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Abstract

Vector-borne parasites are important ecological drivers influencing life-history evolution in
birds by increasing host mortality or susceptibility to new diseases. Therefore, understanding
why vulnerability to infection varies within a host clade is a crucial task for conservation
biology and for understanding macroecological life-history patterns. Here, we studied the
relationship of avian life-history traits and climate on the prevalence of Plasmodium and
Parahaemoproteus parasites. We sampled 3569 individual birds belonging to 53 species of
the family Thraupidae. Individuals were captured from 2007 to 2018 at 92 locations. We cre-
ated 2 phylogenetic generalized least-squares models with Plasmodium and Parahaemoproteus
prevalence as our response variables, and with the following predictor variables: climate PC1,
climate PC2, body size, mixed-species flock participation, incubation period, migration, nest
height, foraging height, forest cover, and diet. We found that Parahaemoproteus and
Plasmodium prevalence was higher in species inhabiting open habitats. Tanager species
with longer incubation periods had higher Parahaemoproteus prevalence as well, and we
hypothesize that these longer incubation periods overlap with maximum vector abundances,
resulting in a higher probability of infection among adult hosts during their incubation period
and among chicks. Lastly, we found that Plasmodium prevalence was higher in species without
migratory behaviour, with mixed-species flock participation, and with an omnivorous or
animal-derived diet. We discuss the consequences of higher infection prevalence in relation
to life-history traits in tanagers.

Introduction

Vector-borne haemosporidian parasites can negatively impact host fitness by mediating life-
history trade-offs, such as trading investment in immune defence over investment in plumage
coloration in response to infection (Hõrak et al., 2001; Delhaye et al., 2018; Penha et al., 2020).
Furthermore, haemosporidian infections have been associated with avian mortality (Permin
and Juhl, 2002; Atkinson and Samuel, 2010; Jia et al., 2018), and with lower health status
in birds (Himmel et al., 2021). Haemosporidian parasites cause malaria and related diseases
in wild and domesticated birds; these parasites are ecologically and evolutionarily diverse,
with a worldwide distribution (Valkiūnas, 2005; Perkins, 2014). Each haemosporidian genus
is transmitted to the avian host by a different group of dipteran vectors: Plasmodium by
mosquitoes (Culicidae) and Parahaemoproteus by biting midges (Ceratopogonidae;
Santiago-Alarcon et al., 2012). Because avian haemosporidian parasites are broadly distributed,
common in avian populations, and easily detected in small blood samples, they provide an
important and accessible model system for studying host–parasite interactions.

Within an avian community, host exposure to parasites may be influenced by the environ-
ment (e.g. climate), and life-history traits of the host species (Svensson-Coelho et al., 2014;
Canard et al., 2015; Lutz et al., 2015; Clark and Clegg, 2017). Climate (particularly rainfall
and temperature) may play an important role in parasite exposure through its influence on
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vector development and abundance (Loiseau et al., 2011; Gehman
et al., 2018). For example, in central and west Africa, Plasmodium
prevalence in the olive sunbird (Cyanomitra olivacea) was higher
in locations with high temperatures (Sehgal et al., 2011). In
community level studies, involving several avian host species,
temperature also seems to be a good predictor of Plasmodium
prevalence, such as in northeastern Brazil (Rodrigues et al.,
2021), and in the Spanish Iberian Peninsula (Illera et al., 2017).
However, Parahaemoproteus prevalence has shown contrasting
results (associated with colder environments) in comparison
with Plasmodium (Clark, 2018; Clark et al., 2018, 2020), which
may be related to the different life histories of the primary vectors
of Plasmodium and Parahaemoproteus parasites.

