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Intermittent ERK oscillations downstream of FGF in mouse
embryonic stem cells
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ABSTRACT

Signal transduction networks generate characteristic dynamic
activities to process extracellular signals and guide cell fate
decisions such as to divide or differentiate. The differentiation of
pluripotent cells is controlled by FGF/ERK signaling. However, only a
few studies have addressed the dynamic activity of the FGF/ERK
signaling network in pluripotent cells at high time resolution. Here, we
use live cell sensors in wild-type and Fgf4-mutant mouse embryonic
stem cells to measure dynamic ERK activity in single cells, for defined
ligand concentrations and differentiation states. These sensors reveal
pulses of ERK activity. Pulsing patterns are heterogeneous between
individual cells. Consecutive pulse sequences occur more frequently
than expected from simple stochastic models. Sequences become
more prevalent with higher ligand concentration, but are rarer in more
differentiated cells. Our results suggest that FGF/ERK signaling
operates in the vicinity of a transition point between oscillatory
and non-oscillatory dynamics in embryonic stem cells. The resulting
heterogeneous dynamic signaling activities add a new dimension to
cellular heterogeneity that may be linked to divergent fate decisions in
stem cell cultures.
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INTRODUCTION
Cells rely on signal transduction networks to process signals from
their environment, and to guide decisions such as to divide,
differentiate or die (Koseska and Bastiaens, 2017). These networks
can produce dynamic activation patterns even at constant stimuli
(Antebi et al., 2017; Santos et al., 2007). Dynamic activity patterns
are shaped by the cell-type specific architecture of the signal
transduction system.

One of the most crucial signal transduction systems during
early mammalian embryogenesis relays signals from extracellular
fibroblast growth factor 4 (FGF4) through the RAS/RAF/MEK/
ERK network (Brewer et al., 2016). The differentiation of extra-
embryonic primitive endoderm cells in the mouse preimplantation
embryo depends on FGF/ERK signaling in a dose-dependent
manner (Kang et al., 2013; Krawchuk et al., 2013). Embryonic stem
cells (ESCs), clonal cell populations that retain the differentiation
potential of inner cell mass cells of the preimplantation embryo, are
a tractable model system that recapitulates this dose-dependent
function of FGF4 (Raina et al., 2021; Schröter et al., 2015). FGF/
ERK signaling is also required for maturation of the epiblast lineage
in the embryo (Kang et al., 2017; Ohnishi et al., 2014), and controls
the corresponding process of transitioning from naïve to primed
pluripotency and lineage commitment in ESCs (Kunath et al., 2007;
Molotkov et al., 2017). Both in the embryo and ESCs, FGF/ERK
signaling is mostly triggered by paracrine FGF4 ligands (Kang
et al., 2013; Krawchuk et al., 2013; Kunath et al., 2007). Despite
these well-known functions of FGF/ERK signaling during the
differentiation of pluripotent cells, little is known about FGF/ERK
signaling dynamics in this developmental context.

Revealing intracellular signal transduction dynamics requires
live-cell approaches in single cells. Live-cell ERK activity can be
monitored with substrate-based sensors that employ fluorescence
resonance energy transfer (FRET) or subcellular localization
as read-outs (Komatsu et al., 2011; Regot et al., 2014). Analysis
of ERK activity in acutely stimulated ESCs expressing a FRET-
based sensor revealed a transient peak of activation that decayed
over long timescales (Deathridge et al., 2019). However, the
short timescale ERK signaling dynamics in the continuous FGF
stimulation regimes required to trigger differentiation of ESCs
(Hamilton et al., 2019) remain largely unexplored.

In other cell types, short timescale ERK dynamics upon
continuous stimulation of the epidermal growth factor (EGF)
receptor show diverse behaviors. In many, but not all, cell types,
ERK activity occurs in pulses (Aoki et al., 2013). In several cell
types, the frequency of ERK activity pulses depends on EGF
concentration or cell density (Albeck et al., 2013; Aoki et al., 2013).
This has led to the suggestion of frequency-modulated encoding
of information about extracellular signal levels by the RAS/RAF/
MEK/ERK network downstream of the EGF receptor (Albeck et al.,
2013). In mammary epithelial cells in contrast, pulses of ERK
nuclear translocation have a constant frequency across a range of
EGF stimulation levels (Shankaran et al., 2009).

Here, we use a translocation-based sensor (Regot et al., 2014)
to measure short timescale ERK activity dynamics in single ESCs.
We find that ERK activity is pulsatile in ESCs, and develop
concepts and analysis methods to quantitatively characterize
dynamic signatures of pulsing. ERK activity pulses in ESCs are
faster than any previously reported ERK dynamics. In some cells,
pulsing occurs in regular, consecutive sequences. Thus, we develop
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Ciudad Universitaria, 1428 Buenos Aires, Argentina.
*These authors contributed equally to this work
‡These authors contributed equally to this work

§Authors for correspondence (lmorelli@ibioba-mpsp-conicet.gov.ar;
christian.schroeter@mpi-dortmund.mpg.de)

D.R., 0000-0003-4140-3925; F.F., 0000-0001-6922-4916; L.G.M., 0000-0001-
5614-073X; C.S., 0000-0002-8161-7568

This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use,
distribution and reproduction in any medium provided that the original work is properly attributed.

1

© 2022. Published by The Company of Biologists Ltd | Development (2022) 149, dev199710. doi:10.1242/dev.199710

D
E
V
E
LO

P
M

E
N
T

mailto:lmorelli@ibioba-mpsp-conicet.gov.ar
mailto:christian.�schroeter@mpi-dortmund.mpg.de
http://orcid.org/0000-0003-4140-3925
http://orcid.org/0000-0001-6922-4916
http://orcid.org/0000-0001-5614-073X
http://orcid.org/0000-0001-5614-073X
http://orcid.org/0000-0002-8161-7568


metrics to quantify pulsing regularity, and use these to contrast
experimental observations with simple stochastic models. These
stochastic models alone cannot explain experimental data. Together
with other dynamic signatures, these observations suggest the
presence of ERK oscillations. To determine how these oscillations
change with environment and cell state, we measure ERK dynamics
in response to defined concentrations of FGF4 ligands, along the
cell cycle, and in different pluripotency states. We detect no pulsing
in Fgf4-mutant cells, but pulsing is restored upon addition of
recombinant FGF4, indicating that FGF4 triggers ERK pulsing.
Controlling extracellular ligand levels in the mutant background,
we show that individual ERK pulses have a duration that is
independent of ligand levels. However, the extent of the oscillatory
behavior increases with FGF4 dose. Using long-term recordings
to follow cells from birth to division, we show that ERK pulsing
is more prevalent in the early stages of the cell cycle. Finally,
we compare ERK dynamics in embryonic and epiblast stem
cells, and find that oscillations become less prevalent following
differentiation. Taken together, our data suggest that the FGF/ERK
signal transduction system in pluripotent cells transits between
oscillatory and non-oscillatory behavior.

RESULTS
ERK activity is dynamic in ESCs
We first explored ERK activation in single ESCs under constant
culture conditions that maintain pluripotency. We stained for
phosphorylated ERK (pERK) in cells growing in serum+LIF and
quantified whole-cell pERK levels. We observed pERK staining in
cells growing in serum+LIF, and noted it was absent in the presence
of the MEK-inhibitor PD0325901 (MEKi) (Fig. 1A,B). pERK
staining was more heterogeneous in serum+LIF than in the MEKi
control. Almost all cells in serum+LIF had pERK staining values
above the range covered by MEKi cells (Fig. 1B).
The heterogeneous pERK staining in serum+LIF could

purely reflect long-term variability between cells as previously
reported (Deathridge et al., 2019). In addition, short-term signaling
fluctuations could contribute to this variability. To test the extent of
short-term signaling fluctuations, we integrated a translocation-
based sensor to measure ERK activity in live cells. We generated
this cell line by single copy insertion of the ERK-KTR-mClover
construct into the Hprt open locus (Fig. 1C) to ensure uniformity in
expression. Transgenic cells continued to express pluripotency
markers (Fig. S1) and transmitted to the germline of chimeric mice
(Simon et al., 2020), indicating that reporter expression does not
interfere with pluripotency and differentiation potential.
Phosphorylation of the ERK target site of the sensor leads to its

export from the nucleus, thus reporting ERK activity as the
cytoplasmic to nuclear (C/N) ratio of reporter localization
(Regot et al., 2014) (Fig. 1C). Snapshots of cells growing in
serum+LIF showed that the sensor preferentially localized to
the cytoplasm, in contrast to the MEKi-treated control where it
was uniformly distributed (Fig. 1D). Furthermore, the C/N ratio
of sensor localization was more variable between cells growing in
serum+LIF compared with the MEKi-treated control (Fig. 1E),
in line with heterogeneous pERK staining. These qualitative
similarities between pERK staining and reporter C/N ratios
suggest that the reporter is suited to explore short-term ERK
dynamics in ESCs.
We next recorded dynamic changes of reporter localization by

imaging reporter cells at 20 s time intervals for up to 2 h. In these
time-lapse movies we could observe repetitive translocation of the
sensor back and forth from the nucleus of cells growing in

serum+LIF, which were absent in MEKi (Fig. 1F; Movie 1). For
quantification of dynamic activity in single cells, we measured KTR
fluorescence intensity in regions of interest in the nucleus and
cytoplasm of individual cells over time (Fig. S2; Materials and
Methods). Drops in nuclear fluorescence were paralleled by surges
in cytoplasmic fluorescence. Although the C/N ratio has been used
as a read-out for ERK activity in other cell lines (Regot et al., 2014),
the cytoplasm in ESCs is small and often difficult to identify
unambiguously. We therefore compared the scaled C/N ratio from
these measurements with the nuclear signal from the inverted
image, and found that they were very similar (Fig. S2). Thus, for
convenience, we focused on sensor fluorescence in the nucleus.

To validate that translocation of the sensor out of the nucleus
reflected genuine ERK activity, we transfected two spectrally
compatible orthogonal ERK activity sensors in the same cells. Both
sensors showed similar and highly correlated dynamic behavior
(Fig. S3; Materials and Methods). These sensors rely on different
ERK substrate sequences, and deploy FRET (Komatsu et al., 2011)
and translocation as two distinct read-outs. This indicates that
pulsatile nuclear export of the KTR sensor reflects genuine ERK
dynamics.

As active ERK resulted in sensor export out of the nucleus, we
defined the nuclear intensity of the inverted image as the KTR
signal, such that high values of the KTR signal reflect high ERK
activity. This representation revealed a broad range of dynamic
behaviors across the population (Fig. 1G; Fig. S4): some cells
showed regular pulsing (*, Fig. 1G), and some showed isolated
pulses (**, Fig. 1G). We also observed transitions between non-
pulsing and pulsing behavior within the same cell (***, Fig. 1G).
We conclude that pluripotent ESCs cultured in serum+LIF display a
range of pulsatile ERK activity dynamics.

Intermittent ERK oscillations in ESCs
The broad range of dynamic behaviors that we observed
qualitatively across the population prompted us to systematically
investigate the dynamic signatures of ERK activity in ESCs. As
ERK activity pulses were a prominent feature of the dynamics, we
sought to identify single pulses in time series. We first annotated the
time points of local maxima and minima, and then used time series
of MEKi-treated cells to set a threshold for filtering ERK-dependent
pulses from background fluctuations (Fig. 2A; Fig. S5; Table S1;
Materials and Methods). Most cells (64/69, 93%) showed pulses in
serum+LIF, whereas very few (2/67, 3%) showed any pulse in
MEKi. The total fraction of time that single cells were pulsing was
variable: some cells pulsed continuously, others showed a mixture
of pulsing and non-pulsing behavior – termed silent – and yet others
were non-pulsing throughout the experiment (Fig. 2B). On average,
cells were pulsing 32±3% (mean±s.e.m.) of the time in serum+LIF
alone, but only 0.13±0.09% of the time in the presence of MEKi
(Fig. 2B).

