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46 allée dItalie, F-69364 Lyon Cedex 07, France
4 Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel - F-38000 Grenoble, France
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Abstract – Based on direct numerical simulations with point-like inertial particles, with Stokes
numbers St = 0, 0.5, 3, and 6, transported by homogeneous and isotropic turbulent flows, we
present in this letter for the first time evidence for the existence of Markov property in La-
grangian turbulence. We show that the Markov property is valid for a finite step size larger
than a Stokes-number–dependent Einstein-Markov coherence time scale. This enables the de-
scription of multi-scale statistics of Lagrangian particles by Fokker-Planck equations, which can
be embedded in an interdisciplinary approach linking the statistical description of turbulence with
fluctuation theorems of non-equilibrium stochastic thermodynamics and local flow structures. The
formalism allows estimation of the stochastic thermodynamics entropy exchange associated with
the particles Lagrangian trajectories. Entropy-consuming trajectories of the particles are related
to specific evolution of velocity increments through scales and may be seen as intermittent struc-
tures. Statistical features of Lagrangian paths and entropy values are thus fixed by the fluctuation
theorems.
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Introduction. – The physics of particles submerged
in fluids has played a central role in the development of
statistical mechanics, and in our current understanding
of out-of-equilibrium systems. Inertial particles are inclu-
sions in the flow which are denser or lighter than the fluid,
and have a size smaller or larger than the smallest rele-
vant flow scale (the scale of the smallest eddies, also called
the flow dissipative scale). Such particles are carried by
the fluid, but they also have their own inertia, and there-
fore the fluid and the particles have different dynamics.
In the limit of point-wise particles with negligible inertia,
the particles become Lagrangian tracers, which perfectly
follow the fluid elements. In all these two-phase systems
the mechanisms that explain how turbulence affects the

(a)E-mail: andre.fuchs@uni-oldenburg.de (corresponding
author)

motion of the particles are not completely clear. As an
example, turbulence can both enhance or hinder the set-
tling velocity of inertial particles [1]. For heavy particles,
an initially homogeneous distribution of particles may, af-
ter interacting with a turbulent flow, regroup into clusters
forming dense areas and voids, in a phenomenon called
preferential concentration where turbulence somehow un-
mixes the particles [2]. Thus, the velocity and statistics of
tracers and inertial particles is also different: while tracers
sample the flow homogeneously, inertial particles only see
specific regions of the flow, with either low acceleration
or vorticity, and their velocity can differ significantly from
the fluid velocity. Only in the last decades sufficient time
and spatial resolution have been achieved in experiments
and numerical studies to allow the analysis of these phe-
nomena. Frequently new numerical and experimental data
has been in contradiction with theoretical models, and
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previous knowledge on fluid-particle interactions had to
be reconsidered even in simplified cases [3]. Furthermore,
there are many open questions concerning inhomogeneous
flows [4], finite-size [5,6] and non-spherical particles [7],
among others. More recently, colloidal particles were used
in the first experiments to verify fluctuation relations such
as the Jarzynski equality [8], which links the statistics of
fluctuating quantities in a non-equilibrium process with
equilibrium quantities. Colloidal particles were also used
to verify the thermodynamic cost of information process-
ing [9] proposed by Landauer. Fluctuation theorems for
more general problems, in which a physical system is cou-
pled with (and driven by) another out-of-equilibrium sys-
tem, would open potential applications in other complex
coupled systems as in soft and active matter. But what
fundamental statistical relations are satisfied by particles
that interact with a complex and out-of-equilibrium turbu-
lent flow? Brownian motion set the path for the study of
diffusion and random processes. It becomes more compli-
cated if the particle motion is driven by turbulence; even
a simple point-wise passive particle provides a challenge
in the modeling of many aspects of its dynamics [10,11].

Friedrich-Peinke approach to turbulence. – In
this letter we show that the Markov property is valid
for the dynamics of dense sub-Kolmogorov particles cou-
pled to a turbulent velocity field of three-dimensional
homogeneous and isotropic turbulence (HIT) at inertial
range time scales. To this end we use pseudo-spectral
direct numerical simulations (DNSs) solving the incom-
pressible Navier-Stokes equation with a simple point par-
ticle model [12]. To characterize HIT it is customary
to study the statistics of Eulerian velocity increments
ur = [u(x + r) − u(x)] · r/|r| for scales r = |r|. How-
ever, two-point statistics of velocity increments do not
fully characterize small-scale turbulence [13], and many
attempts at dealing with multi-point statistics have been
considered. One way to do this is to use the Friedrich-
Peinke approach [14], in which the stochastic dynamics of
velocity increments ur are considered as they go through
the cascade from large to small scales r. A central as-
sumption is that the evolution of the stochastic variable
ur possesses a Markov process “evolving” in r. Previous
studies showed that ur can be considered as Markovian
to a reasonable approximation [14–16], at least down to
a scale close to the Taylor scale [16,17]. Furthermore, ur

satisfies a diffusion process [18]

