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a b s t r a c t

Using the nonholonomic exponential map, we obtain a new version of Newmark-type
methods for nonholonomic systems (see also Jay and Negrut(2009) for a different
extension). We give numerical examples including a test problem where the structure
of reversible integrability responsible for good energy behaviour as described in Modin
and Verdier (2020) is lost. We observe that the composition of two Newmark methods
is able to produce good energy behaviour on this test problem.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In numerical integration, one of the most widely used methods in nonlinear structure dynamics is without any doubt
he Newmark family of numerical methods [1], which also admits extensions to constrained systems (see [2]).

Briefly, a nonholonomic system is a mechanical system with external constraints on the velocities whose equations are
btained using the Lagrange–d’Alembert principle (see [3]). These systems are present in a great variety of engineering
nd robotic environments as for instance in applications to wheeled vehicles and satellite dynamics. In this paper, we
ill consider only the case of linear velocity constraints since this is the case in most examples, but the extension
f our nonholonomic Newmark method to the case of nonlinear constraints, explicitly time-dependent systems and
onholonomic systems with external forces is completely straightforward.
The case of linear velocity constraints is specified by a (in general, nonintegrable) regular distribution D on the

onfiguration space Q , or equivalently, by a vector subbundle τD : D → Q of the tangent bundle TQ with canonical
nclusion iD : D ↪→ TQ . Therefore, the admissible curves γ : I ⊆ R → Q must verify the following constraint equation

γ ′(t) =
dγ
dt

(t) ∈ Dγ (t) for all t ∈ I .

The case of holonomic constraints occurs when D is integrable or, equivalently, involutive. Observe that in this case, all
the curves through a point q ∈ Q satisfying the constraints must lie on the maximal integral submanifold of D through q.
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In this paper, we construct nonholonomic Newmark methods in the case where Q is Rn and discuss the possibility of
composing Newmark methods to obtain higher-order methods. At the end, we test them in some nonholonomic problems.
According to [4], the reason why several numerical methods produce good energy behaviour is due to the fact that they
preserve reversible integrability and most nonholonomic examples are precisely reversible integrable. The perturbed
pendulum-driven CVT system is an example of an unbiased nonholonomic system since it is no longer reversible. The
main result of the paper is that in one of our methods, the composition of two Newmark methods, we observed nearly
preservation of energy with a similar behaviour to the nonholonomic leap-frog method [5,6]. Our result may help finding
numerical methods for nonholonomic systems exhibiting better qualitative behaviour than those existing in the literature
for unbiased examples as well as it may give some contribution to the understanding of the reason why there are methods
that do preserve the energy in these examples. This, in fact, is one of the open problems in the area of geometric integration
of nonholonomic systems.

The paper is structured as follows. In Section 2, we give a review of the Newmark method to integrate second-order
differential equations and rewrite them in terms of a discretization of the exponential map. In Section 3, we review the
definition of nonholonomic mechanics and of the nonholonomic exponential map which motivates the introduction of
nonholonomic Newmark methods. In Proposition 3.6, we prove that Newmark methods with β = β ′

= 0 are equivalent
to a DLA method and in Proposition 3.7, we obtain a numerical method from the composition of lower order Newmark
methods. In Section 4, we give three examples of nonholonomic systems including the perturbed pendulum-driven CVT
system and in Section 5 we present our numerical results. Finally, in Section 6, we discuss the possibility of generalizing
nonholonomic Newmark methods to general manifolds and, in particular, to a Lie group (see [7]).

2. Newmark method for explicit second-order differential equations

Given a second order differential equation d2q
dt2

= Γ (t, q, q̇) the classical Newmark method is given by

qk+1 − qk
h

= q̇k + h
(
1
2

− β

)
Γ (tk, qk, q̇k) + hβΓ (tk+1, qk+1, q̇k+1)

q̇k+1 − q̇k
h

= (1 − γ ) Γ (tk, qk, q̇k) + γΓ (tk+1, qk+1, q̇k+1)
(1)

where γ and β are real numbers with 0 ≤ γ ≤ 1 and 0 ≤ β ≤ 1/2. The Newmark method is second order accurate if and
only if γ = 1/2, otherwise it is only consistent. Moreover, this family of second order methods includes the trapezoidal
rule (β = 1/4) and the Störmer’s method (β = 0). In the latter case, the Newmark method is simplified as follows:

qk+1 − qk
h

= q̇k +
h
2
Γ (tk, qk, q̇k)

q̇k+1 − q̇k
h

=
1
2
Γ (tk, qk, q̇k) +

1
2
Γ (tk+1, qk+1, q̇k+1)

2.1. Newmark method for Lagrangian systems

The Newmark method [1] is a classical time-stepping method that is very common in structural mechanical simula-
tions. For simplicity, we consider a typical mechanical Lagrangian L : TRn

−→ R:

L(q, q̇) =
1
2
q̇Mq̇T − V (q) , (2)

where (q, q̇) ∈ TRn
≡ R2n, M is a symmetric positive definite constant n × n-matrix and V is a potential function. The

corresponding Euler–Lagrange equations are

q̈ = −M−1
∇V (q) , (3)

where ∇ denotes the gradient of the potential function.
The Newmark methods are widely used in simulations of such mechanical systems. In fact, they can be applied in an

even more general context including external forces (cf. [8]). In this case, fixing parameters γ and β , Eqs. (1) determine
an integrator implicitly which gives (qk+1, q̇k+1) in terms of (qk, q̇k) by

qk+1 = qk + hq̇k +
h2

2
((1 − 2β)ak + 2βak+1) (4)

q̇k+1 = q̇k + h ((1 − γ )ak + γ ak+1) , (5)

where ak = −M−1
∇V (qk) and ak+1 = −M−1

∇V (qk+1).
In contrast with other geometric integrators for Lagrangian systems (see [9]), the Newmark scheme is not especially

designed to be symplectic and momentum preserving, but in [8] the authors show that the conservation of the symplectic
form and the momentum occurs in a non-obvious way. In other words, the Newmark methods preserve a non-canonical
perturbed symplectic form and a non-standard momentum.
2
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2.2. The Newmark method and the exponential map

Given a second order differential equation d2q
dt2

= Γ (t, q, q̇) on Q , a point q ∈ Q and a sufficiently small positive number
h > 0, we can construct the exponential map of Γ in q at time h, i.e., a map expq,h : U ⊆ TqQ → Q . This map is defined
taking for any vector v ∈ TqQ the unique trajectory of the second order differential equation with this initial condition,
that is the unique curve γ : I ⊂ R → Q such that γ (0) = q, γ̇ (0) = v and γ̈ (t) = Γ (γ (t), γ̇ (t)) (see [10] and references
herein). Then we define expq,h(v) = γ (h). A natural idea to derive a numerical method is to consider a discretization of
he exponential map expd

q,h : U ⊆ TqQ → Q that is, an approximation of the continuous exponential map. If Q is a vector
pace, a common example of a discretization is the second order Taylor polynomial

expd
q,h(v) = q + hv +

h2

2
Γ (q, v). (6)

Definition 2.1. A discretization of the exponential map of a second order differential equation is a family of maps
expd

q,h : TqQ → Q depending on a parameter h ∈ (−h0, h0) with h0 > 0 such that expd
q,0(vq) = q, that is, it is a constant

ap and the first and second derivatives with respect to h satisfy

d
dh

⏐⏐⏐⏐
h=0

expd
q,h(v) = v,

d2

dh2

⏐⏐⏐⏐
h=0

expd
q,h(v) = Γ (q, v).

Definition 2.2. The discrete flow Φh
d : TQ → TQ , Φh

d (qk, vk) = (qk+1, vk+1) defined implicitly by the expression{
qk+1 = expd

qk,h
(vk)

qk = expd
qk+1,−h(vk+1)

(7)

is called the exponential method.

Observe that by the implicit function theorem, Φh
d is well-defined if Tvexpd

q,h is regular at v = vk+1 for any h ∈ (−h0, h0).
In other words,

Φh
d (vk) =

[
expd

expdqk,h(vk),−h

]−1

(qk), for vk ∈ TqkQ .

As we will see next, this is precisely the Newmark method with β = 0 and γ = 1/2.
In general, we can recover any Newmark method as a map Φh

d : TQ → TQ , Φh
d (qk, vk) = (qk+1, vk+1) using the following

discretizations of the exponential map depending of a parameter β with 0 ≤ β ≤ 1/2:

expβ

qk,h
(vk) = qk + hvk +

h2

2
((1 − 2β)Γ (qk, vk) + 2βΓ (qk+1, vk+1)) (8)

nd the Newmark method is rewritten as{
qk+1 = expβ

qk,h
(vk)

qk = expβ ′

qk+1,−h(vk+1)
(9)

ith parameters 0 ≤ β, β ′
≤ 1/2. That is

qk+1 = qk + hvk +
h2

2
(1 − 2β)Γ (qk, vk) + h2βΓ (qk+1, vk+1)

qk = qk+1 − hvk+1 +
h2

2
(1 − 2β ′)Γ (qk+1, vk+1) + h2β ′Γ (qk, vk)

(10)

bserve that these methods are equivalent to the Newmark methods with parameters β and γ = (1 + 2β ′
− 2β)/2 in

the expression (1) (in fact, if in (10) we put vk = q̇k and vk+1 = q̇k+1 then we obtain (1)).

Remark 2.3. The discretization of the exponential map given in Eq. (9) should be understood as follows. Given a
discretization Φh

d : TQ → TQ of the flow of a second order differential equation then we can define the discretization of
the exponential map as

expβ

qk,h
(vk) = qk + hvk +

h2

2

(
(1 − 2β)Γ (qk, vk) + 2βΓ (Φh

d (qk, vk))
)

.

hus, it is clear that it only depends on the variables (q , v ).
k k

3
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3. The nonholonomic Newmark method

3.1. Nonholonomic mechanics

Consider a nonholonomic system on the configuration space Q determined by a Lagrangian function L : TQ → R
nd nonholonomic constraints which are linear in the velocities given by a nonintegrable distribution D. In coordinates,
a
i (q) q̇i = 0, m + 1 ≤ a ≤ n , where rank (D) = m ≤ n. The annihilator D◦ is locally given by D◦

=

µa
= µa

i (q) dq
i
; m + 1 ≤ a ≤ n

}
where the 1-forms µa are independent.