Host life-history traits may influence haemosporidian parasite
prevalence, since these traits are associated with varying host
exposure to vectors (Medeiros et al., 2013; Svensson-Coelho
et al., 2016). Nesting and foraging height, body size, habitat
type, flocking, migratory behaviour (Møller and Erritzøe, 1998;
Svensson-Coelho et al., 2016), and diet (González et al., 2014;
Turcotte et al., 2018; Tchoumbou et al., 2020) are all factors
that may influence host exposure to vectors (Medeiros et al.,
2013; González et al., 2014; Lutz et al., 2015). For example, single-
or mixed-species flock participants tend to have a higher haemos-
poridian parasite prevalence because flocking hosts tend to attract
more vectors or simply be in contact with more insects (Fecchio
et al., 2013; Isaksson et al., 2013; Ellis et al., 2017), whereas birds
foraging and nesting in the canopy and inhabiting closed habitats
may have increased parasite prevalence due to a higher vector
abundance in these forest strata (Garvin and Greiner, 2003;
Swanson and Adler, 2010; Laporta et al., 2011; Swanson et al.,
2012; Ibañez-Justicia and Cianci, 2015; Lutz et al., 2015). Host
diet may also be an important factor in predicting haemospori-
dian prevalence, with insectivores harbouring higher prevalence,
because of their closer contact with insects, which leads to an
increased susceptibility to vectors (Braga et al., 2011; González
et al., 2014). Analyses of the influence of migration on haemospor-
idian prevalence have shown contrasting patterns; migratory host
species have exhibited higher haemosporidian prevalence due to
higher pathogen exposure (Ciloglu et al., 2020; Anjos et al., 2021;
de Angeli Dutra et al., 2021), but in other studies resident
species have exhibited higher haemosporidian prevalence perhaps
due to the increased predictability of hosts to vectors through
space and time (Slowinski et al., 2018; Soares et al., 2020).
Haemosporidian parasite infection prevalence might also relate to
host incubation period (Matthews et al., 2016), which is likely
associated with avian life-history trade-offs between immune
response and the duration of incubation (Ricklefs, 1992).
Therefore, birds with longer incubation periods may have an adap-
tive advantage by having an increased length of time for B-cell mat-
uration, conferring increased protection against infections (Ricklefs
et al., 2018).

Here, we investigated haemosporidian parasite prevalence in
tanagers (Passeriformes: Thraupidae), the largest family of song-
birds. Tanager species commonly occur from northern Mexico,
through Central America, the Caribbean and South America,
accounting for 12% of bird species in the Neotropical region
(Parker et al., 1996). Tanagers occupy several habitat types, rang-
ing from rainforests to grasslands, with nearly all avian foraging
niches being filled by members of the family (Burns et al., 2014).
Thraupidae currently includes 377 species placed in 15 subfam-
ilies (Burns et al., 2016; Winkler et al., 2020). Tanager species
have a broad range of complex behaviours, habitat preferences,
and morphological characteristics (Macedo et al., 2012; Manica
and Marini, 2012; Burns et al., 2014; Nogueira et al., 2014;
Lima-Rezende and Caparroz, 2016; Beier et al., 2017). Because
of this impressive diversity, the accumulated knowledge on

tanager ecology (Shultz and Burns, 2017), and the fact that they
have been well sampled within the Neotropical region, make
them a good model system for studying the effects of host life-
history variation and environmental variation on haemosporidian
prevalence. Despite recent advances in the study of haemospori-
dian prevalence of Neotropical birds (Fecchio et al., 2011, 2022;
Sebaio et al., 2012; de Angeli Dutra et al., 2021; Ellis et al.,
2021), there is still a lack of information on the vulnerability of
tanager species to haemosporidian parasites. Therefore, in this
study we sought to understand the relationships among parasitism
by haemosporidians, tanager life-history traits and environmental
traits. More specifically, we tested whether haemosporidian parasite
prevalence was related to species’ nesting and foraging strata, habitat
preference in terms of forest cover, participation in mixed-species
flocks, diet, migratory behaviour, length of incubation period, envir-
onmental temperature regime, and annual precipitation.

