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Abstract 19 

Beavers and muskrats are semi-aquatic, generalist herbivorous rodents regarded as 20 

invasive in southern South America, with high impacts on the ecosystem. They share 21 

some morphological characters of the skull, but different body sizes and phylogenetic 22 

history, showing evident shape differences in young and adult skulls during the 23 

development in both species. Considering their similar ecological specializations, skull 24 

shape could be achieved through different or similar patterns of allometric growth 25 

during ontogeny. We analyzed quantitatively the ontogenetic series including 94 26 

specimens of beavers and muskrats and performed multivariate and bivariate analyses 27 

considering 20 linear measurements. Our main results from the different approaches 28 

suggest high differences in the ontogenetic trajectories of beavers and muskrats, 29 

implying disparity in the muscular, functional, and structural conditions of the skull of 30 

both species. These differences reflect that although skulls might undergo similar 31 

mechanical stress, it is possible to reach a cranial morphology compatible with the 32 

similar behavioral and ecological specializations between both species from patterns of 33 

skull development that are markedly different. 34 

 35 

Keywords: 36 

Development-Cranial Ontogeny-Invasive Mammals-Ecosystem engineer 37 
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1. Introduction 39 

Rodents are among the most speciose mammalian order (over 2600 species), accounting 40 

for more than 40% of all living taxa (Samuels, 2009; Lacher et al., 2016; Mammal 41 

Diversity Database, 2022). The group has spread over all continents and most islands, 42 

occupying almost all terrestrial ecosystems, except Antarctica (Fabre et al., 2012). They 43 

show a wide range of locomotory specializations (e.g., cursorial, scansorial, saltatorial, 44 

gliding, aquatic, fossorial), and their feeding strategies are diverse, including 45 

herbivorous, frugivorous, granivorous, insectivorous, vermivorous, and omnivorous 46 

species (Maestri et al., 2017; Verde Arregoitia and D’Elía, 2021). In the order Rodentia, 47 

the skull morphology is relatively conservative compared with other mammalian orders, 48 

because all rodents are characterized by a set of functional features specialized for 49 

gnawing (a single pair of ever-growing chisel-like upper and lower incisors, elongated 50 

rostrum, diastema separating incisors from cheek-teeth, and large masseter muscles) 51 

(Samuels, 2009; Druzinsky, 2015; Potapova, 2020). However, some muscular 52 

characteristics (related to the disposition of the masseter muscle and development of 53 

temporal muscle) showed consistent differences in the group, with the muscular 54 

arrangement being the most important basis for classifying suborders in living and fossil 55 

rodents (Simpson, 1945; Cox and Jeffery, 2015). Within the order Rodentia, beavers 56 

(Castor canadensis) belong to the family Castoridae (suborder Castorimorpha); they are 57 

semi-aquatic rodents and generalist herbivores of large size (16000-31000 g; Baker and 58 

Hill, 2003). Muskrats (Ondatra zibethicus) do not share the phylogenetic history with 59 

beavers, since they belong to the family Cricetidae (suborder Myomorpha), and the 60 

adult size is smaller, ranging from 700 to 1800 g (Pardiñas et al., 2017). The substantial 61 

difference in body size is present from birth (340-630 g in beavers, 20 g in muskrats; 62 

Jenkins and Busher,1979; Willner et al., 1980), and although both species exhibit shape 63 
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and size differences in the skull, they also share important morphological traits in 64 

adults, such as broad and short braincase, rostrum comparatively broader than other 65 

rodents, nasals expanded in its anterior portion, expanded zygomatic arches, mastoid 66 

process laterally projected, globose tympanic bulla, upper tooth row projected ventrally 67 

respect to the zygomatic arch in lateral view, and external auditory meatus projected 68 

laterally (Figs. 1 and 2). Both species also share the habitat, as they are semi-aquatic 69 

mammalian herbivores, exhibiting considerable niche overlap (Higgins and Mitsch, 70 

2001; Mott et al., 2013), and being frequently observed using lodges together (Mott et 71 

al., 2013). Besides, both sympatric species use vegetation as construction material for 72 

lodges (Jenkins and Busher, 1979; Willner et al., 1980). Beavers and muskrats are 73 

recognized as invasive mammals in southern South America (Argentina and Chile; 74 

Cassola, 2016); they were introduced in Tierra del Fuego to develop a fur industry in 75 

1946 and 1948, respectively (Skyriene and Paulauskas, 2012; Castello, 2013; Anderson 76 

et al., 2019; Deferrari et al., 2019; Anderson, 2023; Deferrari, 2023). Due to their strong 77 

impact on the environment (including Patagonian landscapes), such as alteration of 78 

plant abundance, community composition, invertebrate diversity, and potential nutrient 79 

cycling (Van der Valk and Davis, 1978; Wainscott et al., 1990; Connors et al., 2000; de 80 

Szalay and Cassidy, 2001; Cassola, 2016; Anderson et al., 2019; Deferrari et al., 2019), 81 

these species were termed ecosystem engineers (Wright et al., 2002; Müller-Schwarze, 82 

2011), although Bomske and Ahlers (2021) recently discussed the literature that 83 

supports muskrats as ecosystem engineers, concluding that is necessary long-term 84 

research pointed to uncovering the impacts of muskrats on ecosystems. Beyond these 85 

considerations, beavers and muskrats have convergent characteristics for aquatic life, 86 

e.g., they can remain underwater for up to 15-20 min and have a valvular mouth that 87 

closes behind the incisors to gnaw while submerged (Irving and Orr, 1935; Errington, 88 
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1961; Godin, 1977). In addition, their unrooted incisor teeth are well suited for gnawing 89 

as well as transporting materials through an aquatic environment (Godin, 1977), which 90 

is a highly specialized behavior. 91 

Previous studies about ontogeny in beavers and muskrats have focused on body mass 92 

growth (Errington, 1939; Aleksiuk and Frohlinger, 1971; Simpson and Boutin, 1993), 93 

fetal body length (Bergerud and Miller, 1977), behavior (Patenaude, 1984; DeStefano et 94 

al., 2006; Mott et al., 2011), reproductive conditions (Bond, 1956), diving and 95 

thermoregulatory abilities (MacArthur and Humphries, 1999; MacArthur et al., 2001), 96 

and age or sex estimation (Baumgartner and Bellrose, 1943; Robertson and Shadle, 97 