The equations of motion are completely determined by the Lagrange-d’Alembert principle [3]. This principle states that
curve q : [0, T ] → Q is an admissible motion of the system if

δJ = δ

∫ T

0
L (q (t) , q̇ (t)) dt = 0 ,

or all variations satisfying δq (t) ∈ Dq(t), 0 ≤ t ≤ T , δq (0) = δq (T ) = 0. The velocity of the curve itself must also
atisfy the constraints, that is, µa

i (q(t)) q̇
i(t) = 0. From the Lagrange–d’Alembert principle, we arrive at the well-known

nonholonomic equations

d
dt

(
∂L
∂ q̇i

)
−

∂L
∂qi

= λaµ
a
i , (11a)

µa
i (q) q̇

i
= 0 , (11b)

where λa, m + 1 ≤ a ≤ n, is a set of Lagrange multipliers to be determined. The right-hand side of Eq. (11a) represents
the force induced by the constraints (reaction forces), while Eq. (11b) gives the linear velocity constraint condition.

If we assume that the nonholonomic system is regular (see [11]), which is guaranteed if the Hessian matrix (Wij) =(
∂2L

∂ q̇i∂ q̇j

)
is positive (or negative) definite, then the nonholonomic equations can be characterized as the solutions of a

second order differential equation Γnh restricted to the constraint space determined by D. We can rewrite Eq. (11a) as a
ector field on the tangent bundle Γnh = ΓL + λaZa where

ΓL = q̇i
∂

∂qi
+ W ij

(
∂L
∂qj

−
∂2L

∂ q̇j∂qk
q̇k
)

∂

∂ q̇i
, Za

= W ijµa
j

∂

∂ q̇i

here (W ij) is the inverse matrix of (Wij) (see [11,12]). Moreover, the Lagrange multipliers are completely determined
nd are given by the expression λa = −CabΓL(µb

i q̇
i), where (Cab) is the inverse matrix of (Cab) = (µa

j W
ijµb

i ). This matrix is
invertible if and only if the nonholonomic system (L,D) is regular.

3.2. Numerical methods for nonholonomic systems

There have been several attempts to capture the nature of nonholonomic mechanics in the discrete setting (cf. [5,6,13–
20]). The literature is far too vast on this topic and our purpose is not to make a detailed comparison between the different
methods (see [4] for an excellent comparison) but rather describing the advantages and disadvantages of using each
method in order to introduce better the advantages of considering the method we propose in this paper.

In the following, we will restrict to the case where the mechanical system is defined by a Lagrangian function
L : TRn

→ R of the form L(q, q̇) =
1
2 q̇

TMq̇ − V (q), where M is a constant mass matrix and consider the nonholonomic
constraints given by a rank k distribution D defined by the matrix equation µ(q)q̇ = 0 where µ(q) is a m × n matrix for
ach q and m = n − k.
The nonholonomic leap-frog method [5,6] is given by the algorithm⎧⎪⎪⎪⎨⎪⎪⎪⎩

qk+1 = qk + hq̇k −
h2
2 M−1(∇V (qk) + µT (qk)λ̃k)

q̇k+1 = q̇k −
h
2M

−1(∇V (qk) + µT (qk)λ̃k + ∇V (qk+1) + µT (qk+1)λ̃k+1)
µ(qk)q̇k = 0
µ(qk+1)q̇k+1 = 0.

nd generates a discrete flow of the type (qk, q̇k, λ̃k) ↦→ (qk+1, q̇k+1, λ̃k+1).
The DLA method proposed in [15] with a midpoint discretization α = 1/2 may be written in the following form:⎧⎪⎪⎪⎨⎪⎪⎪⎩

qk+1 = qk + hq̇k −
h2
4 M−1(∇V (qk) + ∇V (qk+1)) +

h2
2 µT (qk +

h
2 q̇k)λ

q̇k+1 = q̇k −
h
2M

−1(∇V (qk) + ∇V (qk+1)) + hµT (qk +
h
2 q̇k)λ

µ(qk)q̇k = 0

µ(qk+1)q̇k+1 = 0.

4
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In Sections 5 and 6 of [2], the authors proposed a Newmark method for general nonholonomic mechanics. In particular,
or αm = αf = 0 (using their notation) they derive the following integrator:⎧⎪⎨⎪⎩

qk+1 = qk + hq̇k +
h2
2 ((1 − 2β)Γnh(qk, q̇k, λk) + 2βΓnh(qk+1, q̇k+1, λk+1))

q̇k+1 = q̇k + h ((1 − γ )Γnh(qk, q̇k, λk) + γΓnh(qk+1, q̇k+1, λk+1))
φa(qk+1, q̇k+1) = 0.

