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Abstract: Tumorigenesis is a multistep process, during which cells acquire a series of mutations
that lead to unrestrained cell growth and proliferation, inhibition of cell differentiation, and evasion
of cell death. Growing tumors stimulate angiogenesis, providing them with nutrients and oxygen.
Ultimately, tumor cells invade the surrounding tissue and metastasize; a process responsible for
about 90% of cancer-related deaths. Adhesion G protein-coupled receptors (aGPCRs) modulate the
cellular processes closely related to tumor cell biology, such as adhesion and detachment, migration,
polarity, and guidance. Soon after first being described, individual human aGPCRs were found to be
involved in tumorigenesis. Twenty-five years ago, CD97/ADGRE5 was discovered to be induced
in one of the most severe tumors, dedifferentiated anaplastic thyroid carcinoma. After decades of
research, the time has come to review our knowledge of the presence and function of CD97 in cancer.
In summary, CD97 is obviously induced or altered in many tumor entities; this has been shown
consistently in nearly one hundred published studies. However, its high expression at circulating
and tumor-infiltrating immune cells renders the systemic targeting of CD97 in tumors difficult.

Keywords: CD97; ADGRE5; EGF-TM7; aGPCR; cancer; tumor; migration; invasion; metastasis;
angiogenesis

1. Introduction: CD97—A Retrospect

GPCRs are seven-pass transmembrane (7TM) receptors that transduce signals de-
rived from very distinct ligands outside of cells to intracellularly-associated heterotrimeric
G proteins. Among the hundreds of different GPCRs, which are biosensors participating
in multifaceted bodily functions, the 33 aGPCRs in humans are exceptional in structure,
signaling modes, and functions. The unique structural features of aGPCRs include their
unusually large extracellular domain (ECD), which contain many consecutive adhesive
folds that facilitate adhesion (thus, naming these receptors), the presence of a tethered
agonist (TA) hidden within a GPCR autoproteolysis-inducing (GAIN) domain, and their
non-covalent heteromeric two-subunit layout.

The very first aGPCR discovered was mouse F4/80, which was cloned in 1981 [1].
Its orthologue in humans was later named EMR1. In 1994, CD97 became the first human
aGPCR described, and cloned soon afterwards [2,3]. Strongly expressed on leukocytes, the
receptor was included into the cluster of differentiation (CD) categorization of immune cell
surface antigens and given the number 97 [4].

Based on (genome) structure, CD97/ADGRE5, EMR1/ADGRE1 [5], EMR2/ADGRE2 [6],
and EMR3/ADGRE3 [7] were classified next as EGF-TM7 receptors [8,9]. Their adhesive
folds are tandemly arranged epidermal growth factor (EGF)-like repeats, compromising
30–40 amino acids found in many types of proteins that mediate cell-adhesive interactions.
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When the (phylogenetic) sequence relations and topology became clear after the sequenc-
ing of the human genome, aGPCRs/class B2 GPCRs were identified as a unique GPCR
class [10–12]. The former EGF-TM7 receptors comprised their own subfamily and obtained
an “E”, taken from EGF, for the new gene name ADGRE [13]. Here, we use the familiar
“CD97” to designate the protein, and ADGRE5 for the gene that encodes it. This review
first provides a brief overview on the structure, interaction, and expression of CD97, and
then assesses the established links between CD97 and cancer.

2. Overview of CD97/ADGRE5
2.1. CD97-A Prototypic aGPCR by Structure

Hereinafter, the structural elements of CD97, starting with the extracellular N-terminus,
and their functional relevance are described (Figure 1a).

Sixteen ADGRE5 splice variants, of which six are protein-coding transcripts, are anno-
tated (ensembl.org; accessed on 04 February 2022). Three out of six (3/6) coding transcripts
are identical between the automatic Ensembl- and the manual Havana annotation. They
encode alternative-splice variants within the EGF-like repeat region, resulting in three
CD97 isoforms, which differ in their number of these repeats [14] (Figure 1b).

CD97 variability in the EGF-like repeats is enhanced through cell type-specific glyco-
sylation, which regulates cellular adhesion. CD97 only binds CD55, one of its interaction
partners, at the ECD, if the two N-glycosylation sites in the first, and one site in the, second
EGF-like repeat are occupied [15]. Therefore, CD97 is N-glycosylated in leukocytes and
many tumors, but not in smooth and skeletal myocytes [16,17].

One-hundred and ten amino acids at the end of the last EGF-like repeat follow an Arg-
Gly-Asp (RGD) tripeptide sequence (Figure 1a) in humans (though not in mice), a common
pattern in numerous proteins supporting cell adhesion, especially to the extracellular matrix
(ECM). This motif is involved in CD97 binding to integrins on endothelial cells during
tumor angiogenesis [18,19] and CD97-promoted adhesion, and the viability of fibrosarcoma
HT1080 cells [20].

An exceptional structural feature of the aGPCR’s ECD is the GAIN domain covering
the GPCR proteolytic site (GPS) [21] (Figure 1a). Autocatalytic cleavage at the GPS results
in non-covalently bound N-terminal (NTF) and C-terminal fragments (CTF), formerly
described as α- and β-chain for CD97 [14]. Endogenous and ectopic CD97 are normally
cleaved completely.

