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Introduction 
Increasing ambient temperature within the physiological, non-stressful, range promotes the 
growth of the hypocotyl (Gray et al., 1998) and of the primary root (Hanzawa et al., 2013) 
whilst reducing the expansion of the cotyledons (Hahm et al., 2020) of Arabidopsis thaliana 

seedlings.  
 We currently know three thermosensors, phytochrome B (phyB) (Jung et al., 2016; 
Legris et al., 2016), EARLY FLOWERING 3 (ELF3) (Jung et al., 2020) and PHYTOCHROME 
INTERACTING FACTOR 7 (PIF7) (Chung et al., 2020), which were uncovered by their role 

in the control of hypocotyl growth. phyB is a photo-sensory receptor, activated by red light 
and inactivated by far-red light, and a thermosensor by virtue of the instability of its active 
form, undergoing thermal reversion to its inactive conformer accelerated by warmth (Jung 

et al., 2016; Legris et al., 2016; Burgie et al., 2021). ELF3 is a transcriptional regulator that 
integrates the evening complex, and warm temperatures reduce the association of this 
complex to the target gene promoters (Box et al., 2015; Ezer et al., 2017; Silva et al., 2020) 

by eliciting ELF3 phase transition from active to the inactive state (Jung et al., 2020). PIF7 
is a transcription factor and warm temperatures modify the structure of the RNA hairpin 
present at the 5′-untranslated region of the PIF7 transcript, increasing its rate of translation 
and hence increasing PIF7 protein abundance (Fiorucci et al., 2020; Chung et al., 2020). In 

summary, warm temperatures reduce the activities of phyB and ELF3, while increasing that 
of PIF7. Both phyB and ELF3 repress hypocotyl growth and are active at control 
temperatures; therefore, the phyB and elf3 mutants have elongated hypocotyls at control 

temperatures. Conversely, PIF7 promotes hypocotyl growth and its activity increases at 
warm temperatures; therefore, the pif7 mutant has a short hypocotyl at warm temperatures.  

The root captures water and nutrients and provides of anchorage to the soil. Given 

these crucial functions, there is a growing interest in understanding the mechanisms 
involved in the control of primary root elongation by temperature (Hanzawa et al., 2013; 
Wang et al., 2016; Ibañez et al., 2017; Martins et al., 2017; Yang et al., 2017; Zhu et al., 
2018; Fei et al., 2019; Feraru et al., 2019; Gaillochet et al., 2020; Fonseca de Lima et al., 

2021; Lee et al., 2021). The aim of this work is to investigate whether the shoot 
thermosensors phyB, EFL3 and PIF7 fulfil the same function in the root.  
  



 
 

Primary root growth  
In plants with the shoot exposed to light (photoperiod: 12 h : 12 h) and the root in darkness 
(Notes S1), 28°C enhanced primary root growth (Fig. 1a-b, S1a) and cell elongation (Fig. 
1c) compared to 20°C. Warmth reduced meristem size (Fig. 1d, see also Yang et al., 2017) 

and enhanced the staining driven by pCYCB1;1:GUS (Fig. 1e); a combination also observed 
in the bri1-116 mutant, and interpreted in terms of delayed cell cycle progression (González-
García et al., 2011). The promotion of primary root growth by warm temperature was rapid 
(detectable at 4h, Fig. 1f) and continued steadily during day and night (Fig. 1g). Growth 

increased between 15°C and 25°C but decreased at 30°C (Fig. 1f, see also Ibañez et al., 
2017).  Direct exposure to light reduced primary root elongation (Zhang et al., 2019; Cabrera 
et al., 2021) but did not affect the absolute root response to temperature (no significant 

interaction, Fig. 1a, S1a).  
 

The phyB, elf3 and pif7 primary root growth phenotypes 

Compared to the wild type, the phyB (Fig. 1h, see also Mayfield et al., 2012; van Gelderen 

et al., 2018), elf3 (Fig. 1i) and pif7 mutants (Fig. 1j) showed reduced primary root growth, 
particularly at 28°C. These mutants also showed reduced cell length, particularly at 28°C 
(Fig. 1k). Thus, phyB and elf3 phenotypes are not compatible with phyB or ELF3 functions 

as thermosensors in the control of primary root growth (they should exhibit enhanced 
elongation at 20°C as observed for hypocotyl growth). The pif7 phenotype does not exclude 
a thermosensor function of PIF7.  

