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Referat (abstract):
Charged or rotating black holes possess an inner horizon beyond which determinism is
lost. However, the strong cosmic censorship conjecture claims that even small perturba-
tions will turn the horizon into a singularity beyond which the spacetime is inextendible,
preventing the loss of determinism. Motivated by this conjecture, this dissertation stud-
ies free scalar quantum fields on various black-hole spacetimes to test whether quantum
effects can lead to the formation of a singularity at the inner horizon in cases where
classical perturbations cannot. The starting point is the investigation of the behaviour
of real-scalar-field observables near the inner horizon of Reissner-Nordström-de Sitter
spacetimes. Using semi-analytical methods, we find that quantum effects can indeed up-
hold the censorship conjecture. Subsequently, we consider charged scalar fields on the
same spacetime and observe that a first-principle calculation is essential to accurately de-
scribe the quantum effects at the inner horizon. As a first step towards an extension of
these results to rotating black holes, we rigorously construct the Unruh state for the real
scalar field on slowly rotating Kerr-de Sitter spacetimes. We show that it is a well-defined
Hadamard state and can therefore be used to compute expectation values of the stress-
energy tensor and other non-linear observables.

Geladene oder rotierende schwarze Löcher besitzen einen inneren Horizont; jenseits dieses
Horizonts geht die Vorhersagbarkeit verloren. Dagegen fordert das "strong cosmic censor-
ship conjecture", dass sogar kleinste Störungen den inneren Horizont in eine Singularität
verwandeln und so den Verlust der Vorhersagbarkeit verhindern. Vor diesem Hintergrund
untersucht die vorliegende Dissertation freie, skalare Quantenfelder auf verschiedenen
Raumzeiten mit einem schwarzen Loch. Das Ziel ist es zu überprüfen, ob Quantenef-
fekte das Entstehen der Singularität in den Fällen herbeiführen können, in denen klas-
sische Störungen dies nicht können. Als Startpunkt dient das Verhalten verschiedener
Observablen reeller Skalarfelder am inneren Horizont von Reissner-Nordström-de Sitter-
Raumzeiten. Wir bestätigen unter der Verwendung semi-analytischer Methoden, dass
Quanteneffekte die "censorship"- Vermutung aufrechterhalten können. Im Anschluss
betrachten wir geladene Skalarfelder auf derselben Raumzeit und zeigen, dass quan-
tenfeldtheoretische Berechnungen notwendig sind, um die Quanteneffekte am inneren
Horizont genau zu beschreiben. Ein erster Schritt, um diese Ergebnisse auf rotierende
schwarze Löcher zu erweitern, ist eine mathematisch exakte Konstruktion des Unruh-
Zustands für ein reelles Skalarfeld auf einer langsam rotierenden Kerr-de Sitter-Raumzeit.
Wir zeigen, dass dieser Zustand ein wohldefinierter Hadamard-Zustand ist, der für die
Berechnung von Erwartungswerten des Energie-Impulstensors und anderer nicht-linearer
Observablen verwendet werden kann.
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1 Introduction

Our universe is filled with fascinating physical phenomena at all scales. At large scales,
there are for instance the evolution of our universe under the influence of its matter con-
tent or the intriguing phenomena surrounding black holes. All of this is best described
by general relativity, Einstein’s theory of gravity. At small scales, one enters the realm
of quantum mechanics and quantum field theory. These theories have been extremely
successful in describing the particles making up all matter and their interactions.

However, we know that the realms of quantum theories and general relativity can also
interact with each other, and that physics at the smallest scales can have visible impact on
the physics at large scales. This is seen for example in the evaporation of black holes [1]
which is only possible due to quantum effects. Fully understanding these effects requires
to unify general relativity and quantum field theory into a theory of both gravity and
quantum fields – quantum gravity.

As of now, no complete theory of quantum gravity exists, even though there is a broad
spectrum of different approaches, see for example [2] for a recent review. The construc-
tion of such a theory is possibly one of the biggest open questions in theoretical physics
today. With experimental data being mostly in excellent agreement with either general
relativity or quantum field theory, and only very little data to constrain potential quantum
gravity models, especially at high energies, it is very hard to tell which candidate theory
is the most promising.

Even in the absence of a theory of quantum gravity, it is possible to explore the interac-
tions between gravity and quantum theory using the well-established theories of general
relativity and quantum field theory. While this does not cover all possible scenarios, there
are regimes in which the interactions between gravity and quantum matter should be well-
described by these models. In this ansatz, called semi-classical gravity, the matter fields
are treated by quantum field theory while gravity is treated classically. The two are then
connected by the semi-classical Einstein equations

Gν% + Λgν% = 8π
(
〈Tν%〉Ψ + Tν%

)
. (1.0.1)

Here, Gν% = Rν% − gν%R/2 is the Einstein tensor, Λ is the cosmological constant, Tν%
is the stress-energy tensor of the classical matter, and 〈Tν%〉Ψ is the expectation value of
the stress-energy tensor of the quantum matter in the state Ψ. Semi-classical gravity is
expected to be valid as long as the curvature remains small compared to the Planck scale
and the fluctuations of the stress-energy tensor remain small compared to its expectation
value1.

1Even in this regime, the semi-classical Einstein equation has conceptual and mathematical problems, but
it can still give useful insights.
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Making sense of the semi-classical Einstein equations (1.0.1) requires an understanding
of quantum field theory in curved spacetime. One needs to be able to compute expecta-
tion values of operators requiring renormalization in a local and covariant way and to
understand the notion of having the same physics in different spacetimes [3, 4]. In the
effort to extend the concepts of quantum field theory to curved spacetimes in a consistent
way for this purpose, there has also been considerable progress in understanding quantum
field theory itself, introducing important concepts such as the principle of local covariance
which lead to a formulation of quantum field theory in the language of categories [5] or
the local and covariant renormalization of Wick squares and time-ordered products [6, 7].

Even with these still developing techniques, it remains an extremely difficult task to
solve (1.0.1). So far, it has only been accomplished in highly symmetric situations for
free quantum field theories [8–13]. Instead of fully solving (1.0.1), a common approach is
to compute 〈Tν%〉Ψ on a fixed background spacetime which solves (1.0.1) for 〈Tν%〉Ψ = 0,
neglecting the backreaction of the quantum field onto the spacetime. Even this reduced
problem is very challenging, since the un-renormalized quantities and the counterterms
required for the renormalization are often given in different forms which are incompatible
for numerical evaluation. However, there are methods available, such as pragmatic mode-
sum renormalization [14, 15] or state subtraction [16, 17] that allow the computation of
expectation values such as 〈Tν%〉Ψ.

While this is not a self-consistent solution to (1.0.1), these results can give hints as
to how the geometry of the spacetime may be influenced by the quantum effects and
vice versa. Important physical results obtained along these lines include the evaporation
of black holes by Hawking radiation [1], the Unruh effect [18], or particle creation in
an expanding universe [19, 20]. They illustrate that the method described above can be
utilized to investigate the effect of quantum fields on physically interesting spacetimes.

In this thesis, we will focus on quantum effects in black-hole spacetimes. Black holes
are astrophysical objects of increasing observational importance. Quite recently, the shad-
ows of the central black holes in our own galaxy [21] and in M87 [22] have been observed
for the first time. Moreover, gravitational-wave detectors have recorded a large number of
mergers of a black hole with a second black hole or a neutron star over the last couple of
years [23]. Observations like these and their future improvements require an increasingly
detailed theoretical understanding of black-hole spacetimes, including their interaction
with (quantum) matter.

Apart from their observational importance, black-hole spacetimes also pose a variety of
conceptual questions. While the observational aspects of black holes concern mainly the
black-hole exterior, many of the theoretical questions also involve the interior of the black
hole and its structure. One example is the occurrence of a singularity in black holes. It
was originally assumed that they are mere artifacts of the high symmetry of the stationary
black-hole solutions. However, Penrose [24] showed in a seminal work that the spacetime
singularities inside black holes actually appear generically in gravitational collapse under
some positivity assumptions on the stress-energy tensor appearing in the Einstein equa-
tions. At the singularity, our current physical theories break down, indicating an incom-
pleteness of our present theories of gravity and (quantum) matter. A complete quantum
gravity theory should resolve this issue of incompleteness in some way.
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Instead of the singularity problem, we will focus on another conceptual question in this
work, namely the loss of determinism in the interior of charged or rotating black holes. In
contrast to the non-charged, non-rotating black-hole solution derived by Schwarzschild
[25], these black holes have a rich structure in their interior. They (or their analytic con-
tinuations) contain a second horizon, called the inner horizon, and beyond it a region
with a time-like singularity. This does not only lead to the possibility of bypassing the
singularity and exiting the black hole into a different exterior universe in the analytically
extended spacetime, but also to a breakdown of determinism: the journey through the
region beyond the inner horizon is no longer determined by initial data which suffices to
describe the complete spacetime up to this horizon. The inner horizon, marking the future
boundary of the maximal Cauchy development of this initial data, is therefore also called
"Cauchy horizon".

As a solution to this issue, Penrose [26] argued that any small perturbation of the exact
black-hole initial data will lead to the formation of a singularity at the inner horizon, ma-
king it impossible to extend the spacetime beyond it. This renders the loss of determinism
inconsequential.

Since this idea plays a central role as a motivation for this thesis, let us take a more de-
tailed look at it. The heuristic argument presented by Penrose works as follows: Imagine
a spacetime with a charged or rotating black hole and imagine there are two observers in
this spacetime. Observer A, whose worldline is represented by the blue line in Fig. 1.1,
falls into the black hole. Observer B, whose worldline is represented by the red line in
Fig. 1.1, remains outside the black hole. B sends signals to A at a constant frequency
for the rest of the infinite amount of proper time they have left travelling in the exterior
region. In contrast, A only has a finite amount of proper time before reaching the inner
horizon of the black hole. Since they must receive all messages sent by B before that
point, they will receive the messages at increasing frequency as they approach the inner
horizon. In fact, the message frequency will become infinitely blue-shifted.

This blue-shift effect also applies to small perturbations of the initial data for the black-
hole spacetime. It will lead to an infinite increase in curvature at the inner horizon, and
thus the formation of a singularity. Due to this mechanism, the loss of determinism be-
yond the inner horizon is an unstable feature of these spacetimes. If the initial data is
perturbed slightly, the perturbations will accumulate at the inner horizon and render the
metric inextendible across it. This idea is called the strong cosmic censorship conjecture
(sCC).

From the heuristic argument one can already guess that sCC will be a more delicate
issue in black-hole spacetimes with a positive cosmological constant Λ than in asymptot-
ically flat ones. The reason is that in spacetimes with Λ > 0, there is an additional effect
on the frequency of the perturbation – the cosmological expansion. This expansion leads
to a red-shift effect which counteracts the blue-shift. sCC then requires that the blue-shift
always overcomes the red-shift.

The exact formulation of the conjecture is a subtle issue. First, one must specify in
what sense the metric is required to become inextendible at the Cauchy horizon. A very
strong version of sCC would consider inextendibility as a continuous function, corre-
sponding to the formation of a strong singularity that will inevitably destroy any observer
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Figure 1.1: Penrose diagram of a partial analytic extension of a charged or rotating black-
hole spacetime. The thick lines represent conformal light-like infinity, the
white dots are conformal points at infinity. The thin lines represent the outer
horizon H+ and the inner horizon H− of the black hole. The orange line is
a Cauchy surface for the black-hole exterior (I) and interior up to the Cauchy
horizon (II). The blue and red lines represent the world lines of two observers
A and B. The dotted lines indicate the signals send from red (B) to blue (A).

approaching it [27]. However, it has been shown that this version of sCC fails for spher-
ically symmetric perturbations of charged black holes [28, 29], and for rotating black
holes [30]. Instead, we consider the formulation of sCC due to Christodoulou [31]. This
version requires that the metric should fail to have locally square-integrable derivatives at
the Cauchy horizon or, in other words, be inextendible as a H1

loc-function. The motivation
for this version of sCC is that it renders the metric inextendible as a (weak) solution to the
Einstein equations, which is a natural requirement from the viewpoint of the analysis of
differential equations. For the more physical criterion of the fate of an observer approach-
ing the horizon, the Christodoulou formulation implies that the horizon turns into a weak
singularity [32] at which tidal forces diverge but the tidal deformation an observer suffers
while crossing the horizon may remain finite2. Hence, from this physical perspective a
stronger singularity would be desirable. Nonetheless, we will stick to the requirement of
H1
loc-inextendibility.
Second, one needs to decide what kind of perturbations of the initial data are consid-

ered. The influence of the smoothness of the initial data can be seen from the early studies
[33–35] which obtained different results due to different properties of the initial data [36].

2I would like to thank A. Ori for a clarification of this point.
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In most of the literature, as well as in this thesis, the initial data is taken to be smooth.
However, non-smooth initial data has also been studied [36, 37].

Besides the subtleties in the exact definition of the conjecture, it is worth noting that
the sCC demands the breakdown of extendibility of the metric at the Cauchy horizon for
generic perturbations of the initial data. In particular, finding a specific perturbation that
allows for an extension of the metric is not necessarily a contradiction to the sCC. This
poses an additional difficulty in proving the conjecture.

Analysing the validity of sCC requires mathematical control of solutions to the Ein-
stein equations. Since the Einstein equations are non-linear, studying their behaviour in
full generality is very difficult. For this reason, the studies on sCC often either employ
symmetries to simplify computations (e.g. [28]) or consider linearised models as a first
step towards controlling the full non-linear equations. In this work, we will focus on the
latter.

The simplest linearised model for studying sCC, which will play a central role in this
thesis, consists of a scalar field satisfying the scalar wave equation on a charged or rotating
black-hole spacetime. The scalar field can be viewed either as a toy model for metric
perturbations [38] or as a simple matter model. We focus here on the case of a positive
cosmological constant. It was shown [39] that in this case the regularity of solutions to
the scalar wave equation at the Cauchy horizon of these spacetimes depends on the quasi-
normal modes of the black hole. These modes are purely ingoing at the event horizon
and purely outgoing at the cosmological horizon. They can be viewed as generalized
resonances of the black hole. More specifically, it was proven [39] that at the Cauchy
horizon the forward solutions to the scalar wave equation with a smooth source term lie
in H1/2+β−ε for any ε > 0 with

β =
α

κ−
.

Here, α is the spectral gap of the quasi-normal modes, i.e. the decay rate of the slowest-
decaying mode. κ− is the surface gravity of the Cauchy horizon. Hence, sCC in the
Christodoulou formulation is linearly satisfied as long as β ≤ 1/2.

This result allows to test sCC in the linear approximation by (numerically) studying
the frequencies of the quasi-normal modes. It was found that sCC can be violated in
charged black holes in asymptotically de Sitter spacetimes if the charge of the black hole
is sufficiently large [40]. It has also been confirmed in numerical studies of the non-linear
Einstein-Maxwell-scalar field equations [41, 42] that these results hold beyond the linear
regime.

This leads to an interesting question: since matter is most accurately described by
quantum theory, can the inclusion of quantum effects via (1.0.1) lead to a restoration of
the sCC conjecture? This question has been addressed in [16]. The authors consider
a free scalar quantum field on a fixed spacetime describing a charged black hole in the
presence of a positive cosmological constant. They show that for sufficiently large black-
hole charge Q, so that β > 1/2, the renormalized expectation value of the stress-energy
tensor, which enters the right-hand side of (1.0.1), may diverge stronger than the stress-
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energy tensor of the classical field. Moreover, if it does, the leading term of the divergence
is independent of the state of the scalar field as long as the state is Hadamard up to the
horizon, i.e. a physically reasonable state. State dependence only enters in a sub-leading
term which diverges at most like the classical stress-energy tensor. Hence, as long as
the state-independent leading divergence term is non-vanishing in general, sCC can be
restored. More details will be given in a following chapter.

These results should of course be taken with a grain of salt. When the expectation
value of the stress-energy tensor becomes large, calculating the expectation value of the
stress-energy tensor on the unperturbed background spacetime will cease to be a good
approximation. Moreover, if the large expectation value of the stress-energy tensor leads
to large curvature compared to the Planck scale, or if the fluctuations of the stress-energy
tensor are of the same order of magnitude as its expectation value, the semi-classical
Einstein equations (1.0.1) themselves should no longer be valid. Nonetheless, the results
indicate that quantum fields can have a large influence on the structure of the spacetime
near the inner horizon and therefore deserve further investigation.

This thesis contributes to this effort. We focus on different aspects of quantum fields
related to the validity of the sCC conjecture near the inner horizon of both charged and
spinning black-hole spacetimes with a positive cosmological constant.

This introduction is followed in Chapter 2 by a brief introduction to the algebraic ap-
proach to quantum field theory and to some aspects of microlocal analysis, focussing on
free scalar fields. We will also introduce the Reissner-Nordström-de Sitter (RNdS) and
Kerr-de Sitter (KdS) spacetimes describing charged or rotating black holes in the presence
of a positive cosmological constant.

Chapter 3 focusses on the real scalar field on a RNdS spacetime. We will present nu-
merical methods for the computation of the energy-flux expectation value of this field
at the inner horizon of the black hole and show numerical results obtained with this ap-
proach. We will also explain how these methods can be extended to charged fields.

Considering that charged matter is required to form a charged black hole, we will study
charged scalar fields in RNdS spacetimes in Chapter 4. We will describe how the results
of [16] on the Hadamard property of the Unruh state can be extended from the real scalar
to the charged scalar case. A formula for the charge current will be derived and evaluated
numerically. The state-independence of the leading divergence of both the energy flux and
the charge current at the Cauchy horizon will be shown following [16]. Our numerical
results at the inner horizon will give new insight into the (non-)validity of the simple
particle picture in black-hole interiors.

Finally, since one expects astrophysical black holes to be rotating rather than carrying
significant charge, one would like to extend these results to KdS spacetimes. As a first
step in this direction, we will construct the Unruh state on slowly rotating KdS spacetimes
in Chapter 5. This state is thought to be a good description of the late-time behaviour in
gravitational collapse. We will also show that the extension of the Unruh state to KdS
spacetimes is a Hadamard state.

The results are summarized in Chapter 6.
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2 An introduction to quantum fields and
black holes

In this chapter, we will introduce some background material needed throughout this work.
After clarifying some notations and definitions in Section 2.1, we will give a brief intro-
duction to the algebraic approach to quantum field theory in Section 2.2. This introduction
will contain brief descriptions of the CCR-algebra, the idea of quasi-free Hadamard states
and Hadamard point-split renormalization. In Section 2.3, we will present some basic
notions and central theorems of microlocal analysis, and explain how this technique can
be used to show the Hadamard property. In Section 2.4, we will introduce the Reissner-
Nordström-de Sitter and Kerr-de Sitter spacetimes and discuss some of their properties.
We will conclude in Section 2.5 with a brief discussion of states for free scalar field theory
on black-hole spacetimes including the Unruh state.

2.1 Notations and conventions

To start, let us summarize some notations and conventions used throughout this thesis.
We work in natural units ~ = c = kB = GN = 1.
We denote R+ = (0,∞) and R∗

+ = [0,∞), and analogously R− = (−∞, 0) and
R∗

− = (−∞, 0].
Round brackets around indices will indicate symmetrisation:

A(µ1,...,µn) =
1

n!

∑
π∈Sn

Aµπ(1),...,µπ(n) ,

with Sn the permutation group. Indices written between horizontal lines are excluded
from the symmetrisation, e.g. A(µ|ν|%) = 1/2(Aµν% + A%νµ).

We will use the multi-index notation: if x = (x1, . . . , xn) is an n-tuple, then a multi-
index for x is given by α = (α1, · · · , αn) ∈ Nn, and

xα =
n∏
i=1

xαii and |α| =
n∑
i=1

αi .

Let M be a smooth manifold. We denote by C∞(M) the space of smooth, complex-
valued functions on M, and by C∞

0 (M) the space of compactly supported, smooth,
complex-valued functions, also referred to as test functions. The spaces of real-valued
functions are C∞(M;R) and C∞

0 (M;R), respectively. We denote by D′(M) the space
of distributions, i.e. the space of continuous linear functionals u : C∞

0 (M) → C. We

13



denote by S(Rn) and S ′(Rn) the spaces of Schwartz functions and tempered distributions
on Rn, respectively. The space of compactly supported distributions u : C∞(M) → C
will be denoted by E ′(M).

We will define the Fourier transform

F : S(Rn) → S(Rn)

f 7→ f̂ = (2π)−n/2
∫
eik·xf(x) dnx ,

where · is the usual product in Rn, and we use the same sign convention for the Fourier
transform as [43]. It can be extended to a map F : S ′(Rn) → S ′(Rn) by duality, i.e.
û(f) = u(f̂) ∀ u ∈ S ′(Rn), f ∈ S(Rn) and to a mapL2(Rn) → L2(Rn) by the Plancherel
theorem, see for example [44].

We define a spacetime (M, g) to be a smooth, 4-dimensional, Hausdorff, second-
countable, connected manifold with a smooth Lorentzian metric g of mostly-plus sig-
nature (−,+,+,+). We also demand that (M, g) be orientable and time-orientable and
that both orientations are fixed. The volume form induced by the metric is called dvolg.
We denote the tangent space of M by TM, and the fiber over x ∈ M by TxM. Similarly,
the cotangent space is denoted T ∗M.

The space of smooth sections of the tangent space, or in other words the space of
smooth vector fields on M, is denoted as Γ(M), the space of smooth covector fields by
Γ∗(M). The zero section {(x, 0) ∈ T ∗M : x ∈ M} is denoted by o.

Given a smooth map ψ : M → M̃, we denote by ψ∗ : C∞(M̃) → C∞(M),
ψ∗f(p) = f(ψ(p)) the pull-back of f with respect to ψ. The push-forward of vectors
ψ∗ : Tp(M) → Tψ(p)(M̃) is given by (ψ∗v)(f)(ψ(p)) = v(ψ∗f)(p) for all v ∈ Tp(M),
f ∈ C∞(M̃). Analogously, the pull-back of covectors ψ∗ : T ∗

ψ(p)(M̃) → T ∗
p (M) is

defined as ψ∗(w)(v) = w(ψ∗v) for all w ∈ T ∗
ψ(p)(M̃) and v ∈ Tp(M). If ψ is invertible,

one can define the push-forward of functions or covectors/ the pull-back of vectors as the
corresponding pull-back/ push-forward with respect to the inverse map ψ−1 : M̃ → M.

Unless stated otherwise, ∇(g) will denote the Levi-Civita connection of (M, g), and
we will drop the superscript g if the metric is clear from the context. We also denote
2g = gν%∇(g)

ν ∇(g)
% the d’Alembert operator of the spacetime (M, g). Here, gν% denotes

the inverse metric.
Given a spacetime (M, g), we will denote the future/past lightcone at x ∈ M con-

sisting of all future-directed causal vectors in TxM by V ±
x . We will define a covector

k ∈ T ∗
xM to be future-pointing, or future-directed, if k(v) > 0 for all time-like future-

pointing vectors v ∈ V +
x . We will write k � 0 for a future-pointing covector. The fu-

ture/past null cone in T ∗M is denoted by

N± = {(x, k) ∈ T ∗M\o : g−1(x)(k, k) = 0 and ± k � 0} , (2.1.1)

and we also set N = N+ ∪N−.
A spacetime (M, g) is globally hyperbolic if it contains a hypersurface which is inter-

sected exactly once by each inextendible time-like curve in M. Such a surface is called a
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Cauchy surface for (M, g).
We denote by J±(O) the causal future/past of the set O ⊂ M in M. This is the set

of points that can be reached from O by a future-/past-directed causal curve. J(O) is the
union J+(O) ∪ J−(O). Similarly, we denote by I±(O) the time-like future/past of O.
This is the open set of points that can be reached from O by a future-/past-directed time-
like curve. Note that this excludes curves for which the tangent vector vanishes at some
point, while these curves may be included for the definition of the causal future/past. This
follows the notation of [45].

Two sets O1 ⊂ M and O2 ⊂ M will be called causally disjoint or space-like separated
if there is no causal curve connecting any point x ∈ O1 to any point y ∈ O2.

A subset O ⊂ M is called causally convex if any causal curve with both endpoints in
O is entirely contained in O.

An open neighbourhood O ⊂ M of some x ∈ M is called a geodesically convex
neighbourhood, if any two points in O can be connected by a unique geodesic contained
completely in O.

2.2 A brief introduction to AQFT

In this section, we summarize some of the basic concepts of the algebraic approach to
quantum field theory, collecting the most important aspects for this thesis. See also [46–
49] and references therein for more complete reviews.

For comparison, let us briefly recap the usual approach to quantum field theories, which
is taught in most introductory courses and can be found in well-known textbooks [50–
52]. In this approach, one starts with a Hilbert space H, which often has the form of
a Fock space. The (complex rays of) normalized elements of H are the pure states of
the theory; mixed states are represented by density matrices, i.e. positive operators ρ on
H with the property tr(ρ) = 1. The observables of the quantum field theory are the
Hermitian operators on this particular Hilbert space. In order to take the expectation
value of an operator A in some state Ψ, one simply takes the Hilbert-space inner product
〈Ψ|AΨ〉H or the trace of ρA.

On Minkowski space, the Hilbert space is usually chosen to be the Fock space whose
ground state is the Minkowski vacuum. Since the Minkowski vacuum is the unique
Poincaré-invariant ground state, this singles out a preferred choice of Hilbert space. How-
ever, even in this case there are physically interesting states which do not lie in this or a
unitarily equivalent Hilbert space. One example for that are thermal states.

On general curved spacetimes, the situation becomes even more complicated, since
in general, one does not have a unique, preferred ground state for the quantum theory.
Therefore, there is generally no preferred choice of a Hilbert-space representation of the
theory out of the unitarily inequivalent possibilities.

Another idea that often takes a central role in the discussion of quantum field theory
is the concept of a particle. However, it is less often discussed that the notion of particle
is ambiguous: If one has a Fock space for the quantum theory, then one can define a
particle-number operator on the Fock space, but different choices of Fock space will also
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lead to different particle-number operators.
An example of this can already be seen in Minkowski space (R3+1,− dt2 +

∑3
i1

dx2i ):
Let us restrict to the right Rindler wedge, the region of Minkowski space defined as
{x1 − |t| > 0}. On this wedge, the boosts in the x1-direction are an alternative no-
tion of time translation, which is proportional to the proper time of uniformly accelerated
observers. The preferred choice of Fock space for such an observer, which one could call
the boost Fock space, would be the one containing the ground state for the observer’s time
evolution. On the right Rindler wedge and with respect to the notion of time translation
given by the boosts in x1-direction, the Minkowski vacuum state is a thermal state and
contains infinitely many particles according to the particle definition of the boost Fock
space. This is called the Unruh effect [18].

The problem of selecting a representation for the quantum theory from the outset is
circumvented by the algebraic approach. Instead of starting with a Hilbert space, one
starts with the abstract ∗-algebra of observables of the theory. A ∗-algebra (over C) is an
algebra, i.e. a vector space over C with a bilinear inner product · : A×A → A, together
with a ∗-involution, i.e. an anti-linear map ∗ : A → A that satisfies (A · B)∗ = B∗ · A∗

and (A∗)∗ = A for all A,B ∈ A. The algebras we deal with will be unital, i.e. contain
the identity element 1 for the algebra inner product.

The structure of the theory is already present at the level of the abstract algebra when
the locality property of quantum field theory is taken into account. This leads to the Haag-
Kastler axioms for algebraic quantum field theory [53], which were initially formulated
on Minkowski space and later generalized to curved spacetimes.

Let us assume a globally hyperbolic spacetime (M, g) and a unital ∗-algebra A(M).
The Haag-Kastler axioms demand that for any open, causally convex subset O ⊂ M
with compact closure, there exists an algebra A(O) containing the observables localized
in O as its Hermitian elements. The A(O) then collectively generate the algebra A(M),
which is therefore called the algebra of quasi-local observables [49, 53]. In this way, one
can also identify all A(O) with subalgebras of A(M). The A(O) form a net of algebras,
which is also demanded to satisfy

• Isotony If O1 ⊂ O2, then A(O1) ⊂ A(O2).

• Causality If O1 ⊂ M and O2 ⊂ M are causally disjoint, then [A,B] = 0 for all
A ∈ A(O1), B ∈ A(O2).

One may require additional axioms such as the time-slice axiom, which demands that
for any O ⊂ M containing a Cauchy surface of (M, g), A(O) = A(M), and which
guarantees the existence of dynamics.

The embedding of the submanifolds O into M is just one example of mappings be-
tween manifolds that maintain orientation, time orientation, and causality. Generaliz-
ing this idea leads to the definition of a local and covariant quantum field theory in the
language of category theory as a functor between the category of globally hyperbolic
spacetimes1, with certain isometric embeddings as morphisms, and the category of uni-
tal ∗-algebras with unit-preserving injective ∗-homomorphisms as morphisms, see [5] for

1The conditions on a "spacetime" can be somewhat relaxed to allow for disconnected manifolds.
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early work and [48] for a more recent review. The categories of spacetimes and algebras
can be modified to capture additional structures of the theory, see for example [48, 54].

The states in the algebraic framework are positive, normalized, linear maps from the
algebra to C. In other words, a linear map ω : A → C is a state if it satisfies ω(A∗A) ≥ 0
for all A ∈ A and ω(1) = 1. If the algebra has a topological structure as well, one may
additionally require the state to be continuous. A state can be interpreted as a map from
operators to expectation values.

Once a state has been chosen, one can get back to the usual Hilbert space formulation
by the GNS reconstruction, see e.g. [49]:

Theorem 2.2.1. For any state ω on the ∗-algebra A, there is a (up to unitary equiva-
lence) unique Hilbert space Hω, a dense subset Dω, a representation πω of A by closable
operators on Dω and a vector Ωω ∈ Hω such that Dω = πω(A)Ωω and ∀A ∈ A

ω(A) = 〈Ωω, πω(A)Ωω〉Hω .

In this thesis, we will mostly focus on a free, real scalar field and its CCR-algebra. To
construct this algebra, let us begin with the classical theory of the real scalar field. Let
(M, g) be a spacetime, which we assume to be globally hyperbolic. Then the massive
Klein-Gordon equation

Kφ = 0 (2.2.1)

has a well-defined initial-value problem [45] on (M, g). Here, we have defined the mas-
sive Klein-Gordon operator

K = 2g − µ2 , (2.2.2)

where µ ≥ 0 is some constant. Moreover, there are unique retarded and advanced Green’s
operators [55] E± : C∞

0 (M) → C∞(M) that satisfy

E± ◦ K|C∞
0 (M) = idC∞

0 (M) , K ◦ E± = idC∞
0 (M) , (2.2.3a)

supp(E±(f)) ⊂ J±(supp(f))∀f ∈ C∞
0 (M) . (2.2.3b)

In fact, E± can be extended to maps E± : C∞
spc/sfc(M) → C∞

spc/sfc(M) and
E± : C∞

pc/fc(M) → C∞
pc/fc(M), where

C∞
spc/sfc ≡

{
f ∈ C∞(M) : supp(f) ⊂ J±(K) for some compact K ⊂ M

}
C∞
pc/fc ≡

{
f ∈ C∞(M) : ∃ smooth, s-like Cauchy surf. Σ ⊂ M : supp(f) ⊂ J±(Σ)

}
are the spaces of (strictly) past-/future-compact smooth functions on M [56].

We then define the commutator function E = E+ − E− : C∞
0 (M) → C∞(M) as

the difference between the retarded and advanced Green’s operators. By construction, it
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satisfies

K ◦ E = E ◦ K|C∞
0 (M) = 0 , supp(E(f)) ⊂ J(supp(f)) . (2.2.4)

We will denote the space of solutions to the Klein-Gordon equation with compact Cauchy
data by

S(M) ≡ {φ ∈ C∞(M) : Kφ = 0, supp(φ) ∩ Σ comp. ∀ s-like smooth Cauchy surf. Σ} .

On this space, there is a non-degenerate symplectic form σ given by

σ(φ, ψ) =

∫
Σ

(φ∇aψ − ψ∇aφ)n
a
Σ dvolγ , (2.2.5)

where Σ is any smooth space-like Cauchy surface, naΣ its future-pointing normal vector
and γ the induced metric on Σ. The symplectic form is independent of the choice of
Cauchy surface [57]2. By the support property of φ, ψ ∈ S(M), the conservation of the
current J : S(M)× S(M) → Γ∗(M),

Jν [φ, ψ] = φ∇νψ − ψ∇νφ , (2.2.6)

and an application of Gauss’ theorem, see e.g. [58], one can actually choose any Cauchy
surface for the computation of Σ. This includes Cauchy surfaces which are partially null
or only piecewise smooth. See also the discussion in [43, Sec. 2.3].

Defining E(f, h) ≡
∫
M
fE(h) dvolg, one can then show that

E : C∞
0 (M)/(KC∞

0 (M)) → S(M) , f 7→ E(f)

is a symplectomorphism between the symplectic spaces (C∞
0 (M)/(KC∞

0 (M)), E(·, ·))
and (S(M), σ(·, ·)).

The inverse map can be constructed as follows: Let Σ± be two Cauchy surfaces of M
satisfying Σ+ ⊂ I+(Σ−). Let χ± ∈ C∞(M) be a partition of unity on M satisfying
χ± = 1 on J±(Σ±). Then, for φ ∈ S(M), set

fφ = K(χ+φ) = [K, χ+]φ = (2gχ+)φ+ 2gν%∇νχ+∇%φ .

This is a smooth function with compact support in J+(Σ−) ∩ J−(Σ+) ∩ supp(φ). More-
over, we have fφ = −K(χ−φ). To show that this is a well-defined map independent of the
choice of Σ± and χ±, let f ′

φ be another function obtained with the same map but another
partition of unity χ′

± corresponding to a different pair of Cauchy surfaces Σ′
±. Then

fφ − f ′
φ = K(χ+φ)−K(χ′

+φ) = K((χ+ − χ′
+)φ) .

is contained in KC∞
0 (M), since the support of (χ+ − χ′

+)φ is compact. It remains to
2Note that this reference uses the opposite metric signature, leading to a different sign in σ, see also [45].
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show that this map is indeed the inverse of E. Taking into account the extension of E± to
future-/past-compact functions, we find

E(fφ) = E+(K(χ+φ)) + E−(K(χ−φ)) = (χ+ + χ−)φ = φ .

Therefore, the map φ 7→ fφ is a well-defined symplectomorphism and the inverse of E.
After this discussion of the classical theory, let us now outline the quantization proce-

dure. There are different ways to build the algebra of the free, real scalar field out of the
classical solution theory described above. In this work, we will consider the CCR-algebra
A(M) constructed in the same way as in [47, 48]:

Definition 2.2.1. The algebra of observables A(M) for the free scalar field on the space-
time (M, g) is the free ∗-algebra generated by the unit element 1 and the elements Φ(f),
f ∈ C∞

0 (M), subject to the relations

• Linearity Φ(αf + g) = αΦ(f) + Φ(g) ∀f, g ∈ C∞
0 (M), α ∈ C

• Klein-Gordon equation Φ(Kf) = 0 ∀f ∈ C∞
0 (M)

• Hermiticity (Φ(f))∗ = Φ(f̄) ∀f ∈ C∞
0 (M)

• Commutator property [Φ(f),Φ(g)] = iE(f, g)1 ∀f, g ∈ C∞
0 (M) .

This means that A(M) is obtained by taking the quotient of the free ∗-algebra gener-
ated by Φ(f) and 1 with respect to the ideal defined by the relations above. The elements
in the algebra are thus (equivalence classes of) finite sums of finite products of Φ(fi). One
can interpret the elements Φ(f) as smeared field operators.

Another equivalent option to construct the algebra is by considering the tensor algebra
over C∞

0 (M) and then taking the quotient by the relations in Definition 2.2.1 which is
called the Borchers-Uhlmann algebra [59, 60], see [48].

The net of algebras on the spacetime M can then be constructed by assigning to each
causally convex region O ⊂ M the free ∗-subalgebra A(O) of A(M) generated by 1
and Φ(f), f ∈ C∞

0 (O).
A short calculation reveals that the resulting net of algebras satisfies the isotony and

causality conditions: If O1 ⊂ O2 ⊂ M are open sets, then C∞
0 (O1) ⊂ C∞

0 (O2), and thus
A(O1) ⊂ A(O2). Similarly, if O1 and O2 are space-like separated, then

[Φ(f1),Φ(f2)] = iE(f1, f2) = 0

by the support properties of the commutator function for all f1 ∈ O1, f2 ∈ O2. By
linearity, this extends to all A1 ∈ A(O1) and A2 ∈ A(O2).

Moreover, the theory constructed in this way is local and covariant: If (M, g) and
(M̃, g̃) are two spacetimes and ψ : M → M̃ is an isometric, causality-preserving em-
bedding, then ψ induces an injective, unit-preserving ∗-homomorphism

αψ : A(M) → A(M̃) ΦM(f) 7→ αψ(ΦM(f)) = ΦM̃(ψ∗(f)) .

19



Here, ψ∗(f) is the push-forward, which is given by f(ψ−1(x)) for x ∈ ψ(M) and 0 on
M̃\ψ(M). We have also denoted the smeared field operators on M by ΦM(f) and the
ones on M̃ by ΦM̃(f) to make the spacetime they belong to explicit. The linearity and
Hermiticity of the algebra generators ΦM(f) are obviously conserved by this map. That
αψ is compatible with the Klein-Gordon equation and commutator property follows from
the fact that for any isometric, causality-preserving embedding ψ : (M, g) → (M̃, g̃)

ψ∗ ◦ K(M̃,g̃) = K(M,g) ◦ ψ∗ , (2.2.7)

and therefore

ψ∗ ◦ E±
(M̃,g̃)

= E±
(M,g) ◦ ψ

∗ , (2.2.8)

see [57].
The states on the CCR-algebra are all linear maps ω : A(M) → C such that ω(1) = 1

and ω(A∗A) ≥ 0 for all A ∈ A(M). By its linearity and the structure of the algebra, any
such state is determined by its n-point functions

W ω
n : C∞

0 (M)⊗n → C , (f1 ⊗ · · · ⊗ fn) 7→ ω (Φ(f1) . . .Φ(fn)) .

The states that we will deal with in this thesis all belong to a particular class of states,
called quasi-free or Gaussian states. These states satisfy

ω
Ä
eiΦ(f)

ä
= e−

1
2
Wω

2 (f⊗f) ,

in the sense that the set of identities obtained by functional differentiation of this equation
with respect to f are all satisfied, see e.g. [6, 47]. This entails that all n-point functions
for odd n vanish, while all n-point functions for even n are determined from the two-
point function using Wick’s formula. Thus, these states are determined by their two-point
function alone. We will call the two-point function of a quasi-free state wω or simply w
when no confusion arises. As discussed in [47] and [16], this means in turn

Corollary 2.2.2. Let (M, g) be a globally hyperbolic spacetime and A(M) the CCR-
algebra for a free, massive or massless scalar quantum field on M. Then a bi-distribution
w : C∞

0 (M)⊗ C∞
0 (M) → C defines a quasi-free state on A(M) if it satisfies

• Weak bi-solution w(K(f)⊗ g) = w(f ⊗K(g)) = 0 ∀f, g ∈ C∞
0 (M)

• Positivity w(f̄ ⊗ f) ≥ 0 ∀f ∈ C∞
0 (M)

• Commutator property w(f ⊗ g)− w(g ⊗ f) = iE(f, g) ∀f, g ∈ C∞
0 (M).

The Hilbert space obtained by GNS-reconstruction using a quasi-free state is a symmet-
ric Fock space over a Hilbert space h, which is commoly called the one-particle Hilbert
space. The vector Ωω is the Fock-space vacuum vector and the smeared field operator
Φ(f) is represented on the Fock space by a sum of creation and annihilation operators,
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from which one can also construct a particle-number operator on the Fock space [61].
Therefore, one can make sense of the notion of a particle in this context.

Another class of states can be defined if the spacetime (M, g) has a complete Killing
vector field ξ. A complete Killing vector field is a vector field ξ ∈ Γ(M) satisfying the
Killing equation

∇νξ% +∇%ξν = 0

which induces the flow ψt : I × (M, g) → (M, g) and for which I = R. Then, the flow
ψt induces a 1-parameter family of automorphisms

αt : R×A(M) → A(M) , Φ(f) 7→ Φ(ψ∗
−t(f)) = Φ(ψt∗f)

on the algebra. These automorphisms satisfy αt ◦ αs = αt+s and α0 = id [47]. We say
that a state ω is invariant under the automorphism if for any A ∈ A, ω(αtA) = ω(A).
If the spacetime is stationary, i.e. possesses a complete time-like Killing vector field, one
can define a generalization of thermal states and ground states.

Definition 2.2.2 ([62], App. A). Given a complete time-like Killing vector field ξ on
(M, g), denote the induced 1-parameter family of automorphisms on A(M) by αt. Let
ω be a state on A(M). Then ω is a

• KMS state at inverse temperature β > 0 if for all A,B ∈ A(M), the function
R 3 t 7→ ω(Aαt(B)) ∈ C is bounded and for any f ∈ C∞

0 (R;R),

∞∫
−∞

f̂(t)ω(Aαt(B)) dt =

∞∫
−∞

f̂(t+ iβ)ω(αt(B)A) dt .

• ground state if ∀A,B ∈ A(M), the function R 3 t 7→ ω(Aαt(B)) ∈ C is
bounded and for all f ∈ C∞

0 (R+;R),

∞∫
−∞

f̂(t)ω(Aαt(B)) dt = 0 .

Another important class of states are the so-called Hadamard states. To understand the
significance of this class of states, let us consider the stress-energy tensor of the scalar
field. Classically, it can be written as

Tν%(x) = ∂νΦ(x)∂%Φ(x)−
1

2
gν%
(
∂σΦ(x)∂

σΦ(x) + µ2Φ(x)2
)

if the scalar field is minimally coupled to the Ricci scalar. Note that there is an ambiguity
in the classical stress-energy tensor in the case where the Ricci scalar is a constant, since
in this case a non-zero mass and a non-minimal coupling have the same effect on the

21



equations of motion as long as backreaction is neglected. Here, and in the rest of the
thesis, we consider the stress-energy tensor of a minimally coupled scalar field.

The stress-energy tensor is local and quadratic in the field, and hence it is not in the
CCR-algebra of the free scalar field defined above and will require renormalization. In
flat spacetime, one can renormalize by subtracting the ground state expectation value or,
in other words, by normal ordering with respect to the ground state. However, in a general
spacetime we do not have a unique ground state. Instead, one requires that the renormal-
ization procedure satisfies a number of properties. Particularly, for the renormalized Wick
squares : Φ2 : (f) of the quantum field one demands [6]

• Locality and covariance Let (M, g) and (M̃, g̃) spacetimes and ψ : M → M̃
an isometric, causality-preserving embedding inducing the ∗-homomorphism αψ.
Then

αψ( : Φ
2
M : (f)) =: Φ2

M̃ : (ψ∗f) ∀f ∈ C∞
0 (M) .

• Expansion In a distributional sense, [ : Φ2 : (x),Φ(y)] = 2iE(x, y)Φ(x).

• Hermiticity : Φ2 : (f)∗ =: Φ2 : (f̄) for all f ∈ C∞
0 (M).

• Smoothness Under certain conditions on the state ω, ω( : Φ2 : (x)) is a smooth
function on M.

