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In this work we present a general quantum-mechanical and statistical formulation of the process of interactions
of external test particles with plasmas, considering the calculation of the energy-loss coefficients, including
energy losses, mean-free paths, and straggling, and describing in detail the differences between protons,
positrons, and electrons. Two relevant aspects contained in this formulation are studied: the competing action
of loss and gain processes in the interaction with the plasma, and the role of thermal fluctuations in those
interactions. We propose two different approaches to evaluate processes of electronic interactions in plasmas. To
formulate the first approach we introduce modifications to the quantum-wave-packet dielectric method, which
provides a reliable description over wide ranges of plasma densities and temperatures as compared with full
quantum-mechanical dielectric theory. The second approach is a semiclassical dielectric method. It consists
of including statistical quantum distributions and restrictions in the energy-loss expression, combined with the
classical dielectric function for hot plasmas obtained from the linearized Vlasov-Poisson equation. We compare
the results from both methods on an extensive range of parameters that include low, intermediate, and high
energies, with densities and temperatures going from normal laboratory conditions to very high values, such as
those of interest for studies on inertial fusion, Tokamak plasmas, and astrophysical media. We give also special
consideration to the case of electrons, where the restrictions imposed by the identity with plasma electrons
produce important effects.

DOI: 10.1103/PhysRevA.105.032806

I. INTRODUCTION

The question of interaction of ionized particles with plas-
mas is at the heart of the most relevant processes of interest
in current research on magnetically and inertially confined
fusion (MCF and ICF, respectively) and in astrophysical stud-
ies such as those related to particle and energy transport in
stellar interiors. The long-standing goal of producing energy
in fusion reactors is one of those relevant cases where particle-
plasma interactions as well as particle-wall interactions play
a central role. This goal has proven elusive, largely due to a
number of scientific and technically unsolved problems. Some
of the main environments where particle-plasma interactions
are of central interest, including laboratory and astrophysical
plasmas, have been outlined in previous publications and in
references contained therein [1–8]. Regarding the question of
energy-loss processes, much work has been done over the
years in relation with stopping power of ion beams [9–23],
which is a subject of great interest in relation with plasma
heating by injection of neutral beams in Tokamak devices
[2,24–26], with the use of ion beams in ICF experiments
[27–29], and with the behavior of alpha particles produced
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by nuclear fusions [30,31], to name the most relevant cases,
but much less has been done in relation to lighter particles.

Although a description of the statistical and quantum ef-
fects of thermal excitations was presented early [11], with
particular consideration of the cases of protons and alpha
particles, and general features were illustrated in advanced
plasma literature [32,33], a complete study of the statistical
effects on the interactions and energy-loss moments (ELMs)
of heavy and light particles (such as electrons or positrons)
is still a pending and wide open area of fundamental inter-
est. In particular, to our knowledge, there are no calculations
of ELMs for electrons in plasmas taking into account in a
full way the restrictions corresponding to identical particles
[34–37], as there are for solid targets [38–41]. Hence, the
purpose of this work is to present a detailed study of this
problem, showing the significant differences arising for all
those particles.

To this end, we will first formulate a set of integral expres-
sions required for a complete study of the statistical effects of
thermal equilibrium on the energy exchange between external
charged particles and the electronic excitations of the plasma.
We will illustrate these effects on the three most relevant
energy-loss moments: stopping power, energy straggling, and
inverse mean-free path, showing the distinct characteristics
that arise for the cases of heavy (such as protons, alpha
particles, or heavier ions) and light particles (electrons and
positrons).
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To cover a wide range of plasma environments we show
representative sets of results for plasmas of interest in ICF
and magnetic-fusion experiments, on one side, and for the
conditions in typical stellar interiors, such as the sun, on the
other.

Moreover, we will extend this study by considering three
models of dielectric functions: the well-known classical
model widely used in the plasma literature [42–44], the more
general quantum dielectric function for plasmas of arbitrary
degeneracy [45,46], and the more recently proposed extended-
wave-packet model [47] based on Gaussian wave functions
within a quantum formulation [48–50].

This work is organized as follows: Section II shows a gen-
eral formulation for particle-plasma interactions underlying
statistical quantum effects derived from thermal induced ex-
citations and recoil corrections. Sections III and IV describes
the treatment for the two kind of excitations: individual and
collective. Section V shows the calculations for heavy ions
(based on the case of protons) and light projectiles: positrons
and electrons. Section VI shows the results for the differ-
ent projectiles calculated for three special kind of targets:
plasmas with solid-state densities, fusion plasmas, and the
sun’s core. Finally, Sec. VII gives the summary and con-
clusions. Additional information on the dielectric formalism
and differences between polarization and fluctuation con-
tributions in the energy-loss moments is developed in two
Appendices.

II. FORMULATION: PARTICLE-PLASMA INTERACTIONS
AT FINITE TEMPERATURES

A comprehensive quantum-mechanical formulation of the
interactions between an external particle with charge Ze
and a plasma with temperature T , whose properties are de-
scribed in terms of its dielectric function ε(k, ω), can be
made starting from the interaction probability W (−→q , ω) given
by [7,11]

W (−→q , ω) = 8π (Ze)2

h̄q2
N (ω)Im

[ −1

ε(q, ω)

]
. (1)

W (−→q , ω) represents the inelastic-scattering probability per
unit time in an elementary interaction process with momen-

tum transfer h̄−→q = −→
p′ − −→p and energy transfer h̄ω = Ep′ −

Ep, where −→p and
−→
p′ are the momenta of the particle before

and after the interaction, and Ep and Ep′ are the corresponding
energies, respectively. Here, in contrast to the case of zero
temperature, both positive and negative frequency values are
possible. Processes with ω < 0 correspond to energy loss
processes by the particle (Ep′ < Ep), while those with ω > 0
correspond to gain processes. (Here loss and gain processes
are defined with respect to the external particle, being com-
plementary to the corresponding gain and loss processes by
the plasma.)

In this equation the factor N (ω) is the Bose function

N (ω) = 1

eh̄ω/kBT − 1
(2)

(where kB is Boltzmann’s constant), which represents the ther-
mal distribution of excitations in the plasma. The presence of

this factor opens new perspectives concerning stimulated or
induced processes, including loss and gain effects in energy
exchange, not present in most of the treatments of plasma
stopping power. This makes an important difference with re-
spect to the formulation by most of the authors and will be
particularly important in treating the interaction of light par-
ticles (like positrons or electrons) with classical or quantum
plasmas, as well as to calculate energy-loss moments of heavy
particles.

Finally the term Im[−1/ε(k, ω)], called the energy-loss
function (ELF), carries the information on the screening
and absorption properties of the plasma (equivalent to the
oscillator strength distribution in the treatment of atomic
excitations).

Following this, we calculate the mean values of the n-order
moments of the energy loss h̄ω given by

dE
(n)

dt
=

∫
d3 p′

(2π h̄)3 (h̄ω)nW (−→q , ω), (3)

and we define the energy-loss moments Q(n) (ELMs) as

Q(n) = 1

v

dE
(n)

dt
= (Ze)2

h̄vπ2

∫
d3q

q2
(h̄ω)nN (ω)Im

[ −1

ε(q, ω)

]
.

(4)

To perform the integrations appropriately we consider the
relation between the energy and momentum transfers h̄ω and
h̄−→q ; namely,

h̄ω = Ep′ − Ep = 1

2mp
[(−→p + h̄−→q )

2 − p2], (5)

which yields

ω = −→q · −→v + h̄q2

2mp
, (6)

where mp is the incident-particle mass and −→v = −→p /mp is its
velocity before the interaction.

Hence, the possible values of ω lie within the interval
ωmin(q, v) < ω < ωmax(q, v), with

ωmin(q, v) = −qv + γ q2, (7)

and

ωmax(q, v) = qv + γ q2, (8)

where γ = h̄/2mp, and mp is the projectile mass.
To reduce the integrals in Eq. (4) we separate the angu-

lar part d�q, d3q = q2dqd�q, where d�q = 2πd (cos θ ) =
2πdx, (with x = cos θ ), and transform the integral in x into
an integral over ω = qvx + h̄q2/2mp, finally obtaining

Q(n) = 2

h̄π

(Ze

v

)2 ∫ ∞

0

dq

q

∫ ωmax(q,v)

ωmin (q,v)
(h̄ω)nN (ω)

× Im

[ −1

ε(q, ω)

]
dω. (9)

From this general result we consider in detail the most
relevant values of ELM corresponding to n = 0, 1, and 2,
namely,
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(a) Inverse mean-free path (IMFP):

1

�
= Q(0) = 2

h̄π

(Ze

v

)2 ∫ ∞

0

dq

q

∫ ωmax(q,v)

ωmin(q,v)
N (ω)

× Im

[ −1

ε(q, ω)

]
dω. (10)

(b) Stopping power:

S = −Q(1) = − 2

π

(Ze

v

)2 ∫ ∞

0

dq

q

∫ ωmax(q,v)

ωmin(q,v)
ωN (ω)

× Im

[ −1

ε(q, ω)

]
dω. (11)

(c) Energy straggling:

�2 = Q(2) = 2h̄

π

(Ze

v

)2 ∫ ∞

0

dq

q

∫ ωmax(q,v)

ωmin(q,v)
ω2N (ω)

× Im

[ −1

ε(q, ω)

]
dω. (12)

The minus sign in the stopping power expression agrees
with the usual definition S = −dE/dx.

In these expressions the statistical factor N (ω) plays a most
important role in changing the balance between energy-loss
and -gain processes. It has two asymptotic limits: N (ω) →
0 when ω/kBT is a large positive number, and N (ω) → −1
when ω/kBT has a large negative value. Moreover, it has the
property N (ω) + N (−ω) = −1.

One way to analyze the relevance of the thermal excitations
represented by the factor N (ω) in these equations is to com-
pare with the particular case of T = 0. In this case the factor
N (ω) takes the form

N0(ω) =
{

0, ω > 0
−1, ω < 0.