1954; Van Nostrand and Stephenson, 1964; Hartman, 1992; Otgonbaatar and Shar, 98 

2019). However, the postnatal development of the skull has not been quantified in these 99 

specialized rodents to date. A large part of the morphological diversity of the mammal 100 

skull is the result of changes in ontogenetic trajectories, which are likely to vary with 101 

ecology and phylogeny (Zelditch and Carmichael, 1989; Klingenberg, 1996, 1998; 102 

Meiri et al., 2005; Segura et al., 2021b; Flores et al., 2022). Besides, mammal skull 103 

morphology is also thought to respond to biological pressures such as size variation 104 

(Klingenberg, 1998; Morales and Giannini, 2010) or mechanical limitations (e.g., 105 

Marcy et al., 2016). Evaluating the processes of morphological change during ontogeny 106 

in two species that share habits and morphological characters, it is possible to detect 107 

how selection has altered growth patterns, affecting adult morphology (Creighton and 108 

Strauss, 1986). Similarities in ontogenetic trends are also thought to be the effect of 109 

selection pressures acting to maintain an adult cranial morphology and function (Morris 110 

et al., 2019). 111 

In this context, we analyzed and compared quantitatively the postnatal skull growth 112 

pattern in two well-represented samples of Patagonian populations of beavers and 113 

Jo
urn

al 
Pre-

pro
of



muskrats. The objective of this report was to test the hypothesis that both species will be 114 

similar in their ontogenetic trajectories and allometric trends, considering the several 115 

common morphological traits of the skull, and that they are presumably under strong 116 

functional pressures provided by the similar ecological niche they share (both are 117 

herbivores, semi-aquatic, and lodges builder rodents). We expect ontogenetic 118 

trajectories and allometric trends of both species, will integrate a related morphological 119 

space, aligned (as a continuum) in a single intra- and interspecific growth program. That 120 

growth program responds to comparable functional pressure imposed by the ecology 121 

(habitat, diet, and behavior). Alternatively, despite the similar ecological specializations 122 

of both species, skull shape in adults could be achieved through different pathways 123 

during development (i.e., different growth patterns), considering their different sizes and 124 

phylogenetic legacy. 125 

 126 

2. Materials and methods 127 

2.1. Sample 128 

We analyzed ontogenetic series including 94 specimens of beavers (N=55) and 129 

muskrats (N=39) (Figs. 1 and 2). All the specimens were originally collected in Tierra 130 

del Fuego, Argentina. The material studied is deposited in the mammal collection of 131 

CADIC (Centro Austral de Investigaciones Científicas, Ushuaia, Tierra del Fuego, 132 

Argentina; see Appendix A). For both species, we obtained a continuum from young to 133 

adult specimens, with a range of a cranial size (geometric mean) of 27.29-41.36 for 134 

beavers and 12.09-17.85 for muskrats (Figs. 1 and 2). We considered the geometric 135 

mean as the independent variable because it is a better predictor of the size of an 136 

individual than the commonly used total length of the skull, which is not always 137 

isometric (e.g., Flores et al., 2010). The geometric mean is a size variable derived from 138 
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the Nth root of the product of N measurements; consequently, it has the same 139 

dimensionality as skull measurements (Mosimann, 1970). We performed this analysis in 140 

Past 3.20 (Hammer et al., 2001). 141 

For practical purposes, we used the following age stages: kit (only in beavers), young, 142 

subadult, and adult (described in Appendix B). In beavers, no differences in external 143 

and cranial measurements between adult males and females have been reported 144 

(Osborn, 1953; Bond, 1956). In muskrats, lack of sexual dimorphism in external or 145 

cranial measurements was reported by some authors (Willner et al., 1980), whereas 146 

others reported a strong pattern of sexual size dimorphism (Hood, 2000). In our sample, 147 

both males and females of each species exhibited the same ontogenetic trajectory (i.e., 148 

non-significant slope or intercept differences in bivariate plots, see Fig. 3). For this 149 

reason, we were confident to pool males and females of all ages in a single sample. 150 

 151 

2.2. Skull Measurements 152 

We took 20 linear measurements with a digital caliper (to the nearest 0.01 mm) to depict 153 

the three dimensions of the skull structures (Fig. 4). We chose the skull measurements 154 

to cover different functional aspects and demands of the whole skull (e.g., Baverstock et 155 

al., 2013; Ginot et al., 2018). 156 

 157 

2.3. Study of Growth 158 

Our study of skull growth includes two complementary approaches: bivariate and 159 

multivariate allometries of log-transformed skull measurements, which were applied 160 

separately in both species. We used both approaches because bivariate allometry is 161 

suitable for statistical comparison of slopes and intercepts for two regressions (e.g., two 162 

species), whereas in multivariate allometry size is considered as a latent variable 163 
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affecting all measured variables simultaneously, although it is less suitable for statistical 164 

comparisons of rate values, beyond the allometric trend (see Flores et al., 2015). 165 

 166 

2.4. Multivariate analysis of allometry 167 

To identify the major components of variation and visualize shape changes in a 168 

multivariate morphospace, we performed a principal component analysis (PCA) on each 169 

species across ontogeny and another PCA that combined both species. In such analyzes 170 

we used the Jolliffe cut-off value as an indication of how many principal components 171 

should be considered significant (Jolliffe, 1986); components with eigenvalues smaller 172 

than the Jolliffe cut-off may be considered non-significant. 173 

The method for investigating allometry in a multivariate context was based on Jolicoeur 174 