• Continuity and analyticity : Φ2 : (f) changes continuously (analytically) under
smooth (analytic) changes of the metric, or the mass or coupling of the scalar field.

• Almost homogeneous scaling Under a rescaling of the metric, and the mass and
coupling of the scalar field, : Φ2 : (f) scales homogeneously up to logarithmic cor-
rections.

It has been shown [6] that this can be achieved by normal ordering with respect to the
Hadamard parametrix:

For x, y in a geodesically convex neighbourhood U ⊂ M, the Hadamard parametrix
H(x, y) for the scalar field is given by

H(x, y) = lim
ε→0+

1

8π2

[
U(x, y)

σε
+

∞∑
n=0

Vn(x, y)σ(x, y)
n log

(σε
l2

)]
. (2.2.9)

Here, σ(x, y) is half the signed, squared geodesic distance, which is also called Synge’s
world function [63], and σε(x, y) = σ(x, y) + 2iε(T (x)− T (y)) + ε2 is an iε-description,
with T a local future-directed time coordinate. U and Vn are called the Hadamard coef-
ficients. They are smooth functions and can be determined from the local curvature and
the equations of motion using the transport equations. l is a free length scale. Note that
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the series has to be understood as an asymptotic series in smoothness in the sense that

Hm(x, y) = lim
ε→0+

1

8π2

[
U(x, y)

σε
+

m∑
n=0

Vn(x, y)σ(x, y)
n log

(σε
l2

)]
.

is a weak bi-solution to the Klein-Gordon equation up to terms in Cm−1(U × U).
The normal-ordered Wick square is then formally given by

: Φ2 : (f) =

∫
M

lim
y→x

[Φ(x)Φ(y)−H(x, y)1] f(x) dvolg(x) .

In [6], it is shown further that the algebra A(M) can be extended to an algebra containing
these normal-ordered Wick squares. Furthermore, the only quasi-free states that can be
extended from A(M) to this enlarged algebra and that satisfy the "smoothness" condition
for the renormalized Wick squares are the quasi-free Hadamard states.

Definition 2.2.3. Let ω be a quasi-free state on the algebra A(M). Then ω is Hadamard
if for x,y contained in a geodesically convex neighbourhood U , the two-point function
w(x, y) can be written as

w(x, y) = H(x, y) + w0(x, y) ,

where w0(x, y) is smooth. This should be understood in the sense of an asymptotic series:
For x, y ∈ U , (w(x, y)−Hm(x, y)) ∈ Cm−1(U × U).

In the same way, one can normal order Wick-squares with derivatives, ∂αΦ(x)∂βΦ(x),
where α and β are multi-indices, and show that they are contained in the enlarged algebra.

Given a Hadamard state ω with two-point function w, the expectation value of the
renormalized operator ∂αΦ(x)∂βΦ(x) can be obtained by the so-called Hadamard point-
split renormalization procedure:

ω( : ∂αΦ(x)∂βΦ(x) : ) = lim
y→x

∂αx∂
β
y

[
w(x, y)−H|α|+|β|+1(x, y)

]
.

Hadamard point-split renormalization is not the unique local and covariant renormali-
zation scheme. There are always finite renormalization ambiguities which can be con-
structed from the local metric and the field parameters [6].

Apart from their importance for the definition and evaluation of renormalized Wick
powers, Hadamard states guarantee that the fluctuations of all Wick polynomials, i.e. its
variance and higher moments, are finite [64], while the fluctuations typically diverge if
the state is not Hadamard, even if the expectation value is finite, see e.g. [65].

One may worry that there are globally hyperbolic spacetimes (M, g) for which no
Hadamard states on A(M) exist. That this is not the case has been shown by various
methods [66, 67]. In addition, KMS states and ground states, as well as any convex
combination of them, called passive states, are Hadamard [62].

23



2.3 An introduction to microlocal analysis
In order to prove that a certain state is Hadamard, it is often more useful to consider
an alternative characterisation of the Hadamard property formulated in the framework of
microlocal analysis. In this section, we will introduce some aspects of this framework,
following mostly [68].

First, let us define the wavefront set WF(u) of a distribution u ∈ D′(Rn).

Definition 2.3.1. Let u ∈ D′(Rn) be a distribution. Let (x, k) ∈ Rn × (Rn\{0}),
χ ∈ C∞

0 (Rn) a test function satisfying χ(x) 6= 0 and Vk ⊂ Rn\{0} an open conic
neighbourhood of k, i.e. a set, so that λl ∈ Vk for all λ > 0 if l ∈ Vk. Assume χ and Vk
can be chosen in such a way that for any N ∈ N there is a CN > 0 with [68, Sec. 8.1]

|χ̂u|(l) ≤ CN(1 + |l|)−N ∀l ∈ Vk , (2.3.1)

i.e. the function χ̂u is rapidly decreasing in l ∈ Vk. Then (x, k) is called a direction of
rapid decrease for u. The wavefront set of u is the set of all (x, k) ∈ Rn × (Rn\{0})
which are not of rapid decrease for u.

Another characterization of the wavefront set is given by [69, Prop.2.1]:

Proposition 2.3.1 ([69], Prop. 2.1). Let (x, k) ∈ Rn × (Rn\{0}), u ∈ D′(Rn). Then
(x, k) /∈ WF(u) iff there exist an open neighbourhood V ⊂ (Rn\{0}) of k, and some test
functions h ∈ C∞

0 (Rn) with h(0) = 1, and g ∈ C∞
0 (Rn) with ĝ(0) = 1, such that ∀p ≥ 1,

∀N ∈ N, ∃CN > 0, λN > 0 satisfying

sup
k′∈V

∣∣∣∣∫ eiλ
−1k′·yh(y)u

(
g(λ−p(· − x− y))

)
dny
∣∣∣∣ < CNλ

N ∀0 < λ < λN . (2.3.2)

The wavefront set has a number of important properties, for example [70, Prop. 6.27]

Proposition 2.3.2. Let u ∈ D′(Rn). Then

1. For any f ∈ C∞(Rn), we can define f · u as (f · u)(φ) = u(f · φ). Then
WF(f · u) ⊂ WF(u).

2. Let α ∈ Nn. Then WF(∂αxu) ⊂ WF(u).

3. Let v ∈ D′(Rn). Then WF(u ± v) ⊂ WF(u) ∪ WF(v) and equality is given if
WF(u) ∩WF(v) = ∅.

Let us give a brief proof of the third point, which is not covered by [70, Prop. 6.27].
Let us assume that (x, k) is not in WF(u) ∪WF(v). Then one can find test functions φu
and φv which are non-vanishing at x, and open conic neighbourhoods Vu and Vv of k so
that for all N ∈ N∣∣∣’φu · u∣∣∣ (l) , ∣∣∣’φv · v∣∣∣ (l) ≤ CN(1 + |l|)−N ∀l ∈ Vu ∩ Vv
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for some constant CN > 0. Since multiplication by a smooth function cannot increase the
wavefront set due to the second point in Proposition 2.3.2, we can find a conic neighbour-
hood V ⊂ Vu ∩ Vv of k so that for any N ∈ N∣∣∣∣ ¤�φu · φv · (u± v)

∣∣∣∣ (l) ≤ C ′
N(1 + |l|)−N ∀l ∈ V

for some constants C ′
N > 0. Hence, (x, k) is not in WF(u ± v). Next, we consider

the case WF(u) ∩ WF(v) = ∅. Assume that (x, k) is in WF(u) ∪ WF(v), but not in
WF(u ± v). W.l.o.g. we assume (x, k) ∈ WF(u), and therefore (x, k) /∈ WF(v). By
using similar arguments as above, we can find a test function φ with φ(x) 6= 0, and a
conic neighbourhood V of k so that for all N ∈ N∣∣∣‘φ · v

∣∣∣ (l) , ∣∣∣⁄�φ · (u± v)
∣∣∣ (l) ≤ CN(1 + |l|)−N ∀l ∈ V.

Then∣∣∣‘φ · u
∣∣∣ (l) = ∣∣∣∣ ¤�φ · (u± v ∓ v)

∣∣∣∣ (l) ≤ ∣∣∣⁄�φ · (u± v)
∣∣∣ (l) + ∣∣∣‘φ · v

∣∣∣ (l) ≤ 2CN(1− |l|)−N

for all l ∈ V and for all N ∈ N, leading to a contradiction to (x, k) ∈ WF(u).
The wavefront set can also be defined for distributions on manifolds. For the rest of

this section, let M be a smooth manifold of dimension n.

Definition 2.3.2. Let u ∈ D′(M) be a distribution on M. Then its wavefront set is
defined as the subset WF(u) of T ∗M\o whose restriction (in the base variable) to any
coordinate patch Mψ ⊂ M with the coordinate map ψ : Mψ → Uψ ⊂ Rn is given by
[68, Thm. 8.2.4]

WF(u)|Mψ
= ψ∗WF(u ◦ ψ−1) (2.3.3)

= {(x, ψ∗k) : (ψ(x), k) ∈ WF(u ◦ ψ−1)} .

Later on, we will also consider continuous linear maps K : C∞
0 (M) → D′(M̃) from

test functions on some manifold M to distributions on another manifold M̃. By the
Schwartz kernel theorem, every map K : C∞

0 (M) → D′(M̃) is in one-to-one correspon-
dence with a distribution on M̃ ×M, which is called the kernel of K and also denoted
by K by an abuse of notation. We will say that K is properly supported if the projection
map

πM : supp(K) → M , (y, x) 7→ x

is proper, i.e. the pre-images of compact sets are compact. Let K be the kernel of such an
operator K : C∞

0 (M) → D′(M̃). Then we denote

WF′(K) = {(x, k; y, l) ∈ T ∗(M̃ ×M)\o : (x, k; y,−l) ∈ WF(K)} (2.3.4a)
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WFM(K) = {(y, l) ∈ T ∗(M) : (x, 0; y, l) ∈ WF(K) for some x ∈ M̃} (2.3.4b)

M̃ WF(K) = {(x, k) ∈ T ∗(M̃) : (x, k; y, 0) ∈ WF(K) for some y ∈ M} . (2.3.4c)

Under certain conditions, two of the maps introduced above can be composed with each
other:

Theorem 2.3.3 ([68], Thm. 8.2.14). Let M, M̃, and M′ be smooth manifolds, and
let K1 : C

∞
0 (M) → D′(M̃) and K2 : C∞

0 (M̃) → D′(M′) be continuous linear maps.
Assume in addition that the map K1 is properly supported. Then the composition of maps
K = K2 ◦K1 : C

∞
0 (M) → D′(M′) defines a continuous map from C∞

0 (M) to D′(M′)
if

WF′
M̃(K2) ∩ M̃ WF(K1) = ∅ . (2.3.5)

The kernel K of this map satisfies

WF′(K) ⊂WF′(K2) ◦WF′(K1) ∪ (M′ WF(K2)×M× {0}) (2.3.6)
∪ (M′ × {0} ×WF′

M(K1)) .

One particular class of operators K : C∞
0 (M) → C∞

0 (M) which will appear in the
subsequent discussion is the class of differential operators. The differential operators of
order zero correspond to pointwise multiplication by a smooth function,

C∞
0 (M) 3 f 7→ h · f ∈ C∞

0 (M)

for some h ∈ C∞(M). Thus, we identify Diff0(M) = C∞(M).
Next, we use the interpretation of elements in TM as directional derivatives and set

Diff1(M) to be the set of all operators K : C∞
0 (M) → C∞

0 (M) which are of the form
K(f) = A(f) + h · f for some A ∈ Γ(M), and h ∈ C∞(M).

For any m > 1 we can then define the space of differential operators on M of order m
to consist of all operators K : C∞

0 (M) → C∞
0 (M) of the form

K(f) =
N∑
i=1

Ai1(. . . AiNi (f) . . . ) for some Aij ∈ Diff1(M) , N ∈ N , Ni ≤ m.

All these operators can also be extended to operators from C∞(M) to C∞(M) [70].
In coordinates, K ∈ Diffm(M) acting on f ∈ C∞

0 (M) may be written as

K(f)(x) =
∑
|α|≤m

aα(x)∂
α
x (f)(x) , (2.3.7)

where α ∈ Nn, aα ∈ C∞(M), and ∂xν are the usual coordinate derivatives forming the
coordinate basis for TxM for all x ∈ M covered by that particular coordinate chart. The
dual basis for T ∗

xM, with elements denoted dxν , satisfies dxν(∂x%) = δ%ν , and allows to
express any k ∈ T ∗

xM as k = kν dxν .
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The principal symbol of the differential operator K in (2.3.7) in these coordinates is
then given by

σm(K)(x, k) =
∑
|α|=m

aα(x)k
α ∈ C∞(T ∗M) . (2.3.8)

The principal symbol of a differential operator is an important tool in the analysis of dif-
ferential equations, since it already captures a large part of the behaviour of the operator,
see for example [70] for an introduction to the symbol calculus.

Given the principal symbol a = σm(A) of A ∈ Diffm(M), the Hamiltonian vector
field Ha ∈ Γ(T ∗M) corresponding to a is, in a local trivialization of T ∗M, given by

Ha(x, k) = ∂kνa(x, k)∂xν − ∂xµa(x, k)∂kµ . (2.3.9)

It satisfies Ha(a) = 0. Hence, if a(x, k) = 0, it remains zero along the flow induced on
T ∗M by Ha through (x, k).

With the help of this, one can define the bicharacteristic B[A](x, k) of A ∈ Diffm(M)
through (x, k) as the integral curve ofHa in T ∗M lying in {a = 0} and intersecting (x, k)
[70].

In this thesis, we are mostly interested in a particular differential operator, namely the
Klein-Gordon operator (2.2.2). It is easy to see that its principle symbol is given by

σ2(K) = gν%kνk% . (2.3.10)

This is a real and homogeneous function of k and vanishes only when k is a null covector.
Thus, the bicharacteristics of K are

B(x, k) = B[K](x, k) = {(x′, k′) ∈ T ∗M : (x, k) ∼ (x′, k′)} (2.3.11)

for any x ∈ M and any null covector k ∈ T ∗
xM. The relation (x, k) ∼ (y, l) means that

x and y can be connected by a null geodesic to which k is cotangent at x and l agrees with
k parallel transported along the geodesic to y. We will also denote B(x, 0) = {(x, 0)} for
the zero covector. The projection of the bicharacteristics to the manifold,

BM(x, k) = π(B(x, k)) ⊂ M , (2.3.12)

with π : T ∗M → M, are the null geodesics on M.
As we have discussed in the previous section, the two-point functions for states of the

free scalar field will be distributional bi-solutions to the Klein-Gordon equation. Due
to the form of the principal symbol of K, one can use the real-principal-type Propaga-
tion of Singularities Theorem to make some statements on the wavefront sets of such
bi-solutions. Here, we will work with the version given in [71, Lemma 6.5.5]3:

3We state the lemma only for differential operators, but it applies to a more general class of operators,
called Fourier Integral Operators [71]
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Theorem 2.3.4 ([71], Lemma 6.5.5). LetK ∈ Diffm(M) on some spacetime (M, g) with
a real homogeneous principal symbol σm(K) ∈ C∞(T ∗M). Assume u ∈ D′(M×M)
satisfiesK ◦u ∈ C∞(M×M), where u is considered as a map from C∞

0 (M) to D′(M).
If (x, k; y, l) ∈ WF′(u) and k 6= 0, then σm(K)(x, k) = 0 and B[K](x, k) × {(y, l)} is
contained in WF′(u).

Finally, let us return to quasi-free Hadamard states on the CCR-algebra. Therefore, let
(M, g) now be a spacetime, and A(M) the CCR-algebra of a free scalar field on M. In
the previous section, we defined quasi-free Hadamard states by the singular behaviour of
their two-point functions. However, it has been shown [72] that this definition is equiv-
alent to a condition on the wavefront set of the two-point function, called the microlocal
spectrum condition:

Theorem 2.3.5 ([72], Thm. 5.1). Let ω be a quasi-free state on A(M) with two-point
function w ∈ D′(M × M). Then ω is a Hadamard state iff w satisfies the microlocal
spectrum condition,

WF′(w) = C+ , (2.3.13a)
C± = {(x, k; y, l) ∈ T ∗(M×M) : (x, k) ∼ (y, l) and ± k � 0} . (2.3.13b)

2.4 An introduction to black-hole spacetimes

In this thesis, we will consider quantum fields on spacetimes describing charged or rotat-
ing black holes in the presence of a positive cosmological constant. In this section, we
will introduce these spacetimes, define some relevant coordinate systems and summarize
their most significant features.

2.4.1 The Reissner-Nordström-de Sitter spacetime

Let us start with RNdS spacetimes which describe eternal, charged, non-rotating black
holes in the presence of a cosmological constant Λ. Astrophysical black holes are not ex-
pected to carry significant electric charge. Nonetheless, RNdS spacetimes are interesting
because they share many features with rotating black-hole spacetimes while being easier
to handle mathematically. They can thus serve as toy models for the more realistic ro-
tating black-hole spacetimes. Moreover, they are interesting in their own right due to the
classical violation of sCC in highly charged RNdS black holes.

A discussion of these spacetimes, their analytical extensions, and the Kruskal-type co-
ordinates introduced below can be found in [73].

The RNdS spacetimes are vacuum solutions to the coupled Einstein-Maxwell system,
i.e. they solve

Gν% + Λgν% = 8π (Eν% + Tν%) , (2.4.1a)
∇νF

ν% = −4πJ% , (2.4.1b)
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with Tν% = Jν = 0. Here, Jν is the charge current of the matter and the stress-energy
tensor of the Maxwell field is given by

Eν% =
1

4π

Å
FναF%

α − 1

4
gν%FαβF

αβ

ã
.

In Boyer-Lindquist coordinates, the metric takes the form

g = −f(r) dt2 + f(r)−1 dr2 + r2 dΩ2 , (2.4.2)

where dΩ2 is the usual metric on the two-dimensional unit sphere, and the function f(r)
is given by

f(r) =
∆r

r2
= −Λ

3
r2 + 1− 2M

r
+
Q2

r2
. (2.4.3)

The constant M can be identified with the mass of the black hole, while Q represents
the charge of the black hole. This becomes even more apparent when one considers the
vector potential, which represents the electromagnetic part of this solution to the Einstein-
Maxwell system, and which is of the form

A = −Q
r

dt . (2.4.4)

The RNdS spacetimes thus form a three-parameter family of spacetimes, characterized by
Q, Λ, and M . Unless specified otherwise, we will rescale to M = 1, so that we are left
with (Λ, Q) as the free spacetime parameters.
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Figure 2.1: The parameter space for RNdS spacetimes. The red region is the subextremal
parameter region, in which f(r) has three real, distinct positive roots.

The Boyer-Lindquist coordinates are only well-defined away from r = 0 and the roots
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of f(r)4. We are interested in the parameter range of (Λ, Q) in which f(r) has three
real, positive and distinct roots, r− < r+ < rc. This parameter space is illustrated in
Fig. 2.1, see also [74] for a detailed discussion. The locations of the roots of f(r) cor-
respond to the locations of the inner (r−) and outer (r+) horizon of the black hole and
the cosmological horizon (rc). The Boyer-Lindquist coordinates cover the exterior re-
gion up to the cosmological horizon, I = Rt × (r+, rc) × S2, the interior region up to
the inner horizon, II = Rt × (r−, r+)× S2, the region beyond the cosmological horizon,
III = Rt×(rc,∞)×S2, and the interior beyond the inner horizon, IV = Rt×(0, r−)×S2.

The Penrose diagram for this spacetime is shown in Fig. 2.2.

H −
+

H
L

+

H
−
c

H
L
cH

R

H
R−H

L−

H
+−

H
R
c

I

III

II

IV

i−

i+

Figure 2.2: Penrose diagram for the Reissner-Nordström-de Sitter (RNdS) spacetime. The
wiggled line represent the curvature singularity, the thick line correspond to
conformal infinity. All other lines represent the different horizons. Filled dots
stand for bifurcation surfaces, while empty dots indicate conformal points at
infinity. The orange line indicates a possible Cauchy surface for the region
I ∪ II ∪ III.

Let us also note that the metric (2.4.2) is spherically symmetric and independent of t.
Hence, the blocks I and IV, in which f(r) is positive and ∂t is a time-like Killing vector
field, are static. Moreover, the horizons are bifurcate Killing horizons generated by ∂t.

In order to get rid of the coordinate singularities at the horizons and to extend the metric
through the horizon, we construct Kruskal-type coordinates. As a first step, we introduce
the tortoise radial coordinate r∗, which is defined by

dr∗ = f(r)−1 dr .

4Strictly speaking, they do also not cover the axis of the two-spheres {t, r = const.}, where sin θ = 0.
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One can choose the integration constant such that in each of the regions I, II, III and IV,

r∗(r) =− 1

2κ−
log |r − r−|+

1

2κ+
log |r − r+| (2.4.5)

− 1

2κc
log |r − rc|+

1

2κo
log |r − ro| ,

where ro = −(r− + r+ + rc) is the fourth root of f(r), and

κi =
1

2
|∂rf(r)|r=ri (2.4.6)

is the surface gravity at the corresponding horizon.
As a next step, we introduce a set of double null coordinates in each region,

v = t+ r∗ , u = t− r∗ .

In region I, they are both increasing towards the future. In these coordinates, the metric
takes the form

g = −2f(r) du dv + r2 dΩ2 .

Note that the metric still degenerates when f(r) = 0, and u→ ±∞ at outgoing horizons,
while v → ±∞ at ingoing horizons.

Let us now focus on the outer horizon of the black hole. In block I, we define

U+ = −e−κ+u , V+ = eκ+v .

By construction, U+ approaches zero as u → ∞ towards the event horizon HR
+ of the

black hole. Similarly, V+ → 0 towards H−
+, see Fig. 2.2.

Combining the definition of U+ and V+ with (2.4.5), one finds that f(r)/(U+V+) is a
smooth, positive, non-vanishing function of r on (r−, rc). As a result, the metric in the
Kruskal coordinates is smooth and non-degenerate as U+ → 0 or V+ → 0 and can be
extended from R−,U+ × R+,V+ × S2 to M+ = RU+ × RV+ × S2. We will call this a
Kruskal block. One can then identify II with R+,U+ ×R+,V+ × S2, and connect (u, v) and
(U+, V+) in II via

U+ = e−κ+u , V+ = eκ+v .

The Kruskal block M+ also contains a second copy of both I and II, but with reversed
time orientation. We will denote these time-reversed regions I′ and II′.

Similarly, we can define on I

Uc = eκcu , Vc = −e−κcv .

This set of Kruskal-type coordinates leads to a smooth, non-degenerate metric at the cos-
mological horizon {r = rc}, allowing us to extend through the this horizon. In III, these
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Kruskal-type coordinates are then related to u and v by

Uc = eκcu , Vc = e−κcv .

The associated Kruskal block Mc = (RUc×RVc)∩{UcVc < 1}×S2 additionally contains
the regions I′ and III′.

Finally, we can also construct a set of Kruskal coordinates which allows extension of
the metric through the inner horizon. They are related to u and v by

U− = −eκ−u , V− = −e−κ−v in II ,

U− = −eκ−u , V− = e−κ−v in IV .

With the Kruskal-type coordinates, one can patch together an atlas covering the whole
physical RNdS spacetime M up to the Cauchy horizon, consisting of the block I joined
via HR

+ to II and via HL
c to III. In fact, this atlas will also cover the boundaries of the

RNdS spacetime when embedded into its analytical extension M+∪Mc, with region I in
the two blocks identified. This analytic extension of the RNdS spacetime up to the Cauchy
horizon is globally hyperbolic [73]. Moreover, by considering M as a submanifold of the
analytical extension and taking into account the causal structure of RNdS, one can see
that the physical spacetime M = I ∪HR

+ ∪ II ∪HL
c ∪ III must be globally hyperbolic as

well.

2.4.2 The Kerr-de Sitter spacetime

Next, we discuss Kerr-de Sitter (KdS) spacetimes, which describe eternal, rotating, elec-
trically neutral black holes in the presence of a positive cosmological constant Λ. These
spacetimes provide a good model for isolated astrophysical black holes. They are solu-
tions to the vacuum Einstein equations and depend on three parameters: the cosmological
constant Λ, the mass M of the black hole, and the angular momentum parameter a of the
black hole.

In Boyer-Lindquist coordinates (t, r, θ, ϕ), the metric is given by 5

g =
∆θa

2 sin2 θ −∆r

ρ2χ2
dt2 +

[
∆θ(r

2 + a2)2 −∆ra
2 sin2 θ

] sin2 θ

ρ2χ2
dϕ2 (2.4.7)

+
ρ2

∆r

dr2 +
ρ2

∆θ

dθ2 + 2
a sin2 θ

ρ2χ2
[∆r −∆θ(r

2 + a2)] dt dϕ ,

where

∆r = (1− λr2)(r2 + a2)− 2Mr , ∆θ = 1 + a2λ cos2 θ , (2.4.8a)
ρ2 = r2 + a2 cos2 θ , χ = 1 + a2λ , (2.4.8b)

5This coordinate system does not cover the axis where sin θ = 0. However, it can be shown that this
metric can be extended to the axis [75].
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Figure 2.3: The parameter region in which ∆r has three distinct real, positive roots in the
(a, λ)-plane for M = 1.

and λ = Λ/3. From here on, we will rescale to M = 1. We will also restrict to the
parameter region in which ∆r has three distinct real, positive roots r− < r+ < rc. The
admissible parameter range in the (a, λ)-plane is depicted in Fig. 2.3. In this case, the
Boyer-Lindquist blocks

I =Rt × (r+, rc)× (S2
θ,ϕ) ,

II =Rt × (r−, r+)× (S2
θ,ϕ) , and

III =Rt × (rc,∞)× (S2
θ,ϕ)

are all non-empty. The blocks I and III make up the exterior of the black hole, with III
being the region beyond the cosmological horizon. The block II is the interior of the black
hole up to its inner horizon.

The metric is independent of both t and ϕ, and the surfaces of constant t are space-like
in block I. Moreover, for any fixed point x0 in I, the Killing vector field ∂t+ c(x0)∂ϕ with
the constant c(x0) = a/(r(x0)

2 + a2) is time-like at x0. However, none of these Killing
vector fields will be time-like in all of I. Hence, Kerr-de Sitter is axisymmetric, and block
I is manifestly time-invariant and locally stationary, but not globally stationary [76].

The horizons {r = ri}, i ∈ {−,+, c}, are bifurcate Killing horizons generated by

∂ti = ∂t +
a

r2i + a2
∂ϕ . (2.4.9)

Using the so-called ∗KdS- andKdS∗-coordinates, one can continue the metric through
the ingoing or outgoing pieces of the horizons respectively [75]. In particular, we define
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the tortoise coordinate r∗ by

dr∗ =
χ(r2 + a2)

∆r

dr .

Thus, after fixing the integration constant, r∗ is given by (2.4.5), where the surface gravi-
ties κi are now

κi =
|∂r∆r|r=ri
2χ(r2i + a2)

. (2.4.10)

In addition, we set

A(r) =

∫
dr
χa

∆r

.

Then, the KdS∗-coordinates are given by

v = t+ r∗(r) , r∗ = r , θ∗ = θ , ϕ∗ = ϕ+ A(r) , (2.4.11)

while the ∗KdS-coordinates are given by

u = t− r∗(r) ,
∗r = r , ∗θ = θ , ∗ϕ = ϕ− A(r) . (2.4.12)

In the KdS∗-coordinates, the metric takes the form

g =gtt dv2 +
2

χ
dv dr +

ρ2

∆θ

dθ2 + gϕϕ dϕ∗2 (2.4.13)

+ 2gtϕ dv dϕ∗ − 2a sin2 θ

χ
dr dϕ∗ ,

where the components gν% are those in the Boyer-Lindquist coordinates, see (2.4.7). One
obtains the metric in ∗KdS-coordinates by replacing dv → − du and dϕ∗ → − d∗ϕ.

We will refer to block I joint to block II via HR
+ ⊂ {r = r+} in the KdS∗-coordinates

and to III via HL
c ⊂ {r = rc} in the ∗KdS-coordinates as the Kerr-de Sitter spacetime

M.

Next, let us construct Kruskal-type coordinates for this spacetime. For each horizon
i ∈ {−,+, c}, we start by defining an adapted azimuthal coordinate

ϕi = ϕ− a

r2i + a2
t .

The metric in the (u, v, θ, ϕi)-coordinates with u and v as in the ∗KdS- and KdS∗-
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coordinates, takes the form

g =
1

4χ2ρ2(r2i + a2)2

î
∆θ sin

2 θa2
(
r2i − r2

)2 −∆rρ
4
i

ó
( du+ dv)2 (2.4.14)

+
∆rρ

2

4χ2(r2 + a2)2
( du− dv)2 +

ρ2

∆θ

dθ2 + gϕϕ dϕ2
i

+
a sin2 θ

χ2ρ2(r2i + a2)

[
∆rρ

2
i − (r2 + a2)∆θ

(
r2i − r2

)]
dϕi( du+ dv) .

Here, we defined ρ2i = ρ2(ri, θ), and gϕϕ is the corresponding component of the metric in
Boyer-Lindquist coordinates. Note that in contrast to the RNdS spacetime, (u, v, θ, ϕi) is
not a double-null coordinate system.

The Kruskal-type coordinates are defined from u and v in region I in the same way as
for the RNdS spacetime with κi replaced by the κi for the KdS spacetime (2.4.10): on I,
they are related by

U+ = −e−κ+u , V+ = eκ+v , Uc = eκcu , Vc = −e−κcv .

The metric in these coordinates is given by [75, Eq. (66)]

g =f i1 (Vi dUi − Ui dVi)
2 + f i2

(
V 2
i dU2

i + U2
i dV 2

i

)
+ f i3 dUi dVi (2.4.15a)

+ f i4 dϕi (Vi dUi − Ui dVi) +
ρ2

∆θ

dθ2 + gϕϕ dϕ2
i ,

f i1 =
a2 sin2 θ∆θG

2
i

4κ2iχ
2ρ2(r2i + a2)2

, (2.4.15b)

f i2 =
a2 sin2 θ(ri + r)G2

i∆r

4κ2iχ
2ρ2(r2i + a2)(r2 + a2)(r − ri)

Å
ρ2i

r2i + a2
+

ρ2

r2 + a2

ã
, (2.4.15c)

f i3 =
Gi∆r

2κ2iχ
2ρ2(r − ri)

Å
ρ4i

(r2i + a2)2
+

ρ4

(r2 + a2)2

ã
, (2.4.15d)

f i4 =si
a sin2 θGi

κiχ2ρ2(r2i + a2)

ï
(r2 + a2)(r + ri)∆θ +

ρ2i∆r

r − ri

ò
, (2.4.15e)

with Gi = (r − ri)/(UiVi) an analytic, non-vanishing function as long as r is not equal
to any other horizon radius rj , j 6= i [75, Lemma 14]. Here, si = 1 for i ∈ {−, c}, and
s+ = −1.

Note that (Ui, Vi, θ, ϕi) is not a double-null coordinate system, but ∂Ui is null on the
hypersurface {Vi = 0} and vice versa.

In the coordinate system (Ui, Vi, θ, ϕi), the spacetime can be extended through the hori-
zon at r = ri to the Kruskal blocks [75] M− = RU− × RV− × S2

(θ,ϕ−)\{r = 0, θ = π
2
},

M+ = RU+ × RV+ × S2
(θ,ϕ+), and Mc = {UcVc < 1} × S2

(θ,ϕc)
.

The manifold M̃ = M+ ∪ Mc, where the blocks I in M+ and Mc are identified
with each other, will be referred to as the extended Kerr-de Sitter spacetime. M can be
embedded into M̃ by realizing that M∩M+ = {V+ > 0} and M∩Mc = {Uc > 0}.
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Figure 2.4: Penrose diagram of the (θ, ϕ) = const.-surface of the extended spacetime M̃.
The gray area corresponds to M, the union of the blocks I, II and III. The
prime indicates a reversal of the time orientation. The horizons HR

+ and HL
c

are part of M, while the long horizons H+ and Hc are the boundary of M in
M̃.

The boundary of the embedding of M in M̃ consists of the horizons H+ = {V+ = 0} and
Hc = {Uc = 0}. H+ can be split into HL

+ = H+∩{U+ > 0}, H−
+ = H+∩{U+ < 0} and

the bifurcation surface B+ = {V+ = U+ = 0}, while Hc splits into HR
c = Hc∩{Vc > 0},

H−
c = Hc ∩ {Vc < 0} and Bc = {Uc = Vc = 0}. These surfaces will play an important

role later on.
The Penrose-Carter diagram of the (extended) Kerr-de Sitter spacetime is shown in

Fig. 2.4. A primed region has a reversed time orientation in comparison to the corre-
sponding region in M.

Before we move on, let us also briefly discuss null geodesics on the KdS spacetime.
There are three constants of motion: the energy

E = −g(γ′, ∂t) , (2.4.16)

the angular momentum in the direction of the rotation axis

L = g(γ′, ∂ϕ) , (2.4.17)

and the Carter constant K [77]. Here, γ′ is the tangent vector of the geodesic γ.
Using the vector fields

V = (r2 + a2)∂t + a∂ϕ , W = ∂ϕ + a sin2 θ∂t ,

the principal null directions of the Kerr-de Sitter spacetime are given by ±∂r + (χ/∆r)V
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[75, Prop. 1]. In addition, for any null geodesic γ with tangent vector γ′, we set

P(r) = −g(γ′, V ) = (r2 + a2)E − La (2.4.18a)
D(θ) = −g(γ′,W ) = l − Ea sin2 θ . (2.4.18b)

Since V is a future-pointing time-like vector field in region I, we conclude that P must be
positive in region I.

With the help of the constants of motion, the geodesic equation can be separated and
written as [75, 78, 79]

ρ4
Å

dr
dτ

ã2
= χ2P2(r)−K∆r ≡ R(r) (2.4.19a)

ρ4
Å

dθ
dτ

ã2
= K∆θ − χ2D2(θ) ≡ Θ(θ) (2.4.19b)

ρ2
dt
dτ

=
χ2(r2 + a2)P(r)

∆r

+
χ2aD(θ)

∆θ

(2.4.19c)

ρ2
dϕ
dτ

=
χ2aP(r)

∆r

+
χ2D(θ)
sin2 θ∆θ

(2.4.19d)

for light-like geodesics. From the structure of these equations, one can infer that solutions
to the geodesic equation can only exist when both R(r) ≥ 0 and Θ(θ) ≥ 0. This imme-
diately entails K ≥ 0. It is also simple to see that the turning points of the geodesics in r
are given by the roots of R(r),

dr
dτ

= 0 ⇔ R(r) = 0 ,

while geodesics with r = const. can exist at double roots of R(r),

dr
dτ

= 0 and
d2r

dτ 2
= 0 ⇔ R(r) = 0 and ∂rR(r) = 0 .

Moreover, the geodesics contained in the horizon can be extended through the bifurca-
tion sphere and, in the corresponding Kruskal-type coordinates, take the form (τ, 0, θ0, ϕi,0)
for ingoing or (0, τ, θ0, ϕi,0) for outgoing null geodesics [75, Sec. 4.4.2]. This generalizes
[80, Lemma 3.4.10] from Kerr to Kerr-de Sitter.

2.5 Free scalar fields in black-hole spacetimes

In this section, we will return to the theory of the free real scalar quantum field and focus
in particular on the case where the spacetime is a black-hole spacetime.

As discussed earlier, if we want to compute physical observables of the quantum field,
we need to pick a state. If we also want to consider observables which are local and non-
linear in the quantum field, we have to choose a Hadamard state. Furthermore, we would
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like the state to adequately describe the physical situation under consideration.
For the real scalar field on a black-hole spacetime, there are a number of states which

are physically well-motivated.
One common way to define these states [47] is to consider the local quantum field Φ(x).

To do so, let us assume that we are working on a fixed globally hyperbolic spacetime
(M, g). Φ(x) can be considered as an operator-valued distribution

Φ : C∞
0 (M) → A(M) , Φ(f) =

∫
M

Φ(x)f(x) dvolg(x) .

Assume we have a (generalized) basis (φi(x), φi(x)) of the solution space S(M) which
satisfies

σ(φi, φj) = iδij ,

σ(φi, φj) = σ(φi, φj) = 0 ,

where δij is a δ-distribution in the case of continuous indices and the Kronecker-Delta for
discrete indices. Then, one may write

Φ(x) =
∑
i

[
φi(x)ai + φi(x)a

∗
i

]
,

where the ai are operators, and where the sum should be replaced by an integral for con-
tinuous indices. Next, define the state by πω(ai)Ωω = 0 for all i. This state corresponds
to the vacuum state of the Fock space on which the ai and a∗i act as the usual annihilation-
and creation operators, or the quasi-free state with two-point function

w(x, y) =
∑
i

φi(x)φi(y) . (2.5.1)

Thus, in order to choose a state in this way, one needs to choose a generalized basis for
S(M) [47].

For concreteness, let us consider a Schwarzschild spacetime which can be obtained
from the RNdS spacetime by setting Λ = Q = 0. More specifically, its metric takes the
form

g = −(1− 2M/r) dt2 + (1− 2M/r)−1 dr2 + r2 dΩ2 .

In this spacetime, there is only one bifurcate Killing horizon, the event horizon of the
black hole at r = 2M , and the surface gravity of the horizon is κ = (4M)−1. As on
RNdS, one can also define u = t− r∗ and v = t+ r∗ with tortoise coordinate

r∗ = r − 2M log |r − 2M | ,

and obtain the Kruskal coordinates U and V from u and v. The Kruskal coordinates allow
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to extend the metric through the event horizon of the black hole.
One possibility to uniquely identify an element φ ∈ S(M) is by giving initial data

φ0 = φ|Σ and φ1 = na∂aφ|Σ on some Cauchy surface Σ. However, it has been shown
in [43, Thm. 2.1] that one can also describe elements φ ∈ S(M) on this spacetime by
their asymptotic data on the past event horizon H = {V = 0} and at past null infinity
I− = {U = −∞}.

On the Schwarzschild spacetime, there are three well-studied states that can be defined
in this way.

The first one is the Boulware vacuum state [81]. It is of the form (2.5.1), with
i = (ω, `,m, λ) running over R∗

+ × N× [−`, `]× {in, up}. The modes are of the form

φλω`m = N λ
ω`mY`m(θ, ϕ)h

λ
ω`(t, r) .

Y`m are the spherical harmonics, N λ
ω`m is a normalization constant, and hλω`(t, r) are de-

termined by hupω`m(t, r) ∼ r−1
+ e−iωu at H− = {V = 0, U < 0} and ∼ 0 at I−, while

rhinω`m(t, r) ∼ e−iωv at I− and ∼ 0 at H−.
The Boulware state is invariant under the automorphism induced by ∂t, under time

reversal t → −t, and under automorphisms generated by the Killing fields of the SO(3)-
symmetrie of the spacetime. It is a ground state with respect to ∂t [82], and therefore a
Hadamard state, in the exterior of the black hole [62]. Physically, it can be considered as
the state that contains no particles incoming from I− or outgoing to I+ = {V = ∞} from
the viewpoint of a static observer far away from the black hole [83]. A static observer is
one that follows the orbits of the Killing field ∂t. For Λ = 0 and in the limit r → ∞, this
agrees with a freely falling observer, i.e. an observer following a time-like geodesic.

One important shortcoming of this state is the fact that it is not Hadamard across the
black-hole event horizon. Hence, if one is interested in the interior of the black hole, one
has to choose a different state.

An alternative state for the free scalar field on the Schwarzschild spacetime is the
Hartle-Hawking state [84, 85]. It can be constructed in the same way as the Boulware
state, with the difference that now hinω`m ∼ r−1

+ e−iωU+ on the whole past horizon H and
∼ 0 on I−, while rhupω`m ∼ e−iωV+ on I− and ∼ 0 on H.

Similar to the Boulware state, the Hartle-Hawking state is invariant under the automor-
phisms generated by ∂t and the SO(3) Killing fields, as well as under time reversal. But
instead of being a ground state, the Hartle-Hawking state restricted to the exterior of the
black hole is a KMS-state at inverse temperature β = 2πκ−1, the inverse of the surface
gravity of the black hole times 2π [82]. In contrast to the Boulware state, it extends as a
Hadamard state not only through the event horizon HR = {U = 0, V > 0} of the black
hole, but to the full Kruskal extension of the Schwarzschild spacetime. In fact, it is the
only quasi-free state which has this property and is invariant under the automorphisms
generated by ∂t [61]. The Hartle-Hawking state has been rigorously constructed, and has
been shown to be a Hadamard state not only on Schwarzschild spacetimes but on any
spacetime with static [86] or even stationary [87] bifurcate Killing horizon.

Physically, the Hartle-Hawking state describes a black body, namely the black hole, at
the Hawking temperature immersed in a thermal bath of the same temperature. Thus, this
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state does not seem to be the optimal description for the scalar field outside the black hole
– we would expect that, from the perspective of a static observer far from the black hole, a
physical state would not contain any particles incoming from I−, similar to the Boulware
state.

This can be seen as a motivation for the third state, the Unruh state [18]. It is defined
in the same way as the other two, with the asymptotic behaviour of the functions hλω`m
chosen as rhinω`m ∼ e−iωv at I− and ∼ 0 at H, while hupω`m ∼ r−1

+ e−iωU+ at H and ∼ 0 at
I−.

The Unruh state, in contrast to the other two, is no longer an equilibrium state, and
is no longer invariant under the time-reversal symmetry. Nonetheless, it is still invariant
under the automorphisms generated by ∂t and the SO(3) Killing fields. In addition, it
extends as a Hadamard state through the event horizon HR [43]. This is sufficient, since
one is usually not interested in what happens at the past event horizon H. The reason
is that in the more realistic case of a gravitational collapse, the past horizon lies inside
the collapsing body and is absent from the spacetime. Therefore, a breakdown of the
Hadamard property at the past event horizon does not cause any problems.

The Unruh state can be interpreted physically as containing no incoming particles from
I− as viewed from a static observer far from the black hole, while the black hole radiates
at inverse Hawking temperature β = 2πκ−1. In fact, at I+ one finds an outgoing ther-
mal flux of energy at the Hawking temperature which is in agreement with the expected
Hawking radiation [1, 83, 88, 89]. For this reason, the Unruh state is considered a good
description of the late-time behaviour of the scalar quantum field in the case of spherically
symmetric gravitational collapse.

Analogues of the Unruh state have been applied for the computation of observables of
the scalar field on the Reissner-Nordström (RNdS with Λ = 0) [90–92] and Kerr [17, 93–
95] spacetime. Furthermore, its rigorous construction and the proof of its Hadamard prop-
erty [43] have been extended to Schwarzschild-de Sitter [96] and Reissner-Nordström-de
Sitter [16]. In this thesis, we will demonstrate that it can also be extended to Kerr-de Sitter
spacetimes under certain conditions on the angular momentum a of the black hole and the
cosmological constant Λ.

Finally, we discuss how the formulation of the Unruh two-point function used in the
rigorous results [16, 43, 96] is, at least formally, related to the mode-sum expression. Let
us take the case of RNdS [16] as an example. Note that the following computation is
purely formal and serves a purely illustrative purpose. Therefore, we will not be careful
when interchanging different integrals with each other or with infinite sums, or when
taking limits.

