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We demonstrate that the near horizon symmetries of black holes in Einstein-Yang-Mills (EYM) theory
are generated by an infinite-dimensional algebra that contains, in addition to supertranslations and
superrotations, a non-Abelian loop algebra. This means that the Virasoro-Kac-Moody structure of EYM in
asymptotically flat spacetimes has an exact analog in the near horizon region.
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I. INTRODUCTION

In 2015, Hawking conjectured that, in their near horizon
limit, black holes might exhibit an infinite-dimensional
symmetry [1] similar to the supertranslations that appear
near null infinity in asymptotically flat spacetimes [2–4].
His conjecture was motivated by the recent developments
connecting the subjects of asymptotic symmetries, soft
theorems, and memory effect in gravity and gauge theories
[5]. The original idea was that horizon supertranslations
could have something to do with the black hole information
puzzle [6], an interesting idea that gave rise to a thoughtful
debate [7–9]. Nevertheless, regardless whether relevant
or not for the information loss problem specifically, the
emergence of infinite-dimensional symmetries near the
black hole event horizons turned out to be an interesting
discovery on its own right, as it suggests that there might
still be important lessons to be learnt from symmetries
about the infrared structure of gravity and gauge theories.
The existence of infinite-dimensional symmetries in the

vicinity of black hole horizons was made precise in [10],
where it was shown that, in addition to supertranslations,
black holes also exhibit superrotations in their proximity.
Further details of these symmetries and their associated
charges were given in [11,12], and in references thereof.
The study of infinite-dimensional symmetries in the near
horizon region has antecedents [13–15], and more recently
it led to interesting developments and generalizations; see
for instance [16–25].
It was shown in [16] that the addition of Abelian gauge

fields results in a further enhancement of the near horizon
symmetry, yielding a new set of supertranslation currents

for each Uð1Þ commuting factor in the gauge group, at
least. Here, we will consider the case of Einstein gravity
coupled to Yang-Mills theory for an arbitrary gauge group
G, and we will show that, in addition to supertranslations
and superrotations, the black holes of the theory exhibit an
infinite-dimensional symmetry that is generated by a non-
Abelian loop algebra. This means that, as it happens in
Einstein-Yang-Mills theory in asymptotically flat space-
times [26], a Virasoro-Kac-Moody structure emerges in the
near horizon region of colored black holes. In other words,
the same symmetry enhancement phenomenon of the non-
Abelian algebra discovered by Barnich and Lambert at null
infinity also occurs near the black hole event horizon.
Actually, the full algebra we will encounter in the near
horizon limit differs from the one found near null infinity,
the difference being the structure constants that connect
supertranslations to superrotations, cf. [16]; however, the
Virasoro-Kac-Moody piece matches exactly.
The paper will be organized as follows: In Sec. II we will

consider the near horizon symmetries in Einstein-Yang-
Mills theory. We will present a sensible set of boundary
conditions at the horizon that, on the one hand, permit to
accommodate the physically relevant solutions such as
colored black holes and, on the other hand, turn out to be
preserved by an infinite set of diffeomorphisms and gauge
transformations. These boundary conditions are the gen-
eralization of those proposed in [10] to the non-Abelian
case. In Sec. III we will study the algebra of diffeo-
morphisms and gauge transformations preserving the
prescribed boundary conditions, and we will show that it
turns out to be an infinite-dimensional algebra that contains
a Kac-Moody subalgebra. Section IV contains a brief
discussion about the relevance of our result.

II. NON-ABELIAN HORIZONS

Let us consider a four-dimensional spacetime ðM; gÞ
with metric ds2 ¼ gμνdxμdxν (with μ, ν ¼ 0, 1, 2, 3) and let
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us assume the spacetime has a nonsingular, isolated,
compact horizon H ¼ Hþ ∪ H− with H� ¼ Σ2 × R, with
Σ2 being a compact spacelike 2-surface, say of topology S2.
We will consider advanced coordinates x0 ¼ v, xA ¼ zA

