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Abstract

A simple method is proposed to obtain the effective anisotropy energy density
Keff of an assembly of randomly oriented magnetic nanoparticles, from their
hysteresis loops. It involves the fitting of a high field asymptotic expression of
the magnetization in inverse powers of the applied field H, up to H−3. This
is derived from the partition function formalism and the Stoner-Wohlfarth
model for single domain nanoparticles. This method can be applied to fer-
rogels, frozen ferrofluids or magnetic nanoparticles powder (or any system
where the nanoparticles are fixed in random directions, and not allowed to
rotate), when dipolar interactions can be neglected. As a proof of concept, it
is applied to a suspension of iron oxide nanoparticles in hexane, at different
temperatures, obtaining the anisotropy energy density Keff as a function of
temperature below the fusion point.

Keywords: Magnetic nanoparticles, Anisotropy energy density, Fixed easy
axes

1. Introduction1

Magnetic nanoparticles (MNPs) are being extensively studied due to their2

multiple applications in technology[1], and in particular biomedicine[2, 3].3

Single domain ferromagnetic MNPs present a well defined magnetic be-4

haviour, where each particle is considered to have a permanent moment µ =5

MS V and a preferential magnetization direction (easy axis). V is the par-6

ticle’s volume and MS its saturation magnetization. In Stoner-Wohlfarth’s7
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ofmodel (SW)[4] the energy of such a particle in the presence of a magnetic field8

is the sum of two terms regarding the orientation of the particle’s magnetic9

moment: the Zeeman energy for its tendency to align with the field, and10

the anisotropy energy for its tendency to align with the easy axis. This last11

term is proportional to the effective anisotropy energy density Keff, which12

eventually includes magnetocrystalline, strain, magnetorestrictive and shape13

contributions[5].14

Depending on the application, the MNPs could be present in a liquid15

suspension (called ferrofluid)[6], or they may be fixed in solid matrices (as16

is the case of ferrogels, powders, or frozen ferrofluid[7]). This fixation of the17

MNPs in the solid prevents their displacement and rotation, and modifies in18

turn the magnetic response[8].19

For a ferrofluid (FF) the equilibrium magnetization M in the direction20

of the applied field H⃗ depends on particle saturation magnetization MS,21

particle density n, particle magnetic moment µ, temperature T , and field’s22

magnitude H. The application of the partition function formalism to an23

assembly of free-to-rotate MNPs in thermal equilibrium at temperature T24

returns the Langevin response: M = nµL (αH)[5]. The factor α is the25

quotient µ0µ/kBT , with µ0 the vacuum permeability and kB the Boltzmann26

constant. This result is obtained assuming enough inter-particle distance27

to disregard dipolar interactions between the MNPs[9]. While Keff doesn’t28

affect the FF equilibrium magnetization, it plays a pivotal role in its dynamic29

response to a time dependent field, such as the fields employed in biomedical30

applications[10, 11].31

In the case of a poly-sized sample, a weighted average determines the final32

response, where the size distribution parameters, fundamentally mean and33

standard deviation, enter into play. In 1978 Chantrell et al.[12] presented a34

method to extract these two parameters for MNPs in a ferrofluid. It consisted35

in writing the asymptotic expressions for the Langevin function at low field36

(LF) and high field (HF), for a poly-sized sample. Measuring the LF slope in37

M vs. H and the HF slope in M vs. 1/H, they obtained standard deviation38

and median particle diameter for said distribution.39

For MNPs in a solid matrix, or ferrosolid (FS), the equilibrium magnetiza-40

tion depends not only on the value of the Keff but on the easy axis directions41

distribution as well[8]. This can also be analyzed with the partition func-42

tion formalism, in particular for the case of random distribution of easy axes43

(FSR), as that configuration could model a MNP assembly solidified in the44
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ofabsence of both external field and dipolar interactions[13]. However, the ex-45