(13)

We then introduce the following definition: The processes
corresponding to N (ω) different from N0(ω) will be referred
to as assisted, or “N”-processes. We will also define as di-
rect or 0-order processes those obtained by the replacement
N (ω) → N0(ω); this limiting case will be useful to evaluate
the influence of N-processes in the calculations of the various
energy-loss moments.

An alternative terminology used in some plasma physics
books [32,33] refers to polarization and fluctuation terms in
the energy loss. However, we think that the present termi-
nology fits better with the quantum-mechanical framework
considered here. The equivalence between these alternative
terms is considered in Appendix B.

Once these definitions have been set we can write for-
mal expressions for the 0-order and N-order processes. Thus,
from Eqs. (9) and (13) we obtain the expression for the 0-
order terms as an integral restricted to the ω < 0 zone, with
N0(ω) = −1; namely,

Q(n)
∣∣
0 = − 2

h̄π

(Ze

v

)2 ∫ ∞

0

dq

q

∫
ω<0

(h̄ω)nIm

[ −1

ε(q, ω)

]
dω,

(14)

and the difference between Eqs. (9) and (14) yields
the contribution of N-order processes, consisting of two

integral expressions for ω < 0 and ω > 0, namely Q(n)|N =
Q(n)|(ω<0)

N + Q(n)|(ω>0)
N , where

Q(n)
∣∣(ω<0)

N
= 2

h̄π

(Ze

v

)2 ∫ ∞

0

dq

q

∫
ω<0

(h̄ω)n[N (ω) + 1]

× Im

[ −1

ε(q, ω)

]
dω, (15)

and

Q(n)
∣∣(ω>0)

N = 2

h̄π

(Ze

v

)2 ∫ ∞

0

dq

q

∫
ω>0

(h̄ω)nN (ω)

× Im

[ −1

ε(q, ω)

]
dω. (16)

The expression for the direct term, Eq. (14), agrees with the
standard formula normally used to calculate the energy-loss
moments of protons or other heavy particles [51,52]. It does
not contain any influence of the thermally activated excita-
tions in the plasma [other than the effects built in ε(q, ω)].
As discussed in Appendix B, this term is equivalent to the
polarization term mentioned before.

By contrast, the expressions for the induced terms,
Eqs. (15) and (16), represent the influence of thermal exci-
tations on the interactions of the test particle with plasma
electrons.

As is obvious from these definitions, an interesting analogy
can be traced between these processes and the well-known
spontaneous and stimulated photon processes in the quantum
theory of radiation.

In the next sections three different approaches will be
considered: (a) the quantum dielectric function based on the
exact Fermi-Dirac distribution function, covering all possible
cases of plasma degeneracy (i.e., all values of the parameter
kBT/EF , where EF is the Fermi energy) using the formulation
of Ref. [46], and to be referred to here as AB theory; (b) a
quantum formulation of the dielectric function using Gaussian
distribution functions, based on the so-called wave-packet
model developed by Kaneko [48–50], adapted in Ref. [47]
for plasmas, and referred to as the plasma wave-packet model
(PWPM); (c) the classical dielectric function widely used in
the plasma literature [42–44], to be referred to as the semiclas-
sical model (SCLM). This will allow us to make comparisons
and show differences between the quantum and the semiclas-
sical approaches.

The characteristics of these alternative dielectric function
are summarized in Appendix A.

III. COLLECTIVE AND INDIVIDUAL EXCITATIONS

The previous integrals for the dielectric function receive
contributions from two well-know type of excitations in the
plasma: collective (or plasmon) and individual excitations
[51–53]. The first type of excitation is characterized by a
very narrow peak in the ELF, which appears for low-q val-
ues (corresponding to long-range organized motion of plasma
electrons). As shown in Ref. [17] these plasma resonances
dominate the energy absorption in the plasma for q values in
the range 0 < q < qc, where the value of qc is of the order the
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Debye screening constant, kD = (4πne2/kBT )1/2, and where
n is the electron density.

It is of interest to provide here a well-defined criterion to
separate the regions of collective and individual excitations
and to obtain a value of the intermediate wave vector qc that
could be used for a wide range of plasma conditions.

The Debye constant is a characteristic value for the screen-
ing of external charges in a classical plasma. In the more
general case of plasmas of arbitrary degeneracy the screening
effects can be appropriately described by a screening constant
ks given by [46]

k2
s = 1

2 k2
T F θ1/2F−1/2(η), (17)

where F−1/2(η) is a Fermi integral of order −1/2 and kT F =√
3ωP/vF is the Thomas-Fermi screening constant, in terms

of the plasma frequency ωP and Fermi velocity vF .
As shown in Ref. [46], using a simple but very good

approximation for the function F−1/2(η), the following inter-
polation formula was obtained:

k2
s

∼= k2
T F /

(
1 + 9

4θ2
)1/2

. (18)

This yields an expression for the screening constant of
quantum plasmas that applies for all degrees of degeneracy.
For kBT � EF it reduces to kT F , while for kBT � EF it yields
kD.

A clear way to illustrate the transition from collective to
individual behavior is shown in Fig. 1, where we plot the
energy-loss function (ELF) as a function of ω for a set of
values of the ratio q/ks: 0.2, 03, 0.5, and 0.7, as indicated
in the figure. In Figs. 1(a) and 1(b) we show the ELF func-
tion for very different plasma conditions: (a) density n =
1015 cm−3, T = 108 K, and (b) n = 1023 cm−3, T = 10 eV.
These plasma parameters are appropriate for the cases (a) low-
density nondegenerate plasma such as in a Tokamak device,
and (b) high-density partially degenerate plasma (kBT ≈ EF )
in the range of interest for ICF experiments.

As may be observed, for q/ks < 0.3, the ELF function has
the shape of a very narrow plasma resonance and becomes
increasingly wide for q/ks > 0.3, indicating the onset of the
Landau damping phenomenon [44]. We have found that this
behavior is reproduced through a very wide range of densities
and temperatures.

Therefore, we conclude that the appropriate value to sepa-
rate the domains of collective and individual behavior may be
set for a wide range of plasma conditions at qc = 0.3 ks.

IV. REGIONS OF INTEGRATION

As stated in Eqs. (10)–(12), the ω integrals comprise re-
gions of positive and negative frequencies with limits given by
the values of ωmin and ωmax, Eqs. (7) and (8). To illustrate the
cases of interest we show in Fig. 2 the regions of integration,
delimited by the curves ωmin and ωmax. Figure 2(a) corre-
sponds to the case of protons (considered here as infinite-mass
particles), and Fig. 2(b) to the case of positrons or electrons,
with mass me. (Notice that the wave vectors q and k will be
used indistinctly in the following.)

This figure shows the symmetry of the integration regions
I and II for protons and an important asymmetry for the other

FIG. 1. Energy-loss function for four different values of q with
two different plasma densities and temperatures.

two particles. In particular, in the latter case, represented by
Fig. 2(b), the integration on region I (ω < 0) extends to a
maximum wave vector value q(1)

max = 2mev/h̄ (indicated by
a solid dot in the figure), whereas the integration range for
region II (ω > 0) extends to infinity. This region is separated
in two subregions: IIa (0 < q < 2mev/h̄) and IIb (2mev/h̄ <

q < ∞).
The contributions of these regions are strongly affected by

the properties of the N (ω) function. As will be shown, this
leads to significant new effects.

The general expressions for the various energy-loss mo-
ments were given in Sec. II. A question of interest here is
to analyze separately the contribution of loss and gain pro-
cesses, i.e., Q(n) = Q(n)

loss + Q(n)
gain. Considering the differences

in the integration regions shown in Fig. 2, we obtain different
expressions for heavy (protons) or light (positrons, electrons)
particles.

In the case of protons, with mass mp � 1 (mp → ∞)

Q(n)
loss

∣∣
protons = 2

h̄π

(Ze

v

)2 ∫ ∞

0

dq

q

∫ 0

ωmin(q,v)
(h̄ω)nN (ω)

× Im

[ −1

ε(q, ω)

]
dω, (19)
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FIG. 2. Integration regions for the energy-loss function in the
plane k, ω (values in atomic units). The dot at k = 6 in panel (b) indi-
cates the value of qmax = 2mev/h̄ for this particular case (v = 3 a.u.)
and corresponds to the limit of the q integrals in Eqs. (21)–(23).

Q(n)
gain

∣∣
protons

= 2

h̄π

(Ze

v

)2 ∫ ∞

0

dq

q

∫ ωmax(q,v)

0
(h̄ω)nN (ω)

× Im

[ −1

ε(q, ω)

]
dω (20)

whereas for light particles the integration on region I has a
maximum q value, qmax = 2mev/h̄ (cf. Fig. 2):

Q(n)
loss

∣∣
I = 2

h̄π

(Ze

v

)2 ∫ 2mev/h̄

0

dq

q

∫ 0

ωmin(q,v)
(h̄ω)nN (ω)

× Im

[ −1

ε(q, ω)

]
dω, (21)

and the integral on region II splits in two terms, IIa and IIb,
with different integration limits in q and ω given by

Q(n)
gain

∣∣
IIa

= 2

h̄π

(Ze

v

)2 ∫ 2mev/h̄

0

dq

q

∫ ωmax(q,v)

0
(h̄ω)nN (ω)

× Im

[ −1

ε(q, ω)

]
dω, (22)

Q(n)
gain

∣∣
IIb

= 2

h̄π

(Ze

v

)2 ∫ ∞

2mev/h̄

dq

q

∫ ωmax(q,v)

ωmin(q,v)
(h̄ω)nN (ω)

× Im

[ −1

ε(q, ω)

]
dω. (23)

When applying these considerations great differences are
obtained in the results for different particles, such as pro-
tons, positrons or electrons. We will describe in the next
section each of these cases in detail.

A. Collective excitations

As noticed before the variables q and k may be used in-
distinctly. In this section we prefer to use the variable k to
distinguish plasmon resonances characterized by line integrals
from nonresonant contributions characterized by double inte-
grals on the q-ω plane.