(12)

here they choose as initial value of the Lagrange multiplier the continuous one, that is, λ0 = −Cab(q0, q̇0)ΓL(µb
i q̇

i)
⏐⏐⏐
(q0,q̇0)

.

bserve that, in the particular case of a nonholonomic system given by a Lagrangian of the type (2) and constraints
etermined by a distribution D and choosing the parameters β = 0 and γ = 1/2 we exactly obtain the nonholonomic

leap-frog method.

3.3. The discrete constraint space for nonholonomic systems

Given a nonholonomic system (L,D), the nonholonomic exponential map at q ∈ Q and at time h > 0 is the map

expnh
q,h : Uq ⊆ Dq −→ Q , vq ↦→ cnhvq

(h)

sending each tangent vector vq in the distribution to the unique nonholonomic trajectory starting at q with initial velocity
vq evaluated at time h (see [21] for more details; see also [22]).

The fact that the space of initial velocities is restricted to the subspace Dq, implies that the set of points reached by
nonholonomic trajectories starting at q, that is, the image of expnh

q,h is a submanifold of Q . Thus, we define the exact discrete
constraint space at q as

Mnh
q,h := expnh

q,h(Dq). (13)

We are intentionally committing a slight abuse of notation in the definition of Mnh
q,h, since not all vectors in Dq are

guaranteed to generate a nonholonomic trajectory defined up to time h. But if h is sufficiently small, we can always
consider a non-empty open subset of Dq generating such well-defined trajectories.

Moreover, it can be proven that expnh
q,h is a diffeomorphism from an open subset Uq in Dq to Mnh

q,h. Thus, in particular,
the dimension of Mnh

q,h is precisely rank(D) (see [21,22]).
This observation is particularly important, since it shows that if q1 and q0 are two sufficiently close points connected by

a nonholonomic trajectory, then q1 is restricted to live in the submanifold Mnh
q0,h with strictly lower dimension than Q (in

fact dimMnh
q0,h = m). We will take this restriction into account when constructing numerical methods for nonholonomic

systems. Though this procedure mimics the exact situation, we are also introducing a new source of error in the numerical
integrator, since the discrete space must be approximated.

Assume that we have a nonholonomic system given by (L,D) with nonholonomic dynamics given by Γnh(q, v, λ) =

ΓL(q, v) + λZ(q, v) and the Lagrange multipliers are derived from the nonholonomic constraints ċ(t) ∈ Dc(t).
The equations of motion of a nonholonomic system are completely determined by the nonholonomic exponential

map. In fact the unique solution γ : I ⊂ R → Q of the constrained SODE Γnh with initial condition such that γ (0) = q,
γ̇ (0) = vq ∈ Dq is characterized by γ (h) = expnh

q,h(vq) . From the properties of vector field flows, in this case Γnh, we have
the following compatibility conditions expnh

q,sh(vq) = expnh
q̃,(s−1)h(ṽq̃) where q̃ = γ (h) = expnh

q,h(vq), ṽq̃ = γ̇ (h) and s ∈ [0, 1].
In particular, for s = 0 and s = 1, we obtain the following system of equations

q̃ = expnh
q,h(vq), q = expnh

q̃,−h(ṽq̃). (14)

Observe that the final position and velocity satisfy the constraints q̃ ∈ Mnh
q,h and ṽq̃ ∈ Dq̃.

3.4. The nonholonomic Newmark method

Following Eqs. (14), we will impose some constraints in order to obtain a nonholonomic version of the Newmark
method: (qk, vk) → (qk+1, vk+1). In particular, we need an appropriate discretization

expd,β,λ,λ′

q,h : Dq → Q

of the nonholonomic exponential map depending on a parameter 0 ≤ β ≤ 1/2 and Lagrange multipliers λ and λ′

which force the final point to satisfy a discretization of the exact discrete constraint space, denoted by Md
qk,h

⊆ Q , with
dim Md

qk,h
= rank (D), and the final velocity to belong to D. More concretely, we have the following definition

expd,β,λ,λ′

qk,h
(vk) = qk + hvk +

h2

2

(
(1 − 2β)Γnh(qk, vk, λk) + 2βΓnh(qk+1, vk+1, λ

′

k+1)
)

where we are denoting the second component Γnh(q, v, λ) = ΓL(q, v) + λZ(q, v) of the vector field Γnh with the same
letter to avoid overloading notation. Therefore, our proposal of nonholonomic Newmark method is:
5
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Definition 3.1. The nonholonomic Newmark method with parameters (β, β ′), 0 ≤ β, β ′
≤ 1/2 is the integrator

Fβ,β ′

h : D → D implicitly given by

qk+1 = expd,β,λ,λ′

qk,h
(vk)

qk = expd,β ′,λ′,λ

qk+1,−h (vk+1)

qk+1 ∈ Md
qk,h

vk+1 ∈ Dqk+1 ,

or ⎧⎪⎪⎪⎨⎪⎪⎪⎩
qk+1 = qk + hvk +

h2
2

(
(1 − 2β)Γnh(qk, vk, λk) + 2βΓnh(qk+1, vk+1, λ

′

k+1)
)

qk = qk+1 − hvk+1 +
h2
2

(
2β ′Γnh(qk, vk, λk) + (1 − 2β ′)Γnh(qk+1, vk+1, λ

′

k+1)
)

qk+1 ∈ Md
qk,h

vk+1 ∈ Dqk+1 .