On the one hand, in [16, Eq. (66)], the two-point function for the Unruh state is given
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as

w(f, h) =−
r2+
π

∫
R×R×S2

E(f)|H+(U+,Ω)E(h)|H+(U
′
+,Ω)

(U+ − U ′
+ − i0+)2

d2Ω dU+ dU ′
+

− r2c
π

∫
R×R×S2

E(f)|Hc(Vc,Ω)E(h)|Hc(V
′
c ,Ω)

(Vc − V ′
c − i0+)2

d2Ω dVc dV ′
c ,

with Ω = (θ, ϕ) and d2Ω the usual volume element of the unit sphere S2.

On the other hand, using the mode-sum description introduced above, one can write
the two-point function of the Unruh state on RNdS as in (2.5.1), with the modes given
by a set of up-modes ∼ e−iωU+ at H+, and a set of in-modes ∼ e−iωVc at Hc (and both
vanishing at the other horizon respectively), resulting in the two-point function

w(f, h) =

∫
M

dvolg(x)
∫
M

dvolg(y)
∑
λ,`,m

∞∫
0

dωψλω`m(x)f(x)ψλω`m(y)h(y) .

Combining [57, Lemma A.1] with a change of integration and summation order, one can
bring this into the form

w(f, h) =
∑
λ,`,m

∞∫
0

dωσ(ψλω`m, E(f))σ(ψλω`m, E(h)) .

Since the symplectic form σ is independent of the Cauchy surface it is evaluated on, we
evaluate it on H+ ∪Hc which strictly speaking is only the limit of a sequence of Cauchy
surfaces. But this limit can be taken thanks to the decay of the solutions in S(M) towards
i− proven in [39]. After a partial integration and plugging in the asymptotic behaviour of
the modes we obtain

w(f, h) =
r2+
π

∞∫
0

dω
∫

R×R×S2

∑
`,m

Ñ∫
S2

Y`m(Ω)E(f)|H+(U+,Ω) d2Ω

é
Y`m(Ω

′)

× E(h)|H+(U
′
+,Ω

′)ωe−iω(U+−U ′
+) dU+ dU ′

+ d2Ω′

+
r2c
π

∞∫
0

dω
∫

R×R×S2

∑
`,m

Ñ∫
S2

Y`m(Ω)E(f)|Hc(Vc,Ω) d2Ω

é
Y`m(Ω

′)

× E(h)|Hc(V
′
+,Ω

′)ωe−iω(Vc−V
′
c ) dVc dV ′

c d2Ω′

One can now use the completeness relation of the spherical harmonics to identify the
integral in the brackets with the coefficients of the Laplace series for E(f)|H+(U+, ·)
or E(f)|Hc(Vc, ·), implying that after taking the sum over ` and m one is left with the
corresponding function evaluated at Ω′. It then only remains to apply the fact that the
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distribution Θ(ω)ω, where Θ(ω) is the Heaviside distribution, is the Fourier transform of
−(x− i0+)−2. In this way, one reaches the form given in [16, Eq. (66)].

This illustrates the connection between the different formulations of the Unruh state.
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3 Computing the energy flux of the real
scalar field

The main objective of this chapter is to check whether quantum effects can restore the
validity of the sCC on RNdS spacetimes in cases when it is classically violated [40]. This
requires the numerical computation of the leading divergence of the energy flux at the
inner horizon of the RNdS black hole. We begin the chapter by recalling the connection
between the energy flux and the sCC conjecture in Section 3.1, giving also a formula for
the flux in terms of scattering coefficients. Since these coefficients need to be computed
numerically, we continue by describing a semi-analytical method for the computation of
these coefficients in Section 3.2, and we extend these methods to the charged scalar field
on RNdS in Section 3.3. The numerical results obtained in this way for the real scalar
field are presented in Section 3.4.

3.1 Strong cosmic censorship on RNdS

Before we start with the computation, let us give a motivation by recalling the results of
[16]. In this paper, the authors considered a real, scalar field on a RNdS spacetime. They
were particularly interested in the parameter region in which a study of the corresponding
classical field shows a violation of sCC [40]. The main goal of their work was to examine
whether quantum effects could change this result. To do so, they studied the behaviour of
the expectation value of the energy flux TV−V− of the scalar field near the Cauchy horizon
HR

− in some state Ψ. The only requirement on Ψ was that it is Hadamard in the regions I,
II and III.

The significance of Ψ(: TV−V− : ), which we will denote as
〈
TV−V−

〉
Ψ

in the following,
can be understood by considering the backreaction of the quantum field on the spacetime
via the semi-classical Einstein equations (1.0.1). If we assume that the leading correction
to the metric will be spherically symmetric, we can make an ansatz for the corrected
metric of the form

g = −eσ du dv + r2 dΩ2 , (3.1.1)

where σ and r are unknown functions of u and v. Plugging this into the vv-component of
the semi-classical Einstein equations (1.0.1), one obtains

∂2vr − ∂vr∂vσ = −4πr 〈Tvv〉Ψ . (3.1.2)
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By the tensor-transformation law, 〈Tvv〉Ψ is related to
〈
TV−V−

〉
Ψ

by〈
TV−V−

〉
Ψ
= (κ−V−)

−2 〈Tvv〉Ψ .

As a next step, we decompose σ and r into a background part r0, σ0 and a perturbation r1,
σ1. The background parts will be chosen such that they correspond to the RNdS spacetime
on which 〈Tvv〉Ψ was computed. In other words, we set

r0 = rRNdS , eσ0 =
f(r)

2
.

We then assume that the backreaction is sufficiently weak so that we can expand (3.1.2)
to first order in the perturbation, considering 〈Tvv〉Ψ as a first-order perturbation as well.
Since we are interested in the results near the inner horizon, we assume that we may
evaluate the background functions at the inner horizon. In this limit ∂vr0 → 0, r0 → r−
and ∂vσ0 → −κ− as defined in (2.4.6). As a result, we obtain [92]

∂2vr + κ−∂vr = −4πr− 〈Tvv〉Ψ . (3.1.3)

This equation has the solution

∂vr = −4πr−
κ−

〈Tvv〉Ψ (3.1.4)

plus an exponentially decaying term. Thus, when the scalar field is considered as a matter
model, the vv-component of the current decides whether nearby geodesics approaching
the Cauchy horizon are accelerated towards or away from each other. See also [92] for a
similar discussion with vanishing cosmological constant.

The results of [16] show that in the case where sCC is classically violated, the expecta-
tion value of TV−V− has a state-independent quadratic leading divergence,〈

TV−V−
〉
Ψ
∼ CV −2

− .

The state dependence only enters through sub-leading terms, which behave not worse than
the classical results [16, Prop. 5.1].

The prefactor C of the leading divergence is given by the expectation value in a refer-
ence state, which is chosen to be the Unruh state. To simplify computations, the expecta-
tion value is computed using state subtraction with respect to a comparison state,

C =
1

κ2−
(〈Tvv(r−)〉U − 〈Tvv(r−)〉C) ≡

1

κ2−
〈Tvv〉U−C . (3.1.5)

Here, the subscripts U and C signify that the expectation values are computed in the Unruh
state and in a comparison state. The latter is constructed such that it is a Hadamard state
in a neighbourhood of the Cauchy horizon. The evaluation at r− indicates the Cauchy-
horizon limit of the expectation values. Changing the reference- or the comparison state
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will only modify the sub-leading contributions to
〈
TV−V−

〉
Ψ

.

The constant C can be calculated in terms of a mode-sum formula. This formula con-
tains the scattering coefficients of the Boulware-type solutions to the Klein-Gordon equa-
tion on the RNdS spacetime. More concretely, it is given by the formula

〈Tvv〉U−C =
∑
`

2`+ 1

16π2r2−

∞∫
0

dω ωn`(ω) , (3.1.6a)

n`(ω) = coth
Ä
π ω
κc

ä ∣∣T I
ω`

∣∣2 ∣∣T II
ω`

∣∣2 + coth
Ä
π ω
κ+

ä Ä∣∣RI
ω`

∣∣2 ∣∣T II
ω`

∣∣2 + ∣∣RII
ω`

∣∣2ä (3.1.6b)

+ 2 csch
Ä
π ω
κ+

ä
Re
î
RI

ω`T II
ω`RII

ω`

ó
− coth

Ä
π ω
κ−

ä
.

The scattering coefficients RN
ω` and T N

ω` with N ∈ {I, II} will be introduced below in
(3.2.4) and (3.2.5).

Unfortunately, these coefficients are not known analytically, but must be computed
numerically. In this chapter, we will therefore describe a formalism that allows the com-
putation of these scattering coefficients, and subsequently a computation of C, for general
masses of the scalar field. We will also emphasize how this procedure can accommodate
for a non-vanishing scalar-field charge.

The question we want to answer with the numerical computation is whether C is gener-
ically, i.e. for a broad range of both spacetime and scalar-field parameters, non-zero. This
would indicate that quantum effects can restore sCC if it is classically violated.

3.2 The Klein-Gordon equation on RNdS

In this section, we will recapitulate how the massive wave equation on RNdS can be
reduced to an ordinary differential equation (ODE) for the radial function. We will present
two different ways to write the radial ODE. One of them will allow us to reformulate the
radial ODE in a form that reduces to the Heun equation in the case of conformal coupling.
Most of the content of this section has been published in [97]. For this paper, I derived the
analytical reformulation of the radial ODE for general masses, implemented its numerical
solution as described below, and produced the numerical results with the help of Dr. Zahn
and Prof. Hollands.

Let us start with the massive Klein-Gordon equation (2.2.1) on RNdS. In order to solve
this equation, one can write the equation in the usual Boyer-Lindquist coordinates and
make the ansatz

φω`m = Nω`me
−iωtY`m(θ, ϕ)Rω`m(r) , (3.2.1)

where Y`m(θ, ϕ) are the spherical harmonics and Nω`m is a normalization constant. Plug-
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ging this ansatz into (2.2.1), one is left with an ODE for Rω`m(r),ï
∂r∆r∂r +

r4ω2

∆r

− µ2r2 − `(`+ 1)

ò
Rω`m(r) = 0 . (3.2.2)

We will refer to (3.2.2) as the radial equation. There are two different, useful ways to
rewrite this ODE.

The first one is particularly useful to identify the Boulware-type modes by considering
the asymptotic behaviour of the solutions as r → rj , j ∈ {+, c}. Let us define

Rω`m = r−1Fω` .

We can drop the m-subscript, since the radial function does not depend on it. In addition,
let us change from the radial coordinate r to the tortoise coordinate r∗ defined in (2.4.5).
Then (3.2.2) can be written as[

∂2r∗ − V`(r) + ω2
]
Fω`(r∗) = 0 , (3.2.3a)

V`(r) = f(r)

Å
`(`+ 1)

r2
+
∂rf(r)

r
+ µ2

ã
, (3.2.3b)

thus taking the form of a Schrödinger-type equation. One can show that V` → 0 expo-
nentially fast in r∗ as r∗ → ±∞: Let us consider V`(r) in the interval [r− + ε, rc − ε]
around r+ for some ε > 0. The other cases can be handled analogously. Then we notice
that the term in the brackets in (3.2.3b) is a polynomial in r divided by r3. Hence, this
term is bounded on [r− + ε, rc + ε] by some constant. Similarly, the prefactor f(r) can
be bounded by some constant times |r − r+|. Taking into account the definition of r∗ in
(2.4.5), one finds

|r − r+| ≤ e2κ+r∗e

∑
j 6=+

sjκ+
κj

log ε

with sj = 1 for j ∈ {−, c}, and so = −1. This shows the exponential decay of V`(r)
towards r+ as a function of r∗.

Hence, the radial equation takes the form of a one-dimensional scattering problem with
a localized potential. One expects to find solutions with an asymptotic behaviour of the
form

F I
ω`(r∗) →

®
eiωr∗ +RI

ω`e
−iωr∗ r∗ → −∞

T I
ω`e

iωr∗ r∗ → ∞
(3.2.4)

in the exterior region of the black hole, r ∈ (r+, rc) and

F II
ω`(r∗) →

®
e−iωr∗ r∗ → −∞
T II
ω`e

−iωr∗ +RII
ω`e

iωr∗ r∗ → ∞
(3.2.5)
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in the interior region r ∈ (r−, r+). These solutions are exactly the ones we will be looking
for. Let us also note that, since the radial differential equation does not contain a first-
order derivative term, the Wronskian

W [F (r∗), G(r∗)] = F (r∗)∂r∗G(r∗)−G(r∗)∂r∗F (r∗)

is independent of r∗ for any two solutions F (r∗), G(r∗) of the radial equation. Computing
the Wronskian between the modes in (3.2.4) or (3.2.5) and their complex conjugates in
the two asymptotic limits then results in the identities∣∣RI

ω`

∣∣2 + ∣∣T I
ω`

∣∣2 = 1 , (3.2.6a)∣∣T II
ω`

∣∣2 − ∣∣RII
ω`

∣∣2 = 1 . (3.2.6b)

In particular, the coefficients RI
ω` and T I

ω` behave like expected for reflection- and trans-
mission coefficients. The behaviour of RII

ω` and T II
ω` is different, since r∗ is a time-like

coordinate in the black hole interior.

The second way of rewriting the radial equation will be the key to the numerical com-
putation of the modes defined in (3.2.4) and (3.2.5). To rewrite the radial equation in the
second way, we follow [98] and introduce the dimensionless variable

x = x∞
r − r+
r − ro

=
r− − ro
r− − r+

r − r+
r − ro

, (3.2.7)

where x∞ = lim
r→∞

x. Writing xc = x(rc), we note that this definition entails

1− x =
r+ − ro
r+ − r−

r − r−
r − ro

,
x− xc
1− xc

=
r− − ro
r− − rc

r − rc
r − ro

. (3.2.8)

Let us also introduce the coefficients ai, i ∈ {o,−,+, c}, given by

ai = sign (∂r∆r|ri)
iω

2κi
. (3.2.9)

These coefficients satisfy the relation
∑

i ai = 0, see [98]. We can make an ansatz for the
radial function Rω` of the form

Rω`(x) = |x|a+ |1− x|a−
∣∣∣∣x− xc
1− xc

∣∣∣∣ac x− x∞
1− x∞

h(x) . (3.2.10)

Using the above relations and the definition of r∗ in (2.4.5), we note that we can identify

|x|a+ |1− x|a−
∣∣∣∣x− xc
1− xc

∣∣∣∣ac = eiωDeiωr∗ , (3.2.11)
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where the constant D is given by

D =
1

2κ+
ln |x∞| − 1

2κ−
ln

Å
r+ − ro
r+ − r−

ã
− 1

2κc
ln

Å
r− − ro
rc − r−

ã
. (3.2.12)

Moreover,

x− x∞
1− x∞

=
r− − ro
r − ro

is a strictly positive, smooth, bounded function of r on the interval [r−, rc] we are inter-
ested in.

Next, let us turn to the unknown function h(x). Applying the results obtained so far,
one can follow [98] and derive the differential equation for h(x). It reads

∂2xh(x) +

ï
γ

x
+

δ

x− 1
+

ε

x− xc

ò
∂xh(x) (3.2.13)

+

ï
σ+σ−x− q

x(x− 1)(x− xc)
+

∆1x−∆2

x(x− 1)(x− xc)(x− x∞)2

ò
h(x) = 0 .

The constants in the first order differential term are given by

γ = 1 + 2a+ , δ = 1 + 2a− , ε = 1 + 2ac . (3.2.14)

Together with the coefficients σ+ = 1− 2ao and σ− = 1, they satisfy the relation

γ + δ + ε = σ+ + σ− + 1 , (3.2.15)

as would be the case for the corresponding coefficients in a Heun differential equation
[99]. The parameter q can be written as (compare [98], note however the modification
due to the more general mass µ2)

q = x∞ + [(1 + xc)a+ + xca− + ac] +
3 [`(`+ 1) + µ2r2o]

Λ(r+ − r−)(rc − ro)
. (3.2.16)

The last two parameters

∆1 =

Å
2− 3µ2

Λ

ã
2ro(ro − r+)

(r+ − r−)(rc − ro)
, (3.2.17a)

∆2 =

Å
2− 3µ2

Λ

ã
x2∞
(
r2o − r2+

)
(r+ − r−)(rc − ro)

, (3.2.17b)

are the only ones that do not fit into the frame of the Heun differential equation. However,
they both vanish when µ2 = 2Λ/3, so that the differential equation for h(x) reduces to a
Heun equation. As we have mentioned in Chapter 2, the Ricci scalar of this spacetime is a
constant, and hence a non-zero mass and a non-miminal coupling have the same effect on
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the equation of motion. Throughout this section, we will assume minimal coupling. But
since the equations of motion with mass µ2 = 2Λ/3 are the same as those for a massless,
conformally coupled scalar field, we will refer to this case as "conformal coupling" to
stress the distinction of this parameter choice.

In order to solve for h(x) in the case of general mass, we make a power-series ansatz
for h(x),

h(x) =
∞∑

n=−∞

hnx
n .

Since we have shown that our ansatz already contains the oscillatory behaviour we are
looking for, we will look for solutions h(x) that are regular at x = 0. Further, we take
h(0) = 1. This amounts to setting hn = 0 for n < 0 and h0 = 1.

Plugging the ansatz into the differential equation for h(x) then yields a 5-term recur-
rence relation for the coefficients hn,

x2∞a(n+ 2)hn+2 − [x2∞b(n+ 1) + 2x∞a(n+ 1) + ∆2]hn+1 (3.2.18)
+ [x2∞c(n) + 2x∞b(n) + a(n) + ∆1]hn − [2x∞c(n− 1) + b(n− 1)]hn−1

+ c(n− 2)hn−2 = 0 ,

with

a(n) = xcn(n− 1 + γ) (3.2.19a)
b(n) = n [(xc + 1)(n− 1 + γ) + xcδ + ε] + q (3.2.19b)
c(n) = (n+ σ+)(n+ σ−) . (3.2.19c)

By reorganizing (3.2.18) as

x2∞ [a(n+ 2)hn+2 − b(n+ 1)hn+1 + c(n)hn] (3.2.20)
− 2x∞ [a(n+ 1)hn+1 − b(n)hn + c(n− 1)hn−1]

+ a(n)hn − b(n− 1)hn−1 + c(n− 2)hn−2 = −∆2hn+1 −∆1hn ,

one can immediately see that this reduces to the known three-term recurrence relation of
the Heun equation [99],

a(n+ 1)hn+1 − b(n)hn + c(n− 1)hn−1 = 0 ,

when ∆1 = ∆2 = 0, i.e. µ2 = 2Λ/3. Hence, we have reduced the radial equation to a
5-term recurrence relation, which can be evaluated numerically to arbitrary order.

However, before we get to the numerical implementation, let us estimate the radius of
convergence of the power series in our ansatz. To this end, let us note that for n ≥ 0,
x2∞a(n+ 2) 6= 0. Hence, we can divide (3.2.18) by x2∞a(n+ 2), and shift the label from
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n to n− 2. This brings the equation into the form

hn+4 +
3∑
i=0

αihn+i = 0 ,

where αi are the coefficients of hn+i divided by x2∞a(n + 4). In the limit of n → ∞, the
coefficients αi approach the finite limits

β0 ≡ lim
n→∞

α0 =
1

x2∞x
2
c

(3.2.21a)

β1 ≡ lim
n→∞

α1 = −2x∞ + xc + 1

x2∞xc
(3.2.21b)

β2 ≡ lim
n→∞

α2 =
x2∞ + 2x∞(xc + 1) + xc

x2∞xC
(3.2.21c)

β3 ≡ lim
n→∞

α3 = −x
2
∞(xc + 1) + 2x∞xc

x2∞xc
. (3.2.21d)

The roots of the characteristic polynomial λ4+
3∑
i=0

βiλ
i are given by λ1 = 1, λ2 = 1/xc

and λ3 = 1/x∞, and λ3 is a double root. Since |x∞| > 1 by construction, λ3 cannot be
the root of maximal absolute value. By the definition of [100], this recurrence relation
is therefore "maxmod-generic". Hence, by [100, Lemma 3], combined with [101, Thm.
1], the limit lim

n→∞
hn+1

hn
exists and is given by one of the λi. In particular, it is bounded by

max (1, |xc|−1). Thus, our ansatz for h(x) can, for sufficiently large n, be estimated by a
geometric series, and we find that the radius of convergence for h(x) is generally given
by min (1, |xc|).

As a result, the solution obtained in this way is only valid in a neigbourhood of the
event horizon. In order to find solutions in neighbourhoods of the other two horizons, we
can apply two of the coordinate-change transformations mapping Heun equations to Heun
equations [99], x→ y = 1− x and x→ z = (xc − x)/(xc − 1). Under these coordinate
changes, the form of the differential equation for h remains invariant, but the parameters
change according to

γy = δx , δy = γx , (3.2.22a)
εy = εx , σ+,y = σ+,x , (3.2.22b)

σ−,y = σ−,x , qy = σ+,xσ−,x − qx , (3.2.22c)
∆1,y = ∆1,x , ∆2,y = ∆1,x −∆2,x , (3.2.22d)
yc = 1− xc , y∞ = 1− x∞ (3.2.22e)

and

γz = εx , δz = δx , (3.2.23a)
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εz = γx , σ+,z = σ+,x , (3.2.23b)

σ−,z = σ−,x , qz =
xcσ+,xσ−,x − qx

xc − 1
, (3.2.23c)

∆1,z =
∆1,x

(xc − 1)2
, ∆2,z =

xc∆1,x −∆2,x

(xc − 1)3
, (3.2.23d)

zc =
xc

xc − 1
, z∞ =

xc − x∞
xc − 1

. (3.2.23e)

Note that in contrast to xc and yc, which are the values of x and y at r = rc, see (3.2.7)
and (3.2.8), zc is the value of z at r = r+.

Repeating the analysis of the resulting recurrence relation and its large-n limit, we find
that the roots of the characteristic polynomials are again given by 1, (yc)−1, and y−1

∞ , and
1, z−1

c , and z−1
∞ . y−1

∞ and z−1
∞ are the double roots. One can check that these cannot be the

roots with the largest absolute value. Hence, by the same arguments as before, the radius
of convergence of the solution near the inner horizon in terms of the coordinate y is given
by min (1, |yc|), while the radius of convergence of the solution near the cosmological
horizon in terms of z is given by min (1, |zc|).

In this way, we can numerically obtain solutions hi(x) of the corresponding Heun equa-
tion in a neighbourhood of each of the horizons ri. We can then plug the solution hi(x)
into the ansatz (3.2.10), and normalize by adding a factor Ni = e−iωDr−1

i
1−x∞
xi−x∞ , with

xi = x(ri). Thus, we obtain solutions to the radial equation which are defined in the
neighbourhood of one of the horizons ri and behave as ∼ r−1

i eiωr∗ for r → ri. We will
call these solutions Ri

ω`(r).
Once we have these solutions, we can obtain the scattering coefficients in (3.2.4) and

(3.2.5) as follows: We express the functions r−1FN
ω`, N ∈ {I, II}, in terms of the Ri

ω` and
the scattering coefficients. In this way, one obtains two expressions for each r−1FN

ω` from
the two asymptotic limits of these functions. Comparing the two expressions as well as
their first derivatives in a region where they are both well-defined then yields equations
for the scattering coefficients. If one solves the equations for the scattering coefficients,
one finds that they are given by

RI =
W [R+, Rc]

W [Rc, R
+
]
, T I =

W [R+, R
+
]

W [Rc, R
+
]
, (3.2.24a)

RII =
W [R

−
, R

+
]

W [R−, R−]
, T II =

W [R
+
, R−]

W [R
−
, R−]

. (3.2.24b)

Here, we have dropped the ω`-subscripts for brevity.
Thus, this formalism allows us to numerically compute the scattering coefficients even

in the case of a general scalar-field mass when other methods based on the Heun equation
such as the MST-method [102], which was applied to asymptotically-de Sitter spacetimes
in [98, 103], are not applicable. For the Heun-equation case, recent results indicate that
it is even possible to obtain analytical expressions for the scattering coefficients by using
methods based on 2-dimensional conformal quantum field theory [104, 105]. Nonethe-
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less, for our purposes the applicability to a general scalar-field mass is a decisive advan-
tage of the numerical formalism presented here.

3.3 Extension to the charged scalar field on RNdS

In this section, we will demonstrate how the method described in the previous section can
be extended to charged scalar fields on RNdS.

The charged scalar field satisfies the equation[
DνD

ν − µ2
]
φ = 0 , (3.3.1)

where Dν = ∇ν − iqAν is the (gauge-)covariant derivative, and q is the charge of the
scalar field. Note that the Klein-Gordon operator is no longer real. Hence, if φ solves
(3.3.1), then φ̄ solves the complex conjugate equation, which is not the same.

Making an ansatz of the form (3.2.1), and changing to r∗ and Fω`(r∗), the radial equa-
tion takes the form ñ

∂2r∗ − V`(r) +

Å
ω − qQ

r

ã2
ô
Fω`(r∗) = 0 , (3.3.2)

with V`(r) of the same form as in (3.2.3b). For the charged scalar field, we have a gauge
freedom of the form

Aν(x) → Aν(x) + ∂νχ(x) , φ(x) → eiqχ(x)φ(x) , (3.3.3)

with χ any smooth function. One can see that transformations of the form χ = ct, with c
some constant, leave the radial equation invariant, while they change the t-dependence of
φ to e−i(ω−c)t, and change A to (−Q/r+ c) dt. For the rest of this section, we will choose
c = Q/r+, so that At = Q

(
r−1
+ − r−1

)
vanishes at the event horizon. We will also define

a new frequency ω̃ = ω− c, and drop the tilde from here on out. The radial equation then
reads ñ

∂2r∗ − V`(r) +

Å
ω − qQ

r
+
qQ

r+

ã2ô
Fω`(r∗) = 0 , (3.3.4)

and the solutions we are looking for now take the form

F I
ω`(r∗) →

®
eiωr∗ +RI

ω`e
−iωr∗ r∗ → −∞

T I
ω`e

i(ω+ωI)r∗ r∗ → ∞
(3.3.5)

in the exterior region of the black hole, r ∈ (r+, rc), or

F II
ω`(r∗) →

®
e−iωr∗ r∗ → −∞
T II
ω`e

−i(ω−ωII)r∗ +RII
ω`e

i(ω−ωII)r∗ r∗ → ∞
(3.3.6)
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in the interior region r ∈ (r−, r+). Here, we have defined ωI = qQ(r−1
+ − r−1

c ) and
ωII = qQ(r−1

− − r−1
+ ). Using the Wronskian, one can show that the coefficients satisfy

|RI
ω`|2 +

ω + ωI

ω
|T I
ω`|2 = 1 (3.3.7a)∣∣T II

ω`

∣∣2 − ∣∣RII
ω`

∣∣2 = ω

ω − ωII

. (3.3.7b)

Next, we change to the radial coordinate x, see (3.2.7), and make the ansatz (3.2.10), but
with ai given by

ai = sign (∂r∆r|ri) i
ω + qAt(ri)

2κi
. (3.3.8)

These coefficients still satisfy
∑

i ai = 0 [98]. Then, up to functions which are smooth
in a neighbourhood of the corresponding horizon, the ansatz divided by h(x) behaves
as eiωr∗ as r → r+, as ei(ω+ωI)r∗ as r → rc and as ei(ω−ωII)r∗ as r → r−. This can be
seen by a computation as in (3.2.11). Note that due to the modification of the ai, the
D in (3.2.11) is a function of r which is smooth at the horizon under consideration for
the charged scalar. Nonetheless, we can again look for solutions with regular h(x) at the
corresponding horizon.

The equation for h(x) is of the same form as for the real scalar field, with the ai adapted
accordingly. Thus, it can be solved in the same way as before adopting a power-series
ansatz, which yields a recurrence relations for the coefficients of the power series of the
same form and with the same large-n limit as in (3.2.18). Consequently, the analysis of
the radius of convergence for the power-series solutions carries over to the charged scalar
field. Once the local solutions obtained this way are properly normalized, we obtain the
scattering coefficients analogously to the real scalar field.

3.4 The energy flux at the Cauchy horizon

In this section, we present numerical results for the difference of the expectation value
of the energy flux of the real scalar quantum field between the Unruh- and comparison
state evaluated at the Cauchy horizon of a RNdS spacetime, 〈Tvv〉U−C. As discussed in
Section 3.1, sCC on the RNdS spacetime will be restored by quantum effects if this flux
is generically non-vanishing. Moreover, the flux will influence the fate of an observer
approaching the Cauchy horizon. To obtain the results we apply the formalism introduced
in Section 3.2.

Before we get to the results themselves, let us outline the numerical implementation.
We use Mathematica 12.1. We start by picking a data set (Λ,M,Q, µ2, ω, `) with M = 1,
consisting of a choice of spacetime parameters (Λ,M,Q), a mass µ2 for the scalar field,
and a set of parameters (ω, `) in R+ × N1. As an alternative set of spacetime parameters

1We avoid setting ω to exactly zero due to a divergence of the scattering coefficients RII and T II at ω = 0,
see the discussion in [16] and [106].
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one can also use the three horizon radii, leading to the data set (r−, r+, rc, µ2, ω, `). For
the chosen data set we solve (3.2.18) with initial conditions h0 = 1 and hn = 0 for
n < 0 up to some large value of n for each of the three horizons. In the special case
of a scalar field with mass µ2 = 2Λ/3, which satisfies the same equations of motions as
the massless, conformally coupled scalar field, we can instead use the functions "HeunG"
which have been implemented in Mathematica 12. This is more efficient than solving the
recurrence relation in terms of RAM allocation and computation time. The application of
the function "HeunG" to the wave equation on black-hole spacetimes has been introduced
in [107]. From this approximation of hi(x), we can then obtain an approximation for the
normalized solutions Ri

ω` as described above.
We then evaluate the normalized solutions in their overlap region. For the cases of

small Λ and large Q considered here, one has |xc| > 1/2. Therefore, we choose the
evaluation point x = 1/2 in the overlap of R+

ω` and R−
ω`, and x = −1/2 in the overlap of

Rc
ω` and R+

ω`. For cases where |xc| � 1, it is more convenient to choose x = −0.8 as the
evaluation point in the overlap of Rc

ω` and R+
ω`.

In order to test our approximation and estimate the error due to the cut-off of the power
series in hi(x), we calculate the relative contribution of the last term in the expansion of hi
toRi at the evaluation point. We find that about 5000 terms are sufficient to keep the error
below O(10−15). The numerical precision for the evaluation of the recurrence relation
is chosen such that numerical errors remain of order O(10−40). When the "HeunG"-
functions are utilized, the numerical precision for their evaluation is chosen of the same
order or higher.

In the next step, we plugRi
ω` into (3.2.24) to compute the scattering coefficients. Before

we use the scattering coefficients to compute the energy flux of the scalar field at the
Cauchy horizon according to (3.1.6a), we can perform a number of consistency tests.
First of all, we make sure that the scattering coefficients satisfy (3.2.6) up to errors of
order 10−15. Second, for some example parameters, we compared our results to results of
numerical integration of the radial equation. The results are in agreement to the 0.02%-
level for ωr+ ∼ 1, and their agreement is even better for smaller ω. Subsequently, we
check that also the second derivatives of the different expressions for r−1FN

ω` agree at the
evaluation point. We find the error to be of the order O(10−15), the same order as our
estimate for the cut-off error.

Finally, we use the results for the scattering coefficients to compute the integrand in
(3.1.6a). We repeat this process for different values of ω and `. The numerical results
show that the integrand ωn`(ω) decreases rapidly with `. The decrease from ` to ` + 1
can be as large as four orders of magnitude for small values of Λ and µ2, as for example
indicated in Fig. 3.1a and Fig. 3.1b. However, for larger values of Λ and µ, the decrease
from ` to ` + 1 can become even less than one order of magnitude, see Fig. 3.1c and
Fig. 3.1d for an example. For the results presented here, we used all `-modes with

max |Mωn`(ω)| > 10−15 .

The integral over ω is estimated by the middle Riemann-sum, while the discretization
error is estimated by the difference to the upper Riemann-sum. We scan over ω up to
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(a) ωn0(ω), µ2 = 0, ΛM2 = 0.02 and
Q/M = 0.9917
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(b) ωn1(ω), µ2 = 0, ΛM2 = 0.02 and
Q/M = 0.9917
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(c) ωn0(ω), µ2 = 1000Λ/3, ΛM2 = 0.14 and
Q/M = 0.9945

0.5 1.0 1.5 2.0 2.5
ωM

1.× 10-10

2.× 10-10

3.× 10-10

4.× 10-10

5.× 10-10

6.× 10-10
ωn1(ω)M

(d) ωn1(ω), µ2 = 1000Λ/3, ΛM2 = 0.14 and
Q/M = 0.9945

Figure 3.1: The integrands ωn0(ω) and ωn1(ω) for a massless scalar with ΛM2 = 0.02
and Q/M = 0.9917 (Fig. 3.1a and Fig. 3.1b), as well as for a scalar of mass
1000Λ/3 with ΛM2 = 0.14 and Q = 0.9945 (Fig. 3.1c and Fig. 3.1d).

some maximal value ωmax which is determined by the condition ωn`(ω) < 10−15 for
ω > ωmax. For large Q/M , ωmax = 3M−1 is sufficient, while for some comparably small
values of Q/M we choose ωmax = 4.5M−1. In this way, the dominant contribution to
the error estimate comes from the discretization of the integral, which gives us a rather
conservative estimate of the numerical error of the whole computation.

Another way to observe the decay in ` is to compute the approximate integral over
ω but not the sum over `. In other words, we compute the contribution to 〈Tvv〉U−C by
modes of a fixed angular momentum,

T (`)
vv =

2`+ 1

16π2r2−

∞∫
0

ωn`(ω) dω . (3.4.1)

Here, n`(ω) is as defined in (3.1.6b).
Fig. 3.2 shows T (`)

vv for the conformally coupled scalar field at ΛM2 = 0.02 as a func-
tion of Q/M for ` = 0, 1, 2. One can see clearly that in most of the range depicted here,
the (` = 0)-term dominates, and all other terms only give small corrections. The ex-
ception is the region around Q0 where T (0)

vv vanishes. Here, the higher `- modes become
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Figure 3.2: The contribution of modes with different angular momentum ` to 〈Tvv〉U−C

for ` = 0 (red), ` = 1 (blue) and ` = 2 (orange) as a function of Q/M . The
mass of the scalar field is given by µ2 = 2Λ/3, the cosmological constant is
ΛM2 = 0.02.

relevant, with the dominant contribution coming from the (` = 1)-mode. Therefore, the
behaviour is always dominated by the low `-modes, justifying our rather low cutoff in `.
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Figure 3.3: The energy flux 〈Tvv〉U−C as a function of the black-hole charge Q/M at the
Cauchy horizon for a massless (red) and conformally coupled (blue) scalar
field, with cosmological constant ΛM2 = 0.02.

In Fig. 3.3, the flux 〈Tvv〉U−C at the Cauchy horizon is shown for the massless and
conformally coupled scalar field. The cosmological constant is set to ΛM2 = 0.02, the
lowest value considered in [40], and Q/M ranges from 0.95 to 1.001. We see that in-
deed, 〈Tvv〉U−C is non-zero in general. Another interesting feature is that 〈Tvv〉U−C passes
through zero and becomes negative for Q/M sufficiently large. Consequently, while the
energy flux diverges generically as V −2

− , it depends on the spacetime parameters whether
it diverges to +∞ or −∞. In turn, nearby geodesics could be accelerated towards or away
from each other when approaching the horizon, and hence finite-size observers could be
destroyed by squeezing or stretching correspondingly, see Section 3.1, and [16, 92] for
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similar discussions.
Indeed, the results are very similar to the results obtained for the massles scalar field

on the Reissner-Nordström spacetime in [92]. Comparing to TUvv in [92, Fig. 1], we see
that their result has similar features, including the change of sign as well as the decrease
towards extremality. In contrast to the computation presented here, the results in [92]
were obtained by using the t-splitting variant of the pragmatic mode-sum renormalization
scheme [14]. While state subtraction is arguably simpler on the Cauchy horizon, the
advantage of the pragmatic mode-sum method is that it is possible to compute expectation
values off the horizon without significant complications, see e.g. [108]. The energy flux
of the massless scalar near the inner horizon of Reissner-Nordström has likewise been
analysed analytically in the near-extremal regime [109], revealing that it behaves like
〈Tvv〉U ∼ −(1− (Q/M)2)2 in the extremal limit. While such a result is not known for the
real scalar field on RNdS yet, it seems possible that it can be obtained given the behaviour
of our numerical results in the near-extremal limit.

We note also that the results in Fig. 3.3, in contrast to those in [92], show 〈Tvv〉U−C

for two different masses µ of the scalar field, indicating that 〈Tvv〉U−C increases with µ.
Consequently, the value of Q/M at which 〈Tvv〉U−C becomes negative increases. This
leads to the question whether there is a mass µc of the scalar field, possibly dependent
on ΛM2, above which the sign switch in 〈Tvv〉U−C as a function of Q/M is absent. To
answer this, a more detailed examination of the dependence of 〈Tvv〉U−C on the scalar
field mass is necessary.
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Figure 3.4: 〈Tvv〉U−C as a function of Q/M in the part of the parameter regime, where
sCC is violated classically [40]. The three subplots show the massless (3.4a),
conformally coupled (3.4b), and µ2 = 20Λ/3 (3.4c) case. The cosmological
constant is fixed to ΛM2 = 0.02 (red)/ 0.06 (blue)/ 0.14 (orange). The result
is restricted to Q ≤M .

In Fig. 3.4, the flux as a function of Q/M is shown in the near-extremal regime for
different masses µ of the scalar field and all three values of the cosmological constant Λ
considered in [40]. This limit is of particular interest, since this is the parameter region
in which the classical violation of sCC occurs [40]. One observes that in the last plot,
Fig. 3.4c, 〈Tvv〉U−C is positive in the near-extremal regime. This is an indication that
there is indeed a mass µc(Λ), so that for µ > µc, the quadratic divergence 〈Tvv〉U−C of the
energy flux remains positive for all Q/M .

To explore this dependence on the scalar-field mass further, we plot the mass depen-
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Figure 3.5: 〈Tvv〉U−C as a function of the mass squared µ2 of the scalar field. The space-
time parameters are the ones which correspond approximately to the lowest
values of Q/M with ΛM2 = 0.02 (red), 0.06 (blue), and 0.14 (orange), such
that sCC is classically violated [40].

dence of 〈Tvv〉U−C for fixed Q/M and ΛM2 in Fig. 3.5. The spacetime parameters are
fixed to the smallest Q/M at which classical violation of sCC occurs [40] for the corre-
sponding Λ: we set Q/M = 0.9917 for ΛM2 = 0.02, Q/M = 0.992 for ΛM2 = 0.06,
and Q/M = 0.9945 for ΛM2 = 0.14. We observe that, again, the flux is generically
non-vanishing, but can have either sign depending on the mass of the scalar field, even
when the spacetime parameters are fixed.

The mass dependence of 〈Tvv〉U−C for fixed spacetime parameters has a number of
interesting features: for small values of µ2, 〈Tvv〉U−C increases rapidly with µ2, leading
to the change of sign. At intermediate µ2, 〈Tvv〉U−C reaches a maximum, and at large µ2

it is asymptotically approaching zero from above.
If one reinstates the gravitational constant G explicitly, one can write the mass µ in

units more commonly used in particle physics,

µ2 =
(
µ2M2

) 1.785 · 10−38

(M [M�])2

Å
GeV

c2

ã2
. (3.4.2)

It is thus clear that the scalar-field masses tested here are very small compared to, for
example, the Higgs mass, at least for black holes of solar mass.

Overall, our results show that, at least for small enough masses of the scalar field, the
energy flux of the quantum scalar field diverges faster than its classical counterpart as the
Cauchy horizon is approached. This divergence indicates that sCC in the formulation by
Christodoulou [31] can be restored by the quantum effects. Yet, the leading divergence
of the flux can have either sign, depending on the parameters of the spacetime and the
scalar field. Thus, the final fate of an observer approaching the horizon will depend on
the spacetime- and scalar-field parameters. Recently, it has even been argued [110] that
the strong quantum effects at the inner horizon may altogether alter our understanding of
black-hole evaporation.

One may worry that the restoration of sCC breaks down when 〈Tvv〉U−C vanishes,
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which is the case as it changes sign and hence crosses through zero. But since this is
an isolated point in Fig. 3.3, achieving 〈Tvv〉U−C = 0 for given masses of the black hole
and of the scalar field and for given cosmological constant will require a fine tuning of
the black-hole charge. Thus, this will not be the generic situation, and its existence is not
a contradiction to sCC.

However, there is another way of looking at that issue which is interesting in its own
regard and which we will discuss hereafter. A publication of this discussion together with
J. Zahn is in preparation. The numerical calculations have been performed by me.

Let us consider the correlations of the stress-energy tensor, renormalized by Hadamard
point-splitting, near the inner horizon. If we take the correlation between two points x and
y outside the Cauchy horizon where the Unruh state is well-defined, a straight-forward
computation yields

〈T ren
vv (x)T

ren
vv (y)〉U − 〈T ren

vv (x)〉U 〈T ren
vv (y)〉U = 2 〈∂vΦ(x)∂vΦ(y)〉2U . (3.4.3)

The same formula can be obtained for the comparison state as defined in [16].
For the question above, we are particularly interested in the correlation on the hori-

zon, so we will choose x = (U−, 0, θ, ϕ) to be some point on the Cauchy horizon, and
y = (U−, 0, θ + δθ, ϕ) separated from x in the θ-direction. We note that the comparison
state in [16] is constructed to be stationary. Hence, the right hand side of (3.4.3) for the
comparison state can be computed on either part of the inner horizon, HL

− or HR
−. If we

compute it on HL
−, setting for example x = (0, V−, θ, ϕ) and y = (0, V−, θ + δθ, ϕ), it

formally takes the form [16]

〈∂vΦ(θ)∂vΦ(θ + δθ)〉C =
∞∑
`=0

2`+ 1

16π2r2−
P`(cos δθ)

∞∫
0

ω coth
Ä
π ω
κ−

ä
dω , (3.4.4)

where P` are the Legendre polynomials, or, equivalently,

〈∂vΦ(θ)∂vΦ(θ + δθ)〉C = − lim
ε→0+

r2−
π

∫
E(V, 0,Ω;x)E(V ′, 0,Ω;x+ δθ)

(V − V ′ − iε)2
dV dV ′ d2Ω ,

compare [16, Eq. (66)] and the discussion in Section 2.5. Taking into account the support
properties of E, one can see that this vanishes as long as δθ 6= 0. Therefore, we can
subtract the right hand side of (3.4.3) in the comparison state from the result in the Unruh
state without changing the result. In fact, considering (3.4.4), this is the same as sub-
tracting a "blind spot" [15] from the corresponding expression in the Unruh state, which
does not alter the result, but can improve the convergence of the numerical computation
significantly.