As indicated before, from the analysis of the ELF we can
separate two characteristic regions: k < qc and k > qc, such
that in the first region the ELF takes the form of a nar-
row resonance, corresponding to the excitation of collective
modes (called plasmons in the quantized descriptions [53]),
and the region k > qc corresponds to excitations of individual
electrons. First, we can isolate the plasmon contribution by
representing the resonance in the form [41]

Im

[ −1

ε(k, ω)

]
= π

D(k)
[δ(ω − ωk ) − δ(ω + ωk )], (24)

where

D(k) =
∣∣∣∣∂ε1(k, ω)

∂ω

∣∣∣∣
ω=ωk

. (25)

An approximate expression that may be useful in some
cases—for instance, in the plasmon-pole approximation
[47]—is D(k) ≈ 2ωk/ω

2
p.

Now, to perform the calculations a knowledge of the dis-
persion relation for the resonance frequency ωk is needed.
Various approximations can be used [9,42,54]; in particular,
an accurate numerical study of the plasma resonance was
made in Ref. [17], where the following fitting formula was
obtained:

ωk = ωp(a0 + a1x + a2x2 + a3x3), (26)

where x = k/ks and the values of the coefficients are a0 = 1,
a1 = 0.3, a2 = 1.2, a3 = −0.45. This provides a useful ana-
lytical expression that may be used in numerical integrations.

Let us consider, for definiteness, the particular case of the
stopping power, namely,

S = −Q1 = − 2

π

(Ze)2

v2

∫ ∞

0

dk

k

∫ ωmax

ωmin

ωN (ω)

× Im

[ −1

ε(k, ω)

]
dω. (27)

Replacing here the expression of Eq. (24) we get

Spl = 2

π

(Ze)2

v2

∫ kc

0

dk

k

π

D(k)

∫ ωmax

ωmin

ωN (ω)

× [δ(ω + ωk ) − δ(ω − ωk )]dω, (28)

where kc = qc = 0.3ks.
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We can separate here the frequency integral in two terms:
I1(k) − I2(k), where

I1(k) =
∫ 0

ωmin

ωN (ω)δ(ω + ωk )dω, (29)

I2(k) =
∫ ωmax

0
ωN (ω)δ(ω − ωk )dω. (30)

These integrals are non null only if ωk is within the range of
integration. We can express this property by introducing two
Heaviside functions defined by

H1(k, v) =
{

1, −kv + γ k2 < ωk < 0
0, otherwise,

(31)

H2(k, v) =
{

1, 0 < ωk < kv + γ k2

0, otherwise.
(32)

Hence, the integral (28) may be expressed as

Spl = 2
(Ze)2

v2

∫ kc

0

dk

k

1

D(k)
[−ωkN (−ωk )H1(k, v)

−ωkN (ωk )H2(k, v)]. (33)

One case of special interest is the case of protons or other
heavy particles. In this case we may assume infinite projectile
mass (γ = 0), and so the “recoil effect” (represented by the
term γ k2 in the previous equations) disappears. Thus the two
Heaviside functions yield the condition |ωk| < kv.

Moreover, we can use here the property: N (ωk ) +
N (−ωk ) = −1, and so the stopping integral corresponding to
plasmon excitations by protons becomes

S(protons)
pl = 2

(Ze)2

v2

∫ kc

kmin

dk

k

ωk

D(k)
. (34)

The value of kmin is determined numerically by the inter-
section of the resonance line ωk with kv. Thus, in the case
of protons the threshold velocity for plasmon excitations is
determined by v

protons
pl = ωkc/kc. For high energies the value

of kmin may be approximated by ωp/v.
The result of Eq. (34) agrees with the expression (A.5)

obtained in Ref. [41]. This shows that for the particular case
of protons or other heavy particles the effects of N-processes
on the stopping power cancel out (under the approximation
mp → ∞).

Generalizing this result to all energy-loss moments, we get

Q(n)
pl = 2

(Ze)2

v2
h̄n−1

∫ kc

0

dk

k

ωn
k

D(k)
[(−1)n+1N (−ωk )

× H1(k, v) + N (ωk )H2(k, v)], (35)

or, separating the integrals,

Q(n)
pl = 2

(Ze)2

v2
h̄n−1

[
(−1)n+1

∫ kc

k(1)
min

dk

k

ωn
k

D(k)
N (−ωk )

+
∫ kc

k(2)
min

dk

k

ωn
k

D(k)
N (ωk )

]
. (36)

Notice that there are two different values of kmin here, cor-
responding to the intersections of the resonance line −ωk with
ωmin(k) in the first case (zone I in Fig. 2) and the intersection

of ωk with ωmax(k) in the second case (zone II in Fig. 2). In
the case of heavy particles, k(1)

min = k(2)
min.

When analyzing these contributions it must be kept in mind
that in this formulation the “normal” (0-order) energy-loss
term comes from the region ω < 0, while in the standard treat-
ment [51,52] the energy loss is conventionally represented
by an integral in the region ω > 0. Of course, this is only a
question arising from the way the energy-loss and energy-gain
regions are defined in the present formulation.

B. Individual excitations

The nonresonant contributions make the most important
part of the energy-loss integrals. According to the criterion
derived from Fig. 1 of separating collective and individual
terms, the nonresonant contributions cover the whole range
defined by q > qc (with qc = 0.3ks as obtained in Sec. III).
These contributions are described by the double-integral ex-
pressions of Eqs. (19)–(23).

To avoid repetition of those particular expressions we may
express all these contributions in a unified way in the form

Q(n)
ind = 2

π

(Ze)2

v2
h̄n−1

[ ∫ q(1)
max

qc

F (n)
loss(q)

dq

q

+
∫ q(2)

max=∞

qc

F (n)
gain(q)

dq

q

]
, (37)

where the subscript “ind” refers to the individual (nonreso-
nant) character of these terms.

The F functions here are given by

F (n)
loss(q) =

∫ 0

ωmin

ωnN (ω) Im

[ −1

ε(q, ω)

]
dω, (38)

and

F (n)
gain(q) =

∫ ωmax

ωmin

ωnN (ω) Im

[ −1

ε(q, ω)

]
dω. (39)

In Eq. (37) the wave vector q(1)
max is given by q(1)

max ≈ ∞ for
protons or other heavy particles, and q(1)

max = 2mev/h̄ for light
particles, which is the value where ωmin(k) = 0 [indicated by
a dot in Fig. 2(b)]. The value of q(2)

max is equal to ∞ for all par-
ticles. We must remark, however, that these values apply when
dielectric functions with a proper quantum behavior are used,
but in the case of the classical dielectric function the values of
q(1)

max and q(2)
max for heavy particles must be reconsidered for the

reasons discussed below.
Additionally, in Eq. (39) we have introduced a lower limit

ωmin defined by

ωmin = 0 (40)

for protons, and

ωmin(q, v) =
{

0, q < 2mev/h̄
ωmin(q, v), q > 2mev/h̄

(41)

for light particles [corresponding to regions IIa and IIb in
Fig. 2(b)].

As indicated before, this compact notation is used here to
cast all the expressions of Eqs. (19)–(23) in a unified way and
to avoid repetition of particular expressions.
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By separating the loss (ω < 0) and gain (ω > 0) terms it
will be possible to analyze the contribution of each of them;
this will provide interesting insights for the discussion of the
results obtained in the following. We notice that each of these
integrals can be evaluated straightforwardly, in spite of the di-
vergence of N (ω) ∼ kBT/ω at ω ≈ 0, because the energy-loss
function, Im[ −1

ε(q,ω) ], becomes linear in ω in this limit. It may
also be noticed that, since ωmax has no upper bound (Fig. 2),
the q integral in the range of positive frequencies extends
to ∞. In the PWPM the convergence of the integral will be
provided by the ELF, due to the Gaussian functions contained
in the construction of ε(q, ω) in the quantum formulation.
However, in the SCL model, the ELF derived in the classical
approach does not contain the same convergence property;
fortunately, in this case the presence of the Bose function
N (ω) in the integral is the term that assures convergence (in
the region ω > 0) due to its exponential decay for large and
positive ω.

On the other hand, the convergence of the integral in the
region ω < 0 is a more intricate question. For light particles,
convergence is obvious since there is a prescribed upper limit
qmax = 2mev/h̄ (when ω < 0). But in the case of protons or
heavier particles there is no upper limit for qmax (assuming
infinite mass of these particles). Therefore, in this case a
more careful analysis must be made. The convergence prop-
erty of the Bose function does not apply in this region since
N (ω) ≈ −1 for large and negative ω. This compromises the
convergence of the integral in the SCL approach, but not in
the quantum (PWPM) approach where the convergence is
assured by the properties of the ELF (as in the positive-ω case
described before). As a consequence of this, the q integral
in the SCL calculations produces a logarithmic divergence;
this is related to a well-known divergent behavior of classical
descriptions [32,33]. A way out of this trouble is to insert a
cutoff value qmax in a heuristic way [15]. In particular, by
choosing qmax = 2mev/h̄ the result for the stopping power
of protons converges asymptotically to the appropriate Bethe
behavior at high velocities [15]. But of course this prescription
does not guarantee a correct solution for low velocities [22].
For this reason, the SCL results may show deviations from the
correct behavior at low velocities.

V. ANALYSIS AND CALCULATIONS
FOR DIFFERENT PARTICLES

As indicated before, the regions of integrations include
positive and negative frequencies delimited by the ωmin and
ωmax curves (Fig. 2). Moreover, in the case of electrons ad-
ditional conditions arising from the identity of incident and
target electrons must be considered. Therefore, it is con-
venient to consider separately the cases of heavy particles,
positrons, and electrons.

A. Heavy particles

We consider first the simplest case of heavy particles. The
term “heavy particles” applies here to particles with masses
much larger than the electron mass. For these particles the
so-called “recoil effect” is negligible. In particular this in-
cludes the cases of protons, deuterons, alpha particles, and to

a good approximation also muons and pions (see Ref. [55] for
quantitative evaluations of recoil effects).

In these cases the second term in the values of ωmin and
ωmax of Eqs. (7) and (8) may be dropped off and so the extreme
values in the ω integrals become ±qv. This corresponds to the
straight lines observed in Fig. 2(a).