 

The function of phyB in primary root growth does not require normal 
thermal reversion  
Since thermal reversion is crucial for the thermosensing function of phyB (Jung et al., 2016; 

Legris et al., 2016; Burgie et al., 2021; Murcia et al., 2021), we compared the phyB mutant 
lines complemented with either wild-type phyB or the mutant versions phyBY361F and 
phyBR582A, which show severely reduced thermal reversion (Zhang et al., 2013). The wild-
type phyB, phyBY361F and phyBR582A variants similarly rescued the root growth defect of the 

phyB mutant at 20°C and the response to 28°C (note significant effects of phyB and no 
effects of phyB variants, Fig. 1l, S1b).  
 

 



 
 

Expression of growth-related genes 
To analyse the phenotypes at the molecular level we selected the XYLOGLUCAN 

ENDOTRANSGLUCOSYLASE /HYDROLASE 24 (XTH24) and EXPANSIN-LIKE A 1 

(EXLA1) genes because they belong to the GO terms cell growth / cell wall organisation or 

biogenesis, and warm temperatures consistently enhanced their expression in the primary 
root (Martins et al., 2017; Bellstaedt et al., 2019; Gaillochet et al., 2020; Lee et al., 2021; 
Fig. 1m). The phyB and elf3 mutants showed reduced expression of both genes and the pif7 
mutant showed reduced expression of the XTH24 gene, in all cases particularly at warm 

temperature (Fig. 1m). The expression patterns observed in these mutants is consistent with 
their growth phenotype and actually, EXLA1 showed a tight correlation with primary root 
growth (Fig. 1m).  

 

The root itself senses temperature 
Selectively exposing the root to 28°C while keeping the shoot at 20°C was enough to 
promote its elongation in intact seedlings (Fig. 1n, S1c). Detached roots responded to 

temperature treatments applied once isolated from the shoot (Fig. 1o-p, S1d, see also 
Bellstaedt et al., 2019). In detached roots, the phenotypes of the phyB, elf3 and pif7 mutants 
were similar to those observed in entire seedlings, despite the differences in growth capacity 

(Fig. 1o-p). Etiolated seedlings use phyB and other photoreceptors to achieve the 
photosynthetic competence of the shoot and generate sugars that travel to the root and 
promote its elongation (Kircher & Schopfer, 2012); added sucrose bypasses the need of 

these photoreceptors. Here, the phyB root phenotype persisted despite the addition of 
sucrose to the substrate in the experiments with severed shoots (Notes S1), suggesting 
different pathways of phyB action on root growth in etiolated and light-grown seedlings.       

In other experiments, we severed the shoot and transferred the roots to darkness 

(20°C or 28°C) either directly or after a pulse of red and/or far-red light to establish different 
proportions of active phyB (Pfr%). If phyB were acting as a thermosensor, at 20°C there 
should be more Pfr (less thermal reversion) than at 28°C and lowering Pfr by light should 

enhance root elongation as temperature does. Warmth increased root elongation but 
modifying Pfr across the whole range (from long-wavelength far red to pure red light) did not 
significantly affect root growth at 20°C (Fig. 1q). Increasing Pfr by red light reduced the 
response to warmth in detached roots (Fig. 1q) an effect of light not observed in entire 

seedlings (Fig. 1a).   
 



 
 

Lateral root development 
Light perceived by phys in the shoot controls the development of lateral roots via a mobile 
signal (van Gelderen et al., 2018).  Warm temperatures enhance lateral root development 
in light-exposed roots (Wang et al., 2016) but in our experiments with dark grown roots, 28°C 

reduced the generation of lateral roots compared to 20°C (Fig. S2). The phyB mutants 
showed reduced number of lateral roots at 20°C (see also van Gelderen et al., 2018) and 
no further response to 28°C (Fig. S2). This constitutive phenotype typical of warm conditions 
is compatible with a role of phyB as thermosensor in this process. The elf3 and pif7 

mutations had no significant effects on the rate of appearance of secondary roots (Fig. S2). 
 