Using also the stationarity of the Unruh state, we obtain

〈∂vΦ(θ)∂vΦ(θ + δθ)〉U =
∞∑
`=0

P`(cos δθ)T
(`)
vv , (3.4.5)
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Figure 3.6: The correlation of the energy flux Tvv in the Unruh state at the Cauchy horizon
at angular separation δθ. The two red lines indicate the Q/M -values Q0 at
which T (0)

vv = 0 (left) and Q∗ at which 〈Tvv〉U−C = 0 (right).

where T (`)
vv is as defined in (3.4.1). Taking these results together, we can already see

that for δθ → 0, the leading divergence of the correlation of the energy flux at HR
− will

approach 2 〈Tvv〉2U−C. Note, however, that the correlation is no longer well-defined in
the limit δθ → 0. In this limit, the two stress-energy tensors must, in addition to the
θ-direction, be smeared in a time-like direction. This can be seen by computing the wave-
front set of the squared Unruh-state two-point function, wU(x, y)2, by an application of
[68, Thm. 8.2.10].

Recalling the analysis of T (`)
vv in Fig. 3.2, one can guess that for Q/M sufficiently far

away from Q0, where T (0)
vv vanishes, the right-hand side of (3.4.5) will only depend very

weakly on cos δθ, while it will be approximately linear in cos δθ in a neighbourhood of
Q0. We would expect that, consequently, the correlation between the energy flux at θ and
θ+ δθ at the inner horizon is only weakly dependent on δθ except for a narrow parameter
range in Q/M around Q0. In this range, we expect the dependence to be dominated by
the behaviour of P1(cos δθ)

2, which behaves approximately quadratic in cos δθ.
The numerical result for the correlation in a small neighbourhood of Q0 are shown in

Fig. 3.6. One can clearly see that there is only a very weak dependence of the correlation
on δθ except for a very narrow range of Q/M around Q0 which is indicated by the left
red line in Fig. 3.6. Indeed, the behaviour of the correlations along this line seems to be
compatible with the expected cos2 δθ-behaviour. Another point of interest is Q∗ where
〈Tvv〉U−C vanishes and which is indicated by the right red line in Fig. 3.6. At this value
of Q/M , the correlation is of the same order of magnitude as for other nearby values of
Q/M for sufficiently large δθ.

These results have a number of implications. First of all, since the correlation is es-
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sentially independent of θ for most of the range in Q/M , it is approximately given by
2 〈Tvv〉2U−C. Thus, changing to the Kruskal-type coordinate V−, the covariance of TV−V−
diverges as V −4

− as the Cauchy horizon is approached, and the prefactor is of the same or-
der of magnitude as

〈
TV−V−

〉2
U−C

. As a result, there will be huge fluctuations in the energy
flux correlated over macroscopic distances, and these fluctuations will have a size com-
parable to that of

〈
TV−V−

〉2
U−C

. Since the validity of semi-classical gravity requires that
the fluctuations of the stress-energy tensor of the quantum field remain small compared to
the expectation value, so that the expectation value is a good approximation, this signals
its breakdown near the inner horizon. Of course, the divergence of the expectation value
also signals a breakdown of the semi-classical theory, since it will lead to a divergence of
the curvature, while the semi-classical theory is only expected to be valid as long as the
curvature remains small compared to the Planck scale. A more detailed analysis of the
stress-energy off the horizon would be required to resolve the question in which way the
semi-classical theory breaks down first as the horizon is approached.

Second, it is very remarkable that near Q∗, the correlations of TV−V− are actually larger
at larger angular separation. The reason for this behaviour is the dominance of the low-`
modes: at Q∗ one has approximately T (0)

vv = −T (1)
vv , while higher `-modes do not play

a significant role. At large angular separation, P1(cos δθ) ≈ −1, and the cancellation
between the (` = 0)-mode and the (` = 1)-mode is lifted. Nonetheless, this behaviour is
very counter-intuitive to physical expectations.

Third, atQ∗, where 〈Tvv〉U−C vanishes, there are still correlations at large angular sepa-
ration comparable in size to 〈Tvv〉2U−C at other nearby values of Q/M . Thus, even though
the expectation value of the energy flux might vanish there, the typical values of Tvv in
an actual realization will be of the same order of magnitude as for other nearby values of
Q/M . But when the average over different realizations is taken, the positive and negative
realizations of Tvv are spread such that they cancel on average.

This last observation relates back to the question whether the zero of 〈Tvv〉U−C at the
Cauchy horizon as a function of Q/M poses a problem for sCC. Even when the expecta-
tion value vanishes, the stress-energy tensor in a typical realization will not, and sCC is
restored by quantum effects.

To summarize, we have shown that in the setup of linear perturbations by a real scalar
field on a RNdS spacetime, quantum effects can restore sCC in the case where it is classi-
cally violated. In particular, the expectation value of the energy flux TV−V− has a quadratic
divergence at the Cauchy horizon. This effect is independent of the quantum state, as long
as it is a Hadamard state in the RNdS spacetime up to the Cauchy horizon.

Nonetheless, we found that the sign of the prefactor of the quadratic divergence does
depend on the parameters Q/M and ΛM2 of the spacetime and the mass µ2M2 of the
scalar field. Via backreaction on the spacetime described by the semi-classical Einstein
equations (1.0.1), this leads either to infinite stretching or squeezing of observers ap-
proaching the horizon. While sCC is restored in any case, the final fate of an observer
falling into the black hole therefore depends on the parameters of the black hole and the
scalar field.

Further, we find that at the Cauchy horizon, there are sizeable correlations of the stress-
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energy tensor over macroscopic distances, which are moreover divergent. This is not only
a counter-intuitive behaviour of the correlations, but also signals an additional reason for
the breakdown of semi-classical gravity.
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4 The charged scalar field in
Reissner-Nordström-de Sitter

In the previous chapter we presented a method for the numerical computation of scattering
coefficients on the RNdS spacetime. Our motivation for this computation was to study
the quantum scalar field near the Cauchy horizon of this spacetime and to see whether its
effects could restore sCC.

Since we consider a spacetime with a charged black hole, it seems reasonable to also
consider a matter model that can accommodate for the creation of such a black hole. In
other words, we would like to consider a matter model of charged particles. The simplest
example thereof would be a charged scalar field.

These considerations were also made in [111], as an alternative remedy to the classi-
cal sCC violation. However, it was found in [112] that even when charged scalar fields
are considered, there is still a parameter region of the black hole close to extremality,
albeit much smaller than for the real scalar field, in which sCC is classically violated.
This leaves the question whether sCC can again be restored if the quantum effects of the
charged scalar field are taken into account.

However, considering a charged scalar field on this spacetime raises another interesting
question. Since there is a non-vanishing background electromagnetic field in the RNdS
spacetime, a charged scalar field on this spacetime should induce a charge current jν .
This current influences the energy of the electromagnetic field and thereby contributes
to the backreaction of the quantum field onto the spacetime through the semi-classical
Einstein-Maxwell system

Gν% + Λgν% = 8π
(
〈Tν%〉Ψ + Eν%

)
(4.0.1a)

∇νFν% = −4π 〈j%〉Ψ . (4.0.1b)

Here, Ψ is an appropriate Hadamard state for the charged scalar field. Assuming that the
corrections to the spacetime maintain spherical symmetry, we can make the ansatz (3.1.1)
for the metric and

F = − Q

2r2
eσ du ∧ dv (4.0.2)

for the field-strength tensor F , where we also take Q as an unknown function of u and
v. One can see by Gauß’s law that this function corresponds to the charge contained in a
surface of constant u and v with area 4πr2.

The vv-component of the semi-classical Einstein equations then leads to the solution
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(3.1.4) for ∂vr, while the v-component of (4.0.1b) can be written as

∂vQ = −4πr2 〈jv〉Ψ , (4.0.3)

using the weak-backreaction assumption as explained in Section 3.1. Thus, the sign of
the current decides whether the (local) charge of the black hole decreases (〈jv〉Ψ > 0) or
increases (〈jv〉Ψ < 0).

One can also consider the electromagnetic field strength…
−1

2
F ν%Fν% =

Q

r2
.

Combining (3.1.4) and (4.0.3), one finds that near the Cauchy horizon, the change of the
field strength in the weak-backreaction regime is governed by

∂v

Å
Q

r2

ã
= −4π 〈jv〉Ψ + 8π

Q

r2−κ−
〈Tvv〉Ψ . (4.0.4)

In the intuitive particle picture, the occurrence of the charge current can be understood
as follows: Pairs of particles and antiparticles are spontaneously created from the vacuum
at a rate which can for example be estimated by the Schwinger formula [113]. Due to the
background electromagnetic field, the particles and antiparticles are then accelerated in
opposite directions so that over time they eliminate the charge of the black hole. This has
been the starting point for the study of the current in [114, 115].

But the interior of the black hole is not stationary, and hence there is no preferred choice
amongst the different possible notions of particle there, see the discussion in Section 2.2.
Moreover, near the Cauchy horizon, even the behaviour of classical fields is determined
by non-local effects, namely the competition between the cosmological red-shift in region
I and the blue-shift in region II. It seems reasonable to expect that these effects will
influence the behaviour of the quantum fields as well.

Therefore, a first-principle calculation of the current jν in quantum field theory may
be necessary to entirely capture the quantum effects of the charged scalar field near the
Cauchy horizon of a RNdS spacetime. This calculation will be presented in this chapter.
We will start by demonstrating that the results for the Unruh state of the real scalar field in
[16] can be extended to the charged scalar field and we introduce a mode-sum representa-
tion of the Unruh state. Afterwards, we will derive a formula for the current in the Unruh
state using Hadamard point-split renormalization. We will numerically study the current
with this formula in regions I, II, and at the event horizon. Finally, we will consider the
charged scalar near the inner horizon. We will demonstrate that the leading divergence
of both the current and the stress-energy tensor is state-independent and show numerical
results for this leading divergence.
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4.1 The Unruh state for the charged scalar field

In this section, we sketch how the Unruh state can be defined for the charged scalar and
how the proof of its Hadamard property can be obtained from the case of a real scalar
field on RNdS [16]. This has been shown in the supplementary material to [116]. This
supplementary material was developed and written mostly by me, with helpful discussions
with J. Zahn and S. Hollands. Moreover, we introduce the mode-sum notation of the
Unruh state, which can be found in [116, 117]. For these two papers, I did both the
analytical as well as numerical computations under the supervision of J. Zahn and S.
Hollands.

Before we begin by constructing the operator algebra for the charged scalar quantum
field, we should mention that even for the classical charged scalar field, there exist insta-
bilities in the black-hole exterior of RNdS spacetimes [112, 118–120]. These instabilities
are quasi-normal modes which are non-decreasing or even increasing with time. Quasi-
normal modes are solutions to (3.3.1) in region I which are purely ingoing at r → r+ and
purely outgoing at r → rc and which describe if and how perturbations of the black hole,
in this instance by a charged scalar field, decay away over time. These instabilities only
appear for small charge q and mass µ of the scalar field, as well as small cosmological
constant Λ. A condition for the absence of the instability is given in [112, Eq. (4.6)]. In
this work, the authors use the fact that the instability appears for small values of q, and
treat this case analytically using perturbation theory. They find that for r+/rc >

√
2− 1,

there is no instability near extremality. This condition can be reformulated as a lower
bound on ΛM2 for given Q/M . Since the classical instabilities obstruct the construction
of the quantum theory (as well as making it a somewhat academic exercise, since the
spacetime will already be significantly altered by the classical field), we will restrict all
the considerations in the following to a parameter region in which no classical instabilities
arise.

As mentioned in the previous chapter, the equation of motion for the charged scalar field
φ is given by (3.3.1), while the complex conjugate field φ obeys the complex conjugate
equation. We will call the corresponding Klein-Gordon operator in (3.3.1) Kq. We take
our spacetime (M, g) to be a globally hyperbolic region of the RNdS spacetime, namely
the union of regions I, II and III together with the horizons HR

+ and HL
c between them,

see Fig. 2.2.

We have already discussed that the charged scalar field allows for gauge transforma-
tions of the form (3.3.3). One way to deal with the gauge in a neat and systematic way is
to consider the charged scalar field as a smooth section of the complex line bundle asso-
ciated to the principal bundle P (M,R), with the representation of any a ∈ R on C given
by the multiplication operator eiqa, see [121]. In this way, scalar fields differing only by
a gauge transformation are identified. However, for explicit calculations, a representative
of the equivalence class has to be chosen, which corresponds to fixing a gauge. Therefore,
in this work, we instead keep track of the gauge explicitly throughout the constructions
and computations.
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The gauge transformation (3.3.3) induces a gauge transformation of Kq of the form

Kq → eiqχKqe
−iqχ . (4.1.1)

In the following, we will use the notation

A(χ) = −Q
r

dt+ dχ ,

D(χ)
ν = ∇ν − iqA(χ)

ν ,

K(χ)
q = gν%D(χ)

ν D(χ)
% − µ2 ,

whenever we wish to make the gauge explicit.

Note that the A defined in (2.4.4), which corresponds to A(0) in the above notation,
ceases to be regular at the horizons. However, this can be seen as a result of the choice
of gauge, since the gauge-invariant field-strength tensor Fµν is regular. At {r = ri},
i ∈ {−,+, c}, this can be remedied by setting χ = χi = tQ/ri.

If we want the charged Klein-Gordon operator to be a differential operator on M as
defined in Section 2.3, then we have to demand that χ|{r=ri} = χi + hi for all i and
for some smooth functions hi ∈ C∞(M), so that the irregularity of dχ cancels the ir-
regularity in A. As a consequence, the difference of two such gauge functions χ and
χ′ is a smooth function on the whole spacetime M. We will refer to gauges satisfying
this condition as "regular" gauges. A regular gauge can for example be constructed as
follows: Let ζi ∈ C∞(R), with i ∈ {−,+, c} be supported in [ri − δ, ri + δ] for some
δ > 0. We also assume that ζi = 1 in a neighbourhood of ri. Let the gauge function be
χ =

∑
i tζi(r)Q/ri. Then χ is smooth in the interior of I, II, and III, and it satisfies the

condition for a regular gauge at all horizons.

Let us also note that we have

∂t
Ä
K(χ)
q eiqχφ(x)

ä
= K(χ)

q ∂t
(
eiqχφ

)
(x)− iqeiqχ

î
K(0)
q , ∂tχ

ó
φ(x) .

Hence, as long as we choose a gauge such that ∂µ∂tχ = 0, or in other words a gauge of the
form χ = ct+h(r, θ, ϕ) for some constant c, the Killing field ∂t maps solutions of (3.3.1)
in the gauge χ to solutions in the same gauge. Therefore, it will sometimes be useful to
choose a gauge of this form, and we will refer to a gauge satisfying this condition as a
"static" gauge. Note, however, that we cannot make A smooth at all horizon radii r = ri
with a gauge of this form, but only at one of them. In other words, static gauges are not
regular on all of M.

Let us assume for the moment that we have fixed a regular gauge χ . Since (M, g)

is globally hyperbolic, and the principal symbol of K(χ)
q is of the form gν%(x)kνk% (i.e.

K(χ)
q is normally hyperbolic), we can again find unique retarded and advanced Green’s

operators E(χ)± : C∞
(s)pc/(s)fc(M) → C∞

(s)pc/(s)fc(M) satisfying (2.2.3) with K replaced
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by K(χ)
q [55, Thm. 3.3.1]. Their integral kernels also satisfy

E(χ)±(x, y) = E(χ)∓(y, x) .

From them, we can construct the commutator function

E(χ) = E(χ)+ − E(χ)− : C∞
0 (M) → S(χ)

q (M) .

Here, S(χ)
q (M) is the space of solutions to (3.3.1) in gauge (χ) with compact Cauchy

data. The commutator function satisfies (2.2.4) with K replaced by K(χ)
q and

E(χ)(f, h) ≡ (f |E(χ)h) = −(E(χ)f |h) = −(h|E(χ)f) = −E(χ)(h, f) , (4.1.2)

for any f, h ∈ C∞
0 (M), where

(f |h) =
∫
M

f(x)h(x) dvolg(x) .

Thus, the space (C∞
0 (M)/K(χ)

q C∞
0 (M), E(χ)) is a charged symplectic space with

charged symplectic form E(χ), following the notation and convention of [122].

The gauge transformation of K(χ)
q induces a gauge transformation of (the kernel of)

E(χ) of the form

E(χ)(x, y) → E(χ′)(x, y) = eiq(χ
′−χ)(x)E(x, y)e−iq(χ

′−χ)(y) . (4.1.3)

Therefore, the gauge map

ψ
C∞

0
G (χ′ − χ) : C∞

0 (M)/K(χ)
q C∞

0 (M) 3 [f ] 7→ eiq(χ
′−χ)[f ] ∈ C∞

0 (M)/K(χ′)
q C∞

0 (M)

leaves the charged symplectic form invariant.

On S(χ)
q (M), we can define

σ(ψ, φ) =

∫
Σ

naΣ

(
ψD(χ)

a φ−D
(χ)
a ψφ

)
dvolγ , ψ, φ ∈ S(χ)

q (M) , (4.1.4)

where Σ is any space-like Cauchy surface with future-pointing unit normal naΣ and in-
duced volume element dvolγ . This is a charged symplectic form on S(χ)

q (M) satisfying

σ(E(χ)(f), E(χ)(h)) = E(χ)(f, h) ∀f, h ∈ C∞
0 (M) .

Similar to the real scalar case, the last property can be utilized to show that the map
E(χ) : (C∞

0 (M)/K(χ)
q C∞

0 (M), E(χ)) → (S
(χ)
q (M), σ) is an isomorphism of charged

symplectic spaces.
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In addition, σ is invariant under the gauge-transformation map

ψ
Sq
G (χ′ − χ) : S(χ)

q (M) 3 φ 7→ eiq(χ
′−χ)φ ∈ S(χ′)

q (M) ,

which can thus be seen to be an isomorphism of charged symplectic spaces. Therefore,
we can use any of the spaces discussed above to construct the CCR-algebra.

Let us take our algebra of observables to be the free unital ∗-algebra generated by
Φ(χ)(f) and Φ∗(χ)(f), with χ a fixed but arbitrary regular gauge and f ∈ C∞

0 (M). We
impose the relations

• (Anti-)linearity Φ(χ)(αf + h) = ᾱΦ(χ)(f) + Φ(χ)(h),
Φ∗(χ)(αf + h) = αΦ∗(χ)(f) + Φ∗(χ)(h)

• Klein-Gordon equation Φ(χ)
Ä
K(χ)
q f
ä
= Φ∗(χ)

Ä
K(χ)
q f
ä
= 0

• Star-involution
(
Φ(χ)(f)

)∗
= Φ∗(χ)(f),

(
Φ∗(χ)(f)

)∗
= Φ(χ)(f)

• Commutator property
[
Φ(χ)(f),Φ∗(χ)(h)

]
= iE(χ)(f, h)1,[

Φ(χ)(f),Φ(χ)(h)
]
=
[
Φ∗(χ)(f),Φ∗(χ)(h)

]
= 0

for all f, h ∈ C∞
0 (M) and α ∈ C. Note that this choice makes the field Φ antilinear,

while Φ∗ is linear, compare [122, 123].
In the construction of the algebra, we have made an arbitrary choice of gauge. Let

us call this algebra A(χ)(M). Then the gauge isomorphism ψ
C∞

0
G (χ′ − χ) induces a ∗-

automorphism α(χ′ − χ) : A(χ)(M) → A(χ)(M) by

α(χ′ − χ)
Ä
Φ(χ)(f)

ä
= Φ(χ)

Ä
ψ
C∞

0
G (χ′ − χ)−1f

ä
= Φ(χ)

Ä
e−iq(χ

′−χ)f
ä
, (4.1.5a)

α(χ′ − χ)
Ä
Φ∗(χ)(f)

ä
= Φ∗(χ)

Ä
ψ
C∞

0
G (χ′ − χ)−1f

ä
= Φ∗(χ)

Ä
e−iq(χ

′−χ)f
ä
. (4.1.5b)

Let us define Φ(χ′)(f) = α(χ′−χ)
(
Φ(χ)(f)

)
and Φ∗(χ′)(f) = α(χ′−χ)

(
Φ∗(χ)(f)

)
. Then

Φ(χ′)(f) and Φ∗(χ′)(f) satisfy the same relations as the generators Φ(χ)(f), Φ∗(χ)(f) but
with χ replaced by χ′. Thus, they generate the algebra A(χ′)(M). Therefore, the algebras
for different (regular) gauge choices are isomorphic, and it does not matter which one we
use to describe the theory. We will thus drop the χ-superscript unless confusion arises.

The physical observables are the gauge-invariant elements of A(M), namely those
a ∈ A(M) that are invariant under the gauge automorphisms α(h), α(h)a = a, for all
h ∈ C∞(M).

Quasi-free states on this algebra are determined by the two-point functions

wω+(f, h) = ω (Φ(f)Φ∗(h)) , (4.1.6a)
wω−(f, h) = ω (Φ∗(h)Φ(f)) . (4.1.6b)

They are sesquilinear functionals on C∞
0 (M)× C∞

0 (M), which are related by

wω+(f, h)− wω−(f, h) = iE(f, h) , (4.1.7)
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and must satisfy wω±(f, f) ≥ 0, and wω± (Kqf, h) = wω± (f,Kqh) = 0, see also [123]. We
will often omit the ω-superscript indicating the state unless it is required for clarity.

After this preliminary discussion, let us now define the Unruh state for the charged
scalar field on RNdS and sketch how the proof of its Hadamard property can be obtained
by generalising the results from [16]. The Uhruh state for the charged scalar field on
RNdS will be defined in analogy to the one for the real scalar field presented at the end of
Chapter 2 by

w
(χ)
+ (f, h) (4.1.8)

=− lim
ε→0+

r2+
π

∫
R×R×S2

E(+)(eiq(χ+−χ)f)|H+(U+,Ω)E
(+)(eiq(χ+−χ)h)|H+(U

′
+,Ω)

(U+ − U ′
+ − iε)2

d2Ω dU+ dU ′
+

− lim
ε→0+

r2c
π

∫
R×R×S2

E(c)(eiq(χc−χ)f)|Hc(Vc,Ω)E
(c)(ei(χc−χ)h)|Hc(V

′
c ,Ω)

(Vc − V ′
c − iε)2

d2Ω dVc dV ′
c .

Here, we have introduced the notation (i), i ∈ {−,+, c}, for the gauges with χi as de-
fined at the beginning of the section. Note that these gauges are not regular, but we have
K(+)
q ,K(c)

q ∈ Diff2(I), so they are regular on I. Therefore, we first restrict to test func-
tions f , h supported in I. However, at least for these test functions, w(χ)

+ (f, h) can also be
written in the form

w
(χ)
+ (f, h) (4.1.9)

=− lim
ε→0+

r2+
π

∫
R×R×S2

g
(χ)
+ (U+,Ω;U

′
+,Ω)

E(χ)(f)|H+(U+,Ω)E
(χ)(h)|H+(U

′
+,Ω)

(U+ − U ′
+ − iε)2

d2Ω dU+ dU ′
+

− lim
ε→0+

r2c
π

∫
R×R×S2

g(χ)c (Vc,Ω;V
′
c ,Ω)

E(χ)(f)|Hc(Vc,Ω)E
(χ)(h)|Hc(V

′
c ,Ω)

(Vc − V ′
c − iε)2

d2Ω dVc dV ′
c ,

where

g
(χ)
i (x, y) = eiq((χ−χi)(x)−(χ−χi)(y))

is a smooth, bounded function on Hi ×Hi. Since the gauge χ is regular, the commutator
functions E(χ) can be uniquely extended from C∞

0 (I) to C∞
0 (M). Therefore, it becomes

apparent that w(χ)
+ (f, h) can be extended to C∞

0 (M)× C∞
0 (M).

The two-point function w(χ)
− can be obtained from w

(χ)
+ using (4.1.7). It has the same

form as w(χ)
+ , but with −iε→ iε in both denominators.

The integrals in (4.1.8) can only be well-defined if the elements of Sq(M) restricted to
H+ or Hc decay sufficiently fast for U+, Vc → −∞. This is the case, because the results
of [39] continue to hold also for a charged scalar field, as long as the charge is sufficiently
small, see also [111, App. A]:
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In the following, we assume that there is a spectral gap α > 0, i.e. the parameters
(Λ, Q, q, µ) are restricted to a parameter region without classical instabilities of the black-
hole spacetime under charged scalar perturbations [112, 118–120]. In this case, a forward
solution F (χ) = E+(χ)f to the differential equation K(χ)

q F (χ) = f with smooth source
f ∈ C∞

0 (Ωo) satisfies [39, Eq. (2.59)],

F (χ) ∈ H1/2+β−0
(
I; ταHN

b (R∗
+τ × S2)

)
. (4.1.10)

Herein, β = α
κ−

, I ⊂ R is an interval containig r−, and Ωo is a neighbourhood of i+ as
in [39, Fig. 9]. N ∈ N is arbitrary. The time coordinate t∗ defined in [39, Sec. 2.1] is
related to τ by t∗ = − log τ . It behaves as t∗ ∼ t away from the horizons, t∗ ∼ v near
HR

+, t∗ ∼ u near HR
− and HL

c , and t∗ → ∞, i.e. τ → 0, towards i+. In addition to that, as
long as r+ ≤ r ≤ rc, one can estimate [16, Eq. (75)]∣∣∣∂NF (χ)(t, r, θ, ϕ)

∣∣∣ ≤ Cτα ‖f‖Cm(I∪II∪III) , ∂ ∈ {τ∂τ , ∂r, ∂θ, ∂ϕ} , (4.1.11)

for any N ∈ N and sufficiently large m depending on N . The constant C will depend on
the support of f .

These results can be transferred to results on the backwards solution near i− with the
help of the t → −t-symmetry [16]. They are sufficient to show the well-definedness of
the integrals. It is also straightforward to see that w(χ)

+ satisfies positivity, the equations of
motion and the commutator property following the same steps as in [16].

In the final step, one can show that the proof for the Hadamard property of the Un-
ruh state, [16, Prop. 4.5], can be adapted to the charged scalar field. First, notice that
the wavefront set of the commutator function remains unchanged, while the form of the
two-point function only changes by the addition of smooth, gauge-related terms when
compared to the real scalar case. Thus, case 1) of the proof of [16, Prop.4.5] also applies
to the Unruh state for the charged scalar field.

For case 2) and 3), let us define the maps

K
(χ)
j : C∞

0 (O) → L2(Rω × S2
Ω) , (4.1.12)

K
(χ)
j f(ω,Ω) = rj

Ã
ωe

π
ω
κj

π sinh πω
κj

∫
R
E(j)(eiq(χj−χ)f)|H−

j
(sj,Ω)e

iωsj dsj ,

with j ∈ {+, c}, O ⊂ I an open connected set, s+ = u, and sc = v. One can demonstrate
by a change of coordinates and Fourier-Laplace transform that

C∞
0 (O) 3 f 7→ K(χ)f ≡ K

(χ)
+ f ⊕K(χ)

c f ∈ L2(Rω × S2
Ω)⊕ L2(Rω × S2

Ω)

satisfies

w
(χ)
+ (f, h) =

¨
K(χ)f,K(χ)h

∂
L2⊕L2

,
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compare [16, Eq. (78)].
Moreover, we note that from our discussion of the Klein-Gordon operator in the (j)-

gauges, one can conclude

E(j)(r, t,Ω; r′, t′ + s,Ω′) = E(j)(r, t− s,Ω; r′, t′,Ω′) . (4.1.13)

Together with the decay results (4.1.11), see also [16, Thm. 4.4], this implies that the
kernel of K(χ) is a Hilbert-space valued distribution on O whose values are in the space
L2(R×S2)⊕L2(R×S2). Moreover, the distribution has an analytic extension to the strip
{t+ is : s ∈ (0,min{ π

κ+
, π
κc
})} as long as the functions

∆χj(b) = (χj − χ)(r, t+ b, θ, ϕ)− (χj − χ)(r, t, θ, ϕ)

with (r, t, θ, ϕ) ∈ O have an analytic extension to this strip. This shows that K(χ) has the
same properties asK defined in [16]. Since the spacetime is still the same, this means that
the rest of the proof of [16, Prop. 4.5] also continues to hold for the charged scalar field,
demonstrating that the Unruh state for the charged scalar field on RNdS is a Hadamard
state as long as α > 0.

Note that (4.1.13) also entails that the two-point function is stationary in region I, i.e.
invariant under ∂t, as long as χ is a static gauge.

For computational purposes, we would also like to give a mode-sum expression of the
Unruh state. To this end, we need the definition of the modes φi that we would like
to utilize for the expansion of the local fields Φ(x) and Φ∗(x). The mode solutions to
the Klein-Gordon equation on RNdS for the charged scalar field, (3.3.1), are obtained as
described in Section 3.3. In particular, we make the ansatz

φλω`m = (4π)−1/2r−1Y`m(θ, ϕ)h
λ
ω`(t, r) , (4.1.14)

with λ running over "in" and "up".
When working with mode-sum expressions, we will restrict ourselves to gauges of

the form χr0 = tQ/r0, which were already discussed in Section 3.3. These gauges are
static and only modify hλω`(t, r). Moreover, they allow us to set A = 0 at any fixed but
arbitrary radius r0. They are thus especially simple to use for calculations. Since we are
only computing gauge-invariant observables and making sure to always use a gauge that is
regular in a neighbourhood of the point at which we evaluate the mode solutions, choosing
a gauge which is not regular everywhere should not cause any problems. We will denote
the χr0-gauge by a (r0)-superscript on hλω`(t, r) for a general r0 or an (i)-superscript for
r0 = ri, with i ∈ {−,+, c}.

We can now specify the modes used for the definition of the Unruh state. We will call
these solutions Unruh modes. Similar to the discussion in Section 2.5, they are defined
by the asymptotic behaviour of hλω` on H ∪Hc, and behave like

h
in(c)
ω` ∼

®
|ω|−1/2 e−iωVc on Hc ,

0 on H+ ,
(4.1.15a)
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h
up(+)
ω` ∼

®
0 on Hc ,

|ω|−1/2 e−iωU+ on H+ .
(4.1.15b)

The normalization is chosen such that

iσ
Ä
φλω`m, φ

λ′

ω′`′m′

ä
= δλλ′δ``′δmm′δ(ω − ω′)

for all positive frequency modes (ω > 0).
As mentioned above, we assume that we are in a parameter region in which there are

no classical instabilities. In other words, we assume that in region I, solutions to (3.3.1)
of the form (4.1.14) with asymptotic behaviour

h(+)(r∗, t) ∼ e−iωv for r∗ → −∞, (4.1.16a)

h(c)(r∗, t) ∼ e−i(ω+ωI)u for r∗ → +∞, (4.1.16b)

exist only for ω with negative imaginary part.
In this case, we can expand the charged scalar field in terms of positive frequency

Unruh modes as

Φ(r0)(x) =
∑
λ,`,m

∞∫
0

dω
Ä
φ
(r0)λ
ω`m (x)aλω`m + φ

(r0)λ
−ω`m(x)b

λ†
ω`m

ä
, (4.1.17)

with λ running over "in" and "up". The coefficients aλω`m and bλω`m are then taken to be
the usual annihilation operators on a Fock space satisfying the canonical commutation
relations î

aλω`m, a
λ′†
ω′`′m′

ó
=
î
bλω`m, b

λ′†
ω′`′m′

ó
= δλλ′δ``′δmm′δ(ω − ω′) , (4.1.18)

and all other commutators vanish. The Unruh state is defined by

aλω`m|0〉U = bλω`m|0〉U = 0 .

Hence, it is the vacuum state of the Fock space on which the aλω`m and bλω`m act.
Similar to the computation at the end of Chapter 2, one can convince oneself that this

state indeed agrees with the Hadamard state defined by the two-point function (4.1.8).

4.2 The renormalized current

In this section, we derive a formula for the charge current of the charged scalar field on
RNdS in the Unruh state using point-split renormalization. We will utilize the mode-sum
formulation of the Unruh state. The contents of this section were published in [117]. For
this paper, I computed the analytic and numerical results displayed below and in the next
section under the supervision of J. Zahn.
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Formulas for the renormalized charge current have been obtained previously. In [124],
a formula for the renormalized charge current in a general curved spacetime was derived.
However, the computation seems to contain a sign error, leading to a divergent counter-
term when applied to the RNdS spacetime. [125] also presents a formula for the charge
current with point-split renormalization and discusses current conservation and the renor-
malization ambiguities of this formula, but without referring to any particular spacetime.
A mode-sum formula for jr for the massless scalar on Reissner-Nordström spacetimes in
the Boulware state using Hadamard point-split renormalization is presented, and evalu-
ated numerically, in [126]. In contrast to this, we use the Unruh state, making our formula
valid in the black-hole exterior as well as in the interior. Moreover, our formula will be
applicable for any component of the current and for any mass of the scalar field.

The formula for the charge current of a classical charged scalar field is

jν(x) = iq (Φ(x)D∗
νΦ

∗(x)− Φ∗(x)DνΦ(x)) , (4.2.1)

where D∗
ν = ∇ν + iqAν . Since this is local and quadratic in the field, the corresponding

observable for the quantum scalar field requires renormalization. Here, we will apply
Hadamard point-split renormalization, which was introduced in Section 2.2 and which is
local and (gauge) covariant [6, 7, 54]. For the current, the renormalization ambiguities
are proportional to the current Jν of the background electromagnetic field [54, 125]. As
mentioned in Section 2.4, the current corresponding to the background electromagnetic
field in RNdS vanishes, and hence Hadamard point-split renormalization gives a unique
result for the renormalized current. Other applications of this renormalization scheme in
the context of curved spacetime or background electromagnetic fields can be found for
example in [16, 47, 92] and [127, 128].

In the following, we derive a formula for the renormalized current in the Unruh state,

〈jν〉U = lim
x′→x

(iq 〈{Φ(x), ∂νΦ∗(x′)} − {Φ∗(x), ∂νΦ(x
′)}〉U (4.2.2)

+ 2q∂′νImH(x, x′)) .

Here, we have introduced a symmetrisation {A,B} = 1/2(AB+BA) for computational
convenience. In addition, we used the gauge independence of the current to choose a
gauge for the evaluation in which A(x′) = 0. As a result, the gauge-covariant derivatives
reduce to partial derivatives.
H(x, y) is the Hadamard parametrix for the charged scalar field, which is of the same

form as that for the real scalar field shown in (2.2.9). The Hadamard coefficients for the
charged scalar field satisfy the symmetry relations

U(x, x′) = U(x′, x), Vn(x, x′) = Vn(x
′, x). (4.2.3)

This property allows us to reduce the parametrix for the current in (4.2.2) to a multiple of
∂′ν ImH(x, x′).

The derivation of the formula will proceed in two steps. In a first step, we will compute
a mode-sum formula for the first term on the right-hand side of (4.2.2) for x and x′ at

73



non-zero geodesic distance. Since the point splitting can be viewed as a regularization of
the current, we will refer to this term as the regularized current 〈jν(x, x′)〉U. In a second
step, we will compute the contribution of the Hadamard parametrix, which one could call
the counterterms. We find that the counterterms in the present case are finite, vanish at
the horizon and only contribute to the t-component of the current.

Let us start with the mode-sum formula for the regularized current. From (4.1.17) and
(4.1.18), we find that it takes the form

〈jν(x, x′)〉U (4.2.4)

= 2q
∑
λ,`,m

∞∫
0

dωIm
Ä
φ
λ

ω`m(x)∂νφ
λ
ω`m(x

′) + φ
λ

−ω`m(x)∂νφ
λ
−ω`m(x

′)
ä
.

In order to make the formula easier to evaluate numerically, we would like to expand
the Unruh modes in terms of another set of modes. If we choose hλω` of the form

h̃λω` = |ω|−1/2 e−iωtRλ
ω`(r) , (4.2.5)

then the Klein-Gordon equation separates and reduces to an ODE for Rλ
ω`(r). This ODE

can be rewritten as in (3.3.2) and solved numerically as described in Section 3.3. Thus,
this ansatz is particularly useful for computational purposes. We define the so-called
Boulware modes utilizing this ansatz separately for regions I and II. In region I, they are
defined by their asymptotic behaviour on H−

+ ∪H−
c ,

|ω|1/2 h̃(c)inIω` ∼ e−iωv on H−
c , |ω|1/2 h̃(+)upI

ω` ∼ e−iωu on H−
+ , (4.2.6)

and vanishing boundary condition on the other horizon, correspondingly. In region II, the
asymptotic behaviour is given on HL

+ ∪HR
+, and the non-vanishing parts are

|ω|1/2 h̃(+)inII
ω` ∼ e−iωv on HR

+ , |ω|1/2 h̃(+)upII
ω` ∼ e−iωu on HL

+ . (4.2.7)

The modes from region I can be extended to region II by comparing their asymptotic
behaviour near HR

+ to the corresponding behaviour of the modes from II.

In terms of the Boulware modes, the Unruh modes in I ∪ II can be expanded as

|ω|1/2hλω`(r∗, t) =
∑

N∈{I,II}

∞∫
−∞

dω′

2π
|ω′|1/2αλNωω′h̃λNω′`(r∗, t) . (4.2.8)

The coefficients αλNωω′ can be computed by a double Fourier transform of the asymptotic
behaviour of the Unruh modes [90]. The resulting integral has a divergence for ω′ → 0,
which has to be regularized by introducing a small imaginary part for ω′. As a result, the
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regularized coefficients take the form

αinI
ωω′ = lim

ε→0

1

κc
|ω|i

ω′

κc e
sgn(ω)

πω′

2κc Γ

Å
−iω

′ + iε

κc

ã
(4.2.9a)

αupI
ωω′ = lim

ε→0

1

κ+
|ω|i

ω′

κ+ e
sgn(ω)

πω′

2κ+Γ

Å
−iω

′ + iε

κ+

ã
(4.2.9b)

αupII
ωω′ = αupI

ωω′ (4.2.9c)

αinII
ωω′ = 0 . (4.2.9d)

Before inserting these results into (4.2.4), let us argue that the regularization in αλNωω′

can be dropped. To this end, we take a closer look at the Boulware modes h̃λNω` , focussing
on the upI-modes as an example. These modes enter I from H−

+. They are then either
scattered back to HR

+ or are transmitted to HL
c . Consequently, their radial component

RupI
ω` (r) behaves like

RupI
ω` (r) ∼

®
eiωr∗ +RI

ω`e
−iωr∗ r∗ → −∞

T I
ω`e

i(ω+ωI)r∗ r∗ → ∞ ,
(4.2.10)

with ωI defined below (3.3.6). While the scattering coefficients RI
ω` and T I

ω` are not known
in closed form, it is possible to obtain information on their asymptotic behaviour for small
ω. To this end, one can employ a first-order expansion of the radial equation (3.3.4) in
(r−r+) near the event horizon [91]. Demanding the solution to this approximate equation
to vanish as r∗ → ∞ and to behave like RupI

ω` as r∗ → −∞, one finds that for small ω

RI
ω` ∼ −1 +O(ω) .

One can combine this result with the relation (3.3.7) to find T I
ω` ∼ O(ω). Thus, RupI

ω`

vanishes pointwise as ω → 0 near the boundaries of region I. By differentiating (4.2.10)
with respect to r∗, one can see that the same is true for ∂r∗R

upI
ω` . Since RupI

ω` is a solution
to (3.3.4), this implies that RupI

ω` → 0 pointwise as ω → 0.
Similarly, one can demonstrate that the inI-Boulware modes on I ∪ II and the combi-

nation of the upI-Boulware modes reflected into the black-hole region II together with
the upII-modes vanish pointwise for ω → 0. Since these are exactly the combination of
modes appearing in the expansion (4.2.8), these results show that the regularization for
the coefficients αλNωω′ can be safely neglected.

We can now insert the expansion (4.2.8) into (4.2.4). We will use a point splitting in
the θ-direction [15]. This means we take x = (t, r, θ, ϕ) and x′ = (t+ δ, r, θ + ε, ϕ). The
small offset in the t-direction is used to guarantee the convergence of the integral over ω,
and the limit δ → 0 is taken before the limit of ε→ 0.

One can convince oneself that by the spherical symmetry of both the spacetime and
the state, the radial components of the current should vanish. This can also be seen by
considering the mode-sum expression for the regularized current and realizing that with
the derivatives in the θ- or ϕ-direction, the expression vanishes in the coinciding-point
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limit either mode-wise or when summed over m respectively. Therefore, we assume that
the partial derivative in (4.2.4) acts either on r or t. The formula then reads

〈jν(x, x′)〉U =
q

16π3

∑
`,m,λ,N,N′

∞∫
0

dω
ω

∞∫
−∞

dω′ |ω′|
1
2

∞∫
−∞

dω′′ |ω′′|
1
2 (4.2.11)

×
Ä
αλNωω′α

λN′

ωω′′ + αλN−ωω′α
λN′

−ωω′′

ä 1
r
Y`m(θ, ϕ)Y`m(θ + ε, ϕ)

× Im
ï
h̃λNω′`(r, t)∂ν

Å
1

r
h̃λN

′

ω′′`(r, t+ δ)

ãò
.

Here and in the following, the Boulware modes should be evaluated in the (r0)-gauge
with r0 = r(x′). We have omitted the gauge superscript here and in the following to avoid
notational clutter.

The expression in (4.2.11) can be simplified further by realising that the derivative
acting on r−1 will lead to an expression that vanishes mode-wise when the limit δ → 0 is
taken. Since the spherical harmonics are the only part in (4.2.11) which depends on m,
one can use the identity

∑̀
m=−`

Y`m(θ, φ)Y`m(θ + ε, φ) =
2`+ 1

4π
P`(cos ε) (4.2.12)

to perform the sum over m. Moreover, one can explicitly perform the integral over ω,
which only involves the α-coefficients. Dropping the regularization of the coefficients,
one finds

∞∫
0

dω

ω
(αλN−ωω′α

λN′

−ωω′′ + αλNωω′α
λN′

ωω′′) = 4π2CλNN′(ω′)δ(ω′ − ω′′) . (4.2.13)

The CλNN′(ω′) are real coefficients given by

Cin,I,I(ω) = coth
Ä
π ω
κc

ä
ω−1 , (4.2.14a)

Cup,I,I(ω) = Cup,II,II(ω) = coth
Ä
π ω
κ+

ä
ω−1 , (4.2.14b)

Cup,I,II(ω) = Cup,II,I(ω) =
î
ω sinh

Ä
π ω
κ+

äó−1
, (4.2.14c)

and all other CλNN′(ω) vanish.

Thus, the renormalized current takes the form

〈jν(x, x′)〉U =
q(2`+ 1)

16π2r2

∑
`,λ,NN′

P`(cos ε)

∞∫
−∞

dω |ω| Im
[
CλNN′(ω)h̃λNω` (r, t)∂ν h̃

λN′

ω` (r, t+ δ)
]
.

(4.2.15)
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Let us take a closer look at the integrand. The splitting in t introduces an oscilla-
tory term ∼ e−i(ω−ωg)δ, where ωg is the shift between the gauge in which the mode is
defined and the one in which it is evaluated. Thus, for the inI-modes ωg is equal to
ωr,in = qQ

(
r−1
0 − r−1

c

)
, while for the up-modes ωg = ωr,up = qQ

(
r−1
0 − r−1

+

)
. We will

shift the integrals over ω by ωg to make sure that all oscillatory terms have the same
frequency, so that the limit δ → 0 can be taken later.

Finally, let us discuss the convergence of the integral over ω. For this, we consider the
large-|ω|-limit of the radial equation. In this limit, (3.3.4) reduces to[

∂2r∗ + ω2
]
Rω`(r∗) = 0 .

