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ORIGINAL RESEARCH ARTICLE

Bacterially expressed dsRNA induces Varroa destructor gene knockdown
by honey bee-mediated oral administration

Irina Muntaabskia† , Alejandra Carla Scannapiecoa† , Maria Clara Liendoa , Jose Maria Nizb ,
Romina Russoa and Ricardo Salvadorb�
aInstituto de Gen�etica “E. A. Favret”, gv al IABIMO (INTA- CONICET), Centro de Investigaciones en Ciencias Agron�omicas y
Veterinarias (CICVyA), Instituto Nacional de Tecnolog�ıa Agropecuaria (INTA), Buenos Aires, Argentina; bInstituto de Microbiolog�ıa
y Zoolog�ıa Agr�ıcola (IMyZA), Centro de investigaciones en Ciencias Agron�omicas y Veterinarias (CICVyA), Instituto Nacional de
Tecnolog�ıa Agropecuaria (INTA), Buenos Aires, Argentina

ABSTRACT
The ectoparasite Varroa destructor causes serious losses of Apis mellifera colonies and nega-
tively impacts the beekeeping industry around the world. New control methods have been
proposed based on the RNA interference technique. Previous reports showed that parasi-
tized honey bees fed with double-stranded RNA (dsRNA) synthesized in vitro reduce the
transcription levels of target genes in Varroa mites. An efficient and inexpensive alternative
to produce dsRNA is the use of bacteria capable of achieving high levels of in vivo synthesis.
In the present study, dsRNA synthetized in vivo was used to induce gene silencing in V.
destructor and evaluate their effect on the survival of both honey bees and the parasitic
Varroa mites. The results evidenced that dsRNA fed to the bees engendered gene silencing
in mites, inhibiting expression levels of target genes by 50%. Indeed, a reduction of 50% in
Varroa survival was observed when bacterially expressed dsRNAs were administered to mite-
parasitized bees. Worker bees that were fed with Varroa-targeted dsRNA by oral route
showed no survival differences compared to control bees, fed with sucrose or dsRNA-GFP
solutions. Our results demonstrated that specific dsRNA over-expressed in bacteria is capable
of reducing mite survival by bee-mediated oral administration. This study provides an effi-
cient and low-cost method for dsRNA production to control parasites and honey
bee diseases.
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Introduction

The ectoparasite Varroa destructor Anderson and
Trueman is one of the most important pests of Apis
mellifera Linnaeus, causing economic losses in the
honey bee industry around the world. The Varroa
mite produces damage mainly in the larval and
pupal stages but also in adults (Rosenkranz et al.,
2010). Although the mite does not directly kill the
bees, it has strong negative effects by weakening
brood and adults through feeding on them (Amdam
et al., 2004; Ramsey et al., 2019; Zaobidna et al.,
2017) and playing a key role in the replication of
several honey bee viruses (De Miranda & Genersch,
2010; Di Prisco et al., 2011; Francis et al., 2013; Nazzi
& Le Conte, 2016; Shen et al., 2005). Previous studies
have demonstrated that the spread of V. destructor
contributed to turning a widespread viral infection
into a devastating global epidemic (Wilfert et al.,
2016). The epidemic disease within the colony

triggered by the mite eventually results in colony
death if untreated (Boecking & Genersch, 2008;
Neumann & Carreck, 2010; Van Dooremalen
et al., 2012).

Conventional V. destructor control in managed
honey bee colonies is based on chemical acaricides
(Haber et al., 2019; Lodesani, 2004). Both the reason-
able price and easy application are still the main
advantages of these pesticides and therefore, most
beekeepers use chemical treatments on their colo-
nies. Negative aspects of the use of these chemicals
are honey contamination with human health implica-
tions due to toxicity, and the potential impact on
the environment, bees’ health and non-target organ-
isms (Ansari et al., 2014; Gregorc et al., 2018).
Moreover, in recent years the continued utilization of
acaricides as fluvalinate, flumetrine, amitraz, couma-
phos and cymiazole against V. destructor has resulted
in the development of resistance to such chemicals
in populations of the mite (Lipi�nski & Szubstarski,
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2007; Maggi et al., 2009; 2011; Rinkevich, 2020; Stara
et al., 2019). Therefore, alternative approaches for
Varroa control are being evaluated.