−∂rur = D(1)(ur, r) + [D(2)(ur, r)]1/2Γ(r), (1)

where a linear dependence on the value of the increment
for the drift coefficient D(1)(ur, r), and a quadratic
dependence for the diffusion coefficient D(2)(ur, r), were
found [13,16,19–21]. Further details on the noise term
Γ(r) and the empirical estimation of the drift and diffusion
coefficients D(1,2)(ur, r) are given in the Supplementary

Material Supplementalmaterial.pdf (SM)1 (appen-
dix A).

Up to now, this approach has been applied to an Eule-
rian description of turbulent flows. Based on the general
interest in the relation between Eulerian and Lagrangian
properties of turbulence the question of the application
of this approach and, in particular, the verification of the
necessary condition of Markov property for Lagrangian
turbulence and inertial particles arises.

DNS of inertial particles in turbulence. – To this
end we use DNSs of forced HIT. A large-scale external
mechanical forcing is given by a superposition of modes
with slowly evolving random phases, following standard
practices for its temporal integration and de-aliasing pro-
cedures. An adequate spatial resolution of the smallest
scales, i.e., κη � 1 is chosen [22]. Here, η is the Kol-
mogorov or dissipation length scale, η = (ν3/ε)1/4 (where
ε is the kinetic energy dissipation rate, and ν the kinematic
viscosity of the fluid), and κ = NDNS/3 is the maximum
resolved wave number in Fourier space (with NDNS = 512
the linear spatial resolution in each direction). The DNSs
are characterized by a Reynolds number based on the Tay-
lor microscale of Reλ ≈ 240 (see [2] for details). Inertial
particles were modeled using the Maxey-Riley-Gatignol
equation in the limit of point heavy particles, which for
a particle with velocity v in the position xp submerged in
a flow with velocity u, reads

v̇(t) = [u(xp, t) − v(t)]/τp, (2)

with τp the particle Stokes time. For tracers, τp = 0.
There is no particle-particle or particle-fluid interaction
(i.e., we use a one-way coupling approximation). The dis-
tinction between particles is quantified by the Stokes num-
ber St = τp/τη (the ratio of the particle relaxation time
to the Kolmogorov time, defined as τη = [ν/ε]1/2).

Cascade trajectories. – To study the Markov prop-
erty of particles trajectories, we study v(t) (the La-
grangian velocity of the particle at time t) for St > 0,
and for Lagrangian tracers with St = 0 the analysis is
performed using v(t) = u(xp, t) (the velocity of the fluid
element where the tracer is located). Building now ve-
locity increments in time instead of the commonly used
spatial scales r (ei corresponds to the unitary vector in
the direction x, y, or z specified in the figures)

uτ = [v(t + τ) − v(t)] · ei, (3)

we define for every particle trajectory a “cascade trajec-
tory” (or “sequence” of velocity increments at decreasing
scales) [u(·)] = {uT , . . . , uτf

} for different time separations
or time scales τ , from the initial T to the final time scale
τf with T > τf . The notation [u(·)] indicates the entire
path through the hierarchy of time scales from large to

1See the SM for the estimation of Kramers-Moyal coefficients
and details on the statistics of entropy fluctuations and cascade
trajectories.
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small scales instead of a distinct value uτ ; T ≈ 120τη and
τf ≈ 0.2τη were chosen as references. The advantage of a
Lagrangian perspective compared to a spatial (Eulerian)
perspective is that Lagrangian particle trajectories have
a clear physical meaning: each particle follows a path ac-
cording to the fluid dynamics and its own inertia. In other
words, the time increments have a direct interpretation as
values corresponding to changes in the velocity along tra-
jectories as the system evolves. In the Eulerian case, the
spatial distances (or the “evolution” in r) have an indirect
interpretation in the context of a Fokker-Planck formula-
tion of the dynamics.