(1963), in which the data sets are log-transformed and subjected to PCA. The first 175 

principal component (PC1) is then regarded as a size axis, and the allometric coefficient 176 

for each original variable is estimated by the PC1 loading for that variable. We obtained 177 

the first eigenvector from the PCA for each species (performed on a variance-178 

covariance matrix). For each variable, allometry is the statistical deviation of its 179 

corresponding eigenvector element from a hypothetical isometric value, which is 180 

expected to be equal for all elements if the global growth pattern is isometric (size 181 

invariant). The isometric value is calculated as 1/p0.5, with p being equal to the number 182 

of variables (0.224 for the present study), and the statistical deviation from isometry 183 

was estimated using the jackknife application developed by Giannini et al. (2004). This 184 

technique generates confidence intervals (CI) for each element derived from the first 185 

eigenvector. The CI may be inclusive of the isometric value 0.224 and therefore 186 

statistically indistinguishable from isometry, or it may exclude such value and therefore 187 

be considered significantly allometric. The observed element will be considered 188 
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positively and negatively allometric if it is >0.224 and <0.224, respectively. For the 189 

multivariate statistical analyses, we used the R script available from Giannini et al. 190 

(2010) and Flores et al. (2018). 191 

 192 

2.5. Bivariate analysis of allometry 193 

We analyzed the relationship of each variable with the overall size of the skull using 194 

linear (log10) transformation of the power equation of allometry: log y = log b0 + b1 log 195 

x + log e, where y is a skull variable, b0 is the y-intercept, b1 is the slope of the 196 

regression or coefficient of allometry, x is the variable considered as the independent 197 

term, and e is the error term (Alexander, 1985). We tested deviations from isometry by 198 

means of two-tailed t-tests and interpreted the allometric coefficient as isometric when it 199 

was not possible to distinguish it statistically from unity. Thus, we considered negative 200 

allometry if b1<1.0 and positive allometry if b1>1.0. We used reduced major axis 201 

regression (RMA) and a likelihood ratio test for the common RMA slope, following 202 

Warton et al. (2006). Thus, if the species shared a common slope, we compared the 203 

significance of the common normalization constant (y-intercepts) using the Wald test 204 

(Warton et al., 2006). We performed all regression coefficients, statistical parameters, 205 

and tests using the SMATR package of R (Warton and Weber, 2002). 206 

 207 

3. Results 208 

3.1. Analyses of skull variation 209 

In the multivariate analysis of the ontogeny of beavers, including kits, PC1, and PC2 210 

explained 79.28 % and 5.97% of the total variation, respectively (Fig. 5; Jolliffe cut-off 211 

value=0.0023). PC1 showed the ontogenetic trajectory progressively arranged with the 212 

onset (i.e., kits) separated from the remaining specimens, located on the negative end of 213 
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PC1 and on the positive side of PC2 (Fig. 5). Juvenile specimens were distributed 214 

mainly on the negative side of PC1, although some specimens of this age were 215 

positioned on the positive side, relatively overlapping with subadults. In turn, all 216 

subadults were located on the positive side of PC1, and on both sides of PC2. Finally, 217 

the older adult specimens were located on the positive end of PC1, and mostly on the 218 

positive side of PC2, although very few marginal specimens were on the negative side 219 

of PC2, with very little overlap with subadult specimens. The variable with the highest 220 

loadings on PC1 was diastema length (DL), followed by length of nasals (LN) and 221 

height of the coronoid process (HC), whereas the variables with lowest loadings on this 222 

component were breadth of the palate (BP) and of the braincase (BB) (Fig. 6A). To 223 

explore the morphometric variation without extreme age stages, we plotted a 224 

multivariate space excluding the kits, obtaining a notably lower variability compared to 225 

the analysis with the complete sample (Supplementary Material Fig. S1). In the PCA 226 

without kits, PC1 explained only 59.70% and PC2 accounted for 9.71% (Jolliffe cut-off 227 

value=0.0017). The ontogeny arranged on PC1 was related to size, with juvenile and 228 

adult specimens successively placed (Supplementary Material Fig. S1), although the 229 

dispersion was larger than in the analysis including kits. The variable with highest 230 

loadings was rostral height (RH), followed by diastema length (DL), length of nasals 231 

(LN), and rostral breadth (RB). The variables with lowest loadings were breadth of the 232 

braincase (BB) and length of the orbit (LO) (see Supplementary Material Fig. S2). 233 

In the multivariate analysis of the ontogenetic series of muskrats (Fig. 7), PC1 and PC2 234 

explained 83.96% and 3.55 % of the total variation, respectively (Jolliffe cut-off 235 

value=0.0018). The morphospace showed information related to size. Smaller juveniles 236 

had negative scores, adults had positive scores, and subadult specimens occupied an 237 

intermediate position, showing specimens on both sides of PC1. At all age stages, the 238 
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specimen distribution on PC2 was on the positive and negative sides (Fig. 7). The 239 

variable with the highest loading on PC1 was length of orbit (LO), followed by breadth 240 

of occipital plate (BO) and diastema length (DL) (Fig. 6B). The variable with lowest 241 

loading was breadth of the braincase (BB), followed by length of the bulla (LBu) and 242 

length of the lower tooth row (LR) (Fig. 6B). 243 

In the combined morphospace of beavers and muskrats (taking into account kit beavers; 244 

Fig. 8), PC1 explained 98.85% of the total variation (Jolliffe cut-off value=0.0045) and 245 

showed both species completely separated. This PC is clearly related to size and 246 

exhibited the largest species (beavers) to the positive values and the smaller species 247 