Thus, in this limit, Rω`(r∗) ∼ e±iωr∗ . As a result, the integrand takes the form

coth
Ä
π ω
κc

ä
(∂νt+ ∂νr∗) cos(δω) + coth

Ä
π ω
κ+

ä
(∂νt− ∂νr∗) cos(δω) . (4.2.16)

Since this is antisymmetric in ω, the contributions to the integral from ω → ∞ and
ω → −∞ cancel. This alone is not sufficient to conclude the convergence of the inte-
gral. However, results on similar one-dimensional scattering problems and the numerical
results presented in the next two sections indicate that the cancellation happens not only
at leading order in |ω|−1, but is strong enough to make the integral converge. Assuming
that this is indeed true, one can take the limit δ → 0. We will also split the integral at
ω = 0, and change the integration variable from ω to −ω on R− to make full use of this
cancellation in the numerical computation.

Next, we turn to the computation of the counterterm. This means, we want to compute
(2.2.9) for the charged scalar field on the RNdS spacetime. In particular, we need the
imaginary part of H(x, x′) for x and x′ separated by ε in the θ-direction. We can assume ε
to be sufficiently small so that x and x′ are in a geodesically convex neighbourhood. The
Hadamard coefficients U(x, x′) and Vn(x, x′) for the charged scalar field can be deter-
mined from the transport equations induced by the Klein-Gordon equation of the charged
scalar field. Using the notation σν = ∇νσ for the derivatives of Synge’s world function,
they can be written as ï

σνDν +
1

2
2σ − 2

ò
U = 0, (4.2.17a)

2

ï
σνDν +

1

2
2σ − 1

ò
V0 = −

[
DνD

ν − µ2
]
U, (4.2.17b)

2(n+ 1)

ï
σνDν +

1

2
2σ + n

ò
Vn+1 = −

[
DνD

ν − µ2
]
Vn , (4.2.17c)

compare [125]. As in the real scalar case, the correct behaviour of the leading divergence
is ensured by the initial condition U(x, x) = 1. This way, U(x, x′) is uniquely determined
to be of the formU(x, x′) = ∆1/2(x, x′)P (x, x′). Here, ∆(x, x′) is the Van Vleck-Morette
determinant [63], and P (x, x′) is the parallel transport along the geodesic from x to x′ with
respect to Dν . It is determined by σνDνP (x, x

′) = 0 with initial condition P (x, x) = 1.
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As discussed in Section 2.2, the series expansion of the logarithmic divergences does
not converge in general, but for the normalization of the current we only need the imagi-
nary parts of terms up to order n = 1.

Since we are ultimately interested in the coinciding-point limit, we compute approxi-
mations of the Hadamard coefficients by expanding their imaginary parts in a covariant
Taylor series around x of the form

F (x, x′) = F (0)(x) + F (1)
α (x)σα(x, x′) + F

(2)
αβ (x)σ

α(x, x′)σβ(x, x′) + . . . (4.2.18)

by successively evaluating higher covariant derivatives of U(x, x′) and Vn(x, x′) in the
coinciding-point limit. Plugging the expansion into the transport equations (4.2.17), one
obtains [125]

Im
Ä
U (1)
α

ä
= qAα , (4.2.19a)

Im
Ä
U

(2)
αβ

ä
= −q

2
∇(αAβ) , (4.2.19b)

Im
Ä
U

(3)
αβγ

ä
=
q

6
Re
(
D(αDβAγ)

)
+

q

12
A(αRβγ) , (4.2.19c)

Im
Ä
V

(1)
0α

ä
=
q

2

ï
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6
R

ò
Aα −

q

12
∇νFνα , (4.2.19d)

Im
Ä
V
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0αβ

ä
= −q
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ï
µ2 − 1

6
R

ò
Re
(
D(αAβ)

)
(4.2.19e)

+
q

24
A(α∇β)R− q

24
∇(α∇νFβ)ν ,

Im
Ä
V

(0)
1

ä
= 0 . (4.2.19f)

When we take into consideration that we compute the current in a gauge such that A(x)
vanishes in the coinciding-point limit where x = x′, we can immediately eliminate all
terms containing A with no derivatives acting on it. The most important consequence is
that this entails U (1)

α = 0.

To relate the expansion in terms of σν to an expansion in terms of the angular separation
ε, we need to expand σν in terms of ε. This expansion can be obtained from the one of σ
in terms of ∆xα = xα − x′α,

σ(x, x′) =
1

2
gαβ∆x

α∆xβ + Aαβγ∆x
α∆xβ∆xγ +Bαβγδ∆x

α∆xβ∆xγ∆xδ (4.2.20)

+ Cαβγδε∆x
α∆xβ∆xγ∆xδ∆xε + . . . ,

with coefficients

Aαβγ =− 1

4
∂(αgβγ) (4.2.21a)

Bαβγδ =− 1

3

Å
∂(αAβγδ) + gνρ

Å
1

8
∂νg(αβ∂|ρ|gγδ) +

3

2
∂νg(αβA|ρ|γδ) (4.2.21b)
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+
9

2
Aν(αβA|ρ|γδ)

ãã
Cαβγδε =− 1

4

(
∂(αBβγδε) + gνρ

(
12Aν(αβB|ρ|γδε) + 3Aν(αβ∂|ρ|Aγδε) (4.2.21c)

+ 2∂νg(αβB|ρ|γδε) +
1

2
∂νA(αβγ∂|ρ|gδε)

ãã
,

by taking covariant derivatives [129]. Plugging in ∆xα = −εδαθ and the RNdS metric, the
result is

σ =
r2

2
ε2 − fr2

24
ε4 +O

(
ε6
)

(4.2.22a)

σθ = −r2ε+ fr2

6
ε3 +O

(
ε4
)

(4.2.22b)

σr =
r

2
ε2 +O

(
ε4
)

(4.2.22c)

σt ≈ σϕ = 0 +O
(
ε4
)
. (4.2.22d)

Combining this with the imaginary parts of the Hadamard coefficients, we find the
counterterm

−2q∂′νIm [H(x, x′)] = − 1

4π2

q2Qf(r)

6r3
δtν +O(ε) . (4.2.23)

Notably, the counterterm only gives a finite contribution to the current and only affects
the t-component. Moreover, it vanishes at the horizons. Similar finite counterterms have
been obtained for the current previously, compare [127, 128].

This is in contrast to the result in [124], where a divergent parametrix was obtained.
However, this seems to be due to an error in [124, Eq. (8)], where two terms with the
derivatives acting on different variables should be subtracted rather than added. If their
result is corrected accordingly, it agrees with the one obtained here.

The fact that the counterterm only gives a finite contribution indicates that the coinciding-
point limit can be taken and that the sum over ` as well as the integral in the regularized
current (4.2.15) converge. This is also supported by the numerical results presented in
the next section. Our final formula for the renormalized current in the Unruh state is thus
given by

〈jν(x)〉U =
∑
`

q(2`+ 1)

16π2r2

∞∫
0

dω
∑
λ,N,N′

(
|ω + ωr,λ|CλNN′(ω + ωr,λ) (4.2.24)

× Im
[
h̃λN(ω+ωr,λ)`(r, t)∂ν h̃

λN′

(ω+ωr,λ)`
(r, t)

]
+ ω ↔ −ω

)
+

1

4π2

q2Qf(r)

6r3
δtν .

Before presenting numerical results, let us briefly examine the conservation of the
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renormalized current. As discussed above, due to the spherical symmetry of the space-
time and the state 〈jθ〉U = 〈jϕ〉U = 0. Moreover, the expectation values are independent
of t. As a result, the current conservation equation ∇νj

ν = 0 reduces to [126]

∂r∗
(
r2 〈jr∗〉U

)
= 0 .

It can be seen immediately that this is satisfied by the contribution from the counterterm,
but it is less obvious that the contribution of the mode sum satisfies this equation as well.
Therefore, this will be tested numerically in the next section.

4.3 The current in the Unruh state - numerical
results

In this section we present numerical results for the current up to the inner horizon of a
RNdS black hole. Most of the results in this section have been published in [117]. The
numerical results were obtained by me under the supervision of J. Zahn.

As mentioned in the previous section, one important consistency check for the formula
of the charge current is to test current conservation. To test this numerically we compute
r2 〈jr∗〉U at different radii r in the black-hole exterior region I, as well as in the black-
hole interior II for the charged scalar of mass µ2 = 2Λ/3. As in the previous chapter,
we will also refer to this choice of mass as "conformal coupling", since the equation of
motion is the same as for a massless, conformally coupled scalar field. This choice of
µ2 has the advantage that with an ansatz of the form (3.2.10) discussed in Chapter 3, the
computation of the Boulware modes reduces to finding local solutions to particular Heun
equations [98]. Hence, their implementation in Mathematica 12 allows for very efficient
computation of the current in this case [107]. In addition, one can re-express the radial
function RinI

ω` (r) of the in-modes in terms of RupI
ω` (r) and its complex conjugate to further

reduce the computational effort.
r2 〈jr∗〉U can then be computed numerically by evaluating (4.2.24) with the methods de-

scribed in Chapter 3. Note that we restrict the computations to small charges q and masses
µ of the scalar field due to the limitations of the numerical computations. In particular, for
most of the calculations we choose the mass to be µ2 = 2Λ/3. We have already discussed
in Section 3.4 that this is much smaller that any typical particle masses for a black hole
of at least solar mass. Similarly, if one assumes that q agrees with the elementary charge
e, then qQ ∼ 1036M/M�, which is too large to be handled by our numerical code. As a
result of the small values of q and µ2, we need to choose the cosmological constant Λ suf-
ficiently large in order to avoid the appearance of classical instabilities, see the discussion
at the beginning of Section 4.1. We will choose it to be ΛM2 = 0.14 for comparability
with the results for the real scalar field and [111]. We checked that this lies outside the
classical instability regime for all tested values of Q/M according to the condition de-
rived in [112]. As a result, we obtain a cosmological horizon radius rc of the same order
of magnitude as the event horizon r+. In fact, for this value of Λ, Q/M > 0.755 is re-
quired to ensure rc > r+, compare the parameter-region plot in Fig. 2.1. This means that
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Figure 4.1: r2〈jr∗〉U for the conformally coupled scalar at different radii r. This quantity
must be constant for current conservation to be satisfied. The vertical lines
mark r−, r+ and rc respectively. We set Q/M = 0.95, ΛM2 = 0.14, and
qQ = 0.1.

not only is our cosmological constant unrealistically high, but also the charge of the black
hole, which is expected to be very small [130] for astrophysical black holes. However, the
large-charge regime of the black hole is interesting due to the occurrence of sCC violation
[112] and as a toy model for rapidly rotating black holes.

More details on the numerical computation and in particular the error estimation can
be found in the previous chapter.

In Fig. 4.1 we present r2 〈jr∗〉U as a function of r in the regions I and II of the black-
hole spacetime for qQ = 0.1, ΛM2 = 0.14, and Q/M = 0.95. One can see clearly that
it is constant within the error margins of the numerical calculation. This confirms the
conservation of the renormalized charge current in the form of (4.2.24).

Next, we wish to study the behaviour of the current at the event horizon. At the horizon,
we can use the asymptotic behaviour ofRupI

ω` and the reformulation ofRinI
ω` in terms ofRupI

ω`

and its complex conjugate to obtain a formula for the current in terms of the scattering
coefficients RI

ω` and T I
ω` defined in (3.3.5) and (4.2.10). The formula for the current then

reads

〈jv〉U = −
∑
`

q(2`+ 1)

16π2r2

∞∫
0

dω (F (ω) + F (−ω)) (4.3.1a)

F (ω) = coth
Ä
π ω+ωI

κc

ä Ä
1−

∣∣RI
ω`

∣∣2ä+ coth
Ä
π ω
κ+

ä ∣∣RI
ω`

∣∣2 . (4.3.1b)

The numerical evaluation of this formula is done along the lines of the previous chapter.
The error estimate for the numerical computation is implemented as described in detail
in Section 3.4. Fig. 4.2 shows the v-component of the current at the event horizon for
the conformally coupled scalar field as a function of the scalar-field charge qQ for dif-
ferent values of the black-hole charge Q/M . The cosmological constant has been set to
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Figure 4.2: The v-component of the current of a conformally coupled scalar field on the
event horizon as a function of the scalar field charge in the Unruh vacuum for
ΛM2 = 0.14. The smaller graph shows the results for Q/M = 0.95 for small
qQ, the dashed line indicates a q2-fit.

ΛM2 = 0.14, which is outside the classical instability region for the scalar-field charges
under consideration. For small charges q, the current 〈jv〉U behaves approximately as
∼ q2. This can be seen from the smaller graph in Fig. 4.2, which shows the current for
Q/M = 0.95 and qQ ≤ 0.1. The current has been fitted with a function of the form
a(qQ)2, which is represented by the gray dashed line. An intuitive explanation for this
behaviour is that the current is caused by a particle of charge q being created near the
horizon and subsequently accelerated away from the black hole with an acceleration of
order q. Another way to model the current that has been used frequently in the literature
on black-hole discharge [131–133] is by an application of Schwinger’s pair creation for-
mula [113]. According to this approach, the pair creation rate Γ is non-perturbative in q.
In particular, it involves a factor of the form

Γ ∼ exp

ï
−
πµ2r2+
qQ

ò
. (4.3.2)

For the parameters used in the small window in Fig. 4.2, one finds πµ2r2+ ∼ 0.84, and
the deviation from ∼ q2 should be clearly visible. That this is not the case indicates
that the estimate by the Schwinger formula is not applicable for such small masses and
charges of the scalar field. This is not surprising, since for the conformal mass considered
here the Compton wavelength coincides with the Hubble wavelength, and the flat-space
approximation implied in the application of the Schwinger formula is not appropriate in
this parameter range.

Looking at the dependence of the current on Q/M , we see that the current increases
with the charge of the black hole, at least in this near-extremal regime. This result is in
agreement with the findings of [134] that the pair-production rate of an extremal black
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hole is larger that that of a near-extremal one.
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Figure 4.3: The v-component of the current of a charged scalar field of charge qQ = 0.1
at the event horizon as a function of the scalar-field mass squared in the Unruh
vacuum for Q/M = 0.95 and ΛM2 = 0.14.

It remains to explore the dependence of the current on the scalar-field mass µ. Fig. 4.3
shows the v-component of the current at the event horizon as a function of µ in units of the
conformal mass

√
2Λ/3 for ΛM2 = 0.14, Q/M = 0.95 and qQ = 0.1. We find that the

current 〈jv〉U decays exponentially with µ. This can be seen from the corresponding fit
function, which is represented in the plot by the gray dashed line. We have excluded the
point for µ = 0 from the fit, since it seems that it does not follow this law. In comparison,
the result obtained from the Schwinger formula (4.3.2) indicates an exponential decay in
the scalar-field mass squared. This agrees with the analysis of the previous case and is a
further indication that the Schwinger formula is not applicable for scalar-field masses of
the order

√
2Λ/3.

Next, let us discuss the other components of the current at the horizon. Since the
Unruh state is Hadamard across HR

+, the expectation value of the renormalized current
must be regular across it. Changing to a Kruskal coordinate system which is regular
across the horizon, one can see that this requires 〈ju〉U to vanish at HR

+. Thus, at the event
horizon we have 〈jv〉U = 〈jr∗〉U = 〈jt〉U and the results presented here also apply to these
components. Therefore, the charge density with respect to the Killing field ∂t, which is
proportional to 〈jt〉U, is negative at the event horizon and its absolute value decreases
exponentially as the inverse of the Compton wavelength µ−1.

Moreover, the results shown in Fig. 4.2 and Fig. 4.3 agree with the conserved quantity
r2 〈jr∗〉U up to a rescaling by r−2

+ . Comparing Fig. 4.2 to the results for the correspond-
ing quantity on Reissner-Nordström in [126, Fig. 3], one observes that the results are
qualitatively similar. A more detailed comparison is difficult due to the difference in
parametrization and choice of parameter range. Note, however, that [126] defines the
current with an additional minus sign relative to (4.2.1) or (4.2.2).

Finally, we want to compute the t-component of the current in regions I and II. To-
gether with the r∗-component of the current, this will allow us to compute the u- and
v-components. Unfortunately, the t-component of the current, and similarly the u- and
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v-components, are very difficult to compute numerically unless one considers them at one
of the horizons: First of all, the integrands in (4.2.24) for fixed ` have prominent features
in a small ω- window that shifts to higher values of ω as ` increases in region I and grows
broader with increasing ` in region II. Moreover, for higher values of `, the result of the
ω-integral shrinks due to strong cancellations, even though the amplitude (width) of the
features increases in region I (II). This makes the higher `-modes very challenging to
compute numerically: they require not only control over the large-ω tail of the integrand
for the precise cancellation, but also very high precision throughout the whole calculation.

Second, omitting the higher `-modes is not possible since the decay in ` is much slower
than the exponential decay observed in the computation of 〈jr∗〉U. Therefore, a simple
error estimate using the Riemann upper- or lower sum as in Section 3.4 is insufficient.
Instead of using this estimate we will discuss all error sources and numerical challenges
separately for this case.

We start by considering fixed ` and computing the integral over ω in (4.2.24). Since
we compute the integrand numerically, we can only integrate up to some cutoff ωmax.
Due to the importance of the large-ω tail of the integral described above, one would like
ωmax to be as large as possible. At the same time, at low ω, a small step-size in ω is
required to achieve a sufficiently precise estimate of the integrand. Both requirements can
be met reasonably well by using two different step sizes in ω for the computation of the
integrand: a small step size (1/2000− 1/1000) for small ω, and a slightly larger step size
(1/100 − 1/20) for larger ω. Since a lot of numerical precision is lost in the calculation
of the integrand for the higher `-modes, we also increase the numerical precision in the
calculation of the integrand for small ω compared to the other calculations.

To further increase the precision of the numerical integration, we interpolate the ob-
tained values for the integrand for fixed ` using a 10th-order interpolation. One can then
use numerical integration to obtain the integral up to ωmax. We check the stability of the
result under variation of the interpolation order and the working precision of the numeri-
cal integration. With the working precision of the same order as the numerical precision
of the interpolating function, we find that the result for the integral is stable up to at least
5 digits.

To compensate for the missing large-ω tail of the numerical integral, we fit the integrand
from approximately ωmax − 5 to ωmax and integrate the fit function from ωmax to infinity.
In all cases, we find that the leading order of the large-ω tail is ω−3, and the best fit by
a polynomial in ω−1 with two fit parameters is obtained by choosing a fit function of the
form

f(ω) = aω−3 + bω−5 .

This power-law decay for the t-component can be understood from the fact that we only
subtracted a finite-order approximation of the Hadamard parametrix. Therefore, we ex-
pect that the regularized current will not necessarily be a smooth function, but rather a
function of some finite regularity, see the discussion in Section 2.2. This will then lead to
a power-law decay instead of an exponential decay in the mode sum.

We test the stability of the resulting integral under a change of the fit function by al-
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Figure 4.4: 〈jt〉U for the conformally coupled scalar in region I and II as a function of r for
qQ = 0.1, Q/M = 0.95 and ΛM2 = 0.14. The vertical gray lines correspond
to the locations of the three horizons r−, r+ and rc respectively. The points on
these lines are obtained using the formula for the current in terms of scattering
coefficients, including error estimates as described in the previous chapter.

lowing additional higher-order terms of the form cω−n in f(ω). We combine the resulting
uncertainty with the error estimates of the fit and the change of the result under a variation
of the number of data points used for the fit. We find that the estimate for the tail has at
least 3 significant digits.

Due to the strong cancellations in the integral for larger `, this tail becomes increasingly
important. For large `, its contribution to the total integral over ω can become even larger
than the contribution of the numerical integral up to ωmax. Therefore, it is crucial to
include this correction when the convergence in ` is considered.

Next, we want to take the sum over the contributions of the individual `-modes of
the current. In comparison to 〈jr∗〉U, the decay in ` is very slow in the present case.
In particular, it is not exponential but rather follows a power law. This may again be
attributed to the finite regularity discussed above. For a power-law decay, convergence is
given as long as the decay is faster than `−1.

In order to test convergence and to correct for the finite cutoff in `, we fit a power law
of the form

f(`) = a`−b

to the decay of the fixed-` contributions to 〈jt〉U, including the corrections for the large-ω
tails, and use the Hurwitz ζ-function to compute an estimate of the sum over f(`) from
`max +1 to infinity based on this fit. We also estimate the uncertainty of the large-` tail by
taking into account variations due to uncertainties in the individual `-modes arising both
from the numerical integration and the estimates of the large-ω tails as well as variations
of the fit under a change of the fit range and the error estimates for the fit parameters. It
turns out that the estimate of the large-` tail has a large uncertainty, but constitutes only
up to approximately one percent of the final result for 〈jt〉U.

The results for 〈jt〉U for qQ = 0.1, Q/M = 0.95, µ2 = 2Λ/3, and ΛM2 = 0.14
are shown in Fig. 4.4, where the evaluation on the horizons uses the formula in terms
of scattering coefficients as described above. We have combined all the error sources
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identified above into our error estimate for 〈jt〉U displayed in the figure. The largest
relative errors are approximately 1.5%. It turns out that the dominant contribution to the
error is given by the uncertainty of the estimate of the large-` tail.

Note that 〈jt〉U starts positive at the event horizon and becomes negative towards the
cosmological horizon. This is in agreement with the fact that the Unruh state is Hadamard
across HL

c : The regularity of the Unruh state at HL
c requires that 〈jv〉U → 0 at HL

c , and
thus 〈jt〉U → −〈jr∗〉U. By current conservation, we know that 〈jr∗〉U → r−2

c r2 〈jr∗〉U is
positive, and therefore 〈jt〉U must be negative at the cosmological horizon.

The negativity of 〈jt〉U on the cosmological horizon can also be concluded from a
physical argument. ∂t restricted to region III is space-like and directed inwards, as can
be seen by, for example, expressing it in terms of the in- and outgoing radial null vectors.
Thus, −jt is the outward current, which is expected to be positive for a black hole of
positive charge.

Throughout most of region II, 〈jt〉U is positive and only decreases very slowly with r.
However, near the inner horizon, there is a drastic change of behaviour: around r ∼ 1.3,
〈jt〉U reaches a maximum and starts decreasing rapidly as the inner horizon is approached.
Near the inner horizon the absolute value of 〈jt〉U is significantly larger than in the rest
of the spacetime. Comparing to the results for the r∗-component in Fig. 4.1, we expect
that the u- and v-component will behave qualitatively similar to the t-component. This
indicates that the current at the inner horizon will likely show very different qualitative
behaviour from the current at the event horizon and from the behaviour expected from an
intuitive particle picture [114]. This will be the subject of the next section.

Overall, we observe that the black hole is always discharged by the scalar field, and our
formula for the current satisfies the conservation equation, as already observed in [130].
The deviation from the Schwinger formula can be expected for the range of parameters
that we have tested. Thus, the results obtained with our formula agree with expectations.
However, we have also seen first hints that a very different behaviour can appear near the
inner horizon of the black hole.

4.4 The charged scalar field at the inner horizon

In the following section we will study the scalar field at the inner horizon of the RNdS
black hole. In order to do so, we first indicate how the result on the state-independence
of the leading divergence of the energy flux at the Cauchy horizon in [16] extends to
the charged scalar field, and how a corresponding result can be found for the leading
divergence of the current. After that, we introduce a state-subtraction formula for the
stress-energy tensor in the Unruh state at the inner horizon and show numerical results
for both the current and the stress-energy tensor. This section is based on the paper [116],
for which I performed the computations, and its supplementary material [135], which I
developed and wrote under the supervision of S. Hollands and J. Zahn.

We start by showing that the result on the state-independence of the leading divergence
of the energy flux near the Cauchy horizon, particularly the first part of [16, Prop. 5.1],
can be extended to the charged scalar field. In addition, we will argue that such a result
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can also be found for the charge current.
To this end, let us consider the expectation value of the observable A(x) in the Cauchy-

horizon limit in some state Ψ. Here, A(x) is a placeholder for either the charge current
or the stress-energy tensor of the charged scalar field. We assume that the state Ψ is
Hadamard on M. Performing a null addition, this expectation value can be written as
[16]

〈A(x)〉Ψ = 〈A(x)〉U−C + 〈A(x)〉Ψ−U + 〈A(x)〉C ,

where we have used the same notation as in previous sections to denote differences of
expectation values between states, and the U- and C- subscripts for the Unruh- and com-
parison state correspondingly.

As for the real scalar field in Chapter 3, we take the comparison state to be a stationary
state which is Hadamard in a neighbourhood of the Cauchy horizon. For its construction,
we modify the spacetime beyond the Cauchy horizon so that the central singularity is
replaced by the origin of spherical coordinates. We then define the comparison state via
mode expansion along the lines of (4.1.17). The modes for the expansion are determined
by initial data on HL

− ∪H+
−. Concretely, they satisfy

φ
C(−)
ω`m ∼

(
4π2r2 |ω|

)−1/2
Y`m(θ, ϕ)e

−iωV− (4.4.1)

at HL
− ∪H+

−. The proof of the Hadamard property of this state in a neighbourhood of the
Cauchy horizon HR

− follows along the same lines as for the real scalar [16], see also the
discussion for the Unruh state above. The modification of the spacetime does not affect
the expectation values of observables at HL

− computed in the comparison state. Therefore,
this description of the comparison state and the modification of the spacetime is sufficient
for the purposes of this work.

By construction, the expectation values of the current and the stress-energy tensor in
the comparison state should be finite at the Cauchy horizon. The difference between the
Unruh- and the comparison state expectation values is independent of the state Ψ. To
show that this state-independent term is the leading divergence of 〈A〉Ψ at the Cauchy
horizon, one has to show an upper limit for the potential divergence of 〈A(x)〉Ψ−U, which
contains the state dependence. This amounts to showing

Proposition 4.4.1. Let x ∈ HR
− be a point on the Cauchy horizon. Let U be a small open

neighbourhood of x with compact closure in the analytic extension of M and contained
in a coordinate chart of the form (xν) = (V−, y

i). Here, yi are coordinates parametriz-
ing HR

− in a neighbourhood of x. Let 〈·〉Ψ−U denote the difference of expectation values
between an arbitrary but fixed Hadamard state on M and the Unruh state. Assume that
β = α

κ−
> 1

2
, where α is the spectral gap. Then 〈Tν%〉Ψ−U (V−, ·) and 〈jν〉Ψ−U (V−, ·)

are smooth functions of yi on UM ≡ U ∩ M. In addition, 〈Tν%〉Ψ−U (·, yi), consid-
ered as a function of V− < 0, is locally in Lp(R−), p = (2 − 2β′)−1, for any β′ with
1
2
< β′ < min(1, β), while 〈jν〉Ψ−U (·, yi) is locally in L2p(R−). Their norm is uniformly

bounded in yi within UM.
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To prove this proposition, we first show the ensuing lemma, which is an adaptation of
[136, Lemma 3.7] to the charged scalar field and the geometric situation at hand.

Lemma 4.4.2. Let (M, g) be the RNdS spacetime, U as in Proposition 4.4.1, and let
W ∈ C∞(M × M) satisfy Kq(x)W (x, y) = Kq(y)W (x, y) = 0. Then one can find a
B ∈ C∞

0 (M×M) such that∫
M×M

f̄(x)W (x, y)h(y) dvolg(x) dvolg(y) (4.4.2)

=

∫
M×M

E(f)(x)B(x, y)E(h)(y) dvolg(x) dvolg(y)

for all f, h ∈ C∞
0 (UM).

Proof. Let σ± be two Cauchy surfaces of M so that σ+ ⊂ I+(σ−) and UM ⊂ I+(σ+).
Let f, h ∈ C∞

0 (UM). Then J(supp(f) ∪ supp(h)) ∩ J+(σ−) ∩ J−(σ+) is contained in
the closure of J(UM) ∩ J+(σ−) ∩ J−(σ+) in M, which we will call G and which is a
compact subset of M.

We start by noting that for Kq, a generalization of Green’s formula takes the form∫
L

(uKqv − vKqu) dvolg =
∫
∂L

(uDµv − vDµu)n
µ dvolγ ,

where u, v are smooth functions and we assume that the intersection of their supports
with L is compact. L ⊂ M is any closed subset of M and its boundary ∂L in M has
outward-pointing unit normal nµ and induced metric γ.

Next, we set

f̃ = Kq(χE(f))

for f ∈ C∞
0 (UM), and equivalently we define h̃. Here, χ ∈ C∞(M) is equal to one on

J+(σ+) and vanishes on J−(σ−). As discussed in Section 2.2, f̃ ∈ C∞
0 (M) with support

contained in G, and E(f̃) = E(f). This allows the replacement of f and h by f̃ and
h̃ on the right-hand side of (4.4.2). By the property of the kernel of E, we can find an
f0 ∈ C∞

0 (M) so that f̃ = f + Kq(f0). Since W (x, y) satisfies the (complex conjugate)
Klein-Gordon equation in the first (second) variable, and all other functions are compactly
supported within M, we have by an application of Green’s formula∫
M×M

¯̃f(x)h̃(y)W (x, y) dvolg(x) dvolg(y) =
∫

M×M

f̄(x)h(y)W (x, y) dvolg(x) dvolg(y) .

Therefore, one can replace f and h with f̃ and h̃ on the left- and right-hand side of
(4.4.2). Hence, it is sufficient to show that the lemma holds for f̃ and h̃.
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σ+

σ−

Σ+
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i−

i+

Figure 4.5: Sketch of the setup in the proof of Lemma 4.4.2. The orange region is U , the
orange lines emanating from U mark J−(UM). The blue lines are σ±, the red
ones Σ±. The region between the blue lines in J−(UM) is (the interior of) G
and J(G) is also marked in orange. The region between the red lines is L.
The dashes lines mark J(Ĝ).

One can now follow the proof of [136, Lemma 3.7] for f̃ , h̃ ∈ C∞
0 (G). We choose

Cauchy surfaces Σ± ⊂ I±(σ±) to the past of UM, and a compact set Ĝ ⊂ σ+ so that
G∩ σ+ is contained in the interior of Ĝ. We set L = J−(Σ+)∩ J+(Σ−) and construct an
open cover of M consisting of

M0 = M\J(G ∩ σ+) and M± = I(Ĝ) ∩ I±(Σ∓)

with a subordinate partition of unity (ψ0, ψ+, ψ−). A sketch is shown in Fig. 4.5. We then
set B ∈ C∞

0 (M×M) to be given by

B(x, y) = ζ(x, y)Kq(x)Kq(y)ψ−(x)ψ−(y)W (x, y)

for some function ζ ∈ C∞
0 (M×M) which is equal to one on (J(G)∩L)× (J(G)∩L).

SinceB is supported in (J(Ĝ)∩L)× (J(Ĝ)∩L), one can ignore the cutoff function ζ for
x, y ∈ J(G). Following the proof of [136, Lemma 3.7], one can show that this B(x, y)
satisfies (4.4.2) by using the extension of Green’s formula and the support properties of
the various functions.

This result allows us to prove Proposition 4.4.1.

Proof of Proposition 4.4.1. As a first step in the proof, let us note that both the current
and the stress-energy tensor are gauge-invariant observables, and hence we may choose
any gauge to evaluate them. After fixing an evaluation point x0, we choose a gauge with
Aν(x0) = 0. For example, we may set χ = tQ/r0 with r0 the fixed value of r at x0.

89



In the rest of the proof, we will work in this gauge and drop the gauge-superscripts for
convenience.

The stress-energy tensor of the charged scalar field can then be written as

Tν%(x) = ∂(νΦ
∗(x)∂%)Φ(x)−

1

2
gν%
(
∂γΦ

∗(x)gγδ∂δΦ(x) + µ2Φ∗(x)Φ(x)
)
. (4.4.3)

One can then follow the proof of [16, Prop. 5.1] step by step: By [136, App. B], and
the symmetry properties of W (x, y) = wΨ

+(x, y) − wU
+(x, y), one can find a sequence

(bj)j∈N ⊂ C∞
0 (L ∩ J(Ĝ)) so that the B ∈ C∞

0 ((L ∩ J(Ĝ)) × (L ∩ J(Ĝ))), which is
obtained by an application of Lemma 4.4.2 to W (x, y), can be expanded in terms of the
bj as in [16, Eq. (91)]1,

B(x, y) =
∑
j

cjbj(x)bj(y) , cj ∈ {1,−1} ,
∑
j

‖bj‖2Cm(L∩J(Ĝ)) <∞ .

This entails that W (x, y) restricted to UM × UM can be expanded in terms of forward
solutions ψj to Kqψj = bj as noted in [16, Eq. (92)].

As a result, the stress-energy tensor of the charged scalar field can be written in terms
of the ψj as in [16, Eq. (94)], while the charge current 〈jν〉Ψ−U can be written as

〈jν(x)〉Ψ−U = iq
∑
j

cj
¶
∂νψj(x)ψj(x)− ψj(x)∂νψj(x)

©
(4.4.4)

=
∑
j

cjqIm
¶
ψj(x)∂νψj(x)

©
.

The results of [39] discussed in Section 4.1, see also [111, App. A], and [16, Thm. 4.4],
imply thatψj(·, yi) ∈ H1/2+β′

(I), and ∂nyψj ∈ H1/2+β′
(UM) for any 1/2 < β′ < min(1, β).

From [16, Thm. 4.4] one can also glean that [16, Eq. (93)] still holds2,

‖ψj‖H1/2+β′ (UM) ≤ C ‖bj‖Cm(L∩J(Ĝ))

for sufficiently large m and some C > 0. Together with Sobolev embedding and the
estimate [16, Eq. (95)], one has

‖ψj(·, yi)‖L∞(R−) ≤ C‖(−∂2V− + 1)
1+ε
4 ψ−(·, yi)‖L2(R−) (4.4.5)

≤ C ′‖(−∂2y + 1)
N
4 ψj‖H1/2+β′ (U) ≤ C ′′‖bj‖Cm(L∩J(Ĝ)) ,

as well as

‖∂νψj‖L2p(R−) ≤ C̃ ‖bj‖Cm(L∩J(Ĝ)) ,

1Note that in contrast to the claim in [16], the support of bj lies in L ∩ J(Ĝ) rather than in G, see [136].
2Note that O should be replaced by J(Ĝ) ∩ L here as well.
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for someC,C ′,C ′′, C̃ > 0, compare also the estimates in [16, Eq. (96)] and [16, Eq. (97)].
For the stress-energy tensor this means that the proof can be completed in the same way

as in [16]. For the charge current, one can find by an application of the Hoelder inequality

‖〈jν(·, yi)〉Ψ−U‖L2p(R−) ≤ C
∑
j

‖Im(ψj∂νψj)‖L2p(R−) (4.4.6)

≤ C ′
∑
j

‖ψj‖L∞(R−)‖∂νψj‖L2p(R−)

≤ C ′′
∑
j

‖bj‖2Cm(L∩J(Ĝ))
<∞ ,

for some constants C, C ′, C ′′ > 0 and consequently 〈jν(·, yi)〉Ψ−U ∈ L2p(R−). In the

same way, one can obtain bounds for
∥∥∥〈∂ny jν(·, yi)〉Ψ−U

∥∥∥
L2p(R−)

, proving that 〈jν〉Ψ−U is

a smooth function of the local coordinates yi parametrizing the Cauchy horizon, while it
is in L2p(R−) as a function of V−.

Thus, as long as 〈Tvv〉U−C and 〈jv〉U−C in the Cauchy-horizon limit are non-vanishing,
they constitute the leading divergences of the stress-energy tensor and the current at the
Cauchy horizon in any state that is Hadamard in M. In other words, in this case the
leading divergences of the stress-energy tensor and the current at the Cauchy horizon are
universal in the sense that they do not depend on the choice of Hadamard state. It remains
to confirm that 〈Tvv〉U−C and 〈jv〉U−C are indeed non-vanishing at the Cauchy horizon by
numerical computations.

In the following, we compute the leading divergences of the stress-energy tensor and
the current in the HL

−-limit and subsequently infer the result at HR
− using the stationarity

of the Unruh- and comparison state and assuming that the computation is done in a static
gauge.

For the current, we can use the extension of the Boulware modes from I to II and the
asymptotic behaviour of the modes in II, see (3.3.6), to obtain the limit of (4.2.24) towards
HL

−. The formula for the current then reads

〈jv〉U = −
∞∑
`=0

q(2`+ 1)

16π2r2−

∞∫
0

dω [F`(ω) + F`(−ω)] , (4.4.7a)

F`(ω) =
ω(ω− + ωI)

(ω−)2
coth

Ä
π ω−+ωI

κc

ä ∣∣∣T I
ω−`

∣∣∣2 ∣∣∣T II
ω−`

∣∣∣2 (4.4.7b)

+
ω coth

Ä
π ω−
κ+

ä
ω−

ï∣∣∣RII
ω−`

∣∣∣2 + ∣∣∣RI
ω−`

∣∣∣2 ∣∣∣T II
ω−`

∣∣∣2ò
+

2ω csch
Ä
π ω−
κ+

ä
ω−

Re
Ä
RI
ω−`

T II
ω−`R

II
ω−`

ä
,

where we have defined ω− = ω + ωII = ω + qQ
(
r−1
− − r−1

+

)
.
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We have already discussed that the integrand F`(ω) is regular as ω− → 0. However,
there is an additional potential infrared divergence in the current near the inner hori-
zon. This divergence appears for ω → 0. In this case, the asymptotic behaviour of the
Boulware-modes in region II near r− is RωII` ∼ A + Br∗, which diverges as the horizon
is approached. One can translate this divergence of the solution into a linear divergence of
the scattering coefficients T II

ω−`
and RII

ω−`
as ω → 0. However, from the way the integral

is written above we see that it can be read as a the principal value of the ω-integral over
ωF`(ω)/ω, which is finite.

Note that for the current we did not subtract the contribution from the comparison
state. The reason is that the comparison state that is used for the computation of the
stress-energy tensor does not give a contribution to the v-component of the current at the
Cauchy horizon.

For the stress-energy tensor, we can construct a mode-sum formula using the results
from Section 4.2. In contrast to the result for the current, we do not expect to find a
finite contribution from the Hadamard parametrix in this case. Since the application
of the Hadamard point-split renormalization combined with the mode-sum formula is
very challenging, it is computationally simpler to perform a state-subtraction of the un-
renormalized expectation values for the stress-energy tensor with respect to the compari-
son state just as for the real scalar field.

Taking into account that gvv = 0, the vv-component of the classical stress-energy tensor
is given by

Tvv(x) = ∂vΦ
∗(x)∂vΦ(x) . (4.4.8)

Symmetrizing with respect to Φ(x) and Φ∗(x), compare (4.2.2), and following the same
steps as for the regularized charge current in Section 4.2, we find a mode-sum expression
for 〈Tvv〉U−C at HL

−,

〈Tvv〉U−C =
∞∑
`=0

2`+ 1

32π2r2−

∞∫
0

dω ω
î
F`(ω)− F`(−ω)− 2 coth

Ä
πω
κ−

äó
, (4.4.9)

with F`(ω) as in (4.4.8). The formulas for the current and energy flux can now be evalu-
ated numerically as described in sections 3.3, 3.4 and 4.3.

First, we discuss the results for the stress-energy tensor. In Fig. 4.6, we plot the energy
flux for µ2 = 2Λ/3 and ΛM2 = 0.14 as a function of Q/M for different values of qQ.
The results we obtain are compatible with those found for the real scalar field, [92, 97],
see also Section 3.4. In particular, the results in the small plot zooming in on large Q/M
and small qQ look very similar to those in [92, 97], and converge to those in [97] for
qQ → 0. Another interesting feature is the fact that for qQ sufficiently large, 〈Tvv〉U−C

remains positive, at least for µ2 = 2Λ/3. This is in contrast to the result for the real scalar,
where the energy flux changes sign and becomes negative near extremality in the case of
a conformally coupled scalar field. To demonstrate the increase of the energy flux with
qQ, we have also plotted 〈Tvv〉U−C as a function of qQ for different values of Q/M . This
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Figure 4.6: 〈Tvv〉U−C evaluated on CHR as a function of Q/M for different values of qQ
and µ2 = 2Λ/3, ΛM2 = 0.14.

plot is shown in Fig. 4.7.
Note that by Proposition 4.4.1, 〈Tvv〉U−C is the state-independent leading divergence of

the energy flux as long as sCC is classically violated for the chosen spacetime parameters
[112]. Since it is generically non-zero, these results indicate that just as for the real scalar
field, quantum effects can restore sCC in this setup when it is classically violated.

Q/M: 0.9 0.96 1

0.2 0.4 0.6 0.8 1.0
qQ0.000

0.002

0.004

0.006

0.008

0.010

M
4
Tvv

Figure 4.7: The difference of the vv-component of the stress-energy tensor of the charged
scalar field between the Unruh-and the comparison state near CHR as a func-
tion of qQ for different values of Q/M and µ2 = 2Λ/3, ΛM2 = 0.14.

Next, let us discuss the results for the charge current. Fig. 4.8 shows the charge current
〈jv〉U at the Cauchy horizon for µ2 = 2Λ/3 and ΛM2 = 0.14 as a function of Q/M
for different values of qQ. Comparing this result to the charge current at the event hori-
zon, Fig. 4.2, the most prominent difference is that the current at the Cauchy horizon
can change its sign while the sign at the event horizon is fixed. Considering the (weak)
backreaction of the current onto the charge as described in (4.0.3), this means that in the
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Figure 4.8: 〈jv〉U evaluated on CHR as a function of Q/M for different values of qQ and
µ2 = 2Λ/3, ΛM2 = 0.14.

parameter range in which 〈jv〉U < 0, the charge of the black hole within the inner horizon
increases.

This result is very surprising, since it contrasts both the intuitive particle picture [114,
115] and the results at the event horizon presented in the previous section and discussed
in the literature [130]. One possible reason is the scattering of modes entering the black
hole through the event horizon in the gravitational potential in the black-hole interior.
This scattering can be seen best in the radial ODE (3.3.2).

We also note that the current is always positive when the black hole is close to extremal-
ity. This means that even though the inner horizon may be charged by quantum effects,
the charge cannot be increased beyond its extremal value and the black hole cannot be
turned into a naked singularity in this manner.

Unfortunately, the parameters tested here are not quite realistic. As discussed already
in the previous section, in order to achieve a reasonable performance of the numerics,
comparability with results in [111] and the results on the real scalar, and to avoid the
classical instability regime, we have chosen an unrealistically large cosmological constant
Λ. Moreover, the charge and mass of the scalar field have also been chosen very small for
solar mass black holes. Nonetheless, our results show that the intuitive particle picture
does not fully capture the behaviour of the quantum effects in the black-hole interior, and
that the assumption that the black hole is always discharged is false.

One may then ask whether a similar effect can be observed for the electromagnetic field
strength Q/r2. As seen in (4.0.4), the change of the field strength depends on both 〈jv〉U
and 〈Tvv〉U−C. Hence, the field strength might decrease even if 〈jv〉U < 0 or the other way
around, depending on the sign and relative magnitude of the two terms. Its v-derivative
as a function of Q/M for different values of qQ is plotted in Fig. 4.9. In fact, we find that
even if 〈jv〉U > 0 and the Cauchy horizon is discharged, the field strength does in many
cases increase with v, because its v-derivative is dominated by the positive contribution
proportional to 〈Tvv〉U−C. The interpretation of this is that in most of this parameter
regime, the area of the fixed (u, v)-surface shrinks faster than the charge contained in it.
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Figure 4.9: The change of the field strength ∂v Qr2 near HR
− as a function of Q/M for dif-

ferent values of qQ and µ2 = 2Λ/3, ΛM2 = 0.14.