Results. – To verify the existence of the Markov prop-
erty for Lagrangian turbulence, we integrate three sets of
1.3 × 105 inertial particles, respectively with St = 0, 0.5,
3, and 6. In fig. 1 a qualitative validation of the Markov
property based on the alignment of the single conditioned
p(uτ2 |uτ1) and double conditioned p(uτ2 |uτ1 , uτ0) probabil-
ity density functions (PDFs) of datasets of increments for
a chosen set of three different time scales τ0 > τ1 > τ2

is shown as contour plots. Each scale is separated by
Δτ ≈ 13τη, which is equal to the Einstein-Markov co-
herence time scale ΔEM for St = 3. As described below
and in the discussion accompanying fig. 2, ΔEM is the
smallest time scale for which the Markovian assumption
can be considered valid. For Markovian processes the re-
lation p(uτ2 |uτ1) = p(uτ2 |, . . . , uτ1 , uτ0) holds. For finite
datasets,

p(uτ2 |uτ1) = p(uτ2 |uτ1 , uτ0) (4)

is commonly assumed to be a sufficient condition. The
close alignment between the PDFs (black and red solid
lines in fig. 1) confirms the validity of the Markov property.
Note that while fig. 1 shows results for St = 3, all our
datasets give similar results.

In fig. 2 the Markovian approximation is checked sys-
tematically for different values of Δτ , using the Wilcoxon
test, which is a quantitative and parameter-free test
that determines the Einstein-Markov coherence time scale
ΔEM (see [16,17] and the SM, appendix G, for details and
the description of essential notions). This test is a reliable
procedure to validate eq. (4) [16,17]. Based on this anal-
ysis, the Markovian approximation is valid for time scales
larger than or equal to this St-dependent critical time sep-
aration ΔEM ≈ 7, 10, 13 and 16τη for St = 0, 0.5, 3, and
6, respectively (see fig. 2(a)). Accordingly, the complex-
ity of the dynamics of inertial particles in turbulent flows,
expressed by the evolution of the stochastic variables uτ

at decreasing time scales, can be treated as a Markov pro-
cess, with an Einstein-Markov coherence time scale that
increases with St. Our analysis presented in the SM (ap-
pendix C and D) demonstrates that at the scale where the
Markov property holds the non-Gaussian behavior is still
present and that our results are well linked to the range
containing Lagrangian small-scale intermittency. Further-
more, we see that ΔEM is the same (at fixed St) for all

Fig. 1: Visualization of Markov properties at St = 3. Contour
plots showing single conditioned (black solid lines) and double
conditioned PDFs (red solid lines) of velocity increments for
three different time scales τ0 > τ1 > τ2, each separated by
Δτ = ΔEM , which is the Einstein-Markov coherence time scale
for St = 3. The conditioned value for the large increment was
chosen here as uτ0 = 0 (a) and uτ0 = −2 (b). Note that the
choice of uτ0 changes the amount of events as well as the center
of the double conditioned PDF. We use the normalization of
the increments introduced in [16] with σ∞ =

√
2σ, where σ is

the data standard deviation.

Fig. 2: Wilcoxon test for the particles trajectories: for the x
component of the particles velocity for all Stokes numbers stud-
ied here as a function of Δτ (a). Same test but for all three
velocity components at St = 3 (b). Note that the normalized
expectation value t(τ, Δτ ) is supposed to be close to 1 if the
Markovian assumption is valid (see [16,17] and the SM (ap-
pendix G) for details and the description of essential notions).

velocity components (see fig. 2(b)). We performed a sim-
ilar analysis for the fluid velocity at the particle position
u(xp, t) shown in the SM (appendix F). Interestingly, the
Einstein-Markov time scale decreases with increasing St,
unlike the behavior observed for v(t). While this remark-
able behavior and the effect this has on the fluid velocity
observed by the particles require further study, it may
be related to the fact that a larger St number implies a
larger drag, and therefore a tendency of the system to dis-
sipate energy more efficiently and faster. This would result
in a reduction of the associated Einstein-Markov time of
u(xp, t).

The results shown above can be linked to stochas-
tic thermodynamics [20,23] (also called stochastic
energetics [24]), developed for many different physi-
cal systems [25–28], and to integral and detailed fluc-
tuation theorems. Experimental studies of stochastic
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thermodynamics mainly focus on nanoscale or quantum
systems, or when dealing with classical systems, on bio-
logical systems [29,30], which are assumed to be well off
the thermodynamic limit so that the probabilistic nature
of balance relations becomes clearer. We test these theo-
rems starting with the integral case as it should be more
robust.