pression obtained for the FSR doesn’t have an analytical solution, such as46

the Langevin function in the case of the FF.47

Asymptotic behaviour for randomly oriented MNPs in the HF region has48

been previously studied as “the law of approach to saturation” by Kneller et49

al. in 1962[14], and expressions up toH−2 have been used to extractKeff from50

different samples[15, 16, 17], while Elrefai et al.[18] developed an empirical51

expression as a linear combination of zero anisotropy and infinite anisotropy52

curves. In order to reach lower uncertainty over the values obtained for Keff,53

we were motivated to find HF magnetic behaviour in larger powers of 1/H54

allowing us to fit a wider field region.55

In this work we propose and test a HF asymptotic expression up to H−3
56

for a FSR. The system studied is an hexane suspension of MNPs, frozen in the57

absence of an applied field. From hysteresis loops, at different temperatures58

below the freezing point, we make a least-squares fit with the HF expression59

and extract Keff values. The method also provides mean particle magnetic60

moment ⟨µ⟩, which is compared with the result of fitting the HF expression61

used by Chantrell, which is linear in H−1.62

2. Model63

The equilibrium magnetization for an assembly of non-interacting MNPs64

in an external field may be obtained employing the partition function for-65

malism [19, 20].66

The MNPs’ anisotropy is due to several contributions (magnetocrys-67

talline, stress, shape, etc.). We consider an effective uniaxial anisotropy68

energy density Keff, and thus the energy of the individual particle can be69

written as:70

E = −µ0µH
[
û · ĥ

]
− µ

Keff

MS

[â · û]2 , (1)

where µ/MS is the particle’s volume, and â, ĥ and û are the directions of the71

anisotropy easy axis, the applied field and the particle’s magnetic moment,72

respectively. The temperature is taken into account in the partition function73

dividing the nanoparticle energy by kBT , obtaining the reduced energy74

ϵ =
E

kBT
= −ρ

[
û · ĥ

]
− λ [â · û]2 , (2)

3
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ofwhere ρ = µµ0H/kBT and λ = µKeff/MSkBT are dimensionless parame-75

ters, the quotient of Zeeman energy and thermal energy and the quotient of76

anisotropy energy and thermal energy, respectively.77

The form of the partition function is different if we consider free-to-rotate78

nanoparticles or a solid matrix with fixed MNPs. We present both treatments79

separately.80

2.1. Ferrofluid81

In this case, the MNPs’ easy axis directions are degrees of freedom, so we82

have the partition function83

zFF (N, ρ, λ) =

[∫∫
e−ϵ(ρ,λ,Ωa,Ωu)dΩadΩu

]N
, (3)

where N is the number of particles, Ωa the easy axes solid angle, and Ωu the84

magnetic moment solid angle. The projection of the magnetization in the85

applied field’s direction is calculated as86

MFF = nµ
〈
û · ĥ

〉
=

nµ

N

∂

∂ρ
log (zFF) , (4)

where n is the particle density. The result is the well known Langevin87

response[20]:88

MFF = nµ

(
coth(ρ)− 1

ρ

)
= nµL(ρ) (5)

This magnetization is independent of the value of λ, that is to say indepen-89

dent of Keff.90

If the MNPs have a size distribution (and therefore a magnetic moment91

distribution), this can be incorporated to the theoretical magnetic response.92

We construct a linear superposition of eq. 5 expressing ρ in terms of µ,93

obtaining the following response for poly-sized systems:94

MP
FF(H) = n

∞∫

0

µf(µ)L

(
µ0Hµ

kBT

)
dµ. (6)

where f(µ)dµ represents the fraction of particles with magnetic moment be-95

tween µ and µ + dµ. For fine particle systems the LogNormal distribution96

is usually encountered[21]. The resulting MP
FF may be fitted to a M vs. H97

4
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ofcurve as a whole, with the method of least-squares, obtaining distribution98

parameters and n for a given T .99

Chantrell et al.[12] proposed a method to obtain the size distribution’s100

mean value and standard deviation directly from simple asymptotic expres-101

sions. For the FF we have the LF and HF responses of the mono-sized102

Langevin function:103

LF
MFF(ρ)

nµ
=

ρ

3
+O

(
ρ3
)

(7)

HF
MFF(ρ)

nµ
= 1− 1

ρ
+O

(
e−2ρ

)
(8)

The corresponding poly-sized first orders can be given in terms of the104

mean magnetic moment ⟨µ⟩ and the mean square magnetic moment ⟨µ2⟩:105

LF MP
FF(H) ≈ n ⟨µ⟩ µ0H

3kBT

⟨µ2⟩
⟨µ⟩ =

n ⟨µ2⟩
3kBT

µ0H (9)