(muskrats) to the negative values of this axis. However, kit specimens of beavers were 248 

placed on the negative side of this component, occupying lower values (Fig. 8). PC2 249 

summarized only 0.35% of the total variation and seemed to be related to ontogenetic 250 

trajectories since it is observed that the position of the trajectories is mostly aligned with 251 

this axis, with the juveniles being placed on the positive values, and subadult and adult 252 

specimens being mostly placed on negative values in both species (Fig. 8). PC1 of the 253 

combined analysis without the inclusion of kits is shown in Supplementary Material 254 

Fig. S3, in which the spatial distribution of the ontogenetic trajectories of both species is 255 

similar to that obtained considering the kits but with a lower dispersion of beavers (i.e., 256 

when removing kits, the trajectory did not show specimens positioned on the negative 257 

score of PC1). Because size is an important factor of variation when we analyzed both 258 

species together (i.e., PC1 explains 98.85% of the total variation, see above), we also 259 

explored a multivariate space standardizing the data set. We divided each measure by 260 

the geometric mean (a linear estimator of size; Mosimann, 1970), obtaining also a clear 261 

separation of both species on PC1 and ontogenetic trajectories aligned to PC2 262 
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(Supplementary Material Fig. S4). However, PC1 accumulated only 62.7% and PC2 263 

16.1% of the total variation, respectively (Jolliffe cut-off value=0.023). 264 

 265 

3.2. Multivariate allometric trends 266 

The multivariate allometric trends are provided by analyses with 95% of confidence 267 

intervals and showed notably different patterns in both species (Table 1). Beavers 268 

showed all trends with almost similar percentages, with 35% of the variables showing 269 

isometric growth, 35% being negatively allometric, and the remaining 30% being 270 

positively allometric. On the other hand, muskrats resulted less isometric in their 271 

growth, with only 15% of the variables being isometric and the remaining variables 272 

being allometric (60% negative and 25% positive). 273 

Variables associated with the neurocranium and the feeding apparatus 274 

(splanchnocranium) showed negative and positive allometry, respectively (Table 1). 275 

Despite the profound differences in the allometric trends, we found that beavers and 276 

muskrats shared negative allometry in two variables related to neurocranium (BB and 277 

LBU). Additionally, in beavers, the neurocranial variables BO and LO showed negative 278 

allometry, whereas in muskrats, all neurocranial variables exhibited negative allometry, 279 

except for BO and LO, which showed positive allometry (Table 1). The splachnocranial 280 

variables with positive trends for both species were DL, LN, and ZB. In beavers, the 281 

rostral variables RB and RH were also positively allometric, whereas in muskrats, there 282 

were no additional variables related to feeding apparatus with positive allometry. In the 283 

mandible, LR showed negative allometry in both species, as observed in the upper 284 

toothrow (UR). There are no mandibular variables that show positive allometry, and the 285 

differences between species are restricted to HC and LD, with isometry in beavers and 286 
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negative allometry in muskrats (Table 1). In only four variables (BO, HBU, LO, RH) 287 

the allometric trends showed completely opposite signs, reflecting strong morphological 288 

differences in occipital and rostral regions between both species. 289 

 290 

3.3. Comparative allometry of bivariate results 291 

The ontogenetic trajectories in both species (Supplementary Material Table S5) differ in 292 

all parameters of the linear regression (i.e., slope or intercept, Table 2). We detected 293 

statistically similar slope values in 50% of the variables (10 characters), in 294 

measurements of both neuro- and splanchnocranium (Fig. 3, Table 2). In the remaining 295 

10 variables, beavers showed higher slope values in 8 characters, in variables related to 296 

neurocranium (HBU, HO, IB, LBU) and splanchnocranium (HC, RB, RH, UR), and 297 

only two variables (both neurocranial, BO, LO) showed a higher slope in muskrats. For 298 

the 10 variables in which the slope values were statistically similar, the intercept values 299 

showed significant differences, with muskrats exhibiting higher values of intercept in 300 

seven regressions related to length or to splachnocranial region (CL, DL, LD, LN, ZB, 301 

BP), and only one neurocranial variable (BBu). On the other hand, regressions also 302 

showed that the intercept of beavers was higher than that of muskrats in only three cases 303 

(BB, HD, LR). Additionally, muskrats showed enantiometry (i.e., reduction of the 304 

absolute size during growth sensu Huxley and Teissier, 1936) in one variable, 305 

interorbital breadth (IB) (Table 2). 306 

 307 

4. Discussion 308 

4.1. Ontogenetic pattern of the skull in beavers and muskrats 309 
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Muskrats and beavers are herbivorous, semi-aquatic species that use dentition and 310 

masticatory muscles to feed and construct burrows with vegetation, producing profound 311 

modifications of the landscape (Baker and Hill, 2003; Pardiñas et al., 2017; but see 312 

Bomske and Ahlers, 2021). Such characteristics represent a specialized lifestyle (a 313 

similar ecological niche), generating a potential convergent pattern of growth, acting as 314 

driver of cranial morphology (Harmon et al., 2005). In fact, both species share several 315 

morphological traits in the neuro and splachnochanium (see above). We expected that 316 

the studied species will share a similar growth allometry pattern, reflecting the selective 317 

forces such as ecology and behavior. However, despite the possibly similar mechanical 318 

stress undergone by skulls, both species may have overlapped some aspects of their 319 

ecology occupying different places of a multivariate morphospace, without overlapping 320 

their developmental trajectories (Fig. 8, Supplementary Material Fig. S4). Our main 321 

results suggest profound differences in the ontogenetic pattern of the skull between 322 

beavers and muskrats, which is likely the result of the phylogenetic distance and 323 

differences in size (Figs. 3 and 8, Tables 1 and 2). These results were a possibility since 324 

closely related species are often more similar than more distant ones, which is generally 325 

associated with evolutionary conservation (Üzüm et al., 2015; Tavares et al. 2016). 326 