(with A ¼ 1, 2) and x3 ¼ ρ; the horizon is the hypersurface
ρ ¼ 0 on which v is null; Σ2 is a constant-v section of that
hypersurface.
Without loss of generality, we can always choose

coordinates such that, close to the future (past) horizon
Hþ ¼ Σ2 ×R (H−), the metric takes the form [27,28]

gvv ¼ −2κρþOðρ2Þ; ð1Þ

gvA ¼ gð1ÞvA ðzBÞρþOðρ2Þ; ð2Þ

gAB ¼ gð0ÞABðzCÞ þ gð1ÞABðzCÞρþOðρ2Þ; ð3Þ

together with the gauge fixing conditions

gρρ ¼ 0; gvρ ¼ 1; gAρ ¼ 0: ð4Þ

The radial coordinate ρ ∈ R≥0 measures the distance from
the horizon, v ∈ R is null on Hþ (in the case of the past
horizon H− the advanced time v has to be replaced by the
retarded time u ∈ R), and zA (with A ¼ 1, 2) represents

coordinates on Σ2. In (1), gðnÞμν stand for functions of zA,
each of which can be thought of as the coefficient of the
order OðρnÞ in the near horizon (i.e., small ρ) expansion of

the metric components. Constant κ ¼ − 1
2
gð1Þvv corresponds

to the surface gravity of the horizon. We denote θAðzBÞ≡
gð1ÞvA ðzBÞ and ΩABðzCÞ≡ gð0ÞABðzCÞ. The fact that the latter
functions are independent of v is guaranteed by the isolated
horizon condition.
We are interested in Einstein gravity coupled to Yang-

Mills theory, and therefore we have to introduce, in addition
to the metric, the non-Abelian gauge field Aa

μ, which
defines the gauge connection 1-form

A ¼ Aa
μTadxμ; ð5Þ

with Ta being the generators of a Lie algebra g [with
a ¼ 1; 2;…; dimðgÞ], which satisfy the Lie product

½Tb; Tc� ¼ ifabcTa; ð6Þ

with fabc being the structure constants. Let G be a compact,
semisimple Lie group generated by g, which enters in
the definition of the gauge theory through the standard
building blocks; we have the covariant derivative Dμ ¼
∂μ − iαAa

μTa and the field strength Fa ¼ Fa
μν ¼ ∂μAa

ν −
∂νAa

μ þ αfabcA
b
μAc

ν that yields the g-valued curvature 2-form
Fa
μνdxμ ∧ dxν; α is the gauge coupling. The action of the

theory reads

I ¼ 1

16πG

Z
M

d4x
ffiffiffiffiffi
jgj

p
R −

1

4

Z
M

d4x
ffiffiffiffiffi
jgj

p
TrF2: ð7Þ

Close to the horizon, the gauge field satisfies the
following asymptotic behavior

Aa
v ¼ Að0Þa

v þ Að1Þa
v ðv; zAÞρþOðρ2Þ; ð8Þ

Aa
B ¼ Að0Þa

B ðzAÞ þ Að1Þa
B ðv; zAÞρþOðρ2Þ; ð9Þ

where AðnÞa
μ stands for the coefficient of the order OðρnÞ in

the small-ρ expansion. In addition, the gauge condition

Aa
ρ ¼ 0 holds for all ρ. Notice that, while Aðn>0Þa

μ are

functions of zA and v, Að0Þa
v is constant, Að0Þa

B only depends
on zA; cf. [16]. This suffices to accommodate charged black
hole solutions within the configuration space.
Now, having defined the near horizon boundary con-

ditions for both the gravitational and the gauge fields, let us
consider the symmetry transformations that preserve such
conditions. More precisely, we ask for those diffeomor-
phisms and gauge transformations that preserve the asymp-
totic form of (1)–(3) and (8)–(9), allowing for variation of
the specific functions gðnÞμν , A

ðnÞa
μ but preserving the func-

tional form of the small ρ expansion together with the
gauge-fixing conditions. Let us call χμ and ϵa the asymp-
totic Killing vectors and the gauge parameters that realize
such symmetry transformations, respectively. Then, we
have the changes gμν → gμν þ δχgμν, Aa

μ → Aa
μ þ δðχ;ϵÞAa

μ,
with

δχgμν¼ðLχgÞμν; δðχ;ϵÞAa
μ ¼ðLχAÞaμþ∂μϵ

a−αfabcϵ
bAc

μ:

ð10Þ

As said, we require these changes to be such that they
preserve the asymptotic conditions prescribed above. For
instance, in order to respect the gauge fixing conditions, we
have to demand

