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The results of six highly resolved direct and large eddy simulations of gravity and
conservative turbidity currents are presented to illustrate the point that the rapidly varying
evolution of these currents follow a universal cyclic sequence of four states. The demar-
cation between these four states is determined by the bulk Richardson number and the
acceleration/deceleration of the flow. We describe in detail the identification process of
these states, together with the associated three-dimensional structure of the current. The
exact depth-averaged momentum balance is computed and used to explain the intricate
details of the nonmonotonic rapid evolution of the current between the different states.
Finally, the balance of turbulent kinetic energy and concentration flux are computed to
explain how and why the current evolves through the cyclic sequence of states. We also
explore the mechanism by which the current can exit the cyclic sequence and slowly evolve
towards self-similar supercritical or subcritical states.
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I. INTRODUCTION

A dense underflow, below a deeper body of lighter fluid, down a sloping bottom is a configuration
of considerable interest in many geophysical and engineering applications. Often the dense under-
flow and the lighter fluid above are the same material and the higher density is due to temperature,
salinity, or suspended sediment [1,2].

The evolution of a current as it flows downstream is of fundamental importance. This evolution
is controlled by four important balances [3–5]. The volume of fluid carried by the current increases
due to entertainment of clear fluid at the top of the flowing current. The excess weight of the
current’s fluid over the surrounding is the source of streamwise momentum, which is balanced by a
combination of basal drag, momentum loss by entrainment, and current acceleration. A conservative
current is one where the streamwise flux of the agent responsible for the excess weight (temperature,
salinity, or suspended sediment) is conserved as the current flows downstream. The fourth balance
of importance is that of turbulence, which is produced, dissipated, and transported/diffused along
the streamwise and bed-normal directions.

These balances have been studied using direct and large eddy simulations in the context of both
the evolution of the front and the body of the current [6–15]. It is generally accepted that the head of
the current is far more turbulent and considerably more erosive than the body of the current [16,17].
Even if we limit attention to the body of the current that forms behind the head, a wide variety
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of evolutions have been observed in simulations, laboratory experiments, and field measurements
[11,18–20]. Recent simulations and experiments [5] show that, in a very long channel of constant
slope, the body of a conservative current approaches a self-similar state, which is characterized by
the bed slope as the only parameter. Due to the multilayer structure of the current with near-bed and
interface layers [21,22], the approach to complete self-similarity is very slow and goes as x−1, where
x is along the flow direction. There are many situations of practical interest where the evolution of
the current can be more complex [23]. For example, an oscillatory and nonmonotonic evolution of
the current is observed if at the inlet of the channel the current is far from the self-similar state. The
current varies rapidly during the initial adjustment immediately downstream of the inlet (rapidly
varying phase), before slowly approaching the self-similar state far downstream (slowly varying
phase). A similar rapidly varying phase is expected when a current is abruptly disturbed by a sudden
change in the bed, such as a slope break or a localized bump, [24–26].

The demarcation between supercritical and subcritical flow is typically in terms of the local
densimetric Froude number or in terms of the local Richardson number (the two are related
by Fr2 = 1/Ri). The supercritical and subcritical currents are defined in terms the local value
of Richardson number being Ri < 1 and Ri > 1, respectively. The subcritical and supercritical
nature of the current have been well characterized in their self-similar evolution. In contrast, under
conditions of rapid streamwise variation, the nature of currents with local value of Ri < 1 and
Ri > 1 is not well understood. The rapidly varying nonmonotonic evolution can be partitioned into
four types of states: (i) accelerating current of local Ri < 1 (A-Super), (ii) decelerating current
of Ri < 1 (D-Super), (iii) accelerating current of Ri > 1 (A-Sub), and (iv) decelerating current
of Ri > 1 (D-Sub). As it will be shown below, the local structure of a rapidly accelerating or
decelerating current of Ri < 1 (or Ri > 1) does not resemble that of self-similar supercritical (or
subcritical) current. In other words, the structure of the A-Super and D-Super (or A-Sub and D-Sub)
currents are distinctly different from that of self-similar supercritical (or subcritical) state that the
current changes rapidly during its streamwise evolution.

The acceleration (or deceleration) status of the current is characterized by dU/dx > 1 (dU/dx <

1), where U (x, t ) is the span and depth-averaged streamwise velocity of the current. Since
Ri ∝ U −2, a subcritical current that accelerates in a sustained manner will eventually become
supercritical. That is, a current that is in A-Sub state in a sustained manner will eventually enter
the A-Super state. Similarly, a supercritical current when it decelerates in a sustained manner will
eventually become subcritical (i.e., a D-Super current will transition to D-Sub state). Following
hydraulic literature, when the current is neither accelerating nor decelerating along the streamwise
direction (i.e., dU/dx = 0), it will be termed normal condition.

The primary purpose of this work is to report our interesting observation that many (perhaps
all) rapidly varying gravity currents seem to evolve in the following cyclic sequence: · · · A-Sub
→ A-Super → D-Super → D-sub → A-Sub → · · · . The point where the current changes from
the A-Super to D-Super state defines the normal supercritical (N-Super) state. Similarly the point
where the current changes from the D-Sub to A-Sub state defines the normal subcritical (N-Sub)
state. Though the N-Super and N-Sub states are associated with zero acceleration, they are not fixed
points. They are turning points, since the balances of mass, momentum, buoyancy, and turbulence
are not in perfect equilibrium. This is the reason why the current drifts between the different states.

For bed slopes θ > 1◦, the current eventually slowly evolves to a self-similar supercritical
(SS-Super) state [21]. However, depending on the status of the current at the inlet, the current
will evolve through the cyclic sequence mentioned above and enter the self-similar state from
the A-Super state. Similarly, for bed slopes θ < 1◦, the current eventually slowly evolves to a
self-similar subcritical (SS-Sub) state [22]. Depending on the status of the current at the inlet, the
current will evolve through the cyclic sequence and enter the self-similar state from the A-Sub state.
For intermediate slopes θ ≈ 1◦ the current is transcritical and the current is observed to go through
the cyclic sequence several cycles without settling to a self-similar state [23].