Materials and methods

Data collection

We assembled haemosporidian screening data from 3569 individ-
ual birds belonging to 53 species in the family Thraupidae.
Individuals were captured between 2007 and 2018 at 92 locations
in 7 countries in the Neotropics, including Argentina (Soares et al.,
2016; Fecchio et al., 2019a), Brazil (Lacorte et al., 2013; Ferreira et al.,
2017; Fecchio et al., 2019a, 2021; Lopes et al., 2020; Penha et al., 2020;
Rodrigues et al., 2020), Dominican Republic (Latta and Ricklefs,
2010; Soares et al., 2020), Ecuador (Svensson-Coelho et al., 2014),
Honduras (this study), Mexico (Fecchio et al., 2019b), and
Nicaragua (this study).

Haemosporidian parasite analysis

To compare lineages identified by our nested PCR protocols to
those in the MalAvi database (Bensch et al., 2009), we aligned
nucleotide sequences using the BIOEDIT v 7.2.0 program (Hall,
1999) and verified sequence identities through a local BLAST
against the MalAvi database. MalAvi is a database that groups
and standardizes haemosporidian parasite lineages found in
various hosts, allowing the study of host–parasite distributions,
prevalence, and specializations (Bensch et al., 2009). Lineages
identified using the protocol that amplified a longer mtDNA frag-
ment (Ricklefs et al., 2005; Soares et al., 2016, 2020) were success-
fully matched to known lineages in the MalAvi database only
when the 2 fragments had 100% identical nucleotide sequences
in their overlapping region (lineage names here are as in the
MalAvi database). We calculated the prevalence of each
Parahaemoproteus and Plasmodium lineage separately for every
host species as the number of infected individuals divided by
the total number of screened individuals (proportion of infected
individuals). We treated Parahaemoproteus as a distinct genus
from Haemoproteus (Haemoproteus) following recent phylogen-
etic advancements in the haemosporidian parasite phylogeny
(Martinsen et al., 2008; Borner et al., 2016; Galen et al., 2018).

Host phylogeny

We used the Thraupidae phylogeny from Burns et al. (2014),
reconstructed with 6 molecular markers, which was the first com-
prehensive tanager phylogeny; Burns et al.’s (2014) phylogenetic
hypothesis included genera not found in Jetz et al. (2012). This
phylogeny produced a highly comprehensive framework for
studying macroevolutionary patterns among tanager taxa. We
used ape (Paradis et al., 2004) to prune out species not found
in our database from the tree.
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Life-history traits and climate

We used the Handbook of the Birds of the World (Winkler et al.,,
2020; https://birdsoftheworld.org/bow/home) to compile the fol-
lowing variables from the 53 tanager species: body size (average
body length in centimetres); mixed-flock participation (partici-
pant [frequently or loosely join mixed-species flocks] and non-
participant [rarely or does not join mixed-species flocks]); for-
aging height (ground [forages on or close to ground]; understory
[forages in the midstory of the forest, understory, shrubs or small
trees] and canopy [forages in tall trees, or in the canopy of for-
ests]); migration status (migrant or permanent resident – comple-
mented with data from Somenzari et al. (2018) for species that
occur in Brazil); and incubation period (average number of days
laying to hatching). We also collected information on nest height,
including low (0–1 m; on or close to the ground), middle (1–5 m;
in shrubs, small trees, understory or mid canopy) and high (>5 m
or tall trees and upper canopies). We used the data available in
Olson and Owens (2005) to categorize foraging ecology including
plant-eating (herbivore: fruits, seeds, leaves and other plant parts),
animal-eating (carnivore: arthropods, spiders or others) or a gen-
eralist diet (omnivore). We used the data available in the Global
Habitat Heterogeneity database (Tuanmu and Jetz, 2015) as a
proxy for habitat type (denoted by the variable name ‘forest
cover’ hereafter). We used occurrence data from eBird (https://
ebird.org/data/download) and the extract function from the raster
package (Hijmans, 2021), and then averaged the GHH) (Global
Habitat Heterogeneity) values for each species across its distribu-
tion. Higher GHH indicates more forested habitats, whereas a
lower GHH indicates open habitats. Lastly, we extracted all 19 cli-
matic variables for the capture sites of all individuals (our 92 dif-
ferent capture sites) from WorldClim 2 (Fick and Hijmans, 2017).
For each host species, we averaged climatic values from all sites
where a given species was captured. Since we could not determine
age and sex of all individuals from every species, we did not
include these 2 variables in our models. We then performed a
principal components analysis to reduce the dimensionality of
the climatic variables (summary statistics can be found in
Supplementary Table 2 and Fig. 2). The first and second compo-
nents together explained 68.6% of the variation and were used as
our climatic variables (hereinafter climate PC1 and PC2). PC1 was
primarily related to temperature and was positively associated
with variables such as mean annual temperature, minimum tem-
perature of coldest month, mean temperature of driest quarter
and mean temperature of the coldest quarter, whereas PC2 was
negatively associated with precipitation variables, such as annual
precipitation, precipitation of the driest month, precipitation of
the driest quarter, and positively associated with precipitation
seasonality.