Previous works in skull variation of rodents showed similar results (e.g., Caumul and 327 

Polly, 2005; Barčiová and Macholán, 2006; Barčiová, 2009; Pérez et al., 2009; Tavares 328 

et al., 2016). In beavers and muskrats, there was no clear association between the 329 

ecosystem engineer condition and skull growth pattern. The selective forces acting in 330 

the skull of two syntopic ecosystem engineers do not drive convergent allometric 331 

growth, despite the shared morphological traits. The differences in trends are spread 332 

throughout the skull (Table 1), affecting both the neurocranial region, such as the 333 

occiput and sense organs (bullae and orbits) and the splanchnocranium, where strong 334 
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differences in the development pattern were observed (both in rostral and mandibular 335 

areas). Considering the shared specialized lifestyle, a conservative pattern of growth 336 

might be expected in the splanchnocranium, as well as a shared negative allometry in 337 

the neurocranial growth, which is considered as a generalized trend in mammals 338 

(Emerson and Bramble, 1993). The observed differences in the ontogeny of beavers and 339 

muskrats (despite their ecological parallelism) are both related to heterochronic events 340 

in shared characters, as well as in morphological differences patent in the adult skull. 341 

For example, allometric trends of the breadth of the occipital plate (BO, negative in 342 

beavers, positive in muskrats) reflect early development of the mastoid process and 343 

lambdoid crest in beavers (Fig. 1), which occurs later in muskrats (Fig. 2). Besides, the 344 

growth trends of the rostral height (RH, positive in beavers, negative in muskrats) 345 

reflect the elevation of the orbit in a more dorsal position on lateral view in beavers 346 

(Fig. 1), which is probably related to more developed swimming habit in beavers than 347 

muskrats. However, although most juvenile stages lack this character, the ability to 348 

move in an aquatic environment is present in beavers from an early age, being these 349 

very precocial for this behavior (Mott et al., 2011; Rosell and Campbell-Palmer, 2022). 350 

In mammals, the negative allometry of the braincase (exhibited herein by both species, 351 

Table 1) is related to the early morphogenesis of the nervous system, which induces the 352 

early development of the membranous bone of the braincase (Emerson and Bramble, 353 

1993; Smith, 1997). The morphogenesis of the nervous system and the development of 354 

the membranous bone occur throughout the fetal and embryonic periods, and tend to 355 

decrease during the postnatal period (Wilson, 2011), being the negative allometry of the 356 

neurocranium plesiomorphic in several groups of mammals (e.g., marsupials, Flores et 357 

al., 2018, 2022; primates, Flores and Casinos, 2011; rodents, Segura et al., 2021a; 358 

carnivores, Segura et al., 2021b). 359 
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 360 

4.2. Growth and muscle arrangement 361 

The space generated between the lateral wall of the braincase (reflected by the trend of 362 

the breadth of the braincase and interorbital breadth) and the zygomatic arches 363 

(reflected by the trend of the zygomatic breadth; Figs. 1 and 2; Table 1), allows the 364 

accommodation of part of the massive masticatory muscles (e.g., temporalis, masseter, 365 

and zygomatico-mandibularis muscles; Turnbull, 1970; Cox et al., 2011, 2012; Cox and 366 

Jeffery, 2015). In this trade-off for space, the larger masticatory muscles reduce the 367 

space available to orbits, which grow with negative allometry in beavers but positive in 368 

muskrats (Table 1 and 2). Muskrats exhibit a myomorph condition of muscle 369 

arrangement, showing isometry of the braincase and an enantiometric condition (i.e., 370 

reduction of absolute size during growth) in the interorbital breadth (Figs. 2 and 3; 371 

Table 2). It determines a pattern of growth deeply different than that of beavers, in 372 

which the braincase shows negative allometry and the interorbital breadth is isometric 373 

(Figs. 1 and 3; Table 1). The dominance of the masseter muscle in rodents allows the 374 

propalinal movements used to crush the food with the cheek teeth (Turnbull, 1970), and 375 

increases the bite force in both the molars and incisors (Maynard-Smith and Savage, 376 

1959; Greaves, 1991). On the other hand, the temporal muscle may increase the 377 

mechanical advantage at the incisor level, which is especially important if the incisors 378 

are used to process harder material (Turnbull, 1970). Besides, a large temporal muscle 379 

helps to resist dislocating forces encountered when hard vegetation is bitten (Ball and 380 

Roth, 1995; Satoh, 1997; Michaux et al., 2007). In beavers, the masseter muscle 381 

accounts for more than 60% of the masticatory muscular mass, and the temporalis 382 

comprises 26.8 % (Cox and Baverstock, 2016). Both muscle masses together promote a 383 

bite force of approximately 80 kg, which is much larger than that predicted from body 384 
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mass (Cox and Baverstock, 2016), and probably necessary for their described lifestyle. 385 

However, in beavers, the deep masseter is relatively smaller (Cox and Baverstock, 386 

2016), whereas in muskrats the deep masseter and superficial masseter are equally 387 

important in size (Cox and Jeffery, 2015). Despite these differences in muscular 388 

arrangement and growth pattern, both species produce an effective and efficient bite, 389 

which permitted them to become highly successful exploiting or modifying aquatic 390 

environments and their associated vegetation. 391 

 392 

4.3. Growth of the feeding apparatus and diet 393 

The mechanical effort required for herbivory, which is the dietary type of feeding of 394 

beavers and muskrats, was linked to the development of a massive skull necessary to 395 

support large masticatory muscles (Michaux et al., 2007; Wilson and Sánchez-Villagra, 396 

