
J Sol-Gel Sci Techn (2006) 37: 195–199
DOI 10.1007/s10971-005-6628-8

ORIGINAL ARTICLE

Monte carlo simulation of diffusion-limited drug release
from finite fractal matrices
Rafael Villalobos · Ana M. Vidales · Salomón Cordero ·
David Quintanar · Armando Domı́nguez

Published online: 24 February 2006
C© Springer Science + Business Media, Inc. 2006

Abstract How fast can drug molecules escape from a con-
trolled matrix-type release system? This important question
is of both scientific and practical importance, as increas-
ing emphasis is placed on design considerations that can be
addressed only if the physical chemistry of drug release is
better understood. In this work, this problem is studied via
Monte Carlo computer simulations. The drug release is sim-
ulated as a diffusion-controlled process. Six types of Menger
sponges (all having the same fractal dimension, df = 2.727,
but with different values of random walk dimension, dw ∈
[2.028, 2.998]) are employed as models of drug delivery de-
vices with the aim of studying the consequences of matrix
structural properties (characterized by df and dw) on drug
release performance. The results obtained show that, in all
cases, drug release from Menger sponges follows an anoma-
lous behavior. Finally, the influence of the matrix structural
properties on the drug release profile is quantified.
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Introduction

An ideal drug release system provides a controlled amount
of medication over an adequate period of time without any
adverse interaction with healthy tissue. This definition ap-
plies to drug release devices that are implanted or inserted
in the vicinity of the target tissue [1]. The modeling of drug
release from delivery systems is important to understand and
elucidate the transport mechanisms that are taking place,
and allows the effect of the device design parameters on the
drug release rate to be predicted, which determines the ef-
fect on the target tissue [2]. Hence, the development of new
biomedical and pharmaceutical products is greatly facilitated
because the desired release kinetics can be predicted in ad-
vance and thus can be more readily achieved [3]. This may
provide a valuable decision making tool in pharmaceutics
and other related fields, when facing the dilemma of whether
one should invest in expensive micro or nano sol-gel technol-
ogy, in order to achieve controlled release. Sol-gel devices are
important when trying to decrease the size of drug release
devices. Frequently, real delivery systems are matrix plat-
forms with fractal geometry, as revealed [4] by techniques
such as mercury porosimetry where experimental data are
interpreted to determine the fractal dimension of a porous
body. A tablet consisting of both a soluble and brittle drug
(caffeine) and a non-swelling water insoluble polymer (ethyl
cellulose), becomes porous during drug release. A leached
and subsequently dried tablet represents, in a narrow range
of resolution, a sponge-like structure. The distribution of
pores corresponding to the original sites occupied by caf-
feine particles has been related to the fractal dimension of
monolithic devices. Furthermore, it has been found that the
fractal dimension of the porous tablet resulting from a fixed
mixing ratio depends on the particle size of the soluble sub-
stance and, in all cases, the value of df was in the range
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(2.733−2.838). Therefore, fractal structures are helpful mod-
els of drug delivery devices such as the Menger sponge,
which is characterized by df = 2.727 (which is very near to
the experimental df values).

The Menger sponge has been used as a model of matrix
dosing system (see for example [4, 5]). In this work, drug re-
lease is simulated by a diffusion-controlled process (random
walk). Six different types of Menger sponges, i.e. six fractal
porous structures having the same fractal dimension, df =
2.727, but different values of the random walk dimension,
dw ∈ [2.028, 2.998] ([6] and references therein) are used as
models of porous solid dosing systems, with the aim of elu-
cidating the effect of the structural properties of the porous
matrix (dw) on drug release behavior.

Some drug release kinetic equations

In spite of the complexity of the phenomena involved in drug
release mechanisms, three equations have been proposed
and are currently employed for describing experimental drug
dissolution profiles, i.e. the amount of drug released as a
function of time [7]. These equations are:

(i) The Higuchi equation,

Mt

M∞
= k

√
t (1)

where Mt and M∞ are the amounts of drug released at times
t and infinity, respectively, and k is the Higuchi dissolution
constant;
(ii) The Peppas equation or the so-called power law,

Mt

M∞
= K tn (2)

where K is an experimentally determined parameter, and n
is a real number related to the structure of the drug releasing
system;
(iii) The Weibull equation,

Mt

M∞
= 1 − exp(−atb) (3)

where a and b are real numbers; a defines the time scale
of the process and b characterizes the shape of the kinetic
curve. Kosmidis et al. [8,9] have shown that this stretched
exponential function may be considered as the soundest ap-
proximate solution for the entire duration of drug release.
Furthermore, this equation is consistent with the theoretical
predictions obtained under the framework of classical fractal
kinetics.