In this work we will investigate results for several highly resolved direct and large eddy numerical
simulations with up to two billion grid points. Exploring the nature of cyclic transitions between

043801-2



UNIVERSAL NATURE OF RAPID EVOLUTION OF …

the A-Sub, A-Super, D-Super, and D-sub states in a rapidly varying current will be the focus of this
paper. We will also investigate the mechanisms of these transitions in terms of the turbulent structure
of the near-bed and interface layers of the current. Our earlier efforts focused only on the structure
of the supercritical and subcritical currents in the self-similar state [5,22] and on the oscillatory
evolution in the transcritical state [23]. Extending these prior understandings to rapidly varying
currents that are far from their self-similar state is the present focus. Of particular importance is the
fact that even currents in sufficiently steep (or shallow) slopes that eventually evolve into self-similar
supercritical (or subcritical) state undergo rapid oscillatory evolution when initiated or disturbed far
from the self-similar state. The rapid oscillatory evolution follows a definite cyclic pattern, which
will be explored here in detail.

An example of particular interest to the present work is turbidity currents where heavier
sediment-laden subaqueous riverlike flows travel downstream within submarine channels. A tur-
bidity current is heavier than the surrounding body of water due to the suspended sediment. Often
the suspended sediment is noncohesive and small enough so that its settling velocity can be ignored.
In the absence of deposition or erosion of sediments at the bottom of the current, the turbidity current
behaves essentially as a conservative gravity current.

The rest of the paper is organized as follows. In Sec. II we present the simulation details and the
numerical model. In Sec. III we precisely define the four different rapidly varying states. The three-
dimensional structure of the current at each state is shown and analyzed in Sec. IV. We compute the
depth-averaged momentum, turbulent kinetic energy, and concentration balances in Secs. V and VI.
While the previous sections used the results of two simulations as primary examples of illustration,
in Sec. VII we consider four other cases of rapidly varying currents to demonstrate the universal
nature of the cyclic evolution between the four states. Finally, in Sec. VIII we discuss in detail
the consequences of cyclic evolution between the four different states in terms of turbulence and
concentration flux partitioning between the near-bed and interface layers.

II. SIMULATION DETAILS AND CASES STUDIED

In the following, we report on six direct and large eddy simulations of gravity currents flowing
down a sloping bed of inclinations between θ = 0.29◦ and 2.9◦. The density variation is assumed
to be sufficiently small that the use of the Boussinesq approximation is valid. With this assumption,
the governing equations are

∂u
∂t

+ u · ∇u = −∇p + 1

Rein
∇2u + Riinc eg, (1)

∇ · u = 0, (2)

∂c

∂t
+u · ∇c = 1

ReinSc
∇2c, (3)

where eg = (sin θ, 0,− cos θ ), with θ being the bed slope. The equations are nondimensionalized
with the inlet half-height H as the length scale, average concentration of the agent responsible for
the excess buoyancy at the inlet plane cv = 1/2H

∫ 2H
0 c̃ dz as the concentration scale, and inlet

average velocity Uin = 1/2H
∫ 2H

0 ũ dz as the velocity scale. With these scales, the dimensionless
parameters are the inlet Reynolds number Rein = Uin2H/ν, Schmidt number Sc = ν/κ , where ν

is the fluid kinematic viscosity and κ is the concentration diffusivity, and inlet Richardson number
Riin = Rgcv2H/U 2

in. Here, g is the acceleration due to gravity and R = ρs/ρ f − 1, where ρs and ρ f

are the densities of the agent of excess buoyancy being transported and the fluid, respectively. For
all the cases studied in the present work, Rein = 5650 and Sc = 1.

Cases 1 and 3 through 6 have a constant bed slope θ , while case 2 presents a slope-break at
x = 231 where θ changes. The intent of the slope break is to induce a rapid transition between a
self-similar subcritical state (SS-Sub) to a supercritical state (SS-Super) and observe the transition
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TABLE I. Details of cases studied in this work. Case name, slope angle, inlet Richardson number, domain
size, number of spectral elements, and number of GLL point per element. For all cases, Rein = 5650 at the
inlet. Directions x, y, and z correspond to streamwise, spanwise, and wall-normal directions, respectively.

Case θ Riin Lx × Ly × Lz Ne,x × Ne,y × Ne,z Np

Case 1 0.72◦ 0.66 301 × 8π/3 × 20 336 × 16 × 44 83–163

Case 2 0.29◦ in x ∈ [0, 231) 1.62 580 × 8π/3 × (12–30) 612 × 16 × 40 83–163

2.9◦ in x ∈ [231, 580]
Case 3 0.29◦ 0.33 904 × 8π/3 × 20 504 × 8 × 30 83

Case 4 0.29◦ 1.28 904 × 8π/3 × 20 504 × 8 × 30 83

Case 5 0.29◦ 2.83 904 × 8π/3 × 20 504 × 8 × 30 83

Case 6 2.9◦ 1.42 904 × 8π/3 × 20 504 × 8 × 30 83

between the two. Cases 1 and 2 are high resolution DNS simulations, whereas cases 3 through 6
are LES simulations with a dynamic Smagorinsky model implementation [27,28]. For the DNS
simulations, the grid resolution in wall units is up to �x+ � 5, �y+ � 3, and �z+

wall � 0.3 for
the streamwise, spanwise, and wall-normal directions, respectively. For LES cases, �x+ � 20,
�y+ � 12, and �z+

wall � 0.7. At the inlet plane, for z � 2, all simulations use synthetic turbulence
generation based on the synthetic eddy method [29,30]. The velocity data for the inlet plane is based
on a turbulent channel flow with Re = 5650 [31] and constant concentration c(0, y, z � 2) = 1. For
z > 2, the inlet velocities are set equal to zero. At the top boundary condition, far from the top edge
of the current, the computational domain is open and allows for ambient fluid to enter the domain to
compensate for clear water entrainment in the current. The outlet boundary consists of a stabilized
open boundary condition [32], allowing for the current to exit the domain. Statistics were taken for
at least 200 nondimensional time units after reaching statistical equilibrium, which corresponds to
approximately 105 time steps. (See Table I.)