The experimental observation that deletion of the NTF (∆NTF) increases the basal
activity of CD97 and that of other aGPCRs [22–24] is crucial for understanding their
activation. Deleting the NTF liberates the sequence C-terminal of the GPS acting as an
internal tethered agonist (TA) for the seven-transmembrane (7TM) domain [21]. CD97∆NFT
enhances Ga12/13-dependent activation of RHO [23,25]. It is not necessary that the NTF
and CTF spatially dissociate; intact CD97 heterodimers exist at the cell surface. The
core TA region becomes unmasked in the cleaved GAIN domain, and intra-GAIN domain
movements regulate the level of TA exposure, thereby likely controlling aGPCR activity [26].

Next, the 7TM helical bundle permitting the regulation of the G protein signaling
cascade follows.

The intracellular domain (ICD) of CD97, 46 amino acids in length, contains many
phosphorylation sites (Figure 1a). The last two are part of the PDZ-binding motif (PBM)
at the extreme C-terminus [13]. PDZ is a structural domain composed of 80–90 amino
acids in scaffold proteins, which anchor transmembrane receptors to the cytoskeleton and
hold together signaling complexes [27]. Phosphorylation of CD97(EGF1-5) at S833 (S740
in EGF125) is rapidly induced by mechanical stimuli and disrupts binding of the scaffold
protein DLG1 to PDZ domains [25]. The PBM is critical for CD97-modulated detachment
and mechanical cellular properties.
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Figure 1. Common features of human CD97. (a) Schematic structural organization of CD97. The 
figure depicts the 835 amino acid full-length CD97(EGF1-5) isoform without the signal peptide. 
CD97 has a tripartite structure with the ECD, containing tandemly-arranged EGF-like repeats and 
the GAIN domain, the 7TM helices, and the ICD. The potential N-glycosylation sites in the EGF-like 
repeats are indicated. EGF2-5 can bind Ca2+, which is important for CD97 interactions. CD97 is self-
cleaved at the GAIN domain-covered GPS, resulting in a bipartite structure with the NTF and CTF. 
Circulating sCD97 likely is the released NTF. The N-terminus of the CTF represents the integrated 
TA sequence. The ICD contains many phosphorylation sites. Four are confirmed in more than five 
records in which this modification was assigned using proteomic discovery mass spectrometry 
(phosphosite.org, accessed on 04 February 2022). In CD97(EGF1-5), these sites are S818, T825, S831, 
and S833. The ICD ends up in a PBM. For abbreviations and further explanations, see the running 
text. (b) Exon/intron and protein structure of the three CD97/ADGRE5 isoforms. Alternative 
splicing results in isoforms with three to five EGF-like repeats with distinct binding properties. The 
isoforms are named CD97(EGF125), EGF(1235), and EGF(1-5), according to the EGF-like repeats 
present (wormweb.org, accessed on 15 March 2022). Intron: line; exon: solid bar; 5′/3′-UTR: empty 
bar; signal peptide: red; EGF-like repeats: blue; GAIN: grey; 7TM: black; ICD: orange; scale bar: 1000 
base pairs (c) Interaction partners with the CD97 ECD. CD55 is a glycophosphatidylinositol (GPI)-
anchored transmembrane receptor with four short consensus repeats (SCRs). The first three SCRs 
interact with at least three EGF-like repeats of CD97. Thy-1/CD90 is a small, heavily N-glycosylated 
GPI-anchored transmembrane receptor with a single extracellular immunoglobulin (Ig) domain. 
Thy-1 binding to CD97 on polymorphonuclear cells (PMNC) is calcium-independent and occurs 
through the GAIN domain. Binding to the glycosaminoglycan side chain chondroitin sulfate B (CS 
B), a component of the extracellular matrix and of cell surfaces proteoglycans, is mediated by the 
fourth EGF-like repeat of CD97. Thus, CS B interacts only with CD97(EGF1-5). Binding is Ca2+-
dependent. Soluble recombinant CD97 interacts with integrins on endothelial cells (ECs) via its RGD 
motif and at least three EGF-like repeats. CS B can act synergistically. Interacting domains are 
indicated in dark blue. (d) ADGRE5 scRNAseq analysis in healthy normal human tissues. The 
analysis comprises all protein-coding genes in 144 individual cell type clusters (The Human Protein 
Atlas, proteinatlas.org; accessed on 07 February 2022). In the heat map, only tissues containing the 
clusters “T-cells” and “macrophages” are considered. Additionally, the tissue-specific cell type 
cluster with the highest ADGRE5 level is included (e.g., fat/adipocytes, lung/alveolar cells type 2, 
endometrium/smooth muscle cells, spleen/plasma cells, stomach/gastric mucus-secreting cells). 
Log2 transcripts per million (TPM) + 1 values are given. The figure was created with BioRender.com 
(accessed on 26 April 2022). 