To determine general characteristics of pulsing activity in
the population, we introduced a set of quantitative measures: the
amplitude and duration of single pulses, and the interpulse and
silence intervals between successive pulses (Fig. 2C). The amplitude
of a pulse was defined as the average difference between the peak
value and the neighboring local minima (Fig. 2C). Our thresholding
parameters only filter the tail of the amplitude distribution, containing
low amplitude fluctuations that fall within the range of background
levels determined from time series of MEKi-treated cells (brown area
in Fig. 2D). Thus, even though the quantitative relationship between
ERK activity and pulse amplitude is not known, we can still faithfully
distinguish genuine ERK pulses from background fluctuations.
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Fig. 1. A targeted translocation sensor reveals pulsatile ERK activity in ESCs. (A) Immunostaining of mESCs growing in serum+LIF (S+L) medium without
(top) or with (bottom) MEKi for pERK and E-cadherin to mark membranes. The punctate pERK staining within the nucleus is insensitive to MEK inhibition,
suggesting it is non-specific. (B) Quantification of fluorescence staining intensities in single cells stained as in A. n≥100 per condition, green bars indicatemedians
(medianS+L=24.39 a.u., medianMEKi=7.75 a.u.; CVS+L=0.67, CVMEKi=0.17), box bounds are the 25 and 75 percentiles of the distributions, and whiskers are the 5
and 95 percentiles. (C) Schematic of the ERK-KTR sensor and targeting construct for integration into the Hprt locus. (D) Subcellular localization of ERK-KTR
sensor in live cells in serum+LIF without (top) and with (bottom) MEKi. Membranes are stained with live-cell membrane dye CellMaskRed. (E) Quantification of
cytoplasmic to nuclear ratio of sensor fluorescence in single cells imaged as in D. Green bars indicate medians (medianS+L=1.52, medianMEKi=1.05; CVS+L=0.18,
CVMEKi=0.13), box bounds are the 25 and 75 percentiles of the distributions, and whiskers are the 5 and 95 percentiles. (F) Stills from a movie of ERK-KTR-
expressing cells growing in serum+LIF without (top) and with (bottom) MEKi. Dashed line indicates cell outlines. (G) Representative traces of the KTR signal
obtained as the mean inverted fluorescence intensity within a nuclear ROI in single cells growing in serum+LIF without (right) and with (left) MEKi. *, cell showing
regular pulsing; ** cell showing isolated pulses; ***, cell showing transitions between non-pulsing and pulsing behavior. Scale bars: 20 μm.
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We defined the duration of a pulse as the time elapsed between
the two local minima flanking the maximum of the pulse (Fig. 2C;
Materials and Methods). The distribution of pulse durations has a
well-defined mode at 6.33 min and is slightly asymmetric (Fig. 2E).
We observed no pulses shorter than 3 min, a timescale much longer
than the detection limit of 40 s given by our algorithm and our
sampling frequency. The congruence of the KTR and FRET sensors
suggest that the pulse durations that we can capture are not limited
by the timescales of sensor transport (Fig. S3). Therefore, we
conclude that ERK pulses have a minimum duration. Pulses with
long durations tended to have large amplitudes, and those with short
durations clustered at low amplitude values (Fig. S6).
To further characterize the type of ERK dynamics in single cells,

we extended our focus to quantify how pulses are arranged in traces.
We defined the interpulse interval (IPI) as the time between the
maxima of two neighboring pulses (Fig. 2C). The mode of the IPI
distribution was 7.67 min, similar to the mode of the pulse duration
(Fig. 2F). For the IPI to have a similar value as the durations of
the neighboring pulses, a pulse has to begin immediately after
the previous one. Thus, this similarity of the modes suggests the
presence of consecutive pulses, occurring immediately one after
another. We next set out to determine how often pulses were
consecutive. Consecutive pulses have either shared minima, or are
separated by intervals of silence that are short relative to their pulse
duration. As each IPI can be decomposed into a silence interval and
a joint pulse duration (Fig. 2C; Materials and Methods), we used
these quantities to define consecutiveness in a way that accounts for
differences in pulse duration. In a plot of joint duration against
silence interval duration, sparse events will lie in the lower right
region, whereas consecutive pulses will populate the upper left.
Here, we defined pairs of consecutive pulses as those with a silent
interval of less than half the joint pulse duration (dashed line,
Fig. 2G). With this definition, 52% of all pairs of pulses in cells
growing in serum+LIF lay above the threshold and were classified
as consecutive (Fig. 2G).
The prevalence of consecutive pulsing hinted at an oscillatory

behavior, which was further supported by autocorrelation analysis
of the traces. The normalized autocorrelation function of individual
traces in the serum+LIF displayed signatures of oscillations, albeit
very variable, in contrast to a smooth decay for the MEKi condition
(Fig. S7; Materials and Methods). However, the asymmetric shape
of the IPI distribution raised the question of whether pulsing could
still be stochastic. We tested this possibility by contrasting the data
with a stochastic pulsing hypothesis. We considered a stochastic
pulsing scenario in which waiting times between pulses are
exponentially distributed. We thus plotted the distribution of the
times between pulses and fitted an exponential distribution to the
data (Fig. S8). Then, we generated traces from this fitted waiting
time distribution and the experimentally determined distribution
of pulse durations (Fig. 2H; Fig. S8; Materials and Methods).
From these simulated traces, we first obtained the fraction of each
individual cell track spanned by pulsing. Stochastic pulsing
simulations failed to recapitulate the presence of cells that pulse
for a large fraction of time (left, Fig. 2I), as well as cells that pulse for
a very small fraction of time that were observed in the experiment
(right, Fig. 2I). Furthermore, isolated pulses in simulations occur
more often than in experimental traces, whereas consecutive pulses
occur less often (Fig. 2J). Thus, a stochastic pulsing model with a
single exponential distribution of waiting times across the
population cannot explain these key features of the data.
Next, we asked whether each individual cell pulsed stochastically

with its own waiting time distribution. To simulate this scenario, we

randomized the position of pulses in individual experimental traces
(Fig. 2K). With this approach, simulations matched the total fraction
of time that single cells were pulsing, including cells that pulse for
large and small fractions of time (Fig. 2L). However, isolated pulses
in simulations still occurred more often than in experimental traces
and consecutive pulses occurred less often (Fig. 2M). Longer
sequences of consecutive pulses were likewise far more prevalent in
the experimental data compared with both stochastic models
(Fig. 2N). Thus, these stochastic pulsing scenarios are hard to
reconcile with the data.

In summary, our analysis reveals that ERK pulses in ESCs
growing in serum+LIF have a characteristic duration and are
often part of consecutive sequences which we could not capture
with simple stochastic models. We interpret this behavior as
intermittent oscillations, where silent periods alternate with isolated
pulses and oscillations – here defined as consecutive pulses with a
characteristic duration.

ERK oscillations are triggered by FGF4
ERK activity is dynamic in many cell types (Albeck et al., 2013;
Aoki et al., 2017; de la Cova et al., 2017; Goglia et al., 2020;
Hiratsuka et al., 2015; Mayr et al., 2018; Pokrass et al., 2020;
Shankaran et al., 2009; Simon et al., 2020). Extracellular signals
can change the characteristics of these dynamics, such as pulse
frequency (Albeck et al., 2013; Aoki et al., 2013). In ESCs, FGF4 is
the main ligand that activates ERK (Kunath et al., 2007). We
therefore asked how ERK dynamics depend on FGF4 concentration.
To be able to control FGF4 concentration externally, we introduced
an Fgf4 loss-of-function mutation in the sensor line. These Fgf4-
mutant cells were viable and continued to divide in chemically
defined N2B27 medium that contains only minimal amounts of
recombinant growth factors (Movie 2). This is consistent with
previous reports (Kunath et al., 2007) and demonstrates that
FGF4 signaling is dispensable for cell cycle progression in
ESCs. Still, pERK levels were strongly reduced in this line
(Fig. S9). Even though pERK levels in the Fgf4mutant were similar
to levels in wild-type cells treated with MEKi, the KTR sensor
located preferentially to the cytoplasm, in contrast to acute MEKi
treatment where it was evenly distributed (compare Fig. 1D with
Movie 2). Thus, chronic deprivation from FGF4 in the mutant line
leads to a pERK-independent shift of the sensor C/N ratio.

For stimulating ERK activity, we chose FGF4 concentrations
from 2.5 to 20 ng/ml. These concentrations cover the dynamic range
of FGF4-response at the level of ERK phosphorylation and
transcription of an FGF/ERK-dependent reporter gene (Fig. S9),
as well as differentiation along the primitive endoderm lineage
(Raina et al., 2021). To measure the steady-state signaling response
to different ligand levels, we pre-treated cells with the respective
FGF4 concentrations for 24 h in N2B27 supplemented with Chiron
and LIF to maintain pluripotency. As LIF can activate ERK
(Ohtsuka and Niwa, 2015), 4 h before starting the recording we
replenished with N2B27 containing Chiron and FGF4, but lacking
LIF (Fig. 3A; Materials and Methods). Under these conditions,
FGF4 promotes differentiation towards embryonic lineages within
1-2 days, but cells are still pluripotent during the time of recording
(Kalkan et al., 2017). In the absence of FGF4 stimulation, we
observed almost no pulsing. Widespread pulsatile activity was
observed at all FGF4 concentrations tested, indicating that FGF4
triggers ERK pulsing (Fig. 3B; Fig. S10; Movie 2). To identify
pulses, we employed a similar strategy as above, setting a threshold
based on the untreated condition and the highest FGF4
concentration (Fig. S11, Materials and Methods).

4

STEM CELLS AND REGENERATION Development (2022) 149, dev199710. doi:10.1242/dev.199710

D
E
V
E
LO

P
M

E
N
T

https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.199710
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.199710
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.199710
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.199710
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.199710
http://movie.biologists.com/video/10.1242/dev.199710/video-2
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.199710
http://movie.biologists.com/video/10.1242/dev.199710/video-2
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.199710
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.199710
http://movie.biologists.com/video/10.1242/dev.199710/video-2
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.199710


The distribution of sensor pulse amplitudes was not significantly
different amongst the three concentrations (Fig. S12; Table S2;
Materials and Methods). However, immunostaining and single cell
analysis revealed that the median, the lower end, as well as the
variance of the pERK distributions shifted to larger values with
increasing FGF concentration (Fig. S12). Thus, it is possible that the

amplitude of pERK pulses increases with FGF concentration,
without translating into a measurable increase in sensor pulse
amplitude.