To summarize, we observed that the energy flux of the charged scalar quantum field is
generically non-vanishing at the inner horizon of a RNdS black hole. Therefore, quantum
effects can restore sCC when it is classically violated in this scenario as well. Addition-
ally, we have found a potential increase of the black-hole charge due to quantum effects
at the Cauchy horizon. This result could not have been predicted from the particle picture
alone. This demonstrates that first-principle calculations of the different observables in
the black-hole interior are important if we want to understand how the presence of the
quantum field modifies it.
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5 The Unruh state on Kerr-de Sitter

In the previous chapter, we have seen that the current induced by a charged scalar field
near the Cauchy horizon of a RNdS black hole can have either sign. Via backreaction,
this current can thus charge the Cauchy horizon instead of discharging it. However, real-
istic astrophysical black holes are expected to be rotating rather than charged. It would
therefore be interesting to see whether such an effect also occurs for rotating black holes
described by the Kerr metric or, in the presence of a positive cosmological constant, Kerr-
de Sitter metric. Here, the charge or discharge would correspond to the speed-up or
slow-down of the black-hole rotation.

To study this effect, one needs at least one Hadamard state for the quantum theory
under consideration on the Kerr or Kerr-de Sitter spacetime. Preferably, one would like
this state to be physically well-motivated. As discussed in Section 2.5, one such state, the
Unruh state [18], has been rigorously constructed in a number of black-hole spacetimes
[16, 43, 96] and is thought to be a good description for the behaviour of the quantum field
arising from gravitational collapse at late times.

In this chapter, we will show that the Unruh state can be defined for the free scalar
field on the Kerr-de Sitter spacetime as well, and that it is a Hadamard state across both
the event horizon and the cosmological horizon. While it is clear how the Unruh state
on Kerr-de Sitter should be defined in terms of mode-sums, see for example [137], its
rigorous construction and the proof of its Hadamard property have been an open problem
until now.

The largest difficulty arises from the fact that the Killing field ∂t becomes space-like
outside the black hole in the so-called ergoregion1. Thus, region I is not static, but only
locally stationary [76]. Since the staticity of the black-hole exterior is needed for the proof
of the Hadamard property of the Unruh state as given in [43, 96] for the Schwarzschild (-
de Sitter) spacetime, this proof cannot be adapted directly to the Kerr-de Sitter spacetime.

Instead, we will combine the ideas from [43] with ideas developed in [138], in which
the authors demonstrate a rigorous construction of and prove the Hadamard property for
the Unruh state for free, massless fermions on the Kerr spacetime.

This ansatz requires us to generalize some geometrical results from the Kerr- to the
Kerr-de Sitter spacetime. These generalizations will be shown in the first section. After
that, we will define the Unruh two-point function and show that it indeed defines a quasi-
free state for the real massive scalar field on Kerr-de Sitter by the criteria described in
Section 2.2. Finally, we will prove that the Unruh state is Hadamard. The results in this
section have been published in [139].

1There is in fact a second "ergoregion" just inside the cosmological horizon.
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5.1 Null geodesics in the Kerr-de Sitter spacetime
In this section, we want to show some results on the geometry and the behaviour of
geodesics on Kerr-de Sitter. In particular, we want to extend some of the results shown in
[138, App. C] from Kerr to Kerr-de Sitter, beginning with the behaviour of null geodesics
on this spacetime.

We start from the results on the geodesics collected in Section 2.4.2. One can already
see that the geodesic equation (2.4.19) has the same form as the geodesic equation for
Kerr [80], apart from factors of χ. With the identities collected in Section 2.4.2, we can
show that a light-like geodesic with vanishing Carter constant, K = 0, is a principle null
geodesic, and hence [80, Cor. 4.2.8] generalizes from Kerr to Kerr-de Sitter.

Using the results from [75] regarding the structure of the extended Kerr-de Sitter space-
time and recalling the definition of the conserved energy E and angular momentum L in
(2.4.16) and (2.4.17), one can also generalize [80, Lemma 4.2.9] to Kerr-de Sitter:

Lemma 5.1.1. A null geodesic γ on a Kerr-de Sitter spacetime

1. is principal iff K = 0.

2. is contained in a time-like polar plane {t = t0, ϕ = ϕ0}, i.e. a polar plane in a
region where ∆r ≤ 0, iff L = E = 0 but K 6= 0.

3. is contained in {sin θ = 0}\ ({r = r−} ∪ {r = r+} ∪ {r = rc}) iff K = L = 0 but
E 6= 0.

4. is a null geodesic generating one of the horizons iff K = L = E = 0.

In addition, we note that [80, Cor. 4.3.2] holds with small modifications to the equations
for ρ2 dv/ dτ , ρ2 du/ dτ , ρ2 dϕ∗/ dτ and ρ2 d∗ϕ/ dτ ,

ρ2
dv
dτ

=
aχ2D
∆θ

+
χ2(r2 + a2)

∆r

[
P⊕

(
±
 
R(r)

χ2

)]
, (5.1.1a)

ρ2
dϕ∗

dτ
=

χ2D
sin2 θ∆θ

+
χ2a

∆r

[
P⊕

(
±
 
R(r)

χ2

)]
. (5.1.1b)

Here, ⊕ is a plus in the equations above for v and ϕ∗, but will be replaced by a minus
in the corresponding equations for u and ∗ϕ, while the ± is the sign of dr/ dτ . P and D
are defined in (2.4.18), R(r) is defined in (2.4.19a). In comparison to [80, Cor. 4.3.2],
(5.1.1) has additional factors χ and ∆θ. Still, these factors are both bounded by 1 <
χ,∆θ < 2 and do not destroy the separability. Hence, the calculations presented in
[80, Sec. 4.3 and 4.4] restricted to null geodesics hold with only a minor modification
due to these factors.

Concluding, we find in analogy to [80, Prop. 4.3.9] that any null geodesic on the Kerr-
de Sitter spacetime M (or its extension M̃, compare Fig. 2.4) that is not completely
contained in a horizon or the axis {sin θ = 0} can be extended to τ ∈ R, or ends at
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a horizon or on the axis in a finite amount of proper time. Analogously to the results
in [80, Sec. 4.4], geodesics can only cross horizons transversally at finite proper time.
For blocks II and III, this includes the possibility that the geodesic approaches the cor-
responding bifurcation sphere of the horizon in finite proper time. Whether a geodesic
approaches the ingoing or outgoing part of the horizon depends on the signs of dr/ dτ
and P as described in [80, Prop. 4.4.6].

The axis is a closed, totally geodesic submanifold of the (extended) Kerr-de Sitter
spacetime by [80, Thm. 1.7.12]. The geodesics contained in the axis satisfy K = L = 0
and E 6= 0, and hence R(r) reduces to χ2E2(r2 + a2)2 > 0, meaning that there are no
turning points in r. Geodesics that approach the axis can be extended through it and cross
it transversally, similar to the behaviour of null geodesics near the horizons [79].

To conclude our study of null geodesics, we want to take a more detailed look at
geodesics in region I that approach either i+ or i− (or both). Considering the structure
of R(r), this must be due to a double root of R(r). To study the possible locations of
these double roots, we show a version of [138, Lemma C.1+C.2] for the Kerr-de Sitter
spacetime.

Lemma 5.1.2. 1. There are λ0 > 0 and a0 > 0 so that for all 0 < λ < λ0 and all
0 < a < a0, the double roots r0 of R(r) satisfy

r+ < 3− C(λ)a+O(a2) ≤ r0 ≤ 3 + C(λ)a+O(a2) < rc (5.1.2)

with C(λ) = 2
√

1/3− 9λ.

2. Under the same conditions as above, for any double root r0 of R(r), we have
ρ2 dt

dτ |r0 6= 0 for all θ ∈ [0, π].

Proof. Let us start with the first point, and let us begin by noting that roots of R(r) can
only occur in regions where ∆r ≥ 0. We can thus focus on r ∈ [r+, rc].

We first consider the case E = 0. With this, Θ(θ) as defined in (2.4.19b) takes the form

Θ(θ) =
K

sin2 θ

Å
−a2λ cos4 θ − (1− a2λ) cos2 θ + 1− L2χ2

K

ã
.

Since a2λ < 1 in the whole subextremal parameter range, see Fig. 2.3, a solution for the
geodesic equation can only exist if L2χ2

K
≤ 1. Furthermore, for E = 0 the conditions for a

double root of R(r) reduce to ∆r(r0) = a2L
2χ2

K
and ∂r∆r(r0) = 0. Together with the first

condition, we see that this can only have a solution if at the local maximum r+ < rm < rc
of ∆r one has

∆r(rm) ≤ a2 .

One finds that there is a λ1 > 0, so that this condition cannot be met as long as λ < λ1.
This case can thus be avoided by demanding that λ0 < λ1 ≈ 0.0332.

Going forward, we can therefore assume E 6= 0. This allows us to introduce the
rescaled quantities l = L/E and k = K/(χ2E2). With these, one can write R(r) and
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Θ(θ) as

R(r) = χ2E2
(
βr4 + γr2 + 2kr − a2q

)
(5.1.3a)

Θ(θ) =
χ2E2

sin2 θ

(
−a2β cos4 θ + γ cos2 θ + q

)
(5.1.3b)

with

β = 1 + λk , γ = 2a(a− l)− k(1− a2λ) , q = k − (a− l)2 .

One can see that if q < 0, one has Θ(θ) < 0 for all θ unless γ > 0. However, if γ > 0 and
q < 0, then R(r) > 0 for all r > 0, and hence no double root of R(r) can appear. This
means that a double root of R(r) requires q ≥ 0.

In a next step, we can solve R(r) = ∂rR(r) = 0 for l and k in terms of r, a, and λ. We
find

l =
∆′
r(r

2 + a2)− 4r∆r

a∆′
r

|r=r0 , k =
16r2∆r

∆′2
r

|r=r0 , (5.1.4)

where a prime denotes a derivative with respect to r. Plugging this into the definition of
q, we find that the highest-order contributions in r cancel,

q =
r2

a2∆′2
r

(
16∆r(a

2 −∆r) + r∆′
r(8∆r − r∆′

r)
)
|r=r0 (5.1.5)

=
4r3

a2∆′2
r

(
4a2 − r(r − 3)2 − a2λr2(2(r + 3) + a2λr)

)
|r=r0 .

Therefore, the condition that q ≥ 0 for any double root of R(r) translates to the condition

4a2 − r0(r0 − 3)2 − a2λr20(2(r0 + 3) + a2λr0) ≥ 0 .

Notice that in comparison to [138, Eq. (C.7)], the additional terms proportional to λ all
enter with a minus-sign, and thus reduce the range of r in which the double root may be
located. The double root must either lie in r < r1 for some r1 < r+ or in the interval[

3− 2
»

1
3
− 9λ a+O(a2), 3 + 2

»
1
3
− 9λ a+O(a2)

]
.

Since no roots of R(r) can exist in (r−, r+), this concludes the proof of the first point.

For the second point, we consider the right hand side of (2.4.19c) and evaluate it at
a double root r0 of R(r). This means that we can assume E 6= 0, and can set l to the
expression in (5.1.4). Then, after some simplification, in which we use that ∆′

r(r0) 6= 0 if
E 6= 0, we find

ρ2
dt
dτ

(r0, θ) =
2χ2E

∆θ∆′
r(r0)

[
r0(χr0 + 3) + a2 cos2 θ(χr0 − 1)

]
. (5.1.6)
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The first factor is positive, because sign(E) = sign(∆′
r(r0)), and one can check that the

second factor is also positive for all possible values of r0 using the condition obtained in
the first part of the proof.

With these results at hand, let us now collect some properties of future-directed (inex-
tendible) null geodesics on each Boyer-Lindquist block separately. We assume that the
geodesics are parametrized by τ ∈ (τ−, τ+), and we will sort them by the type of radial
motion, indicated by (r(τ−), r(τ+)). Since P > 0 for future-directed null geodesics in I,
the horizon crossed by the geodesic and whether u or v remains finite as the horizon is
approached depends only on dr/ dτ , compare the extension of [80, Prop. 4.3.4]. Then,
we have the following types of future-directed null geodesics in region I:

• (rc, r+) or (r+, rc): |τ±| < ∞, dr/ dτ < (>)0, lim
τ→τ±

u = ±∞ for dr/ dτ > 0 and

lim
τ→τ±

v = ±∞ for dr/ dτ < 0. The geodesic crosses I from H−
+ (H−

c ) to HL
c (HR

+).

• (rc, rc): |τ±| < ∞, dr/ dτ starts negative and becomes positive at a simple zero
of R(r), lim

τ→τ−
u = −∞, lim

τ→τ+
v = ∞. The geodesic starts at H−

c , is reflected at a

simple root of R(r) and ends at HL
c .

• (r+, r+): |τ±| < ∞, dr/ dτ starts positive and becomes negative at a simple zero
of R(r), lim

τ→τ−
v = −∞, lim

τ→τ+
u = ∞. The geodesic starts at H−

+, is reflected at a

simple root of R(r) and ends at HR
+.

• (r+, r0) or (rc, r0): |τ−| < ∞, τ+ = ∞, dr/ dτ → 0 from above (below),
lim
τ→τ−

v(u) = −∞. The geodesic starts at H−
+ (H−

c ) and asymptotically approaches

r = r0 and therefore i+.

• (r0, r+) or (r0, rc): τ− = −∞, |τ+| < ∞, dr/ dτ < (>)0 starts from zero at τ−,
lim
τ→τ+

u(v) = ∞. The geodesic asymptotically approaches r = r0, and therefore i−,

to the past and ends at HR
+ (HL

c ).

• (r0, r0): τ± = ±∞, dr/ dτ = 0. This geodesic corresponds to a circular orbit at
r = r0. It approaches i± to the future/past.

In region II and III, R(r) is always positive, and the sign of dr/ dτ is dictated by the
choice of time orientation, see [75] and Section 2.4.2. In particular, all future-pointing
geodesics in II are of the form (r+, r−) and have |τ±| < ∞, while those in III are of
the form (rc,∞) and satisfy |τ−| < ∞, τ+ = ∞. It only remains to remark that the
geodesic will cross into region I at r = ri if P(ri) > 0. When we also take into account
the extended spacetime M̃, the other cases are crossing into a copy of I′, corresponding
to I with reversed time orientation, if P(ri) < 0 and through the bifurcation sphere into
III′ or II′ if P(ri) = 0.
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With the above results, one can follow the proof of case 2 and 3 in [138, Lemma C.4,
i)] to show that

lim
τ→τ±

t(τ) = ±∞

for all future-pointing inextendible null geodesics in I.
This analysis of the null geodesics also enables the proof of the following result:

Proposition 5.1.3. M and M̃ are globally hyperbolic.

Proof. By direct computation, one can see that the function x(r) = r∗(r) − r is strictly
monotonic on (r+, rc), and ranges from −∞ for r → r+ to ∞ for r → rc. Hence, for any
T � 1, there is a unique solution rT of x(r) = −T near r+ and a unique solution r′T of
x(r) = T near rc. Let us choose T sufficiently large, so that all double roots r0 of R(r)
are contained in (rT , r

′
T ), and set

uT =


u+ c(r) + T : r′T ≤ r

t : rT < r < r′T
v + T − c(r) : r ≤ rT

,

with

∂rc(r) = 1 + φ(r)
1

r − r−
, c(r+) = r+ .

φ ∈ C∞(R;R∗
+) is equal to 1 on (−∞, r− + ε], and φ = 0 on (1/2(r+ + r−),∞), see

[138, App. C.6.2]. One can then show that uT satisfies the conditions in [138, Cor. C.7].
In particular, for rT < r < r′T , we have

g−1( duT , duT ) = gtt ≤ χ2

ρ2

Å
a2 − (r2 + a2)2

∆r

ã
(5.1.7)

= −χ
2

ρ2
χr4 + χr2a2 + 2a2r

∆r

< 0 ,

since ∆r > 0 in this interval. Outside of this interval, we can use the inverse metric
in the KdS∗- and ∗KdS-coordinates respectively. We combine it with the fact that
∂rc(r) = 1 in [r+,∞) and c′(r) ≥ 1 on [r−, r+), where ∆r ≤ 0. From this, we find
that on [r−, rT ] ∪ [r′T ,∞)

g−1( duT , duT ) ≤
1

ρ2
(
−λr4 − (1 + 3λa2)r2 − 2r + λ2a6

)
.

The expression in brackets can have at most one root r0 in r > 0 and is negative in r > r0.
At r−, the expression in brackets reduces to χ(χ−2)a2−2χr2. Since λa2 < 1 and hence
1 < χ < 2 in the whole subextremal parameter region, compare Fig. 2.3, this is strictly
negative. Thus, ∇uT is time-like on M.
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In the next step, we check that supγ uT = ∞ and infγ uT = −∞ for any inextendible
future-directed null geodesic on M. As long as the geodesic does not intersect region III,
the proof follows exactly as in the proof of [138, Prop. C.11]. We should remark that
a geodesic intersecting none of the regions I, II or III can either be contained in HR

+, in
which case infγ v = −∞ and supγ v = ∞, or in HL

c , in which case infγ u = −∞ and
supγ u = ∞. This follows from the results in [75, Sec. 4.4.2].

It remains to discuss the future-directed null geodesics intersecting III. It follows from
the preceding discussion of the null geodesics that for all such geodesics r(τ) diverges
to infinity towards the future, and hence supγ uT = ∞. Towards the past, if γ does not
intersect I, it must either approach HR

c or Bc. From the above discussion of the null
geodesics one obtains infγ v = −∞ in both cases. When γ crosses through HL

c into I, let
γ̃ = γ ∩ I : (τ−, τ+) → I. By the foregoing analysis, γ̃ can either approach r+, rc or r0
as τ → τ−. In the first case lim

τ→τ−
v = −∞, in the second case lim

τ→τ−
u = −∞, and in the

third case lim
τ→τ−

t = −∞. Taking into account the definition of uT , this shows the desired

property. Hence M is globally hyperbolic by [138, Cor. C.7].
Next, let us also discuss M̃. The proof of its global hyperbolicity follows along the

lines of [138, Prop. C.12]: we set

Σ = {U+ = −V+} t {Uc = −Vc}/ ∼ ,

where ∼ is the identification of I ⊂ M+ with I ⊂ Mc in M̃. One can check that under
this identification {U+ = −V+} ∩ I and {Uc = −Vc} ∩ I indeed agree. In fact, Σ can also
be characterized by

Σ = ({t = 0} ∩ (I′ ∩M+)) ∪ B+ ∪ ({t = 0} ∩ I) ∪ Bc ∪ ({t = 0} ∩ (I′ ∩Mc)) .

Going back to the previous formulation, one can see that M̃\Σ is disconnected.
On Σ∩M+ ∩ I(′), we have d(U++V+) = 2κ+V+ dt, while on Σ∩Mc ∩ I(′), one finds

d(Uc + Vc) = 2κcUc dt. Since gtt < 0 when ∆r > 0, see (5.1.7),

g−1( d(U+/c + V+/c), d(U+/c + V+/c)) < 0 on (Σ ∩M+/c)\B+/c .

On B+ and Bc the metric in the Kruskal-type coordinates, see (2.4.15a), simplifies and
one obtains

g−1( d(U+/c + V+/c), d(U+/c + V+/c)) < 0 on B+/c .

As a result, Σ is also space-like. By [138, Thm. C.6(2)], it is achronal.
Next, we want to show that any inextendible null geodesic enters I+(Σ) and I−(Σ).

Together with [138, Thm. C.6(1)], this will show that Σ is a Cauchy surface for M̃. Since
t → ±∞ on any inextendible null geodesic in I or I′, any inextendible null geodesics
in M̃ intersecting I or I′ enters I±(Σ). It thus remains to consider geodesic that do not
intersect I or I′.

If the geodesic intersects neither II(′) nor III(′), it must be contained in one of the

103



horizons, and thus intersects I±(Σ) by the results of [75, Sec. 4.4.2]. If the geodesic γ
intersects II, but neither I nor I′, the geodesic must cross {r = r+} through the bifurcation
sphere B+. Since R(r+) = 0 in this case, dr/ dτ must change sign. This is only allowed
if γ crosses into II′. The same argument holds for geodesics in III. Since II∪III ⊂ I+(Σ)
and II′ ∪ III′ ⊂ I−(Σ), this concludes the proof.

By the definition of uT above, rT → r+ and r′T → rc for T → ∞. Moreover, for
any finite t0, the surfaces {uT = t0}T�1∈N form a family of Cauchy surfaces which
approaches

Σt0 = HL
+ ∪ B+ ∪ ({t = t0} ∩ I) ∪ Bc ∪HR

c (5.1.8)

as T → ∞. This can be seen as follows:
For uT to remain finite as T → ∞ in r < rT , either v → −∞ or c(r) → ∞. However,

c(r) is bounded from above on [r−, rT ], and hence the only possibility is v → −∞. Since
rT → r+, this part of {uT = t0} approaches HL

+. Similarly, for r > r′T , uT can only
remain finite if u → −∞ and hence this part of {uT = t0} approaches HR

c . By going to
Kruskal-type coordinates, one can see that these parts will be connected to {t = t0} ∩ I
via the bifurcation surfaces. See also the discussion in [138].

After this extensive analysis of the null geodesics, we now conclude this section by
showing two more results that will be important later. The first one is a KdS-version of
[138, Lemma C.4(2)]:

Lemma 5.1.4. There exists a λ0 > 0 and an a0 > 0, such that for all 0 < λ < λ0 and
all 0 < a < a0, any inextendible null geodesic on M that does not approach H+ or Hc

in the past must intersect the region in which the vector fields ∂ti , i ∈ {+, c}, are both
time-like.

Proof. As discussed above, any null geodesic on M that does not approach H+ or Hc in
the past must either approach a double root r0 of R(r) or have r(τ) = r0. Moreover, any
double root r0 must lie in the interval identified in Lemma 5.1.2.

We thus focus on the vector fields ∂ti . They satisfy

g(∂ti , ∂ti) =
a2 sin2 θ∆θ(r

2
i − r2)2 −∆rρ

4
i

χ2ρ2(r2i + a2)2
. (5.1.9)

The denominator is strictly positive on M, while the numerator can be written as

−
[
λ(r2i − r2)2 +∆r

]
a4 cos4 θ −

(
(1− a2λ)(r2i − r2)2 + 2∆rr

2
i

)
a2 cos2 θ

+ a2(r2i − r2)2 − r4i∆r ,

which is monotonically decreasing in cos2 θ for ∆r ≥ 0.
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Figure 5.1: The parameter region in the (a, λ)-plane. The region surrounded by the solid
line is the subextremal range of the parameters. The region within the dashed
line shows the parameter region in which Lemma 5.1.4 is valid according to
our numerical results. The region within the dotted lines is a sketch of the
parameter region in which mode stability for the wave equation on Kerr-de
Sitter has been shown [140, 141], see in particular [141, Fig. 1.1].

Therefore, we obtain the estimate

χ2ρ2(r2i + a2)2g(∂ti , ∂ti)|r0 ≤ a2(r2i − r20)
2 −∆r(r0)r

4
i

≤ (1− 27λ)r4i |a=0

ñ
−3 +

8
√
1− 27λ√

3
a

ô
+O(a2) .

In the last line, we have taken into account that (r − 3) is of order a for any doble root r0
of R(r). By a continuity argument as in [138], there must be an a0 > 0 such that for all
0 < a < a0 and 0 < λ < λ0 < 0.0332, g(∂ti , ∂ti)|r0 < 0 for all possible values of r0.

We have also checked the validity of Lemma 5.1.4 numerically by computing the quan-
tity a2(r2i −r20)2−∆r(r0)r

4
i for i ∈ {+, c} for different fixed values of λ and the potential

range of r0 identified in Lemma 5.1.2. The results indicate that in the whole range of λ,
a0 is of the order ∼ 0.7, with a percent-level variation over the range in λ. The parameter
region in which the above lemma holds according to this result is shown in Fig. 5.1. It
covers a large part of the subextremal parameter range. However, the physically interest-
ing case of small λ and a close to extremality is unfortunately not covered.

The second result we want to show concerns null geodesics approaching H+. It is a
Kerr-de Sitter version of [123, Lemma 5.1]. The same result for geodesics approaching
Hc can be obtained by interchanging U ↔ V and + ↔ c.
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Lemma 5.1.5. Denote by ψ+ : M+ → R2 × S2 the coordinate map of the +-Kruskal co-
ordinates. If (U+, θ, ϕ+, ξ, σθ, σϕ) ∈ T ∗(R× S2), then there is a unique η(ξ, σθ, σϕ) ∈ R
such that ψ∗

+(U+, 0, θ, ϕ+, ξ, η, σθ, σϕ) is null and does not lie in the conormal space
N∗(H+) of H+ iff ξ 6= 0. In this case ψ∗

+(U+, 0, θ, ϕ+, ξ, η, σθ, σϕ) is future pointing iff
ξ > 0.

Proof. On H+, one has V+ = 0 and hence the metric in the +-Kruskal coordinates
(2.4.15a) reduces to

g|H+ = (f+
1 + f+

2 )U
2
+ dV 2

+ + f+
3 dU+ dV+ − f+

4 U+ dϕ+ dV+ +
ρ2

∆θ

dθ2 + gϕϕ dϕ2
+ .

Of these functions, f+
3 < 0 on H+ since G+ < 0, ρ2/∆θ = gθθ > 0 and gϕϕ > 0

away from the axis. Let us first consider points away from the axis. Then, for a covector
k = (ξ, η, σθ, σϕ) on H+, we have

g−1(k, k) =
1

f+2
3 gϕϕ

(
f+2
4 − 4(f+

1 + f+
2 )gϕϕ

)
ξ2 +

4ξη

f+
3

− 2f+
4 ξσϕ

f+
3 gϕϕ

(5.1.10)

+
σ2
θ

gθθ
+
σ2
ϕ

gϕϕ
.

If ξ = 0, then the covector can only be null if also σθ = σε = 0. In this case, the
covector is of the form k = (0, η, 0, 0) with arbitrary η ∈ R. However, this implies
k ∈ N∗(H+).

If ξ 6= 0, g−1(k, k) is a linear function of η and thus has a unique root, i.e. there is a
unique η(ξ, σθ, σϕ) such that g−1(k, k) = 0. This proves the first claim off the axis.

To consider the axis, we first note that on r = r+,

σ2
θ

gθθ
+
σ2
ϕ

gϕϕ
=

ρ2+χ
2

∆θ(r2+ + a2)2

Ç
σ2
ϕ

sin2 θ
+ σ2

θ

å
(5.1.11)

+
2χ(2r+ − a2) + a2 sin2 θ

[
λ2(r2+ + a2)2 − χ2

]
ρ2∆θ(r2 + a2)2

a2 sin2 θσ2
θ .

As sin θ → 0, ρ2+χ
2/∆θ(r

2
+ + a2)2 → 1/(r2+ + a2). One can introduce new coordinates

in a neighbourhood of one half of the axis, for example θ ∼ 0, by setting

y = sin θ cosϕ+ , z = sin θ sinϕ+ ,

see [75], [39, Rem. 3.3]. In these coordinates, the axis is located at y = z = 0. If we
denote the corresponding covector elements by σy and σz, one obtainsÇ

σ2
ϕ

sin2 θ
+ σ2

θ

å
= σ2

y + σ2
z − (yσy + zσz)

2

sin2 θσ2
θ = (1− y2 − z2)(yσy + zσz)

2 .
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Hence, for y, z → 0, (5.1.11) approaches

σ2
θ

gθθ
+
σ2
ϕ

gϕϕ
=
σ2
y + σ2

z

r2+ + a2
+O(y, z).

Therefore, the discussion above also holds on the axis.

For the second claim, we now restrict to the case ξ 6= 0. We note that on the horizon
H+, ∂U+ is a future-pointing null vector and k(∂U+) = ξ 6= 0. As a direct consequence,
ξ ≥ 0 if k is future-pointing. Since ξ = 0 has been excluded, this shows the first direction.
For the other direction, assume that ξ = k(∂U+) > 0. Then, one can show that k(v) > 0
for any future-pointing time-like vector by going to Gaussian normal coordinates. This
concludes the proof.

5.2 The Unruh state on Kerr-de Sitter

In this section, we define the two-point function of the Unruh state for the free, massive
scalar field theory on Kerr-de Sitter and show that it leads to a well-defined state. In
particular, following the discussion in Section 2.2, we show that the two-point function is a
well-defined bi-distribution, which is positive, a bi-solution to the Klein-Gordon equation
on Kerr-de Sitter and satisfies the commutator property. The Hadamard property of this
state will be shown in a subsequent section.

Going forward, we will take j ∈ {+, c}. We will identify Hj = RLj × S2
θ,ϕj

and
H−
j = Rlj × S2

θ,ϕj
unless stated otherwise. Here, L+ = U+, Lc = Vc, l+ = u, lc = v and

Ωj = (θ, ϕj). d2Ωj is the usual volume element of S2
θ,ϕj

.

Now, let us define the two-point function for the Unruh state. As discussed in [137]
and Section 2.5, the physically-motivated definition of the Unruh state is given in terms
of a mode sum. These modes are determined by their asymptotic behaviour at H+ ∪ Hc.
In particular, one has one set of modes which vanish at H+ and have positive frequency
with respect to the affine parameter of the null geodesics, Vc, on Hc, and one set of modes
which vanish at Hc and have positive frequency with respect to U+ at H+. As noted in
Section 2.5, it is more convenient for the proof of the well-definedness and the proof of
the Hadamard property to use a different formulation for the Unurh state:

Definition 5.2.1. For φ, ψ ∈ C∞
0 (Hj), let

Aj(φ, ψ) = − lim
ε→0

r2j + a2

χπ

∫
φ(Lj,Ωj)ψ(L

′
j,Ωj)

(Lj − L′
j − iε)2

dLj dL′
j d2Ωj . (5.2.1)

Then, the two-point function for the real scalar field on the Kerr-de Sitter spacetime M is
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given by

w(f, h) =w+(f, h) + wc(f, h) (5.2.2)
=A+(E(f)|H+ , E(h)|H+) + Ac(E(f)|Hc , E(h)|Hc)

=− lim
ε→0+

r2+ + a2

χπ

∫
E(f)|H+(U+,Ω+)E(h)|H+(U

′
+,Ω+)

(U+ − U ′
+ − iε)2

dU+ dU ′
+ d2Ω+

− lim
ε→0+

r2c + a2

χπ

∫
E(f)|Hc(Vc,Ωc)E(h)|Hc(V

′
c ,Ωc)

(Vc − V ′
c − iε)2

dVc dV ′
c d2Ωc

for any pair of test functions f , h ∈ C∞
0 (M).

Since both M and M̃ are globally hyperbolic, and M is embedded in M̃ in a causality-
preserving manner, the unique commutator function on M is a restriction of the unique
commutator function on M̃ to C∞

0 (M). As a result, Lemma 5.1.5 together with [68,
Thm. 8.2.4] implies that the map E|Hj

: C∞
0 (M) → C∞(Hj) is well-defined. However,

E(f)|Hj
is in general not compactly supported and hence the convergence of the integrals

in (5.2.2) is not automatically given. To put it briefly, if we want to show that (5.2.2) is
the two-point function of a well-defined state, we first have to show that the integrals in
(5.2.2) converge for any f, h ∈ C∞

0 (M). We show

Proposition 5.2.1. If 0 < a � 1 or 0 < a < 1 and λ � 1/27, then (5.2.2) is a well-
defined bi-distribution w ∈ D′(M×M).

In the proof of this proposition, we will use the decay results for solutions of the Klein-
Gordon equation obtained in [39]. Their results rely on mode stability, in particular the
existence of a spectral gap α > 0 for the quasi-normal modes of the (massive) Klein-
Gordon equation on Kerr-de Sitter. While this is expected to hold for all sub-extremal
Kerr-de Sitter spacetimes, it has only been shown so far by perturbation of corresponding
results on Schwarzschild-de Sitter (a = 0) [140] and Kerr (λ = 0) [141]. This is the
reason for the restriction to either small λ or small a. The region in which mode stability
has been established is sketched in Fig. 5.1.

Proof. One key ingredient in the proof are the results in [39]. Applying the discrete
symmetry (t, ϕ) → −(t, ϕ) and Sobolev embedding to the results in [39], one obtains the
estimate

|∂NE(f)|(t∗, r, θ, ϕ∗) ≤ Ceαt∗ , ∂ ∈ {∂t∗ , ∂r, ∂θ, ∂ϕ∗} (5.2.3)

for points sufficiently close to i− with r contained in some compact interval bounded away
from r− and for arbitrarily large N ∈ N. In this estimate, α is the spectral gap discussed
above. ϕ∗ corresponds to ϕ∗ (∗ϕ), i.e. the azimuthal coordinate in the KdS∗- (∗KdS-)
coordinate system near r+ (rc). t∗ is equal to the coordinate t in {r++δ < r < rc−δ}∩ I
for some small δ > 0, and approaches u near H−

+ and v near H−
c up to finite terms. Thus,

for points sufficiently close to i−, one can find 0 < δ′ < δ and a constant c > 0, depending
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on δ, δ′ and the concrete implementation of t∗, such that

eαt∗ ≤


C̃(δ, δ′)eαt r ∈ (r+ + δ′, rc − δ′)

C̃(δ, δ′)eαu+ r ∈ [r+, r+ + δ′]

C̃(δ, δ′)eαv− r ∈ [rc − δ′, rc]

. (5.2.4)

The constant C in (5.2.3) still depends on f . However, let us assume that supp(f) ⊂ K,
with K ⊂ M compact. For Vi, i = 1, . . . 4 four linearly independent, smooth vector
fields on K and β ∈ N4 a multi-index, we set

‖f‖Cm = max
|β|≤m

sup
x∈K

∣∣V βf(x)
∣∣ . (5.2.5)

Then, as discussed in [16], one can estimate the constant C in (5.2.3) by C ′ ‖f‖Cm(N) ,
with C ′ only dependent on K.

By changing from (t∗, r, θ, ϕ∗) to (u, v, θ, ϕj), one can see that near H−
+, one has

∂t∗ = ∂u+ +O(r − r+) ,

while near H−
c ,

∂t∗ = ∂vc +O(r − rc) .

Here, the j-subscript indicates the azimuthal coordinate used. Combining this with the
relation between u and v and the Kruskal-type coordinates, one can write the estimate
(5.2.3) in the form

|∂NE(f)| ≤ C ′ ‖f‖Cm(N) e
αt on {r+ + δ′ < r < rc − δ′} (5.2.6a)

|∂NU+
E(f)| ≤ C ′ ‖f‖Cm(N) |U+|−(N+α/κ+) on {r+ ≤ r ≤ r+ + δ′} (5.2.6b)

|∂NVcE(f)| ≤ C ′ ‖f‖Cm(N) |Vc|−(N+α/κc) on {rc − δ′ ≤ r ≤ rc} , (5.2.6c)

with N ∈ N and ∂ ∈ {∂t, ∂r, ∂θ, ∂ϕ∗}, for any f ∈ C∞
0 (M) and for points sufficiently

close to i−.

In fact, these estimates may be used on the whole horizon: from the support properties
of E and our study of the null geodesics, we can conclude that for any f ∈ C∞

0 (M), we
can find Uf , Vf < ∞ depending only on supp(f), so that E(f)|H+ ⊂ {U+ ≤ Uf} and
E(f)|Hc ⊂ {Vc ≤ Vf}.

With these estimates we can now show the convergence of the integrals in (5.2.2). We
focus on w+, the corresponding results for wc can be obtained analogously by interchang-
ing U ↔ V and + ↔ c.

Hence, let us consider |w+(f, h)| for some test functions f, h ∈ C∞
0 (M). Using
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U+

U
′

+

−U0

Uf−U0 − δ

−U0

Uh

−U0 − δ

Figure 5.2: The integration regions in the (U+, U
′
+)-plane. The upper-right corner shows

the support of the integrand in D1. The lower-left corner indicates D4. The
light-gray region and the white stripe above and to the left of D4 are D2 and
D3.

(5.2.6b) to integrate by part twice, one obtains

|w+(f, h)| = lim
ε→0

∣∣∣∣∣∣∣
r2+ + a2

χ

∫
R×R×S2

∂U+E(f)|H+(U+,Ω+)∂U ′
+
E(h)|H+(U

′
+,Ω+)

× log(U+ − U ′
+ − iε) dU+ dU ′

+ d2Ω+

∣∣∣∣∣∣∣ .
To show the convergence of this integral, take U0 > 0 a constant such that the estimate

(5.2.6b) holds for all U+ ≤ −U0. We then split the integral into integralsAi, i = 1, · · · , 4,
over the domains

D1 = I × I × S2 , D2 = I × Ic × S2 , (5.2.7)
D3 = Ic × I × S2 , D4 = Ic × Ic × S2 .

Here, I = [−U0,∞) and Ic = R\I . If supp(E(f)|H+)∩I = ∅ or supp(E(h)|H+)∩I = ∅,
then the integrals over D1 and D2 or D1 and D3 (or all three if both intersections are
empty) vanish and can be neglected. Therefore, in the rest we assume that Uf , Uh > −U0.
The integration regions are sketched in Fig. 5.2.

Let us start with the integral over D1. On D1, the integrand is compactly supported on
[−U0, Uf ]× [−U0, Uh]× S2. Thus, we can estimate

|A1| ≤C1 sup
I×S2

∣∣∂U+E(f)|H+

∣∣ sup
I×S2

∣∣∂U+E(h)|H+

∣∣
× |[−2U0, Uf + Uh]| ‖log(y − iε)‖L1([−U0−Uh,U0+Uf ])

for some C1 > 0. The suprema can be estimated by some Ck-norm of f and h by the

110



continuity of the causal propagator. Moreover, log(· − iε) is in L1
loc(R) and converges to

some l ∈ L1
loc(R) for ε→ 0.

Next, we estimate the integral over D2. For this estimate, it is more convenient to split
the integration region again, into Da

2 = I × [−U0 − δ,−U0)× S2 and Db
2 = D2\Da

2 .
If we replace the half-open integral [−U0 − δ,−U0) in Da

2 with a closed one, the inte-
grand is compactly supported on Da

2 , and the estimate follows along the same lines as for
A1:

|Aa2| ≤Ca
2 sup
I×S2

∣∣∂U+E(f)|H+

∣∣ sup
[−U0−δ,−U0]×S2

∣∣∂U+E(h)|H+

∣∣
× |[−U0 − δ, Uf ]| ‖log(y − iε)‖L1([0,Uf+U0+δ])

.

In this estimate, we have used that |[−2U0 − δ, Uf − U0]| is the same as |[−U0 − δ, Uf ]|,
and Ca

2 > 0 is some constant.
For the estimate of Ab2, we make use of (5.2.6b). In addition, we note that by the

construction of the Db
2, U+ − U ′

+ > δ > 0 on this domain. We can then use that for any
c > 0, β > 0, there is a constant Cc,β > 0 so that |log(y − iε)| ≤ Cc,β |y|β for all |y| > c.
Together with the coordinate transformation U ′

+ → −U ′
+, there is a constant C̃b

2 > 0 so
that∣∣Ab2∣∣ ≤ C̃b

2 ‖h‖Cm(1) sup
I×S2

∣∣∂U+E(f)|H+

∣∣ ∫
[−U0,Uf ]×(U0+δ,∞)

∣∣U ′
+

∣∣−1− α
κ+
∣∣U+ + U ′

+

∣∣β dU+ dU ′
+

≤ ˜̃Cb
2 ‖h‖Cm(1) sup

I×S2

∣∣∂U+E(f)|H+

∣∣ |[−U0, Uf ]|
Å
1 +

|Uf |
U0

ã α
2κ+

∞∫
U0+δ

∣∣U ′
+

∣∣−1− α
2κ+ dU ′

+

≤ Cb
2 ‖h‖Cm(1) sup

I×S2

∣∣∂U+E(f)|H+

∣∣ |[−U0, Uf ]|
Å
1 +

|Uf |
U0

ã α
2κ+

.

Here, in the second step, we have picked β = α/2κ+ and utilized∣∣U+ + U ′
+

∣∣ ≤ ∣∣U ′
+

∣∣ (1 + |Uf | /U0) .

The estimate for A3 works the same way, with the roles of f and h as well as U+ and
U ′
+ interchanged.
It remains to estimate A4. Performing a sign flip in both variables, and employing

(5.2.6b), |A4| can be estimated by

|A4| ≤ C̃4 ‖f‖Cm(1) ‖h‖Cm(1)

∫
(U0,∞)×(U0,∞)

(U+U
′
+)

−1− α
κ+
∣∣log(U ′

+ − U+ − iε)
∣∣ dU+ dU ′

+ .

In [142, Lemma 6.3], it has been shown that the integral in the above estimate is finite and
converges to some finite constant for ε→ 0.

Collecting all the results above, let K ⊂ M be a compact set such that supp(f) ⊂ K

111



and supp(h) ⊂ K. Then there is a m ∈ N, given by the maximum of the m in the above
estimates, so that

|w+(f, h)| ≤ C(K) ‖f‖Cm ‖h‖Cm . (5.2.8)

As discussed above, the same also holds for wc by similar arguments. Thus, w = w++wc
is a well-defined bi-distribution satisfying the estimate

|w(f, h)| ≤ C(K) ‖f‖Cm ‖h‖Cm (5.2.9)

for some m ∈ N and any f , h ∈ C∞
0 (K). By the Schwartz kernel theorem, w(x, y) is in

D′(M×M).

An additional benefit of the decay estimates (5.2.6b) and (5.2.6c) is that we can now
identify the function spaces in which the (asymptotic) initial data for the Klein-Gordon
equation on the horizon lies. In particular, for any f ∈ C∞

0 (M),

E(f)|Hj
∈ S(Hj) ≡

¶
φ ∈ C∞(Hj) : ∃Lφ, Cφ,N , N = 0, 1 : (5.2.10)

φ(Lj,Ωj) = 0 ∀Lj ≥ Lφ and |∂NLjφ(Lj,Ωj)| ≤ Cφ,N(1 + |Lj|)
− α
κj

−N
}
.

For f ∈ C∞
0 (I), we can infer from our discussion of the null geodesics on Kerr-de

Sitter and the support properties, that supp(E(f)) ∩ H+ is contained in {u ≤ uf}, and
supp(E(f)) ∩Hc is contained in ⊂ {v ≤ vf} for some uf , vf <∞. Therefore

E(f)|Hj
∈ S(H−

j ) ≡
¶
φ ∈ C∞(H−

j ) : ∃lφ, Cφ,N , N = 0, 1 : (5.2.11)

φ(lj,Ωj) = 0 ∀lj ≥ lφ and |∂Nlj φ(lj,Ωj)| ≤ Cφ,Ne
−α|lj |
©
.

In the next step, we have to test that w(f, h) is a weak bi-solution to the Klein-Gordon
equation that satisfies positivity and the commutator property.

Since E(Kf) = 0 for all f ∈ C∞
0 (M), w(f, h) is a weak bi-solution by construction.