HF MP
FF(H) ≈ n ⟨µ⟩

(
1− kBT

⟨µ⟩
1

µ0H

)
(10)

It is concluded that the LF slope in M vs. H is proportional to ⟨µ2⟩, while106

the the HF slope in M vs. 1/H is proportional to 1/ ⟨µ⟩.107

2.2. Ferrosolid108

The FS has a corresponding partition function where the anisotropy di-109

rections are not degrees of freedom but rather each nanoparticle has a fixed110

easy axis direction âi, and consequently fixed angles Ωai :111

zFS(N, ρ, λ,Ωai) =
N∏

i=0

∫
e−ϵ(ρ,λ,Ωai ,Ωu)dΩu. (11)

The integral expression for the sample magnetization takes the form112

MFS =
nµ

N

∂

∂ρ
log (zFS) (12)

MFS(ρ, λ) = nµ

∫ [∫
e−ϵ(ρ,λ,Ωa,Ωu)û · â dΩu∫

e−ϵ(ρ,λ,Ωa,Ωu)dΩu

]
g (Ωa) dΩa, (13)

5



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofwhere g(Ωa) is the easy axis directions distribution and the integral is taken113

over all possible directions. An analytic solution can’t be found for the entire114

field range for an arbitrary distribution g(Ωa). Yet asymptotic behaviours115

may be obtained: for LF expanding the integrals with Taylor series in powers116

of ρ at ρ = 0; and for HF expanding the integrands at Ωu in the direction117

of the field (with Laplace’s method, see for example [22]), and the result in118

powers of 1/ρ.119

In the appendix we write asymptotic expressions for arbitrary g(Ωa), and120

compare the responses for specific configurations (all easy axes either parallel121

or perpendicular to the applied field) with previously known results.122

For a FS with randomly oriented MNPs (FSR) we have a constant value123

for the distribution g (Ωa) = 1/4π. The resulting magnetization MFSR is124

consistently lower than MFF for a given value of ρ, and the difference between125

both moments increases with the value of λ[8]. The asymptotic expressions126

take the form127

LF
MFSR (ρ, λ)

nµ
=

ρ

3
+O

(
ρ3
)

(14)

HF
MFSR (ρ, λ)

nµ
= 1− 1

ρ
− 4

15

(
λ

ρ

)2

+

(
4

3
− 16λ

105

)
λ2

ρ3
+

+

(−12

5
+

32λ

35

)
λ2

ρ4
+O

(
ρ−5
)

(15)

Writing the first orders for poly-sized systems in terms of the applied field
we obtain:

LF MP
FSR(H) ≈n ⟨µ⟩ µ0H

3kBT

⟨µ2⟩
⟨µ⟩ =

n ⟨µ2⟩
3kBT

µ0H (16)

HF MP
FSR(H) ≈n ⟨µ⟩

(
1− kBT

⟨µ⟩
1

µ0H
− 4

15

(
Keff

MS

)2
1

(µ0H)2
+

+

(
4

3

kBT

⟨µ⟩ − 16

105

Keff

MS

)(
Keff

MS

)2
1

(µ0H)3

)
(17)

We have assumed that neither Keff nor MS are functions of the particle’s128

size (and therefore, of its magnetic moment). Expressions up to H−2 have129

been previously employed to obtain Keff [15, 16, 17]. We take into account130

6
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ofthe next term, increasing the available field range for the fit while keeping131

the same number of fitting parameters in the analysis.132

We notice the coincidence of first order LF and HF responses between133

FF and FSR (the HF response up to H−1 is the same for FS as well, see134

appendix). This justifies using Chantrell’s method even for FSR, at high135

enough fields that the magnetic moment is accurately represented by the136

first two HF terms. To explore this posibility we propose considering a field137

range where the H−2 term is small in absolute value compared to the H−1
138

term:139

kBT

⟨µ⟩µ0H
≫ 4

15

(
Keff

MS

)2
1

(µ0H)2
(18)

µ0H ≫ 4

15

(
Keff

MS

)2 ⟨µ⟩
kBT

= µ0H1. (19)