The total fraction of time that single cells were pulsing increased
with FGF4 concentration in the range from 0 to 5 ng/ml (Fig. 3C)
to levels similar to those measured in wild-type cells in

Fig. 2. Time series analysis reveals intermittent ERK oscillations in ESCs. (A) Pulse recognition in representative time series of ERK dynamical activity.
Shown are smoothened single cell traces of KTR signal in the serum+LIF condition. Pulses are indicated by the maxima (blue dots) and corresponding minima
(black dots) that define them. Bar at the bottom indicates pulsing (green) or non-pulsing (gray) intervals in the lower trace. (B) Left: fraction of time that individual
cells spent pulsing (green) or non-pulsing (gray) in serum+LIF alone (top) or upon addition of MEKi (bottom). Right: average time that cells were pulsing (green) or
non-pulsing (gray) in the cell population. Error bar indicates s.e.m. (C) Dynamical features of the time series analyzed in D-G are indicated on a sample trace
portion (gray rectangle in A). (D) Pulse amplitude distribution for the serum+LIF condition (n=289 pulses). (E) Pulse duration distribution for the serum+LIF
condition (n=289 pulses). (F) Interpulse interval (IPI) distribution for the serum+LIF condition (n=225 pairs of pulses). Pulse recognition resolution limit (brown bar)
and quartiles (Q) 25, 50 and 75 are indicated in D-F. (G) Joint pulse duration versus silence intervals for successive pairs of pulses in the serum+LIF condition
(n=225 pairs of pulses). The slope 2 dashed line classifies pairs of pulses into consecutive (above) and non-consecutive (below). The axes rangewas adjusted to
better resolve individual data points, leaving off the scale 27 out of 225 data points. Data in D-G from N=69 cells. (H-J) Homogeneous population model.
(H) Schematic of homogeneous population model for stochastic pulsing. Experimental data (left, green) was used to fit an exponential waiting time distribution of
the entire population (middle), from which simulated stochastic traces were obtained (right, orange). (I) Fraction of time that individual simulated traces spent
pulsing (orange), compared with experimental data from B (green). (J) Counts of isolated and consecutive pulses from 200 realizations of the model divided by
corresponding counts in experimental traces (black dots). A single realization is composed of N=69 traces. (K-M) Heterogeneous population model.
(K) Schematic of heterogeneous population model for stochastic pulsing. Pulses in individual experimental traces (left, green) were randomly repositioned to
generate shuffled traces (right, red). (L) Fraction of time that cells spent pulsing (red). (M) Normalized counts of isolated and consecutive pulses from 200 model
realizations, each consisting of N=69 shuffled traces. (N) Number of pulse trains as a function of the number of consecutive pulses in the train for experimental
data (green), homogeneous population model (orange) and heterogeneous population model (red). The count includes instances that occur within longer trains,
and the first data point corresponds to the total number of individual pulses. Counts have been normalized by the number of traces. Shaded area is the s.d. from
200 independent realizations of the stochastic models. Color bars in J and M represent the median, box bounds are the 25 and 75 percentiles of the distributions,
and whiskers are the 5 and 95 percentiles.
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serum+LIF. We wondered how the number of pulses and their
duration contributed to this increase in pulsing time. We defined
a single cell pulse rate as the number of pulses divided by the
duration of the trace, and found that it increases with FGF4
concentration in the same range (Fig. 3D). The distribution of
pulse durations overlapped between the three FGF4 concentrations,
and their modal values were conserved (Fig. 3E). We observed a
subtle trend towards narrower distributions with higher FGF4
concentrations, yet these were significantly different only between

the 2.5 ng/ml and 20 ng/ml conditions (Table S2; Materials and
Methods). Thus, the increase in pulsing time is largely due to an
increase in pulse rate rather than pulse duration. In line with stable
pulse durations, the IPI distributions had a similar modal value
of about 7 min in all conditions. However, IPIs became more
narrowly distributed with increasing FGF4, with a clear difference
between 2.5 and 20 ng/ml FGF4 (Fig. 3F; Table S2). Narrower IPI
distributions at high FGF concentrations indicated more regular
pulsing.

Fig. 3. Pulsing and regularity of ERK activity are controlled by FGF4 dose. (A) Schematic of experimental protocol to measure the steady state signaling
response to defined FGF4 ligand levels. (B) Representative smoothened single cell traces of KTR signal in single Fgf4-mutant cells stimulated with different FGF4
doses. (C) Left: fraction of time that individual cells stimulated with different concentrations of FGF4 spent pulsing (blue) or non-pulsing (gray). Right: average time
that cells in the population were pulsing (blue) or non-pulsing (gray). Error bar indicates s.e.m. (D) Pulse rate boxplots at different concentrations of FGF4. Black
dots represent individual cells, color bars are themedian, box bounds are the 25 and 75 percentiles of the distributions, and whiskers are the 5 and 95 percentiles.
(E) Pulse duration distributions. The number of pulses was n=164 (2.5 ng/ml), n=426 (5 ng/ml) and n=544 (20 ng/ml). (F) Distributions of interpulse intervals (IPI)
between pairs of successive pulses. The number of successive pulses was n=124 (2.5 ng/ml), n=370 (5 ng/ml) and n=479 (20 ng/ml). Pulse recognition
resolution limit (yellow bar) and quartiles (Q) 25, 50 and 75 are indicated in E and F. (G) Joint pulse duration versus silence intervals for successive pairs of pulses.
The slope 2 dashed line classifies pairs of pulses into consecutive (above) and non-consecutive (below). The axes rangewas adjusted to better resolve individual
data points, leaving off the scale six of 124 (2.5 ng/ml FGF4), 26 out of 370 (5 ng/ml FGF4) and 33 out of 479 (20 ng/ml FGF4) data points. (H) Number of pulse
trains as a function of the number of consecutive pulses in the train for different doses of FGF4, determined as in Fig. 2N. Number of cells in C-H: N=61 (0 ng/ml
FGF4), N=48 (2.5 ng/ml FGF4), N=57 (5 ng/ml FGF4) and N=69 (20 ng/ml FGF4).
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To determine whether the extent of consecutive pulsing was
controlled by FGF4, we plotted joint pulse duration against silence
interval duration (Fig. 3G). The fraction of pairs of consecutive
pulses increased steadily across the entire FGF concentration range
from 49.2% (2.5 ng/ml) to 57.6% (5 ng/ml) and 63.9% (20 ng/ml).
Longer sequences of consecutive pulses were also more prevalent at
higher FGF4 doses (Fig. 3H).
In summary, these results reveal that ERK pulses have

a characteristic duration that is independent from FGF4
concentration. This characteristic duration becomes less variable
with increasing FGF concentration. We interpret the increase in
pulse rate, prevalence of consecutive pulsing and length of
consecutive pulse sequences with FGF4 dose as an indication
that FGF4 controls the extent of ERK oscillations in pluripotent
ESCs.

ERK pulses are more prevalent early in the cell cycle
We noted that within the same experimental condition, there
was significant cell-to-cell variability in pulsing activity (Figs 2B
and 3C). This observation could result from stable differences in
pulsing behavior between cells. Alternatively, single cells could
transition back and forth between pulsing and non-pulsing states,
which would show up as different behaviors when observation
times are limited in comparison with the characteristic times of such
transitions. To identify changes in pulsing behavior of single cells
over longer timescales, we recorded movies for 18 h such that
cells could be followed from birth to division (Fig. 4A; Fig. S13).
Increasing the frame intervals to 105 s reduced overall light
exposure, while still allowing to resolve pulses that are at least
5.25 min apart. We recorded pulsing in wild-type cells growing
in N2B27 medium, thereby exclusively focusing on pulsing

Fig. 4. ERK pulsing is more prevalent early in the cell cycle. (A) Schematic of experimental protocol to record ERK peaks across complete cell cycles.
(B) Montage of an ESC colony expressing the ERK-KTR sensor over the course of a long-term imaging experiment. (C) Representative filtered traces of ERK
dynamical activity with identified peaks (black dots), in singlewild-type cells growing in N2B27medium. (D) Raster plot displaying the timing of ERK activity peaks
across the cell cycle. Lavender horizontal bands extend from birth to division of single cells, dark vertical bars represent peaks. Single cell tracks begin
immediately after a cell division event and are plotted relative to absolute experimental time. (E) Schematic representation of expectations for a reduction of
pulsing activity due to cell cycle (top) and due to changing experimental conditions (bottom) in the 2-dimensional color-encoded pulse rate map. (F) Pulse rate
map for the data shown in D. Time is discretized into 70 min bins. (G) Coarse grained pulse rate map showing average pulse rate and its estimated error with
420 min binning. Scale bar: 20 μm.
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driven by paracrine FGF4 signaling, and avoiding possible ligand
depletion that could occur with exogenous FGF4. The KTR signal
increased over long timescales (Fig. S13), reflecting an overall
decrease in KTR fluorescence levels in these long recordings
(Fig. 4B). We therefore first performed baseline correction to
filter out these effects, and then established an alternative peak-
finding approach to quantify and annotate these low temporal
resolution traces (Fig. 4C; Fig. S14; Materials and Methods). The

IPI distribution in this dataset was consistent with those obtained
with higher time resolution (Fig. S15, compare with Figs 2F
and 3F).

We made raster plots showing occurrence of pulses in cells that
we could follow from immediately after cell division (Fig. 4D).
Visual inspection of these raster plots suggested that pulses were
concentrated towards the beginning of the cell cycle. A change in
pulsing activity over time could be a consequence of cell cycle

Fig. 5. Intermittent ERK oscillations are less prevalent in more differentiated cells. (A) Schematic of experimental approach to compare dynamical
signatures of ERK pulsing in ESC and EpiSCs growing in the same medium. (B,B′) Smoothened single cell traces of KTR signal in EpiSCs (brown, B) and ESCs
(green, B′) growing in FAX medium. Pulses are indicated by the maxima (blue dots) and corresponding minima (black dots) that define them. (C,C′) Left: fraction
of time that individual EpiSCs (C) or ESCs (C′) spent pulsing (brown/green) or non-pulsing (gray) in FAX alone (top) or upon addition of MEKi (bottom). Right:
average time that cells were pulsing (brown/green) or non-pulsing (gray) in the cell population. Error bar indicates s.e.m. (D) Pulse duration distribution for EpiSCs
(top, brown, n=402 pulses) and ESCs (bottom, green, n=588 pulses). (E) Interpulse interval (IPI) distribution for EpiSCs (top, brown, n=351 pairs of pulses) and
ESCs (bottom, green, n=540 pairs of pulses). Pulse recognition resolution limit (yellow bar) and quartiles (Q) 25, 50 and 75 are indicated in D,E. (F) Joint pulse
duration versus silence intervals for successive pairs of pulses in EpiSCs (top, brown) and ESCs (bottom, green). The slope 2 dashed line classifies pairs of
pulses into consecutive (above) and non-consecutive (below). The axes rangewas adjusted to better resolve individual data points, leaving off the scale 45 out of
351 data points for EpiSCs, and 36 out of 540 data points for ESCs. (G) Number of pulse trains as a function of the number of consecutive pulses in the train.
Counts have been normalized by the number of traces. Top: EpiSCs data (brown dots), ESCs data (green dots) and heterogeneous population model for EpiSCs
data (brown triangles). Bottom: ESCs data (green dots, same as top) and heterogeneous population model for ESCs data (green triangles). Shaded area is the
s.d. from 200 independent realizations of the stochastic models. Data in D-G from n=52 cells in FAX alone for each cell type.
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effects on pulsing, or it could result from non-stationary
experimental conditions.
To visualize the contributions from these two possible causes, we

introduced a two-dimensional time map. The coordinates in this
map are experimental time Te, which is time measured from the
beginning of the time lapse movie, and Tb, the time relative to
individual cell birth. For each cell i, the trace begins at Ti

b ¼ 0 and
experimental time Ti

e is the timewhen cell iwas born measured from
the beginning of the movie. From this point in the map, individual
traces would fall along a diagonal line of unit slope. To reveal the
population behavior and avoid superposition of individual traces in
the map, we plotted pulse rate averaged in 70 min bins along both
axes. In each bin, we counted the total number of pulses from
all traces in that bin and divided by the total number of minutes
of recording that contribute to that bin. On this pulse rate map,
cell cycle effects would manifest as a rate change in the horizontal
direction (Fig. 4E, upper panel), whereas non-stationary
experimental conditions would manifest as a change in rate in the
vertical direction (Fig. 4E, lower panel).
Inspection of the pulse rate time map revealed a higher pulse rate

at the bottom left of the plot that decreased both towards the right
and the top (Fig. 4F). This behavior indicates that pulse rate decays
across the cell cycle, in addition to effects of non-stationary
experimental conditions. To quantify this observation, we further
binned pulse rate at larger timescales (Fig. 4G). In this coarse-
grained map, pulse rate within the same experimental time window
was consistently higher in cell populations which were earlier in
their cell cycles. We obtained similar results when applying an
alternative detrending strategy (Figs S14 and S16), as well as when
analyzing cells growing in serum+LIF medium (Fig. S17). Taken
together, these results confirm that cells are more prone to pulse
earlier in their cell cycle.

