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Shortcut to adiabaticity in a cavity with a moving mirror
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Shortcuts to adiabaticity constitute a powerful alternative that speed up time evolution while mimicking
adiabatic dynamics. In this paper we describe how to implement shortcuts to adiabaticity for the case of a
massless scalar field inside a cavity with a moving wall, in 1 + 1 dimensions. The approach is based on the
known solution to the problem that exploits the conformal symmetry, and the shortcuts take place whenever
there is no dynamical Casimir effect. We obtain a fundamental limit for the efficiency of an Otto cycle with
the quantum field as a working system, that depends on the maximum velocity that the mirror can attain. We
describe possible experimental realizations of the shortcuts using superconducting circuits.
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I. INTRODUCTION

In recent times, as new technologies allow us to manipulate
smaller and smaller systems, such as trapped ions, nanores-
onators, and electronic circuits [1–3], a natural question has
emerged about whether it is possible to use them to produce
machines and what their properties would be. The novelty
comes from the fact that these small systems can exhibit
quantum properties that could potentially be exploited to get
an advantage over classical machines or present new obstacles
to the operation. These questions constitute the backbone of
a new area of physics that has come to be called quantum
thermodynamics. In some cases of discrete stroke quantum
machines, such as a quantum harmonic oscillator or a quan-
tum field undergoing an Otto cycle, it has been shown that
the efficiency of the resulting machine is maximum for an
adiabatic (i.e., infinitely slow) driving [4,5]. The problem is
that under these conditions the power of the machine vanishes
and so it becomes necessary to understand how to operate
these machines in a finite time. However, this leads to a
friction work on each stroke 〈wfric〉 = 〈w〉 − 〈wad〉, defined as
the difference between the actual work and the adiabatic work,
that is always non-negative [6]. This has the effect of reducing
the efficiency of a heat engine. For example, for a quantum
Otto cycle comprised of four strokes (A, cooling at constant
volume; B, adiabatic expansion; C, heating at constant vol-
ume; D, adiabatic compression) the efficiency in finite time is
given by

η = W

Q
= Wad − 〈wfric〉AB − 〈wfric〉CD

Qad − 〈wfric〉AB
� Wad

Qad
= ηad, (1)

where Wad = 〈wad〉AB + 〈wad〉CD, and is always lower or equal
to the adiabatic efficiency. Therefore, it is paramount to un-
derstand if it is possible to implement an adiabatic evolution
in finite time.

Although in most cases the finite time operation causes
the emergence of coherences in the state of the system that
result in an efficiency loss, in many cases it is possible to
implement protocols, named shortcuts to adiabaticity (STA),
that evolve the initial state into the final state that would
have been obtained with an adiabatic evolution, but in a finite
time [7–10]. These protocols typically require a full control of
the quantum system and end up being extremely challenging
from an experimental standpoint.

In previous works, STA have been considered from a the-
oretical and/or an experimental point of view for different
physical systems: trapped ions [11], cold atoms [12], ultra-
cold Fermi gases [13], Bose-Einstein condensates in atom
chips [14], spin systems [15], etc. STA have been also pro-
posed to relieve the trade-off of efficiency and power [16–18],
both in single-particle quantum heat engines (QHEs) [19], and
in many-particle QHEs [20]. There was even an experiment
with a unitary Fermi gas that implemented last systems [21].
On the other hand, the authors in Ref. [22] have consid-
ered many particle theories for QHE in the adiabatic case.
STAs have also been obtained for relativistic quantum systems
evolving under Dirac dynamics [23,24].

In this paper we explore the possibility of applying STA in
quantum field theory. In particular, we will consider a scalar
quantum field in a one-dimensional cavity with a moving
wall, whose state undergoes a unitary evolution. We will show
that given a wall trajectory Lref (t ) we can find a shortcut
to adiabaticity given by an effective trajectory Leff(t ) that,
when implemented in finite time, results in the same state
as if the original had been performed adiabatically. The STA
occurs whenever there is no dynamical Casimir effect (DCE).
As we will see, this protocol has the advantage that it can
be easily implemented experimentally using superconducting
circuits, since it does not require additional exotic potentials.
Moreover, the effective trajectory can be computed from the
original quite simply, paving the way for more efficient quan-
tum field thermal machines.
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II. ADIABATIC SHORTCUTS FOR DYNAMICAL
CASIMIR EFFECT