For the case of passive particles, it is the turbulent
surroundings that impose the non-equilibrium condition.
Turbulence can be understood, and especially its energy
cascade, as a process leading a fluid under specific condi-
tions and parameters (the Reynolds number) from a non-
equilibrium state into another non-equilibrium state, by
the combination of energy injection and dissipation. In the
spirit of non-equilibrium stochastic thermodynamics [31],
by using the Fokker-Planck equation, it is possible to as-
sociate to every individual trajectory [u(·)] a total entropy
variation [20,23,24,28,31] given by the sum of two terms,

ΔStot [u(·)] = ΔSsys [u(·)] + ΔSmed[u(·)]. (5)

A thermodynamic interpretation of this quantity based on
the relation between heat, work, and inner energy, can be
given [24,28,31]. ΔSsys is the change in entropy associ-
ated with the change in state of the system for a single
realization of a process that takes some initial probabil-
ity p (uT , T ) and changes to a different final probability
p(uτf

, τf ). It is simply the logarithmic ratio of the proba-
bilities of the stochastic process, so that its variation is

ΔSsys[u(·)] = − ln

(
p

(
uτf

, τf

)
p (uT , T )

)
. (6)

The other term, the entropy exchanged with the surround-
ing medium ΔSmed from the initial to the final time scale,
measures the irreversibility of the trajectories:

ΔSmed [u(·)] =
∫ τf

T

[
∂τuτ

D(1) − ∂uτ D(2)/2
D(2)

]
dτ. (7)

Then, the dynamics of inertial particles coupled to a tur-
bulent flow are characterized by the empirically estimated
drift and diffusion coefficients D(1,2) (see the SM for a pre-
sentation of D(1,2) for all Stokes numbers considered). The
knowledge of drift and diffusion coefficient allows to deter-
mine for each [u(·)] an entropy value, for which the ther-
modynamic fluctuations can be investigated. The dashed
line in fig. 3(a) corresponds to the integral fluctuation the-
orem (IFT), which can be expressed as

〈e−ΔStot〉N =
∫

e−ΔStotp (ΔStot) dΔStot = 1. (8)

Figure 3(a) shows the empirical average as a function
of the number N of trajectory sequences [u(·)] used for
computing the average. The set of measured cascade tra-
jectories results in a set of total entropy variation values
ΔStot (the same number of entropy values as the number

Fig. 3: (a) Empirical average
〈
e−Stot

〉
N

= 1
N

∑N
1 e−Stot(N)

as a function of the sample size N of [u(·)] trajectories. The
set of measured cascade trajectories results in a set of total
entropy variation values ΔStot (the same number of entropy
values as the number of trajectories). According to the integral
fluctuation theorem, the empirical average has to converge to
a value of 1 (indicated by the horizontal dashed line). (b) Test
of the detailed fluctuation theorem. The dashed line represents
a linear behavior p(ΔStot) = p(−ΔStot)e

ΔStot .

of trajectories). We find that for the four Stokes numbers
the results are in good agreement with the IFT, which is
a fundamental entropy law of non-equilibrium stochastic
thermodynamics [28,31]. This is not trivial, as the IFT is
extremely sensitive to errors in the empirical estimation
of D(1,2) defining the Fokker-Planck equation. For this
reason, our empirical observation on the validity of the
IFT for the inertial particles provides another verification
of our approach. Furthermore, inertial particles (i.e., for
sufficiently large St) sample preferentially some specific re-
gions of the flow [2]. The remarkable observation here is
that they do it always in agreement with this theorem.

Figure 3(b) shows that in addition to the IFT also the
detailed fluctuation theorem (DFT) holds for our data
coming from a turbulent flow with finite Reynols number,
which is expressed as

ln
(

p (ΔStot)
p (−ΔStot)

)
= ΔStot. (9)

Thus, in addition to the IFT, the DFT expresses the bal-
ance (explicit exponential symmetry constraint) between
entropy-consuming (ΔStot < 0) and entropy-producing
(ΔStot > 0) trajectories. See the SM for the illustration
of p (ΔStot) for St = 0.5, 3 and 6.

Finally we ask whether these findings of the entropy
fluctuation are just a statistical result or if they have
some relation to flow structures. In particular, it is of
interest if the negative entropy events have some special
features. Therefore we study the mean absolute velocity
increment trajectories conditioned on a specific total en-
tropy variation 〈|uτ |〉ΔStot . Figures 4(a) and (c) show that
the total entropy variation is linked to distinct trajecto-
ries. Entropy-consuming trajectories are characterized by
an increase in the averaged absolute values of the incre-
ments 〈|uτ |〉ΔStot=−2 with decreasing time scale τ , while
trajectories marked by entropy production 〈|uτ |〉ΔStot=3
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Fig. 4: Mean absolute velocity increment trajectories condi-
tioned on a specific total entropy variation 〈|uτ |〉ΔStot , ΔStot =
−2 (top) and ΔStot = 3 (bottom). Left: individual represen-
tation of the mean absolute components for x, y and z. The
vertical dashed line marks the Einstein-Markov coherence time
scale ΔEM . The dissipation region is indicated by dotted lines.
The arrow indicates the direction of the path through the hier-
archy of time scales τ , from initial time scale T to the final time
scale τf . Right: circles mark increment on the initial (black)
and ΔEM (red) scale in a three-dimensional scatter plot. In
these scatter plots increments of all trajectories for which the
conditional averaging was performed are shown.