Intermittent ERK oscillations are less prevalent in more
differentiated cells
Finally, we asked whether the dynamical signatures of ERK pulsing
were preserved in more differentiated cells. We transitioned reporter
cells from an ESC to an epiblast stem cell (EpiSC) state by culturing
them for at least nine passages in N2B27 supplemented with FGF2
and activin (Guo et al., 2009). To obtain more homogeneous
cultures, we added the Wnt inhibitor XAV939 (FAXmedium; Sumi
et al., 2013). We then recorded ERK dynamics in EpiSCs growing
in FAX medium with or without MEKi. Any changes in the ERK
dynamics under these conditions compared with ESCs growing in
serum+LIF medium could be due to the different media, or be a
consequence of differentiation status. To distinguish between these
possibilities, we compared ERK dynamics in EpiSCs with those in
ESCs transferred to FAX medium shortly before the beginning of
the recording (Fig. 5A). In both conditions we could observe ERK
pulsing, which was abrogated by addition of MEKi (Fig. 5B;
Movie 3; Figs S18 and S19). Although ERK pulsing was similarly
heterogeneous across the population in both conditions, the fraction
of time that cells were pulsing was lower for EpiSCs than for ESCs
(Fig. 5C). The duration of pulses was slightly longer in EpiSCs
compared with ESCs (Fig. 5D). Together with the shorter fraction of
time spent pulsing, this indicates that pulses are less frequent in
EpiSCs compared with ESCs. Analysis of the IPI distributions
revealed stronger differences between the two conditions. Although
the mode of the IPI distribution in EpiSCs was 5.33 min, it was only
4 min in ESCs, indicating faster pulsing. IPIs were also more
narrowly distributed in ESCs in FAX compared with EpiSCs
(Fig. 5E), suggesting that pulsing was more regular in ESCs. This

was confirmed by plots of joint pulse duration against silence
interval duration (Fig. 5F), which indicated that 65.6% of all pairs of
pulses were consecutive in ESCs, in contrast to only 45.9% in
EpiSCs. Longer sequences of consecutive pulses were more
prevalent in ESCs compared with EpiSCs (Fig. 5G, top). For both
EpiSCs and ESCs, longer sequences of consecutive pulses were also
more abundant in the data compared with a heterogeneous
population model, in which pulses were randomly shuffled on
individual traces (Fig. 5G).

In summary, more differentiated EpiSCs pulse for a shorter
amount of time, with longer pulse durations compared with ESCs.
Furthermore, consecutive pulses as well as longer pulse sequences
are less prevalent than in ESCs. Thus, the dynamical signatures of
ERK pulsing depend on differentiation state. Still, ERK dynamics in
both EpiSCs and ESCs are inconsistent with simple stochastic
pulsing scenarios. This suggests that ERK signaling in both cell
types may operate in a similar dynamic regime.

DISCUSSION
Here, we report fast pulses of ERK activity in mouse ESCs under a
continuous stimulation regime. We detect long trains of consecutive
pulses that are inconsistent with simple stochastic pulsing scenarios.
Instead, we propose that these data can be interpreted as intermittent
oscillations, with transitions between silent and oscillatory states in
single cells. Oscillations are triggered by FGF4. Across a range of
FGF4 ligand concentrations, we find oscillations with similar
individual pulse durations. With increasing FGF4 concentrations,
the distribution of IPIs becomes narrower and the extent of
consecutive pulsing increases, suggesting more regular oscillations.

The detection of signal-dependent ERK activity dynamics
on short time scales in ESCs was made possible by combining
the KTR sensor with high time-resolution recordings. A previous
study, which examined ERK dynamics upon acute stimulation,
focused on long-term activity and did not resolve the short-
timescale oscillations that we report here (Deathridge et al., 2019).
These previously undetected dynamics have a modal IPI of ∼7 min
(that is, about 8 pulses/h), and are thus much faster than in any other
cell system described so far.

Both paracrine and recombinant FGF4 stimulation of ESCs
trigger oscillatory ERK activity with similar timescales of pulse
duration and IPI, indicating that oscillations emerge in the
intracellular signal transduction network, similar to the situation
in other cell lines (Sparta et al., 2015). The short frequencies
of ERK oscillations in ESCs further support the notion that they
are driven by short-timescale delayed feedbacks such as post-
translational modifications at the receptor level (Sparta et al., 2015),
or at various levels within the MAPK cascade (Lake et al., 2016;
Lemmon et al., 2016). Notably, we found that ERK pulses were
faster when ESCs were growing in FAX instead of in serum+LIF
(compare Fig. 5 with Fig. 2). This suggests that media components
can affect the dynamical signatures or ERK activity.

Pulsatile ERK activity in single cells upon continuous stimulation
of receptor tyrosine kinases has been reported in many cell types
(Albeck et al., 2013; Goglia et al., 2020; Shankaran et al., 2009),
indicating that the tendency to generate time-varying ERK activity
patterns is a general feature of receptor tyrosine kinase signal
transduction. In addition to the timescales, the dynamic signatures
of FGF-triggered ERK pulses in ESCs differ markedly from those
observed in most other contexts.

ERK pulses in ESCs have well-defined durations and often occur
in consecutive sequences, consistent with oscillations. This is in
contrast to the more irregular stochastic pulsing reported in several
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immortalized cell lines and keratinocytes (Albeck et al., 2013; Aoki
et al., 2013; Goglia et al., 2020). In cell systems that show stochastic
ERK pulsing, increasing ligand levels leads to shorter IPIs and
hence to an increase in pulse rate (Albeck et al., 2013). This has been
interpreted as encoding of ligand concentration through frequency
modulation (Li and Elowitz, 2019). In ESCs, simple stochastic
pulsing models fail to capture the statistics of isolated and
consecutive pulses observed in experiments. Thus, although pulse
rate may convey information about ligand levels in differentiating
ESCs, the frequency-modulated encoding model proposed for
stochastic ERK pulsing is unlikely to apply.
The oscillatory ERK activity that we detect here indicates the

presence of negative feedback mechanisms downstream of FGF
signaling in ESCs (Novák and Tyson, 2008). Negative feedback in
the RAF-MEK-ERK cascade sets a ligand dose response range, and
linearizes signal transduction despite non-linear signal
amplification (Sturm et al., 2010). In ESCs and cells of the early
embryo, FGF4 concentration smoothly tunes the proportion of
differentiated cell types (Krawchuk et al., 2013; Raina et al., 2021).
Thus, ERK oscillations in ESCs might be the consequence of
negative feedback mechanisms that have evolved to tune the
response range of the signal transduction system to the
physiologically relevant range of paracrine FGF4 concentration.
Identifying the relevant feedback circuits may require combining
temporal stimulation with perturbations of candidate mechanisms
and single-cell dynamic read-outs (Blum et al., 2019).
Regular oscillations of ERK nuclear import and export

have been reported upon EGF stimulation in mammary epithelial
cells (Shankaran et al., 2009). In these cells, the frequency of
ERK oscillations is insensitive to ligand levels over a wide range
(Shankaran et al., 2009), similar towhat we find upon titrating FGF4
in ESCs. However, ESC populations contain a mixture of oscillating
and non-oscillating cells as well as cells that transition between
these regimes across a wide range of ligand levels. We interpret this
behavior to indicate that the FGF/ERK signal transduction system
in ESCs is organized in the vicinity of a transition point between a
non-oscillatory and oscillatory state. In this framework, increasing
FGF4 levels would bring the system closer to this point. Similarly,
the decay of ERK pulsing across the cell cycle can be interpreted
as cells shifting away from the oscillatory to a non-oscillatory
state, possibly through changes in the surface-to-volume ratio or
cell cycle-dependent expression of components of the FGF/ERK
signaling system. A positioning close to a transition between
oscillatory and stationary behavior has been described in hair cells
of the cochlea (Camalet et al., 2000; Eguíluz et al., 2000), the actin
system ofDictyostelium (Westendorf et al., 2013), and isolated cells
of the growing vertebrate body axis (Webb et al., 2016). In such a
scenario, isolated pulses could result from short excursions
from the stationary into the oscillatory regime. Alternatively, the
non-oscillatory state could be a distinct dynamic regime producing
isolated pulses (Martinez-Corral et al., 2018; Mönke et al., 2017).
The nature of the non-oscillatory state is still unknown in ESCs,
together with the type of transition.
The intermittent oscillations generated by the cell-type specific

organization of the FGF/ERK signaling system introduce a source of
cellular heterogeneity that may be relevant for cell fate decisions in
differentiating pluripotent cells. In the embryo, FGF/ERK signaling
regulates the differentiation of both primitive endoderm as well as
epiblast cells. Different dynamic signaling activities may underlie the
establishment of these two discrete lineages from a common
precursor cell type in response to the same signal (Pokrass et al.,
2020). In ESC cultures, the heterogeneous signaling dynamics that

we describe add another dimension to the transcriptional
heterogeneities that prefigure cell differentiation (Canham et al.,
2010; Chambers et al., 2007; Hayashi et al., 2008; Singh et al., 2007;
Toyooka et al., 2008). Although signaling is not necessarily off when
ERK is not pulsing, intermittent ERK oscillations in ESCs are
reminiscent of the transcriptional dynamics of many genes, for which
expression bursts and silent periods alternate (Tunnacliffe and Chubb,
2020). Correlating signaling dynamics with developmental
transcriptional programs will be required to discern how these two
levels are interlinked, and how they relate to cell differentiation.

MATERIALS AND METHODS
Cell culture
mESCs were routinely cultured on 0.1% gelatin (Sigma-Aldrich)-coated
tissue culture flasks in serum+LIF medium composed of GMEM
(Thermo Fisher Scientific), 10% batch-tested fetal bovine serum (FBS)
(Sigma-Aldrich), 1× GlutaMAX (Thermo Fisher Scientific), 1 mM sodium
pyruvate (Thermo Fisher Scientific), 1× non-essential amino acids solution
(Thermo Fisher Scientific), 100 µM 2-mercaptoethanol (Thermo Fisher
Scientific) and 10 ng/ml LIF (Max Planck Institute protein expression
facility). Cells were passaged every 2-3 days using 0.05% Trypsin (PAN
Biotech). Basal medium for serum free culturewas N2B27, prepared as a 1:1
mixture of DMEM/F12 (PAN Biotech) and Neuropan basal medium (PAN
Biotech) with 0.5% bovine serum albumin (BSA), 1× N2 and 1× B27
supplements (Thermo Fisher Scientific) and 50 µM 2-mercaptoethanol. For
FGF stimulation experiments, short-term serum-free culture was carried out
in N2B27 supplemented with 3 µM CHIR99201 (Tocris), 1 µg/ml of
Heparin (Sigma-Aldrich) and with or without 10 ng/ml LIF as indicated.
Recombinant human FGF4 used was obtained from Peprotech.
Transitioning of cells to an EpiSC state was achieved by culturing for at
least nine passages in FAX medium, consisting of N2B27 basal medium
supplemented with 12 ng/ml FGF2 (Cell Guidance Systems), 25 ng/ml
ActivinA (Peprotech) and 20 µM XAV939 (Sigma-Aldrich). For live
imaging and immunostaining studies, cells were seeded on polymer-
bottomed ibidi µ-slides (ibidi) coated with 20 µg/ml fibronectin.