Statistical analysis

Using the host phylogeny, we created 2 different phylogenetic
generalized least-squares models to test the hypothesis that para-
site prevalence is predicted by host-related parameters and cli-
mate. For each model we used parasite prevalence (proportion
of infected individuals) as the response variable, one for
Parahaemoproteus, and another for Plasmodium. We only consid-
ered species with 5 or more captured individuals for analysis with
these models (see Supplementary Tables 3–5 and Fig. 3 for a more
conservative analysis including species with 10 or more captured
individuals). We used the following explanatory variables: climate
PC1, climate PC2, body size, mixed-species flock participation,
incubation period, migration, nest height, foraging height, forest
cover and diet. All numerical variables were standardized using
the scale function from R, to remove unwanted variation in the

scale among variables. Before including all variables, we tested
for multicollinearity using the variance inflation factor (VIF) cal-
culated by using the VIF function from the regclass package
(James et al., 2014; Petrie, 2020). We used a conservative thresh-
old of 2 for the values of GVIF(1/2df) as a sign of multicollinearity.
We found no collinear predictors based on this approach, and
therefore all variables were included in the analysis. We tested
model convergence with the Ornstein–Uhlenbeck (OU) and
Brownian motion (BM) evolutionary models using Akaike infor-
mation criterion (AIC) values. We then selected the best models
using an information-theoretic approach (Burnham and
Anderson, 2002) with the dredge function in the MuMIn package
(Barton, 2019). When wi (weight) of the best model was below
0.80, we used model averaging in the model.avg function in the
MuMIn package to calculate the model-averaged estimates, fol-
lowing the protocol described by Burnham et al. (2011). We
used root mean square error (RMSE) to validate each model, con-
sidering RMSE closest to zero as models with a good fit (Norberg
et al., 2019; Tobler et al., 2019; Snell Taylor et al., 2021). We
assessed the importance of the explanatory variables by evaluating
their estimates, unconditional standard errors and 95% confi-
dence intervals (CIs) in the averaged model. Since foraging, nest
height and diet have 3 different levels, we used the relevel function
to change the reference level of each categorical variable to rerun
the model and check for a specific pattern of statistical signifi-
cance. Therefore, we only considered foraging, nest height and
diet as significant if a level was different from all other levels.
We plotted all significant variables using the ggplot2 (Wickham,
2016) package. All values are presented as mean ± S.D., unless
otherwise noted.

Results

Haemosporidian parasites

From a total of 3569 screened individuals, we found 1469 birds
infected with haemosporidian parasites (41% overall prevalence).
We found 88 different Plasmodium lineages and 64
Parahaemoproteus lineages, with Parahaemoproteus prevalence
marginally higher (16%) than Plasmodium (13%).