Let us consider first the expression of the stopping power,
Eq. (11), which now becomes

S|heavy = − 2

π

(Ze)2

v2

∫ ∞

0

dq

q

∫ qv

−qv

ωN (ω)Im

[ −1

ε(q, ω)

]
dω.

(42)

As noticed in Ref. [11] the positive- and negative-
frequency contributions may be combined into a single
integration over positive frequencies only by using the relation
N (ω) + N (−ω) = −1, and the general property ε∗(q, ω) =
ε(q,−ω) [43,44], which makes the ELF an odd function of
ω. This yields the result

S|heavy = 2

π

(Ze

v

)2 ∫ ∞

0

dq

q

∫ qv

0
ωIm

[ −1

ε(q, ω)

]
dω, (43)

which is a well-known expression for the energy loss of heavy
particles in plasmas [51,52].

It is of interest to notice that in these cases the stimu-
lated processes [embodied in the factors N (ω)] for positive
and negative ω balance each other, so that the final expres-
sion does not contain factors N (ω). Thus, the influence of
stimulated processes may be ignored when calculating the
stopping power of heavy particles (in the approximation of
infinite mass). For this reason previous expressions for the
mean energy-loss of heavy particles are retrieved without any
modification. This cancellation of assisted gain (ω > 0) and
loss (ω < 0) processes can be generalized to all odd-order
energy-loss moments, such as for instance the skewness co-
efficient corresponding to n = 3 [56].

We now turn to the calculation of the IMFP and energy
straggling, from Eqs. (10) and (12). In this case the presence
of even powers of ω changes the parity of the integral with
respect to the sign of ω.

Therefore by combining the positive and negative-
frequency branches one gets the combination N (ω) −
N (−ω) = 2N (ω) + 1, which yields integrals over positive
frequencies, namely,

1

�

∣∣∣∣
heavy

= 2

h̄π

(Ze

v

)2 ∫ ∞

0

dq

q

∫ qv

0
[2N (ω) + 1]

× Im

[ −1

ε(q, ω)

]
dω, (44)

and

�2
∣∣
heavy = 2h̄

π

(Ze

v

)2 ∫ ∞

0

dq

q

∫ qv

0
ω2[2N (ω) + 1]

× Im

[ −1

ε(q, ω)

]
dω. (45)

This result was already anticipated in Ref. [11]. The pres-
ence here of the factor [2N (ω) + 1] is an important addition
with respect to the known expressions for cold targets.
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All these expressions receive contributions from the col-
lective and individual ranges of interactions which may be
calculated applying the same criterion explained in detail in
Sec. 4, i.e., separating the 0 < q < qc (collective) and qc <

q < ∞ (individual) contributions, and transforming the first
term into a line integral.

Finally, an additional consideration must be made con-
cerning the integration limit of the q integrals when the
semiclassical model is used. The classical dielectric function
does not have the correct quantum behavior for large ω and q
values. For this reason the stopping and straggling integrals
(which depend on large ω and q values) have a divergent
type of behavior. As it was discussed in the previous section,
one way to solve this problem in the SCL calculation is to
introduce a cutoff qmax = 2mev/h̄ in the q integral [15].

B. Positrons

We consider now the case of positrons. Going back to
Eq. (37) and considering in particular the calculation of the
stopping power, we split the integral into its ω < 0 and ω > 0
regions, separating the processes of energy loss and energy
gain, respectively, S = Sloss + Sgain, with

Sloss = − 2

π

(Ze

v

)2 ∫ q(1)
max

0

dq

q

∫ 0

ωmin(q,v)
ωN (ω)

× Im

[ −1

ε(q, ω)

]
dω, (46)

Sgain = − 2

π

(Ze

v

)2 ∫ ∞

0

dq

q

∫ ωmax(q,v)

ωmin (q,v)
ωN (ω)

× Im

[ −1

ε(q, ω)

]
dω, (47)

where ωmin(q, v) is given by Eq. (41). In this case the upper
limit q(1)

max = 2mev/h̄ in the first integral follows naturally
from the limit of the integration zone I shown in Fig. 2. By
contrast, the integral of Eq. (47) covers the ω > 0 region in
Fig. 2 with no upper limit in q or ω.

For the sake of clarity we have shown here the form of
the gain and loss expressions for the stopping coefficient;
similar expressions can be written for the IMFP and straggling
integrals with the only difference of replacing the factor ω in
the integrals by 1 or ω2, respectively.

As in the previous case of protons the q integrals may be
separated into collective and individual contributions corre-
sponding to the 0 < q < qc and qc < q < ∞ ranges, applying
the different integration schemes indicated in Sec. IV.

C. Electrons

The dynamical restrictions imposed by ωmin and ωmax for
electrons are equal to those for positrons. However, due to the
identity of the external electron with those of the medium,
additional restrictions must be imposed [34,38,39], and the
integrals become more cumbersome.

Thus, for instance, in the case of incident elec-
trons, the expressions of Eqs. (46) and (47) are replaced

by

Sloss = − 2

π

(Ze

v

)2 ∫ q(1)
max

0

dq

q
gx(q)

∫ 0

ωmin(q,v)
ωN (ω)

× [1 − fFD(E + h̄ω)]H (Ue − h̄|ω|)Im
[ −1

ε(q, ω)

]
dω,

(48)

Sgain = − 2

π

(Ze

v

)2 ∫ ∞

0

dq

q
gx(q)

∫ ωmax(q,v)

ωmin (q,v)
ωN (ω)

×[1 − fFD(E + h̄ω)]Im

[ −1

ε(q, ω)

]
dω, (49)

where the factor gx(q) = 1 + (h̄q/mev)4 − (h̄q/mev)2 takes
into account the exchange effects in the electron-electron in-
teraction due to the identity of the incident and target electrons
(i.e., the Ochkur correction) [36,37]; fFD(E ) is the Fermi-
Dirac distribution; E = mev

2/2 is the kinetic energy of the
incident electron, and the factor [1 − fFD(E + h̄ω)] serves to
exclude those events where the incident electron falls into
occupied states after gaining or losing a (positive or negative)
energy h̄ω. This term is important in cases of partial or strong
degeneracy, but becomes irrelevant when kBT � EF .

The additional factor H (Ue − h̄|ω|) in Eq. (48) requires
a more specific explanation. Here H (x) is the step function,
so that this term selects only the h̄|ω| < Ue range of the ω

integral. This condition arises from a proper treatment of ex-
change effects in the scattering process of identical particles,
which, for instance, in the case of high energies, restricts the
energy transfer to the range 0 < h̄|ω| < E/2. This follows
from the criterion introduced by Bethe [34] of considering
as the new primary electron after the interaction the one
emerging with the larger energy (cf. also Ref. [35]). Hence,
energy transfers larger than a given amount Ue (equal to E/2
for high energies [35]) cannot be distinguished from scatter-
ing processes where the identity of the interacting electrons
is exchanged [34,35]. The extension of this criterion to all
energies, where the kinetic energy of the plasma electrons can-
not be ignored can be made by introducing an “equipartition
energy” Ue = (E − E )/2, where E is the mean kinetic energy
of plasma electrons [E = (3/2)kBT for classical plasmas]. So
that, for an energy transfer h̄|ω| = Ue, the two interacting
electrons will end up with equal energies (assuming the target
electron having the average energy E before the interaction).
And this is the point where the primary and secondary elec-
trons exchange roles.

The Ochkur term gx(q) provides an approximate way to
condense the direct and exchange terms of the electron-
electron scattering [36]. As is clear from these considerations,
the Ochkur factor, as well as the condition h̄|ω| < Ue, apply
only to the range of individual interactions (i.e., electron-
electron scattering), so that both factors gx(q) and H (Ue −
h̄|ω|) should be omitted in the calculation of collective excita-
tions. These considerations are akin to those made in Ref. [35]
where different treatments are applied to distant and close
interactions.

All these considerations illustrate the complexity of de-
scribing the effects of identity between incident and target
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electrons. The method proposed here is based on previous ap-
proximations, some of which, like the Ochkur term, are based
on high-energy approximations. Previous studies [39] show
that this method compares exceedingly well with experiments
in solid targets on a wide energy range. A more in-depth
study of the effects of particle identity in electron-electron
interactions in plasmas would require further investigations
which lie outside the scope of the present study.

For reasons of space we do not include here the expressions
for the IMFP and straggling for positrons and electrons, but
they are basically equal to those of Eqs. (46)–(49), with the
only difference of omitting the factor ω in the IMFP integral
and using a factor ω2 in the straggling integral.

Finally, the same remarks made before on separating the q
integrals into collective and individual contributions (0 < q <

qc and qc < q < ∞, respectively) apply here.

VI. CALCULATIONS FOR SPECIAL CASES: HEATED
SOLIDS, FUSION PLASMAS, AND STELLAR INTERIORS

A. Plasmas with solid-state densities (heated solids)

The case of very hot plasmas in solids is an example of
interest considering the initial stages of heated materials in
inertial-confinement-fusion studies. Here we consider as a
representative example a plasma characterized by a parameter
rs = 2, which corresponds to a typical value of electron den-
sity in solids [with the usual relation (4π/3)r3

s = 1/n], and a
set of temperatures from 10 to 60 eV. It is of course an unstable
system, with temperatures way over the fusion point, but it
pertains for instance to intermediate phases in ICF studies.

Calculations of the three main energy-loss moments of
protons, positrons, and electrons are shown in Figs. 3–5. The
calculations were done using the PWP and SCL models de-
scribed in Appendix A. In addition, calculations of stopping
powers using the exact dielectric function for all plasma de-
generacies from Ref. [46], denoted here by AB, are included.
Figures 3(a)–5(a) show comparisons between these three ap-
proaches. As may be observed, the results of the PWPM are
in excellent agreement with those of the AB theory. This
serves as a proof of the accuracy of the PWPM approach.
The dotted straight lines for low v values in Fig. 3(a) are
the analytical low-velocity approximation from Refs. [11,14],
namely,

S ∼= 4

3

(2πme)1/2

(kBT )3/2 Z2e4nv

[
ln

(
kBT

h̄ωp

)
+ 1

4

]
, (50)

where Z = 1 for protons. This analytical expression applies
when kBT/EF � 1 and provides excellent results except for
the lower temperature of 10 eV where kBT/EF = 0.8.