RNA interference (RNAi) is a widely used technology
that introduces double-stranded RNA (dsRNA) into
organisms to reduce the transcription of a specific
gene. This post-transcriptional gene silencing mechan-
ism is also called “gene knockdown” (Fire et al.,1998).
With the advent of RNAi-based methodologies, there
has been an increasing interest in assessing their
potential applications in controlling virus-mediated dis-
eases and agricultural pests in both laboratory and
field conditions (Di Lelio et al., 2014; Garbutt et al.,
2013; Hunter et al., 2010). Studies performed in several
insect orders have demonstrated that dsRNA oral
administration is a convenient and practical way for
controlling pests and pathogens of beneficial organ-
isms (Whyard et al., 2009; Zotti & Smagghe, 2015).
Specifically for A. mellifera, RNAi methods were eval-
uated to control honey bee viruses (reviewed by Yang
et al., 2018) and Varroa mites (Campbell et al., 2010;
2016; Garbian et al., 2012; Huang et al., 2019). A pio-
neering study showed that dsRNAs ingested by honey
bees are transferred to Varroa mites and vice versa
(Garbian et al., 2012). These authors reported that feed-
ing honey bees with dsRNA produced a lethal effect
on mites. Moreover, through field bioassays using
dsRNAs synthesized in vitro, they evidenced a reduc-
tion of the Varroa population in honey bee colonies.

The dsRNA in vitro production by commercial kits
allows the synthesis of milligram amounts of RNA in
a short time. An alternative to in vitro dsRNA produc-
tion is using bacteria capable of achieving a high
level of in vivo synthesis (Ahn et al., 2019). The pro-
duction of bacterially expressed dsRNA is cheaper
and more easily used in large-scale assays. Moreover,
several studies have been carried out using bacter-
ially expressed dsRNA to induce gene silencing by
oral route in different groups of arthropods (Gamboa
Cede~no et al., 2015; L€u et al., 2019; Salvador et al.,
2021; Tian et al., 2009).

Here, we report that V. destructor gene expression
can be modulated by dsRNA synthetized in vivo with
a reduced number of target genes compared to pre-
vious studies (Garbian et al., 2012). The present find-
ing confirms that the use of dsRNA is a potential
biotechnological tool in mite control strategies, and
that in vivo dsRNA synthesis is an inexpensive and
efficient method for this purpose.

Materials and methods

RNA extraction and reverse transcription for
complementary DNA synthesis

RNA extractions were performed on pools of five
adult mites. The mite pools were macerated using a

plastic pestle into a 1.5ml Eppendorf-type with
500 ll of cold TRIZOL reagent (Invitrogen, USA)
according to the manufacturer’s instructions. The
extracted RNA was stored in 20ml of double distilled
water and its concentration was determined using a
spectrophotometer (NanoDrop Technologies, USA).
Total RNA of extracted samples was treated with
RQ1 RNase-free DNase (Promega) to eliminate any
residual DNA. Reverse transcription (RT) reactions
were performed with Random primers (Invitrogen),
and 2 lg of RNA was used for complementary DNA
(cDNA) synthesis with M-MLV reverse transcriptase
enzyme (Promega, UK) according to the manufac-
turer’s guidelines.