There are several ways of introducing adiabatic short-
cuts in quantum systems. A natural approach is to impose
the instantaneous eigenstates of a time-dependent Hamil-
tonian to be solutions of a time-dependent Schrödinger
equation of a different Hamiltonian, which is the original
one plus a “counterdiabatic” Hamiltonian [9]. This proce-
dure leads in general to an effective nonlocal Hamiltonian
which is difficult to implement experimentally. For some sys-
tems [such as a harmonic oscillator with a time-dependent
frequency ω(t )], an additional unitary transformation simpli-
fies the effective Hamiltonian, without modifying the initial
and final states [25]. Also for these systems, an alternative
approach [26] is based on the following observation: the
adiabatic Wentzel-Kramers-Brillouin (WKB) solution for the
position operator q̂(t ) can be written in terms of annihilation
and creation operators as

q̂(t ) = â
e−i

∫ t
ωref (t ′ )dt ′

√
2ωref (t )

+ â† ei
∫ t

ωref (t ′ )dt ′

√
2ωref (t )

(2)

(we stress that throughout this paper we will be working with
natural units where c = h̄ = kB = 1). This is an approximate
solution for the oscillator with a reference frequency ωref (t ),
valid if it is slowly varying, but an exact solution of a system
with an effective frequency [26]

ω2
eff (t ) = ω2

ref + 1

2

[
ω̈ref

ωref
− 3

2

( ω̇ref

ωref

)2]
, (3)

which turns out to be the external evolution that leads to a
STA.

In the context of quantum field theory under the in-
fluence of time-dependent backgrounds, free fields can be
described as a set of interacting harmonic oscillators with
time-dependent frequencies. Assuming that the time depen-
dence takes place in a finite time period, the departure from
adiabaticity is measured by the Bogoliubov transformation
that connects the IN and OUT Fock spaces. When nontrivial,
this transformation indicates the presence of particle creation,
which is related to the friction work mentioned before. In the
particular case of quantum fields in flat spacetime with time-
dependent boundary conditions and/or moving boundaries
this effect is named motion induced radiation or DCE [27].

A naive generalization of the WKB approach described
above, applied to each harmonic oscillator, does not work in
general, because the effective frequency ωeff (t ) turns out to be
“mode dependent,” that is, it produces a STA for a given mode,
but not to the full field. However, for a conformal field in 1 + 1
dimensions, it is possible to follow a different approach to the
STA, based on conformal transformations. We will consider
a massless scalar field confined to a cavity of variable size
L(t ). We assume the left mirror is located at x = 0 and the
right mirror at x = L(t ), where we impose Dirichlet boundary
conditions. The idea is to perform a coordinate conformal
transformation such that, in the new coordinates, both mirrors
are at rest. The transformation is given by [28]

t̄ + x̄ = R(t + x),

t̄ − x̄ = R(t − x), (4)

where the function R is fixed in such a way that x = 0 cor-
responds to x̄ = 0 and x = L(t ) to x̄ = 1. These conditions
imply that R must satisfy the so-called Moore equation [28]

R[t + L(t )] − R[t − L(t )] = 2. (5)

Due to the conformal invariance of the classical action,
the Klein-Gordon equation for the massless scalar field is the
usual wave equation in the new coordinates. The field modes
can be written as

fn(x, t ) = 1√
4πn

{exp [−inπR(t + x)]

− exp [−inπR(t − x)]}. (6)

Being functions of t ± x, these modes are solutions of the
wave equation. Moreover, the Moore equation implies that the
modes satisfy Dirichlet boundary conditions on the mirrors.

For a static cavity of size L0, the general solution to the
Moore equation reads R(t ) = t/L0 + r(t ), where r(t ) is an
arbitrary function of period 2L0. The usual modes for the static
cavity are obtained setting r(t ) = 0. Assuming that the right
mirror is at rest in the IN and OUT regions, i.e., for t → ±∞,
we can define the IN Moore function as the solution of Eq. (5)
such that RIN(t ) → t/L0 as t → −∞, and ROUT as the solu-
tion that satisfies ROUT(t ) → t/L1 as t → +∞, where L0 and
L1 are the initial and final sizes of the cavity, respectively.
These functions determine the IN and OUT modes through
Eq. (6). In general we will have that, as t → +∞, RIN(t ) =
ROUT(t ) + r(t ), with a nonvanishing periodic function r(t ).
The IN and OUT field modes will be connected by a nontrivial
Bogoliubov transformation, which describes physically the
creation of particles induced by the motion of the right mirror,
or DCE, and is encoded in the nonvanishing function r(t ).