III. FOUR DIFFERENT RAPIDLY VARYING STATES

We start with a precise characterization of the four different rapidly varying states of the current.
We will use the simulation results of case 1 and case 2 for this purpose. Local Richardson number
is defined as

Ri(x) = 1

Fr(x)2
= h2

u Riin
∫ ∞

0 c dz(∫ ∞
0 u dz

)2 , (4)

where hu is the upper edge of the current defined by the location where streamwise velocity is
nearly zero (u = 2 × 10−2, ∼0.1% of the velocity maximum). In all the cases considered, the
flow is homogeneous along the spanwise direction and statistically stationary and as a result the
ensemble average is approximated by an average over spanwise direction and time and denoted
by an overbar. With the above definition, the Richardson number is a function of the streamwise
direction x. Figure 1 shows a plot of Ri versus x for all cases considered. We also define the gradient
Richardson number as the ratio between the stabilizing effect of stratification and the destabilizing
effect of shear,

Rig(x) = −Riin
∂c/∂z

(∂u/∂z)2 , (5)

where the numerator is the nondimensional Brunt-Väisälä frequency N2 = −Riin∂c/∂z. Also plotted
in Fig. 1 is the local minimum gradient Richardson number Rig within the interface defined as
Rig,min(x) = Rig(x, z)|min for z > zum, where zum(x) is the vertical location of span and time averaged
streamwise velocity peak, for each streamwise location x. Thus, at each streamwise location, the
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FIG. 1. (a), (b) bulk Richardson number Ri and the local minimum value of the gradient Richardson number
Rig within the interface layer for (a) case 1 and (b) case 2. Colors denote the non-normal regime at each
streamwise location. (c) Spanwise and time averaged concentration field for case 2. Also shown are current
thickness h(x), upper edge of the current defined by the location of zero streamwise velocity hu(x), and the
location of the streamwise velocity maximum zum(x). Wall normal axis is stretched for better visualization.

minimum value of the gradient Richardson number is chosen within the upper interface layer. In
the plots of Richardson number, we identify the following four states of current evolution: A-Super:
regions where Ri < 1 and d Ri/dx < 0 (shaded red); D-Super: regions where Ri < 1 and d Ri/dx >

0 (blue); D-Sub: regions where Ri > 1 and d Ri/dx > 0 (light blue); A-Sub: regions where Ri > 1
and d Ri/dx < 0 (orange). Furthermore, we observe the occurrence of the sequence · · · A-Sub →
A-Super → D-Super → D-sub → A-Sub → · · · as a natural consequence of the periodic evolution
of the Richardson number.

Although the two cases shown in the figure are qualitatively similar, the quantitative evolution
of Ri is different both in the amplitude and in the wavelength of variation. In case 1 [Fig. 1(a)],
the Richardson number of the transcritical current remains close to unity and thus the amplitude
of cyclic variation is not large. On the other hand, in case 2 [Fig. 1(b)], as the slope changes, the
self-similar Richardson number corresponding to these slopes changes from about 1.7 to 0.35, and
this change occurs following the cyclic sequence. Furthermore, in case 2, after one and a half cycles
the current enters a slow approach towards SS-Super state, whereas in case 1 the current continues
to cyclically vary till the end of the computational domain.

A few other features can be readily identified as well. First and foremost, the extent of
deceleration is typically much shorter than the extent of acceleration. As will be seen in the
three-dimensional structure of the current, the deceleration phase is associated with an internal
hydraulic jump and an increase in the height of the current with vigorous generation of turbulent
structures within the current. Therefore, the streamwise extent of deceleration is typically limited,
especially when compared to the much gentler evolution of the current during the acceleration phase.
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The difference can also be understood in terms of streamwise pressure gradient. Deceleration is
associated with positive streamwise pressure gradient and the rapid change of the current is in
response to this adverse pressure gradient. In comparison, acceleration is associated with favorable
streamwise pressure gradient and the flow evolves smoothly.

Also plotted in the figure is the local minimum value of gradient Richardson number Rig within
the interface layer as a function of x, whose behavior is similar to the bulk Richardson number in
that it oscillates around the critical number Rig = 0.25 [33]. Streamwise locations where Rig > 0.25
imply that the entire interface layer is stabilized by stable stratification, whereas regions where Rig <

0.25 correspond to locations where some portion of the interface layer supports shear instability.
Although Rig = 0.25 is the traditionally accepted critical value [33], we caution the reader that
Rig = 0.25 does not demarcate stable and unstable regimes. We observe that, in the currents to
be discussed in this work, Rig = 0.25 seems to be reasonably accurate in separating stable and
unstable behavior of the interface layer, although the precise critical value sometimes seems to
deviate. Furthermore, it must be stressed that a local value of Ri > 1 does not indicate Rig > 0.25
and stability of the upper interface layer. While this relation may be appropriate in the self-similar
state, it does not apply when the flow is rapidly evolving. We observe a phase lag between Rig and
Ri, which is related to the lag between dissipation and production of turbulent kinetic energy. That
is, the interface turbulence takes a while to dissipate after Rig increases above 0.25.

Figure 1(c) shows a spanwise and time averaged concentration field for case 2 and the down-
stream evolution of the current thickness defined as [34]

h(x) =
(∫ ∞

0 u dz
)2

∫ ∞
0 u2 dz

. (6)

Also shown are the upper edge of the current hu(x) and the location of the streamwise velocity max-
imum zum. Here we observe that, immediately after the slope change, the current thickness slightly
diminishes accompanied by downstream acceleration, followed by an internal hydraulic jump with
a sudden increase in the current height and strong deceleration. Over the entire streamwise length,
the height of the current h(x) is a little lower than the current edge hu(x), defined by the point of
zero streamwise velocity. Also, the location of velocity maximum zum(x) is much closer to the bed
compared to the current height.

The streamwise evolution of the velocity and concentration profiles for cases 1 and 2 are
presented in Fig. 2. Also marked in the figure as a blue dashed line is the location of velocity
maximum that separates the lower near-bed layer from the interface layer above [21,22]. In case
1, a small oscillatory adjustment of the current along the streamwise direction is observed. The
cumulative effect of the changes from x = 20 to 260 is quite significant for both the velocity and
concentration profiles. Case 2 shows the transition from a subcritical to a supercritical current, where
the velocity and concentration profiles at x = 200 and 500 match the corresponding experimental
velocity and concentration profiles measured in the subcritical and supercritical self-similar-like
regimes, respectively [12,19,35–37]. The oscillatory evolution of the current that was clear in the Ri
plots is not entirely evident in these profiles. We do observe some influence of the cyclic evolution
in the profiles, for example, around x = 275 in case 2.