Cell lines
All KTR-expressing cell lines used in this study were derived from E14tg2a
(Hooper et al., 1987). Targeting of the ERK-KTR-Clover construct into the
Hprt locus has been described elsewhere (Simon et al., 2020). Mutagenesis
of the Fgf4 gene was performed by co-transfection of a CRISPR-construct
and a repair template introducing a nonsense and a frameshift mutation as
previously described (Morgani et al., 2018). Clones with the desired
mutation were identified by restriction digest and Sanger sequencing of a
PCR fragment encompassing the Fgf4 start codon. Clonal cell lines were
tested for their chromosome count using standard procedures (Nagy et al.,
2008) and only cell lines with a modal count of n=40 were used for analysis.
Fgf4−/−, Spry4H2B-Venus/+ cells used to evaluate transcriptional activation
downstream of recombinant FGF4 have been previously described
(Morgani et al., 2018). All cell lines were regularly tested for
mycoplasma contamination.

Dual reporter experiments
The ERK-KTR-mCherry construct for transient expression was prepared by
first inserting the coding sequence for ERK-KTR (Regot et al., 2014) into a
CMV-driven mCitrine C1 expression vector (TaKaRa), and then replacing
the fluorophore for mCherry. The plasmid for transient expression of
EKAREV-NLS has been previously described (Komatsu et al., 2011). The
two plasmids were transiently co-transfected into E14tg2A mouse ESCs
using Lipofectamine 2000 (Thermo Fisher Scientific) in suspension
according to the manufacturer’s instructions. Cells were plated on
fibronectin-coated ibidi slides and imaged 24 h after transfection.

Western blotting
Cells were grown to confluency on fibronectin-coated tissue culture dishes
and exposed to indicated experimental conditions. Cells were briefly
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washed twice with ice-cold PBS supplemented with 1 mM activated sodium
orthovanadate and then lysed using commercially available lysis buffer (Cell
Signaling Technology) supplemented with benzonase (Thermo Fisher
Scientific), phosphatase inhibitor cocktail 2 and 3 (Sigma-Aldrich), and
cOmplete EDTA-free protease inhibitor cocktail (Roche). Lysates were
snap-frozen in liquid nitrogen. Protein concentration was estimated using a
micro-BCA assay (Thermo Fisher Scientific), and lysates were denatured by
adding appropriate amounts of 5× Laemmli buffer and boiling for 5 min.
Then 10 or 20 μg protein was loaded across all wells in any given gel. Bis-
Tris SDS gels were run with 1× MOPS buffer (Thermo Fisher Scientific)
with fresh sodium bisulfite, and subsequently transferred onto methanol-
activated PVDF membranes (Millipore) at 40 V for 1.5 h with the NuPage
transfer system (Thermo Fisher Scientific). Primary antibodies used were
anti-Tubulin (1:5000, T6074, Sigma-Aldrich), anti-pERK1/2 (1:1000,
4370S, Cell Signaling Technology), and anti-total ERK1/2 (1:1000,
ab36991, Abcam) along with appropriate IRDye-labeled secondary
antibodies (LI-COR) at 1:10.000 dilution. Bands were detected using the
Odyssey CLx imaging system (LI-COR). Bands were quantified using FIJI/
ImageJ (Rueden et al., 2017). For quantification of pERK and total ERK,
integrated intensity in both ERK1 and ERK2 bands was added.

Immunostaining
For pERK immunostaining, cells were fixed for 15 min at 37°C by diluting
fixative stocks directly into cell culture medium to a final concentration of 4%
paraformaldehyde (PFA) and 0.01% glutaraldehyde (Sigma-Aldrich). After a
brief wash with PBS, cells were permeabilized with 100% methanol at
−20°C. For all other antibodies, fixationwas performedwith 4%PFA at room
temperature for 20 min. Cells werewashedwith PBS and then simultaneously
blocked and permeabilized with 5% normal goat serum (Thermo Fisher
Scientific) in 0.5% Triton X-100 (Serva) in PBS for 60 min. Antibody
staining was carried out overnight at 4°C in PBS+0.1% Triton X-100 and 1%
BSA (Sigma-Aldrich). Primary antibodies used were anti-pERK1/2 (1:200,
4370S, Cell Signaling Technology), anti-E-Cad (1:200, M108, clone ECCD-
2, TaKaRa), anti-Nanog (1:200, eBIO-MLC51, eBioscience), anti-POU5F1
(1:200, C-10, sc-5279, Santa Cruz Biotechnology), along with AlexaFluor-
labeled secondary antibodies (Invitrogen) at 1:500 dilution. Hoechst 33342
was used at 1 µg/ml to counter-stain nuclei, and CellMaskRed (Thermo
Fisher Scientific) was used to label membranes according to the
manufacturer’s instructions. After staining, samples were covered with
200 µl of antifade composed of 80% w/v glycerol with 4% w/v N-propyl
gallate and stored at 4°C. Images were analyzed using custom scripts in
MATLAB (The Mathworks) and Fiji/ImageJ for the detection of nuclei as
well as an active-contours-based identification of membranes.

Flow cytometry
Cells were grown on fibronectin-coated dishes in N2B27 supplemented with
3 µM CHIR99201, 1 µM PD0325901 and 10 ng/ml LIF (2i+LIF) for 3 days.
For stimulation, cells were washed 2× with PBS, and FGF4 was added at
indicated concentrations in serum-free N2B27 medium supplemented with
3 µM CHIR99201 and 1 µg/ml Heparin for 24 h. Cells were then trypsinized
and fixation was performed in suspension with 4% PFA at room temperature
for 15 min. After a brief wash in PBS, cells were resuspended in PBS+1%
BSA and analyzed on a BD-LSR II (BD Biosciences) flow cytometer. Data
was analyzed in FlowJo (BD Biosciences).

Live cell imaging and cell tracking
ERK-KTR expressing cells were cultured on ibidi µ-slides, and imaged on a
Leica SP8 confocal microscope equipped with an incubation chamber and
CO2 supply to maintain temperature at 37°C, CO2 at 5%, and relative
humidity at 80%. Live-cell nuclear dye SiR-Hoechst 652/674 (Spirochrome)
was added 4 h before acquisition to facilitate tracking of cells. SiR-Hoechst
was added at a final concentration of 500 nM for short-term time-lapse
experiments, and 250 nM for long-term time-lapse experiments.
Fluorophores were excited with a 504 nm line from a white-light laser
(Leica), and images of the KTR-Clover and the nuclear marker were
simultaneously captured through a 63×1.4 N.A. oil objective. For short-term
(<4 h) imaging experiments, single frames were acquired once every 20 s,
with an xy resolution of 0.251 µm, a pixel dwell time of 2.6 μs and a pinhole

of 2.4 airy units. For long-term (∼19 h) imaging experiments, to minimize
overall light exposure, single frames were acquired once every 105 s, with
an xy resolution of 0.401 µm, a pixel dwell time of 3.1 μs and a pinhole of
2.6 airy units. Images were processed with custom MATLAB scripts to
enhance contrast and highlight nuclei to facilitate automatic tracking.

To determine the nuclear and cytoplasmic fluorescence intensities shown
in Fig. S2, we manually drew regions of interest (ROIs) in every fifth frame
of the movies. For the nuclear ROI we aimed at capturing the entire nuclear
area. For cytoplasmic ROIs we selected contiguous regions that could be
unambiguously assigned to a specific cell. We then used the interpolation
function of FIJI to take measurements in each frame. All other cell tracking
was performed using the Trackmate plugin (Tinevez et al., 2017) for FIJI/
ImageJ. Tracking was initially performed automatically for the entire
colony, and tracks were subsequently manually curated frame-by-frame by
removing any cells that did not display a typical ESC morphology with a
small cytoplasm and round, well-defined nuclei. We also removed cells that
left the field of view, and adjusted tracking in individual frames for
incorrectly identified nuclei. We inverted fluorescence values to obtain the
negative image, and then measured mean fluorescence intensities in an ROI
of variable size within each tracked nucleus. In these KTR signal traces, low
intensity values correspond to low ERK activity and high intensity values
indicate high ERK activity. For the short-term imaging, tracks started at the
beginning of the movie and extended until the end of the movie, or until cell
division. As the long-term imaging experiments were designed to capture
the entire cell cycle, tracks started in the first frame following cell division
where a cell could be tracked, and ended at cell division. In these
experiments, we kept tracks of cells that left the field of view, but only if they
were observed for longer than 4.5 h.

Time series preprocessing
We screened and corrected time series for tracking errors, such as ROIs
placed partially outside the nucleus or overlapping with a nucleolus.
Because these structures have fluorescence intensities that usually differ
from that of the nucleoplasm, these tracking errors usually led to an increase
in the variance of the pixel intensity across the ROI. We screened time series
for high variance regions, checked the tracking for all instances where the
variance crossed a manually set threshold value, and corrected the tracking if
this was required.

Just before cell division, the sensor was excluded from the nucleus,
resulting in a pulse of the KTR signal at the end of dividing cells tracks (for
example cells 30, 31, 41 and 50 in the serum+LIF condition without MEKi,
Fig. S4). As this pulse of reporter exclusion was insensitive to MEK
inhibition, it is unlikely to be reporting ERK activity and we therefore
decided to trim these events from all traces. Although most cells divided in
the long-term measurements, only a few did it in short-term measurements.
Correspondingly, in short-term measurements we deleted the last 20 frames
(∼7 min) of the time series of dividing cells only. In the long-term
measurements, during which most cells divided, we discarded the last 15
frames (26.25 min) of each time series.

Analysis of ERK dynamics in short-term high resolution datasets
Pulse recognition
We defined a pulse as a local maximum between two local minima,
imposing two conditions: (1) we required amplitude to be larger than a
threshold amplitude Ath; (2) slope to be larger than a threshold slope vth. The
amplitude and slope thresholds are free parameters of the algorithm. These
free parameters were set through a quantitative threshold analysis protocol
described below and were specific for each dataset (Table S1; Figs S5, S11
and S19).

To remove high frequency noise that interfered with the performance of
the pulse detection algorithm, we first smoothed the time series. We filtered
the highest frequencies in the data using a moving average window of three
frames of duration. That is, for each KTR signal value xi of the time series,
we computed the average value

x̂i ¼ 1

3
ðxi�1 þ xi þ xiþ1Þ;
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where i is the frame number. At the boundaries we considered average
windows of two and one frames. Note that detrending was not required in the
case of this data.

We first searched the time series for all the local maxima and minima. We
compared each value x̂i of the time series with its immediate neighbors x̂i�1

and x̂iþ1. The initial value x̂0 was compared only with the next value x̂1,
and the last value x̂n with the previous one x̂n�1. We discarded the
first maximum if there was no minimum on its left, and the last maximum
if there was no minimum on its right. In this way we defined a subset of
data points consisting of the maxima M ¼ f jjx̂j . x̂ j+1g, and the subset
of minima m ¼ f jjx̂j , x̂ j+1g. From the definition, it follows that
the minimum distance |i−j| between two maxima x̂i; x̂j [ M is two
frames, and the minimum distance |k−l| between two minima x̂k ; x̂l [ m is
two frames.

To identify pulses from this set of maxima we applied two filters, one for
pulse amplitude and another one for pulse slope. To implement the pulse
amplitude and pulse slope filters, we considered each maximum of the time
series, from left to right. For each maximum j ∈M of x̂j, we searched for the
first minimum to its left k ∈ m such that the resulting left amplitude
Aleft
j ¼ x̂j � x̂k was larger than the amplitude threshold Aleft

j � Ath and
the left slope was larger than the slope threshold vleftj � vth (see
threshold analysis protocol below). The left slope was defined as
vleftj ¼ Aleft

j =dtleftj , where dtleftj ¼ j � k is the left pulse duration. Similarly,
we searched the first minimum to the right that verified Aright

j � Ath and
vrightj � vth. We next removed overlapping pulse candidates: if the right
minimum of the first pulse occurred later than this new left minimum of the
second one, we discarded the pulse that had the smaller amplitude
ðAleft

i þ Aright
i Þ=2.