Warmth did not reduce the size of phyB nuclear bodies in the root 
Stem piping of the light induces the accumulation of phyB in the nucleus of root cells and its 
condensation in nuclear bodies (NBs) that do not increase in size upon direct exposure of 
the root to light (Fig. 2a and S3, see also Lee et al., 2016; van Gelderen et al., 2018). The 
NBs were larger in elongating than root tip cells, but more nuclei had detectable phyB in the 

tip than in elongating cells (Fig. 2a-b).  In the hypocotyl, the NBs relate to phyB activity (Van 
Buskirk et al., 2014) and warm temperatures, by lowering Pfr levels reduce NB size (Legris 
et al., 2016; Hahm et al., 2020; Murcia et al., 2021). In contrast, 28°C did not reduce the size 

of the NBs in root cells of the elongation zone and actually caused a small increase in tip 
cells (Fig. 2a and S4a-b). These observations suggest that in the root, phyB Pfr might be 
relatively stable against thermal reversion. This apparent Pfr stability, in combination with 

higher abundance in the elongation zone (Fig. 2b) would yield more active phyB at 28°C 
than at 20°C. Since phyB promotes root growth (Fig. 1h), we reasoned that such higher 
phyB activity could per se mediate the growth promotion. However, arguing against this 
possibility, overexpression of phyB did not affect primary root growth (Fig. S1e).      

 
Warmth reduced the number of ELF3 nuclear bodies in the root 
Phase changes induced by warm temperatures favour ELF3 NB formation (Jung et al., 
2020) but the link between the formation of NBs and ELF3 activity is not univocal (Ronald 

et al., 2021). In hypocotyl cells, the number of ELF3 NBs either increases or decreases in 
response to warmth, depending on the time of the day (Murcia et al., 2022). We observed a 
reduction by warm temperature of the number of ELF3 NBs and the partitioning of 

fluorescence towards NBs from the nucleoplasm in cells of the primary root elongation zone 



 
 

(Fig. 2c-d, Ronald et al., 2021 also observed a reduction in the number of NBs). Warmth did 

not affect the average size of each ELF3 NB (Fig. S4) but increased total ELF3 fluorescence 
in cells of the elongation zone (Fig. 2e).  
 

Warmth did not increase PIF7 protein abundance in the root  
Warm temperatures increase the translatability of the PIF7 transcript and the abundance of 
PIF7 in the shoot (Fiorucci et al., 2020; Chung et al., 2020) (Fig. 2 g). However, PIF7 was 
less abundant in the root (Fig. 2 g) in seedlings treated with 28°C than in the controls at 

20°C. Consistently with previous reports, we did not observe changes in PIF7 expression in 
the roots (Fig. S5, see also Martins et al., 2017; Bellstaedt et al., 2019; Gaillochet et al., 
2020; Lee et al., 2021), indicating the effect is post-transcriptional.  

 

 
Conclusions 
phyB, ELF3 and PIF7 did not act as thermosensors in the primary root growth response to 

temperature. Since 28°C compared to 20°C promotes primary root growth and warm 
temperatures reduce phyB and ELF3 activities when they act as thermosensors, had phyB 
and ELF3 acted as thermosensors, the primary roots of their loss-of-function mutants should 

have been long at 20°C. In contrast, they were short. Furthermore, whilst thermal reversion 
is essential for phyB function as thermosensor (Jung et al., 2016; Legris et al., 2016; Burgie 
et al., 2021; Murcia et al., 2021), phyB variants with severely compromised thermal reversion 
complemented the phyB mutant similarly to the wild-type phyB. Thermal reversion typically 

reduces the size of phyB NBs between 20°C and 28°C but such reduction was not observed 
in root cells. Whilst increased PIF7 abundance is a direct consequence of PIF7 sensation of 
warmth (Chung et al., 2020), in the root 28°C actually reduced PIF7 abundance compared 

to 20°C (via post-transcriptional mechanisms), indicating a dynamic that is not compatible 
with the mechanism of action of PIF7 as thermosensor.   
 Although phyB, ELF3 and PIF7 do not act as root thermosensors, the three are 

important for root thermomorphogenesis.  In the hypocotyl, phyB and ELF3 inhibit whilst 
PIF7 promotes cell elongation. Conversely, the three conditioned the ability of the primary 
root cells to elongate in response to warm temperature.  In addition, phyB could convey 
shoot temperature information for the control of root branching. In fact, the phyB mutant had 