PCR amplification and cloning of Varroa
gene fragments

Using specific primers, a total of three V. destructor
gene fragments were amplified by polymerase chain
reaction (PCR). The selected target fragments belong
to genes involved in inhibition of apoptotic process
(IAP), RNA polymerase I (RNA1), and Sodium-
Potassium transporters (NaK) (Garbian et al., 2012).
The expected lengths of PCR products in base pairs
(bp) are 263 bp (IAP), 324 bp (RNA1) and 290 bp
(NaK). PCRs were performed under the following
reaction conditions: 92 �C for 5min, 35 cycles of
92 �C for 1min, specific annealing temperature for
40 sec, 72 �C for 1min and 72 �C for 5min. The
obtained PCR fragments were purified using Inbio
Highway KitVR and individually cloned in pGem-T vec-
tor (Promega), according to the manufacturer’s
guidelines. The cloned fragments were sequenced
using T7 and Sp6 promoter primers to verify correct
amplification. The fragments cloned in pGem-T vec-
tor were released by NotI restriction enzyme diges-
tion (Thermo Fisher Scientific Co.) and individually
ligated into the NotI restriction site of the dsRNA
transcription vector pL4440 (Timmons et al., 2001).
The pL4440 plasmid was provided by Addgene Inc.
(Cambridge, USA). The resulting recombinant vectors
(pL4440-NaK, pL4440-IAP, pL4440-RNA1) were intro-
duced individually into HT115 (DE3) chemical com-
petent bacteria (Caenorhabditis Genetics Center, MN,
USA) (Timmons et al., 2001). A plasmid pL4440-GFP
with green fluorescent protein (GFP) gene fragment
was used as a control (Gamboa Cede~no et al., 2015).

DsRNA synthesis and feeding bioassays

Colonies of E. coli HT115 containing pL4440 recom-
binant plasmids were individually grown and IPTG-
induced under the conditions described by Tian
et al. (2009). The dsRNA expression in bacteria was
verified by analyzing 1ml of each cell culture. One
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ml of each aliquot was centrifuged and resuspended
in 200 ml of TRIZOL reagent (InvitrogenTM) to obtain
total RNA, according to the manufacturer’s instruc-
tions. The extracted RNA was dissolved in 30 ml of
distilled water and dsRNA expression product was
confirmed by 1% agarose gel electrophoresis.

The production of dsRNA was achieved by grow-
ing E. coli HT115 colonies containing pL4440 recom-
binant plasmids in 100ml IPTG-induced cultures,
which were subsequently centrifuged at 10,000 rpm
for 4min. Pellets were resuspended individually in
TRIZOL reagent (Invitrogen, USA) according to the
manufacturer’s instructions. The total RNA extracted
from the pellets was diluted in distilled water and
aliquots of 15ml were separated by 1% agarose gel
electrophoresis to verify dsRNA synthesis. The dsRNA
concentrations were determined using image ana-
lysis software (Genetools, Synoptics Ltd). A 100-base
pair (bp) molecular marker was used as a reference
(Inbio Highway Co.).

Two bioassays were performed to evaluate separ-
ately the effect of different treatments on honey bee
(bioassay I) and mite (bioassay II) survival. Worker
bees and mites were obtained from colonies of the
Italian bee, Apis mellifera ligustica Spinola, located at
Instituto de Gen�etica “E.A. Favret” (IGEAF-INTA),
Hurlingham, Buenos Aires, Argentina. Both bioassays
were prepared placing 30 newly-emerged worker
bees in a flask (3 liters) where the bees were fed
with 10ml of solution containing water, 50%
sucrose, and 400 lg/ll of mix dsRNA-NaK, dsRNA-IAP
and dsRNA-RNA1 (dsRNA mix treatment). Two nega-
tive control treatments were performed: 1) a RNA
control that consisted of 30 bees in a flask fed with
10ml of solution containing water, 50% sucrose, and
400 ng/ll of dsRNA-GFP; and 2) a solution control,
that consisted of 30 bees fed with 10ml of solution
containing water and 50% sucrose. Each of the three
treatments (dsRNA-mix, dsRNA-GFP and sucrose) was
performed in quintuplicate (5 flasks with 30 bees per
flask) for bioassay I and in triplicate (3 flasks with 30
parasitized bees with 15 mites per flask) for bioassay
II. All flasks contained small containers with honey.
The flasks were kept in a breeding chamber (Sanyo,
Versatile Environmental Test Chamber MLR-350)
under controlled conditions at 34 ± 1 �C and 65± 5%
relative humidity. Dead bees detected on the first
day post-feeding were discarded. The treatment sol-
utions were replaced every twodays. The mortality
of individual bees and mites were daily registered.
The bioassays lasted four weeks. Comparisons of sur-
vival curves of Varroa and bees between treatments
were performed by Log-rank (Mantel-Cox) Test and
graphed using Graph Pad Prism version 5, GraphPad
Software (San Diego California USA, www.graphpad.
com). Mean longevity of mites was compared

between treatments using one-way ANOVA (Infostat
Software, version 2020) and significant differences
were analyzed by Tukey Test (0.05% signifi-
cance level).