Figure 1. Common features of human CD97. (a) Schematic structural organization of CD97. The
figure depicts the 835 amino acid full-length CD97(EGF1-5) isoform without the signal peptide. CD97
has a tripartite structure with the ECD, containing tandemly-arranged EGF-like repeats and the
GAIN domain, the 7TM helices, and the ICD. The potential N-glycosylation sites in the EGF-like
repeats are indicated. EGF2-5 can bind Ca2+, which is important for CD97 interactions. CD97 is
self-cleaved at the GAIN domain-covered GPS, resulting in a bipartite structure with the NTF and CTF.
Circulating sCD97 likely is the released NTF. The N-terminus of the CTF represents the integrated
TA sequence. The ICD contains many phosphorylation sites. Four are confirmed in more than
five records in which this modification was assigned using proteomic discovery mass spectrometry
(phosphosite.org, accessed on 4 February 2022). In CD97(EGF1-5), these sites are S818, T825, S831,
and S833. The ICD ends up in a PBM. For abbreviations and further explanations, see the running text.
(b) Exon/intron and protein structure of the three CD97/ADGRE5 isoforms. Alternative splicing
results in isoforms with three to five EGF-like repeats with distinct binding properties. The isoforms
are named CD97(EGF125), EGF(1235), and EGF(1-5), according to the EGF-like repeats present
(wormweb.org, accessed on 15 March 2022). Intron: line; exon: solid bar; 5′/3′-UTR: empty bar; signal
peptide: red; EGF-like repeats: blue; GAIN: grey; 7TM: black; ICD: orange; scale bar: 1000 base pairs
(c) Interaction partners with the CD97 ECD. CD55 is a glycophosphatidylinositol (GPI)-anchored
transmembrane receptor with four short consensus repeats (SCRs). The first three SCRs interact with
at least three EGF-like repeats of CD97. Thy-1/CD90 is a small, heavily N-glycosylated GPI-anchored
transmembrane receptor with a single extracellular immunoglobulin (Ig) domain. Thy-1 binding to
CD97 on polymorphonuclear cells (PMNC) is calcium-independent and occurs through the GAIN
domain. Binding to the glycosaminoglycan side chain chondroitin sulfate B (CS B), a component of the
extracellular matrix and of cell surfaces proteoglycans, is mediated by the fourth EGF-like repeat of
CD97. Thus, CS B interacts only with CD97(EGF1-5). Binding is Ca2+-dependent. Soluble recombinant
CD97 interacts with integrins on endothelial cells (ECs) via its RGD motif and at least three EGF-like
repeats. CS B can act synergistically. Interacting domains are indicated in dark blue. (d) ADGRE5
scRNAseq analysis in healthy normal human tissues. The analysis comprises all protein-coding
genes in 144 individual cell type clusters (The Human Protein Atlas, proteinatlas.org; accessed on
7 February 2022). In the heat map, only tissues containing the clusters “T-cells” and “macrophages” are
considered. Additionally, the tissue-specific cell type cluster with the highest ADGRE5 level is included
(e.g., fat/adipocytes, lung/alveolar cells type 2, endometrium/smooth muscle cells, spleen/plasma
cells, stomach/gastric mucus-secreting cells). Log2 transcripts per million (TPM) + 1 values are given.
The figure was created with BioRender.com (accessed on 26 April 2022).
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2.2. Multifaceted CD97 Interactions

The diverse array of interaction partners binding to or heterodimerizing with CD97
are described in the following section, starting with the ECD. Overall, CD97 lacks identified
activating ligands.

There are four known interaction partners binding to the ECD (Figure 1c), none of
which induce G protein signaling. CD55 [28] and Thy-1/CD90 [29], two glycophosphatidyli-
nositol (GPI)-anchored transmembrane receptors, as well as chondroitin sulfate B [30], part
of the proteoglycans attached to proteins, mediate adhesion between immune cells or of
immune cells with (activated) endothelial cells.

Whether CD97 on tumor cells binds these interaction partners is unknown. CD97
and CD55 are co-expressed in several tumor entities [31–37], but the functional relevance
of this relation has not been adequately clarified [38]. In contrast, the significance of the
CD97–CD55 interaction in regulating immune functions has been convincingly shown [39]
and has been receiving scientific attention again recently [40,41]. In mice, CD97 is downreg-
ulated on circulating leukocytes by CD55 [42], a process promoting splenic dendritic cell
homeostasis [43]. Whether homing/adhesion of circulating tumor cells can be mediated by
such a mechanism is an open question. The CD97-binding partner Thy-1 is also involved in
cancer [44]. Thy-1 expression was reported in several tumor types, including liver, myeloid,
skin, and brain tumors. Thy-1 is a cancer stem cell marker and, like CD97, regulates tumor
migration, invasion, and metastasis. However, it is unknown whether, in tumors, CD97
indeed interacts with Thy-1 on the cells present there, such as the tumor cells themselves,
(activated) endothelial cells, or fibroblasts.

The fourth CD97 ECD interaction partner are integrins. In an experimental in vitro and
in vivo study, recombinant soluble CD97, that is the NTF, promoted tumor angiogenesis,
whereby strong interactions of α5β1 and weaker interactions of αvβ3 integrin at endothelial
cells with CD97 contributed [18].