2010). But also, was related to the need to withstand the stress resulting from specific 397 

activities like food processing, considering the repeated chewing of fibrous vegetal 398 

material and the biting of hard food (e.g., trunks, branches), and burrows building 399 

(Samuels, 2009). 400 

The elongation of the rostrum, mediated by the positive allometry of the diastema and 401 

nasals (Figs. 1 and 2, Table 1), is a trend shared by both species and by other rodents 402 

(e.g., Segura et al., 2021a). Such extension, which is not accompanied by the condyle 403 

basal length (which scales isometrically), allows a functional separation between 404 

incisors and molars (Druzinsky, 2015). Such separation has not been found in other 405 

mammals (e.g., didelphids, carnivores, primates; Giannini et al., 2010; Flores and 406 

Casinos, 2011; Segura and Prevosti, 2012; Segura, 2014; Tarnawski et al., 2014; Flores 407 

et al., 2018), except for the wild boar Sus scrofa scrofa (Sánchez-Villagra et al., 2017) 408 
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and some diprotodontians (Flores et al., 2022). A proportionally wider rostrum, has 409 

typically been found in rodents and other herbivorous mammals, such as ungulates 410 

(Janis and Ehrhardt, 1988; Samuels, 2009). Besides, the growth rate of the rostrum in 411 

beavers (i.e., rostral height and breadth) was higher than that of the rest of the skull 412 

(Fig. 3), following the general growth of the large alveoli that house incisor teeth, as 413 

reported previously in other rodents (Wilson and Sánchez-Villagra, 2010; Segura et al., 414 

2021a). Regarding the early dental eruption during ontogeny, a character shared with 415 

most members of Rodentia (Jekl, 2009; Tuttle and Buttler, 2020), both species exhibit 416 

negative allometry of toothrows, although the growth rate of the upper row is greater in 417 

beavers (Fig. 3; Table 2). This difference could be a consequence of the different dental 418 

formulas in both rodents, since beavers have four post-canine dental elements, although 419 

in proportion they are less anteroposteriorly lengthened than the three elements of 420 

muskrats (Figs. 1 and 2). 421 

Although several factors, such as allometry (static and ontogenetic), ecological 422 

component (e.g., diet), and the evolutionary history, have been previously reported as 423 

pressures acting on skull shape in rodents (e.g., Caumul and Polly, 2005; Barčiová and 424 

Macholán, 2006; Barčiová, 2009; Pérez et al., 2009; Samuels, 2009; Tavares et al., 425 

2016; Segura et al., 2021a; Barbero et al., 2023), these are not independent, and could 426 

constrain (or stimulate) different phenotypes (Michaux et al., 2007). Besides, the 427 

important size differences between species could also play a significant role in the 428 

structural formation of the skull because the multivariate growth trajectory in beavers 429 

are larger than in muskrats (i.e., beavers with more size variation during postnatal 430 

development); however, the direction of the multivariate ontogenetic trajectories is 431 

comparable but positioned in very different places on PC1 (Fig. 8; Supplementary 432 

Material Fig. S4). Moreover, beavers have a longer gestation period than muskrats (see 433 
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Table 3), and a larger size variation during postnatal ontogeny. The shorter multivariate 434 

growth trajectory and the mostly negative allometry of growth in muskrats (Table 1) 435 

suggest a precocial condition in which they reach a skull configuration comparable to 436 

that of adults from early age stages (Table 3). However, it could be an artifact caused by 437 

the representativeness of the muskrat’s sample, where the kits were absent. In fact, the 438 

exploratory multivariate analysis excluding the kits of beavers (Supplementary Material 439 

Fig. S3) showed similar lengths in growth vectors of both species. It is also possible that 440 

the skull phenotype across development resembles phylogenetic differences since both 441 

species belong to different families. The ontogenetic trajectory divergence could also be 442 

related to the diet, because although both species are herbivorous, muskrats mainly feed 443 

on the roots of water plants, leaves, grasses, twigs, and bark of smaller trees (bushes) 444 

than beavers (Pietsch, 1982; Stefen et al., 2011); therefore, the functional commitment 445 

could be different. Further research could aim to establish and compare the quantitative 446 

postnatal pattern of growth in North American populations of beavers and muskrats, 447 

(which have been separated from the southern populations under study for more than 448 

seven decades), where both species evolved by exploiting other resources and under 449 

different selection pressures, as well as to know the growth trajectories of same species 450 

living alone. 451 
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Legends 804 

Table 1. Results of the multivariate analysis of skull allometry in beavers (B) and 805 

muskrats (M). The observed departure is the difference between the observed allometric 806 

coefficient of a variable (i.e., the corresponding element of the first eigenvector per 807 

variable), and the expected coefficient (i.e., the value under the assumption of isometry, 808 

0.224 for all variables). The remaining columns show jackknife results calculated with 809 

trimmed (m = 1) sets of pseudovalues (see section multivariate analysis of allometry for 810 

details). The resampled allometric coefficient is the value generated by first-order 811 

jackknife resampling. Bias is the difference between the resampled and observed 812 

coefficients. The jackknifed 95% confidence interval (CI) is provided, and the growth 813 

trend indicates the allometric variables are those whose CIs exclude the expected value 814 

under the assumption of isometry (0.224). “=” isometry; “+” positive allometry, “-” 815 

negative allometry. 816 

Table 2. Test for common slopes and common intercepts for the ontogenetic trajectories 817 

of beavers (B) and muskrats (M). b1com, common slope from reduced major axis 818 

analysis; Log(b0)com, common intercept from reduced major axis analysis; Lr, likelihood 819 

ratio (Warton et al., 2006); W, Wald statistic (Warton et al., 2006); Pb1, P-value of Lr 820 

parameter; P(logb0), P-value of W parameter. 821 

Table 3. Biological information about beavers (Castor canadensis) and muskrats 822 