Quantitative real-time RT-PCR

The effect of honey bee-mediated dsRNA administra-
tion on the steady-state transcriptional levels of
Varroa target genes was evaluated on mites attached
to bees fed with dsRNA solutions and compared to
mites from control solutions. Total RNA was
extracted from pools of five mites at 7 days post-
feeding using Trizol reagent (Invitrogen, USA).
Residual DNA was removed with RQ1 RNase-free
DNase (Promega). The cDNAs were synthesized using
the methodology described above. Standard curve
calibration was generated using five-fold serial dilu-
tions of already known cDNA controls to assess
quantitative PCR (qPCR) performance. The cDNAs
were diluted 1:50 in RNAse free water and qPCR was
performed using 0.5 ml of diluted cDNA, 0.5 ml of
each specific primer (10mM), 5 ml of qPCR Master
Mix (KAPA SYBRVR FAST qPCR Kit) RNAse-free water.
IAP primers were used to evaluate the gene expres-
sion level according to Garbian et al. (2012). Specific
primers of house-keeping Varroa genes were q18S-
F:50AATGCCATCATTACCATCCT30, q18-R: 50CAAA
AACCAATCGGCAATCT30, qHSP 90-F 50TTTGTAA
CCGACACGAGCTG-30 and qHSP90-R 50TGTTGAGCGT
GTGAAGAAGC-30 (Campbell et al., 2016). The PCR
program used for all samples was as follows: 94 �C
for 2min, 40 cycles of 94 �C for 15 sec, 55 �C for
15 sec, 72 �C for 20 sec followed by melting curve
steps 95 �C for 15 sec, 60 �C for 15 sec and a final
step at 95 �C for 15 sec. All qPCR experiments
included three biological replicates per treatment
(three pools of five mites each) and three technical
repetitions per sample. The qPCRs were performed
in Eppendorf Realplex2 equipment and the threshold
cycle (Ct) values were calculated using Eppendorf
software. The 18S and HSP90 were used as reference
genes. The qPCR data were analyzed according to
the method of Livak and Schmittgen (2001).
Statistical analyses of the transcript’s expression lev-
els were performed using ANOVA followed by post-
hoc Tukey’s test with a 0.05% significance level for
comparisons between treatments.

Results

In vivo dsRNA synthesis

To evaluate the effectiveness of dsRNA synthetized
in vivo in regulating the Varroa gene target expres-
sion, we first amplified and cloned three DNA frag-
ments into the plasmid pL4440 to synthesize the
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specific dsRNA in the bacterial strain HT115 (DE3).
Each HT115 synthesized the corresponding dsRNA in
agreement with the expected molecular lengths
from 500 to 600 bp, as evidenced by agarose gel
electrophoresis and scanning digitization (Figure 1).
The obtained dsRNA, whose concentrations ranged
between 100 and 400 ng/ml, were used in subse-
quent feeding bioassays.

Survival analysis in bees and mites

To determine whether dsRNA synthesized in vivo
produces unexpected effects on honey bees’ sur-
vival, bioassays were performed by feeding individu-
als sucrose solutions containing dsRNA. As is shown
in Figure 2 (left panel), differences in survival curves
were detected between treatments (log-rank
(Mantel-Cox) test: v2 ¼ 28.70, p< 0.001). Specifically,
bees that received the dsRNA-GFP treatment exhib-
ited a lower survival rate compared to bees exposed
to the sucrose and dsRNA-mix treatments (log-rank
(Mantel-Cox) test: control, v2 ¼ 34.41, p< 0.001;
dsRNA-mix, v2 ¼ 29.36, p< 0.001). No significant dif-
ferences in survival rates were observed between
sucrose and dsRNA-mix treatments (log-rank
(Mantel-Cox) test: v2 ¼ 0.017, p¼ 0.894), indicating

that dsRNA-mix administration has no off-target
effect on bee survival.