IV. THREE-DIMENSIONAL STRUCTURE

Figures 3 and 4 show composite plots for cases 1 and 2, respectively, where the turbulent
structures captured by isosurfaces of swirling strength (λci = 4 above and λci = 10 below zum)
[38,39] are colored by bed-normal location z, together with bottom and top isosurfaces where
turbulent kinetic energy (TKE) production is zero (light blue and pink surfaces). Moreover, the
interface between the current and the ambient is shown by an isosurface of concentration c = 0.01
(light brown). Note that, for case 1 (Fig. 3), regions above and below zum are separately presented
with different color scales for better visualization. Also in this plot we present contours of spanwise
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FIG. 2. Scaled velocity and concentration profiles at different downstream locations for (a) case 1 and
(b) case 2. Experimental and field data points from � [19], � [35], © [36], � [37], and � [12]. Blue and red
symbols correspond to velocity and concentration profiles, respectively. The dashed blue line corresponds to
zum(x).

vorticity 
y in the plane y = 1.95 (red-blue color scale), shown only in the region (c � 0.01) and
stretched in the bed-normal direction for better visualization. Also shown are contours of zero TKE
production (light yellow) to illustrate the two/three layer structure of the current. We will focus on
the region 120 < x < 280 for case 1 [see Fig. 1(a)] and 200 < x < 440 for case 2 [see Figs. 1(b)
and 1(c)], where we can analyze a complete cycle through all the states.

We will use case 1 to first describe the structural evolution of the current through the sequence of
states (see Fig. 3). At x = 120 the current is in A-Super state; the interface between the ambient and
the current is mainly flat, with an absence of turbulent structures in the interface layer. The contours
of spanwise vorticity resemble those seen in a self-similar subcritical gravity current [5,22]. Thus it
must be noted that, although the current is closer to a self-similar subcritical current in terms of its
turbulent structure, its momentum and buoyancy correspond to those of a supercritical current. This
inconsistency arises because immediately upstream the current was in A-Sub state, and it rapidly
accelerated to become A-Super. While the rapid evolution of the current was sufficient to change
the local Richardson number to be below 1, the turbulent structures still remain the same as those
of a subcritical current. This imbalance is important, since it forces the current to evolve to the next
stage, As a result, in the A-Super state, we observe a three layer structure similar to a self-similar
subcritical current (see frame D of the schematic shown in Fig. 7), where the intermediate layer
results from the counter-rotating vortices (CV) above the heads of near-bed hairpin vortices that
point downstream and up (HPb). This intermediate layer exists between the near-bed and interface
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FIG. 3. Three-dimensional structure of case 1. Turbulent structures in the density current are captured by
an isosurface of swirling strength (λci = 4 at interface and λci = 10 at near-bed layer) and colored by wall
normal location z, together with bottom and top isosurfaces where TKE production is zero (light blue and
pink surfaces). Also shown are contours of spanwise vorticity 
y at y = 1.95 (red-blue color scale). Moreover,
contours of zero TKE production at y = 1.95 are shown in light yellow. Colors of bottom labels denote the
rapidly varying state at each streamwise location.

layers, presenting negative TKE production which acts as a barrier for momentum and turbulence
transfer between layers.

Towards the end of the A-Super state, as a result of the cumulative acceleration of the current,
the stabilizing effect of stratification has significantly decreased and packets of hairpin vortices
start forming at the top of the interface layer (150 � x � 160; see inset A in Fig. 3). However, the

FIG. 4. Three-dimensional structure of case 2. Turbulent structures in the density current are captured by
an isosurface of swirling strength λci = 4 and colored by wall normal location z. Colors denote the rapidly
varying state at each streamwise location.
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intermediate layer with negative TKE production is still present and there is no interaction between
structures in the near-bed and interface layers. Furthermore, spanwise vorticity is mostly negative
(counterclockwise rotation) in the intermediate and interface layers, while the near-bed layer is
populated by hairpin vortices.

Further downstream, at x ≈ 170, the current starts to decelerate and enter the D-Super regime. As
a result of weakened stratification effect, shear-induced, spanwise coherent structures start forming,
which subsequently give a wavy structure to the interface (KH on inset B). The intermediate layer
with negative TKE production disappears. This can be seen by the end of the light blue plane
indicating that P � 0 in the entire current. Furthermore, the thinning and subsequent absence of
the intermediate layer is accompanied by interaction between the near-bed (HPb) and interface
structures, where hairpin vortices that populate the near-bed layer tilt their head down, right below
the spanwise coherent interfacial vortices (KH), and up in the regions between these.

With enhanced entrainment, a larger fraction of the driving potential energy is lost to interfacial
drag. Therefore, the current slows down and enters D-Sub state. Around x ≈ 190 spanwise coherent
vortices start breaking down into smaller structures which give the tonguelike structure of the
interface (HPui on inset B). The current acquires a two layer structure (near-bed and interface layers)
where three families of hairpin vortices are found: (i) near-bed hairpin vortices HPb below zum;
(ii) lower-interface hairpin vortices HPli right above zum; (iii) upper-interface hairpin vortices HPui

near the current-ambient interface [21]. A schematic representation of this transition can be seen in
inset C.

Again, we observe that, in the D-Sub state, although the current is closer to a self-similar
supercritical current in terms of its turbulent structure (three families of hairpin vortices populate
the current), its momentum and buoyancy are corresponding to those of a subcritical current. This
is because, while the current has rapidly decelerated to a local Richardson number higher than
1, turbulent structures still remain the same as those of a supercritical current. This imbalance
forces the current to evolve to the next stage. As the current travels downstream and stratification
increases, fewer structures are seen in the interface layer. An interesting separation of the upper
interface structures can be seen by analyzing the contours of λci = 4 (in green) presented together
with spanwise vorticity contours. As stratification increases, the upper interface structures decrease
in height, up until a point where the upper HPui and lower HPli interface structures are close to each
other at x ≈ 250 (A-Sub state; see inset C). At the same time, some weaker structures are remnant
near the current-ambient interface, which widen their interlib angle as they travel downstream until
they dissipate. After these isolated vortices HPui dissipate, hairpin vortices populate the current
only in the near-bed layer (HPb on inset D). This transition from turbulent to nonturbulent interface
layer happens together with the formation of the intermediate layer of negative TKE production.
Moreover, after the interface becomes nonturbulent (x � 250), spanwise vorticity becomes mainly
negative.