Host life-history traits and climatic variables

We found that most of the tanager species were mixed-species
flock participants (79%), non-migratory (88%), middle-forest
strata nest builders (60%) and canopy foragers (52%, Fig. 1).
Host main diet was well-balanced among the species, with 39% her-
bivores, 34% omnivores and 27% carnivores (Fig. 1; Supplementary
Table 2). Average body size was 14.7 ± 3.2 cm, and incubation period
was 13.2 ± 1.0 days. Most of the host species also occurred in more
open habitats (Fig. 2).

Prevalence models

The best models for Parahaemoproteus prevalence are presented
in Table 1 (RMSE = 0.81). We found higher Parahaemoproteus
prevalence among tanager species inhabiting areas with less forest
cover (Table 2; Fig. 3), and with longer incubation periods
(Table 2, Fig. 4). We also found a positive relationship between
Parahaemoproteus prevalence and incubation period in a more
conservative analytical approach (Supplementary Tables 4 and 6).

The best models of Plasmodium prevalence are shown in
Table 1 (RMSE = 0.30). Tanager species without migratory behav-
iour, with omnivorous or animal-derived diet, mixed-species
flocking behaviour (Table 3; Fig. 5) and inhabiting areas with
lower forest cover (Table 3; Fig. 6) had higher Plasmodium
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prevalence. We found that mixed-species flock participants had a
higher Plasmodium prevalence in a more conservative analytical
approach (Supplementary Tables 4 and 6).

Discussion

Overall, we found an association between haemosporidian para-
site prevalence and tanagers’ life-history traits. Specifically, we
found that higher Parahaemoproteus prevalence was associated
with birds occurring in habitats with lower forest cover (more
open habitats), and among birds with longer incubation periods.
We also found that Plasmodium prevalence was more often asso-
ciated with birds without migratory behaviour, mixed-species
flock participation, with an omnivorous or animal-derived diet
and inhabiting less-forested habitats.

We found, first, that Parahaemoproteus and Plasmodium
prevalence was higher in tanager species inhabiting locations
with lower forest cover (more open habitats). Habitat type may
be an important predictor of haemosporidian parasite prevalence
because it may affect the probability of individual birds being
exposed to vectors. Haemosporidian parasite vectors are common
in nature and have shown some level of host specificity
(Martínez-De La Puente et al., 2011a; Bobeva et al., 2015;
Tomás et al., 2021) and these vectors may change their feeding
preferences according to the environmental conditions
(Santiago-Alarcon et al., 2012). The abundance and prevalence
of biting midges can vary with altitude and across and habitat
types (open vs closed) (Möhlmann et al., 2018), which may
explain increased probability of infecting tanagers across our

Fig. 1. Summary data for categorical life-history variables mapped onto the tips of the trimmed tanager phylogeny, showing as follows: migration (0 – resident;
1 – migrant); mixed-species flocking (0 – non-participant; 1 – participant); diet (0 – plant; 1 – animal; 2 – omnivore); nest height (0 – low; 1 – middle; 2 – high) and
foraging height (0 – ground; 1 – understory; 2 – canopy). The colour keys for each category of life-history variables can be seen on the right inset.

Fig. 2. Forest cover histogram multiplied by 0.0001, showing that most species
inhabit more open habitats (forest cover closer to zero indicates less forest cover).
Forest cover data retrieved from Global Habitat Heterogeneity – dissimilarity index
(https://www.earthenv.org/texture), which contains imagery from Moderate
Resolution Imaging Spectroradiometer (MODIS) with pixel values collected from sat-
ellite images.
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sampling locations. Furthermore, vectors of Plasmodium have
been found to prefer pasture and more open areas in southeastern
Brazil (Ferreira et al., 2017). However, previous studies have
reported contrasting results relating haemosporidian prevalence
to habitat type, either showing higher parasite prevalence in
open (Reinoso-Pérez et al., 2016; Ferreira et al., 2017) or in closed
habitats (Lutz et al., 2015). Our results suggest that tanager spe-
cies inhabiting places with less forest cover may be more exposed
and therefore have an increased likelihood of encountering vec-
tors carrying Parahaemoproteus and Plasmodium parasites, but
future studies should identify these vectors as well as how their
differences may vary across habitat types.