CD97 heterodimerizes with the GPCR lysophosphatidic acid receptor 1 (LPAR1) at
tumor cells, amplifying LPA-dependent signaling via Gα12/13 to RHO [23,45,46]. Targets
of this pathway induce rearrangements of the (actin) cytoskeleton, necessary in various
aspects of tumor cell biology, such as migration and invasion.

In (intestinal) epithelial cells, CD97 localizes to E-cadherin-based adherens junc-
tions [47,48], a cell–cell contact transmitting signals to the actin cytoskeleton. In these
hubs, β-catenin binds to the CD97 7TM/ICD, an interaction that is lost during colorectal
tumorigenesis [49]. Ectopic CD97 strengthens the adherens junctions of enterocytes in mice
by upregulating membrane-bound β-catenin, thus attenuating induced colitis [47].

aGPCRs can be activated by mechanical forces [50–54]. In CD97, mechanical stimuli
induce phosphorylation at the last (and very likely at the second to last) serine located in
the PBM. Phosphorylation or de-phosphorylation is the on/off mechanism for binding
PDZ-domain-containing scaffold proteins to this motif. DLG1 is such an adaptor protein
for CD97 [25].

2.3. Not Everywhere: ADGRE5 in Normal Tissues

CD97 is the only ADGRE family member not restricted to immune cells, as indicated
by bulk RNA sequencing (RNAseq) data [55]. However, single cell (sc)RNAseq data
reveal that in all tissues, the resident or infiltrated bone marrow-derived immune cells are
those with the highest ADGRE5 (The Human Protein Atlas, proteinatlas.org; accessed on
7 February 2022) (Figure 1d) [56]. A few tissue-specific cell types show low to moderate
ADGRE5 levels. This concerns smooth and skeletal muscle cells [16,17], alveolar type 1
(AT1) and AT2 [57], respiratory ciliated, gastric mucus secreting, and extravillus placental
trophoblast cells. Nearly all organs fibroblasts, if present, had low ADGRE5, and the protein
was yet not located in these cells. In summary, the bulk ADGRE5 (sc)RNA data of normal,
and likely also of tumor tissues, mainly represent ADGRE5 in immune cells.

proteinatlas.org
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3. CD97 in Tumors
3.1. Most Tumor-Derived Cell Lines Are ADGRE5-Positive

The majority of tumor cell lines (Cancer Cell Line Encyclopedia, broadinstitute.org;
accessed on 15 February 2022) have moderate to high ADGRE5 levels (Figure 2a), indicating
comparable ADGRE5 levels in the parental tumors. However, it is also possible that
ADGRE5 was induced, or that single tumor cells with high ADGRE5 were selected during
the generation of the cell line and its adaption to monolayer culture.

Only 6.4% of the analyzed 1389 tumor cell lines had log2(TPM + 1) values ≤1.
Among lung cell lines, the ADGRE5 level discriminates between small cell lung cancer
(SCLC)-derived cell lines, many with no or low ADGRE5, and non-small cell lung cancer
(NSCLC)-derived cell lines (Figure 2a).

3.2. No Enrichment of Cancer-Related ADGRE5 Mutations

CD97/ADGRE5 is induced or noticeably upregulated in many cancers (Tables S1–S3),
whereas the corresponding normal tissue-specific cells have little or no ADGRE5 [56]. The
mechanisms leading to the (post)transcriptional CD97/ADGRE5 induction or upregulation
have not yet been characterized.

Genes can be affected by somatic mutations, copy number alterations (CNA), mu-
tations in noncoding regions, dysregulation of microRNA (miRNA), epigenetic changes,
and mutations in chromatin modifiers. The frequency of somatic ADGRE5 mutations,
verified in large cohorts, such as The Cancer Genome Atlas (TCGA), the Cancer Genome
Project (CGP), and the International Cancer Genome Consortium (ICGC), and, thus, their
impact on cancer is very low (cBioPortal for Cancer Genomics, cbioportal.org; accessed on
28 March 2022) (Figure 2b). For example, although ADGRE5 is the most-mutated aGPCR
gene in hepatocellular carcinoma, mutations only occur in 2% of cases [58].

Somatically acquired CNA, comprising deletions or amplifications of DNA fragments≥1 kb,
are particularly common in cancer and make a major contribution to its development and
progression [59]. However, CNAs cannot explain the altered aGPCR mRNA expression in
cancer [60]. Here, ADGRE5 CNAs are not enriched [58].

3.3. Dysregulation of miRNAs and Epigenetic Changes Targeting ADGRE5 in Tumors

Dysregulation of miRNAs, which regulate genes at the posttranscriptional level by
binding to the 3′-UTR of their target mRNA and repressing protein production by destabi-
lizing this mRNA and translational silencing, has rarely been shown for CD97/ADGRE5.
ADGRE5 is a direct target of the tumor suppressor miR-126, often downregulated in tumors.
Ectopic miRNA-126 decreases CD97 by binding to its 3′-UTR in breast cancer MDA-MB-231
cells [61]. miR-503-5p [62] and, as listed in UCSC Genome Browser (genome.ucsc.edu;
accessed on 24 March 2022), miR-320, miR-21-5p/590-5p, and miR-505-3p.1 also control
ADGRE5 expression by targeting this region.

miRNA editing, a posttranscriptional mechanism introducing nucleotide changes,
directs miRNAs to new target genes. Several miRNA editing events are critical regulators
of tumor development. ADGRE5 is a target gene of adenosine to inosine (A-to-I) edited
miR-379-5p [63]. The editing level of miR-379-5p correlates directly to patients’ cancer-
specific survival (TCGA). Edited miR-379-5p inhibits proliferation by promoting apoptosis
in vitro [63]. It confers its phenotype through the downregulation of ADGRE5.