The evolution of turbulent structures in case 2 (see Fig. 4) is quite similar to that seen in case 1.
However, case 2 is useful to reinforce the point that the specific interface characteristics are strongly
influenced by the upstream state. For example, the A-Super state at x ≈ 240 in case 2 is similar to the
A-Super state in case 1 at x ≈ 140. The subsequent evolution of vortical structures in both cases is
similar as well. However, the A-Super state in case 2 at 320 < x < 450 does not show a flat interface
since, unlike in case 1, turbulence does not decay away in the interface layer. Instead of being in
a supercritical state without interfacial turbulence, the current transitions to a slow acceleration
and evolves to a self-similar supercritical state with the appropriate amount of turbulence in the
interface layer for a supercritical state. Also of interest is how the interface turbulence develops as
shown in inset A. We see the classic formation of initial two-dimensional Kelvin-Helmholtz rollers
that undergo three-dimensional instability with the formation of streamwise ribs that reside in the
braid region between the Kelvin-Helmoltz rollers [40,41], which quickly break down into interface
turbulence. The high resolution of the DNS is essential in resolving the resulting complex vertical
structure.
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V. MOMENTUM AND TKE BALANCES

Following [3,42,43] we first investigate the dimensionless span and depth-averaged mean
streamwise momentum equation. In the present case of steady flow regime, the mean streamwise
momentum balance can be rigorously expressed in the following form without any approximation
[5]:

Riin sin θ

∫ ∞

0
c dz− 1

Rein

(
∂u

∂z

∣∣∣∣
z=0

+ d2Q

dx2

)
− ∂

∂x

∫ ∞

0
p dz − ∂

∂x

∫ ∞

0
u′u′ dz− ∂

∂x

∫ ∞

0
u2 dz = 0,

(7)
where the streamwise fluxes of mass, momentum, and buoyancy are defined as

Q(x) =
∫ ∞

0
u dz, M(x) =

∫ ∞

0
u2 dz, F (x) =

∫ ∞

0
Rcug sin θ dz. (8)

In the simulations, the upper limit is replaced with a large value of z that extends far upwards
into the ambient, where the current velocity and buoyancy vanish. The fluxes are used to define
current height h(x) = Q2/M and mean velocity U (x) = M/Q. Following the steps presented in [5]
the momentum balance can be rewritten as

FQ

θmM
− CD

M2

Q2
− d (βpM )

dx
− d (β f M )

dx
− ew

M2

Q2
− Q

dU

dx
= 0, (9)

where the first four terms correspond to the first four terms of (7) and the last two terms correspond
to the last term of (7). In the above momentum balance, CD(x) is the basal drag coefficient, ew(x) is
the entrainment coefficient, and θm(x), βp(x), and β f (x) are O(1) shape factors, whose definitions
and values in the self-similar regime are given in [5].

The first term in (9) accounts for the excess weight due to concentration and is the source of
streamwise momentum. It is balanced by the other five terms, which in order represent the net
viscous drag force on the current, streamwise pressure gradient force, streamwise Reynolds stress
effect, the cost of raising the streamwise velocity of the entrained fluid from zero to U , and the
acceleration of the current. Note that CDM2/Q2 and ewM2/Q2 are guaranteed to be positive and
therefore viscous drag and entrainment effects are dissipative. In contrast, the other three terms
can be a moment sink or source. In particular, when QdU/dx > 0, it absorbs momentum while
accelerating (acts as a sink) and releases momentum while decelerating (acts as a source).

Figures 5(a) and 5(b) show the depth-averaged momentum balance, Eq. (9), as a function of
streamwise location x for case 1 and case 2, divided by M2/Q2 for nondimensionalization. Let
us first focus on the downstream section when the current is in the A-Super and D-Super states
[red and dark blue shaded regions in Fig. 5(a)]. As the current travels downstream, as indicated
by the sign of −(Q3/M2)du/dx, the acceleration of the current decreases and begins to decelerate
rapidly, reaching the maximum deceleration at the end of D-Sup. During this period, stratification
decreases and the interface layer is increasingly turbulent. With this, ambient fluid entrainment
increases as indicated by the negative peak of −ew (purple line) as a result of enhanced interfacial
mixing. However, basal shear stress (green line) remains nearly unchanged indicating that the
rapid evolution is mainly limited to the turbulent nature of the upper interface layer. As can be
expected, streamwise pressure gradient [(Q2/M2)d (βpM )/dx] becomes negative during periods
of acceleration, and becomes positive during periods of deceleration. The periods of positive
streamwise pressure gradient also coincide with the appearance of spanwise coherent interfacial
vortices. This corresponds to internal hydraulic jumps [44], where potential energy increases due to
the increase in the current’s height at the expense of kinetic energy. The Reynolds stress contribution
[(Q3/M2)d (β f M )/dx], although small, behaves similar to the streamwise pressure gradient.

Focusing on streamwise sections when the current is in the D-Sub and A-Sub states [light
blue and orange shaded regions in Fig. 5(a)], as the current travels downstream, momentum is
lost/gained to accelerate/decelerate the flow and stratification increases resulting in a decrease in
ambient fluid entrainment. Only a slight increase in bed shear stress can be observed. With the
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FIG. 5. Scaled depth-averaged momentum balance as a function of downstream location x for (a) case 1
and (b) case 2. Scaled depth-average TKE balance as a function of downstream location x, for (c) case 1 and
(d) case 2. Dashed lines show the depth-average terms integrated up until the velocity maximum (near-bed
balance). Balance of scaled concentration flux as a function of downstream location. (e) Near-bed balance for
case 1. (f) Near-bed balance for case 2.
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enhanced stratification, the interface is stable again, and the streamwise pressure gradient changes
from positive to negative. Finally, in this transition from turbulent to nonturbulent interface layer,
momentum is gained through the Reynolds stress term as well.

It is striking to observe that, at the normal points of zero acceleration, where the current changes
from acceleration to deceleration or deceleration to acceleration, the other streamwise variation
terms are zero as well [i.e., (Q3/M2)d (βpM )/dx ≈ 0 and (Q3/M2)d (β f M )/dx ≈ 0 as well]. In
other words, the normal points are also fixed points of the current evolution, where the momentum
source is nearly balanced by viscous drag at the bottom and entrainment drag at the interface with the
ambient fluid. However, these fixed points are unstable and the current quickly transitions from A-
Super to D-Super state and from D-Sub to A-Sub state, without remaining at the normal condition,
i.e., the condition where the current does not accelerate or decelerate downstream. It should be noted
that the points of zero streamwise acceleration (i.e., at x = 44, 68, 158, and 216 when dU/dx = 0)
are associated with nonzero d2U/dx2 and thus the current continues to exhibit cyclic evolution.

In contrast, in case 2, the current evolves from near subcritical self-similar state to self-similar
supercritical state and thus perfect equilibrium of the momentum balance can be seen for 100 <

x < 200 and 450 < x < 500 in Fig. 5(b). As expected, streamwise acceleration is negligible at
both terminal states. Also, the streamwise changes in pressure and Reynolds stress contributions
are negligible. As a result, the streamwise momentum source is balanced by losses due to shear
stress at the bed and ambient fluid entrainment. During the rapid evolution, the current attains
normal condition (i.e., dU/dx = 0) at x = 255, 285, and 450. While the former two are unstable
and associated with d2U/dx2 �= 0, the approach to the final normal condition is a slowly varying
self-similar state. In the supercritical self-similar state CD ≈ ew, while in the rapidly evolving states
one or the other has a dominant contribution.