If the constraint distribution is given as the zero set of the functions φa
: TQ → R, i.e., φa(qk, vk) = 0 and the discrete

constraint space is given as the zero set of the functions Φa
: Q × Q → R, i.e., Φa(qk, qk+1) = 0, then the discrete

quations can be written as⎧⎪⎪⎪⎨⎪⎪⎪⎩
qk+1 = qk + hvk +

h2
2

(
(1 − 2β)Γnh(qk, vk, λk) + 2βΓnh(qk+1, vk+1, λ

′

k+1)
)

qk = qk+1 − hvk+1 +
h2
2

(
2β ′Γnh(qk, vk, λk) + (1 − 2β ′)Γnh(qk+1, vk+1, λ

′

k+1)
)

Φa(qk, qk+1) = 0
φa(qk+1, vk+1) = 0.

Remark 3.2. In the case of holonomic constraints, that is, when the distribution D is integrable, the exact discrete
constraint space Mnh

qk,h
is precisely the leaf Lqk of the foliation by the point qk integrating the distribution and the

constraint distribution is just the tangent space to each leaf (see [21,22]). Therefore, the nonholonomic Newmark method
in the holonomic case becomes (see [23]):⎧⎪⎪⎪⎨⎪⎪⎪⎩

qk+1 = qk + hvk +
h2
2

(
(1 − 2β)Γnh(qk, vk, λk) + 2βΓnh(qk+1, vk+1, λ

′

k+1)
)

qk = qk+1 − hvk+1 +
h2
2

(
2β ′Γnh(qk, vk, λk) + (1 − 2β ′)Γnh(qk+1, vk+1, λ

′

k+1)
)

qk+1 ∈ Lqk
vk+1 ∈ Dqk+1 .

emark 3.3. A very important caveat is that when β + β ′
= 1/2, the system of equations given by the nonholonomic

Newmark method becomes ill-conditioned, at least for the case of mechanical Lagrangians. This is because the Jacobian
matrix of the system with respect to the unknowns (qk+1, vk+1, λk, λ

′

k+1) has two columns, those corresponding to the
Lagrange multipliers, that are almost proportional. Each numerical step gives results with a large uncertainty, which
accumulates rapidly. Therefore, this choice of parameters, which of course includes the case β = β ′

= 1/4, should be
avoided.

Remark 3.4. The Newmark method (12) proposed by [2] is of a different nature than our proposal of nonholonomic
Newmark method since we do not need an initial value of the Lagrange multiplier and we also add a discrete version of
the nonholonomic constraint, in addition to the continuous nonholonomic constraint.

3.5. Discretizations of the exact discrete constraint space

Suppose that the nonholonomic constraints defining the distribution D, as a submanifold of TQ , are φa(q, v) =

⟨µa(q), v⟩ and, additionally, that the discrete constraints are obtained from the continuous ones in the following way

Φa(qk, qk+1) =

⟨
µa ((1 − α)qk + αqk+1) ,

qk+1 − qk
h

⟩
, α ∈ [0, 1]. (15)

lternatively, it would be also possible to consider

Φ̃a(qk, qk+1) =

⟨
(1 − α)µa (qk) + αµa (qk+1) ,

qk+1 − qk
h

⟩
, α ∈ [0, 1]. (16)

Whenever it is clear which of the constraint discretizations we are using, we will simply denote the associated
nonholonomic Newmark flow by Fβ,β ′,α

h : D → D.
In this sense, let Md

⊆ Q for each q ∈ Q be the submanifold Md
= {q | Φa(q , q ) = 0}.
qk,h k qk,h k+1 k k+1

6
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For deriving nonholonomic Newmark methods of order two, it would be interesting to assume the following symmetry
ondition in the discretization of the exact discrete constraint space:

qk+1 ∈ Md
qk,h ⇔ qk ∈ Md

qk+1,h

or instance, this condition is satisfied if α = 1/2 in the discretizations given by (15) and (16).
As a direct consequence using the symmetry of the method we obtain the following proposition (see [24]).

Proposition 3.5. The nonholonomic Newmark methods with β = β ′ and a symmetric discretization of the constraints are at
east of order 2.

Thus, the nonholonomic Newmark method Fβ,β,1/2
h : D → D associated to either discretizations is at least of order 2.