For the proof of positivity, we can use that the function spaces S(Hj) and S(H−
j ) allow

to transfer the results in [43, Sec.3] to the present case by a change of the appearing
constant which are related to the spacetime metric. In particular,

Proposition 5.2.2. 1. Equipping the space C∞
0 (Hj) with the Hermitian sesquilinear

form Aj (̄·, ·), the map

Fj :C
∞
0 (Hj) → L2(R+ × S2; νj(η) dη d2Ωj) (5.2.12a)

φ 7→ Fj(φ) = (2π)−
1
2

∫
eiηLjφ(Lj, θ, ϕj) dLj

∣∣∣∣
{η≥0}

, (5.2.12b)

with νj(η) = 2η(r2j +a
2)χ−1, is an isometry and by continuity and linearity extends

to a Hilbert space isomorphism mapping (C∞
0 (Hj), Aj (̄·, ·)), the Hilbert comple-

tion of (C∞
0 (Hj), Aj (̄·, ·)), onto L2(R+ × S2; νj(η) dη d2Ωj) [43, Prop. 3.2 a)].
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2. When C∞
0 (H−

j ) is equipped with the Hermitian sesquilinear form Aj (̄·, ·), the map

F̃j :C
∞
0 (H−

j ) → L2(R× S2; µj(ω) dω d2Ωj) (5.2.13a)

φ 7→ F̃j(φ) = (2π)−
1
2

∫
eiωljφ(lj, θ, ϕj) dlj , (5.2.13b)

µj(ω) =
r2j + a2

χ

ωeπω/κj

sinh (πω/κj)
, (5.2.13c)

is an isometry. F̃j uniquely extends to a Hilbert space isomorphism from C∞
0 (H−

j ),
as a Hilbert subspace of (C∞

0 (Hj), Aj (̄·, ·)), to L2(R × S2;µj(ω) dω d2Ωj) [43,
Prop. 3.3 a)].

3. Any φ ∈ S(H−
j ) can be identified with an element in (C∞

0 (Hj), Aj (̄·, ·)) as de-
scribed in [43, Prop. 3.3 b)], i.e. let {ψn}n∈N, {ψ′

n}n∈N sequences in C∞
0 (H−

j ) that
both converge to some φ ∈ S(H−

j ) in the topology of

H1(H−
j ) = {φ ∈ L2(Rlj × S2

Ωj
; dlj d2Ωj) : ∂ljφ ∈ L2(Rlj × S2

Ωj
, dlj d2Ωj)} ,

compare [43] and [143, App. C]. Then both sequences are of Cauchy type in
(C∞

0 (Hj), Aj (̄·, ·)) and the difference ψn − ψ′
n converges to zero in this space.

The identification of S(H−
j ) with a subspace of (C∞

0 (Hj), Aj (̄·, ·)) is such that on
S(H−

j ), F̃j agrees with the standard Fourier-Plancherel transformation in lj .

A proof for Proposition 5.2.2 follows along the same lines as in [43]. In fact, the first
two claims are exactly the same as in [43, Prop. 3.2a)] and [43, Prop. 3.3a)] up to the
following changes of constants related to the spacetime metric: the constant r2S in the
definitions of λKW in [43, Prop. 3.2a)], called Aj in our notation, and in dµ(k) in [43,
Prop. 3.3a)] is replaced by (r2j + a2)/χ. Moreover, the constant (2rS)−1, which arises
from the connection between the Kruskal-type coordinates and the coordinates u and v in
[43, Prop. 3.3a)], is replaced by the corresponding constant κj for our coordinates.

The third point can be given in the same way as the proof of [43, Prop. 3.3b)]. One
begins by realizing that by definition of S(H−

j ), any φ ∈ S(H−
j ) is in the Sobolev space

H1(H−
j ). Employing results on the Fourier-Plancherel transform in one variable on R×S2

which have been worked out in [143, App. C], the Fourier-Plancherel transform of φ
lies in L2(R × S2; µj(ω) dω d2Ωj). Since C∞

0 (H−
j ) is dense in H1(H−

j ), one can find
a sequence φn ∈ C∞

0 (H−
j ) converging to φ in H1(H−

j ), implying the convergence of
the Fourier-Plancherel transformed sequence in L2(R × S2; µj(ω) dω d2Ωj). For φn, the
Fourier-Plancherel transform agrees with the map F̃j , and the isometry property of F̃j
thus allows to conclude the proof.

With this result, we can now express the two-point function in a way that will make its
positivity visible. To this end, let ξ ∈ C∞(R) be a cutoff function which is equal to one
for x > x0 and vanishes for x < x1 for some constants x1 < x0 < 0. With the help of Fj
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and E, we can then define the maps

Kj : C
∞
0 (M) → L2(R+ × S2; νj(η) dη d2Ωj), (5.2.14a)

Kj(f) = Fj(ξE(f)|Hj
) + Fj((1− ξ)E(f)|Hj

) ;

KI
j : C

∞
0 (I) → L2(R× S2; µj(ω) dω d2Ωj) , (5.2.14b)

KI
j(f) = F̃j(E(f)|Hj

) .

This is well-defined, since ξE(f)|Hj
is compactly supported on Hj , while the remainder

(1− ξ)E(f)|Hj
∈ S(H−

j ) can be identified with an element of (C∞
0 (Hj), Aj (̄·, ·)) by part

3) of Proposition 5.2.2, see [43]. These maps satisfy

Proposition 5.2.3. The maps Kj are well-defined in the sense that they are independent
of the choice of ξ. They are linear, and we can write

w(f, h) =
〈
K+(f), K+(h)

〉
L2(R+×S2; ν+(η) dη d2Ω+)

(5.2.15)

+
〈
Kc(f), Kc(h)

〉
L2(R+×S2; νc(η) dη d2Ωc)

=
〈
K(f), K(h)

〉
L2(R+×S2; ν+(η) dη d2Ω+)⊕L2(R+×S2; νc(η) dη d2Ωc)

for any f ,h ∈ C∞
0 (M) and

w(f, h) =
〈
KI

+(f), K
I
+(h)

〉
L2(R×S2;µ+(ω) dω d2Ω+)

(5.2.16)

+
〈
KI
c(f), K

I
c(h)

〉
L2(R×S2;µc(ω) dω d2Ωc)

when restricted to f, h ∈ C∞
0 (I).

Proof. Let ξ and ξ′ be two cutoff functions as in the definition of Kj . Then ξ − ξ′ is
contained in C∞

0 (R). Since Fj is a linear map,

Fj(ξE(f)|Hj
) + Fj((1− ξ)E(f)|Hj

)− Fj(ξ
′E(f)|Hj

)− Fj((1− ξ′)E(f)|Hj
)

= Fj((ξ − ξ′)E(f)|Hj
)− Fj((ξ − ξ′)E(f)|Hj

) = 0 .

This shows that the map is independent of the choice of ξ. The linearity of Kj follows
directly from the linearity of Fj and E. Since ξ and (the kernel of) E are real, we obtain
by the isometry property of Fj , part 1) of Proposition 5.2.2,

wj(f, h) =Aj(E(f)|Hj
, E(h)|Hj

)

=Aj(ξE(f)|Hj
, ξE(h)|Hj

) + Aj((1− ξ)E(f)|Hj
, ξE(h)|Hj

)

+ Aj(ξE(f)|Hj
, (1− ξ)E(h)|Hj

) + Aj((1− ξ)E(f)|Hj
, (1− ξ)E(h)|Hj

)

=
¨
Fj(ξE(f)|Hj

), Fj(ξE(h)|Hj
)
∂
L2

+
¨
Fj((1− ξ)E(f)|Hj

), Fj(ξE(h)|Hj
)
∂
L2

+
¨
Fj(ξE(f)|Hj

), Fj((1− ξ)E(h)|Hj
)
∂
L2

+
¨
Fj((1− ξ)E(f)|Hj

), Fj((1− ξ)E(h)|Hj
)
∂
L2
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=
〈
Kj(f), Kj(h)

〉
L2

for any f , h ∈ C∞
0 (M). Here, we have utilized the short-hand notation L2 for

L2(R+ × S2; νj(η) dη d2Ωj). Thus, (5.2.15) follows by summing over j ∈ {+, c}. For f ,
h ∈ C∞

0 (I), (5.2.16) follows directly from the isometry property of F̃j in part 2) and the
identification in part 3) of Proposition 5.2.2.

From the form of w(f, h) in (5.2.15), one can see immediately that w is positive. More-
over, taking into account that the maps Kj correspond to a Fourier transform in Lj fol-
lowed by a restriction to positive frequencies, (5.2.15) indicates that the Unruh state de-
fined by (5.2.2) indeed corresponds to a mode expansion in positive frequency modes with
respect to U+ or Vc respectively as in [137].

It remains to show that w(f, h) satisfies the commutator property,

Proposition 5.2.4. Under the same conditions on (λ, a) as in Proposition 5.2.1, w(f, h)
satisfies the commutator property, i.e.

w(f, h)− w(h, f) = iE(f, h) ∀f, h ∈ C∞
0 (M) . (5.2.17)

The proof of this proposition is obtained in a similar way as the proof of [43, Thm. 2.1]
and of the commutator property of the Unruh state on RNdS in [16].

Proof. Let us start the proof by considering the right-hand side of (5.2.17). Inserting the
definition of w in (5.2.2) and interchanging Lj ↔ L′

j in w(h, f), one obtains

w(f, h)− w(h, f) =−
∑
j

lim
ε→0

r2j + a2

χπ

∫
Hj

E(f)|Hj
(Lj,Ωj)E(h)|Hj

(L′
j,Ωj)

× 2iIm(Lj − L′
j − iε)−2 dLj dL′

j d2Ωj .

Employing the identity Im(x− i0+)−2 = −πδ(1)(x) and partially integrating, this can be
written as

w(f, h)− w(h, f)

=
∑
j

i
r2j + a2

χ

∫
Hj

[
E(f)|Hj

∂LjE(h)|Hj
− E(h)|Hj

∂LjE(f)|Hj

]
(Lj,Ωj) dLj d2Ωj .

If we define the current J : C∞
0 (M)× C∞

0 (M) → Γ∗(M),

Jν [f, h] = E(f)∇νE(h)− E(h)∇νE(f) , (5.2.18)

compare (2.2.6), this can be simplified to

w(f, h)− w(h, f) =
∑
j

i
r2j + a2

χ

∫
Hj

JLj [f, h]|Hj
(Lj,Ωj) dLj d2Ωj . (5.2.19)
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We want to compare this to iE(f, h). To do so, let us note thatE(f, h) = σ(E(f), E(h)),
as discussed in Section 2.2. Hence, for any Cauchy surface Σ,

E(f, h) =

∫
Σ

Jν [f, h]n
ν
Σ dvolγ .

Let us choose Σ = HL
+ ∪B+ ∪Σt0 ∪Bc ∪HR

c , where Σt0 = {t = t0}∩ I for some t0 < 0.
By the discussion following the proof of Proposition 5.1.3, this is a limit of a sequence of
space-like, piecewise smooth Cauchy surfaces of M. Then

E(f, h) =
r2+ + a2

χ

∫
HL

+

JU+ [f, h]|H+ dU+ d2Ω+ (5.2.20)

+

∫
Σt0

Jν [f, h]n
ν dvolγ +

r2c + a2

χ

∫
HR
c

JVc [f, h]|Hc dVc d2Ωc .

The first and last part of the integral already agree with the corresponding parts in (5.2.19).
Therefore, we focus on the integral over Σt0 . More concretely, we are interested in the
limit t0 → −∞, as performed in [43].

Keeping in mind that we would like to take this limit, it is easier to further split the
integral over Σt0 into three integrals over the sets Σ+ = Σt0 ∩ {r+ < r ≤ r+ + δ′},
Σc = Σt0 ∩{rc− δ′ ≤ r < rc}, and Σ0 = Σt0\(Σ+ ∪Σc) . Here, δ′ > 0 is the same small
constant as in the estimate (5.2.4).

The simplest of the three integrals is the one over Σ0. On this surface, we may use the
Boyer-Lindquist coordinates, so that the determinant of the induced metric is given by

|γ| = |grrgθθgϕϕ| =
ρ2 sin2 θ

χ2

ï
(r2 + a2)2

∆r

− a2 sin2 θ

∆θ

ò
and the future-pointing normal vector is

naΣ0
= (gtt)

1
2

Å
(∂t)

a − gtϕ
gϕϕ

(∂ϕ)
a

ã
.

Then, the integral over Σ0 can explicitly be written as

∫
Σ0

Ja[f, h]n
a
Σ0

dvolγ =

rc−δ′∫
r++δ′

∫
S2

ï∣∣∣∣(r2 + a2)2

∆r

− a2 sin2 θ

∆θ

∣∣∣∣ Jt[f, h] (5.2.21)

+ a

Å
r2 + a2

∆r

− 1

∆θ

ã
Jϕ[f, h]

ò
d2Ω dr .

Since r − r+ ≥ δ′ and rc − r ≥ δ′, one can bound
∣∣∣ (r2+a2)2∆r

− a2 sin2 θ
∆θ

∣∣∣ and
Ä
r2+a2

∆r
− 1

∆θ

ä
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by constants of order δ′−1. Moreover, taking into account the definition of Jν [f, h] and the
estimate (5.2.6a), we can bound |Jt[f, h]| and |Jϕ[f, h]| by Ce2αt0 for sufficiently small t0
and some constant C > 0, which will depend on f and h, but not on t0. In combination,
we obtain ∣∣∣∣∣∣

∫
Σ0

Jν [f, h]n
ν dvolγ

∣∣∣∣∣∣ ≤ C(δ′, f, h)e2αt0 . (5.2.22)

Hence, the contribution of this part of the integral vanishes in the limit t0 → −∞.

It remains to analyse the integrals over Σ+ and Σc. Since both of these parts can be
handled in the same way, we will focus on Σ+.

As a first step, we note that in terms of the Kruskal coordinates around r+, Σ+ can be
expressed as

Σ+ = {V+ = −e−2κ+t0U+} ∩ {U+(t0, r+ + δ′) ≤ U+ ≤ 0} .

In the next step, let us fix some U0 < 0, so that for some t0,max, U+(t0, r+ + δ′) < U0

for all t0 < t0,max. Σ+ ∩ {U+ ≥ U0} can then be interpreted as part of the (piecewise
smooth) boundary of the compact region

{0 ≤ V+ ≤ −e2κ+t0U+} ∩ {U0 ≤ U+ ≤ 0} ⊂ M̃ .

The other parts of the boundary are H− ∩ {U+ ≥ U0} and

St0 ≡ {0 ≤ V+ ≤ −e2κ+t0U0} ∩ {U+ = U0} .

Hence, St0 corresponds to [0,−e2κ+t0U0]× S2 in the +-Kruskal coordinates.

Since E(f) and E(h) are solutions to the Klein-Gordon equation (2.2.1) on Kerr-de
Sitter, the current Jν [f, h] is conserved, ∇νJ

ν [f, h] = 0, see also the discussion in Section
2.2. Hence, by Stoke’s theorem∫

Σ+∩{U1≤U+}

Jν [f, h]n
ν dvolγ =

∫
H−

+∩{U1≤U+}

Jν [f, h]n
ν dvolγ +

∫
St0

Jν [f, h]n
ν dvolγ (5.2.23)

=
r2+ + a2

χ

∫
[U1,0]×S2

JU+ [f, h]|H+ dU+ d2Ω+ +

∫
St0

Jν [f, h]n
ν dvolγ .

Taking the form of the metric in the Kruskal-type coordinates (2.4.15a) and the smooth-
ness of Jν [f, h]nν on St0 into account, one can conclude that the contribution of the inte-
gral over St0 vanishes as t0 → −∞, compare also the proof of [43, Thm. 2.1]. Conse-
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quently,

lim
t0→−∞

∫
Σ+∩{U1≤U+}

Jν [f, h]n
ν dvolγ =

r2+ + a2

χ

∫
[U1,0]×S2

JU+ [f, h]|H+ dU+ d2Ω+ . (5.2.24)

The remaining piece, the integral over Σ+ ∩ {U+ < U0}, can be performed explicitly
in the coordinates (u, v,Ω+). For this purpose, let us define u0 = u(U0) = −κ−1

+ log |U0|
and

F+(u, v, θ) =
r2(u, v) + a2

χ
− a2 sin2 θ∆r(u, v)

χ(r2(u, v) + a2)∆θ

,

H+(u, v, θ) =
a(r2+ − r2(u, v))

χ(r2+ + a2)
−

aρ2+(u, v, θ)∆r(u, v)

χ(r2(u, v) + a2)(r2+ + a2)∆θ

.

Then we can write∫
Σ+∩{U+≤U0}

Jν [f, h]n
ν dvolγ =

∫
(−∞,u0)×S2

1(u(t0,r++δ′),∞) (F+ [Ju[f, h] + Jv[f, h]] (5.2.25)

+ H+Jϕ+ [f, h]
)
(u, v,Ω+)

∣∣
v=2t0−u

du dΩ+ .

Here, 1I is the characteristic function of the interval I . We want to use dominated conver-
gence to show that we can interchange the limit t0 → −∞ with the integration as in [43].
For this, we first note that on Σ+, we can bound r+ ≤ r(u, v) ≤ r+ + δ′. This implies
also ∣∣F+(u, v, θ)|Σ+

∣∣ ≤ (r+ + δ′)2 + a2

χ
+
a2∆r|r++δ′

χ(r2+ + a2)
,

∣∣H+(u, v, θ)|Σ+

∣∣ ≤ |a|((r+ + δ′)2 − r2+)

χ(r2+ + a2)
+

|a|∆r|r++δ′

χ(r2+ + a2)
.

The cutoff function is simply bounded by one. A coordinate transform of the estimate
(5.2.6b) further allows us to bound

∣∣Jν [f, h]|Σ+

∣∣ for ν ∈ {u, v, ϕ+} byC(f, h, δ′)e2αu. We
can therefore estimate the integrand by a positive function that is independent of t0 and
contained in L1((−∞, u0) × S; du d2Ω+). Thus, we may apply dominated convergence
and interchange the limit t0 → −∞ with the integration. This means that

r∗(u, v)|Σ+ = r∗(u, 2t0 − u) = t0 − u→ −∞ ,

or equivalently r → r+. Noting that H+ vanishes at r = r+, one obtains

lim
t0→−∞

∫
Σ+∩{U+≤U0}

Ja[f, h]n
a dvolγ =

∫
(−∞,u0)×S2

(Ju[f, h] + Jv[f, h])|v→−∞
r2+ + a2

χ
du dΩ+ .
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It remains to consider the behaviour of Jv[f, h], since v diverges towards the horizon.
By switching back to the Kruskal-type coordinates, one finds Jv[f, h] = κ+V+JV+ [f, h].
Since the current is a smooth vector field on M̃ and V+ = 0 on H−

+, we conclude that

lim
t0→−∞

∫
Σ+∩{U+≤U0}

Jν [f, h]n
ν dvolγ =

r2+ + a2

χ

∫
(−∞,U0)×S2

JU+ [f, h]|H+ dU+ d2Ω+ (5.2.26)

and thus

lim
t0→−∞

∫
Σ+

Jν [f, h]n
ν dvolγ =

r2+ + a2

χ

∫
H−

+

JU+ [f, h]|H+ dU+ d2Ω+ . (5.2.27)

This concludes the analysis of the integral over Σ+, the integral over Σc is analysed anal-
ogously. Combining all the pieces, we finally obtain that (5.2.19) agrees with (5.2.20) up
to a factor of i, finishing the proof.

With this, we have shown that w(f, h) defined in (5.2.2) is indeed the two-point func-
tion of a well-defined quasi-free state on the CCR-algebra A(M), satisfying all require-
ments listed in Corollary 2.2.2.

Before we continue to show the Hadamard property, let us remark that the Unruh state
constructed in this way is a stationary state in the following sense:

Lemma 5.2.5. Let ψCb∗ : R×C∞(M) → C∞(M) with C ∈ R2 denote the push-forward
along the flow induced by the Killing vector field vC = C1∂t + C2∂ϕ. In Boyer-Lindquist
coordinates, it acts on smooth functions on M by

ψCb∗f(t, r, θ, ϕ) = f(t− C1b, r, θ, ϕ− C2b) ∀f ∈ C∞(M) , b ∈ R .

Then for any pair of test functions f , h ∈ C∞
0 (M), and for any b ∈ R and C ∈ R2

w(ψCb∗f, ψ
C
b∗h) = w(f, h) . (5.2.28)

Proof. First of all, we notice that ψCb∗ ◦ E = E ◦ ψCb∗. This follows directly from (2.2.8)
and the fact that vC is a Killing vector field. We obtain that

E(ψCb∗f)(U+, 0, θ, ϕ+) = E(f)
(
eκ+C1bU+, 0, θ, ϕ+ + C+b

)
E(ψCb∗f)(0, Vc, θ, ϕc) = E(f)

(
0, eκcC1bVc, θ, ϕc + Ccb

)
,

where Cj = a
(
r2j + a2

)−1
C1+C2. Let us consider the first integral, w+(f, h), in (5.2.2);

the other integral can be handled analogously.
Then we can introduce the new coordinates Ũ = eκ+C1bU+ and Ũ ′ = eκ+C1bU ′

+. Since
eκ+C1b is a positive constant, this change of coordinates can be applied to the whole range
of integration. Furthermore, applying this change of coordinates to (U+−U ′

+− iε)−2, one
obtains e2κ+C1b(Ũ − Ũ ′ − iε̃)−2, where ε̃ = eκ+C1bε is related to ε by a bounded, positive
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factor and hence converges to zero if and only if ε does.
Second, we note that a function f(θ, ϕ) on S2 can also be considered as a function on

[−1, 1]x × Rϕ, x = cos θ, which is 2π-periodic in ϕ. Hence, one may change variables
to ϕ̃ = ϕ+ + C+b. This shifts the integration range from [0, 2π) to [C+b, 2π + C+b).
However, the result of the integral is not affected by this, since the new integration range
still includes one complete period of ϕ+.

Putting the pieces together, one concludes

w+(ψ
C
b∗f, ψ

C
b∗h) (5.2.29)

= − lim
ε→0+

r2+ + a2

χπ

∫
R2×S2

E(f)|H+(Ũ , θ, ϕ̃)E(h)|H+(Ũ
′, θ, ϕ̃)

(U+ − U ′
+ − iε)2

dU+ dU ′
+ d2Ω+

= − lim
ε̃→0+

r2+ + a2

χπ

∫
R2×[−1,1]×[C+b,2π+C+b)

E(f)|H+(Ũ , x, ϕ̃)E(h)|H+(Ũ
′, x, ϕ̃)

e−2κ+C1b(Ũ − Ũ ′ − iε̃)2
e−2κ+C1b dŨ dŨ ′ dx dϕ̃

= − lim
ε̃→0+

r2+ + a2

χπ

∫
R2×S2

E(f)|H(Ũ , Ω̃)E(h)|H(Ũ ′, Ω̃)

(Ũ − Ũ ′ − iε̃)2
dŨ dŨ ′ d2Ω̃

= w+(f, h) ,

with Ω̃ = (θ, ϕ̃) and d2Ω̃ the infinitesimal volume element of the unit 2-sphere. Combin-
ing this with the corresponding result for wc concludes the proof.

As shown in this lemma, the two-point function w constructed in (5.2.2) is indeed
invariant under the flow generated by any of the Kerr-de Sitter Killing fields, i.e. any
linear combination of ∂t and ∂ϕ with constant coefficients. This includes in particular
the Killing fields generating the horizons, ∂t+ and ∂tc . The flow induced by these Killing

fields will simply be denoted ψjb = ψ
(1,a/(r2j+a

2))

b .

5.3 The Hadamard property of the Unruh state

It remains to show that the Unruh state defined in the previous section is indeed a Hadamard
state on the Kerr-de Sitter spacetime M.

The proof will proceed in two main steps. In a first step, we will consider a subset of
region I, in which we can prove the Hadamard properties following the ideas applied in
the black-hole exterior in [43]. After that, we will use a more explicit computation for all
remaining cases. This last part is the most novel one.

Before we start, let us make a few remarks. First of all, as discussed in Section 2.3, the
two-point function is a distributional bi-solution of the Klein-Gordon equation. Therefore,
we have by an application of the Propagation of Singularities Theorem 2.3.4,

Corollary 5.3.1. Let w ∈ D′(M × M) as defined in (5.2.2). If (x, k; y, l) ∈ WF′(w),
then g−1(k, k) = g−1(l, l) = 0 and B(x, k) × B(y, l) ⊂ WF′(w), with B(p, q) the
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bicharacteristic of K on M through (p, q) ∈ T ∗(M) as in (2.3.11).

In other words, instead of considering whether a point (x, k; y, l) ∈ T ∗(M×M) is in
WF(w), we can consider any point (x′, k′; y′, l′) ∈ B(x, k) × B(y, l), and the result will
apply to all of B(x, k)×B(y, l).

As a consequence of [71, Thm. 6.5.3] and also noted in the proof thereof, the sup-
port properties of the retarded and advanced Green’s operators together with Propagation
of Singularities can be used to deduce that the kernel E of the commutator function E
satisfies

WF′(E) = C+ ∪ C− , (5.3.1)

with C± as defined in (2.3.13b).
Finally, one can exploit the commutator property and the knowledge on WF(E) to

show the following lemma, which is closely related to [144, Prop. 6.1]:

Lemma 5.3.2. Let w ∈ D′(M×M) as defined in (5.2.2). Assume that

WF′(w) ∩∆T ∗(M×M) ⊂ N+ ×N+ , (5.3.2)

where ∆T ∗(M×M) = {(x, k;x, k) : (x, k) ∈ T ∗M} ⊂ T ∗(M × M) is the diagonal in
T ∗(M × M) and N+ as defined in (2.1.1). Then w satisfies the microlocal spectrum
condition, (2.3.13a).

Proof. The proof makes use of the fact that by Proposition 5.2.3 we can write w(f, h) as
an L2⊕L2 inner product of K(f) and K(h) as in (5.2.15). We want to combine this with
the fact that (5.3.2) implies that (x,−k;x,−k) /∈ WF′(w) if (x, k;x, k) ∈ WF′(w) . For
this purpose, we fix a point (x0, k0; y0, l0) ∈ T ∗(M×M) with k0 and l0 null or zero. We
can now discuss several different cases:

For the first case, assume that either both k0 and l0 are non-zero and BM(x0, k0) is not
equal to BM(y0, l0), or one of them, say l0, vanishes and y0 /∈ BM(x0, k0). Recall that
BM(x, k) is the projection of the bicharacteristic B(x, k) to M and corresponds to the
null geodesic defined by (x, k), compare (2.3.12).

In this case, one can find some space-like Cauchy surface Σ which is intersected by
BM(x0, k0) and BM(y0, l0) at two distinct points x1 and y1. Let f, h ∈ C∞

0 (M;R) be
real-valued test functions supported in space-like separated neighbourhoods of x1 and y1,
respectively. Let us fix a coordinate chart covering supp(f) ∪ supp(h). For any k ∈ R4,
which we identify with T ∗

x (M) in the local trivialization fixed by these coordinates, we
then write fk(x) = (2π)−2eik·xf(x), with · the usual R4 inner product. Then Proposi-
tion 5.2.3 and an application of the Cauchy-Schwarz inequality imply [16]

|w(fk, hl)|2 ≤ |w(fk, f−k)| |w(h−l, hl)| .

Due to the commutator property at space-like separation, one has similarly

|w(fk, hl)|2 = |w(hl, fk)|2 ≤ |w(f−k, fk)| |w(hl, h−l)| .
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Recalling Definition 2.3.1 of the (primed) wavefront set, this implies that if (5.3.2) holds,
f and h may be chosen in such a way that at least one of the two estimates for |w(f, h)|
is rapidly decaying in |(k, l)| for (k, l) in some conic neighbourhood of (k0, l0) parallel
transported to (x1, y1). Consequently, these points cannot be in the wavefront set of w if
(5.3.2) is satisfied.

The next case we consider is that l0 = 0, but y0 ∈ BM(x0, k0). In this case, one
cannot apply the previous argument, since none of the points in BM(x0, k0) is space-
like separated from y0. However, one may use that WF(E), where E is the kernel of
the commutator function, does not contain any points of the form (x, k; y, 0). If we set
w̃(f, h) = w(h, f), then the commutator property implies WF(w−w̃) = WF(E). Hence,
if a point of the form (x0, k0, y0, 0) were in WF(w), it would have to be in WF(w̃) as well,
so that the two singular contributions could cancel out in iE = w − w̃. In other words,
if (x0, k0; y, 0) is in WF(w), then so must be (y, 0;x0, k0). Let us assume w.l.o.g. that
y0 = x0, and let f, h ∈ C∞

0 (M;R) be real test functions, each supported in a neigh-
bourhood of x0. We fix some coordinate system covering supp(f) ∪ supp(h). Then the
discussion above implies that if

|w(fk, h)|2 ≤ |w(fk, f−k)| |w(h, h)|

is not rapidly decreasing in |k| for any choice of f and for k in any conic neighbourhood
of k0, then

|w(h, fk)|2 ≤ |w(f−k, fk)| |w(h, h)|

must not be rapidly decreasing in |k| either. However, if (5.3.2) holds, one can find test
functions f, h and a conic neighbourhood V of (k0, 0), so that at least one of the two
estimates is rapidly decreasing in |k| for all k ∈ V . Therefore, if (5.3.2) holds, WF(w)
cannot contain any points of the form (x, k; y, 0) or, by the same argument, (x, 0; y, l).

The final case that remains to be analysed is BM(x0, k0) = BM(y0, l0). This case can
be represented by points of the form (x0, k0;x0, ck0) ∈ T ∗(M×M) for some 0 6= c ∈ R.
Let f, h ∈ C∞

0 (M;R) be real test functions as above, supported in a neighbourhood of
x0, and let us fix some coordinate system covering their supports. Then (5.3.2) implies
that we can choose f , h, and a conic neighbourhood V of (k0, ck0) so that

|w(fk, hl)|2 ≤ |w(fk, f−k)| |w(h−l, hl)|

is rapidly decreasing in |(k, l)| for all (k, l) ∈ V , unless (x0, k0) is contained in N+ and
(x0, ck0) in N−, i.e. (x0, k0) ∈ N+ and c < 0.

Putting these three cases together, we have shown that (5.3.2) together with (5.2.15)
implies that WF′(w) ⊂ N+ × N+. This also implies that WF′(w̃) ⊂ N− × N−. In
particular, the (primed) wavefront sets of w and w̃ do not overlap. As a result, we find

C+ ∪ C− = WF′(E) = WF′(w − w̃) = WF′(w) ∪WF′(w̃) ⊂ N+ ∪N− ,

with the third equality sign due to the fact that the wavefront sets do not overlap, see also
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the proof in [144, Prop. 6.1]. Since WF′(w) ∩ C− = WF′(w̃) ∩ C+ = ∅, the equation
above can only be satisfied if WF′(w) = C+.

Thanks to these results, it is sufficient to show that WF′(w)∩∆T ∗(M×M) ⊂ N+×N+

[138], and any result obtained for one point (x, k;x, k) can be propagated to all of
B(x, k)×B(x, k).

5.3.1 The Hadamard condition in O
Following these preliminary considerations, we will now prove the Hadamard property of
the Unruh state in a subregion O of M. In particular, we choose O ⊂ I to be the open set
in which both ∂t+ and ∂tc as defined in (2.4.9) are time-like.

In the light of Lemma 5.3.2, we will show

Proposition 5.3.3. Let w be as defined in (5.2.2), and let O ⊂ I be such that ∂t+ and ∂tc
are time-like on O. Then for any x0 ∈ O,

WF′(w) ∩ T ∗
(x0,x0)

(M×M) ∩∆T ∗(M×M) ⊂ N+ ×N+ . (5.3.3)

Using Propagation of Singularities and Lemma 5.3.2, Proposition 5.3.3 implies that

WF′(w) ∩ (B(O)×B(O)) = C+ ∩ (B(O)×B(O)) , (5.3.4)

where

B(O) = {(x, k) ∈ T ∗(M)\o : g−1(x)(k, k) = 0, BM(x, k) ∩ O 6= ∅} .

By the results shown in Lemma 5.1.4, this includes all null geodesics that do not end at
H+ or Hc as long as a and λ are sufficiently small.

For the proof of Proposition 5.3.3, we would like to use the characterisation of the
wavefront set in Proposition 2.3.1, originally given in [69, Prop. 2.1]. To do so, we follow
largely part 1) and 2) of the proof of the Hadamard property for passive states given in
[62, Thm. 5.1]. The remaining parts of the proof of [62, Thm. 5.1] are covered already
by the proof of Lemma 5.3.2. This is based on the idea of the proof of [43, Prop. 4.3].

As a first step, we need to prove that the two pieces wj of w satisfy a "KMS-like"-
condition [43] with β = 2πκ−1

j with respect to ∂tj :

Lemma 5.3.4. Let f ∈ C∞
0 (I), and let

ψjb∗(f)(u, v, θ, ϕj) = f(u− b, v − b, θ, ϕj)

be the push-forward along the flow generated by ∂tj . Then

KI
j (ψ

j
b∗f)(ω, θ, ϕj) = eibωKI

j (f)(ω, θ, ϕj) . (5.3.5)
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In addition, wj is "KMS-like" [43] in the sense that for any h ∈ C∞
0 (R;R) and any pair

of real-valued test functions on I, f1,2 ∈ C∞
0 (I;R),∫

R

ĥ(t)
¨
KI
j(f1), K

I
j(ψ

j
t∗f2)
∂
L2

dt =
∫
R

ĥ
Ä
t+ 2πi

κj

ä ¨
KI
j(ψ

j
t∗f2), K

I
j(f1)

∂
L2

dt , (5.3.6)

where 〈·〉L2 is the usual L2-inner product of L2(R×S2; µj(ω) dω d2Ωj), with µj(ω) as in
(5.2.13c).

Proof. As discussed in the proof of Lemma 5.2.5, since ∂tj , j ∈ {+, c} are Killing vector
fields of the Kerr-de Sitter spacetime M, E commutes with the push-forward along the
flow induced by ∂tj . In other words, one has

E(ψjb∗f)(u, v, θ, ϕj) = E(f)(u− b, v − b, θ, ϕj) .

Inserting this into KI
j as defined in (5.2.14b), one obtains the estimate

KI
+(ψ

+
b∗f)(ω,Ω+) =(2π)−

1
2

∫
R

E(ψ+
b∗f)(u, v,Ω+)|v→−∞e

iωu du

=(2π)−
1
2

∫
R

E(f)(u− b, v − b,Ω+)|v→−∞e
iωu du

=(2π)−
1
2

∫
R

E(f)(u, v,Ω+)|v→−∞e
iω(u+b) du

=eiωbKI
+(f)(ω,Ω+)

and analogously KI
c (ψ

c
b∗f)(ω,Ωc) = eiωbKI

c (f)(ω,Ωc). With this in mind, we can now
consider the function

R 3 t 7→
¨
KI
j(f1), K

I
j(ψ

j
t∗f2)
∂
L2

=
〈
KI
j(f1), e

iωtKI
j(f2)

〉
L2 ∈ C ,

for some pair of real-valued test functions f1,2 ∈ C∞
0 (I;R), where L2 is a the short-hand

notation for L2(R× S2; µj(ω) dω d2Ωj). If we replace t by t+ ib, we obtain∣∣∣¨KI
j(f1), e

iω(t+ib)KI
j(f2)

∂
L2

∣∣∣
=

∣∣∣∣∣∣∣
∫

R×S2

r2j + a2

χ

ωeiωte
ω

Å
π
κj

−b
ã

sinh
Ä
πω
κj

ä F̃j(E(f1)|Hj
)(ω,Ωj)F̃j(E(f2)|Hj

)(ω,Ωj) dω d2Ωj

∣∣∣∣∣∣∣
≤
r2j + a2

χ

∫
R×S2

ωe
ω

Å
π
κj

−b
ã

sinh
Ä
πω
κj

ä ∣∣∣F̃j(E(f1)|Hj
)(ω,Ωj)

∣∣∣ ∣∣∣F̃j(E(f2)|Hj
)(ω,Ωj)

∣∣∣ dω d2Ωj .
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The decay results (5.2.6b) and (5.2.6c) provide exponential decay in lj of
∣∣∣∂Nlj E(f1,2)∣∣∣ for

arbitrarily large N ∈ N on the corresponding horizon. Therefore, one obtains the bound∣∣∣F̃j(E(f1,2)|Hj
)(ω,Ωj)

∣∣∣ ≤ c (1 + ω2)−
M
2

for arbitrarily large M and some constant c > 0 depending on f1,2 and M . Thus, combin-
ing c together with other constants to C > 0,

∣∣∣¨KI
j(f1), e

iω(t+ib)KI
j(f2)

∂
L2

∣∣∣ ≤ C

∫
R

ωe
ω

Å
π
κj

−b
ã

(1 + ω2)M sinh
Ä
πω
κj

ä dω .

This integral is finite as long as b ∈ [0, 2π/κj] and M is chosen sufficiently large.
Similarly, since the integral is absolutely convergent for 0 ≤ b ≤ 2π/κj , one can dif-
ferentiate n times with respect to z = t + ib under the integral, which simply con-
tributes a factor of iω to the integrand. Thus, by choosing M sufficiently large depending
on the number n of derivatives, one can show that also any number of derivatives of∣∣∣〈KI

j(f1), e
iω(z)KI

j(f2)
〉
L2

∣∣∣ exists and is finite as long as 0 < Im(z) < 2π/κj . Thus, this
function has an analytic extension to the strip {Im(z) ∈ (0, 2π/κj)} ⊂ C.

Let us now get to the second point of the lemma. Let h ∈ C∞
0 (R;R), and f1,2 ∈ C∞

0 (I;R)
as before. Then∫

R

ĥ(t)
¨
KI
j(f1), K

I
j(ψ

j
t∗f2)
∂
L2

dt (5.3.7)

=

∫
R

ĥ(t)

∫
R×S2

µj(ω)KI
j(f1)(ω, θ, ϕj)e

iωtKI
j(f2)(ω, θ, ϕj) dω dΩj dt .

By the definition of KI
j , KI

j(f1,2)(ω, θ, ϕj) = KI
j(f1,2)(−ω, θ, ϕj). In addition, the mea-

sure µj(ω) satisfies µj(ω) = e2πω/κjµj(−ω), see (5.2.13c). Moreover, ĥ(t) is the Fourier
transform of a compactly supported function. Hence, it is entire analytic and vanishes for
Re(t) → ±∞ as long as Im(t) remains finite. As a result, by setting ω̃ = −ω, one can
rewrite (5.3.8) as∫

R

ĥ(t)

∫
R×S2

µ(ω̃)e
−2π

ω̃
κj e−iω̃tKI

j(f1)(ω̃, θ, ϕj)K
I
j(f2)(−ω̃, θ, ϕj) dω̃ d2Ωj dt

=

∫
R−i2π

κj

ĥ
Ä
t+ i2π

κj

ä ∫
R×S2

µj(ω̃)e
−iω̃tKI

j(f2)(ω̃, θ, ϕj)K
I
j(f1)(ω̃, θ, ϕj) dω̃ d2Ωj dt

=

∫
R

ĥ
Ä
t+ i2π

κj

ä ¨
KI
j (ψ

j
t∗f2), K

I
j(f1)

∂
L2

dt .
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Next, our application of the proof of [62, Thm. 5.1] requires some of the results in
[62, Prop. 2.1]. While they were originally proven for passive states, it has been realized
in [43], that the "KMS-like" condition (5.3.6) is actually sufficient to prove the relevant
parts of [62, Prop. 2.1] by following the original proof step by step (omitting step 3, which
deals with the case of ground states). In this way, one obtains

Lemma 5.3.5. For any (gλ1 )λ>0, (gλ2 )λ>0 ⊂ C∞
0 (O;R) satisfyingwj(gλi , g

λ
i ) ≤ c (1 + λ−1)

s

for some c > 0 and s > 0, there exists a h ∈ C∞
0 (R2) with ĥ(0) = 1, and for any

(k0, k
′
0) ∈ R2\{0} with k′0 > 0, there is an open neighbourhood Vε in R2\{0} of (k0, k′0)

so that k2 > ε > 0∀(k1, k2) ∈ Vε and such that ∀N ∈ N ∃CN > 0, λN > 0:

sup
k∈Vε

∣∣∣∣∫ eiλ
−1k·tĥ(t)wj(ψ

j
t1∗g

λ
1 , ψ

j
t2∗g

λ
2 ) d2t

∣∣∣∣ < CNλ
N ∀0 < λ < λN . (5.3.8)

Let us remark that this continues to hold if ĥ is replaced by φ · ĥ for some φ ∈ C∞
0 (R2)

after shrinking Vε if necessary. This follows from an application of [69, Lemma 2.2 b)],
see the discussion on the proof of [62, Prop. 2.1]. The above also continues to hold if the
functions gλi depend on additional parameters, see the discussion in [62, Rem. 2.2].

With this, we can now prove Proposition 5.3.3.

Proof of Proposition 5.3.3. As mentioned in the preceding remarks, we will follow closely
parts 1) and 2) of the proof of [62, Thm. 5.1]. So let us fix some x0 ∈ O, and let
j ∈ {+, c}. As a first step, we define a coordinate chart

ψj : Ux0 → ψj(Ux0) ⊂ R4 , x→ (tj(x) =
1
2
(uj + vj)(x)− tj,0, ~x(x))

on some open neighbourhood Ux0 of x0. We will choose tj,0 and ~x such that ψj(x0) =
0. One possible choice would be to take the Cartesian coordinates corresponding to
(r(x), θ(x), ϕj(x)) and shifting the origin of the coordinates to ~x(x0).

We require that the coordinate chart is built in such a way that there exists a constant
c > 0, so that on a sufficiently small, compact neighbourhood K ⊂ Ux0 of x0 and for all
|t| < c, the diffeomorphism ψjt induced by the Killing field ∂tj can be written as

ψj ◦ ψjt (x) = (tj(x) + t, ~x(x)) .

Additionally, we define spatial translation by ~y in some sufficiently small, open neigh-
bourhood B of 0 in R3 acting on K by

ψj~y(x) = ψ−1
j ◦ ψ̃j~y ◦ ψj(x) , ψ̃j~y(tj, ~x) = (tj, ~x+ ~y) .

We will denote the corresponding push-forwards acting on smooth functions onK by ψjt∗,
as in Lemma 5.3.4, and ψj~y∗.
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After the construction of the coordinate system, we will now consider an arbitrary but
fixed (x0, kx) ∈ N− ∩ T ∗

x0
M and show that (x0, kx;x0,−kx) is not in WF(wj) by using

the description of the wavefront set in Proposition 2.3.1.

To this end, we identify T ∗
Ux0

M with its local trivialization ψj(Ux0)×R4 induced by the
coordinate chart ψj . Since x0 ∈ O and ∂tj is time-like in O, (x0, kx) ∈ N− if and only
if k0 = k(∂tj) < 0. We can then choose an open conic neighbourhood V of (kx,−kx) in
R4 × R4\{0} , so that for all (k, k′) ∈ V , there is some ε > 0 with2

(k0, k′0) = (k(∂tj), k
′(∂tj)) ∈ Vε .

Here, Vε ⊂ R2\{0} is an open neighbourhood of (k0x,−k0x) so that k′0 > ε > 0 for all
(k0, k′0) ∈ Vε like in Lemma 5.3.5. Note that V and Vε may in general depend on j.
However, we suppress this dependence in the notation.