(Ondatra zibethicus) compiled from published literature (Jenkins and Busher, 1979; 823 

Willner et al., 1980; Baker and Hill, 2003; Pardiñas et al., 2017). 824 
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Fig. 1. Three ontogenetic stages (A, young; B, subadult; C, adult) illustrating dorsal, 826 

lateral, and ventral views of the skull, and lateral view of the mandible of beavers. Scale 827 

bar: 10 mm. 828 

Fig. 2. Three ontogenetic stages (A, young; B, subadult; C, adult) illustrating dorsal, 829 

lateral, and ventral views of the skull, and lateral view of the mandible of muskrats. 830 

Scale bar: 10 mm. 831 

Fig. 3. Plots of bivariate regressions for all variables (Log base10) versus geometric 832 

mean. In orange, beavers; in green, muskrats. Abbreviations as in Fig. 4. 833 

Fig. 4. Measurements for dorsal, ventral, lateral views of the skull, and mandible. 834 

Abbreviations: BB, breadth of the braincase; BBU, breadth of the bulla; BO, breadth of 835 

the occipital plate; BP, breadth of the palate; CL, condyle-basal length; DL, diastema 836 

length; HBU, height of the bulla; HC, height of the coronoid process; HD, height of the 837 

dentary; HO, height of occipital plate; IB, interorbitary breadth; LBU, length of the 838 

bulla; LD, length of the dentary; LN, length of the nasals; LO, length of the orbit; LR, 839 

length of lower tooth row; RB, rostral breadth; RH, rostral height; UR, length of upper 840 

tooth row; ZB, zygomatic breadth. 841 

Fig. 5. Plot of the Principal Component Analysis (first and second components) for 842 

beavers, including kit specimens. Light circles, kit specimens; dark circles, young 843 

specimens; light squares, subadult specimens; dark squares, adult specimens. 844 

Fig. 6. Variable loadings on the first principal component of beavers (A) and muskrats 845 

(B). Abbreviations as in Fig. 4. 846 

Fig. 7. Plot of the Principal Component Analysis (first and second components) for the 847 

ontogenetic sample of muskrats. Dark circles, young specimens; light squares, subadult 848 

specimens; dark squares, adult specimens. 849 
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Fig. 8. Plot of the principal component analysis (first and second components) for the 850 

combined ontogenetic samples of beavers and muskrats. Orange squares, beavers; green 851 

circles, muskrats. 852 

 853 

Appendix A. List of specimens used in this study. 854 

Appendix B. Definition of age stages of beavers and muskrats depicted by 855 

morphological characters. 856 

 857 

Supplementary Material 858 

Supplementary Material Fig. S1. Plot of the principal components analysis (first and 859 

second components) for ontogenetic sample of beavers, without the inclusion of kit 860 

specimens. Orange dark circles, young specimens; light squares, subadult specimens; 861 

dark squares, adult specimens. 862 

Supplementary Material Fig. S2. Variable loadings on the first principal component of 863 

beavers, not including kit specimens. Abbreviations as in Fig. 4. 864 

Supplementary Material Fig. S3. Plot of the principal component analysis (first and 865 

second components) for the combined ontogenetic samples of beavers and muskrats, 866 

without the inclusion of kits of beavers. Orange squares, beavers; green circles, 867 

muskrats. 868 

Supplementary Material Fig. S4. Plot of the principal components analysis (first and 869 

second components) for the combined ontogenetic samples standardized with the 870 

geometric mean of beavers and muskrats, without the inclusion of kits of beavers. 871 

Orange squares, beavers; green circles, muskrats. 872 
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Supplementary Material Table S5. Summary of regressions of the cranial measurements 873 

on the geometric mean of beavers and muskrats. Abbreviations: n, sample size; R2, 874 

adjusted coefficient of determination; log b0, y-intercept; b1, coefficient of allometry 875 

(Reduced Major Axis). Abbreviations of measurements as in Fig. 4. 876 

 877 
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Appendix A 

List of specimens used in this study 

Beavers (Castor canadensis) N=55 PCC (Proyecto Castor Canadensis):  

Females: 305; 307; 356; 360; 542; 554; 555; 566; 570; 572; 573; 577; 664; 672; 675; 

679; 681; 682; 701; 708; 718; 719; 720. 

Males: 306; 313; 314; 359; 551; 560; 563; 564; 565; 575; 663; 669; 674; 676; 683; 684; 

691; 693; 695; 699; 710; 714; 716; 717; 775; 776; 777; 784. 

Unsexed: 308; 544; 576; 673. 

Muskrats (Ondatra zibethicus) N=39 POZ (Proyecto Ondatra Zibethicus):  

Females: 35; 40; 166; 184. 

Males: 19; 22; 25; 26; 43; 57; 137; 147; 157; 163; 227. 

Unsexed: 21; 23; 36; 38; 42; 49; 50; 52; 56; 96; 108; 110; 145; 146; 153; 160; 164; 165; 

185; 187; 188; 189; 208; 210. Jo
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Appendix B 

Definition of age stages of beavers (Castor canadensis) and muskrats (Ondatra 

zibethicus) depicted by morphological characters 

 

Castor canadensis 

Kit. Unfused spheno-occipitalis synchondrosis. Fourth element in process of eruption. 

Wide external auditory meatus, at the same level in the horizontal plane as the 

zygomatic arch. 

Young. Unfused spheno-occipitalis synchondrosis. Fourth element erupted. Wide 

external auditory meatus still positioned at the same level in the horizontal plane as 

the zygomatic arch. 

Subadult. Unfused spheno-occipitalis synchondrosis. Fourth element erupted. Narrow 

external auditory meatus positioned in the horizontal plane between the zygomatic 

arch and the suture squamosa. 

Adult. Partially fused spheno-occipitalis synchondrosis. Fourth element erupted. 