To evaluate the time evolution of the mean value of the
energy-momentum tensor in a thermal state, one can follow
the traditional approach based on point-splitting regulariza-
tion. The result is [29,30]

〈Ttt 〉 = 〈Txx〉 = G(t − x) + G(t + x),

〈Ttx〉 = 〈Txt 〉 = −G(t − x) + G(t + x), (7)

with

G = − 1

24π

[
(R′′′/R′) − 3

2
(R′′/R′)2

]

+ (R′)2

2

[
− π

24
+ F (T L0)

]
, (8)

where F (T L0) is related to the initial thermal energy of the
cavity

F (T L0) =
∑
n�1

nπ[
exp

(
nπ
L0T − 1

)] . (9)

These equations are a slight generalization of the zero temper-
ature results in [29] (see also Ref. [31]). For the static case, the
terms proportional to (R′)2 in the different components of the
stress tensor reproduce the Casimir energy density and force
in 1 + 1 dimensions.

The total energy inside the cavity is given by

E (t ) =
∫ L(t )

0
〈Ttt (x, t )〉dx, (10)
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while for an adiabatic evolution the energy is obtained using
the approximation R′(t ) � 1/L(t ) and neglecting derivatives
of L(t ):

Ead(L, T ) = − π

24L
+ F (T L0)

L
. (11)

The above results suggest a simple way to introduce STA
in our conformal field theory, using an “inverse engineering”
approach: any Moore function R that satisfies at the same time
the two conditions R → t/L0 as t → −∞ and R → t/L1 as
t → +∞ will produce an evolution in which the Bogoliubov
transformation between the IN and OUT bases is the iden-
tity [32]. Therefore, there will be no particle creation, and the
occupation numbers will be the same in the initial and final
states. The associated trajectory is defined implicitly by the
Moore equation (5). If R is defined as a piecewise function, it
should be smooth enough in order to avoid divergences in the
mean value of the stress tensor.

In order to make contact with previous approaches for STA
in other contexts, it is useful to discuss the adiabatic (or WKB)
solutions for the field modes. For an adiabatic trajectory L(t ),
the Moore function is approximately given by [28]

RWKB[L] =
∫ t dt ′

L(t ′)
. (12)

Let us consider a (nonadiabatic) reference trajectory Lref (t )
that starts at L0 and ends at L1. We would like to find an
effective trajectory, Leff (t ), such that the time evolution of
the modes is the WKB-like solution evaluated on Lref (t ). If
we insert RWKB[Lref ] in the field modes, Eq. (6), the modes
will satisfy exactly the wave equation, but will not satisfy
the Dirichlet boundary conditions on x = Lref (t ). Instead, the
modes will vanish on an effective trajectory that satisfies∫ t+Leff (t )

0

1

Lref (t ′)
dt ′ −

∫ t−Leff (t )

0

1

Lref (t ′)
dt ′ = 2. (13)

We stress that this equation defines the effective trajectory
Leff (t ). Therefore, implementing the effective trajectory, the
field modes will be described by the WKB modes of the
reference trajectory Lref . Moreover, the initial and final lengths
of the cavity will be the same for both trajectories, and the
population of the modes will also be the same at the initial
and final times: Leff (t ) is the adiabatic shortcut associated
with reference trajectory Lref , just as ωeff is the STA for the
quantum harmonic oscillator with frequency ωref .

It is simple to see that, if t + Leff (t ) < 0, then Leff (t ) =
Lref (0) = L0, for t < −Lref (0). Analogously, if t − Leff (t ) >

τ , then Leff (t ) = Lref (τ ) = L1, for t > τ + Lref (τ ). This tells
us that this effective trajectory is static before t = −L0 and
after t = τ + L1. Moreover, it coincides with the reference
trajectory Lref before and after. A relevant question is whether
this is in fact a real trajectory meaning that its speed is always
below c = 1. We can answer this question taking the time
derivative of the defining equation and solving for the speed
of the wall

d

dt
Leff (t ) = L[t + Leff (t )] − L[t − Leff (t )]

L[t − Leff (t )] + L[t + Leff (t )]
� 1, (14)

from which we see that its speed is indeed bounded by the
speed of light.

FIG. 1. A reference trajectory (blue solid line) given by Eq. (15)
with ε = 0.3 and τ/L0 = 1. The corresponding effective trajectory
(orange dashed line) calculated from Eq. (13) gives the shortcut to
adiabaticity.