We now explore the cyclic variation in interfacial turbulence by investigating the turbulent kinetic
energy (TKE) balance. The dimensionless mean TKE balance in the statistically stationary state can
be expressed as∫ ∞

0
P dz −

∫ ∞

0
ε dz − Riin cos θ

∫ ∞

0
w′c′ dz − ∂

∂x

∫ ∞

0
uk dz ≈ 0. (10)

The first two terms are the TKE production and dissipation, where P = −u′
iu′

j
∂ui
∂x j

and ε =
1

Rein

∂u′
i

∂x j

∂u′
i

∂x j
, where the overbar indicates span and time average and the prime indicates fluctuation

about this mean. The other two terms are the wall-normal Reynolds flux and streamwise convection
of TKE. Introducing shape factors as in the momentum equation, the above TKE balance can be
rewritten as (see [5])

δ f 2
M3

Q3
− ψd

M3

Q3
− ψ f

M3

Q3
− dKQ

dx
≈ 0, (11)

where δ f 2, ψd , and ψ f are shape factors.
Unlike the streamwise momentum equation (9), which was exact, the above TKE equation is

approximate since it ignores viscous diffusion and transport terms. As we will see below, the
contributions of these additional terms that are neglected in the above balance are in general quite
small. The above integrals are over the entire layer and thus the production, dissipation, and the other
terms account for turbulence balance within both the near-bed layer and in the interface layer. In
order to investigate the TKE balance within each of these two layers separately, we will recompute
the above four terms by replacing the integrals to cover only the near-bed layer. For example, the
near-bed production will be calculated as δ f 2|nw(M3/Q3) = ∫ zum

0 P dz. The difference δ f 2| − δ f 2|nw

thus represents turbulence production in the interface layer. The vertical position of the maximum
streamwise velocity, zum, nearly coincides with the location of the intermediate layer, defined as
the region with zero or negative turbulent production [22], and demarcates the boundary between
near-bed and interface layers. The height of the intermediate layer is small compared to the total
current height and its contribution to the integrals defined above is negligible.
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Figures 5(c) and 5(d) show the different terms of the TKE balance as a function of streamwise
location x, for cases 1 and 2. Focusing on case 1 at x = 120 (A-Super state), the only non-negligible
contributions to the TKE budget are the near-bed production and dissipation. As stratification
within the interface layer decreases, TKE production increases and this increase is primarily in
the interfacial layer. Note that the TKE production term appears in the mean flow kinetic energy
equation as a sink. This means that, as the flow decelerates in the D-Super state, energy is taken from
the mean flow and spent in generating interfacial turbulence. There is a streamwise lag between
turbulence production and dissipation, with the peak dissipation in the interface layer occurring
at x ≈ 210 downstream of peak production at x ≈ 190. Thus, downstream of where the interface
is vigorously turbulent, the smaller scales of turbulence start to dissipate rapidly. Moreover, this
imbalance between production and dissipation results in streamwise advection of TKE (black line)
and expenditure of TKE in interface Reynolds flux (orange line). Now focusing on the extinction of
interface turbulence we see that after x ≈ 220 (A-Sub state), as the flow starts accelerating, kinetic
energy of the mean flow increases. TKE dissipation is high and is not balanced by the decreasing
TKE production. As a result, streamwise advection of TKE becomes positive to balance the excess
dissipation. Finally, as the interface turbulence is again suppressed by stratification, Reynolds flux
becomes negligible and the TKE balance becomes mainly between near-bed TKE production and
dissipation.

VI. PARTITIONING OF CONCENTRATION FLUX

Figures 5(e) and 5(f) present the depth-averaged balance given by the two terms

d

dx

∫ zum

0
(uc + u′c′) dz + (wc|zum + w′c′|zum ) ≈ 0 (12)

as a function of downstream location x for cases 1 and 2. These two terms represent the streamwise
variation in total concentration flux of the agent responsible for excess weight (mean plus Reynolds)
within the near-bed layer and the vertical transport from the near bed to the interface layer. As can be
seen in Figs. 5(e) and 5(f), these two terms nearly balance, indicating that any increase (or reduction)
in streamwise concentration flux in the near-bed layer is due to concentration entering (or leaving)
the near-bed layer from above—note that there is zero concentration transport across the bottom
boundary.

The above equation describes the balance of concentration flux in the near-bed layer and a similar
equation can be written for balance of concentration flux in the interface layer. The second term of
(12) appears in the balance of the interface layer with an opposite sign. In other words, concentration
that enters (or leaves) the near-bed layer must come from (enter into) the upper interface layer,
which in turn will affect the streamwise flux of concentration in the interface layer. Thus Figs 5(e)
and 5(f) are appropriate for both the near-bed and interface layers. From the figure, it is clear that
during flow acceleration, especially during peak acceleration when the current transitions from A-
Sub to A-super state, concentration is leaving the interface layer. On the other hand, during peak
deceleration when the current transitions from D-Super to D-sub state, concentration is up-welled
into the interface layer from the near-bed layer due to large-scale interfacial instabilities.

The exchange of concentration between the two layers follows the same pattern in case 2 as well.
However, in this case, the flow starts in the self-similar subcritical state with perfect balance between
the carrying capacities of the two layers. With the change of slope, however, this equilibrium is
disrupted. The current goes through the cyclic evolution of the four different states while exchanging
concentration between the interface and the near-bed layers. The net effect of these back and forth
exchanges is that the near-bed layer loses concentration to the interface layer, which becomes
turbulent in its approach to the self-similar supercritical state. Therefore, the interface layer is able
to carry a larger amount of concentration.

In the self-similar state there is little exchange of concentration between the two layers, as
indicated in Fig. 5(f) well before and after the slope change. In fact, in the self-similar subcritical

043801-13



SANTIAGO L. ZÚÑIGA et al.

FIG. 6. Bulk Richardson number Ri (blue line) together with the local minimum of gradient Richardson
number Rig at the interface layer (red line) for (a) case 3, (b) case 4, (c) case 5, and (d) case 6. Colors denote
the non-normal regime at each streamwise location.

state, the intermediate layer prevents any exchange of momentum or concentration between the
lower near-bed and the upper interface layers. The main point to be stressed is that, when the current
is rapidly varying, the interface becomes highly turbulent (spanwise coherent KH vortices appear)
and the intermediate layer disappears. As a result, there is vertical transport between the near-bed
and interface layers. One could consider the intermediate layer as a “gate” that opens the path for
momentum, concentration, and turbulence exchange between the layers in the rapidly varying state,
when the current is away from its self-similar state. This transport between the layers is accounted
for by the interface term wc|zum .