On the other hand, the proton stopping power calculated
with the SCL model [Fig. 3(a)] shows important devia-
tions from the correct behavior shown by the PWPM and
AB results, both at low and intermediate velocities for the
lower temperature of 10 eV, and yields better results as
the temperature increases. This behavior may be understood
by considering the values of kBT/EF = 0.8, 2.4, and 4.8
for the three temperatures of this figure. Hence, the per-
formance of the SCL model improves when the plasma
degeneracy decreases, as could be expected based on physical

FIG. 3. Energy-loss moments of protons traversing a dense
plasma as a function of projectile velocity in atomic units for dif-
ferent temperatures: (a) stopping power, (b) inverse mean-free path,
(c) straggling.

considerations. In addition, two further deficiencies of the
SCL model in these conditions may be pointed out: the stop-
ping curves deviate from the correct linearity with v at low
velocities, and, moreover, the straggling curve shows a de-
creasing behavior at high speeds [Fig. 3(c)], while the PWPM
results converge to the expected Bohr straggling limit [56]
given by ω2

P = 524 in the units of this figure. The reason why
the SCL model fails to reproduce the asymptotic behavior of
the straggling is the lack of a proper quantum behavior of
the classical dielectric function for large values of q and ω,
which are those that dominate the straggling at high energies.
As is clear from this figure the PWPM contains the correct
quantum properties for all the q-ω range. Hence, the behavior
of the straggling serves to test in a very conclusive way the
required quantum properties of the dielectric function. Further
comments on the failure of the SCL straggling values for high
energies will be made in the next section. We conclude from
these comparisons that the SCL model does not provide an
appropriate description of particle-plasma interactions when
the degeneracy parameter kBT/EF is close to one. As will be
shown below by further calculations the applicability of this
model improves greatly when kBT � EF .

It should be noticed here that, in the case rs = 2, nonlin-
ear effects at low velocities may be important for relatively
low temperatures [57–59]. Calculations for slow protons in
Ref. [59] show stopping power enhancements larger than 10%
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FIG. 4. Energy-loss moments of positrons traversing a solid-state
plasma as a function of projectile velocity for different temperatures:
(a) stopping power, (b) inverse mean-free path, (c) straggling.

for θ < 2, climbing up to nearly 60% at θ = 0. These nonlin-
ear effects have been studied mostly for cold targets [57].

Another important question already indicated but that
should be remarked here is that the calculation of stopping
powers with the SCL model require the ad hoc introduction
of a maximum wave vector kmax = 2mev/h̄ in the q integral
to avoid a logarithmic divergence, as proposed in Ref. [15].
This particular restriction applies only to the case of protons
or heavier particles in the SCL method.

In this respect, an important difference in the calculations
for positrons and electrons, in contrast to protons, is that the
requirement of an upper cutoff value in the q integral is no
longer necessary for the following reasons: the integral in the
ω < 0 zone has a natural cutoff at q = 2mev/h̄, as indicated
by a solid dot in Fig. 2, and the integration over the ω > 0
zone converges regularly due to the exponential decrease of
the function N (ω) when ω tends to infinity. So in this region,
where the classical dielectric model lacks a proper quantum
behavior, the exponential decline of the N (ω) function pro-
vides a convergent factor.

Finally, we observe that in all cases the high energy decline
of the stopping power is consistent with the asymptotic Bethe-
like behavior, also shown in the figure, given by

Shigh v = B

v2
ln

(
α1mev

2

h̄ωp

)
, (51)

FIG. 5. Energy-loss moments of electrons traversing a solid-state
plasma as a function of projectile velocity for different temperatures.
Here PWPM is the PWPM calculation without the Ue restriction:
(a) stopping power, (b) inverse mean-free path, (c) straggling.

where B = 4πnZ2e4/me, and with α1 = 2 for protons, 1 for
positrons, and 0.5

√
e/2 = 0.583 for electrons [34,35].

Regarding the case of positrons, shown in Fig. 4, interest-
ing differences with the case of protons are observed. First, the
stopping power drops to negative values in the range of low
velocities, and at the same time the IMFP and the straggling
values show a divergent behavior. A similar behavior is found
for electrons in Fig. 5. These striking results arise when the
energy of the incident particle drops below the corresponding
thermal energy of the plasma. This range of energies corre-
sponds to the case of subthermal speeds, which implies that
the particle must gain energy from the medium to achieve a
final thermal equilibrium. This phenomenon, as well as the
curious shapes of the curves for positrons and electrons, will
be discussed more specifically in Sec. VII. As noticed, in this
range of subthermal energies, the energy straggling becomes
very large, which indicates a dominance of energy fluctua-
tions. These fluctuations arise from the large and growing
numbers of stimulated loss and gain processes in the inter-
action of the external particle due to thermal excitations of the
medium. As a consequence, the mechanism of slowing down
is severely affected by energy exchange processes.

Finally, to show the importance of the energy-transfer re-
striction imposed by the term H (Ue − h̄|ω|) in Eq. (48), we
have included in Fig. 5 a set of curves denoted PWMP where
this restriction has been eliminated (dash-double-dot lines); in
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particular we observe in panel (a) very large shifts in the stop-
ping power curves with respect to the correct (and coinciding)
PWPM and AB results. Important differences are observed
also in the IMFP and straggling values. In fact, the PWPM
curves in Fig. 5 become rather similar to those of positrons in
Fig. 4.

As a result of the overwhelming effects of fluctuations
that take place in the range of subthermal energies, the im-
age of well-defined particle trajectory is lost, as is also the
ideal concept of stopping power of light particles with small
velocities moving along straight trajectories. Although it is
of interest to show and quantify these effects here for the
sake of completeness and comprehension, we stress that the
range of main interest for the study of energetic particles in
plasmas—such as heating by external ion beams or internally
produced 3.5 MeV alpha particles—is primarily well above
the range of thermal energies.

As in the previous case of protons, the SCL results for
the inverse-mean-free path and energy straggling shown in
Figs. 4(b) and 4(c) show significant differences with those
of the PWPM for the lower temperature of 10 eV, and better
agreement for higher temperatures.

Finally, the green dash-dot lines in Figs. 3(b)–5(b) are
theoretical estimations of the IMFP using an approximate
expression

1

�

∣∣∣∣
(N )

approx

∼= 1

�

∣∣∣∣
(0)

approx

[2N (ωc) + 1] (52)

where 1
�

|(0)
approx is the order-0 value of the IMFP calculated

with N (ω) → N0(ω) defined in Eq. (13). Here ωc is the value
of ωk [Eqs. (24) and (26)] at k = kc, which characterizes the
transition from collective to individual excitations.

A useful approximation for 1
�

|(0)
approx is

1

�

∣∣∣∣
(0)

approx

∼= ωP

v2
ln

(α0v

vs

)
, (53)

where vs = h̄ks/me and α0
∼= 1 [41].

Although it is a rough approximation, Eq. (52) serves to
explain the large increase of the IMFP values (notice the
logarithmic scale for the IMFP in Figs. 3–5) produced by
a multitude of loss and gain processes. The enhancement
factor [2N (ωc) + 1] applied here is analogous to the term
[2N (ω) + 1] in Eq. (44) for protons. The basis for this approx-
imation is the physical assumption that the IMFP is mostly
determined by low-q interactions which are localized near the
shifted plasma frequency ωc, in accord with Fig. 1. In this
interpretation the cause of the great enhancement of the IMFP
is the large number of interactions (loss and gain processes)
with energy exchange around ωc.

This interpretation, however, does not apply to the strag-
gling; the physical reason for the difference between IMFP
and straggling is that the former is mostly determined by low-
q interactions around ωP (Fig. 2), and the latter by much more
widespread interactions with high-q values, which cannot be
represented by a simple [2(N + 1)] factor evaluated at a fixed
frequency.

We finally notice here that in the calculations of energy
losses we have considered the protons as particles with infinite

mass, as is usually done in calculations of energy losses of
heavy particles [51,52]. This approximation is sustained by
the small ratio of electron to proton mass, which implies that
in the scale of energies considered here the effects of the finite
proton mass are negligible.

B. Fusion plasmas: ICF and Tokamak cases

The most relevant examples of laboratory plasmas are
those related to fusion-reactor projects and comprise two very
different density ranges. Research on inertial-confinement fu-
sion considers solids compressed and heated to very extreme
values (typically densities much larger than normal solid
densities, and temperatures in the range of 108 K), whereas
Tokamak type of plasmas involve electron densities in the
range of 1015 cm3, and similarly high temperatures.

We illustrate now the characteristic aspects of the interac-
tions of particle beams with plasmas considering as before the
cases of protons, positrons, and electrons. Examples involv-
ing positrons are included here for the sake of comparisons
although they are not normally produced in these laboratory
plasmas but serve to illustrate an intermediate behavior be-
tween protons and electrons. For these cases, the high-energy
region shifts to higher values of the velocity. Thus we extend
the velocity scale in order to display the behavior of the curves
up to values of 80 a.u. As shown in previous works [8], for
velocities greater than 80 a.u., relativistic effects should be
considered.

1. ICF plasmas

To illustrate this case we consider here a plasma char-
acterized by the electron-density parameter rs = 1, i.e., an
eightfold increase over normal solid densities. The tempera-
tures of interest in this case are in the range of up to 10 keV
(∼= 108 K).

Figures 6–8 show the results for protons, positrons, and
electrons. The results are qualitatively similar to those of
rs = 2 shown previously, but we notice here a significant
improvement of the SCL results for protons and positrons,
in comparison with the reference PWPM values, with the
exception of the straggling of protons [Fig. 6(c)], where the
SCL model fails at high energies (although the comparison
with the PWPM values improves at lower energies). We notice
also the excellent agreement in the stopping power and IMFP
of protons and positrons. The improvement of the SCL results
in these cases is a consequence of the higher values of the
parameter kBT/EF

∼= 20-200. These conditions of low degen-
eracy are relatively more favorable to the classical dielectric
description (with the exception of the range of high-q values
where quantum effects become important).