A simple smooth trajectory that interpolates between L0

and L1 is given by

Lref (t ) =

⎧⎪⎨
⎪⎩

L0,

L0 [1 − εδ(t )],

L1,

t < 0

0 < t < τ,

τ < t,

(15)

where ε is a positive constant less than 1, the final distance is
given by L1 = L0(1 − ε), and the evolution function is

δ(t ) = 10(t/τ )3 − 15(t/τ )4 + 6(t/τ )5. (16)

In Fig. 1 we show the effective trajectory Leff associated to
this Lref . The energy density inside the cavity evolves from
the static Casimir thermal energy corresponding to a cavity
of length L0 to that corresponding to L1. The evolution is
nonadiabatic at intermediate times, as depicted in Fig. 2 for
the particular case T = 0: indeed, for an adiabatic evolution

FIG. 2. Energy density for an adiabatic shortcut corresponding
to the polynomial trajectory with length L1/L0 = 0.7 and τ/L0 = 1
from t = −L0 to t = L1 + τ and the field initially in the vacuum
state. The energy density is a negative constant before and after the
compression and it is smaller at the end.
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FIG. 3. Adiabaticity parameter as a function of time for the
reference (solid line) and effective trajectory (dashed line) at three
different temperatures. An inset plot has been added to better visu-
alize the curves for T L0 = 0 and T L0 = 5. The parameters used for
the reference trajectory were ε = 0.3 and τ/L0 = 1.

the energy density would be constant inside the cavity at
each time, and equal to the static Casimir energy density
corresponding to the instantaneous size of the cavity. Note
also that, for an arbitrary trajectory (not a shortcut), the final
energy density would also contain the contribution of the
created particles. In Fig. 3, we plot the adiabaticity parame-
ter Q∗(t ) = E (t )/Ead(t ) for the cavity as a function of time,
during the shortcut, at different temperatures for the reference
trajectory as well as for the corresponding STA. This param-
eter effectively measures the distance between the adiabatic
energy for an infinitely slow motion and the actual energy
in the cavity for the STA found, being of course equal to 1
when these two coincide. We can see that although both of
them depart from the adiabatic result at intermediate times,
the STA returns to 1 at the end of the motion confirming the
implementation of an adiabatic shortcut and its deviation from
adiabaticity at intermediate times is relatively small. Although
there are certain times at which the reference trajectories cross
Q∗ = 1, this does not constitute a STA, since a sudden stop of
the moving wall at those times would generate DCE photons
by itself, that would make Q∗ 
= 1 afterwards. This is why
it is crucial that the trajectories considered have a null final
velocity.

To summarize, solving the equation for Leff (t ) we get a
trajectory that, when implemented, generates an evolution of
the state of the quantum field that in the end coincides with
that of an exact adiabatic evolution along Lref (t ). That is, we
have found a shortcut to adiabaticity for a scalar quantum field
in a cavity with a moving wall. The results can be generalized
to other two-dimensional conformal fields confined in a cavity
of variable length, as a massless Dirac field satisfying bag
boundary conditions on the boundaries [33].

III. IMPLICATIONS ON THE QUANTUM OTTO CYCLE

In order to discuss some fundamental limits for the power
and efficiency of a quantum Otto cycle, we will consider
the following limiting trajectory Lref (t ) = L0θ (−t ) + L1θ (t ),

FIG. 4. Power for an Otto cycle as a function of the timescale,
τ , implementing the reference (solid line) or effective STA trajectory
(dashed line) for the expansion and compression strokes. The param-
eter used for the trajectory was ε = 0.3, while the thermal baths used
for the cycle had temperatures T0L0 = 1 and T1L0 = 5.

which corresponds to a very small displacement time, τ �
L0, L1.

In this case we can replace Eq. (13) to find that the effective
trajectory is given by

Leff (t ) =

⎧⎪⎨
⎪⎩

L0,

2L0L1−t (L0−L1 )
L0+L1

,

L1,

t < −L0

−L0 < t < L1

L1 < t .

(17)

This means in the limit case where we want to implement an
instantaneous length change without spurious photon genera-
tion, we need at least L0 + L1 units of real time to implement
it and it consists of a linear motion. This is consistent with
previous results for this particular case [29,32].