VII. OTHER CASES

The spatial evolution of the bulk Richardson number for the other four cases is shown in Fig. 6.
Cases 3, 4, and 5 consider a subcritical slope and in all these cases, after the initial rapid evolution,
the current slowly evolves to the same self-similar subcritical state. In case 3, the current at the inlet
starts in the supercritical state. In case 4, the current at the inlet starts at about the same Richardson
number as the self-similar state. However, since the structure of the mean flow and turbulence at
inlet are different from the self-similar structure, the current goes through an initial phase of rapid
evolution. In case 5, the inlet is more subcritical than the self-similar state and the current goes
through an initial phase of rapid acceleration followed by slow acceleration towards the self-similar
state. It is clear that, no matter where you enter the cycle, it will follow the natural cyclic evolution
until all the balances (mean momentum, turbulence, and concentration flux) are nearly achieved, so
that the current can slowly evolve towards its SS state.

Case 6 is particularly interesting, because its supercritical slope is the same as the downstream
slope of the slope-break case 2. Thus, in both these cases, far downstream the current reaches
the same self-similar supercritical state. However, the bulk Richardson number evolution shown in
Fig. 6(d) is quite different from that shown in Fig. 1(b). The difference is in the nature of turbulence
as the flow enters the supercritical slope. In case 6, although the bulk Reynolds number of the current
at the inlet was chosen to be subcritical, the inflow was designed such that there was turbulence in
the interface layer. This allowed the current to go through a very rapid evolution through the A-Sub
state to quickly become A-Super. After a short duration of rapid evolution in the A-Super state,
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FIG. 7. Schematic representation of the near-bed and interfacial turbulence for (a) self-similar supercritical
currents, (b) self-similar subcritical currents, and (c) rapidly varying states. In blue dashed line: zum; in orange
dashed line: vertical location where u′w′ = 0. We note that in (c) the D-Sub and A-Sub states have been
stretched in the streamwise direction for ease of visualization.

the current enters a period of slow evolution towards the self-similar state, whereas, in case 2, the
current as it entered the steeper slope was without any significant production of turbulence in the
interface layer. Thus, as the current accelerated and entered the A-Super state, for lack of turbulence
in the interface layer, it could not enter a slow evolution towards the self-similar state. The current
had to evolve through a cycle of deceleration in order to develop turbulence in the interface layer.
Once turbulence is generated in the interface layer, the current is able to go through the A-Super
state and evolve towards the self-similar state. Cases 2 and 6 clearly illustrate the fact that the bulk
Richardson number alone is not sufficient to characterize the state of the flow at the inlet. Depending
on the nature of turbulence, especially in the interface layer, different evolutions of the current are
possible. In summary, the four additional cases shown in Fig. 6 illustrate the important point that
no matter which state the current enters the domain, the cyclic evolution through the four states
applies as the current settles to its self-similar state. Inlet conditions far away from this state will
provoke the current to undergo a rapid transition often accompanied by hydraulic jumps, as seen
experimentally by [45,46].

VIII. DISCUSSION AND CONCLUSIONS

The self-similar supercritical (SS-Super), self-similar subcritical (SS-Sub), and rapidly varying
currents that transition between subcritical and supercritical states are schematically represented in
Fig. 7. Self-similar subcritical (SS-Sub) currents have a three layer structure [Fig. 7(b), Ref. [22]]:
(i) an interface layer above the wall-normal location where Reynolds stress is zero (dashed orange
line) and capped by the ambient fluid layer from above, (ii) an intermediate layer where TKE
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FIG. 8. Partitioning of concentration flux between the near-bed (blue line) and the interface (red line) layers
for (a) case 1 and (b) case 2.

production is negative, located below the interface layer and above the maximum of streamwise
velocity (dashed blue line), and (iii) a near-bed layer below the maximum of streamwise velocity.
In this three-layer structure, counter-rotating vortices [CV in Fig. 7(b)] are spawned downstream
of the near-bed hairpin vortex heads (HPb). These CVs play a crucial role in establishing the
countergradient transport of momentum and concentration in the intermediate layer and thereby
strongly isolating the near-bed turbulence from penetrating into the interface layer.

In most shear flows, to the leading order, total production can be approximated as the shear TKE
production defined as Ps = −u′w′ ∂u

∂z . Asymmetry in the velocity profile near the velocity maximum

results in a thin layer of fluid where Reynolds stress −u′w′ and velocity gradient ∂u/∂z have
different sign. This region of negative turbulence production is termed the intermediate layer (II),
between surface of zum marked in dashed blue and surface of zu′w′=0 marked in dashed orange. As a
result, when stratification suppresses turbulence within the interface layer, negative TKE production
is found right above the velocity maximum. Any turbulent fluctuations that enter this layer from
below are converted back to mean flow shear and a strong stable concentration gradient [22].

Self-similar supercritical (SS-Super) currents are comprised of two layers: (i) a near-bed layer
below the velocity maximum and (ii) an interface layer. These currents are populated by three fam-
ilies of hairpin vortices (HPb, HPli, and HPui, which are schematically represented in Fig. 7) [21].
Thus both the near-bed and the interface layers are vigorously turbulent. Thus, in the self-similar
state, the streamwise momentum source is balanced by a combination of basal drag at the bottom
of the bed and entrainment drag at the interface with the ambient clear fluid. For the supercritical
slope θ = 2.9◦, the breakdown of the momentum source between basal and entrainment drag is
roughly balanced. In contrast, in the subcritical slope of θ = 0.29◦, the breakdown between basal
and entrainment drag is 75% and 25%.

Similar to turbulence partitioning between the near-bed and interface layers, we can also address
concentration flux partitioning between the two layers. In the present context of conservative cur-
rent, the total streamwise concentration flux [θgF = F + ∫ ∞

0 Ru′c′g sin θ dz; see Eq. (8)] remains
independent of the streamwise location x. This constant streamwise concentration flux is separated
into flux contributions in the near-bed and interface layers. This concentration flux partitioning
is presented in Fig. 8. In case 1, the inlet condition was such that concentration fluxes were
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FIG. 9. Schematic momentum balance for (a) D-Super, (b) D-Sub, (c) A-Sub, (d) A-Super, (e) slow varia-
tion to SS-Sub, and (f) slow variation to SS-Super. The shown momentum balance terms are C, concentration,
Ac, depth averaged acceleration, Pr, streamwise pressure gradient force, Sh, basal drag, En, ambient fluid
entrainment, and Sp, depth averaged streamwise change of Reynolds stress.

equipartitioned between the two layers. However, soon the partitioning of concentration flux
between the near-bed and interface layers is in the ratio 62% and 38%.