Threshold analysis protocol
Pulse recognition depends on the free parameters for amplitude threshold Ath

and slope threshold vth. To rationally set values for these two threshold
parameters, we first focused on the negative control condition for each
respective experiment, where ERK pulsing was minimal. We determined
parameter combinations for which a fixed, low number of pulses was
detected in the negative control, and then selected specific parameter values
that maximized the number of pulses recognized in the experimental
condition in which ERK was most active (Table S1; Figs S5, S11 and S19).

We started by establishing a two-dimensional exploratory parameter
space for each dataset (Table S1). For each combination of parameters
ðAm

th; v
n
thÞ on the exploratory parameter space, we ran the pulse detection

algorithm described in the previous section for the negative control and
computed the averaged pulse rate

dp ¼ 1

N

XN

j¼1

nj
Lj
;

where N is the total number of cells in the negative control, nj is the number
of detected pulses for cell j and Lj is the length of the time series. We then
introduced exploratory level curves across the parameter space by fixing
average pulse rate values dp ¼ d�p in the negative control (Table S1). This
restricted parameter combinations to curves in the exploratory parameter
space. Next, for each ðAmk

th ; v
nk
th Þ combination on each exploratory level curve

k, we applied the pulse recognition algorithm on the experimental condition
where ERK was most active. The plot of pulse rate along this level curve
showed a flat region of similarly high pulse detection. Within this region, we
chose parameter pairs that filtered out spurious pulses that were flat and long
from the negative control. This resulted in a pair of parameters (Ath, vth)
specific for each experiment (Table S1).

Quantitative pulse dynamics characterization
To characterize dynamical activity of the time series, we introduced a set of
quantitative measures (Fig. 2D). For each pulse Pi in the set of pulses
P={Pj=( j, kj, lj) | Pj is a pulse} we defined the pulse amplitude Ai as the
average of its right and left amplitudes

Ai ¼ 1

2
ðAleft

i þ Aright
i Þ:

Pulse duration dti was defined as the distance between the two minima that
define the pulse

dti ¼ dtlefti þ dtrighti ;

and the joint pulse duration dti,j between a pair of successive pulses Pi, Pj

with j > i, as the sum of the right pulse duration of the earlier pulse i and the
left pulse duration of the later pulse j

dti;j ¼ dtrighti þ dtleftj :

We computed the interpulse interval IPIi,j between a pair of successive
pulses Pi, Pj with j > i, as the time interval between their maxima

IPIi; j ¼ j � i:

The silent interval dmi,j between a pair of successive pulses Pi, Pj was
defined as the time elapsed between the right minimum of the earlier pulse
Pi and the left minimum of the later pulse Pj, that is

dmi; j ¼ kj � li:

Note that calculating these last three quantities requires a trace with at least
two pulses. These quantities satisfy the relationship

dmi; j ¼ IPIi; j � dti;j:

The values that these quantitative measures can take are constrained by the
resolution imposed by pulse recognition. The minimum distance |i−j|
between two maxima x̂i; x̂j [ M was previously set to two frames. Thus, the
distance between maxima of pulses Pk, Pl ∈ P verifies |k−l| ≥ 2 frames, and
in particular IPIk,l ≥ 2 frames for any pair of consecutive pulses Pk, Pl ∈ P.
Similarly, the minimum distance |i−j| between two minima x̂i; x̂j [ m is
two frames. Consequently, given a pulse Pj = ( j, kj, lj) ∈ P, the distance
between the two minima that defines the pulse dmj = kj−lj satisfies dmj ≥ 2
frames. Finally, from the previous section we have the constraints Ai > Ath

and vi > vth.
We classified pulses as consecutive or isolated. Inspection of the raw data

indicated that pulse duration was more variable between cells in the same
condition than within a cell. For this reason, we made the criterion for
consecutiveness dependent on joint duration of the half-pulses that flank an
intervening silent period. Specifically, we established that a pair of
successive pulses Pi, Pj are consecutive pulses if the silent interval
between them dmi,j is shorter than half of their joint duration dti,j, that is Pi,
Pj are consecutive if dmi,j≤0.5 dti,j. Pulses that do not belong to a
consecutive pair are isolated pulses.

We also introduced a quantitative measure to characterize the dynamical
activity on a population level. Given a single cell c associated to a time series
of total length T and n pulses, the pulsing measure Ac is defined as the
proportion of time that a single cell is pulsing

Ac ¼ 1

T

Xn

i¼1

dti:

Kolmogorov–Smirnov test and notation
We implemented the Kolmogorov–Smirnov two-sample test (Frodesen
et al., 1979) available on the ‘stats’ module of the SciPy package from
Python (Virtanen et al., 2020). The aggregated data for all quantities
considered is summarized in Table S2.

Time series autocorrelation
We first subtracted the mean value from smoothed traces X(t),

xðtÞ ¼ X ðtÞ � , X ðtÞ .t ;

where < … >t is the mean value taken over t. We then computed the
autocorrelation function,

½x � x�ðtÞ ¼ 1

N

X1

m¼�1
xðmÞ x�ðt� mÞ;
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where x*(t) is the complex conjugate of x(t), τ is a time-lag, and N the
normalization constant

N ¼
X1

m¼�1
ðxðmÞ� , x .tÞ2:

The time series x(t) was zero-padded when necessary. We computed this
autocorrelation function using NumPy (Harris et al., 2020).

Stochastic pulsing analysis
Homogeneous population model
We sought to compare the experimentally observed pulsing dynamics with
simple stochastic models. We first considered a Poisson process, a kind of
stochastic process which describes independent events that occur at a rate
λ>0. In a Poisson process, waiting times T between events are distributed
according to

PðT ; lÞ ¼ lexpf�lT g :

Note that this waiting times distribution is fully characterized by a single
parameter λ. To obtain the value of λ, we first computed the distribution of
times between pulses from experimental data (Fig. S8A). To obtain a more
precise estimate of λ, we fitted the linear function

f ðT ; lÞ ¼ logðlÞ � lT

to the log of the experimental distribution using the least squares fit from
NumPy.

We next generated traces from a Poissonian stochastic process
with this estimated rate. We first obtained a discrete waiting
times distribution sampling as many data points as there were pulses
(Fig. S8B).

We then generated as many time series as we had cells in the
experiment. The length of each generated trace corresponded to the length
of an experimental trace. The waiting time to the beginning of the next pulse
was sampled from the exponential distribution, and pulse duration was a
random sample from the experimental pulse duration distribution. We
represented pulses as squares and annotated their peaks in the middle
(Fig. S8E).

We then analyzed these stochastic time series following the same analysis
protocol that we used for the experimental data. Pulses that extended beyond
the end of the trace were not included in the analysis.

Heterogeneous population model
We sought to generate stochastic pulsing traces such that each has the
same total length and pulse rate as a corresponding experimental trace.
Pulse duration was established as the mean duration of pulses in the
experimental trace. We placed the first pulse in a random position of an
empty trace. The time interval occupied by this pulse was then forbidden
for the rest of the pulses we had to place. We repeated the procedure with
the second pulse. If the pulse started or ended within the forbidden
interval we considered this a failed iteration. Similarly, we excluded
the iteration if the pulse ended after the time series. Upon a failed iteration,
we tried again to place the pulse until success, stopping after 107

unsuccessful iterations. We repeated this procedure with all the pulses on
the time series. Note that, with this procedure, the number of pulses in the
shuffled trace will always be bounded by the total number of pulses in
the experimental trace. We represented pulses as squares and annotated their
peaks in the middle (Fig. S8F). We then analyzed these stochastic
time series following the same analysis protocol that we used for the
experimental data.

Calculation of pulse trains
We wanted to count how often sequences with a given number of
consecutive pulses occurred in the data. For each trace, we first listed the
pairs of successive pulses and assigned them labels, with a value of 1 if a
pair of pulses was classified as consecutive, and 0 otherwise. The number of
trains with two consecutive pulses was obtained as the sum of all labels in
this list. To compute the number of trains with three consecutive pulses, we

first generated a new list defined as the product of adjacent labels. In this list,
each entry represents groups of three successive pulses, and has a value of 1
if the first and the second pulses, and the second and the third were
previously classified as consecutive, and 0 otherwise. The number of trains
with three consecutive pulses was obtained as the sum of all labels in this
new list. We iterated this procedure to determine the number of trains with 4,
5, 6,… consecutive pulses: first, we generated a list by multiplying adjacent
labels from the previous list, and then we summed up the labels of the
resulting list.

Analysis of ERK dynamics in long-term datasets
Long-term recordings to map ERK dynamics across the cell cycle were
about 12.5 times longer and had a sampling rate reduced to about 1/5
compared with the short-term recordings (Fig. S13). These qualitative
differences of these data prompted for a different analysis strategy. Due to
this limited time resolution, we decided to exclusively focus on the
occurrence and timing of ERK pulses in the long-term datasets, and hence
refer to these features as peaks.

Peak detection
The long-term recordings data featured both low and high frequency
fluctuations. Low frequency noise created variable trends that impeded
direct comparison between traces, whereas high frequency noise
could hinder the identification of activity pulses. We used two different
filtering strategies to remove fluctuations: a baseline filtering that removed
only low frequencies and a band-pass filter that removed both low and
high frequencies. Both methods produced similar statistics after peak
detection.

In the first strategy we flattened the baseline of each trace by subtracting a
low degree polynomial that follows its minima (Fig. S14). To obtain this
polynomial, we first identified all the local minima on each time series. We
compared each value xi of the time series with its two neighbors to the left
xi−1 and xi−2, and to the right xi+1 and xi+2. The value x1 was compared with
its two right neighbors and x0 to the left, and xn−1 with its two left neighbors
and xn to the right. We used the least squares method to fit a polynomial to
the minima together with the endpoints of the trace (NumPy; Harris et al.,
2020). Due to the variability in trace duration and baseline, we set a trace-
specific polynomial degree, deg, to allow an accurate fit of the baseline
while avoiding overfitting, with degj = (2+mj)/3, where mj is the number of
minima in trace j.

In the second strategy, we filtered the signal by removing unwanted high
and low frequencies with a band-pass filter (Fig. S14). We applied a
Butterworth filter with zero time and linear phase, by implementing the
band-pass filter on a moving window both forward and backward in time
(SciPy ‘signal’ submodule; Virtanen et al., 2020).We used an odd extension
for the padded signal and a pad length of 15 frames, that is three times the
number of coefficients of the Butterworth polynomials. The Butterworth
filter is a band-pass square filter: it has a flat frequency response in the
passband region, and rolls off towards zero in the stopband region. The order
of the filter regulates the sharpness of the cutoff and we set it to four. We
chose the cutoff frequencies flow and fhigh in terms of the maximum
frequency we can resolve with the given sampling rate. We chose low and
high stopband frequencies in terms of the Nyquist frequency, flow = 0.025
fnyq and fhigh = 0.6 fnyq, with fnyq = 0.5 fs = (1/210) Hz for a sampling
frequency fs = (1/105) Hz.

We determined the local maxima by comparison of neighboring values.
We compared each value x̂i of the time series with its neighbors ½x̂i�d; x̂i�1�
and ½x̂iþ1; x̂iþd�, where δ is a free parameter of the method that determines the
minimum time interval between peaks that we could resolve.We reduced the
range of comparison until reaching ½x̂1; x̂d� for the initial value x̂0; and
½x̂n�d; x̂n�1� for the final value x̂n. We set δ = 2 frames, which allowed us to
resolve ERK-dependent peaks that are at least 5.25 min apart.