 
 

a phenotype compatible with its role as thermosensor for lateral root development; a 

response controlled by shoot-derived signals (van Gelderen et al., 2018).  
In natural conditions, the root and shoot environments, including their temperature 

patterns, are substantially different (Walter et al., 2009). Therefore, root and shoot 

thermomorphogenesis likely evolved independently to fulfil different functions (De Smet et 

al., 2021; Ludwig et al., 2021). The use of at least partially different sets of thermosensors 
in the root and the shoot could serve to the purpose of organ specific functions.    
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Fig. 1 phyB, ELF3 and PIF7 affect primary root growth responses to temperature. (a) Light 

reduces primary root growth without affecting its absolute response to temperature in 
Arabidopsis thaliana Col-0. (b) Representative seedlings grown at different temperatures 

after removal of the black plastic cover to visualise the roots (Supporting Information Notes 
S1). (c) Warm temperature increases the length of primary root epidermal cells within the 
elongation zone (confocal images of seedlings in propidium iodide, see Notes S1). (d-e) 

Warm temperature reduces meristem size (d) and enhances the activity of the CYCB1;1 
promoter in the meristem (e). (f)  Response of primary root growth to a range of different 
temperatures. (g) Time course of the growth response (shaded area represents the 
darkness of the night period). (h-j) Phenotype of phyB (h), elf3 (i), and pif7 mutants (j). (k) 

Cell length in the phyB, elf3 and pif7 mutants. (l) Complementation of the phyB mutant with 
wild type (phyB-9 pUBQ10:PHYB) or stable (phyB-9 pUBQ10:PHYBY361F, phyB-9 

pUBQ10:PHYBR582A) versions of phyB. (m) Expression of XTH24 and EXLA1 in the roots 

(note the correlation between EXLA1 expression across genotypes and temperatures). (n) 
Response to selective root warming (differences in basal growth rates with respect to other 
experiments caused by the use of a different growth chamber with stronger ventilation to 

maintain shoot temperature unaffected by root treatments). (o-p) Temperature responses 
of the roots of Col-0, phyB (o), elf3 and pif7 (p) after severing the shoot (see Notes S1). (q) 
Temperature responses of isolated roots exposed to a 20-min pulse of red plus far-red 
mixtures that establish different proportions of Pfr (Yanovsky et al., 2002) given 

immediately before the temperature treatments and followed by darkness, compared to 
dark controls. Scale bar: 1 mm (b), 50 μm (c-d, k), 100 μm (e). Box‐plots show median, 1–

3 interquartile range, maximum-minimum interval and individual values (a, c-f, h-l, n-p). 
Bars indicate ±SE (g, m, q). Significance of the effects of temperature (T) in t test (a, c, d, 
e, g, q) or the effects of T, genotype or light (L) and their interactions in multiple regression 

analyses (f, h-p): *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; ns, not 
significant.  

  



 
 

 

 

Fig. 2 phyB, ELF3 and PIF7 responses to warmth in primary root cells of Arabidopsis 

thaliana. (a-b) Size of phyB nuclear bodies (NB, a) and total fluorescence (b) driven by 

pUBQ10:PHYB-YFP in cells of the elongation zone and tip of the primary root (see confocal 
microscopy in Supporting Information Notes S1). (c-e) Number of ELF3 NBs (c), 

fluorescence ratio between NB and nucleoplasm (NP, d) and total fluorescence (e) driven 
by p35S:YFP-ELF3 in cells of the elongation zone of the root. (f) Abundance of PIF7 in the 
shoot, the root or the root without tip in pif7-2 pPIF7:PIF7-3HA-tPIF7 (see protein blots in 
Notes S1). Grey and black arrowheads indicate different PIF7 isoforms. Scale bar is 1 µm 

(a, c) or 50 µm (b, e). Box‐plots show median, 1–3 interquartile range, maximum-minimum 

interval and individual values. Fluorescence data and protein abundances relative to the 
abundance of loading control were normalised to the average of each experiment or to the 
average of each pair of biological replicates in the case of roots without tip because their 
harvest was slower. Significance of the effects of temperature and position (Pos.) of the cell 

or time and their interaction in multiple regression analysis (a-c) and of the effects of 
temperature (T) in t tests (d-f): *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; ns, 

not significant. 
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