The straggling of protons in Fig. 6 shows a very different
behavior in the low- and the high-energy regimes and can
be explained by simple arguments. Since in this example the
condition kBT � EF is fulfilled, there is a special relation
between the straggling and the stopping power S, valid at
low energies (v < vT = √

kBT /me), which was obtained in
Ref. [11], namely,

�2 ∼= 2kBT S. (54)
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FIG. 6. Energy-loss moments of protons traversing a high-
density plasma as a function of projectile velocity for different
temperatures: (a) stopping power, (b) inverse mean-free path,
(c) straggling.

Therefore, in these conditions both the stopping power and
the energy straggling of protons show a linear dependence
on v, as shown in Fig. 6 [and also in two of the curves of
Fig. 3(c) where kBT/EF = 2.4 and 4.8]. This is in contrast
with the behavior for cold targets where �2 ∼ v2 [60] (notice
the curvature of the straggling curve for the lower temperature
in Fig. 3(c), where kBT/EF = 0.8, indicating a tendency to a
v2 dependence). The reason for this change in the velocity
dependence is just another effect of the Bose term N (ω),
which for kBT � h̄ω becomes N (ω) ∼ kBT/h̄ω. The factor
1/ω changes the dependence of the integrand in Eq. (45),
from ω2 to ω, i.e., the same form as the stopping integral
of Eq. (43). This leads to the simple relation of Eq. (54). On
the other hand, the failure of the SCL model in the straggling
of protons at high energies has a clear origin: as noticed be-
fore, the classical dielectric function does not provide a good
description for high-q values, and this failure becomes most
notorious in the case of protons, because of the open region
of integration shown in Fig. 2, together with the behavior of
N (ω) → −1 for large negative values of ω (region I) which
leads to a logarithmic divergence of the stopping integral.
This divergent behavior is usually avoided by introducing a
maximum cutoff value kmax = 2mev/h̄. As explained before,
the criterion for choosing this value is to obtain a high-energy
behavior of the stopping power in agreement with the Bethe
formula. But this cutoff criterion is not satisfactory for the

FIG. 7. Energy-loss moments of positrons traversing a high-
density plasma as a function of projectile velocity for different
temperatures: (a) stopping power, (b) inverse mean-free path,
(c) straggling.

straggling. On the other hand, in the case of positrons and
electrons the deficiency of the SCL model for large q and ω is
attenuated for the reasons already indicated in the discussion
of Figs. 3–5 [i.e., the convergent behavior of the factor N (ω)
in region IIb of Fig. 2].

Finally, Fig. 8 shows the results for electrons. Here, and by
comparing with the results for positrons in Fig. 7, important
differences due to the special restrictions (produced by the
electron identity) are observed. Moreover, the SCL method
shows significant deviations from the PWPM behavior. As
a new feature, the curious drops in the values of the IMFP
in Fig. 8(b) are produced by the competition between gain
and loss terms, and are “in phase” with similar drops in the
straggling curves.

2. Tokamak plasmas

The behavior of the energy-loss coefficients in Tokamak-
type plasmas is illustrated in Fig. 9, where we show a set of
calculations for a plasma density n = 1015 cm−3, and temper-
ature 108 K. An important difference with the cases calculated
before is the very large value of the parameter kBT/EF =
2.4×108. This is an example of a fully nondegenerate high-
temperature plasma. It is then expected that the classical
description should work here quite well.

Figure 9(a) shows an impressively good agreement in the
stopping power values calculated with the PWPM and SCLM
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FIG. 8. Energy-loss moments of electrons traversing a high-
density plasma as a function of projectile velocity for different
temperatures: (a) stopping power, (b) inverse mean-free path,
(c) straggling.

for all the particles. In the same way, Fig. 9(b) shows excellent
agreement for the IMFP of protons and positrons over the
whole energy range, while the IMFP of electrons also shows
excellent agreement between the two dielectric models, except
only for an intermediate range of velocities (between about 25
and 35 a.u.) where a short misadjustment occurs. Finally, the
straggling of protons shown in Fig. 9(c) goes to zero when
v → 0; this behavior is consistent with the behavior of the
straggling of protons already observed for the cases of rs = 1
and 2. Instead, the results for positrons and electrons show the
same type of divergent behavior for lower values of v as in the
previously studied cases. Further explanations of this behavior
are given in Sec. VII where we analyze the contributions of the
ω < 0 and ω > 0 regions of Fig. 2.

C. Stellar interiors: The sun

The extreme conditions that characterize the stellar inte-
riors provide other relevant systems that serve to test the
new effects on the interactions described here. To take a
most familiar example we consider here the case of the solar
interior, and more particularly the most stringent conditions
at and around the sun center, characterized by temperatures
and densities of 1.6×107 K and 160 g/cm3, respectively, and
consisting of ≈75% hydrogen and 25% helium. This yields a
total electron density of 8.4×1025 cm−3.

FIG. 9. Energy-loss moments of protons, positrons, and elec-
trons traversing a plasma as a function of projectile velocity for
a characteristic temperature corresponding to Tokamak conditions.
High- and low-v limits are shown for protons: (a) stopping power,
(b) inverse mean-free path, (c) straggling.

The results for the energy-loss moments of the same test
particles for this case are shown in Fig. 10.

This figure shows similarities with Fig. 9 corresponding
to the Tokamak example, so that most of the comments
made earlier on that figure apply also here. We notice, how-
ever, important differences in the magnitudes of the stopping
power and straggling values, while surprisingly the IMFP
values have similar magnitudes. These features may be readily
explained by the differences in densities and temperatures
for the two media. In the case of the stopping power, a
straightforward estimation can be made by using the low-
energy expression of Eq. (50). Inserting in this equation the
values of density and temperature and the corresponding
values of kBT/ωp (4.1 and 7.3×106 for the sun and the
Tokamak cases considered here) we get a stopping power ra-
tio Ssun/STokamak = 1.3×1011. This estimation compares well
with the ratio of stopping powers shown in Figs. 9 and 10
for velocities in the low-energy range and even around the
stopping power maximum. Of course the main difference is
produced by the much higher solar density.

By a similar argument we may explain the large difference
in the straggling values, considering in particular the Bohr
limit in the case of protons, which is directly proportional
to the electron density, so that a ratio of the order of 1011 is
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FIG. 10. Energy-loss moments of protons, positrons, and elec-
trons traversing a plasma as a function of projectile velocity for a
characteristic temperature corresponding to solar interior conditions:
(a) stopping, (b) inverse mean-free path, (c) straggling.

obtained, again in good agreement with the ratio between the
straggling results in these two figures.

Finally, considering these big differences in the stopping
and straggling values, it is surprising that the values of
the IMFP in Figs. 9 and 10 have such similar magnitudes.
This similarity can be explained from Eqs. (52) and (53).
These expressions show that the IMFP scales basically as
ωpN (ωp). Moreover, when kBT/ωp � 1, the Bose factor can
be approximated by kBT/ωp, which yields the simple scal-
ing criterion IMFP ∼kBT . Then, considering the temperature
ratio: 108/(1.6×107) ≈ 6 we may expect a larger IMFP for
the Tokamak but maintaining roughly the same order of
magnitude.

Hence, we have here an example where three different scal-
ing properties are observed, the straggling �2 that scales with
the density, the IMFP that scales with the temperature, and
the stopping power that scales with a combination of density
and temperature. This arguments explain very satisfactorily,
on a qualitative basis, the quite different scaling properties
observed when comparing these two figures.

VII. ANALYSIS AND DISCUSSION:
LOSS AND GAIN PROCESSES

All the cases studied before provide illustrative examples
of the characteristics and modifications of the energy-loss co-
efficients as a result of the interactions of external test particles

FIG. 11. Contributions to the energy-loss moments as a function
of projectile velocity for positrons traversing a solid-state plasma
with rs = 2 and a characteristic temperature T = 60 eV. High- and
low-v limits are shown for protons. Panel (a) shows stopping power,
panel (b) shows inverse mean-free path, and panel (c) shows strag-
gling. In all cases, dashed-dot-dot lines show the result for a cold
plasma, i.e., T = 0.

with the electronic excitations of a plasma. Much of the new
effects arising from the so-called N-processes have already
been illustrated here in rather global ways. But we consider
useful and perhaps even necessary to provide some additional
insight on the way these processes work through statistically
assisted gain and loss terms in the energy exchange between
the external particle and the plasma. These different processes
occur in the positive and negative domains of frequencies
illustrated in Fig. 2. So to obtain a more comprehensive view
of this question it is appropriate to analyze these contributions
separately.

Here we take by way of example the case of positrons,
which serves to illustrate more clearly the effects. Thus, we
show in Fig. 11 the contributions of the ω < 0 and ω > 0
regions to the three energy-loss coefficients for positrons
in a plasma characterized by rs = 2 and temperature T =
60 eV. Figure 11(a) shows very clearly the competing ef-
fects between gain and loss processes in the stopping power.
For velocities larger than about 3 a.u., the energy-loss
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component (ω < 0) dominates and produces a final stopping
power (black solid line) with a “normal” behavior, going to the
expected Bethe limit at high velocities. Conversely, at lower
energies the energy-gain term (ω > 0) yields large negative
stopping values and dominates over the loss term; as a result,
the total energy loss crosses the zero line and sinks with a
divergent-type behavior. As noticed before, there is a clear
physical meaning for this behavior: when the kinetic energy
of the test particle becomes subthermal the particle must gain
energy from the plasma in order to achieve the final conditions
of thermal equilibrium. The curve identified by “0” in this
figure is the calculation of order-0 according to Eq. (14),
which corresponds to neglecting the statistical effects of the
Bose terms N (ω) (i.e., the so-called N-processes). Hence, this
figure illustrates very clearly the two distinct effects produced
by the condition of statistical equilibrium in the interaction of
the external particle with the excitations of the medium.