H1 here serves as a reference field in terms of the system’s parameters. To140

apply Chantrell’s method to a FSR we take care to work well above H1;141

that’s the region where M is linear in 1/H.142

For our proposed method we take the terms from eq. 17 into account. We143

need to explore lower fields than those used for Chantrell’s method, allowing144

us to extractKeff from equilibrium magnetization measurements. For that we145

consider a region where the H−4 term (the ρ−4 term in eq. 15) is neglectable.146

Since the H−3 term might be zero depending on the value of λ, we measure147

the H−4 term against the H−2 one. This leads to the condition:148

µ0H ≫ kBT

⟨µ⟩

√∣∣∣∣9−
24

7

Keff

MS

⟨µ⟩
kBT

∣∣∣∣ = µ0H2, (20)

where H2 will serve as a reference field for our HF expression.149

3. Materials and Methods150

We study a sample, originally 50 µL of FF, iron oxide MNPs suspended151

in hexane at a mass concentration of 3.4(3) g/L. TEM images were taken152

in order to provide a reference for the size distribution of the particles, the153

results indicating a narrow size distribution of spherical crystalline particles.154

The TEM diameter distribution was fitted with a lognormal distribution,155

7
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ofobtaining a mean diameter of 9.5 nm and a standard deviation of 1.7 nm for156

the diameter (fig. 1). The inter-particle distance obtained from concentration157

and mean size indicates a separation of 110(20) nm, well over the 3 diameters158

limit established for dipolar interactions[23].159

Figure 1: Size distribution from TEM images and corresponding fit. Inset: TEM image
example with a magnification showing the crystallinity of the particles.

Hysteresis loops of the sample were obtained at different temperatures (5160

K, 10 K, 40 K, 160 K, and 220 K) using a superconducting quantum interfer-161

ence device (SQUID) magnetometer (Quantum Design, MPMS XL), see fig.162

2. The maximum applied field was 3600 kA/m, or 4.5 T for B = µ0H. As163

hexane fusion temperature lies at 178 K, only the highest temperature (220164

K) corresponds to a FF, while all the others correspond to the frozen FSR.165

It has been reported that even at temperatures below the fusion tempera-166

ture the particles can rotate at a “premelting stage”, due to the presence167

of an interfacial liquid between MNPs and the frozen liquid[24, 25]. This168

premelting stage can be detected through zero-field-cooling and field-cooling169

experiments [25], which we have performed ensuring that at 160 K our parti-170

cles are prevented from both displacement and rotation. Also, we took care171

8
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random distribution of MNP easy axes.173

At 40 K and below we observe coercivity, indicating that at least a frac-174

tion of the MNPs are in the blocked state, not reaching thermodynamic175

equilibrium at low fields[26]. We consider that above a certain irreversibility176

fieldHirr(T ), every particle’s energy profile has only one minimum, populated177

with Boltzmann statistics[27]. Hirr(T ) is determined as the field where both178

M branches coincide, and magnetization values measured above that field179

correspond to equilibrium.180

Figure 2: Magnetization (magnetic moment per unit sample volume) M vs. magnetic
field H for the same sample of MNPs in hexane at different temperatures. Only the 220
K measurement is made above the fusion temperature of hexane. Inset: magnification of
the coercivity region.

4. Discussion181

At first, the full Langevin response for a poly-sized system (eq. 6), plus a182

diamagnetic contribution, was fitted to the FF at 220 K, assuming a LogNor-183

9
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loop, we obtained values for the sample’s particle density n = 1.23(1)× 1021185

m−3, and the mean magnetic moment at 220 K: ⟨µ⟩ = 1.40(1) × 104 µB.186

While ⟨µ⟩ is spected to vary with temperature according to Bloch’s law[5],187

the value of n remains the same for all temperatures. For FSR analysis we188

fix n in this value to reduce the number of fitting parameters.189

Matching the value of ⟨µ⟩ from the fit with the TEM mean diameter190

(⟨D⟩ = 9.55(8) nm) gives a particle saturation magnetization MS = 258(7)191

kA/m, in accord with known values for iron oxide nanoparticles[28].192

T (K) Hc(kA/m) Hirr(kA/m) H1(kA/m) H2(kA/m)