smoothly decrease their absolute increments with decreas-
ing τ . This is further highlighted by figs. 4(b) and (d).
In these three-dimensional representations the absolute
velocity increment at initial and final scale, T and ΔEM ,
conditioned on the entropy for all trajectories for which
the conditional averaging was performed, is shown. In the
SM (appendix E) we show that the majority of large and
intermittent small-scale increments (heavy tailed statis-
tics of the small-scale increment PDF) are contained in
the negative entropy trajectories.

Conclusion. – In this letter we showed the existence
of Markov property for Lagrangian turbulence. The dy-
namics of inertial particles coupled to a turbulent flow
can be treated as a Markov process for a finite step size
larger than a Stokes-number–dependent Einstein-Markov
coherence time scale. This opens an interesting interpre-
tation of the St number in terms of the Markov mem-
ory of the particles trajectories, and is compatible with
the picture that particles with more inertia filter fast and
small-scale fluctuations of the carrying flow: for particles
with larger St (and thus larger particle response times)
the Markovianization of trajectories by the turbulence
takes place at longer times. This can be used to quantify
effective parameters in cases where the particles’ inertia

is not clearly defined, like finite-size, or non-spherical
particles.

Moreover, based on the theory of Markov processes it
is possible to derive an explicit Fokker-Planck equation
for the description of multi-scale statistics of Lagrangian
particles. The Markov property corresponds to a three-
point (two-scale) closure of the general joint multi-scale
statistics [32], representing a step towards a more com-
prehensive understanding of turbulence, which is charac-
terized by a challenging complexity with many high-order
correlations. This results in a tremendous reduction of
the degrees of freedom, and shows that the long-standing
problem in turbulence of the closure of the hierarchy of
equations can be approached in a Lagrangian framework.

The interpretation of the stochastic process as an ana-
logue of a non-equilibrium thermodynamic process [20,
23,32] when applied to Lagrangian turbulence allowed
us to show that inertial particles satisfy both integral
and detailed fluctuation theorems in a strict sense. The
verification of these theorems, which have contributed
significantly to the understanding of open and out-of-
equilibrium systems and to the development of statisti-
cal physics, adds strength to the validity of the Markov
property and the description by a Fokker-Planck equa-
tion. Previous observations of the irreversibility of parti-
cles in turbulence considered a Jarzynski-like equality for
the particles energetics [33], but the slope was not one as
expected for the DFT. Reproductions of such exact results
are found very rarely in turbulence research, so that the
result provides a novel constraint for the particles’ evolu-
tion. The fluctuation theorems may be taken also as a
kind of new conservations laws.

These fluctuation theorems also shed light on asymme-
tries in particle trajectories, as reported before in [33],
and as shown here for individual trajectories depending
on their entropy evolution. A connection can be made be-
tween entropy-producing and -consuming trajectories with
specific evolution of velocity increments with decreasing
time scale. Interestingly, our study also shows that par-
ticle trajectories are out of equilibrium while keeping er-
godicity. These abnormal behaviors (or structures) in the
Lagrangian paths are statistically embedded in the fulfill-
ment of the two fluctuation theorems. Thus, the presented
results may shed new light on the long-lasting debate of
the statistical approach to turbulence vs. the study of flow
structures.

The case of out-of-equilibrium systems like turbulence
coupled to dense particles has applications in geophysics,
astrophysics, and aerosol dispersion. In the cases studied
here we have non-trivially coupled systems, whose par-
ticles not always randomly sample the flow topology [2].
Note that preferential concentration for St �= 0 implies
that particles are not sampling the flow homogeneously,
and a non-random sub-sampling of the Eulerian flow ve-
locity, plus the particles own inertia, could break down the
IFT and DFT theorems. In spite of this, the theorems are
satisfied for particles with different response times (albeit,
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in the limit St → ∞, the relations should not hold as parti-
cles decouple from the flow). Also, the formalism proposed
here only requires measuring the trajectory and velocity
of particles. Such study is accessible with state-of-the-art
experimental techniques, even at large Reynolds numbers,
while most models to describe the dynamics of these sys-
tems require much more detail, such as measurements also
of particles acceleration. At last, we point out that the en-
tropy analysis may also serve to compare different turbu-
lent situations, as was successfully done by the statistics
p(ΔStot) for turbulent wave situations [34].
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