Narrow external auditory meatus positioned in the horizontal plane above the 

zygomatic arch at the level of the suture squamosa. 

 

Ondatra zibethicus  

Young. Unfused spheno-occipitalis synchondrosis. No lambdoid crest. Foramen 

magnum in a ventral and posterior position. Occipital condyles at the same level as 

the occipital plane in lateral view. Interparietal bone visible in dorsal view. Skull 

length less than 50 mm (Otgonbaatar and Shar, 2019). 

Subadult. Unfused spheno-occipitalis synchondrosis. Lambdoid crest barely marked. 

Foramen magnum in a ventral and posterior position. Occipital condyles at the same 
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level as the occipital plane in lateral view. Interparietal bone visible in dorsal view. 

Skull length less than 60 mm (Otgonbaatar and Shar, 2019). 

Adult. Fused spheno-occipitalis synchondrosis. Lambdoid crest notably marked. 

Foramen magnum in a posterior position. Occipital condyles exceed the level of the 

occipital plane in lateral view. Interparietal bone is barely visible in the dorsal view. 

Skull length greater than 60 mm (Otgonbaatar and Shar, 2019). 
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Variable Species Observed 

departure 

Resampled 

Allometric 

coefficient 

Bias 95% CI Growth 

trend 

BB B -0.218 0.005 0.005 -0.039-0.050 - 

 M -0.140 0.084 0.001 0.058-0.110 - 

BBU B -0.022 0.202 -0.008 0.130-0.273 = 

 M -0.089 0.135 0.007 0.114-0.156 - 

BO B -0.177 0.046 0.001 0.005-0.087 - 

 M 0.17 0.394 -0.007 0.341-0.446 + 

BP B 0.065 0.289 -0.014 0.139-0.438 = 

 M 0.017 0.24 -0.002 0.213-0.267 = 

CL B 0.001 0.225 -0.003 0.197-0.253 = 

 M 0.012 0.236 0.000 0.221-0.251 = 

DL B 0.111 0.335 -0.008 0.306-0.364 + 

 M 0.087 0.311 0.001 0.295-0.326 + 

HBU B 0.071 0.294 -0.010 0.265-0.324 + 

 M -0.123 0.1 0.005 0.074-0.126 - 

HC B 0.002 0.226 0.002 0.191-0.261 = 

 M -0.033 0.19 -0.001 0.158-0.223 - 

HD B -0.050 0.174 0.000 0.139-0.209 - 

 M -0.042 0.182 -0.002 0.149-0.215 - 

HO B 0.023 0.246 -0.017 0.216-0.277 = 

 M -0.025 0.198 -0.002 0.182-0.214 - 

IB B -0.020 0.204 -0.001 0.165-0.243 = 

 M -0.208 0.016 -0.002 -0.022-0.054 - 

LBU B -0.048 0.176 0.006 0.134-0.217 - 

 M -0.137 0.087 0.004 0.065-0.108 - 

LD B 0.034 0.258 0.002 0.217-0.299 = 

 M -0.021 0.202 0.004 0.193-0.211 - 

LN B 0.090 0.314 -0.006 0.264-0.364 + 

 M 0.073 0.297 -0.001 0.277-0.316 + 

LO B -0.181 0.043 0.017 -0.010-0.096 - 

 M 0.244 0.468 -0.026 0.441-0.494 + 

LR B -0.068 0.156 0.001 0.124-0.188 - 

 M -0.12 0.103 -0.002 0.084-0.122 - 

RB B 0.045 0.268 0.006 0.229-0.308 + 

 M -0.007 0.217 0.001 0.203-0.231 = 

RH B 0.127 0.350 -0.002 0.307-0.394 + 

 M -0.042 0.182 0.015 0.155-0.209 - 

UR B -0.102 0.122 0.011 0.087-0.157 - 

 M -0.091 0.133 -0.002 0.115-0.151 - 

ZB B 0.027 0.251 -0.008 0.233-0.269 + 

 M 0.04 0.263 -0.001 0.243-0.284 + 
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 Common slope  Common intercept 

Variable Lrb1 Pb1 b1com  W (logbo) P(logbo) Log (b0)com 

BB 0.4740 0.4911 0.6361  32.2682 1.342E-08 B> M 

BBU 3.1941 0.0739 0.9979  33.0430 9.014E-09 M> B 

BO 47.2230 6.334E-12 M> B     

BP 2.1912 0.1387 1.2542  9.3897 0.0021 M> B 

CL 0.0825 0.7738 1.2042  183.1422 0 M> B 

DL 1.3244 0.2497 1.5431  402.7185 0 M> B 

HBU 16.3582 5.242E-05 B> M     

HC 16.2398 5.580E-05 B> M     

HD 0.0638 0.8004 1.0446  5.1689 0.0229 B> M 

HO 11.0493 0.0008 B> M     

IB 8.5504 0.0034 B> M     

LBU 5.8967 0.0151 B> M     

LD 1.7640 0.1841 1.1124  36.9583 1.206E-09 M> B 

LN 0.0361 0.8491 1.5265  80.4787 0 M> B 

LO 56.1904 6.572E-14 M> B     

LR 3.2845 0.0699 0.7181  24.3552 8.010E-07 B> M 

RB 11.7812 0.0005 B> M     

RH 4.6860 0.0304 B> M     

UR 7.4995 0.0061 B> M     

ZB 0.4149 0.5194 1.3083  57.5306 3.330E-14 M> B 
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Species Gestation 

period 

Litter size Birth weight Adult weight Weaning Sexual 

maturity 

Life span Social 

system 

Castor 

canadensis 

107 days 3-4 340-630 g 16000-31000 g 3 months 1.5 years 10 years monogamy 

Ondatra 

zibethicus 

25-30 days 4-8 20 g 700-1800 g 1 month 1 year 3-4 years monogamy 
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