5 21.29(3) 160(10) 1000 8
10 12.80(3) 160(10) 500 10
40 0.20(3) 30(10) 125 20
160 - - 31 15

Table 1: Characteristic fields for the ferrosolid at each temperature. H1(H2) represents
the order of magnitud of lower fields where Chantrell’s(our) HF expression is no longer
valid

Then we proceeded to fit the asymptotic models to the FSR at different193

temperatures. We verified the presence of a region where the asymptotic ex-194

pressions are valid, evaluating H1 (eq.19) and H2 (eq.20), see table 1. Since195

the values for Keff are taken from literature[29] at the specific temperature196

of 220 K, and we used MS obtained also at that temperature, these fields are197

a gross estimation. In addition, the presence of coercivity at lower tempera-198

tures forced us to remain above the irreversibility field Hirr.199

In table 2 we show values for mean magnetic moment ⟨µ⟩Ch, correspond-200

ing to fits of Chantrell’s expression (eq. 10), made for fields above H1. The201

values for ⟨µ⟩, MS and Keff were obtained fitting an expression up to H−3
202

(eq.17), well above H2, taking the same particle density n found for the FF.203

These fits are shown in fig. 3.204

Keff(T ) values obtained with our method are comparable with those found205

in the bibliography for iron oxide nanoparticles[28, 17]. Also there is a perfect206

agreement between the mean magnetic moments obtained with Chantrell’s207

expression and ours. LF expressions are not applicable below the blocking208

temperature, but from the 160 K LF region we did obtain ⟨µ2⟩=2.82(2)209

µB
2, which combined with the corresponding value of ⟨µ⟩ gives a standard210

10
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Figure 3: Data (points) and fit (continuous line) of eq.17 (up to H−3) for the ferrosolid
magnetization at different temperatures

T (K) ⟨µ⟩Ch (10
4µB) ⟨µ⟩ (104µB) MS(kA/m) Keff(kJ/m

3)

5 1.53(1) 1.52(1) 280(7) 21.3(6)
10 1.52(1) 1.51(1) 279(7) 20.1(6)
40 1.51(1) 1.51(1) 279(7) 18.7(5)
160 1.44(1) 1.44(1) 265(7) 12.2(4)

Table 2: Magnetic characteristics obtained from fitting the asymptotic expressions at
the FS at different temperatures. The second column corresponds to fits of Chantrell’s
expression, while the others correspond to ours (up to H−3)

deviation of 8.6(2)× 103 µB for the particle magnetic moment.211

We must comment on the high field susceptibility χHF that remains after212

saturation of the MNPs. It presents a change in sign between 10 and 40 K.213

In order to explain this behaviour we propose a sum of a diamagnetic con-214

tribution χD, independent of temperature, and a paramagnetic contribution215

11
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ofχP = C/T , following Curie’s law. Fitting this sum to χHF vs. temperature216

yields a diamagnetic susceptibility χD = −8.2(2) × 10−5 in accord with re-217

ported values for hexane[30], and a Curie constant C = 6(1)× 10−4 K. The218

observed paramagnetism might be explained by a spin-disordered layer at219

the particle surface as discussed by [31, 32].220

Figure 4: High field susceptibility vs. temperature, and fit of sum of paramagnetic (∝ 1/T )
and diamagnetic (constant) contributions.

5. Conclusions221

We have obtained an expression for the magnetic moment of a system222

of randomly oriented magnetic nanoparticles, in the high field region. This223

asymptotic expression in inverse powers of the applied field H, up to H−3,224

is derived from the partition function formalism and the Stoner-Wohlfarth225

model for single domain nanoparticles. The parameters involved are the par-226

ticle density n, mean particle magnetic moment ⟨µ⟩, temperature T , particle227

saturation magnetization MS and anisotropy energy density Keff.228

12
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field region to apply least squares fits to the magnetic moment measurements,230

to obtain among other parameters the effective magnetic anisotropy. As231

a proof of concept, we have applied this method to an hexane suspension232

of randomly oriented iron oxide magnetic nanoparticles, obtaining Keff for233

different temperatures below hexane’s fusion point. Results are in the [12,22]234