.6. Some interesting cases of nonholonomic Newmark methods

The following result shows that, in some particular cases, the nonholonomic Newmark method corresponds with the
LA algorithm, one of the most classical geometric integrators for nonholonomic systems (see [15]).

roposition 3.6. Assume that we have a nonholonomic system defined by a Lagrangian of the type (2) and a distribution
. For any α ∈ [0, 1] and for β = β ′

= 0, the nonholonomic Newmark method F 0,0,α
h : D → D is equivalent to the DLA

lgorithm with discrete Lagrangian given by

Lsym,α

d (qk, qk+1) = h
[
(1 − α)L

(
qk,

qk+1 − qk
h

)
+ αL

(
qk+1,

qk+1 − qk
h

)]
= h

(
qk+1 − qk

h

)
M
(
qk+1 − qk

h

)T

− h(1 − α)V (qk) − hαV (qk+1) (17)

or each α and using either discretization (15) or (16).

roof. In this particular case

ΓL(qk, vk) = −M−1
∇V (qk) and Za(qk) = M−1µa(qk)

rom the equations of the nonholonomic Newmark method we obtain

qk = qk+1 − hvk+1 +
h2

2
Γnh(qk+1, vk+1, λ

′

k+1)

qk+2 = qk+1 + hvk+1 +
h2

2
Γnh(qk+1, vk+1, λk+1)

dding both equations we immediately deduce that

qk+2 − 2qk+1 + qk
h2 = ΓL(qk+1, vk+1) +

λk+1 + λ′

k+1

2
Z(qk+1).

r equivalently,

qk+2 − 2qk+1 + qk
h2 = −M−1

∇V (qk+1) +
λk+1 + λ′

k+1

2
M−1µ(qk+1).

These equations are equivalent to the DLA integrator with respect to the discrete Lagrangian Lsym,α

d (qk, qk+1) and the

onstraints (15): with the relation between Lagrange multipliers being Λ =
h(λk+1 + λ′

k+1)
2

, where Λ is the Lagrange
ultiplier appearing in the DLA method [15]. □

Moreover, using the previous method, we can produce new numerical integrators using composition and the adjoint
ethod (see [24], Chapter II.3). If Φh is a numerical method then the adjoint method is given by Φ∗

h = (Φ−h)−1. An
xample of composition of numerical methods is shown in the next Proposition:

roposition 3.7. Consider the nonholonomic Newmark method with β = β ′
= 0 and α = 0 denoted by F 0,0,0

h , and its adjoint
ethod (F 0,0,0

h )∗. The composition of these two methods

Ψh = (F 0,0,0
h/2 )∗ ◦ F 0,0,0

h/2 (18)

enerates a second order method, using standard results on composition of adjoint methods.

roof. The last result holds directly from the results in [24]. □
7
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But we can say more, we may prove that (F 0,0,0
h )∗ = F 0,0,1

h and obtain:

Proposition 3.8. Let β = β ′
= 0. The nonholonomic Newmark methods with α = 0, 1, denoted by F 0,0,0

h and F 0,0,1
h ,

respectively, are adjoint methods. Therefore, the composition of these two methods

Ψh = F 0,0,1
h/2 ◦ F 0,0,0

h/2 (19)

generates a second order method, using standard results on composition of adjoint methods.

Proof. Observe that the method F 0,0,0
h is given by the equations

qk+1 = qk + hvk +
h2

2
Γnh(qk, vk, λk)

qk = qk+1 − hvk+1 +
h2

2
Γnh(qk+1, vk+1, λ

′

k+1)

vk+1 ∈ Dqk+1

0 = ⟨µa (qk) ,
qk+1 − qk

h
⟩

t is a straightforward verification that its adjoint method (F 0,0,0
h )∗ is given by the same equations except that the last one

ecomes 0 = ⟨µa (qk+1) ,
qk+1−qk

h ⟩. This means that (F 0,0,0
h )∗ = F 0,0,1

h and the result follows. □

Consider the Newmark methods with β = β ′
= 0 and a Lagrangian of the type L(q, q̇) =

1
2 q̇Mq̇T − V (q) . Suppose that

e discretize the constraint space using the parameter α = 0, i.e.,

Md
qk,h =

{
qk+1 |

⟨
µa (qk) ,

qk+1 − qk
h

⟩
= 0

}
.

hen from the equation qk+1 = qk + hvk +
h2

2
Γnh(qk, vk, λk), we explicitly obtain the Lagrange multiplier λk:

λk =
⟨µ(qk),M−1

∇V (qk)⟩
∥µ(qk)∥2

M

where ∥µ(qk)∥M =

√
µa

i (qk)M ijµb
j (qk) . In consequence we explicitly derive qk+1 as

qk+1 = qk + hvk +
h2

2

(
−M−1

∇V (qk) +
⟨µ(qk),M−1

∇V (qk)⟩
∥µ(qk)∥2

M
M−1µ(qk)

)
Then, applying the co-vector µ(qk+1) to the second equation

qk = qk+1 − hvk+1 +
h2

2
Γnh(qk+1, vk+1, λ

′

k+1)

we obtain

λ′

k+1 = −
2

h∥µ(qk+1)∥2

⟨
µ (qk+1) ,

qk+1 − qk
h

⟩
+

⟨µ(qk+1),M−1
∇V (qk+1)⟩

∥µ(qk+1)∥2

nd in consequence we also derive explicitly vk+1.

roposition 3.9. The nonholonomic Newmark method F 0,0,0
h : D → D is completely explicit for Lagrangians of the type (2)

nd constraints of the type α = 0.

emark 3.10. In fact, Proposition 3.9 is more general and can be trivially generalized for Lagrangians of mechanical type
(q, q̇) =

1
2 q̇M(q)q̇T − V (q), where M(q) is a positive definite matrix for all q ∈ Q .