We have previously mentioned that finite time driving is
necessary to improve the power delivered but usually results
in additional friction energy on the working medium that
diminishes the efficiency of the engine. In the case of a scalar
quantum field with a moving boundary we have found a
STA, which maximizes the work delivered, that turns out to
be 〈wad〉, and the efficiency, η = ηad. Moreover, the power
produced is bounded by the minimum time that it takes to
implement the STA (twice for compression and expansion and
under the assumption that the thermalization times are much
shorter than the compression and expansion ones),

P = Wad

2(L0 + L1 + τ )
� Wad

2(L0 + L1)
. (18)

In Fig. 4 we compare the power given by an engine un-
der a quantum Otto cycle whose expansion and compression
strokes are given either by the reference or the effective STA
trajectory. We can see that for slow motions (i.e., large τ ) they
converge to the same value, since τ � L0 and W ≈ Wad, but
for extremely fast motion the power of the reference trajectory
decreases rapidly and becomes negative while the STA, which
always has a superior efficiency, also provides a higher power.
Perturbative calculations to second order in ε also show that
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the power associated with the reference trajectory decays as
1/τ 4 for short cycle times [4] in concordance with the fig-
ure presented here.

Even though we have given an explicit simple way to com-
pute an STA that maximizes both the efficiency and the power
delivered, it may be very difficult to implement in practice.
For example for an Otto cycle, the efficiency is given by

ηOtto = 1 − L1

L0
� ηCarnot = 1 − T1

T0
, (19)

and is bounded by Carnot’s efficiency. Then given a cavity of
length L0 and thermal baths T1 and T0, if we want to achieve
the best possible efficiency the final length is fixed to L1/L0 =
T1/T0. Implementing then the best possible STA forces us to
move the mirror at the speed v = (L0 − L1)/(L0 + L1), which
for T0 � T1 gives L0 � L1, and the speed v ≈ 1 approximates
the speed of light, leading to an experimental impossibility.

Alternatively, we can set the problem with the constraint
that the speed of the mirror should be at most a constant v.
Then, to get the most possible power we would take an STA
with constant speed v = (L0 − L1)/(L0 + L1). This would
set the final length to L1 = L0(1 − v)/(1 + v). We can now
clearly see that the efficiency

ηOtto = 1 − (1 − v)

(1 + v)
(20)

is directly bounded by the maximum speed the mirror can
reach.

We now address some related problems: Is it possible to
perform a translation of the cavity avoiding the excitation of
the modes? For a nonrigid cavity this can be trivially achieved
by a two-step STA, moving first the right mirror and then the
left mirror, both following STA. This translation without exci-
tation may be relevant for discussions on relativistic quantum
information where it has been shown the DCE can degrade the
entanglement between observers in relative motion [34]. More
generally, the STA protocol presented here could be useful
for other conformal field theories satisfying time-dependent
boundary conditions, providing a route for modifying these
conditions without altering the state of the field in a bounded
region.

IV. DISCUSSION

Is it possible to have a STA for a single accelerated mirror?
In other words, what happens with the population of the field
modes outside the cavity? In this case there are no STA:
assuming that the mirror is initially static, accelerates during
some time, and finally becomes at rest, the total energy outside
the cavity is strictly positive [29], and given by the energy
of the created particles [35]. Unlike what happens inside the
cavity, the DCE cannot be reversed.

Finally, we describe a possible experimental realization
of the shortcut. Superconducting circuits have proved to be
useful to simulate a one-dimensional cavity with a moving
mirror [36]. Indeed, the DCE has been observed experimen-
tally using a superconducting waveguide ended by a SQUID,
and the time-dependent external condition is implemented by
varying the magnetic flux 	(t ) on the SQUID [37]. In order to
perform a STA, one should consider a closed waveguide ended
by a SQUID, and apply an effective time-dependent magnetic
flux 	eff (t ). When the field is initially in the vacuum state, no
photons should be detected after applying the magnetic field
on the SQUID. Indeed, we have recently proposed to imple-
ment an Otto cycle in this system [4], and showed that, for
expansion and compression of small amplitude, it is possible
to avoid the DCE and maximize the efficiency of the cycle.
The results of this paper show that the DCE can be avoided
for trajectories of arbitrary amplitude. Although there is no net
generation of photons that would decrease the efficiency, there
is instantaneous emission and reabsorption at intermediate
times. This represents an energy cost that should be further
investigated in the future, since previous works [38–41] have
associated this cost with the third law of thermodynamics and
quantum speed limits.
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