Figure 11(b) shows the contributions to the IMFP. In this
case the gain and loss terms show a similar divergent be-
havior, producing a total IMFP with similar characteristics,
in sharp contrast with the expectations derived from the 0-
order calculation. Finally, Fig. 11(c) shows the corresponding
contributions to the energy straggling. This explains the very
unexpected change in the straggling curves observed in all
previous figures corresponding to positrons and electrons.
In this case the loss term (ω < 0) shows a rather “normal”
behavior (similar to the 0-order term), but at low energies
the gain term (ω > 0) takes over, with a very large increase
(owing to growing energy-loss fluctuations) and produces the
anomalous change of behavior of the final straggling curve.
The modulation of the straggling curve of positrons and elec-
trons is therefore a consequence of the competition between
gain and loss processes. These effects are potentiated in the
case of electrons by the special restrictions that diminish the
contribution of the loss (ω < 0) terms.

An overflying question here is why the effects of sta-
tistical equilibrium manifest in so different ways in these
three energy-loss coefficients. The explanation comes from
the fact that the corresponding integrals weight in different
ways the low- and high-energy contributions (through the
different power of ω in the integrals). The IMFP is dominated
by low-energy excitations (distant interactions) while the op-
posite occurs for the straggling; the intermediate behavior is
found in the stopping power, which keeps a moderate balance
between low- and high-energy excitations (in accord with
Bohr’s partition rule for fast particles [56]). In all cases the
most extreme behavior is observed in the ω > 0 contribution;
this is a result of the wide and open integration region II
displayed in Fig. 2, which covers all the extreme ranges (from
the low-q and -ω to the high-q and -ω region).

VIII. SUMMARY AND CONCLUSIONS

As indicated in the Introduction, the purpose of this
work was to provide a general framework for the study of
quantum statistical effects in the interaction of test particles
with classical and quantum plasmas in conditions of thermal
equilibrium.

To this end, we developed in detail the formulation of the
interaction process and made a comprehensive study of the

above-mentioned effects, considering the cases of heavy and
light particles, and performing a set of calculations of the three
most relevant energy-loss moments, namely, stopping power,
energy straggling, and inelastic mean-free path. We analyzed
a set of cases of central interest for current fusion projects
and stellar interiors of astrophysical interest, considering in
particular the conditions at the sun’s core.

The new findings that arise from this study may be sum-
marized as follows:

(i) The processes of energy exchange between the test
particle and the plasma receive competing contributions from
gain and loss processes, governed by the Bose function
N (ω), which may produce large effects on all the energy-loss
coefficients.

(ii) We provided a well-defined scheme to separate col-
lective and individual contributions (from a careful study of
the behavior of the energy-loss function), and formulas to
evaluate the collective terms in the form of line integrals.

(iii) In the case of heavy particles (protons, alpha parti-
cles, or heavier ions) we obtain a nearly exact cancellation
of assisted terms (here called N-processes), corresponding to
gain and loss contributions to the stopping power. As a result
of this, the stopping power coincides with the well-known and
widely used expression found in the literature and represented
here by the 0-order term [Eq. (43)]. This cancellation property
can be generalized to all the odd-order moments of the energy
loss. (We notice, however, that this cancellation becomes ex-
act only in the infinite-mass approximation.)

(iv) We find a very large enhancement of the IMFP and
straggling coefficients for heavy particles, with growing mag-
nitude at low velocities. This effect may be explained as a
consequence of fluctuations in the interaction process pro-
duced by the large number of thermally activated electronic
excitations. We find an approximate scaling expression for the
enhancement of the IMFP of the form [2N (ωc) + 1], where
N (ω) is the Bose function that regulates the number of thermal
excitations in the plasma.

(v) In the case of light particles, such as electrons and
positrons, the stopping power shows an unusual (but physi-
cally expected) change of behavior, turning to negative values
at low velocities. This phenomenon has a clear physical in-
terpretation: for energies of the test particle lower than the
thermal speed of plasma electrons the particle gains energy
from the plasma as a way to achieve a final thermal equi-
librium. This effect has already been exposed but in a more
restricted way [32,33]. This change from the regular behavior
is also expected for heavy particles but it occurs for velocities
much lower than those of interest for this study.

(vi) Also for such light particles, we obtain a pronounced
enhancement in the IMFP and straggling coefficients, similar
to those obtained for heavy particles and of similar origin.

(vii) We gave special consideration to the case of electrons
as incident particles, showing the importance of the restric-
tions imposed by the identity principle (with respect to target
electrons), an aspect that has not been taken into account
before in the case of plasmas.

Another aspect investigated in the present study is the
question of the applicability of the classical dielectric func-
tion to describe the energy-loss moments for the cases
of light and heavy particles and for the different plasma
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conditions considered here. The results obtained here show
that

(viii) The semiclassical approach, consisting in the use of
a classical dielectric function and the full quantum statisti-
cal formulation, provides very good results for the stopping
power of heavy particles when a cutoff prescription in the
momentum transfer is applied.

(ix) This procedure yields fairly good results in some
cases and fails in others (in particular for the straggling of pro-
tons), as illustrated by the various examples considered here.
It can be noticed that the SCL approach yields good results
for high temperatures and low densities, such that kBT � EF

(as in the example of Tokamak plasmas). These are in fact the
conditions where the SCL approach may be expected to work
best.

(x) On the other hand, the so-called wave-packet model,
built in terms of Gaussian functions in the formulation previ-
ously developed by Kaneko [48–50] and extended to quantum
plasmas in Ref. [47], yields excellent results in all cases when
compared with the more exact dielectric function of Ref. [46].

As a general conclusion of this study, the quantum sta-
tistical formulation for particle-plasma interactions presented
here can be extensively applied over wide ranges of plasma
conditions.

We finally note that previous theoretical studies where the
effects of statistically assisted processes of energy exchange,
or the special restrictions for incident electrons, were not
taken into account, may have to be reconsidered.
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APPENDIX A: DIELECTRIC FUNCTIONS

This Appendix summarizes three main formulations of the
dielectric function for a plasma: (a) an exact quantum formu-
lation for plasmas of arbitrary degeneracy (AB formulation)
[46], (b) a quantum formulation based on Gaussian functions
(PWP formulation) [47], and (c) the classical formulation for
the Maxwell-Boltzmann distribution of electron speeds (SCL
formulation) [42]. The derivations of all these cases are based
on the theoretical developments of Ref. [46].

1. The quantum dielectric function

The three dielectric models described here may be derived
from the general expression [46]:

ε(q, ω) = 1 + e2

π2q2

∫
d3k

fFD(
−→
k + −→q ) − fFD(

−→
k )

h̄ω + iδ − (E−→
k +−→q − E−→

k
)
,

(A1)

where E−→
k

= h̄2k2/2me, and fFD(
−→
k ) is the Fermi-Dirac distri-

bution function for plasmas of arbitrary degree of degeneracy:

fFD(
−→
k ) = {1 + exp [β(Ek − μ)]}−1, (A2)

where β = 1/kBT , and μ is the chemical potential of the
plasma. The chemical potential may be determined with the
Fermi-Dirac integral of order 1/2 using Eq. (6) of Ref. [46].

Closed expressions for the real and imaginary parts of
ε(q, ω) can be obtained from Eq. (A1). The real part may be
written as [46]

ε1(q, ω) = 1 + χ2
0

4z3
[g(u + z) − g(u − z)]. (A3)

Here χ2
0 = (1/πkF a0), a0 = h̄2/mee2 is the Bohr radius, θ =

1/D = kBT/EF , EF is the Fermi energy, η = μ/kBT , and

g(x) =
∫ ∞

0

ydy

1 + eDy2−η
ln

∣∣∣∣1 + x

1 − x

∣∣∣∣ (A4)

in terms of the reduced variables: u = ω/qvF , z = q/2kF .
The expression for the imaginary part is

ε2(q, ω) = πχ2
0

8z3
θ ln

[
1 + exp [η − (u − z)2/θ ]

1 + exp [η − (u + z)2/θ ]

]
. (A5)

The dielectric function obtained in this way provide the
exact solution for the linear response of the electron gas at
finite temperatures (in the RPA approximation [7]), and serves
as a reference model of comparison for other approximations.
It will be referred to here as the AB formulation according to
the complete study provided in Ref. [46].

In the following we obtain particular expressions for the
case θ � 1, including the quantum-Gaussian approach and
the fully classical case.

2. Quantum dielectric function for Gaussian distributions

A. Analysis of real part

To obtain the expression for Gaussian distributions of elec-
tron speeds we consider the limit θ � 1 where the function
g(x) becomes [Eq. (10b) in Ref. [46]]:

g(x) ∼= 2
3 D1/2 �1(D1/2x), (A6)

where �1(x′) is the real part of

�(x′) = �1(x′) + i�2(x′) = 1√
π

∫ +∞

−∞

e−y2

x′ − y + iδ
dy,

(A7)

with x′ = D1/2x.
Then Eq. (A3) becomes

ε1(q, ω) ∼= 1 + χ2
0

4z3

2

3
D1/2 [�1(u′ + z′) − �1(u′ − z′)],

(A8)

where

u′ = D1/2u = ω

qv2T
, z′ = D1/2z = h̄q

2mev2T
, (A9)

and v2T is defined by

v2T =
√

2kBT

me
. (A10)

Note that we are using here the notation vT = √
kBT/me,

v2T = √
2kBT/me.
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We calculate the factor in Eq. (A8) (with D =
mev

2
F /2kBT ):

χ2
0

4z3

2

3
D1/2 = 1

4πkF a0

(
2kF

q

)3 2

3

√
mev

2
F

2kBT
= 4πne2

h̄v2T q3
, (A11)

where k3
F = 3π2n, and vF = h̄kF /me.

Then,

ε1(q, ω) ∼= 1 + 4πne2

h̄v2T q3
[�1(u′ + z′) − �1(u′ − z′)] (A12)

and we notice that

u′ ± z′ =
√

me

2kBT

(
ω

q
± h̄q

2me

)
. (A13)

This is the expression for ε1(q, ω) corresponding to θ � 1.
It is a quantum-mechanical formula corresponding to Gaus-
sian (Maxwell-Boltzmann) distribution of electron speeds.