Remark 3.11. The Newmark method F 0,0,0
h is related to the nonholonomic leap-frog method though they are of a very

different nature. The main difference (see Remark 3.4) between both of them is the existence of an additional discrete
constraint in the nonholonomic Newmark method. This difference has practical consequences on the nature of the flow.
With an additional equation, the value of the Lagrange multiplier’s is now completely determined by the imposition of
the discrete constraints and the algorithm evolves on D. However, in the nonholonomic leap-frog method, the absence of
the discrete constraint implies that the Lagrange multiplier will behave like an extra variable and the method will evolve
on D × Rm. In practice, this means we must choose an initial Lagrange multiplier to initialize the algorithm.

Now, the nonholonomic Newmark method does include Lagrange multipliers but they are not treated as a variable:
they are determined by the constraints and do not need to be given an initial value. In other words, the Lagrange
8
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multipliers are functions of the state variables. As we have seen above, for the Newmark method F 0,0,0
h , the expression

of the multipliers is computed explicitly and if we take its value as the initial Lagrange multiplier in the nonholonomic
leap-frog method, we will obtain the same updates on positions and velocities. However, the flow cannot be considered
the same because the nonholonomic leap-frog method also provides an update in the multipliers that is needed in order
to compute the next iteration. In general, it has no relation with the multipliers appearing in the Newmark method.

Remark 3.12. We have introduced in Sections 3.4 and 3.5 first and second-order nonholonomic Newmark methods
depending on the concrete values (β, β ′) and the discretization of the exact discrete constraint space. As we have
seen in Propositions 3.7 and 3.8 we can design new methods preserving the nonholonomic constraints using the idea
of composing methods. In the same way, we can produce higher-order nonholonomic integrators using nonholonomic
Newmark methods as building blocks (see [24–26]) .

For instance, considering the second-order nonholonomic Newmark method F 0,0,1/2
h : D → D and using the triple

jump [24], we obtain a fourth order method Ψh : D → D given by: Ψh = F 0,0,1/2
γ1h

◦ F 0,0,1/2
γ2h

◦ F 0,0,1/2
γ1h

where

γ1 =
1

2 − 21/3 , γ2 = −
21/3

(2 − 21/3)
.

sing similar constructions, we can derive higher-order methods for nonholonomic mechanics with order 6, 8, etc. Thus,
ther choices of the parameters produce different higher-order numerical methods (see, for instance, [27]).

. Examples of nonholonomic systems

.1. Chaotic nonholonomic particle

In this example, we study a particle moving on the configuration space Q = R5 with coordinates q = (x, y1, y2, z1, z2)
and described by the mechanical Lagrangian function [6]:

L(q, q̇) =
1
2
∥q̇∥2

−
1
2
(∥q∥2

+ z21z
2
2 + y21z

2
1 + y22z

2
2 ),

where ∥ · ∥ denotes the euclidean norm, and subjected to the single constraint ẋ + y1ż1 + y2ż2 = 0 (see [6]).
The motion of the chaotic particle is given by the system of differential equations⎧⎨⎩

ẍ = −x + λ, ÿ1 = −y1 − y1z21 ,
ÿ2 = −y2 − y2z22 , z̈1 = −z1 − z1z22 − y21z1 + λy1,
z̈2 = −z2 − z21z2 − y22z2 + λy2, ẋ + y1ż1 + y2ż2 = 0.

.2. Pendulum-driven CVT system

This example in Q = R3 is a nonholonomic continuous variable transmission (CVT) system determined by an
ndependent Hamiltonian subsystem called the driver system [4]. We will denote the coordinates in R3 by (x, y, ξ ) and,
hen, the Lagrangian function is

L(x, y, ξ , ẋ, ẏ, ξ̇ ) =
1
2

(
2∑

i=1

q̇2i + κiq2i

)
+ l(ξ, ξ̇ ),

here (q1, q2, q̇1, q̇2) = (x, y, ẋ, ẏ) and l(ξ, ξ̇ ) =
1
2 ξ̇

2
−V (ξ ) is called the driver energy, while the first term depending only

on qi and q̇i is called the passenger energy. The nonholonomic constraint is of the form ẏ + f (ξ )ẋ = 0.
The motion of this family of systems is given by the equations{

ẍ = κ1x + λf (ξ ) ÿ = κ2y + λ

ξ̈ = −V ′(ξ ) ẏ + f (ξ )ẋ = 0

here the Lagrange multiplier may be computed to be of the form

λ = −
f ′(ξ )ξ̇ ẋ + κ1f (ξ )x + κ2y

1 + f 2(ξ )
.