ðLχgÞρρ ¼ 0; ðLχgÞvρ ¼ 0;

ðLχgÞAρ ¼ 0; ðLχAÞaρ þ ∂ρϵ
a ¼ 0; ð11Þ

where we have used Aa
ρ ¼ 0. The latter conditions, together

with some closure conditions for the asymptotic expansion,
yield the following form for χ and ϵa

χv ¼ fðv; zAÞ; ð12Þ

χρ ¼ −ρ∂vf þ ∂Af
Z

ρ

0

gABgvBdρ0; ð13Þ

χA ¼ YAðzAÞ − ∂Bf
Z

ρ

0

gABdρ0; ð14Þ
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together with

ϵa ¼ ϵa0ðv; zAÞ −
Z

ρ

0

Aa
B∂ρχ

Bdρ0: ð15Þ

Here, fðv; zAÞ is a function of zA whose dependence with v
will be later restricted by requiring extra conditions. Being
the v component of the asymptotic Killing vector, this
function will ultimately be associated to horizon super-
translations. Function ϵa0ðv; zAÞ depends on zA and v, while
YAðzBÞ are two arbitrary functions of zB and do not depend
on v (A;B ¼ 1, 2). On Σ2 we can consider complex
coordinates ðz1; z2Þ ¼ ðz; z̄Þ and holomorphic and antiho-
lomorphic fields obeying ∂̄YzðzÞ ¼ ∂Yz̄ðz̄Þ ¼ 0; this
allows us to denote Y ¼ YzðzÞ Ȳ ¼ Yz̄ðz̄Þ for short. The
latter functions will be identified as those generating local
conformal transformations on Σ2, i.e., they will be related
to the so-called supertranslations.
In order to satisfy the boundary conditions (8)–(9), the

gauge field has to obey

ðLχAÞav þ ∂vϵ
a − αfabcϵ

bAc
v ¼ OðρÞ;

ðLχAÞaB þ ∂Bϵ
a − αfabcϵ

bAc
B ¼ Oð1Þ: ð16Þ

Satisfying the first of these conditions implies solving a set
of differential equations for ϵa0; namely

∂vðχvAð0Þa
v þ ϵa0Þ − αfabcϵ

b
0A

ð0Þc
v ¼ 0; ð17Þ

where the indices v are not contracted.
By computing the variations of the metric and the gauge

field under diffeomorphisms and gauge transformations
defined by the χ and ϵ given above, one finds

δðχ;ϵÞκ ¼ κ∂vf þ ∂2
vf ¼ 0; ð18Þ

δðχ;ϵÞθA ¼ LYθA þ f∂vθA − 2κ∂Af − 2∂v∂Af

þΩBC∂vΩAB∂Cf; ð19Þ

δðχ;ϵÞΩAB ¼ f∂vΩAB þ LYΩAB; ð20Þ

δðχ;ϵÞA
ð0Þa
v ¼ 0; ð21Þ

δðχ;ϵÞA
ð0Þa
B ¼ YC∂CA

ð0Þa
B þ Að0Þa

C ∂BYC þ ∂BfA
ð0Þa
v

þ ∂Bϵ
a
0 − αfabcϵ

b
0A

ð0Þc
B : ð22Þ

Notice that in (18) we are additionally demanding the
variation δðχ;ϵÞκ to vanish; that is to say, we are considering
a phase space defined by functional variations that preserve
the surface gravity. For the case of nonextremal horizons
(κ ≠ 0) this yields fðv; zAÞ ¼ TðzAÞ þ e−κvXðzAÞ, with
TðzAÞ and XðzAÞ being two arbitrary functions on
Σ2; cf. [10].