As in the Kaneko formulation the function �1(x′) may be
calculated from the equivalent formula [49],

�1(x′) =
∫ ∞

0
sin (x′y) e−y2/4dy, (A14)

which avoids the problem of the pole in Eq. (A7).
Another equivalent expression for this function, useful for

numerical calculations, is the following [47]:

�1(x′) = 2x′
∫ 1

0
exp[x′2(y2 − 1)]dy. (A15)

B. Analysis of imaginary part

The limit of Eq. (A5), when θ � 1, was given already by
Eq. (28) in Ref. [46], namely,

ε2(q, ω) = meω
2
P

h̄q3

(
2πme

kBT

)1/2

sinh

(
h̄ω

2kBT

)

× exp
[
−(u2 + z2)

EF

kBT

]
. (A16)

The last exponential term may be written more
conveniently as

exp
[
−(u2+z2)

EF

kBT

]
= exp

{
− me

2kBT

[(
ω

q

)2

+
(

h̄q

2me

)2]}
.

(A17)

The important difference with the classical expression
is that it describes in a correct way the quantum effects
in energy-momentum transfers not contained in the classi-
cal dielectric function. Therefore, this result it is equivalent
to Kaneko’s Wave-Packet Model (WPM) [48] adapted to a
plasma [47]; it will be referred to here as the Plasma Wave-
Packet Model (PWPM). This formulation makes use of all the
analytical properties of the original WPM.

Finally, as shown in Ref. [47], this approach may be
extended to partially or fully degenerate plasmas using an
effective temperature determined in that reference.

3. Classical dielectric function for a plasma (θ � 1)

The classical expression for the dielectric function (usually
derived from the linearized Vlasov-Poisson equation [43,44])
can now be obtained from Eq. (A1) considering the long-
wavelength and low-frequency limit and making the follow-

ing approximations: −→q → 0, f (
−→
k + −→q ) − f (

−→
k ) ∼= −→q ·−→∇ k f (

−→
k ) = h̄−→q · −→v (∂ f /∂E ), and E−→

k +−→q − E−→
k

∼= −→q ·
−→∇ kEk = h̄−→q · −→v

With this approximation one retrieves an expression ob-
tained earlier by Pines [42] in the form

ε(q, ω) = 1 + k2
D

q2
W

(
ω

qvT

)
, (A18)

where vT = √
kBT/me, and

W (ξ ) = W1(ξ ) + iW2(ξ ) = 1√
2π

∫ ∞

−∞

x e−x2/2

x − ξ − iδ
dx.

(A19)

Methods to calculate the function W (ξ ) were described
long ago by Fried and Conte [61], but we will give here
further mathematical expressions useful for straightforward
calculations.

It is illustrative to provide here an alternative derivation
of this result using the PWPM formulation, which will also
yield useful analytical expressions. In this formulation the
quantum-mechanical character of ε1 and ε2 is given by the
terms containing h̄ in Eqs. (A13) and (A17). Therefore, to
get the classical result we take the limit h̄ → 0 in those
expressions.

Starting from the � function of Eq. (A7) we have

�� = [�(u′ + z′) − �(u′ − z′)] ∼= �′(u′) 2z′, (A20)

where �′ denotes the derivative of �.
Let us now define �(u′) = 1

2�′(u′). Taking the derivative
of Eq. (A7) we get

�(u′) = 1

2
�′(u′) = 1√

π

∫ ∞

−∞

y e−y2

y − u′ − iδ
. (A21)

Note that, to obtain this result, a partial integration was
applied.

Replacing now �� in Eq. (A12) gives

ε(q, ω) ∼= 1 + 4πne2

h̄v2T q3
4z′�(u′), (A22)

and replacing z′ = h̄q/2mev2T and v2T = √
2kBT/me, we get

ε(q, ω) ∼= 1 + 4πne2

kBT

1

q2
�(u′). (A23)

Here 4πne2/kBT = k2
D is the Debye screening constant.

Finally, we obtain

ε(q, ω) = 1 + k2
D

q2
�(u′) = 1 + k2

D

q2

1√
π

∫ ∞

−∞

y e−y2

y − u′−iδ
dy,

(A24)

with u′ =
√

me
2kBT

ω
q .
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At first sight the integral function here looks different from
the Pines expression. However, we can show the identity by
making the following change of variables: y = x/

√
2, u′ =

ξ/
√

2. Then,

1√
π

∫ ∞

−∞

y e−y2

y − u′ − iδ
dy = 1√

2π

∫ ∞

−∞

x e−x2/2

x − ξ − iδ
dx,

(A25)

and so

ε(q, ω) = 1 + k2
D

q2
W

(
ω

qvT

)

= 1 + k2
D

q2

1√
2π

∫ ∞

−∞

x e−x2/2

x − ξ − iδ
dx, (A26)

with ξ = ω/qvT =
√

me
kBT

ω
q , in full agreement with Pines [42].

The real part of ε is the principal value of this expression.
Here two alternative expressions may be quoted:

W1(ξ ) = 1 − ξ 2
∫ 1

0
exp

[
ξ 2

2
(y2 − 1)

]
dy, (A27)

or the equivalent formula

W1(ξ ) = 1

2

∫ ∞

0
cos

(
ξy√

2

)
y e−y2/4dy. (A28)

Replacing this in Eq. (A26), a direct calculation of ε1(q, ω)
can be made.

The imaginary part may also be obtained from Eq. (A19)
using the limiting property

1

x − ξ − iδ
→ PV

(
1

x − ξ

)
+ iπδ(x − ξ ), (A29)

or taking the limit h̄ → 0 in Eq. (A16). This yields

ε2(q, ω) = meω
2
P

2kBT

(
2πme

kBT

)1/2(
ω

q3

)
exp

[
− me

2kBT

(
ω

q

)2]
.

(A30)

As is obvious from these expressions all quantum-mechanical
terms have disappeared.

The combination of this fully classical solution with the
quantum-mechanical approach described in the text is referred
to as the semiclassical model (SCLM).

APPENDIX B: APPENDIX B: POLARIZATION AND
FLUCTUATION TERMS IN THE ENERGY-LOSS

MOMENTS

The formulation given in the text separates the contribu-
tions into 0-order and N-order processes. This procedure is
fully equivalent to the separation in terms of polarization
and fluctuations, a terminology that is normally used in the
standard plasma literature [32,33]. However, we think that the
former terminology fits better with the quantum-mechanical
framework considered here.

For the sake of comparison with other expression of the
stopping power for light particles reported by previous authors
[62,63] it is useful to rewrite the expressions developed here
as integrals over positive frequencies only. To do this we

consider the expressions for the positron stopping power in
Eqs. (46) and (47). Changing the integration variable ω by
−ω in Eq. (46) and making use of the relation N (−ω) =
−[1 + N (ω)], we obtain

Sloss = 2

π

(Ze

v

)2 ∫ q1

0

dq

q

∫ qv−γ q2

0
ω[1 + N (ω)]

× Im

[ −1

ε(q, ω)

]
dω. (B1)

The term 1 in the square bracket yields the energy loss
corresponding to polarization, and the term with N (ω) com-
bines with the “gain” term of Eq. (47) to yield the fluctuation
term. By rearranging the terms and considering the different
integration limits in q and ω, we finally get

S = Spolar + Sfluct, (B2)

where

Spolar = 2

π

(Ze

v

)2 ∫ q1

0

dq

q

∫ qv−γ q2

0
ωIm

[ −1

ε(q, ω)

]
dω,

(B3)

and

Sfluct = 2

π

(Ze

v

)2 ∫ q1

0

dq

q

∫ qv+γ q2

qv−γ q2
ωN (ω)Im

[ −1

ε(q, ω)

]
dω

+ 2

π

(Ze

v

)2∫ ∞

q1

dq

q

∫ qv+γ q2

−qv+γ q2
ωN (ω)Im

[ −1

ε(q, ω)

]
dω,

(B4)

with q1 = 2mpv/h̄, γ = h̄/2mp, and mp is the mass of the test
particle.

By comparing with the expressions in Ref. [63] [Eqs. (5)
and (6)] we find unexpected differences. On the other hand,
our result for the total stopping agrees completely with Eq. (1)
of Ref. [62]. We stress here that a careful consideration of the
integration limits is required in order to get the correct results.

As a final remark, we must also stress that these expres-
sions are appropriate to describe the stopping of positrons but
do not describe the case of electrons since the restrictions
imposed by the identity principle are nor included in these
formulas, nor in the calculations of the cited references. The
relevance of these restrictions can be assessed from the exam-
ples given earlier in the text.

A similar analysis can be made for the straggling and
inelastic mean-free path. Taking for instance the case of the
straggling, we can make the same change of integration vari-
able ω → −ω, and considering now the different parity of the
integrand we get

�2
loss = 2

π

(Ze

v

)2

h̄
∫ q1

0

dq

q

∫ qv−γ q2

0
ω2[1 + N (ω)]

× Im

[ −1

ε(q, ω)

]
dω, (B5)

and following the same procedure as before we obtain

�2 = �2
polar + �2

fluct, (B6)
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with

�2
polar = 2

π

(Ze

v

)2

h̄
∫ q1

0

dq

q

∫ qv−γ q2

0
ω2Im

[ −1

ε(q, ω)

]
dω.

(B7)

and

�2
fluct = 2

π

(Ze

v

)2

h̄
∫ q1

0

dq

q

∫ qv−γ q2

0
ω22N (ω)

× Im

[ −1

ε(q, ω)

]
dω

+ 2

π

(Ze

v

)2

h̄
∫ q1

0

dq

q

∫ qv+γ q2

qv−γ q2
ω2N (ω)

× Im

[ −1

ε(q, ω)

]
dω

+ 2

π

(Ze

v

)2

h̄
∫ ∞

q1

dq

q

∫ qv+γ q2

−qv+γ q2
ω2N (ω)

× Im

[ −1

ε(q, ω)

]
dω. (B8)

Notice the different integration limits for q and ω in each of
these terms.

Finally, a similar decomposition can be made for the
inverse-mean-free path, as the previous one for the strag-
gling, with the only change of omitting the ω2 factor in the
integrals.
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