ADGRE5 is also affected by epigenetic changes. In a genome-wide methylation study
of esophageal carcinomas, ADGRE5 was identified as one out of 23 (1/23) genes with
relevance in tumor progression/metastasis [64]. Here, ADGRE5 shows promoter hy-
pomethylation and mRNA upregulation. ADGRE5 is one of four highly methylated genes
associated with poor progression-free survival in ovarian cancer, as seen in an integrated
analysis of methylomic and genomic datasets (TCGA) [65].

broadinstitute.org
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Figure 2. CD97/ADGRE5 in human cancer. (a) ADGRE5 levels in tumor-derived cell lines, grouped
by lineage-derivation, in part with subtypes such as lung cell lines (Cancer Cell Line Encyclopedia,
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depmap.org; accessed on 15 February 2022). Except for small cell lung carcinomas (SCLCs, neuroen-
docrine tumors) and neuroblastoma, a malignant pediatric tumor of the peripheral (sympathetic)
nerve system (PNS), most cell lines have moderate to high ADGRE5. Log2(TPM + 1) values are
given. Ca (carcinoma); central nervous system (CNS); none small cell lung carcinoma (NSCLC)
(b) Frequency of ADGRE5 gene alterations, including somatic mutations, gene amplification, and
deletion among various cancer (sub)types. The mutation frequency of ADGRE5 in cancer is low
(cBioPortal for Cancer Genomics, cbioportal.org; accessed on 28 March 2022; PanCancer Studies,
n = 76,639 samples). (c) CD97 localization and functions in tumors. In normal epithelium, as in
enterocytes, CD97 localizes to E-cadherin-based adherens junctions (left, insert), likely maintaining
intercellular adhesion, whereas in (colorectal) tumor cells, it frequently disappears from these cell
contacts and accumulates inside the cells (middle, insert), where its function is not clarified. In
several tumor entities, such as colorectal, gastric, and gall bladder carcinoma, CD97 is enhanced
in tumor buds, appearing as scattered tumor cells in histological sections, and/or in cells at the
tumor invasion front compared with cells in the tumor center, indicating a key role of CD97 in
tumor invasion. Mechano-dependent phosphorylation at the CD97 PBM modulates cellular detachment.
pCD97 appears in situ in scattered colorectal tumor cells and leukocytes, i.e., cells that dissociate from
other cells or from the ECM during migration and invasion. Detachment likely occurs intracellularly
at the PBM, not at the ECD, as indicated by lost membrane patches of detaching cells seen in vitro
(right insert). (d) CD97-regulated signaling cascades and functions in tumors. CD97 is involved in
epithelial-mesenchymal transition (EMT). In colorectal cancers, junctional proteins such as E-cadherin,
β-catenin (β-cat), and CD97 frequently disappear from adherens junctions. β-catenin emerges in
the cytoplasm and translocates into the nuclei, now acting as a transcriptional co-activator driving
carcinogenesis. Tumor migration and invasion. CD97 heterodimerizes and functionally synergizes with
LPAR1 to promote tumor cell (transendothelial) migration and invasion. The association activates
the heterotrimeric G-protein Gα12/13. Upon GDP-GTP exchange, this complex dissociates into
Gα12/13 and Gβ/γ subunits. The Gα12/13 subunit activates RHO; thus, stimulating various down-
stream signaling molecules (e.g., ERK/AKT and ROCK), to finally result in tumor cell migration
and invasion. In one scenario, activated platelets release dense granules, causing disruption of the
endothelial barrier-enabling tumor cell extravasation and metastasis. Cell detachment. Mechanical
forces induce phosphorylation of CD97 by protein kinase C (PKC) and/or D (PKD) at its intracel-
lular PBM, disrupting CD97 binding to the scaffold proteins such as DLG1. In parallel, the actin
cytoskeleton is modulated and cells detach, which is necessary for enhanced tumor cell migration and
invasion. Tumor angiogenesis. In experimental studies, CD97 interacts with integrin on ECs via its RGD
motif and the EGF-like repeats to promote the angiogenesis associated with tumor progression and
inflammation, and modulates angiogenesis through upregulation of MMP-9 by inducing N-cadherin
expression. The figure was created with BioRender.com (accessed on 26 April 2022).

3.4. Present in Body Fluids of Tumor Patients: Soluble CD97 (sCD97)

A direct consequence of the previously mentioned aGPCR GAIN domain cleavage
is the release of the NTF from the receptor heterodimer. The NTF can be dislocated by
means of receptor ligation or shedding, which likely requires an independent proteolytic
cleavage event [66]. The CD97 ECD has no further cleavage site, except the GPS. Whether
native sCD97 in body fluids includes the NTF remains unclear. Overall, sCD97 detection
is related to malignant tumors and/or inflammation (Table S4). Inconsistent results on
the detection of circulating sCD97 in patients with solid tumors [67,68] may be caused
by the applied self-made ELISAs, which are not well-validated; spike-and-recovery and
linearity-of-dilution experiments have not been performed when applying the various
body fluids.