III. SYMMETRY ALGEBRA

Now, let us derive the algebra that generates the
asymptotic symmetries defined above. In order to obtain
this algebra, let us start by looking at how two subsequent
variations act on the metric function θA; namely

½δðχ1;ϵ1Þ;δðχ2;ϵ2Þ�θA
¼ ỸAθAþ f̃∂vθA−2κ∂Af̃−2∂v∂Af̃þΩBC∂vΩAB∂Cf̃;

ð23Þ

where

ỸA ¼ YB
1 ∂BYA

2 − YB
2 ∂BYA

1 ;

f̃ ¼ LY1
f2 − LY2

f1 þ f1∂vf2 − f2∂vf1: ð24Þ

The brackets ½; � in (23) is the modified Lie brackets
introduced in [29], which is valid in the case the gauge
parameters are field dependent; see Eq. (2.4) therein, see
also [11,26] and references thereof.
Now, in order to determine the expression for ϵ̃a0, it is

sufficient to consider the variation of Að0Þa
B and then see how

the algebra closes. This yields the cumbersome expression

½δðχ1;ϵ1Þ; δðχ2;ϵ2Þ�Að0Þa
B ¼ ỸC∂CA

ð0Þa
B þ Að0Þa

C ∂BỸC þ ∂Bf̃A
ð0Þa
v þ ∂B½YC

1 ∂Cϵ
a
02
− YC

2 ∂Cϵ
a
01
� − αfabc½YC

1 ∂Cϵ
b
02
− YC

2 ∂Cϵ
b
01
�Að0Þc

B

− ∂Bðf1∂vf2 − f2∂vf1ÞAð0Þa
v − αfabc½ϵb01ð∂Bf2A

ð0Þc
v þ ∂Bϵ

c
02
− αfcjkϵ

j
02
Að0Þk
B Þ

− ϵb02ð∂Bf1A
ð0Þc
v þ ∂Bϵ

c
01
− αfcjkϵ

j
01
Að0Þk
B Þ�; ð25Þ

where we have identified some terms, and added and subtracted ∂Bðf1∂vf2 − f2∂vf1ÞAð0Þa
v in order to complete the

expression of f̃.
Using Eq. (17) to write ∂vfA

ð0Þa
v ¼ αfabcϵ

b
0A

ð0Þc
v − ∂vϵ

a
0 , the Jacobi identity to write fabc½fcmnðϵb01ϵm02 − ϵm01ϵ

b
02
ÞAð0Þn

B � ¼
fabcf

b
mnϵ

m
01
ϵn02A

ð0Þc
B , and defining Ea ≡ YC

1 ∂Cϵ
a
02
− YC

2 ∂Cϵ
a
01
þ f1∂vϵ

a
02
− f2∂vϵ

a
01

for short, the expression above can be
rewritten as follows:
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½δðχ1;ϵ1Þ; δðχ2;ϵ2Þ�Að0Þa
B ¼ ỸC∂CA

ð0Þa
B þ Að0Þa

C ∂BỸC þ ∂Bf̃A
ð0Þa
v þ ∂BðEa − αfabcϵ

b
01
ϵc02Þ − αfabcðEb − αfbmnϵ

m
01
ϵn02ÞA

ð0Þc
B

þ f1∂v½∂Bðϵa02 þ f2A
ð0Þa
v Þ − αfabcϵ

b
02
Að0Þc
B � − f2∂v½∂Bðϵa01 þ f1A

ð0Þa
v Þ − αfabcϵ

b
01
Að0Þc
B �: ð26Þ

We are interested in writing this expression as

δðχ̃;ϵ̃ÞA
ð0Þa
B ¼ ỸC∂CA

ð0Þa
B þ Að0Þa

C ∂BỸC þ ∂Bf̃A
ð0Þa
v

þ ∂Bϵ̃
a
0 − αfabcϵ̃

b
0A

ð0Þc
B ð27Þ

for a given ϵ̃b0 . Using that Að0Þa
B and YA only depend on zA,

we can freely add the term ∂v½YC∂CA
ð0Þa
B þ Að0Þa

C ∂BYC� to
(26) and then identify the last line of that equation as

f1∂vðδðχ̃2;ϵ̃2ÞAð0Þa
B Þ − f2∂vðδðχ̃1;ϵ̃1ÞAð0Þa

B Þ, which vanishes as

δðχ̃;ϵ̃ÞA
ð0Þa
B only depends on zA. This allows us to identify

ϵ̃a0 ¼ Ea − αfabcϵ
b
01
ϵc02 , which reduces to the expression of

[16] in the Abelian case fabc ¼ 0. In the most general case,
we find the following set of variations