A drug release problem can be seen as a study of the kinet-
ics of the reaction A + B → C [8], where A represents trav-

eling particles while B and C are regarded as static particles;
the above scheme portrays the well known trapping problem
[6]. In this approach, there exist three key dimensions: df ,
dw, and the fracton dimension, ds. The last parameter takes
into account the way by which a diffusing molecule “sees”
the heterogeneities present in the porous medium during its
random walking transit, and is related to dw and df by:

ds = 2d f
/

dw (4)

It is pertinent to note that there are two important dif-
ferences between the drug release problem and the classical
trapping problem:

I. During drug release, the traps are not randomly dis-
tributed throughout the porous medium. Instead, they
are mainly located at the device boundaries. In fact, the
boundary fraction, which is part of the embedded drug
clusters, constitutes the trap sites.

II. During trapping, the porosity of the system, ε, is not
changing greatly, whereas in drug release the porosity
of the tablet changes notably. It is then expected that
ds > d∗

s , where d∗
s is the fracton dimension of the drug

release problem.

In this work, Monte Carlo simulations, based on the ran-
dom walk model for Fickian diffusion with excluded volume
interactions, are used to study the consequences of these frac-
tal dimension differences on the drug delivery profile and to
reexamine the release problem from the point of view of a
fractal kinetics framework.

Methodology

Menger sponges are a special class of three-dimensional
fractals (df = 2.727) [5]. Figure 1 demonstrates the gen-
eration procedure of Menger sponges. The construction of
these substrates begins with a solid cube and involves an
iterative process involving the removal of different parts of
this initial cube. Let us label as CMS0 our initial cube. Then,
CMS1 will be generated by partitioning CMS0 into 27 iden-
tical cubes and taking out the central cube as well as the 6
cubes that are located at the middle of each face of CMS0

(c.f. Fig. 1). Next, CMS2 will be constructed by repeating
the same process for each of the cubes constituting CMS1.
In this way, a nested sequence of configurations, CMSi, can
be produced, whose intersection should become the lim-
iting sponge, CMS∞. CMS∞ is then a self-similar fractal
known as the classical Menger sponge. Each of the partic-
ular Menger sponges built in this work are generated after
performing three of these partitioning iterations (i = 3). To
build the diverse sponges, the seven sub-cubes removed in
each iteration are (the position vectors (x, y, z) correspond to
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Fig. 1 Illustration of the classical Menger sponge generator, and the
axes of the vectors position.

the axes shown in Fig. 1): (i) (1,3,2), (1,3,3), (2,1,3), (2,2,1),
(2,2,2), (2,3,1), (3,2,2) for substrate AMS, (ii) (1,1,3), (1,2,2),
(1,3,1), (1,3,2), (1,3,3), (2,3,1), (3,2,3) for substrate BMS,
(iii) (1,2,2), (2,1,2), (2,2,1), (2,2,2), (2,2,3), (2,3,2), (3,2,2)
for substrate CMS, (iv) (1,2,2), (1,3,1), (1,3,2), (2,3,3),
(3,1,2), (3,1,3), (3,3,2) for substrate DMS, (v) (1,1,1), (1,2,2),
(2,1,2), (2,2,1), (2,2,3), (2,3,2), (3,2,2) for substrate EMS, and
(vi) (1,2,2), (2,1,1), (2,1,2), (2,2,1), (2,2,3), (2,3,2), (3,2,2)
for substrate FMS.

The drug dissolution algorithm can be summarized as
follows:

I. The sponge is generated from a lattice consisting of
27 × 27 × 27 sites, and after the third iteration, each
site is either saturated with drug (if this site is forming
part of the porous volume) or excipient (if the site forms
part of the solid body). If drug is held in a site, this site
is called a drug particle,

II. The drug particles are allowed to move throughout the
porous space according to the random walk model (i.e.
according to a “blind ant” routine [10]), and

III. Excluded volume interactions between the drug particles
are assumed.

The release process attempts to mimic the leaking of drug
particles from a tablet, when this substrate (which is consti-
tuted by both drug and excipient particles [11]) is placed in
contact with a solvent phase. The diffusion of drug molecules
from the substrate is simulated by selecting a drug particle
at random and attempting to move it randomly to any one of
its adjacent sites. If the chosen site is already occupied (by
either another drug or excipient particle) the movement is re-
jected, but if the neighboring site is empty the movement is
accepted. The drug particles can finally exit the tablet when

they reach a site located at the border of the sponge. After
each drug movement (either successful or not) the time is
incremented by a value equal to 1/N, where N is the number
of total drug particles remaining into the matrix [2, 9]. The
number of particles remaining in the matrix is monitored as a
function of time until only 10% of the drug particles remain
inside the matrix. The release rate, dQ/dt, is monitored by
counting the number of particles that diffuse from the escap-
ing area (i.e. from the six faces of the sponge) in the interval
between t and t + 1.