Second, we found that tanager species with a longer incubation
period had higher Parahaemoproteus prevalence; this was the
opposite of what we expected. These results were reinforced by
findings using more conservative models (n > 10 individuals per
species) for Parahaemoproteus prevalence. A longer incubation
period is believed to allow for enhanced development of the immune
system (Ricklefs, 1992), with higher B-cell maturation, thus confer-
ring better defence against infections (Ricklefs et al., 2018).
However, based on our findings we hypothesize that tanager species
facing higher selective pressure from Parahaemoproteus parasites
may trade investing in reproduction over immunity, producing a
weaker immune response to fight-off parasites. This is supported
by other studies; for example, Palacios and Martin (2006) found
that a longer incubation period does not enhance cellular immune
response in several passerine bird species. Alternatively, longer
incubation periods may increase the chances of attracting vectors of
haemosporidian parasites (biting midges for Parahaemoproteus;
mosquitoes for Plasmodium) to incubating adults and their nestlings
(Skutch, 1945; Santiago-Alarcon et al., 2012) that may lead to more
frequent or more efficient parasite infection during this period.
Therefore, we also hypothesize that birds with longer incubation

periods suffer increased susceptibility to Parahaemoproteus vectors
among individuals or may attract mosquitoes (Plasmodium) more
often.

Third, we found that birds joining mixed-species flocks,
either frequently or rarely, had higher Plasmodium prevalence.
Mixed-species flocks are thought to benefit participants through
increased foraging success or increased surveillance against
potential predators (Zou et al., 2018). In the Neotropics, birds
often associate with mixed-species flocks after the breeding season
to gain potential benefits (Kajiki et al., 2018). However, like
González et al. (2014), we show a positive relationship between
flock participation and an increase in the probability of infection
by Plasmodium parasites. This may be explained by (a) increasing
visual or olfactory cues within mixed-species flocks that are
in-turn associated with vector attraction (Díez-Fernández et al.,
2020), or (b) individual birds covering a larger spatial area within
flocks resulting in an increased possibility of mosquito encounters
(Van Houtan et al., 2006).

Fourth, contrary to our original expectations, we found that
resident tanager species had a higher Plasmodium prevalence
compared to migratory tanager species. During migration move-
ments, birds might be more exposed to vectors and, hence,
present an increased likelihood of haemosporidian parasite infec-
tion (de Angeli Dutra et al., 2021). However, non-migrating birds
may become more predictably located in space and time, thus
increasing their chances of encountering infected vectors year-
around. For example, migratory passerines were seldom infected
with haemosporidian parasites compared to resident birds in
the Dominican Republic (Soares et al., 2020). Therefore, our
results suggest 2 non-mutually exclusive hypotheses: (a) vectors
may have a clear preference and be specialized in resident species,
or (b) by encountering sedentary species more often, these species
are more likely infected than migratory tanagers. However,

Table 1. Model selection results of Parahaemoproteus and Plasmodium prevalence (response variables) and the following explanatory variables: climate PC1,
climate PC2, body size, mixed-species flock participation, incubation, migration, nest height, foraging height, forest cover and diet

Models df AICc ΔAIC wi

Parahaemoproteus

Forest cover + incubation 5 −76.7 0.00 0.160

Forest cover + incubation + climate PC1 +climate PC2 7 −74.9 1.77 0.066

Forest cover + migration + incubation 6 −74.9 1.79 0.065

Forest cover + migration + incubation + climate PC1 7 −74.2 2.45 0.047

Forest cover + body size + incubation 6 −74.1 2.59 0.044

Forest cover + mixed-species flock participation + incubation + climate PC1 7 −73.2 3.43 0.029