ỸA ¼ YB
1 ∂BYA

2 − YB
2∂BYA

1 ; ð28Þ

f̃ ¼ YC
1 ∂Cf2 − YC

2 ∂Cf1 þ f1∂vf2 − f2∂vf1; ð29Þ

ϵ̃a0 ¼YC
1 ∂Cϵ

a
02
−YC

2 ∂Cϵ
a
01
þf1∂vϵ

a
02
−f2∂vϵ

a
01
−αfabcϵ

b
01
ϵc02 :

ð30Þ

Now, we can solve Eq. (17) and replace its solution in
(30). Equation (17) can be written as ∂vðϵa0 þ fAð0Þa

v Þ ¼
Δa

bϵ
b
0 with Δa

b ¼ αfabcA
ð0Þc
v , which has solution of the

form

ϵa0ðv; zAÞ ¼ ½eΔv�abUbðzAÞ − fðzA; vÞAð0Þa
v : ð31Þ

This generalizes the result ϵa0ðv; zAÞ ¼ UaðzAÞ −
fðzA; vÞAð0Þa

v with a ¼ 1; 2;…N obtained in [16] for
G ¼ Uð1ÞN . The novel feature in (31) relative to the
Abelian case is the v-dependent exponential accompanying
the function UaðzAÞ, which obviously vanishes when the
structure constants vanish.
Having fully determined the functional dependence with

the advanced null coordinate v, it is possible to obtain the
expression for Ũa explicitly; namely

ϵ̃a0 þ f̃Að0Þa
v ¼ ½eΔv�aj ŨjðzAÞ

¼ ½eΔv�aj ½YC
1 ∂CU

j
2 − YC

2 ∂CU
j
1�

− αfabc½eΔv�bk ½eΔv�cmUk
1U

m
2 ; ð32Þ

wherewe see that the dependence of f1 and f2 has cancelled
out. We can use that fabc½eΔv�bk ½eΔv�cm ¼ fjkm½eΔv�aj , which

follows from standard formulas applied to the adjoint
representation. Taking all this into account, one finally
obtains

Ũa ¼ YC
1 ∂CUa

2 − YC
2 ∂CUa

1 − αfabcU
b
1U

c
2 ð33Þ

which, together with the transformations

ỸA ¼ YB
1 ∂BYA

2 − YB
2 ∂BYA

1 ; ð34Þ

T̃ ¼ YB
1 ∂BT2 − YB

2 ∂BT1; ð35Þ

X̃ ¼ YB
1 ∂BX2 − κT1X2 − YB

2 ∂BX1 þ κT2X1; ð36Þ

form the symmetry algebra. Functions YB, T, X, andUa are
four arbitrary functions of the coordinates zA on Σ2, and this
gives rise to an infinite-dimensional algebra. While the line
(34) expresses the existence of two copies of theWitt algebra
(namely; two Virasoro algebras with a vanishing central
term), the line (35) gives the semidirect sum of the Virasoro
algebras with an Abelian infinite-dimensional algebra
i.e., the so-called supertranslations. The line (36) shows
the presence of another infinite-dimensional Abelian com-
ponent, which acts on supertranslations as dilations act
on standard translations. The new result here is (33). This
expresses, on the one hand, the mixing between the
spacetime superrotations and the gauge transformations at
the horizon; on the other hand, it generalizes the result of
[16] to the non-Abelian case, where theG-structure appears
in the last term with the structure constants.
All the arbitrary functions of zA can be expanded in

Fourier modes, e.g., as usually done when representing
DiffðS1Þ or tensored C∞ðS1Þ algebras in conformal
field theory. It amounts to choose complex coordinates
zA ¼ ðz; zÞ with z ¼ eτþiσ, and evaluate (33)–(34) on
arbitrary modes zmz̄n. That is to say, we can define
Tðz; z̄Þ ¼ κ

P
m;n Tðm;nÞzmz̄n, Xðz; z̄Þ ¼ P

m;n Xðm;nÞzmz̄n,
YðzÞ ¼ P

n Ynzn, Ȳðz̄Þ ¼ P
n Ȳnz̄n and Uaðz; z̄Þ ¼

α
P

m;n U
a
ðm;nÞz

mz̄n, and then express the algebra as follows:

½Ym;Yn� ¼ ðm−nÞYmþn; ½Ȳm; Ȳn� ¼ ðm−nÞȲmþn; ð37Þ

½Yk;Tðm;nÞ� ¼−mTðmþk;nÞ; ½Ȳk;Tðm;nÞ� ¼−nTðm;nþkÞ;