Diffusion can be studied by means of a random walk rou-
tine [10, 12]. Our particular routine considers a drug particle
undergoing nearest-neighbor random site displacements [11]
in each one of the previously described Menger sponges. The
porous space of the Menger sponges is considered empty
(there are no drug particles) and the sponge structure is re-
peated in all directions to render a homogeneous structure of
a sufficiently large length. Then, a walking drug element is
released at a randomly chosen site and the distance traveled
is measured at time intervals corresponding to t = 10k, k
∈ {1,2,3, . . .}. The mean square distance 〈r2〉 traveled by
the walking drug element is averaged over 1000 different
walks. In this case, the time unit corresponds to one Monte
Carlo step (i.e. a number of walking attempts equal to the
total number of sites). In fractal bodies, diffusion becomes
anomalous (i.e. non-Fickian) and is consistent with the law
〈r2〉 ∝ t2/dw , where dw > 2, thus implying a sub-diffusive
behavior. Initially, the walking drug element “sees” a fractal
structure as long as it is confined within a distance close to
the size of the sponge (27 in our case); therefore diffusion
is anomalous since dw 
= 2. For longer times, however, the
walking drug element traverses the entire sponge and dif-
fusion becomes normal. The dw value is determined in this
work from the linear fit of log〈r2〉 against logt for 〈r2〉 ∈
(0.00, 182.225).

Results and discussion

In Table 1 the calculated dw values are presented. Their
relative error, r.e., is bounded by 0.005. In this way, we
have achieved 3D fractal structures with df = 2.727, which
is a plausible drug dosing value. Additionally, dw values
cover the range dw ∈ (2.02, 3.00). Another useful param-
eter is Nleak

Ntotal
, where Nleak denotes the number of drug es-

caping sites and Ntotal is the total number of sites. The
Mt/M0 (drug release fraction) values corresponding to the
various Menger sponges are shown in Fig. 2 as function
of time. Note that porous structures, having the same frac-
tal dimension but endowed with different topological prop-
erties, render different release profiles. In addition, this
figure shows fitted lines (according to Eq. (3)) for each
data set.
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Table 1 Drug release parameters corresponding to Menger sponges,
df = 2.727 Delivery occurs through the six cube faces

Sponge M∞
M0

dw
Nleak
Ntotal

a b d∗
s ds

ASM 0.962 2.455 0.107 0.056 0.548 0.938 2.222
BSM 0.985 2.194 0.132 0.064 0.575 0.878 2.486
CSM 1.000 2.028 0.066 0.020 0.759 0.398 2.689
DSM 0.971 2.366 0.133 0.071 0.552 0.974 2.305
ESM 0.896 2.761 0.092 0.048 0.540 0.985 1.975
FSM 0.866 2.998 0.083 0.041 0.572 0.979 1.819

Fig. 2 Drug release from Menger sponges. Symbols represent numer-
ical results, while solid lines show the fitting of these data through the
Weibull equation.

Table 1 lists the estimated a, and b Weibull values. The
relative errors, r.e., are 0.02 for a, and 0.005 for b. Over-
all, there exists a very good agreement between the plotted
data and the predicted behavior advanced by Eq. (3). This
means that drug release from finite Menger sponges can be
well represented by the Weibull equation. Also note the dif-
ferences among the diverse M∞/M0 values, Table 1. Here
∞ = 105 Monte Carlo steps. The dissimilar amounts of drug
entrapped inside the blind porosity (i.e. pores which are not
connected to the exterior) of each sponge is responsible for
these differences.

The a and b parameters are related to the structural prop-
erties of the matrix platform. As mentioned elsewhere ([9]),
the values of a and Nleak

Ntotal
obey a linear relationship. In our

case, this expression has the following form:

a = −0.017 + 0.651 Nleak
/

Ntotal (5)

Notice that the independent term (−0.017) is quite small
with respect to the dependent term (0.651), and thus the value
of a is mostly determined by the Nleak

Ntotal
ratio; therefore we may

conclude that a ∝ Nleak since Nleak
Ntotal

∝ Nleak [9 ]. In contrast,

Fig. 3 Determination of d∗
s values. Symbols represent numerical re-

sults, while solid lines show the fitting of these data.

our results show no linear relationship between b and Nleak
Ntotal

.
The b values can have two contributions: (i) b should be
proportional to the specific surface area of the matrix, since
a high value for this parameter means that there are many
exits for drug escape; and (ii) b should be a function of
the ability of the drug particles to travel inside the matrix
platform.

The values of d∗
s are calculated [6 ] from the slopes of the

log((dQ/dt)/N(t)) vs. logt curves plotted in Fig. 3 [8]. The
d∗

s values are presented in Table 1, and are very different
to those computed from Eq. (4). As mentioned earlier, the
reasons for this difference are the spatial segregation of the
leaking sites and the dynamic behavior of the porosity value.
It is found that b has a linear dependency on d∗

s :

b = 0.907 − 0.374d∗
s (6)

Equation (6) clearly shows that b is truly related to the
transport properties of the drug delivery system.

Conclusion

Drug release from Menger sponges is characterized by a
non-Fickian behavior. Nevertheless, this abnormal process
can be described in terms of a Weibull equation, in which
the device surface is defined by Weibull’s a value while
the device transport properties are defined by Weibull’s b
value.
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