Theoretically, circulating sCD97 could engage with interactors over large distances
and may be involved in paraneoplastic syndromes of tumor patients. In experimental
in vivo studies, the CD97 NTF stimulated tumor angiogenesis through binding to integrins
on endothelial cells [18]. In vitro, the NTF increased endothelial cell motility and invasion

depmap.org
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in an isoform-specific manner. Consequently, sCD97 from the various isoforms may cause
different (patho)physiological effects by engaging specific ligands.

4. CD97 in Specific Tumor Entities

Here, we summarize the established links between CD97 and certain tumor entities.
Tables S1–S3 contain details such as the methods, number of patients and controls, and
results of each published study.

4.1. CD97 in Carcinomas

In CD97-targeted analyses, samples of solid tumors and the adjacent/corresponding
normal tissue, ideally from the same patient, are compared using immunotechniques with
CD97 antibodies. Immunohistology enables to type and quantify CD97-positive cells and to
localize the receptor subcellularly, but it is time-consuming and subjective. In some studies,
insufficient sample numbers were examined and (new) antibodies were often not validated
for CD97-specificity and/or their suitability to stain paraffin-embedded tissue sections.
Data obtained by hypothesis-free proteomic screening consistently support CD97-targeted
analyses [61,69].

Furthermore, (re)analyses of transcriptomic and methylomic bulk tumor data were help-
ful to relate CD97 to cancer. Accordingly, ADGRE5 is one of the most highly-expressed aGPCR
across all cancers; e.g., in thyroid, gastric, and esophageal carcinomas and melanoma [58,60].
However, because of the extraordinarily high ADGRE5 level in leukocytes, they reflect in
part the (inflammatory) immune response directed to the tumor.

Table S1 contains the detailed published data on CD97 in carcinomas. In summary,
CD97 protein is induced or significantly upregulated in esophageal, thyroid, hepatocellular,
and intrahepatic cholangiocarcinoma, as well as in gall bladder, kidney, and prostate
carcinoma [23,37,38,70–72]. CD97 is regulated at the (post)transcriptional level, since the
corresponding normal cell types have little or no ADGRE5 [56].

Interestingly, in some tumor entities, such as thyroid cancer, CD97 is induced in the most
aggressive anaplastic carcinomas, but not, or rarely, in differentiated carcinomas [70,73],
suggesting an important function of CD97 in invasion and metastasis. In some tumor
entities, such as colorectal, gastric, and gall bladder carcinomas, CD97 is enhanced in tumor
buds and/or in cells at the tumor cell margin compared with cells in the tumor center,
further indicating a key role of CD97 in invasion [32,67,72] (Figure 2c). Tumor budding, the
presence of isolated single scattered cancer cells or clusters of few cancer cells in histological
sections, has prognostic value and is likely an independent predictive biomarker in solid
cancers [74]. Computational simulation suggests that enhanced CD97 in tumor buds or at
the tumor margin is regulated by the tumor microenvironment [75].

CD97 subcellular location changes during the transition to malignancy, suggesting
new context-specific functions. Epithelial cells stick together by lateral junctions, in which
transmembrane proteins, bridging the intercellular space, are anchored to the cytoskeleton
by connecting proteins; ensuring tightening, mechanical stability, paracellular transport,
and signal transduction. In tumor cells that have previously undergone (epi)genetic
changes, epithelial-to-mesenchymal transition occurs, a process in which these junctions
are disintegrated. Former junctional proteins accumulate inside the cells, acquiring new
molecular interactions and, thus, functions. Exemplarily, in normal enterocytes, CD97 likely
stabilizes adherens junctions by interacting with β-catenin [49], whereas in tumor cells it
frequently disappears from these hubs and accumulates intracellularly, where its function
remains unclear (Figure 2c,d). In parallel, β-catenin translocates into the nuclei [49], a
hallmark of Wnt signaling in colorectal cancer [76,77]. Notably, CD97 is not a direct Wnt
target gene [78].

4.2. CD97 in Primary Brain Tumors

ADGRE5 is absent in nervous cells. Among the various glial cells, the supporting
brain cells, only oligodentrocytes are slightly ADGRE5-positive [56]. Gliomas, which
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arise from glial cells, account for 78% of adult malignant brain tumors and show high
molecular heterogeneity (WHO grades I–IV). Among these, glioblastoma multiforme (GBM,
grade IV) is the most aggressive type of primary brain tumor; it pervasively infiltrates
into the surrounding brain tissue. Thus, the current GBM treatment regimens are only
marginally effective.