ð38Þ

½Yk; Xðm;nÞ� ¼ −mXðmþk;nÞ; ½Ȳk; Xðm;nÞ� ¼ −nXðm;nþkÞ;

ð39Þ

GASTON GIRIBET and LUCIANO MONTECCHIO PHYS. REV. D 105, 064006 (2022)

064006-4



½Yk; Ua
ðm;nÞ� ¼ −mUa

ðmþk;nÞ; ½Ȳk; Ua
ðm;nÞ� ¼ −nUa

ðm;nþkÞ;

ð40Þ

½Xðk;lÞ; Tðm;nÞ� ¼ Xðmþk;nþlÞ;

½Ua
ðk;lÞ; U

b
ðm;nÞ� ¼ fabc Uc

ðkþm;lþnÞ; ð41Þ

the other commutators vanish.
The last Lie product in (41) is our main result. This

manifestly shows that in the near horizon region of black
holes in Einstein-Yang-Mills theory the symmetry algebra
gets enhanced in such a way that it includes a (double)
infinite-dimensional loop algebra ĝ ¼ g ⊗ C∞ðS1Þ gener-
ated by Ua

ðm;nÞ. This algebra is in semidirect sum with two
copies of Witt algebra, being a spin-1 current under local
conformal transformations. This generalizes the result
found in [16] for the Uð1ÞN theory, which here corresponds
to fabc ¼ 0. The rest of the algebra matches the one found
in [10,11]; namely, in addition to the loop algebra, the
algebra above contains an infinite-dimensional Abelian
piece generated by Tðm;nÞ, which is the horizon super-
translations. There is also an infinite-dimensional Abelian
ideal generated by Xðm;nÞ. However, as shown in [10,11], in
the case of nonextremal black holes the latter algebra
generates transformations that are pure gauge as Xðz; z̄Þ
does not enter in the Noether charges associated to the
asymptotic diffeomorphisms generated by χ ¼ fðv; z; z̄Þ∂v.
We intend to return to the problem of computing the
Noether charges associated to the full algebra (37)–(41) and
carefully analyzing their integrability conditions in a future
work. Preliminary results on this permits to say that the
conserved charges associated to Ym, Ȳm, and Ua

ðm;nÞ form a
Virasoro-Kac-Moody system with vanishing central charge
and vanishing Kac-Moody level.

IV. DISCUSSION

The results obtained here might have interesting
applications to study colored black holes [30,31],
cf. [32]. In fact, it is possible to speculate that large
gauge transformations could describe physical processes
that produce a splash of colors on the horizon, for instance

by means of a mechanism similar to the one studied in
[12,16]. As in there, one can imagine dynamical processes
that connect the asymptotic past null-infinity I− with the
future horizon Hþ, using that now we have learnt that a
similar Virasoro-Kac-Moody structure emerges in both
regions [26,33,34].
Besides, the formulas above can easily be extended to

higher dimensions [35], and so applied to study self-
gravitating Yang monopoles in arbitrary (even) dimension
D. Such monopoles have been constructed in [36] for
the gauge group SOðD − 2Þ. For D ≥ 6, such solutions
describe non-Abelian black holes that, when the cosmo-
logical constant is negative, can have applications within
the context of AdS=CFT correspondence, cf. [36]. It is
possible to show that the analysis done in the previous
sections applies to those non-Abelian solutions, and that the
zero-mode of the Noether charges associated to the horizon
supertranslations correctly reproduces the entropy of the
black holes, cf. [37]. This is quite interesting since the self-
gravitating Yang monopole has infinite gravitational energy
and, therefore, the charge computation needed to study, for
example, its thermodynamics only makes sense from the
horizon perspective.
Other interesting questions related to the computation

presented here relate to its possible generalizations. For
example, one could ask whether a more general set of
asymptotic conditions exist yielding non-vanishing central
extensions of the charge algebra. We could also ask
whether other algebraic structures, such as wN algebras,
or even w∞þ1 algebras as the recently found at null infinity
[38], can also be realized at the horizon provided one
prescribes adequate asymptotic conditions. These are all
interesting questions for future investigations.
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