Forest cover + body size + incubation + climate PC1 7 −72.9 3.76 0.024

Forest cover + migration + body size + incubation 7 −72.9 3.77 0.024

Foraging height + forest cover + body size + incubation 7 −72.8 3.83 0.024

Plasmodium

Diet + forest cover + migration + climate PC1 + climate PC2 9 −93.7 0.00 0.310

Diet + foraging height + forest cover + mixed-species flock participation + incubation + climate PC1 + climate PC2 12 −91.0 2.71 0.080

Diet + forest cover + migration + incubation + climate PC2 9 −90.9 2.79 0.077

Diet + forest cover + migration + incubation + climate PC1 + climate PC2 10 −90.8 2.94 0.071

Diet + foraging height + mixed-species flock participation + body size + climate PC2 10 −90.5 3.19 0.063

Diet + foraging height + migration + climate PC2 9 −90.0 3.76 0.047

Diet + forest cover + migration + mixed-species flock participation + body size + climate PC2 10 −89.9 3.85 0.045

Variables included in each model are shown together with the models’ degrees of freedom (df), AICc score, delta AIC and weight (wi). We only show the models with AIC scores lower than 4
for Parahaemoproteus and Plasmodium. Results for all 53 sampled tanager species in total. Model comparison using OU (Parahaemoproteus model AIC =−62.78; Plasmodium model AIC =
−85.83) and BM (Parahaemoproteus model AIC =−35.95; Plasmodium model AIC =−56.92), indicated OU as the best in all our models.
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because only 12% of our sampled species were migratory (mostly
partially migratory), our results should be interpreted with cau-
tion; more studies are needed with a larger sample of the family
Thraupidae. Furthermore, it is important to emphasize that
haemosporidian prevalence, in a particular avian host species,
could be an oversimplification as infection probability across
individuals’ hosts could still depend on other spatial and temporal

Table 2. Model-averaged estimates, standard errors and 95% CIs for variables
in the model using Parahaemoproteus prevalence as the response variable

Variables Estimate
Standard
error 95% CI

Intercepta 0.71 0.18 0.34, 1.08*

Forest cover −0.03 0.00 −0.05, −0.01*

Incubation 0.04 0.01 0.00, 0.07*

Climate PC1 −0.02 0.02 −0.06, 0.01

Climate PC2 −0.00 0.01 −0.03, 0.03

Migration (resident) 0.02 0.03 −0.05, 0.10

Body size 0.00 0.02 −0.05, 0.05

Mixed-species flock
participation

0.00 0.03 −0.07, 0.08

Foraging height
(ground)

−0.05 0.06 −0.19, 0.07

Foraging height
(understory)

0.03 0.05 −0.08, 0.14

Diet (omnivore) −0.01 0.06 −0.13, 0.11

Diet (plant) 0.01 0.06 −0.11, 0.14

Nest height (low) −0.04 0.05 −0.14, 0.05

Nest height (middle) −0.03 0.04 −0.13, 0.05

Significant variables are marked with asterisks. Results for all 53 sampled tanager species in
total.
aReference level for the categorical variables: diet (animal), foraging height (canopy),
migration (migrant), nest height (high) and mixed-species flock participation
(non-participant).

Fig. 4. Parahaemoproteus prevalence in relation to the incubation period (average
number of days). Points represent the observed values for the model incorporating
Parahaemoproteus prevalence, and the black line is the fitted curve to the values
with the standard error (shaded area).

Fig. 3. Parahaemoproteus prevalence in relation to forest cover (in logarithmic scale)
at host specimen collection locations. Points represent the observed values of
Parahaemoproteus prevalence, and the black line is the fitted curve to the values
with the standard error (shaded area).