In addition, we define a (j-dependent) function H ∈ C∞
0 (ψj(Ux0)× ψj(Ux0)) as

H(tj, ~x, t
′
j, ~x

′) = φ(tj, t
′
j)ĥ(tj, t

′
j)ζ(~x, ~x

′) .

The function h ∈ C∞
0 (R2) is chosen as in Lemma 5.3.5. The functions φ ∈ C∞

0 ((−c, c);R)
and ζ ∈ C∞

0 (B ×B;R) are constructed so that H(0) = 1 is satisfied.

Finally, let us pick (j-dependent) functions gi ∈ C∞
0 (ψj(Ux0);R), i ∈ {1, 2} with

support in the neighbourhood ψj(K) of 0 and with ÷g1 ⊗ g2(0, 0) = 1. We suppress the
j-dependence in the notations since it should be clear from the context. Let p ≥ 1 and set

gλi (x) =

®
gi(λ

−p(ψj(x))) x ∈ Ux0
0 x /∈ Ux0

for λ ≤ 1 and gλi (x) = g1i (x) for λ > 1. This is of the same form as the functions in
Proposition 2.3.1. By the choice of supp(gi) and the construction of ψj , we then have
supp(gλi ) ⊂ K. Hence, push-forwards of gλi by time translations with t ∈ (−c, c) or by
spatial translations with ~y ∈ B are well-defined.

Furthermore, the gλi satisfy the condition of Lemma 5.3.5: By (5.2.8) or the analogous
result for wc, we have ∣∣wj(gλi , gλi )∣∣ ≤ C

∥∥gλi ∥∥2Cm . (5.3.9)

Since the functions gλi are supported in region I within the set on which the coordinate
chart ψj is defined, we are free to take this norm using the partial derivatives in the ψj-
coordinate chart as the linearly independent vector fields. This allows us to estimate for

2In the rest of this proof, we will work in the coordinate chart ψj and we will often omit writing the
coordinate chart or the resulting trivialization when no confusion arises.
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λ < 1

|wj(gλi , gλi )| ≤ C
∥∥gi(λ−px)∥∥2Cm(K)

≤ C ′ ‖gi(x)‖2Cm(K)

∑
|β|≤m

λ−|β|p (5.3.10)

≤ C ′′ ‖gi‖2Cm (1 + λ−1)2mp .

by applying ∂xf(λ−px) = λ−p∂yf(y)|y=λ−px. Hence, gλ1 ⊗ gλ2 is of the same form as the
function in Proposition 2.3.1, while the gλi also satisfy the condition in Lemma 5.3.5.

We can now conclude the proof by estimating

sup
(k,k′)∈V

∣∣∣∣∫ eiλ
−1(k,k′)·(x,x′)H(x, x′)wj

Ä
ψjt∗ψ

j
~x∗g

λ
1 , ψ

j
t′∗ψ

j
~x′∗g

λ
2

ä
dvolg(x) dvolg(x′)

∣∣∣∣
= sup

(k,k′)∈V

∣∣∣∣∫ eiλ
−1(~k~x+~k′~x′)ζ(~x, ~x′)

ï∫
eiλ

−1(k0t+k0′t′)φ(t, t′)ĥ(t, t′)

× wj
Ä
ψj~x∗g

λ
1 , ψ

j
(t′−t)∗ψ

j
~x′∗g

λ
2

ä
dt dt′

ó
d3~x d3~x′

∣∣∣ ,
where we have used the coordinates ψj and the first part of Lemma 5.3.4. Pulling the
absolute value into the ~x- and ~x′- integral, this can be bounded by

sup
(k,k′)∈V

∫
|ζ(~x, ~x′)|

∣∣∣∣∫ eiλ
−1(k0t+k0′t′)φ(t, t′)ĥ(t, t′)

× wj
Ä
ψj~x∗g

λ
1 , ψ

j
(t′−t)∗ψ

j
~x′∗g

λ
2

ä
dt dt′

∣∣∣ d3~x d3~x′ .

Using Lemma 5.3.5, for any N ∈ N there are CN > 0 and 1 > λN > 0 so that the
absolute value of the integrals over t and t′ is bounded by CNλN for all 0 < λ < λN .
This allows us to find a bound for the previous expression of the form

sup
(k,k′)∈V

∫
|ζ(~x, ~x′)|CNλN d3~x d3~x′ ≤ C̃Nλ

N

for all 0 < λ < λN < 1. The last step follows from the integrability of ζ . By Proposi-
tion 2.3.1, this estimate shows that (x0, kx, x0,−kx) cannot be in WF(wj) for j ∈ {+, c}
and any (x0, kx) ∈ N− ∩ T ∗

OM. Since WF(w+ + wc) ⊂ WF(w+) ∪ WF(wc), this
concludes the proof of Proposition 5.3.3.

5.3.2 The Hadamard condition on M\O
In the previous subsection, we have established the Hadamard property in a region O ⊂ I,
and, by Propagation of Singularities, for all null geodesics intersecting O. This includes
all null geodesics that do not intersect H+ or Hc if a and λ are sufficiently small by
Lemma 5.1.4.

In order to complete the proof of the Hadamard property, we now consider null geodesics
intersecting one of the horizons when extended to M̃. Below, we show
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Proposition 5.3.6. Let (x0, k0) ∈ N , such that BM(x0, k0) ∩ O = ∅. Assume that λ, a
are chosen such that Lemma 5.1.4 and the results of [39] are valid. If (x0, k0;x0, k0) is in
WF′(w), then (x0, k0) ∈ N+.

This result, together with Proposition 5.3.3, Lemma 5.3.2, and Propagation of Sin-
gularities as in Corollary 5.3.1 then implies that w indeed satisfies the microlocal spec-
trum condition (2.3.13a), and is thus the two-point function of a well-defined quasi-free
Hadamard state on the CCR-algebra A(M).

The proof of Proposition 5.3.6 is based on ideas first developed in [142], and applied
in similar form in [16, 43, 123]. As a preparation for the proof, let us first prove two
lemmata:

Lemma 5.3.7. Let X, Y ⊂ Rn. Let (y0, k0) ∈ Y × (Rn\{0}), and let K be any compact
neighbourhood of y0. Let D ∈ D′(X × Y ) such that (x, k; y, 0) /∈ WF(D) for all x ∈ X ,
y ∈ Y and k ∈ Rn\{0}. Let Xπ(supp(D)) ⊂ X be compact, where Xπ : X × Y → X
is the projection onto X . Assume

(x, l; y0, k0) /∈ WF(D) ∀(x, l) ∈ X × Rn . (5.3.11)

Then we can find a function f ∈ C∞
0 (Y ) with f(y0) = 1 and support in K, and an open

conic neighbourhood Vk0 ⊂ Rn\{0} of k0 so that for any N,N ′ ∈ N there are positive
constants CNN ′ satisfying

|⁄�(1⊗ f) ·D|(l, k) ≤ CNN ′

(1 + |l|N)(1 + |k|N ′)
∀l ∈ R4 , k ∈ Vk0 , (5.3.12)

where 1(x) = 1 for all x ∈ X .

To understand the meaning of this technical lemma, consider some D ∈ D′(X × Y )
satisfying the conditions of Lemma 5.3.7. By Definition 2.3.1, for any (x, l), there exist a
test function Φ(x,l) ∈ C∞

0 (X × Y ) with Φ(x,l)(x, y0) = 1, and an open conic neighbour-
hood V(x,l) ⊂ Rn × Rn\{0} of (l, k0), so that

|ÿ�Φ(x,l) ·D|(l′, k′) ≤ C
(x,l)
N

(1 + |(l′, k′)|)N
∀(l′, k′) ∈ V(x,l) . (5.3.13)

for some positive constant C(x,l)
N > 0 for any N ∈ N. Lemma 5.3.7 then shows that

for such distributions D, the estimates can be combined to one covering every l ∈ Rn

and every x ∈ Xπ supp(D). Moreover, the combined test function Φ can be written as
Φ(x, y) = χ(x)f(y), where χ ∈ C∞

0 (x) is equal to one on Xπ supp(D) and f ∈ C∞
0 (Y )

can be chosen such that its support is contained in any fixed but arbitrary compact neigh-
bourhood of y0.

Proof. As mentioned above, let us assume that (5.3.11) holds for D. By Definition 2.3.1,
for any (x, l) ∈ Xπ supp(D) × Rn, we can find Φ(x,l) ∈ C∞

0 , V(x,l) ∈ Rn × Rn\{0} and
(C

(x,l)
N )N∈N as above so that (5.3.13) holds for any N ∈ N.
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Without loss of generality, we may assume that Φ(x,l) ≥ 0. If this is not the case, we
can multiply by another test function χ ∈ C∞

0 (X × Y ) defined as χ = Φ(x,l) and obtain
an estimate of the same form after possibly shrinking V(x,l) and increasing

Ä
C

(x,l)
N

ä
N∈N

.

This follows from (the proof of) [68, Lemma 8.1.1], which states that if v ∈ E ′(Z) ,
Z ⊂ Rm, and (x, k) ∈ Z × (Rm\{0}) is a direction of rapid decrease for v, then it is
also a direction of rapid decrease for φ · v, where φ ∈ C∞

0 (Z). This result will be used
frequently in the rest of the proof.

As a simplification of the following argument, we will label the functions Φ, conic sets
V and constants CN by λ = l/ |(l, k0)| instead of l. The label λ will then range over
the open ball of unit radius around the origin of Rn. In addition, we can consider the
projection of the conic sets V(x,λ) to the unit sphere

S2n−1 = {(l′, k′) ∈ Rn × Rn : |(l′, k′)| = 1}

in Rn × Rn. Since the sets V(x,λ) are conic, they are completely described by this projec-

tion. The projections P(x,λ) = V(x,λ)∩S2n−1 are open neighbourhoods of
Å
λ,

»
1−|λ|2

|k0| k0

ã
,

and thus form an open cover of

Px =

ßÅ
λ′,

»
1−|λ|2

|k0| k0

ã
∈ S2n−1 : |λ′| < 1

™
.

By the assumption on WF(D), we know that (x, l; y0, 0) /∈ WF(D). Consequently,
we obtain Φ(x,λ), V(x,λ) or P(x,λ), and

Ä
C

(x,λ)
N

ä
N∈N

as above for |λ| = 1 as well. In other
words, for any fixed x, the label λ now ranges over the closed unit ball around 0 in Rn,
and the P(x,λ) cover the compact set

Px =

ßÅ
λ′,

»
1−|λ|2

|k0| k0

ã
∈ S2n−1 : |λ′| ≤ 1

™
.

Hence, for any fixed but arbitrary x, we may pick a finite open subcover (P(x,λi))i=1,...,M

of Px and define

Φx =
M∏
i=1

Φ(x,λi) ∈ C∞
0 (X × Y ) .

Let us pick some i ∈ {1, . . . ,M}. Then one can apply the proof of [68, Lemma 8.1.1]
with the identification φ =

∏
j 6=i

Φ(x,λj) and v = Φ(x,λi) ·D to show that there are constants

(Cx
N)N∈N with

|÷Φx ·D|(l′, k′) ≤ Cx
N

(1 + |(l′, k′)|)N
∀(l′, k′) ∈ V(x,λi) . (5.3.14)

Varying i over {1, . . . ,M}, this estimates holds for all (l′, k′) ∈ Vx ≡
⋃
i V(x,λi). Defining
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the open conic neighbourhood V x
k0

by

V x
k0

=

{
k ∈ Rn : (l, k) ∈

⋃
i

V(x,λi)∀l ∈ Rn

}
,

the result implies that the estimate (5.3.14) holds for all (l′, k′) ∈ Rn × V x
k0

.

In the next step, we would like to combine the estimates for different x ∈ Xπ supp(D).
To do so, we fix some small 0 < ε < 1 and define the open sets

U ε
x = {(x′, y′) ∈ X × Y : Φx(x

′, y′) > ε} .

Since (U ε
x)x∈Xπ supp(D) forms an open cover of the compact subset Xπ supp(D)×{y0}

of Rn×Rn, one can again pick a finite open subcover (U ε
xi
)i=1,...,L of Xπ supp(D)×{y0}.

The corresponding functions Φi ≡ Φxi then satisfy

L∑
i=1

Φi(x
′, y′) ≥ ε ∀(x′, y′) ∈ Xπ supp(D)× V .

Here, we have defined the set

V =

{
y′ ∈ Y : (x′, y′) ∈

L⋃
i=1

U ε
xi
∀x′ ∈ Xπ supp(D)

}
.

With this in mind, we construct a smooth cutoff function χ ∈ C∞
0 (X×Y ) which satisfies

χ =


1∑
i
Φi

:
L∑
i=1

Φi ≥ ε
2

0 :
L∑
i=1

Φi ≤ ε
4

.

In addition, we pick f ∈ C∞
0 (Y ) so that supp(f) ⊂ V ∩ K and f(y0) = 1. Then

χ(x, y)f(y) ∈ C∞
0 (X × Y ), and for any fixed i ∈ {1, . . . , L} we can apply the proof of

[68, Lemma 8.1.1] with φ = χf and v = Φi ·D to obtain constants (Ci
N)N∈N satisfying

|ÿ�fχΦi ·D|(l, k) ≤ Ci
N

(1 + |(l, k)|)N
∀(l, k) ∈ Vxi .
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Combining the estimates for different i the yields

∣∣∣⁄�(1⊗ f) ·D
∣∣∣ (l, k) =

∣∣∣∣∣∣∣
¤�L∑
i=1

fχΦi ·D

∣∣∣∣∣∣∣ (l, k) ≤
L∑
i=1

∣∣∣ÿ�fχΦi ·D
∣∣∣ (l, k) (5.3.15)

≤
L∑
i=1

Ci
N

(1 + |(l, k)|)N
≤ C̃N

(1 + |(l, k)|)N

for all (l, k) ∈
⋂L
i=1 Vxi ⊃ Rn × Vk0 , with Vk0 =

⋂L
i=1 V

xi
k0

.
To obtain (5.3.12), note that there are constants c1,2 > 0 so that

c1(|l|+ |k|) ≤ |(l, k)| ≤ c2(|l|+ |k|) .

In addition, a simple application of the binomial formula yields that for a, b > 0

(1 + a+ b)N ≥ 1 + aM + bN−M + aMbN−M = (1 + aM)(1 + bN−M) .

Applying this to the denominator of (5.3.15) finishes the proof.

The second lemma we want to show is

Lemma 5.3.8. Let (x0, k0) ∈ N , with BM(x0, k0) intersecting H+ (when extended to
M̃), and let us identify k0 with an element of R4 under the +-Kruskal coordinate chart
ψ+ : M+ → R2 × S2. Let K be a small compact neighbourhood of x0 covered by the
+-Kruskal coordinate chart, and let V ⊂ R4\{0} be a sufficiently small conic neighbour-
hood of k0, such thatBM(x, k) intersects H+ in the interior of some compact set U ⊂ H+

for all x ∈ K and all null covectors k ∈ V . Let h ∈ C∞
0 (H+) be such that h = 1 on

a neighbourhood of U . Then, there are a function f ∈ C∞
0 (M), with f(x0) = 1, an

open conic neighbourhood Vk0 ⊂ R4\{0} of k0, and, ∀ N ∈ N and n ∈ {0, 1}, positive
constant CNn, C̃Nn > 0 such that∣∣∣∂nU+

(1− h)E(fk)|H+

∣∣∣ ≤ |U+|−α/κ+
CNn

1 + |k|N
∀k ∈ Vk0 (5.3.16)

∣∣∂nVcE(fk)|Hc

∣∣ ≤ |Vc|−α/κc
C̃N

1 + |k|N
∀k ∈ Vk0 . (5.3.17)

Here, we use the notation fk(x) = (2π)−2eik·xf(x), where we have fixed theψ+-coordinate
chart.

Proof. We begin the proof of this lemma with a number of definitions.
First of all, for K ⊂ M covered by the coordinate chart ψ+, identify T ∗

KM with
ψ+(K)× R4 in ψ+. Let V ⊂ R4\{0} be an open conic set. Then we set

BM(K,V ) = {x′ ∈M : x′ ∈ BM(x, k) for some x ∈ K, k ∈ V null} ,
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and we can continue BM(K,V ) to M̃ by continuing the individual geodesics. We will
refer to this continuation as BM(K,V ) as well.

Second, we define a number of Cauchy surfaces for M̃: We choose Σk0 so that it
coincides with H on a neighbourhood of supp(h). Furthermore, we pick two Cauchy
surfaces Σ± of M̃ so that Σk0 ⊂ I+(Σ−) ∩ I−(Σ+) and K ⊂ I+(Σ+).

Third, we need a number of cutoff functions: Let h̃ ∈ C∞
0 (M̃) and h′ ∈ C∞

0 (M̃)
be defined such that h̃ + h′ = 1 on a neighbourhood of J−(K) ∩ J+(Σ−) ∩ J−(Σ+),
h̃|H+ = h, supp(h̃) ∩ Hc = ∅, and assume that there is an open neighbourhood V ⊂ M̃
of BM(K,V ) satisfying V ∩ supp(h′) = ∅. Moreover, let η ∈ C∞(M̃) be supported in
V , with η = 1 in a neighbourhood of BM(K,V ). Finally, let χ± ∈ C∞(M̃) be a partition
of unity, χ+ + χ− = 1, satisfying χ±|J±(Σ±) = 1.

We illustrate the Cauchy surfaces and the supports of the various functions in Fig. 5.3.

i
+

i
−

Σk0

Σ+
Σ

−

K

K

χ+ = 0

χ+ = 1

Figure 5.3: Left: The three Cauchy surfaces are, from top to bottom, Σ+, Σk0 and Σ−.
The small, dark gray region is K. The solid line joining K and H indicates
the bicharacteristic BM(x0, k0). The dashed lines mark J−(K). The light
orange strip around BM(x0, k0) shows the neighbourhood V of BM(K,V ),
on which h′ = 0. The light gray region around J−(K) ∩ J−(Σ+) ∩ J+(Σ−)
indicates supp(h̃+ h′). Right: The two ellipses indicate h̃ = 1 (inner, shaded
ellipse), and supp(h̃) (outer ellipse). The orange strip indicates η = 1 (darker
shade) and supp(η) (lighter shade). The function χ+ is equal to one above the
green line, which corresponds to Σ+ and vanishes below the blue one, which
corresponds to Σ−.

Let us now consider an arbitrary test function g ∈ C∞
0 (K). Then, for any such test

function, set g̃ ≡ K(χ+E(g)) ∈ C∞
0 (M̃). g̃ is supported in J−(K) ∩ J+(Σ−) ∩ J−(Σ+)

and E(g) = E(g̃), see the discussion in Section 2.2. From the construction of h̃ and h′,
it also follows that g̃ = h̃g̃ + h′g̃. Moreover, we can use the linearity of the commutator
function together with the properties of the retarded and advanced Green’s operators E±
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to show

E(g) =E(g̃) = E(h̃g̃) + E(h′g̃) (5.3.18)

=E+(h̃K(χ+E(g))) + E−(h̃K(χ−E(g))) + E(h′g̃)

=E+(K(h̃χ+E(g))) + E−(K(h̃χ−E(g)))− E+([K, h̃]χ+E(g))

− E−([K, h̃]χ−E(g)) + E(h′g̃)

=h̃E(g)− E+([K, h̃]χ+E(g))− E−([K, h̃]χ−E(g)) + E(h′g̃) .

Since h̃|H+ = h and h̃|Hc = 0, we can identify (1 − h)E(g)|H+ and E(g)|Hc with the
last three terms in the last line of (5.3.18) restricted to H+ or Hc respectively. So let us
study these terms further.

First, we note that h′g̃ vanishes in a neighbourhood of BM(K,V ), while this is not the
case for [K, h̃]χ+E(g) or [K, h̃]χ−E(g). However, we note that by construction

supp([K, h̃]χ±E(g)) ∩ V ⊂ J±(Σ±) ∩ J±(H+ ∪Hc) .

This allows us to further split the terms involving these expressions as

E±([K, h̃]χ±E(g)) = E±(η[K, h̃]χ±E(g)) + E±((1− η)[K, h̃]χ±E(g)) .

By the definition of η and E±, we then have

supp(E±(η[K, h̃]χ±E(g))) ⊂ J±(supp([K, h̃]χ± E(g)) ∩ V)
⊂ J±(Σ±) ∩ J±(H+ ∪Hc) ,

and hence these terms vanish on H+ ∪ Hc and can be neglected. At the same time, the
remaining terms (1 − η)[K, h̃]χ±E(g) vanish in a neighbourhood of BM(K,V ), just as
h′g̃.

This allows us to treat all three of these terms in the same way. Thus, in the following
we will focus on the term containing h′g̃, arguments for the other terms can be given along
the same lines.

As a next step, we would like to identify the function f ∈ C∞
0 (M). To this end, we

note that

h′g̃ = h′(2gχ+2∂aχ+∂
a)E(g) ≡ h′B(E(g)) ,

where we have defined the first-order differential operator B = 2gχ+ + 2∂aχ+∂
a.

Let us consider the bi-distribution h′B(E), where B is acting on the first variable of
E. This bi-distribution is compactly supported in the first variable due to the compact
support of h′. Moreover, since differentiation and the multiplication by a smooth function
cannot increase the wavefront set, we obtain

(y, l;x0, k0) /∈ WF(h′B(E)) ∀(y, l) ∈ T ∗
supp(h′)M̃ . (5.3.19)
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Let us identify (x0, k0) with an element of ψ+(K)×R4 in the chart ψ+. Let us also fix a co-
ordinate chart ψ covering supp(h′) and identify all (y, l) with points in ψ(supp(h′))× R4.
Then we can conclude, alluding to Lemma 5.3.7, that there are a function f1 ∈ C∞

0 (M)
with f1(x0) = 1 and supp(f1) ⊂ K, an open conic neighbourhood Ṽk0 ⊂ R4\{0} of k0,
and positive constants (C̃NN ′)N,N ′∈N so that

| ¤�(h′ ⊗ f1) ·B(E)|(l, k) ≤ C̃NN ′

(1 + |l|N ′)(1 + |k|N)
∀(l, k) ∈ R4 × Ṽk0 . (5.3.20)

As mentioned above, the other two terms can be treated in the same way, and we
obtain estimates of the form (5.3.20) for ((1−η)[K, h̃]χ±⊗f±)E with different functions
f± ∈ C∞

0 (M), conic neighbourhoods V ±
k0

⊂ R4\{0} of k0 and constants (C±
NN ′)N,N ′∈N.

It then follows from the proof of [68, Lemma 8.1.1] that these estimates continue to
hold if f1 and f± are replaced by

f ≡ f1 · f+ · f− ∈ C∞
0 (M) , (5.3.21)

and all three estimates hold for k ∈ Vk0 ≡ Ṽk0 ∩ V +
k0

∩ V −
k0

.
To reach (5.3.16), let us return to (5.3.20) with f1 replaced by f . We will use the

notation fk introduced below (5.3.16). In this notation, we can then estimate

∣∣∣∂αxh′f̃k∣∣∣ = (2π)−2

∣∣∣∣∣∣∂αx
∫
R4

eil·x‘h′f̃k(l) d4l

∣∣∣∣∣∣
≤ (2π)−2

∫
R4

|l||α|
∣∣∣∣‘h′f̃k(l)∣∣∣∣ d4l

≤ C̃ ′
NN ′

1

1 + |k|N

∞∫
0

l|α|+3

1 + lN ′ dl ,

by using the total convergence of the integral to pull in the differentiation and applying
the estimate (5.3.20). In the last step, we have also changed to spherical coordinates and
collected all constants in C̃ ′

NN ′ . We can always choose N ′ sufficiently large to make the
remaining integral finite. Thus, we find that∥∥∥h′f̃k∥∥∥

Cm
= max

|α|≤m
sup
x∈K′

∣∣∣∂αxh′f̃k∣∣∣ ≤ CN,m
1

1 + |k|N
.

Here, we have used the partial derivatives in the coordinate system ψ covering supp(h′)
as the independent vector fields, and defined K ′ ⊂ M̃ to be a compact region containing
supp(h′) and covered by ψ.

Finally, it remains to act on h′f̃k with the commutator function E, restrict to H+ or Hc

and apply the estimate (5.2.6b) or (5.2.6c) from [39]. Since the support of h′f̃k will in
general not be restricted to M, one has to use these bounds also to determine the decay
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towards U+(Vc) → ∞. Since this corresponds to approaching i+ in a time-reversed Kerr-
de Sitter spacetime, and the estimates require only that the initial data for the forward
solution is compactly supported away from r = r−, the results apply for this case as well.
One obtains

|∂nU+
E(h′f̃k)|H+| . |U+|−α/κ+

C ′
Nn

1 + |k|N
∀k ∈ Vk0 (5.3.22a)

|∂nVcE(h
′f̃k)|Hc | . |Vc|−α/κc

C ′
Nn

1 + |k|N
∀k ∈ Vk0 (5.3.22b)

for any N ∈ N and n ∈ {0, 1}, where the constants C ′
Nn will depend on supp(h′).

As mentioned above, the other two terms can be treated in the same way, and hence for
all N ∈ N and n ∈ {0, 1}, we find constants C ′

Nn depending on the support of h̃ so that

|∂nU+
E±((1− η)[K, h̃]χ±E(fk))|H+ | . |U+|−α/κ+

C ′
Nn

1 + |k|N
∀k ∈ Vk0 (5.3.23a)

|∂nVcE
±((1− η)[K, h̃]χ±E(fk))|Hc | . |Vc|−α/κc

C ′
Nn

1 + |k|N
∀k ∈ Vk0 . (5.3.23b)

Combining the estimates for the three terms then finishes the proof of the lemma.

We are now finally ready to prove Proposition 5.3.6 and conclude the proof of the
Hadamard property.

Proof of Proposition 5.3.6. For this proof, let us fix some (x0, k0) ∈ N that satisfies
BM(x0, k0) ∩ O = ∅. Without loss of generality, let us assume that BM(x0, k0) (when
extended to M̃) intersects H+. The case where it intersects Hc can be handled in the
same way.

We can then assume that a compact neighbourhood K of (x0, k0) is covered by the
+-Kruskal coordinate chart ψ+ as in Lemma 5.3.8. Let us choose an open conic neigh-
bourhood V ⊂ R4\{0}, so that, in the notation introduced in Lemma 5.3.8, BM(K,V )
and BM(K,−V ) both intersect H+ in the interior of a compact set U ⊂ H. Define
h ∈ C∞

0 (H+) as in Lemma 5.3.8.
Let us also introduce an additional function ζ ∈ C∞

0 (M̃) satisfying ζ = 1 on supp(h).
Then, one can split w as [16, 43, 123, 142]

w =(h · A+ · h)
(
trH+ ◦ (ζ · E), trH+ ◦ (ζ · E)

)
(5.3.24)

+ A+

(
(1− h) · trH+ ◦ E, h · trH+ ◦ E

)
+ A+

(
h · trH+ ◦ E, (1− h) · trH+ ◦ E

)
+ A+

(
(1− h) · trH+ ◦ E, ((1− h) · trH+ ◦ E

)
+ wc ,

where the restriction map to H+ is called trH+ . We can now analyse the different pieces
separately. Let us start with the second piece.

We would like to show that it is rapidly decreasing in (x0, k0;x0,−k0). Therefore, we
pick the test function f and conic neighbourhood Vk0 constructed in Lemma 5.3.8 and
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note that, in the notation introduced in this lemma, ÿ�(f ⊗ f)v(k, l) = v(fk, fl) for any bi-
distribution v in D′(M×M) with the coordinates fixed to be +-Kruskal coordinates. We
also note that for any test function f ′ ∈ C∞

0 (M), with supp(f ′) contained in a compact
region K ′ ⊂ M+ which is covered by the +-Kruskal coordinates, one obtains a bound

‖f ′
k‖Cm ≤ C(1 + |k|m) ‖f ′‖Cm

for some constant C depending on m. Thus, by (5.2.6b) or (5.2.6c), one can find some
fixed L and some constant C, so that∣∣hE(fk)|H+

∣∣ ≤ C |U+|−α/κ+
Ä
1 + |k|L

ä
. (5.3.25)

We can now follow the same steps as in the proof of Proposition 5.2.1: We write out
the integral in the definition of A+, including the limit ε → 0. Holding this ε > 0 fixed,
we perform a partial integration and split up the integration into the regions indicated in
Fig. 5.2. Choosing −U0 sufficiently small, combined with the compact support of h, the
integrals over domains D3 and D4 defined in (5.2.7) will not contribute. Following the
estimates for the other terms, we find constants CN,L so that ∀N ∈ N∣∣A+

(
(1− h)E(fk)|H+ , hE(fl)|H+

)∣∣ ≤ CN,L
Ä
1 + |k|−N

ä Ä
1 + |l|L

ä
∀k ∈ Vk0 .

If (k, l) is contained in the conic neighbourhood [43]

{(k, l) ∈ R4 × R4\{0} : 1/2 |k| < |l| < 2 |k| , k ∈ Vk0}

of (k0,−k0), then the polynomial growth in |l| can always be bounded by the decay in |k|
and hence we find that (x0, k0;x0,−k0) is a direction of rapid decrease for this term.

In the same way, one can use the estimates obtained in Lemma 5.3.8 and (5.3.25) for
the other terms in (5.3.24), except for the first one, after possibly replacing k0 and V by
−k0 and −V . We apply the bounds (5.3.16) and (5.3.25) to the estimates in the proof of
Proposition 5.2.1, and construct an open conic neighbourhood of (k0,−k0) in which the
decay outweighs the potential polynomial growth.

This shows that if (x0, k0;x0,−k0) ∈ WF(w), then it must be in the wavefront set of
the first term in (5.3.24).

Thus, let us now consider the first term in (5.3.24). In order to compute its wavefront
set, we start by computing the wavefront sets of trH+ and A+. In the following, we
identify the horizon H+ with R × S2 in the ψ+-coordinate chart and T ∗M with its local
trivialization in these coordinates. We write (U,Ω, ξ, σ) for points in T ∗(R × S2) where
V+ = 0, so Ω = (θ, ϕ+) and σ ∈ T ∗

ΩS2.
The wavefront set of A+ can be obtained by a direct computation [16, 142],

WF′(A+) =
{
(U,Ω, ξ, σ;U ′,Ω, ξ, σ) ∈ T ∗(R× S2 × R× S2)\o : (5.3.26)
ξ > 0 if U = U ′ , ξ = 0 else } .

The wavefront set of the trace map trH+ can be obtained by considering its kernel in
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the +-Kruskal coordinates and then applying [68, Thm. 8.2.4]. It is given by [16, 142]

WF′(trH+) =
¶
(U,Ω, ξ, σ;x, k) ∈ T ∗(R× S× M̃) : ψ+(x) = (U, 0,Ω), (5.3.27)

ψ∗
+(ξ, η, σ) = k for some η ∈ R

}
.

As seen before, Lemma 5.1.5, together with [68, Thm. 8.2.4] allow us to make sense
of the map trH ◦E : C∞

0 (M) → C∞(R× S2) without an intermediate cutoff function ζ .
However, the advantage of inserting ζ is that the maps ζ · E : C∞

0 (M) → C∞
0 (M̃),

trH+ : C∞
0 (M̃) → C∞

0 (R × S2), and h · A+ · h : C∞
0 (R × S2) → E ′(R × S2) are

all properly supported. Therefore, we can apply [68, Thm. 8.2.14] on the wavefront set
of operator kernels under the composition of operators. Together with the results above,
Lemma 5.1.5 and (5.3.1), we then obtain

WF′((h · A+ · h)
(
trH+ ◦ (ζ · E), trH+ ◦ (ζ · E)

)
) (5.3.28)

⊂
¶
(x1, k1;x2, k2) ∈ T ∗(M×M)\o : ∃(y, l) ∈ T ∗

H+
(M̃) :

(xi, ki) ∼ (y, l) , i = 1, 2 ; t d(ψ−1
+ )(ψ+(y))l = (ξ, η, σ) with ξ > 0

}
⊂ N+ ×N+ .

We conclude that (x0, k0;x0,−k0) can only be in WF(w) if (x0, k0) ∈ N+, concluding
the proof of the proposition.

We have thus shown that the two-point function of the Unruh state defined in (5.2.2)
indeed satisfies all necessary condition to be the two-point function of a well-defined,
quasi-free Hadamard state on the CCR-algebra A(M) of the free, real scalar field on the
Kerr-de Sitter spacetime, as long as the angular momentum a of the black hole and the
cosmological constant Λ are sufficiently small.

As a final note, let us try to give an interpretation of the physical situation represented
by the Unruh state. Since observers are usually considered to be in the exterior of the
black hole, let us restrict our attention to region I. Lemma 5.3.4 reveals that if we restrict
to test functions supported in I, the two parts w+ and wc of the Unruh state two-point
function separately satisfy the KMS-condition at temperatures T+/c = (2π)−1κ+/c with
respect to the respective Killing field ∂t+/c defined in (2.4.9).

One interpretation of this is that there are, in the distant past, thermal populations of
in- and out-moving particles at different temperatures, which are also rotating relatively
to each other. This makes it apparent that the Unruh state is not an equilibrium state.

In the light of Lemma 5.2.5, and the particular form of the Unruh two-point function,
one rather comes to the conclusion that it is a non-equilibrium steady state [145] which
is stationary and axisymmetric in the sense that it is invariant under the automorphisms
induced by the Killing vector fields ∂t and ∂ϕ on A(M) .
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6 Summary and discussion

In this thesis, we have discussed different aspects of free, scalar quantum field theory on
asymptotically de Sitter black-hole spacetimes.

We started by trying to answer the question whether quantum effects are able to restore
the strong cosmic censorship conjecture on charged, non-rotating, asymptotically de Sitter
black holes in the Christodoulou-formulation in cases where it is classically violated. This
required numerical computations of solutions to the radial part of the wave equation on
these spacetimes in order to compute the quadratically divergent, leading term of the
energy flux through the inner horizon in the Unruh state. This quadratic divergence was
shown in [16] to be the state-independent leading divergence of the energy flux as long as
strong cosmic censorship is classically violated.

The first part of the thesis consisted of developing and implementing a particular ansatz
to the solution of the radial part of the wave equation. The results did not only show
agreement with existing results of similar calculations [92], but also indicated that strong
cosmic censorship can indeed be restored by the quantum effects.

One interesting feature of the leading divergence of the energy flux through the inner
horizon is that it can change its sign depending on the charge of the black hole and the
mass of the scalar field. This can be interpreted by using the semi-classical Einstein equa-
tion in a linearised form to estimate the backreaction effect of the quantum field onto the
spacetime geometry. In this estimate, one finds that depending on the sign of the leading
divergence of the energy flux at the inner horizon, an observer approaching that horizon
will be either infinitely stretched or infinitely squeezed. Thus, while it becomes impossi-
ble to travel past the inner horizon in any case, the final fate of an observer approaching it
depends on the exact parameters of the spacetime and the scalar field.

Nonetheless, this analysis should be taken with a grain of salt. On the one hand, the
analysis of the backreaction made use of the assumption that the backreaction is weak.
This clearly ceases to be the case in the last Planck length leading up to the horizon where
the quantum effects become sizeable. One potential line of further research on this topic
is thus to go beyond the weak backreaction regime. This would require to find the next
step towards solving the semi-classical Einstein equation (1.0.1) self-consistently, which
we expect to be very difficult.

Beyond that, we found that not only the energy flux, but also its fluctuations diverge
towards the horizon. Hence, close to the Cauchy horizon, one does not only leave the
domain of validity of the weak backreaction assumption, but of semi-classical gravity
in general due to the divergence of curvature and the increasing importance of quantum
fluctuations. Addressing this problem in a satisfying way might require a complete theory
of quantum gravity.

139



Despite of these shortcomings, the numerical results obtained in the first part of this
thesis show that quantum effects are very important when discussing the causal struc-
ture of black hole interiors, and cannot simply be neglected as small or subleading when
compared to classical effects.

Throughout this analysis, only real scalar fields have been considered, while the for-
mation of a charged black hole requires the presence of charged matter. Thus, in the next
chapter, we considered a charged scalar field on the same spacetime. In contrast to the
real scalar field, the charged scalar field can also influence the background electromag-
netic field via the semi-classical Maxwell equations which include the expectation value
of its charge current. The electromagnetic field, in turn, influences the spacetime. There-
fore, for the charged scalar, we are not only interested in the leading divergence of the
energy flux as before, but also in the charge current.

As a first step to study this current, a formula for its renormalized expectation value in
the Unruh state was obtained utilizing the Hadamard point-split renormalization proce-
dure. It was found that the counterterm for the current is finite and even vanishes on the
different horizons. Moreover, it only enters the t-component of the current. This greatly
facilitates the numerical computation of the current by the same methods as developed for
the real scalar field. Moreover, the state-independence of the leading divergence of the
stress-energy tensor at the inner horizon extends from the real to the charged scalar field,
and holds not only for the energy flux, but also for the charge current.

These results allowed us to evaluate the charge current numerically at different points
in the black-hole spacetime. The numerical results in the exterior and on the event horizon
behave as one would expect, and as previously discussed in the literature [130]. However,
we see a mismatch with the results one would expect from an application of the Schwinger
formula [113] for the computation of the current [131–133]. We attribute this discrepancy
to the fact that the Compton wavelength for our scalar field is of the same size as the
radius of the cosmological horizon, and the approximation of a flat spacetime is not valid.
Nonetheless, the numerical results we find in this region indicate that our formula for the
charge current produces the correct results.

In the next step, we considered the current near the inner horizon. There, one can
find a parameter range for the spacetime- and scalar field parameters in which the current
changes its sign. This finding was very surprising, since from the intuitive particle picture
one would expect that quantum effects will always lead to a discharge of the black hole.
Therefore, this result is a clear sign that the behaviour of the quantum field near the
inner horizon cannot be explained entirely using the particle picture. Thus, first-principle
calculations are necessary to determine the behaviour of quantum fields near the Cauchy
horizon of a charged black hole.

Nonetheless, since the sign of the current is always positive, indicating a discharge,
if the black-hole charge is sufficiently close to its maximal allowed value, the quantum
effects seem to be unable to overcharge the black hole and turn it into a naked singularity.

Apart from the current, we also computed the quadratic divergence of the energy flux
of the charged scalar field at the inner horizon of a Reissner-Nordström-de Sitter black
hole. The results were qualitatively similar to those found for the real scalar field on the
same spacetime in an earlier chapter and in [92]. However, for sufficiently large charges
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of the black hole, the change of sign that was observed for the real scalar field disappears,
and the flux remains positive for all black-hole charges considered. This effect seems to
be similar to the effect of an increase of mass for the real scalar field.

The change of sign as a function of the black-hole charge does not only disappear
for the energy flux if the charge of the scalar field is chosen sufficiently large, but for the
charge current, too. All charges tested in this work are very small compared to the electron
charge for black holes of at least solar mass. The same applies to the masses of the scalar
field tested in this work. Thus, it is conceivable that the interesting quantum effects such
as the sign change of the charge current are absent for realistic charges and masses of the
scalar field. Nonetheless, the results demonstrate that in principle, the quantum effects
near the inner horizon can develop features which elude a description in a simple particle
picture.

Since our choice of parameters was mostly due to limitations in our numerical com-
putations, it would be interesting to obtain results for more physical choices of both the
scalar-field charge and mass. This would most likely require different numerical methods.

The results up to that point were very interesting and revealed important features of
quantum field theory in black-hole interiors. However, they were obtained on charged
black-hole spacetimes, while realistically, one would expect astrophysical black holes to
be rotating rather than significantly charged. The reason is that any charge would be
rapidly lost by absorbing surrounding matter of opposite charge or by quantum effects.
Nonetheless, the charged black hole can be considered as a toy model for the rotating
one, since it shares many features, such as an inner horizon, while being easier to handle
mathematically.

As a next step, we wanted to extend the results from charged to rotating black holes.
As a first step in this direction, the third part of the thesis showed how the Unruh state
for a real scalar field can be rigorously constructed on a sufficiently slowly rotating Kerr-
de Sitter black hole with a sufficiently small cosmological constant. Moreover, it was
shown that the state constructed in this way is a Hadamard state not only in the black-hole
exterior up to the future cosmological and event horizons, but also beyond them. The
proof was based on the decay results for solutions to the classical wave equation on Kerr
de-Sitter [39] and combined ideas from different similar proofs obtained in the past [16,
43, 123, 138, 142].

It was shown that the state is invariant under the flows created by any of the Killing
vector fields of Kerr-de Sitter. In particular, the state is stationary. However, it is not an
equilibrium state. Instead, its structure is that of a non-equilibrium steady state. Restricted
to region I, it can be interpreted as the state describing thermal populations of out- and
ingoing particles at different temperatures in the distant past, which are rotating relatively
to each other.

The Unruh state being well-defined and Hadamard is a prerequisite for its application
in the computation of expectation values of observables such as the stress-energy tensor.
It is required for the application of Hadamard point-split renormalization and the use
of the Unruh state as a comparison state for the regularity analysis of other states. A
more specific application of the Unruh state that is only possible thanks to its Hadamard
property is the computation of the leading divergence of the stress-energy tensor at the
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Cauchy horizon of the Kerr-de Sitter black hole. Two especially interesting components
are the energy flux Tvv which is expected to give the leading divergence of the stress-
energy tensor upon transformation to Kruskal-type coordinates, and Tvϕ which is expected
to be connected to the slow-down or speed-up of the rotation of the black hole.

The numerical computation of these components of the stress-energy tensor in the Un-
ruh state is an ongoing project as part of the master thesis of M. Soltani. It would be
interesting to know whether the leading divergence of the stress-energy tensor computed
in the Unruh state is again the state-independent leading divergence for any state that is
Hadamard on the whole Kerr-de Sitter spacetime M. Since there is no classical, linear
violation of strong cosmic censorship in Kerr-de Sitter [38], this requires a version of
the state-independence result in [16] which holds also for arbitrarily small but positive
spectral gaps. This is part of ongoing research.

To summarize, this thesis has discussed the effects of various free quantum fields on the
inner horizon of different black holes. One important observation is that the behaviour of
the quantum fields near the inner horizon cannot be described by a simple particle-picture
estimate, but must be computed using quantum field theory. Another central result is that
in many relevant cases the leading divergence of the energy flux and charge current at the
inner horizon does not depend on the Hadamard state describing the quantum field up to
the inner horizon. In other words, these leading terms are universal in the sense that they
only depend on the parameters of the quantum field and the spacetime.

This dissertation has demonstrated that quantum effects can play a large role in relevant
questions regarding the geometry of black-hole interiors like the validity of the strong
cosmic censorship conjecture. The study of black-hole spacetimes, both classically and
semi-classically, remains an important area of research. The results presented in this
thesis are merely a glimpse at the exciting interaction between quantum fields and black
holes, underlining the significance of a better understanding of the interplay between
general relativity and quantum field theory in overcoming the conceptual puzzles of these
theories.

This understanding is not only imperative for the accurate interpretation of observa-
tional data, but also continues the development of mathematically rigorous approaches
to quantum field theory and serves as a guiding post for the development of a theory of
quantum gravity. It will be interesting to observe how further work in this direction will
shape our apprehension of how the physics at the smallest scales can impact the physics
at the largest scales.
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