From now on, consider the following potential and constraint functions and constants

V (ξ ) = cos(ξ ) −
ϵ sin(2ξ )

2
, f (ξ ) = sin(ξ ), κ1 = κ2 = −1.

This example has the property that for ϵ ̸= 0, the system is no longer integrable reversible and so, good long time
behaviour observed in most nonholonomic integrators is lost in this case (see [4]).
9
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Fig. 1. Energy drift for the chaotic nonholonomic particle.

Fig. 2. Energy drift and variance for 100 random trajectories of the chaotic nonholonomic particle, with β = β ′
= .1.

. Numerical results

.1. Chaotic nonholonomic particle

Fig. 1 shows the energy drift for the nonholonomic Newmark method with β = β ′
= 0 (DLA), the nonholonomic

ewmark method with β = β ′
= .1, both with α = 1/2, a Runge–Kutta 4th order method and the composition

method Ψh in Proposition 3.8. Here we used T = 1000, h = .2, and initial conditions q0 = (1, 0, 1, −1, −1), v0 =

(0.05, 0.5, −0.5, −0.1, −0.05), with energy 3.2575 approximately.
For this example, the methods we propose here outperform Runge–Kutta in energy behaviour.
We also explore 100 random initial conditions for this example, all of them having the same energy value of 1.535.
e used β = β ′

= .1, T = 10000 and h = .2. The method used is the composition method in Proposition 3.8. In Fig. 2
e plot the energy drift for each trajectory and the variance of the energy drift as in [6].

.2. Pendulum-driven CVT

We first consider the case ϵ = 0. In Fig. 3 we show the energy drift for the nonholonomic Newmark method with
= β ′

= 0, and with β = β ′
= .1, both with α = 1/2, 4th-order Runge–Kutta, and the composition method Ψh. Here

= 400, h = .2, and the initial conditions are q0 = (1, 0, −2), v0 ≈ (−0.4481, −0.4075, 0.1), with an approximate
nergy of 0.2723.
For the case ϵ = 0.1 in Fig. 4, we compare the nonholonomic Newmark method with β = β ′

= 0, α = 1/2, and
he nonholonomic Leap-Frog method as well as the composition methods Ψh and Ψ2h. The latter was included because
he computational cost for each step of Ψh is twice that of the nonholonomic Newmark method; therefore Ψ2h has a
lobal computational cost comparable to the nonholonomic Newmark method. Here h = .05, T = 7500, and the initial
10
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Fig. 3. Energy drift for the pendulum-driven CVT, ϵ = 0.

Fig. 4. Total energy for the pendulum-driven CVT, ϵ = 0.1. Newmark 0 truncated in order to show details of the other methods.

conditions are the same as the ones used in [4], which are q0 = (1, 1, 0), v0 ≈ (0, 0, 2.82842712), now the energy being
exactly 6.0.

As expected, we observe that the Newmark method, being equivalent to the DLA method, is no longer able to preserve
energy as it had been already pointed out in [4]. However, the composition of the two Newmark methods in (19) exhibits
a much slower drift in the energy than DLA. At the moment, we have no explanation for this good behaviour. However,
it is interesting to point out that the main advantage of using the composition method over the DLA method is obtained
in the passenger energy. Although it exhibits a steadily increasing drift for the composition method (see Fig. 5(a)), it is
much smaller than the observed drift for the DLA method. The cause of the random walk-type profile in the total energy is
inherited from the driver energy (Fig. 5(b)), contrary to DLA and several other nonholonomic methods that nearly conserve
it. This might be explained from the fact that the composition of nonholonomic Newmark methods is not preserving the
Hamiltonian structure of the driver system. Although the Newmark method is very close from symplectic methods in the
absence of constraints (see, e.g., [8]), the composition of Newmark methods seems to break down this close relationship.
Interestingly, the passenger energy (Fig. 5(a)) exhibits a much slower drift than most nonholonomic methods (see [4]).

6. Future work

In a future paper, we will study the extension of the nonholonomic Newmark method to non-linear spaces, that is,
in general differentiable manifolds. In particular, if Q = G is a Lie group we can derive a nonholonomic Lie–Newmark
method (see [7]) where we assume that we have a retraction map R : g → G (for instance the Lie group exponential
map) and we identify by left (right)-trivialization TG ≡ G × g with left (respectively, right)-trivialized coordinates (g, ξ ).
11
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T

Fig. 5. Simulation of driver and passenger energies.

herefore if gk ∈ G and ξk ∈ g−1
k Dgk ⊆ g then

g−1
k gk+1 = R(hξk +

h2

2
Γnh(gk, ξk, λk))

ξk+1 − ξk

h
=

1
2
Γnh(gk, ξk, λk) +

1
2
Γnh(gk+1, ξk+1, λ

′

k+1)

gk+1 ∈ Md
gk,h, ξk+1 ∈ g−1

k+1Dgk+1

where we have also identified TTG ≡ G × g × g × g and then Γnh(gk, ξk, λk) ∈ g and Md
gk,h

is a discretization of the exact
discrete constraint space.
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