti-
vation of balancing reserves and the accurate integration of electricity trading mechanisms. 
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