kJ/m3 range, decreasing with temperature, compatible with known values for235

similar systems.236

This method may be applied to ferrogels, frozen ferrofluids, or magnetic237

nanoparticles in dried powder, when the samples are prepared in the absence238

of field and dipolar interactions can be disregarded. With a magnetic moment239

measurement (such as those made with a VSM), at high enough fields, and240

knowing the particle’s saturation magnetization MS, the system’s Keff is241

obtained.242

We have also shown that a simpler expression proposed by Chantrell et243

al. for a ferrofluid, up to H−1, is valid for MNPs with randomly oriented244

easy axes as well, in determined field region. While Keff cannot be obtained245

in this fashion, the same ⟨µ⟩ is found with either method when both are246

simultaneously applicable.247
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Appendix254

For the particular case when all easy axes are parallel to the applied field,
eq. 13 has an analytic solution in terms of the imaginary error function:

Mpar (ρ, λ)

nµ
=

2 eλ+
ρ2

4λ sinh(ρ)
√
πλ
(
erfi
(

ρ+2λ

2
√
λ

)
− erfi

(
ρ−2λ

2
√
λ

)) − ρ

2λ
(.1)

This response lies between two extremes: its lower bound is the Langevin255

function L(ρ) in the λ → 0 limit, and its higher bound is the hyperbolic256

13
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oftangent tanh(ρ) in the λ → ∞ limit. The hyperbolic tangent is the result of257

the two level model for the particle moment[8].258

For a more general case we have found asymptotic expressions for equation259

13, for arbitrary easy axis directions distribution g(Ωa), that were left out of260

the main body of this work. These are261

LF
MFS (ρ, λ)

nµ
=ρ

(
1

3
+

(
eλ√

πλ erfi(
√
λ)

− 1

2λ
− 1

3

)〈
P2

(
ĥ · â

)〉)
+

(.2)

+O
(
ρ3
)

(.3)

HF
MFS (ρ, λ)

nµ
=1− 1

ρ
− 4

15

λ2

ρ2
+

2

ρ2

[
λ
〈
P2

(
ĥ · â

)〉
+

+
2λ2

7

(
4

5

〈
P4

(
ĥ · â

)〉
− 1

3

〈
P2

(
ĥ · â

)〉)]
+O

(
ρ−3
)

(.4)

where P2 and P4 are the Legendre polynomials of second and fourth order,262

respectively, and the averages ⟨⟩ are taken over the distribution of angles263

between the easy axis and the applied field. For example264

〈
P2

(
ĥ · â

)〉
=

∫
P2

(
ĥ · â

)
g(Ωa)dΩa (.5)

If we consider the particular case where all easy axes are parallel to the265

applied field the resulting expressions are much simplified, as Pn (1) = 1:266

LF
Mpar (ρ, λ)

nµ
=ρ

(
eλ√

πλ erfi(
√
λ)

− 1

2λ

)
+O

(
ρ3
)

(.6)

HF
Mpar (ρ, λ)

nµ
=1− 1

ρ
+

(
1− λ

15

)
2λ

ρ2
+O

(
ρ−3
)

(.7)

These are the asymptotic expressions of eq. .1. The LF response is equal to267

the one found by Yasumori in terms of infinite sums[20].268

For easy axes perpendicular to the applied field, we have P2(0) = −1/2,269

P4(0) = 3/8, so270
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Mper (ρ, λ)

nµ
=
ρ

2

(
1− eλ√

πλ erfi(
√
λ)

+
1

2λ

)
+O

(
ρ3
)

(.8)

HF
Mper (ρ, λ)

mS

=1− 1

ρ
− λ

ρ2
+O

(
ρ−3
)

(.9)

Once again we find agreement with expressions obtained by Yasumori for HF271

behaviour, and for LF in the limit λ ≪ 1.272
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method to obtain the effective anisotropy energy density of randomly oriented 
netic nanoparticles is proposed.
is method can be applied to any system where the nanoparticles are fixed and no
owed to rotate.
e method involves the fitting of a high field asymptotic expression of the 
netization.
 is applied to a suspension of iron oxide nanoparticles in hexane to obtain K a
unction of temperature, below the fusion point.
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