Once we had demonstrated that the dsRNA-mix
was not deleterious to bees, we proceeded to evalu-
ate the effect of this and the control treatments on
mite survival. The results showed that dsRNA-mix
treatment decreased the survival rates of the Varroa
mites (Figure 2, right panel). Specifically, survival
rates of mites on bees fed with dsRNA-mix were sig-
nificantly lower compared to those that received the
sucrose treatment (log-rank (Mantel-Cox) test, v2 ¼
10.62, p¼ 0.001). The same pattern was found when
dsRNA-mix was compared with the dsRNA-GFP treat-
ment, although the differences in mite survival were
not significant (log-rank (Mantel-Cox) test, v2 ¼ 1.31,
p¼ 0.251; Figure 2, right panel).

Results of Varroa longevity under different treat-
ments were consistent with those obtained for sur-
vival curves (Figure 3). The results showed that the
mean mite longevity was significantly lower for
dsRNA-mix treatment (4.10 ± 0.40 days) than for
sucrose treatment (7.05 ± 0.25 days) (post hoc com-
parisons from one-way ANOVA: F2,111 ¼ 5.78,
p¼ 0.004). Differences were not detected in mean
mite longevity between dsRNA-GFP treatment
(5.10 ± 0.30 days) vs. sucrose and dsRNA-
mix treatments.

Gene level expression in the Varroa mites

To verify that mite survival differences registered in
the bioassay II were associated with the Varroa
genes knockdown, we performed a quantitative PCR
(qPCR) experiment. This experiment consisted of
assessing the relative expression level of one target
gene in mites attached to bees that received the
three feeding treatments: dsRNA-mix, dsRNA-GFP
and sucrose. The relative expression level of IAP
mRNA decreased 50% in Varroa mites attached to
bees that ingested dsRNA-mix compared to the con-
trol treatments (Tukey’s test, p< 0.05) (Figure 4).

The IAP mRNA transcript levels did not differ sig-
nificantly between mites exposed to dsRNA-GFP and
sucrose solution treatments. These results confirmed

Figure 1. Selected dsRNA expressed in bacteria. Total RNA
was extracted from bacteria HT115 (DE3) containing the
recombinant plasmids. MW: Molecular weight 100 base pairs
(bp). Lines 2-3: RNA 1 dsRNA, line 4: pL4440 Plasmid empty
(control), line 5: GFP dsRNA (control), lines 6-9: NaK dsRNA,
line 10: IAP dsRNA. The asterisks indicate the dsRNA bands.

Figure 2. Left. Bioassay I: Survival curves of honey bees fed with the three different treatments: sucrose, dsRNA-GFP and
dsRNA-mix. Right. Bioassay II: Survival curves of mites attached on bees that were fed with the three different treatments
detailed above.
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that bee-mediated transference of in vivo synthe-
sized dsRNA is capable of inducing gene silencing in
the parasitic Varroa mites.

Discussion

In a pioneer study, Garbian et al. (2012) demon-
strated that dsRNA ingested by bees is transferred to
the Varroa mite and from the mite to a parasitized
bee. These authors evidenced that this reciprocal
exchange of dsRNA between the bee and Varroa
engendered targeted gene silencing in the latter,
and resulted in an over 60% decrease in the mite
population at the colony level. Here, we followed a
similar protocol to those performed by Garbian et al.
(2012), but using dsRNA synthesized in vivo and a
lower number of Varroa target genes. We demon-
strated that the ingestion of bacterially expressed
dsRNA offers an efficient alternative to induce gene
silencing in Varroa tissues and that the use of the
present dsRNA mixture is sufficient to significantly
reduce mite survival.

Previous reports have shown that using specific
dsRNA synthetized in vivo by adapted bacteria is
feasible to reduce the transcription levels of the tar-
get gene in different groups of organisms like plants
(Yin et al., 2009) and insects (Leelesh & Rieske, 2020;
L€u et al., 2021; Tian et al., 2009). In the honey bee
Apis cerana, bacterially expressed dsRNAs were used
to reduce viral infections (Zhang et al., 2016). Our
experiments based on quantitative PCR and bioas-
says in A. mellifera evidence that dsRNAs synthetized
in bacteria can induce an RNAi effect in Varroa,
inhibiting expression levels of the target genes by
50%, and reducing mite survival by a similar percent-
age. Moreover, we demonstrate that oral administra-
tion of dsRNA synthetized in vivo to bee adults did
not affect insect survival rate or longevity. Our
results support that bacterially expressed dsRNA con-
stitutes a simple, safe, less costly and efficient alter-
native to in vitro synthesis of dsRNA that could be
used not only to control Varroa infestation in honey
bee colonies but also for functional studies in mites
by gene knockdown expression.