Threshold analysis protocol
To remove spurious low amplitude peaks, we filtered peaks with a KTR
signal threshold value Ith. We explored how the number of peaks changed in
Fgf4-mutant cells in N2B27 (negative control) and wild-type cells growing
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in serum+LIF as we changed this threshold (Fig. S14). We detected peaks
in the two conditions for different I ith threshold values evenly spaced in
the arbitrary unit (a.u.) range [0, 30]. For each I ith, we computed the total
pulse rate

di ¼
XN

j ¼ 1

nij
Lj

;

where N is the total number of cells of each condition, nij is the number of
detected pulses for this threshold value I ith and Lj is the total length of the
time series of cell j. We normalized pulse rate to the total pulse rate δ0 at
�d
i ¼ di = d0, �d

i ¼ di = d0 (Fig. S14). This normalized pulse rate decreased
with increasing the threshold values both in the negative control and thewild
type. The negative control pulse rate decays much faster, reaching 0.5,
whereas wild-type values are still around 0.9. Thus, wild-type genuine peaks
can be distinguished from the background fluctuations in the control. We set
a threshold value Ith for which 1% of all the local maxima were classified as
peaks in the negative control, that is �d

i ¼ 0:01. This condition results in
threshold values Ith = 24 for the frequency filtering strategy and Ith = 25 for
baseline filtering strategy (Fig. S14).

Error estimation in pulse rate maps
Being �i j;k the contribution of vector �i to (Tb,j, Te,k), we interpreted each
element of every �i j;k as an individual experiment with two possible
outcomes: 1 (success) and 0 (failure). This T independent experiments in
(Tb,j, Te,k) had a characteristic probability of success p ∈ [0,1]. Then, the
probability of obtaining r̂ numbers of success in the T independent
experiments in (Tb,j, Te,k) is determined by the binomial distribution
Bðr̂;T ; pÞ.

We were interested in estimating the relative number of successes in T
trials r̂ ¼ r̂=T. Then, the maximum likelihood estimator for r̂ is given by
r̂ ¼ r=T and its variance s2ðr̂Þ ¼ r̂ð1� r̂Þ=n (Frodesen et al., 1979).

Understanding the T number of trials as a time interval, the maximum
likelihood estimator of the relative number of successes is the previously
defined pulse rate, i.e. number of peaks per unit time. Then, we estimated the
pulse rate in each subspace (Tb,j, Te,k) (Fig. 4G; Figs S16 and S17). The
corresponding error was computed as the standard deviation. On this
approach we assumed stationarity conditions for each subspace (Tb,j, Te,k) by
assuming a constant p in each case. We neglected small variations in p
because we wanted to study the behavior of the previously characterized
short-term dynamical activity (∼7 min) in long-term cell cycle time scales
(∼13 h).
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(2021). Cell-cell communication through FGF4 generates and maintains robust
proportions of differentiated cell types in embryonic stem cells. Development 148,
dev199926. doi:10.1242/dev.199926

Regot, S., Hughey, J. J., Bajar, B. T., Carrasco, S. andCovert, M.W. (2014). High-
sensitivity measurements of multiple kinase activities in live single cells. Cell 157,
1724-1734. doi:10.1016/j.cell.2014.04.039

Rueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B. E., Walter, A. E.,
Arena, E. T. and Eliceiri, K. W. (2017). ImageJ2: ImageJ for the next generation
of scientific image data. BMC Bioinformatics 18, 529. doi:10.1186/s12859-017-
1934-z

Santos, S. D. M., Verveer, P. J. and Bastiaens, P. I. H. (2007). Growth factor-
induced MAPK network topology shapes Erk response determining PC-12 cell
fate. Nat. Cell Biol. 9, 324-330. doi:10.1038/ncb1543
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Fig. S1. Reporter cells and parental cells express similar levels of pluripotency markers. Immunostaining of 
ERK-KTR mESCs (top row) and the parental E14tg2a line (bottom row) for expression of pluripotency markers 
NANOG (yellow) and OCT3/4 (red). Nuclei in cyan. Scale bar: 20 μm. 
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Fig. S2. KTR fluorescence from a nuclear region of interest captures the same dynamics as the cytosol to 
nuclear ratio. (A) Mean KTR fluorescence in cytoplasmic (gray) and nuclear (green) regions of interest (ROIs). (B) 
Ratio of cytoplasmic and nuclear fluorescence from A (black), and mean intensity of the nuclear ROI measured on 
the inverted image (green). In all cases, y axes were centered at the mean and scaled to span 10 standard deviations. 

0 330
time (min) 

50

400

0 330
time (min) 

436

569

in
ve

rte
d 

nu
cl

ea
r f

lu
or

es
ce

nc
e 

(a
.u

.)

0.64

2.62

cytoplasm
ic / nuclear fluorescence (a.u.)

K
TR

 fl
uo

re
sc

en
ce

 (a
.u

.)

nuclear
cytoplasmic

nuclear fluorescence from inverted image
cytoplasmic / nuclear fluorescenceA B

Development: doi:10.1242/dev.199710: Supplementary information 

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



Fig. S3. Orthogonal ERK activity sensors report similar dynamics. (A) Stills from a movie of mESCs growing in 
serum + LIF medium co-transfected with both an ERK-KTR-mCherry and an EKAREV-CFP-YFP FRET reporter. 
Upper row shows ratiometric images of a single cell expressing the EKAREV sensor, bottom row shows images of 
the same cell expressing the KTR-mCherry sensor. High ERK activity detected by the FRET reporter coincides with 
strong nuclear exclusion of the KTR reporter (asterisk). Gamma values for the KTR montage have been adjusted to 
0.86, and the image has been smoothened for the purpose of visualization only. The acquisition rate was 40 s/frame. 
(B) Single cell trace of mean nuclear intensity of the inverted image (KTR sensor, gray) and mean FRET ratio
(EKAREV sensor, orange) in the same nuclear ROI over time in the absence (top) and the presence of MEKi (bottom).
FRET ratio was calculated as the ratio between donor emission and acceptor emission upon donor excitation. Traces
are standardized by subtracting the mean and then dividing by the standard deviation of every individual trace.
(C) Normalized cross correlation for data shown in B between traces of the different sensors as a function of time
lag, and its maximum absolute value (red triangle). (D) Summary statistics of maximum absolute values of normalized
cross correlations between both reporters over a lag of ± 400 s. (E) Summary statistics of time lag at maximum
normalized cross correlation. Red bar in D, E indicates median, yellow vertical bar is the interquartile range. Number
of cells: n = 10 (serum + LIF), and n = 11(MEKi).
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Fig. S4. Dynamics of KTR signal reveals ERK pulsing in serum + LIF conditions. Single cell traces of the KTR 
signal, obtained as the mean intensity of a nuclear ROI measured on the inverted image, for cells growing in serum 
+ LIF without (top) and with MEKi (bottom). The decrease in KTR signal at the end of the trace in cells 30, 31, 41 and
50 in the condition without MEKi is due to nuclear envelope breakdown as cells enter mitosis. This part of the trace,
together with the immediately preceding peak, was trimmed for the downstream analysis. The acquisition rate was
20 s/frame.
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Fig. S5. Pulse recognition and threshold analysis in high resolution time-series. (A) Representative traces of 
ERK dynamical activity in single ESCs growing in serum + LIF conditions in the presence (two columns on the left) 
or absence (two columns on the right) of MEKi. Rows illustrate steps in the pulse recognition algorithm: First row 
shows raw data, second row shows smoothened traces. Blue and black dots in the third row are local maxima and 
minima. Fourth row shows local maxima and minima that pass the amplitude and slope thresholds. Fifth row shows 
identified pulses after removing overlaps. Pulses are defined by maxima and their adjacent minima. (B) Average 
pulse rate as a function of amplitude and slope thresholds for cells growing in serum + LIF with (left) or without (right) 
MEKi. The level curve where the average pulse rate in MEKi-treated cells is 	3 × 10!"min-1 (green line) was used to 
explore combinations of amplitude and slope threshold values in the condition without inhibitor. (C) Average pulse 
rate for combinations of amplitude and slope thresholds along the red curve in cells growing in serum + LIF 
only. Error bar indicates SEM. Red triangle in B, C indicates parameter values used for subsequent analysis 
(Methods, Table S1). 
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Fig. S6. Correlation of pulse amplitude and duration in cells growing in serum + LIF. Amplitude versus pulse 
duration for individual pulses (green dots). Gray dots show randomly shuffled values for comparison. Shaded yellow 
regions indicate the pulse recognition limits determined by the slope (yellow triangle) and amplitude (horizontal bar) 
thresholds in the pulse recognition algorithm, as well as the sampling resolution (vertical bar).  
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Fig. S7. Signatures of oscillations in the autocorrelation function. Single cell autocorrelation functions from 
data in Fig. S4, for cells growing in serum + LIF without (top) and with MEKi (bottom). See methods for details of 
the calculation. 
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Fig. S8. Stochastic pulsing models. (A) Distribution of silence intervals (green bars) defined as the time between 
pulses, for the serum + LIF condition (n = 225 pairs of pulses). Exponential fit used in the homogeneous population 
model (orange line). (B) Waiting time distribution (orange bars) sampled from the exponential fit in A (orange line). 
(C) Pulse duration distribution for the serum + LIF condition, reproduced from Fig. 2E (n = 289 pulses). A., C. Pulse
recognition resolution limit (yellow bar), data from N = 69 cells. A.-C. quartiles (Q) 25, 50 and 75 are indicated
(D) Single cell traces of the KTR signal for cells growing in serum + LIF, processed from Fig. S4 and shown here to
facilitate comparison with models (green line). Green dots indicate the maxima of the detected pulses. (E) Traces
generated from the homogeneous population model (orange line), with pulse maxima (dots). Pulse durations were
randomly picked from the experimental distribution in C. (F) Traces generated from the heterogeneous population
model (red line), with pulse maxima (dots). All pulse durations in a trace were set as the mean pulse duration in the
corresponding experimental trace. Trace lengths in E, F correspond to the length of experimental traces shown in D.
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Fig. S9. Dynamic range of signaling and transcriptional response to FGF4 dose in ESCs. (A) Western blot for 
pERK and total ERK in wild type and Fgf4 mutant cells growing in the indicated media conditions. (B) Representative 
western blot for pERK and total ERK in Fgf4 mutant cells treated with a range of FGF4 concentrations, with the same 
experimental protocol as in Fig. 3A. (C) Quantification of western blot data from N = 3 independent experiments. 
(D) Flow cytometry of Fgf4mutant, Spry4H2B-Venus/+ cells stimulated with a range of FGF4 concentrations. A non-reporter
line was used as the negative control (shaded in gray). Frequencies have been normalized to the mode. (E)
Quantification of the mean H2B-Venus fluorescence intensity from D. Gray box in C and E indicates the concentration
range used in this study from 2.5 to 20 ng/ml.
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Fig. S10. Dynamics of KTR signal at different FGF4 doses. Traces of the KTR signal obtained as the mean 
intensity of a nuclear ROI measured on the inverted image in single Fgf4 mutant cells stimulated with indicated doses 
of FGF4. The decrease in KTR signal at the end of the trace in cells 15, 27 and 32 (0 ng/ml), cells 14, 20, 34, 38, 41, 
43, and 44 (2.5 ng/ml), cell 13 (5 ng/ml) and cells 8 and 39 (20 ng/ml) is due to nuclear envelope breakdown as cells 
enter mitosis. This part of the trace, together with the immediately preceding peak, was trimmed for the downstream 
analysis. The acquisition rate was 20 s/frame. 
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Fig. S11. Pulse recognition and threshold analysis in FGF4 stimulation experiment. (A) Representative traces 
of ERK dynamical activity in single Fgf4 mutant cells stimulated with different doses of FGF4 (columns), with colors 
as in Fig. 3. Rows illustrate steps in the pulse recognition algorithm: First row shows raw data, second row shows 
smoothened traces. Blue and black dots in the third row are local maxima and minima. Fourth row shows local 
maxima and minima that pass the amplitude and slope thresholds. Fifth row shows identified pulses after removing 
overlaps. Pulses are defined by maxima and their adjacent minima. (B) Average pulse rate as a function of amplitude 
and slope thresholds for Fgf4 mutant without stimulation (left) and stimulated with 20 ng/ml FGF4 (right). The level 
curve where the average pulse rate in unstimulated cells is 0.015 min-1 (blue line) was used to explore combinations 
of amplitude and slope threshold values in the stimulated conditions. (C) Average pulse rate for combinations of 
amplitude and slope thresholds along the blue curve in Fgf4 mutant cells stimulated with 20 ng/ml of FGF4. Error bar 
indicates s.e.m.. Red triangle in B, C indicates parameter values used for subsequent analysis (Materials 
and Methods, Table S1). 
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Fig. S12. Distribution of pulse amplitudes and single cell pERK levels at different FGF4 doses. (A) Distribution 
of sensor pulse amplitudes in Fgf4 mutant cells stimulated with different doses of FGF4. The number of pulses was 
n = 164 (2.5 ng/ml), n = 426 (5 ng/ml) and n = 544 (20 ng/ml). Pulse recognition resolution limit (yellow bar) and 
quartiles (Q) 25, 50 and 75 are indicated. (B) Immunostaining of Fgf4 mutant cells for pERK (magenta) and E-
Cadherin (cyan) to outline cell boundaries. Cells were treated with indicated concentrations of FGF4, with the 
experimental protocol depicted in Fig. 3A. Scale bar = 20 μm. (C) Boxplots of pERK intensity in single cells from three 
different trials, stained as in B. Circles indicate median, solid boxes interquartile range, whiskers are 1.5 times the 
interquartile range. In each trial, we first subtracted the median of the 0 ng/ml condition from all single cell 
measurements, and then normalized to the median of the 20 ng/ml condition.  
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Fig. S13. Dynamics of KTR signal in long term recordings. Traces of the KTR signal obtained as the mean 
intensity of a nuclear ROI measured on the inverted image in wild type cells growing in N2B27 (top), serum + LIF 
(middle), and in Fgf4 mutant cells growing in N2B27 (bottom). The acquisition rate was 105 s/frame. The scale of the 
horizontal axis represents absolute experimental time. Single cell tracks begin immediately after a cell division event 
and are plotted relative to absolute experimental time. Most traces end with exclusion of the sensor from the nucleus 
before cell division. This part of the traces, together with the immediately preceding peak, was trimmed for the 
downstream analysis.  
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Fig. S14. Peak detection and threshold analysis in long term time series. (A) Representative traces of KTR 
signal from long term recordings in single wild type cells growing in serum + LIF. Traces have been aligned relative 
to the time of cell birth for this illustration. B - D illustrate the two filtering strategies, left column corresponds to 
baseline filtering and right column to band-pass filtering (Methods). (B) Same traces as in A following filtering. (C) Plot 
of normalized pulse rate vs. filtered KTR signal threshold to explore how the number of detected pulses depends on 
threshold value. Fgf4 mutant cells growing in N2B27 in dark blue, wild type cells growing in serum + LIF in light blue. 
The gray dotted line represents the difference of the normalized pulse rates between the experimental conditions 
considered. The position of the selected intensity threshold value I#$ is marked with a red triangle. (D) Same traces 
as in B with identified peaks (black dots). The dotted gray line in indicates the selected threshold parameter I#$. 
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Fig. S15. Distribution of interpulse intervals in long-term data. IPI probability density distribution for baseline 
filtered long-term data. Pulse recognition resolution limit (yellow bar) and quartiles (Q) 25, 50 and 75 are indicated.  
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Fig. S16. The alternative frequency filtering strategy confirms prevalent ERK pulsing early in the cell cycle. 
(A) Representative traces of ERK dynamical activity from the same experiment reported in Fig. 4, now following the
alternative frequency filtering strategy. Identified peaks indicated as black dots. (B) Raster plot displaying the timing
of ERK activity peaks across the cell cycle in frequency-filtered data. Lavender horizontal bands extend from birth to
division of single cells, dark vertical bars represent peaks. Single cell tracks begin immediately after a cell division
event and are plotted relative to absolute experimental time. (C) Pulse rate map for the data shown in B. Time is
discretized into 70 min bins. (D) Coarse grained pulse rate map showing average pulse rate and its estimated error
with 420 min binning.
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Fig. S17. Prevalent ERK pulsing early in the cell cycle in cells growing in serum + LIF. (A) Representative 
traces of ERK dynamical activity with identified peaks (black dots) in wild type cells growing in serum + LIF. 
Experimental protocol and baseline filtering strategy are the same as in Fig. 4. (B) Raster plot displaying the timing 
of ERK activity peaks across the cell cycle in cells growing in serum + LIF. Teal horizontal bands extend from birth 
to division of single cells, dark vertical bars represent peaks. Single cell tracks begin immediately after a cell division 
event and are plotted relative to absolute experimental time. (C) Pulse rate map for the data shown in B. Time is 
discretized into 70 min bins. (D) Coarse grained pulse rate map showing average pulse rate and its estimated error 
with 420 min binning.  
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Fig. S18. Dynamics of KTR signal in EpiSCs and ESCs growing in FAX medium. Traces of the KTR signal 
obtained as the mean intensity of a nuclear ROI measured on the inverted image in single EpiSCs or ESCs growing 
in FAX medium with or without MEKi. The decrease in KTR signal at the end of the trace in EpiSC cell 27 and ESC 
cell 1 growing in FAX without MEKi is due to nuclear envelope breakdown as cells enter mitosis. This part of the 
trace, together with the immediately preceding peak, was trimmed for the downstream analysis. The acquisition rate 
was 20 s/frame. 