Table 3. Model-averaged estimates, standard errors and 95% CIs of variables in
the model using Plasmodium prevalence as the response variable

Variables Estimate
Standard
error 95% CI

Intercepta 0.39 0.20 0.00, 0.79*

Diet (omnivore)b 0.03 0.04 −0.05, 0.11

Diet (plant)b −0.18 0.02 −0.24, −0.12*

Forest cover −0.01 0.00 −0.02, −0.00*

Migration (resident) −0.08 0.03 −0.16, −0.01*

Climate PC1 0.01 0.00 −0.00, 0.03

Climate PC2 −0.02 0.01 −0.04, 0.00

Foraging height
(ground)c

0.06 0.04 −0.01, 0.15

Foraging height
(understory)c

0.09 0.03 0.02, 0.16*

Mixed-species flock
participation

0.08 0.04 0.00, 0.16*

Incubation −0.01 0.02 −0.05, 0.03

Body size −0.00 0.01 −0.03, 0.02

Nest height (low) −0.03 0.07 −0.19, 0.11

Nest height (middle) 0.00 0.04 −0.09, 0.09

Significant variables are marked with an asterisk. Results are for all 53 sampled tanager
species in total.
aReference level for the categorical variables: diet (animal), foraging height (canopy),
migration (migrant), nest height (high) and mixed-species flock participation
(non-participant).
bChanging the reference level to diet (omnivore): diet (plant): −0.21 ± 0.03 (−0.28, −0.15)
and diet (animal): −0.03 ± 0.04 (−0.12, 0.05). Changing the reference level to diet (plant):
diet (omnivore): 0.21 ± 0.03 (0.15, 0.28) and diet (animal): 0.18 ± 0.02 (0.13, 0.24).
cChanging the reference level to foraging height (ground): foraging height (understory):
0.01 ± 0.05 (−0.09, 0.11) and foraging height (canopy): −0.08 ± 0.04 (−0.16, 0.00). Changing
the reference level to foraging height (understory): foraging height (ground): −0.03 ± 0.05
(−0.14, 0.08) and foraging height (canopy): −0.08 ± 0.04 (−0.18, 0.00).
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variables not measured here (e.g. water body availability, bird
breeding season), as well as individual development.

Finally, we found that omnivores and tanager species with a
more animal-derived diet have a higher Plasmodium prevalence
compared to those species feeding solely on plant materials.
Feeding behaviour is crucial for bird survival, but costs may
incur if foraging increases chances of encountering predators
(Kelleher et al., 2021), or vectors of haemosporidian parasites
(Fecchio et al., 2022). In fact, our results suggest that birds seeking
insects (animal-derived diets and omnivores) may face more
encounters with infected vectors with haemosporidian parasites
(Ribeiro et al., 2005). Furthermore, our results may also indicate
that birds with a plant-derived diet have decreased infection
chances simply because they have fewer encounters with insects
considering that this is not their main feeding resource.

In summary, we found patterns of infection prevalence sug-
gesting that parasitism by haemosporidians is related to a variety
of tanager life-history traits. These findings for the host family
Thraupidae highlight the difficulty in determining what factors
affect parasite prevalence in birds. We suggest 2 non-mutually
exclusive approaches to further clarify these relationships and to
reveal whether reduced immune response and/or variability in
exposure to vectors influences the infection susceptibility of
hosts: (1) determining haemosporidian parasite prevalence within
relevant vector species in relation to the habitats of avian hosts,
and (2) analysing energy trade-offs between immunity and incu-
bation period.
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Fig. 5. Observed values of Plasmodium prevalence in relation to migration status (left) and diet (middle) and mixed-species flock participation (right). Letters indi-
cate statistical difference in prevalence among hosts with different levels of migration status, diet and mixed-species flock participation, meaning that tanager
species that migrate, have a plant-derived diet, and do not join mixed-species flocks have lower Plasmodium prevalence in comparison with tanager species
that are resident, an omnivorous or animal-derived diet, and participate in mixed-species flocks, respectively.

Fig. 6. Observed values of Plasmodium prevalence in relation to the forest cover.
Points represent the values by the model of Plasmodium prevalence in relation to for-
est cover, and the black line is the fitted curve to the values with the standard error
(shaded area).
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