Contrary to expectations, we registered that the
control treatment dsRNA-GFP affects the honey bee
survival. A previous study showed that in specific
cases, the application of dsRNA in honey bees is cap-
able of producing unexpected expression knock-
downs in non-targeted genes (Jarosch & Moritz,
2012). These authors evidenced gene silencing
effects on transcript levels of off-target genes in
bees treated with dsRNA-GFP. A posterior assay car-
ried out by Nunes et al. (2013) demonstrated that
the expression of target genes is affected by using
dsRNA-GFP as control treatment. In our study and
studies mentioned above, the dsRNA-GFP was specif-
ically designed to have no sequence homology lon-
ger than 20 bp with genes described in the A.
mellifera genome. Although dsRNA-GFP is not
expected to trigger an RNAi response in treated
bees, undesirable effects on gene expression, pupal
pigmentation or developmental timing have been
observed (Nunes et al., 2013). The mechanisms
whereby dsRNA-GFP can produce a down-regulation

Figure 3. Average longevity of the Varroa mites parasitizing
bee adults that were fed with three different treatments:
Sucrose, dsRNA-GFP and dsRNA-mix. Different letters above
columns indicate significant differences between treatments
(p< 0.05) based on ANOVA analysis.

Figure 4. Relative gene expression of IAP mRNA in Varroa mites parasitizing adult bees that were fed with dsRNA-mix,
dsRNA-GPF and sucrose treatments. The bars (± SE) headed by the same letter are not significantly different at p< 0.05
according to ANOVA analysis followed by Tukey’s test.
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on non-target genes remains unclear. Therefore,
alternative dsRNA controls should be used in honey
bee gene silencing experiments in order to avoid
incorrect conclusions on RNAi-derived studies.

The selection of target genes to be silenced can
significantly affect the efficacy of RNAi strategy in
insects (Katoch et al., 2013). The use of dsRNA mix-
tures against multiple target genes offers an alterna-
tive to increase the lethal effect on prejudicial
organisms. In a previous study, Garbian et al. (2012)
evaluated the effect of dsRNA mixtures of 5 and 14
targeted Varroa genes that resulted in an increase of
mite mortality and a reduction of their populations
in honey bee colonies. We demonstrated that a
dsRNA mixture against only 3 of these target genes
is sufficient to produce a comparable decrease in
survival rates of the treated mites. Moreover, knock-
ing down of these three genes (IAP, RNA1 and NaK)
caused a 50% reduction in Varroa survival, support-
ing the evidence that they play critical roles in mite
survival. Further studies must be performed to evalu-
ate the effect of this mixture on Varroa population
at a colony level. It also remains to be tested
whether a single gene, such as one of the three
genes analyzed here, can be used to generate the
same effect at individual and colony levels. For
example, Campbell et al. (2016) demonstrated direct
lethality to individual mites using a single target
with dsRNA of a neural peptide (B-type allatostatin)
that killed 54% mites compared to controls. This
finding encourages future studies based on different
target genes and strategies that will increase the effi-
cacy of RNAi as a means of control.

The use of RNAi technology against V. destructor
is a possible solution to reduce the negative effects
of mite parasitism on honey bee populations. A
practical or commercial use of mite control strategy
based on gene silencing requires selecting the more
effective target genes and an economical method
for the large-scale production of dsRNA. Further
studies, specifically at a colony level and throughout
controlled field assays, that test different mixtures
and doses, and monitor the mid-long effect of
dsRNA treatment on Varroa and honey bee popula-
tions survival need to be performed in order to
improve the use of RNAi strategy to potentially con-
trol this pest in the field.
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