As the current cyclically evolves between the four states we observe the fraction of concentration
flux contained in the near-bed layer to peak at about 65% with only 35% in the upper interface layer,
when the current was in D-Super state. In this state, the interface layer is devoid of turbulence and
thus cannot retain a larger concentration in suspension. We observe the opposite scenario in the
A-Sub state where the fraction of concentration flux contained in the near-bed layer reaches the
minimum value of about 60%. The higher fraction of 40% in the upper interface layer is due to the
action of vigorous turbulence in the upper layer. The observed variation as the current cycles through
the different states is quite small, since the effect on concentration flux exchange between the layers
is not very strong. In case 2 also at the inlet the concentration flux was applied equipartitioned
between the two layers. However, the flow quickly partitioned to about 70% and 30% corresponding
to the bed slope of θ = 0.29◦. Following slope change (marked by the vertical dashed line) there is
vigorous exchange of concentration flux between the two layers and for x > 500 concentration flux
settles to about 50% in each layer corresponding to the supercritical slope. It should be noted that,
although equipartitioning was achieved at earlier time instances, the current continued to evolve and
exchange concentration between the layers, since a slow approach to perfect self-similarity could
be achieved after going through the deceleration phase.

The momentum balance during the cyclic evolution of the current is schematically denoted in
Fig. 9 for case 1. In all the states, the momentum source due to concentration varies little. The
momentum source is primarily balanced by basal drag and entrainment drag at the interface with
the clear fluid. While variation in the basal drag is quite small, entrainment drag remains a sink
(negative value) and exhibits oscillation. Entrainment drag increases in magnitude during D-Super,
remains at the higher value during the D-Sub state, decreases during the A-Sub state, and again
remains nearly a constant at the lower value during the A-Super state. The increased entrainment
is associated with an unstable and turbulent interface layer, while the lower entrainment is during
a period when the interface is stable and free of turbulence. In the self-similar state, entrainment
drag is high in the supercritical state and low in the subcritical state. However, as discussed above,
this is not true when the flow is undergoing rapid evolution. The structure of the interface layer in
the A-super and D-sub states does not resemble those of self-similar supercritical and subcritical
currents.

043801-17



SANTIAGO L. ZÚÑIGA et al.

For the other terms of the momentum balance, we start the investigation at the D-Sub state, where
flow deceleration acts as a momentum source (term denoted as Ac), but its magnitude is decreasing
as indicated by the downward pointing black arrow. The behavior of the pressure term is exactly
opposite of the acceleration contribution and it is typically lower in magnitude. In the A-Sub state,
due to flow acceleration Ac becomes a sink, while the pressure term becomes a source and both
increase in magnitude. In the A-Super state, acceleration and pressure terms remain sink and source,
respectively, but their magnitudes start decreasing as indicated by the down arrows. The Reynolds
stress contribution also changes sign. It is negative and remains nearly a negative constant in the
D-Super state, then increases during D-Sub to become positive, remains a positive constant during
A-Sub, and completes the cycle by decreasing to negative values during A-Super. The evolution is
such that during transitions between supercritical and subcritical states the current briefly reaches
normal states where the acceleration, pressure, and Reynolds stress contributions are nearly zero.

While the currents at self-similar state preserve their three/two layer structure as they travel
downstream, under rapidly varying conditions the current constantly undergoes readjustment of
turbulence and momentum balance. The evolution in case 2 is similar, except that, as the slope
increases, the magnitude of the momentum source also increases. Correspondingly the basal drag
and interfacial entrainment drag also increase in magnitude and all these changes are associated
with superposed oscillations.

From the present work we draw the following key conclusions for both gravity and conservative
turbidity currents.

(1) While flow conditions in the self-similar regime are solely determined by the bed slope, the
rapidly varying transition to it depends on the initial upstream condition.

(2) A rapidly varying current naturally evolves through the following cyclic sequence: · · · A-Sub
→ A-Super → D-Super → D-sub → A-Sub → · · · . Here, “D” and “A” means that the current is
decelerating and accelerating, “Sub” indicates Ri > 1, and “Super” indicates Ri < 1.

(3) For bed slopes θ > 1◦, the current eventually slowly accelerates to a self-similar supercritical
(SS-Super) state. For bed slopes θ < 1◦, the current eventually slowly evolves to a self-similar
subcritical (SS-Sub) state. Depending on the status of the current at the inlet, the current will evolve
through the cyclic sequence of rapid variation before entering slow evolution towards the self-similar
state. For intermediate slopes θ ≈ 1◦ the current is transcritical and the current is observed to go
through the cyclic sequence several cycles without settling to a self-similar state.

(4) The bulk Richardson number of the current at the inlet only characterizes the state of mean
velocity and concentration profiles and thus is not sufficient to determine how the current will evolve
towards its eventual self-similar state. The turbulence initially present in the interface layer (or
lack of it) also plays a crucial role. Similarly, during rapid deceleration a supercritical current may
quickly become subcritical in terms of the mean flow; however, the turbulent state of the current
may still exhibit the two-layer layer structure of the supercritical state. This mismatch is the reason
why the current continues to cyclically evolve through the four different states.

(5) In the depth-averaged streamwise momentum balance, the source term due to concentration
varies little and is mainly balanced by basal drag and entrainment drag at the current’s interface.
While the former remains almost a constant between the rapidly varying states, the latter shows
substantial variation influenced by the amount of turbulence present in the interface. The balance
is then achieved by the presence of the acceleration and pressure terms, which during deceleration
states act as a source and a sink of streamwise momentum, respectively. During acceleration states,
the opposite is true [see Figs. 5(a), 5(b) and Fig. 9].

(6) In self-similar states depth-averaged TKE production is nearly completely balanced by TKE
dissipation. However, in the rapidly varying states, dissipation lags production, and this imbalance
results in streamwise advection of TKE and expenditure of vertical Reynolds flux [see Figs. 5(c)
and 5(d)].

(7) During rapidly varying states, there is an imbalance in the carrying capacity of the near-bed
and interfacial layers, which results in concentration exchange between the two layers [Figs. 5(e)
and 5(f)].
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