EpiSCs
FAX

K
TR

 s
ig

na
l (

a.
u.

)

time (min)
620
650

2300

EpiSCs
FAX + MEKi

K
TR

 s
ig

na
l (

a.
u.

)

time (min)
620
650

2300

ESCs
FAX

K
TR

 s
ig

na
l (

a.
u.

)

time (min)
580
650

2300

ESCs
FAX + MEKi

K
TR

 s
ig

na
l (

a.
u.

)

time (min)
580
650

2300

Development: doi:10.1242/dev.199710: Supplementary information 

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



Fig. S19. Pulse recognition and threshold analysis for EpiSCs. (A) Representative traces of ERK dynamical 
activity in single EpiSCs and ESCs cultured in FAX with or without MEKi (columns), with colors as in Fig. 5. Rows 
illustrate steps in the pulse recognition algorithm: first row shows raw data, second row shows smoothened traces. 
Blue and black dots in the third row are local maxima and minima, respectively. Fourth row shows local maxima and 
minima that pass the amplitude and slope thresholds. Fifth row shows identified pulses after removing overlaps. 
Pulses are defined by maxima and their adjacent minima. (B) Average pulse rate as a function of amplitude and 
slope thresholds for different experimental conditions as indicated. The level curves for ESCs and EpiSCs where the 
average pulse rate in FAX + MEKi is 0.003 min-1 (red and green lines, respectively) were used to explore combinations 
of amplitude and slope threshold values in the corresponding cell types cultured in FAX alone. (C) Average pulse 
rate for combinations of amplitude and slope thresholds along the level curves shown in B for EpiSCs (left) and ESCs 
(right) cultured in FAX alone. Error bar indicates s.e.m.. Red triangles in B, C indicate parameter values used 
for subsequent analysis (Materials and Methods, Table S1). 
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Experiment 
Negative 
control 
condition 

Positive 
control 
condition 

Exploratory 
parameter space 

Level curve 
(𝛿%∗) 

Selected 
amplitude 
threshold 

Selected 
slope 
threshold 

Wild type 
constant 
stimulation 

MEKi serum + LIF 

𝑣'(	: (0-15) *.,
-./

 with 

0.25 *.,
-./

 resolution. 

𝐴'(	: (0-60) a.u. with 
1 a.u. resolution. 

3 × 10!"	min!0 20.68 a.u. 5.61 *.,
-./

 

Fgf4 mutant 
different 
FGF4 
stimulation 

Fgf4 mutant 
0 ng/ml FGF4 

Fgf4 mutant 
20 ng/ml 
FGF4 

𝑣'(	: (0-15) *.,
-./

 with 

0.5 *.,
-./

 resolution. 

𝐴'(	: (0-40) a.u. with 
1 a.u. resolution. 

	0.015	min!0 18.47 a.u. 5.16 *.,
-./

 

EpiSCs in 
FAX 

EpiSCs in 
FAX + MEKi 

EpiSCs in 
FAX 

𝑣'(	: (0-15) *.,
-./

 with 

1.8 *.,
-./

 resolution. 

𝐴'(	: (0-60) a.u. with 
0.6 a.u. resolution. 

3 × 10!1	min!0 3.05 a.u. 0.99 *.,
-./

 

ESCs in 
FAX 

ESCs in 
FAX + MEKi 

ESCs in 
FAX 

𝑣'(	: (0-15) *.,
-./

 with 

1.8 *.,
-./

 resolution. 

𝐴'(	: (0-60) a.u. with 
0.6 a.u. resolution. 

3 × 10!1	min!0 4.06 a.u. 1.71 *.,
-./

 

Table S1. Pulse detection parameters from the threshold analysis protocol for short-term high resolution datasets. 
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Pulse rate 

X / Y 2.5 ng 5 ng 20 ng Total data 

2.5 ng 1.000 0.009 0.005 48 

5 ng 0.009 1.000 0.727 57 

20 ng 0.005 0.727 1.000 69 

Pulse duration 

X / Y 2.5 ng 5 ng 20 ng Total data 

2.5 ng 1.000 0.059 0.002 164 

5 ng 0.059 1.000 0.340 426 

20 ng 0.002 0.340 1.000 544 

Amplitude 

X / Y 2.5 ng 5 ng 20 ng Total data 

2.5 ng 1.000 0.432 0.586 164 

5 ng 0.432 1.000 0.835 426 

20 ng 0.586 0.835 1.000 544 

Interpulse interval 

X / Y 2.5 ng 5 ng 20 ng Total data 

2.5 ng 1.000 0.044 < 0.001 124 

5 ng 0.044 1.000 0.014 370 

20 ng < 0.001 0.014 1.000 479 

Consecutive pulses 

X / Y 2.5 ng 5 ng 20 ng Total data 

2.5 ng 1.000 0.099 0.082 48 

5 ng 0.099 1.000 0.837 57 

20 ng 0.082 0.837 1.000 69 

References 

> 0.05 < 0.05 < 0.01 < 0.005 < 0.001 

Table S2. Kolmogorov-Smirnov two sample test p-value, K[x, y]. Table cells are color coded according to different 
p-value thresholds, with the color code is given at the table bottom. The total number of data points for each
condition is indicated on the rightmost column of the table. The low number of pulses at 0 ng/ml precluded
statistical analysis of this condition.
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Movie 1. KTR sensor reveals dynamic ERK activity in ESCs growing in serum + LIF. Time-lapse imaging of ERK-
KTR expressing cells growing in serum + LIF with (left) and without MEKi (right). Frame rate is 20 s, total duration is 
101 min. Scale bar: 20 µm. 
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Movie 2. Dynamic ERK activity in Fgf4 mutant cells stimulated with recombinant FGF4. Time-lapse imaging of 
Fgf4 mutant cells expressing the ERK-KTR sensor cultured without FGF stimulation (top left), or stimulated with 2.5 
ng/ml (top right), 5 ng/ml (bottom left), and 20 ng/ml FGF4 (bottom right). Frame rate is 20 s, total duration is 82 min. 
Scale bar: 20 µm. 
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Movie 3. Dynamic ERK activity in EpiSCs. Time-lapse imaging of ERK-KTR expressing EpiSCs (top) and ESCs 
(bottom) cultured in FAX medium with (left) and without MEKi (right). Frame rate is 20 s, total duration is 205 min. 
Scale bar: 20 µm. 
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