Importantly, ADGRE5 in the affected cells conferred an invasive phenotype and poor
survival in independent large cohorts of GBM patients (Table S2) [79–81]. CD97(EGF125)
protein is present in GBM, but is absent or low in astrocytomas (WHO grade II and III).
In vitro, CD97 knockout (CD97Ko) decreases migration and invasion of GBM cell lines and
of glioma cells with stem cell properties [79]. CD97 is enriched in membrane fractions of
invadopodia, actin-rich protrusions of invasive GBM cells [80]. Furthermore, glioblastomas
display cellular hierarchies, with self-renewing glioma-initiating cells at the apex. CD97
has been identified as a potential biomarker for such glioma-initiating cells [82], a cancer
population with neural stem cell properties, as well as tumor-initiating abilities and re-
sistance to current therapies. Interestingly, Thy-1/CD90, one of the CD97 ECD binding
partners, is considered a GBM stem cell marker, but it is also present in more differentiated
GBM and many tumor-associated cells [44].

In summary, human studies and experimental approaches consistently indicate that
CD97/ADGRE5 represents a potential therapeutic target in GBM.

4.3. CD97 in Myosarcomas

Smooth and skeletal muscle cells have moderate ADGRE5 [56]. The protein appears not
only at the sarcolemma, but also intracellularly, at the longitudinal sarcoplasmatic reticulum
of skeletal myofibres [17], where CD97 likely binds to or interacts with yet unknown
proteins. In normal muscle cells, CD97 is non-glycosylated. It becomes N-glycosylated at
the EGF-like repeats in many rhabdo- and leiomyosarcomas [16,17]. The latter are even
more diverse: in one third of these tumors, CD97 is completely lost from sarcoma cells,
which are still α-smooth muscle actin-positive.

4.4. CD97 in Leukemias

Circulating and tissue-resident or -infiltrating leukocytes have the highest ADGRE5
levels among the more than 200 specific cell types in the human body [56]. Interestingly,
CD97 was identified as a leukemia-associated marker by applying elaborate methods to
high numbers of patients and healthy individuals (Table S3). (Re)analysis of genome-wide
gene expression data of leukemic compared with bone-marrow (BM)-derived blasts of
healthy individuals, and/or xenotransplantation of leukemic blasts into immunocompro-
mised mice and subsequent transcriptomic/proteomic analysis of growing tumors, are
first-line methodological approaches to select candidates involved in tumorigenesis [83,84].
Flow cytometry is the method of choice to validate these high-throughput data and to
confirm candidates.

By correlating these data to the relevant clinic-pathological parameters of the patients,
CD97/ADGRE5 has been identified as a leukemia-associated candidate in acute myeloid
(AML) [84], (pediatric) acute lymphoblastic [83,85], and chronic lymphocytic leukemia.
CD97 is related to each patient’s subtype of specific leukemia, prognosis-relevant mutations,
as in FLT3, and survival. In AML, CD97 is part of a signature of primary leukemic stem
cell, a low-frequency leukemic subpopulation that possess stem cell properties and that
is supposed to facilitate the development of relapse [84,86]. One of the main functions of
increased CD97 expression in AML is to maintain an undifferentiated state. Thus, in AML,
CD97 on leukemic stem cells is a promising therapeutic target. Furthermore, CD97 is a
marker used in panels to monitor minimal residual disease in AML [87,88]

5. CD97-Regulated Signaling Cascades and Functions in Tumors

Experimental approaches elucidate which steps of tumorigenesis are regulated by
CD97; details of the methods and results of each study are given in Table S5. Figure 2c,d
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visualize and summarize the main findings, while singular studies on specific topics are
not taken into account.

Cells with ectopic CD97 or CD97Ko were applied to various in vitro functional assays
or xenotransplanted into immunocompromised mice, in order to follow tumor growth and
metastasis. Notably, in many experiments, CD97 downregulation was achieved using small
hairpin RNA (shRNA), which decreased the protein only transiently in a part of the cells.
Eventually, cells with partial CD97Ko were applied in functional assays.

Few data indicate that CD97 enhances proliferation and/or inhibits apoptosis of tumor
cells [63,86,89]. Remarkably, although dysregulation of proliferation and/or cell death are
key features of malignant tumors, most in vitro studies do not report data on either topic
when investigating CD97-dependent cellular functions. Either these experiments were not
realized, or, more likely, “negative” data were not published. Data from public databases
(targetgenereg.org; accessed on 24 March 2022) report consistently that the variation in
ADGRE5 transcript expression is correlated to the cell cycle. ADGRE5 mRNA has a peak
phase in G2/M, which is two-fold higher compared with S-phase.

Most data characterize CD97 as a regulator of adherence/detaching, migration, in-
vasion, and metastasis (Figure 2c). Immunohistological findings in humans support the
experimental data: CD97 is especially induced in pervasive invasive tumors, such as GBM
and anaplastic thyroid carcinoma [70,73], and is increased in tumor cell buds at the invasion
front or in cells at the tumor margin of several different carcinomas [32,67,72].

CD97 is not only induced in tumors, but also undergoes changes in its (sub)cellular
location, biochemical structure and/or expression level, resulting in new or altered cellular
functions in various malignant tumors, arising from normal CD97-positive cells, such
as enterocytes, myocytes, and leukocytes. Exemplarily, CD97 is lost at the adherens
junctions of normal enterocytes during epithelial-to-mesenchymal transition, and appears
intracellularly in colorectal tumor cells [49] (Figure 2c,d). Notably, in a few cases, CD97 is
markedly reduced or even vanishes from tumors in which the respective normal cell type
express CD97, such as in leiomyosarcomas, the malignant tumors of smooth muscle [16].

The high number of human studies analyzing CD97 in malignant tumors and relat-
ing these data to clinical patients’ parameters contrast with the low number of studies
investigating CD97-signaling in cancer. We found several CD97-regulated signaling scenar-
ios (Figure 2d).

CD97 can use GPCR-mediated signaling pathways transducing extracellular signals
to G proteins and small GTPases. Ectopic CD97 without the NTF (∆NTF) amplifies serum
response element (SRE)-dependent signaling, indicating Gα12/13-dependent RHO acti-
vation [23,25,45]. Neither other G-proteins nor CREB, NFAT, or NFκB are involved in
CD97-regulated signal transduction [25].

Heterodimerization of CD97 with LPAR1 partly proceeds Gα12/13-dependent sig-
naling. In this way, activation of platelets by CD97 on tumor cells leads to a situation in
which LPA is released from the platelets, giving the tumor cell more invasive properties,
as a result of binding to a CD97-LPA receptor complex [46]. Interestingly, RHO proteins
can interact with a considerable number of targets, directly affecting cellular contractility,
motility, and migration, and (actin) cytoskeleton rearrangement, which is in line with
CD97-regulated cellular functions in normal and tumor cells. For example, CD97Ko clones
of MDA-MB-231 breast cells changed their F-actin structure under shear stress and had an
altered deformability in an optical stretcher compared with wild-type cells [25].

Infrequently, CD97 is associated with regulation of the mitogen-activated protein ki-
nase/extracellular signal-regulated kinase (MAPK/ERK) and phosphatidylinositol
3-kinase/protein kinase B (PI3K/AKT) pathways, either in normal settings [42,47] or
in experimental cancer studies. CD97Ko in prostate DU145 cancer cells downregulated
phospho-ERK (pERK) and pAKT [23]. AKT activation is also decreased in GBM cell lines
after CD97Ko [90]. Consistently, transgenic Adgre5 increased the frequency of pERK- and
Ki67-positive tumor cells in a thyroid cancer model [45]. However, the data situation is
unconvincing, as only Western blot analyses of single samples are available.

targetgenereg.org
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CD97 modulates cellular detachment. Mechanical forces lead to Ser833 phosphoryla-
tion in the CD97 PBM, uncoupling it from PDZ-domain-containing scaffold proteins. The
consequence is that cortical F-actin depolymerizes and the cells detach. Whether CD97
receives and transmits the mechanical stimuli itself and how actin and CD97 interconnect
remains unclear. Interestingly, tumor cells located at the invasion front of a colorectal
carcinoma and several leukocytes in normal spleen and in ectopic lymphoid follicles were
pCD97-positive, indicating detachment in vivo [25].

6. Summary and Future Challenges

Clinical data reveal that CD97 is certainly relevant in tumorigenesis. CD97 is induced
in many tumor entities in which the corresponding tissue-specific normal cells have no or
low ADGRE5. In tumors derived from normal cells with moderate to high CD97/ADGRE5,
CD97 undergoes changes in its subcellular location, glycosylation state, and/or expression
during tumorigenesis, indicating new tumor-specific CD97 functions.

Among the various hallmarks of cancer [91], invasion and metastasis are the most
deleterious in terms of clinical outcome [92] and the ones in which CD97 definitely plays a
role, as seen in many valuable clinical, as well as in vivo and in vitro, experimental studies.
The role of CD97 in the cancer hallmarks “resisting cell death” and “inducing (tumor)
angiogenesis” has infrequently been experimentally shown; these data await (clinical)
confirmation.

CD97 enhances Gα12/13-dependent activation of RHO. Its targets affect cellular con-
tractility, migration/motility, or cytoskeleton rearrangement, consistently with the function
of CD97 in cancer. However, the single tumor-specific signaling pathways and targets have
barely been characterized. Future studies need to define the detailed CD97-regulated sig-
naling steps, the CD97 ligands/interacting partners involved, and the isoforms in specific,
stage-dependent tumor entities.

In summary, CD97 is a potential target for tumor therapy. However, although it is obvi-
ously induced or altered in many tumor entities and is a marker of tumor-initiating/tumor
stem cells in GBM and AML, only one first-stage trial has addressed CD97-directed treat-
ment. To target CD97-dependent microvascular invasion in hepatocellular carcinoma, a
drug-loaded CD97-specific nanocomposite platform was tested for biocompatibility and re-
duced damage of normal tissues [41]. The reason for the reluctance to target CD97/ADGRE5
in tumors is its high level in normal leukocytes, rendering systemic targeting of CD97 in
tumors difficult or even impossible. CD97-directed therapy would also target natural
and therapeutically-induced anti-tumor immune responses, which require the peripheral
immune system [93]. In GBM, the blood–brain barrier is an additional difficulty that
hinders therapeutic agents from reaching glioblastoma tissues. Likely, the identification
of CD97-regulated targets for which therapeutic intervention can be devised and the de-
velopment of CD97-specific agonists and antagonists will open prospective therapeutic
approaches for this receptor.
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